WO2017012586A1 - 一种偏振分束器 - Google Patents

一种偏振分束器 Download PDF

Info

Publication number
WO2017012586A1
WO2017012586A1 PCT/CN2016/091011 CN2016091011W WO2017012586A1 WO 2017012586 A1 WO2017012586 A1 WO 2017012586A1 CN 2016091011 W CN2016091011 W CN 2016091011W WO 2017012586 A1 WO2017012586 A1 WO 2017012586A1
Authority
WO
WIPO (PCT)
Prior art keywords
waveguide
beam splitter
transition
mode
structural portion
Prior art date
Application number
PCT/CN2016/091011
Other languages
English (en)
French (fr)
Inventor
沈百林
方舟
李蒙
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2017012586A1 publication Critical patent/WO2017012586A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/126Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind using polarisation effects
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means

Definitions

  • This document relates to, but is not limited to, the field of optical communications, and more particularly to a polarizing beam splitter.
  • Polarization refers to the phenomenon that the vibration vector of the transverse wave (perpendicular to the direction of propagation of the wave) is biased in certain directions.
  • Polarization control plays a very important role in many applications, such as communication, biosensing, quantum optics, etc., and high efficiency and small size polarization control devices have very important application value in these fields.
  • a polarization beam splitter (or polarization splitter and rotator) in optical communication is an integrated optoelectronic device for separating TE (transverse) mode and TM (transverse magnetic) mode, and in silicon optical coherence In the communication chip, it is also necessary to convert the TM mode to the TE mode.
  • the implementation of polarization beam splitter is mainly based on two-dimensional grating and waveguide.
  • waveguide-based polarization beam splitter has a wide range of applications.
  • waveguide-based polarization beam splitters are mostly large in size and are not suitable for chip integration. And the process tolerance is small, requiring complex or even non-standard process steps.
  • a polarization beam splitter is provided, which can solve the problem that the wavelength-based polarization beam splitter of the related art has a large size and is not suitable for chip integration and small process tolerance.
  • This article provides a polarizing beam splitter that includes:
  • the second waveguide includes a second coupled waveguide sequentially connected and a second output waveguide for outputting a transverse magnetic TM;
  • the second coupling waveguide includes a first structural portion at the bottom and a second structural portion vertically connected to the first structural portion; the second structural portion includes a phase approximate matching waveguide and at least one transition waveguide, the phase The shape of the top of the approximately matching waveguide is a right-angled trapezoid, and the bottom of the right-angled trapezoid Provided towards the second output waveguide.
  • the polarizing beam splitter further includes a buried layer and a cladding layer, wherein:
  • the buried layer is located at a bottom of the first waveguide and the second waveguide;
  • the cladding is located at a top, a side of the first waveguide and the second waveguide, and a gap between the first waveguide and the second waveguide;
  • the refractive indices of the first waveguide and the second waveguide are both greater than the refractive indices of the cladding and the buried layer.
  • the first waveguide includes an input waveguide for inputting a transverse electric TE mode, a TM mode, a first coupling waveguide, and a first output waveguide for outputting a TE mode;
  • the first coupling waveguide and the second coupling waveguide have the same length.
  • an effective refractive index of the first waveguide to the TE mode is greater than an effective refractive index of the second waveguide to the TE mode; and an effective refractive index of the first waveguide to the TM mode is equal to The effective index of refraction of the second waveguide to the TE mode.
  • the second structural portion includes a phase approximate matching waveguide and two transition waveguides, and the two transition waveguides are respectively connected to the upper bottom and the lower bottom of the right angle trapezoid.
  • the second structural portion includes a phase approximate matching waveguide and a transition waveguide, and the transition waveguide is connected to the upper bottom of the right angle trapezoid.
  • the second structural portion includes a phase approximate matching waveguide and a transition waveguide, and the transition waveguide is connected to a lower bottom of the right angle trapezoid.
  • the shape of the top of the transition waveguide is wedge-shaped or streamlined or curved.
  • the first waveguide and the second waveguide are made of silicon, and the cladding and the buried layer are made of silicon dioxide.
  • the heights of the first waveguide and the second structural portion are both 220 nm.
  • the polarization beam splitter provided herein reduces the length of the coupled waveguide by providing a transition waveguide, achieving size optimization and reducing manufacturing costs. And the polarization beam splitter provided in this paper has high coupling efficiency and loss. The power consumption and crosstalk performance are small, and the process steps are relatively standard, which facilitates chip integration.
  • FIG. 1 is a top plan view of a first coupled waveguide and a second coupled waveguide of a polarization beam splitter according to an embodiment of the present invention
  • FIG. 2 is a left side view of a first coupled waveguide and a second coupled waveguide of a polarization beam splitter according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of simulation results of insertion loss performance of a polarization beam splitter according to an embodiment of the present invention
  • FIG. 4 is a simulation result of insertion loss performance of a polarization beam splitter of a wedge-shaped coupled waveguide according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram showing simulation results of crosstalk performance of a polarization beam splitter according to an embodiment of the present invention
  • FIG. 6 is a simulation result of crosstalk performance of a polarization beam splitter of a wedge-shaped coupled waveguide according to an embodiment of the present invention.
  • an embodiment of the present invention provides a polarization beam splitter according to the problems in the related art, and the polarization beam splitter includes: a stripe first disposed in parallel and provided with a preset gap. a waveguide and an L-shaped second waveguide; wherein the first waveguide and the second waveguide constitute an asymmetric waveguide; alternatively, the predetermined gap may have a width G of 100 nm or 200 nm.
  • the second waveguide includes a second coupled waveguide 2 connected in series and a second output waveguide for outputting a transverse magnetic TM mode;
  • the second coupling waveguide 2 includes a first structural portion 6 at the bottom and is vertically connected to the first structural portion 6. a second structure portion 5; the bottom surface of the first structure portion 6 is in the same plane as the bottom surface of the first waveguide, and the second structure portion 5 includes a phase approximation matching waveguide 7 and at least one transition waveguide 8, the phase approximately matching the top of the waveguide 7.
  • the shape is a right-angled trapezoid, the phase approximately matches the width W3 of the waveguide to change uniformly, while the width W2 of the first structural portion remains unchanged; the lower base of the right-angled trapezoid is disposed toward the second output waveguide.
  • the arrangement of the transition waveguide 8 shortens the length L of the coupled waveguide relative to the wedge-shaped coupled waveguide (coupled waveguide without the transition waveguide), which is important for size optimization.
  • the phase approximation matching waveguide 7 refers to a waveguide having the same effective refractive index of the first waveguide and the second waveguide at a certain distance, and complete phase matching can be realized, but the other places of the coupled waveguide 2 are not completely matched.
  • the polarizing beam splitter may further include a cladding layer 3 and a buried layer 4: the buried layer 4 is located at the bottom of the first waveguide and the second waveguide, and the cladding layer 3 is located at the top of the first waveguide and the second waveguide, the side, and a gap between the first waveguide and the second waveguide; the cladding 3 and the buried layer 4 are connected to each other to isolate the first waveguide and the second waveguide from the outside and also to isolate the first waveguide from the second waveguide.
  • the refractive indices of the first waveguide and the second waveguide are both greater than the refractive indices of the cladding 3 and the buried layer 4 to ensure total reflection of the optical signal in the polarization beam splitter.
  • the material of the first waveguide and the second waveguide may be silicon, and the material of the cladding layer 3 and the buried layer 4 is silicon dioxide.
  • the first waveguide includes an input waveguide for inputting a transverse electric TE mode, a TM mode, a first coupled waveguide 1 and a first output waveguide for outputting a TE mode; wherein the first coupled waveguide 1 and The length of the second coupling waveguide 2 is the same, both of which are the length L of the coupled waveguide; the width W1 of the first waveguide remains unchanged.
  • the effective refractive index of the first waveguide to the TE mode is greater than the effective refractive index of the second waveguide to the TE mode, and therefore, the TE mode input from the input waveguide will be output from the first output waveguide without being coupled to the second The waveguide;
  • the effective refractive index of the first waveguide to the TM mode is equal to the effective refractive index of the second waveguide to the TE mode, and therefore, the TM mode input from the input waveguide will be coupled to the second waveguide and output from the second output waveguide.
  • the second structural portion 5 comprises a phase approximation matching waveguide 7 and two transition waveguides 8, which are respectively connected to the upper and lower bottoms of the right angle trapezoid.
  • FIG. 3 is a simulation result of the insertion loss performance of the polarization beam splitter
  • FIG. 3 is a simulation result of the crosstalk performance of the polarization beam splitter; as shown in the figure, when the length L of the coupled waveguide is 60 In micron, a more stable coupling output can be achieved.
  • FIG. 4 and FIG. 6 are respectively simulation results of insertion loss performance and crosstalk performance of a polarization beam splitter of a wedge-shaped coupled waveguide under the same conditions, wherein when the length L of the coupled waveguide is 120 micrometers, A relatively stable coupled output is achieved.
  • the polarization beam splitter provided by the embodiment of the present invention reduces the length L of the coupled waveguide by providing the transition waveguide 8, which realizes size optimization and reduces manufacturing cost; and the polarization beam splitter coupling efficiency provided by the embodiment of the present invention High, loss and crosstalk performance is small, process steps are relatively standard, and chip integration is facilitated.
  • the second structural portion 5 may comprise a phase approximation matching waveguide 7 and a transition waveguide 8, the transition waveguide 8 being connected to the upper base of the right angle trapezoid; wherein a wider phase matching waveguide may be provided and omitted The transition waveguide 8 connected to the lower bottom of the right-angled trapezoid is dropped.
  • the second structural portion 5 includes a phase approximation matching waveguide 7 and a transition waveguide 8, which is connected to the lower bottom of the right angle trapezoid.
  • a wide phase matching waveguide can be provided and the transition waveguide 8 connected to the upper base of the right angle trapezoid can be omitted.
  • the shape of the top of the transition waveguide 8 may be wedge-shaped or streamlined or curved.
  • the height (H1) of the first waveguide and the height H2 of the second structural portion 5 may each be 220 nm, which satisfies the silicon light process standard in the related art.
  • the polarization beam splitter provided by the embodiment of the invention reduces the length of the coupled waveguide by providing a transition waveguide, realizes size optimization, and reduces manufacturing cost; the polarization beam splitter provided by the embodiment of the invention has high coupling efficiency, loss and crosstalk. The performance is small, and the process steps are relatively standard, which facilitates chip integration.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

一种偏振分束器,包括:平行设置并设有一预设间隙的条形的第一波导以及L形第二波导;第二波导包括依次连接的第二耦合波导(2)和用于输出横磁TM模的第二输出波导;第二耦合波导(2)包括位于底部的第一结构部(6)和与第一结构部(6)垂直连接的第二结构部(5);第二结构部(5)包括相位近似匹配波导(7)和至少一个过渡波导(8),相位近似匹配波导(7)顶部的形状为直角梯形,直角梯形的下底朝向第二输出波导设置。

Description

一种偏振分束器 技术领域
本文涉及但不限于光通信领域,尤其涉及一种偏振分束器。
背景技术
偏振是指横波的振动矢量(垂直于波的传播方向)偏于某些方向的现象。偏振控制在许多应用领域起着非常关键的作用,例如通信,生物传感,量子光学等,而高效率和小尺寸的偏振控制器件在这些领域具有非常重要的应用价值。光通信中的偏振分束器(polarization beam splitter,或者polarization splitter and rotator)是一种集成光电子器件,用于实现TE(横电)模和TM(横磁)模的分离,而在硅光相干通信芯片中,还需实现TM模转换为TE模。偏振分束器的实现方法主要基于二维光栅和波导两大类,相关技术中基于波导的偏振分束器有着比较广泛的应用,然而基于波导的偏振分束器大多尺寸大,不适合芯片集成,且工艺容差小,需要复杂甚至非标准的工艺步骤。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本文提供了一种偏振分束器,可以解决相关技术中基于波导的偏振分束器尺寸大,不适合芯片集成且工艺容差小的问题。
本文提供了一种偏振分束器,包括:
平行设置并设有一预设间隙的条形的第一波导以及L形第二波导;
所述第二波导包括依次连接的第二耦合波导和用于输出横磁TM的第二输出波导;
所述第二耦合波导包括位于底部的第一结构部和与所述第一结构部垂直连接的第二结构部;所述第二结构部包括相位近似匹配波导和至少一个过渡波导,所述相位近似匹配波导顶部的形状为直角梯形,所述直角梯形的下底 朝向所述第二输出波导设置。
可选地,上述偏振分束器,还包括埋层和包层,其中:
所述埋层位于所述第一波导以及第二波导的底部;
所述包层位于所述第一波导以及第二波导的顶部、侧面、所述第一波导与第二波导之间的间隙;
所述第一波导以及第二波导的折射率均大于所述包层和埋层的折射率。
可选地,上述偏振分束器中,所述第一波导包括依次连接的用于输入横电TE模、TM模的输入波导,第一耦合波导以及用于输出TE模的第一输出波导;所述第一耦合波导和第二耦合波导的长度相同。
可选地,上述偏振分束器中,所述第一波导对TE模的有效折射率大于所述第二波导对TE模的有效折射率;所述第一波导对TM模的有效折射率等于所述第二波导对TE模的有效折射率。
可选地,上述偏振分束器中,所述第二结构部包括相位近似匹配波导和两个过渡波导,两个过渡波导分别与所述直角梯形的上底和下底连接。
可选地,上述偏振分束器中,所述第二结构部包括相位近似匹配波导和一个过渡波导,所述过渡波导与所述直角梯形的上底连接。
可选地,上述偏振分束器中,所述第二结构部包括相位近似匹配波导和一个过渡波导,所述过渡波导与所述直角梯形的下底连接。
可选地,上述偏振分束器中,所述过渡波导的顶部的形状为楔形或流线型或弧形。
可选地,上述偏振分束器中,所述第一波导以及第二波导的材质为硅,所述包层和埋层的材质均为二氧化硅。
可选地,上述偏振分束器中,所述第一波导以及第二结构部的高度均为220纳米。
本文提供的偏振分束器通过设置过渡波导,减小了耦合波导的长度,实现了尺寸优化,降低了制造成本。且本文提供的偏振分束器耦合效率高,损 耗以及串扰性能小,工艺步骤相对标准,便于芯片集成。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
图1为本发明实施例提供的偏振分束器的第一耦合波导以及第二耦合波导的俯视图;
图2为本发明实施例提供的偏振分束器的第一耦合波导以及第二耦合波导的左视图;
图3为本发明实施例提供的偏振分束器的插入损耗性能仿真结果示意图;
图4为本发明实施例提供的楔形耦合波导的偏振分束器的插入损耗性能仿真结果;
图5为本发明明实施例提供的偏振分束器的串扰性能仿真结果示意图;
图6为本发明实施例提供楔形耦合波导的偏振分束器的串扰性能仿真结果。
本发明的实施方式
下文中将结合附图对本文的实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
本参见图1及图2,本发明实施例根据相关技术中存在的问题,提供了一种偏振分束器,该偏振分束器包括:平行设置并设有一预设间隙的条形的第一波导以及L形的第二波导;其中,第一波导以及第二波导组成非对称波导;可选地,该预设间隙的宽度G可以为100纳米或200纳米。
第二波导包括依次连接的第二耦合波导2和用于输出横磁TM模的第二输出波导;
第二耦合波导2包括位于底部的第一结构部6和与第一结构部6垂直连 接的第二结构部5;第一结构部6的底面与第一波导的底面位于同一平面,第二结构部5包括相位近似匹配波导7和至少一个过渡波导8,相位近似匹配波导7顶部的形状为直角梯形,相位近似匹配波导的宽度W3均匀变化,而第一结构部的宽度W2保持不变;直角梯形的下底朝向第二输出波导设置。其中,过渡波导8的设置相对于楔形耦合波导(无过渡波导的耦合波导)缩短了耦合波导长度L,对尺寸优化有重要意义。其中,相位近似匹配波导7是指第一波导和第二波导在某个距离的有效折射率相同的波导,可以实现完全的相位匹配,但耦合波导2的其他地方不完全匹配。
可选地,该偏振分束器还可以包括包层3和埋层4:埋层4位于第一波导以及第二波导的底部,包层3位于第一波导以及第二波导顶部、侧面、以及第一波导与第二波导之间的间隙;包层3和埋层4相互连接,使第一波导和第二波导与外部隔离,并使第一波导与第二波导之间也进行隔离。可选地,第一波导以及第二波导的折射率均大于包层3和埋层4的折射率,保证光信号在该偏振分束器内发生全反射。
可选地,第一波导以及第二波导的材质可以为硅,包层3和埋层4的材质均为二氧化硅。
可选地,第一波导包括依次连接的用于输入横电TE模、TM模的输入波导、第一耦合波导1以及用于输出TE模的第一输出波导;其中,第一耦合波导1和第二耦合波导2的长度相同,均为耦合波导的长度L;第一波导的宽度W1保持不变。
可选地,第一波导对TE模的有效折射率大于第二波导对TE模的有效折射率,因此,从输入波导输入的TE模将从第一输出波导输出,而不会耦合到第二波导;第一波导对TM模的有效折射率等于第二波导对TE模的有效折射率,因此,从输入波导输入的TM模将耦合到第二波导,从第二输出波导输出。
在一个可选实施例中,第二结构部5包括相位近似匹配波导7和两个过渡波导8,两个过渡波导8分别与直角梯形的上底和下底连接。
参见图3及图5,图3为该偏振分束器的插入损耗性能仿真结果,图3为该偏振分束器的串扰性能仿真结果;由图可知,当耦合波导的长度L在60 微米时,便可实现较为稳定的耦合输出。
参见图4及图6,图4和图6分别为相同条件下,楔形耦合波导的偏振分束器的插入损耗性能以及串扰性能仿真结果,其中,当耦合波导的长度L在120微米时,才能实现较为稳定的耦合输出。
因此,本发明实施例提供的偏振分束器通过设置过渡波导8,减小了耦合波导的长度L,实现了尺寸优化,降低了制造成本;且本发明实施例提供的偏振分束器耦合效率高,损耗以及串扰性能小,工艺步骤相对标准,便于芯片集成。
在一个可选实施例中,第二结构部5可以包括相位近似匹配波导7和一个过渡波导8,过渡波导8与直角梯形的上底连接;其中,可以设置较宽的的相位匹配波导而省略掉与直角梯形的下底连接的过渡波导8。
在一个可选实施例中,第二结构部5包括相位近似匹配波导7和一个过渡波导8,过渡波导8与直角梯形的下底连接。其中,可以设置较宽的相位匹配波导而省略掉与直角梯形的上底连接的过渡波导8。
可选地,过渡波导8的顶部的形状可以为楔形或流线型或弧形。
继续参见图2,第一波导的高度(H1)以及第二结构部5的高度H2可以均为220纳米,满足相关技术中硅光工艺标准。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序来指令相关硬件(例如处理器)完成,所述程序可以存储于计算机可读存储介质中,如只读存储器、磁盘或光盘等。可选地,上述实施例的全部或部分步骤也可以使用一个或多个集成电路来实现。相应地,上述实施例中的模块/单元可以采用硬件的形式实现,例如通过集成电路来实现其相应功能,也可以采用软件功能模块的形式实现,例如通过处理器执行存储于存储器中的程序指令来实现其相应功能。本申请不限制于任何特定形式的硬件和软件的结合。
工业实用性
本发明实施例提供的偏振分束器通过设置过渡波导,减小了耦合波导的长度,实现了尺寸优化,降低了制造成本;本发明实施例提供的偏振分束器耦合效率高,损耗以及串扰性能小,且工艺步骤相对标准,便于芯片集成。

Claims (10)

  1. 一种偏振分束器,包括:平行设置并设有一预设间隙的条形的第一波导以及L形第二波导;
    所述第二波导包括依次连接的第二耦合波导和用于输出横磁TM的第二输出波导;
    所述第二耦合波导包括位于底部的第一结构部和与所述第一结构部垂直连接的第二结构部;所述第二结构部包括相位近似匹配波导和至少一个过渡波导,所述相位近似匹配波导顶部的形状为直角梯形,所述直角梯形的下底朝向所述第二输出波导设置。
  2. 如权利要求1所述的偏振分束器,还包括埋层和包层,其中:
    所述埋层位于所述第一波导以及第二波导的底部;
    所述包层位于所述第一波导以及第二波导的顶部、侧面、所述第一波导与第二波导之间的间隙;
    所述第一波导以及第二波导的折射率均大于所述包层和埋层的折射率。
  3. 如权利要求1所述的偏振分束器,其中,所述第一波导包括依次连接的用于输入横电TE模、TM模的输入波导,第一耦合波导以及用于输出TE模的第一输出波导;所述第一耦合波导和第二耦合波导的长度相同。
  4. 如权利要求1所述的偏振分束器,其中,所述第一波导对TE模的有效折射率大于所述第二波导对TE模的有效折射率;所述第一波导对TM模的有效折射率等于所述第二波导对TE模的有效折射率。
  5. 如权利要求1所述的偏振分束器,其中,所述第二结构部包括相位近似匹配波导和两个过渡波导,两个过渡波导分别与所述直角梯形的上底和下底连接。
  6. 如权利要求1所述的偏振分束器,其中,所述第二结构部包括相位近似匹配波导和一个过渡波导,所述过渡波导与所述直角梯形的上底连接。
  7. 如权利要求1所述的偏振分束器,其中,所述第二结构部包括相位近似匹配波导和一个过渡波导,所述过渡波导与所述直角梯形的下底连接。
  8. 如权利要求1所述的偏振分束器,其中,所述过渡波导的顶部的形状为楔形或流线型或弧形。
  9. 如权利要求2所述的偏振分束器,其中,所述第一波导以及第二波导的材质为硅,所述包层和埋层的材质均为二氧化硅。
  10. 如权利要求1所述的偏振分束器,其中,所述第一波导以及第二结构部的高度均为220纳米。
PCT/CN2016/091011 2015-07-23 2016-07-22 一种偏振分束器 WO2017012586A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510435709.9 2015-07-23
CN201510435709.9A CN106443883A (zh) 2015-07-23 2015-07-23 一种偏振分束器

Publications (1)

Publication Number Publication Date
WO2017012586A1 true WO2017012586A1 (zh) 2017-01-26

Family

ID=57833808

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/091011 WO2017012586A1 (zh) 2015-07-23 2016-07-22 一种偏振分束器

Country Status (2)

Country Link
CN (1) CN106443883A (zh)
WO (1) WO2017012586A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108563030B (zh) * 2018-01-31 2023-05-26 中国地质大学(武汉) 一种偏振分束器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060120657A1 (en) * 2003-09-15 2006-06-08 Nomadics, Inc. Integrated optics polarization beam splitter using form birefringence
CN103336330A (zh) * 2013-07-05 2013-10-02 中国科学院半导体研究所 一种基于非对称垂直狭缝波导的偏振旋转器
CN103558660A (zh) * 2013-05-21 2014-02-05 宁波屹诺电子科技有限公司 一种实现光偏振分束和旋转的集成器件
CN103675998A (zh) * 2013-11-25 2014-03-26 中国计量学院 人参形太赫兹波偏振分束器
US20140133793A1 (en) * 2012-11-13 2014-05-15 Infinera Corporation Polarization beam splitter

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0124840D0 (en) * 2001-10-16 2001-12-05 Univ Nanyang A polarization beam splitter
US8923665B2 (en) * 2013-03-15 2014-12-30 International Business Machines Corporation Material structures for front-end of the line integration of optical polarization splitters and rotators

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060120657A1 (en) * 2003-09-15 2006-06-08 Nomadics, Inc. Integrated optics polarization beam splitter using form birefringence
US20140133793A1 (en) * 2012-11-13 2014-05-15 Infinera Corporation Polarization beam splitter
CN103558660A (zh) * 2013-05-21 2014-02-05 宁波屹诺电子科技有限公司 一种实现光偏振分束和旋转的集成器件
CN103336330A (zh) * 2013-07-05 2013-10-02 中国科学院半导体研究所 一种基于非对称垂直狭缝波导的偏振旋转器
CN103675998A (zh) * 2013-11-25 2014-03-26 中国计量学院 人参形太赫兹波偏振分束器

Also Published As

Publication number Publication date
CN106443883A (zh) 2017-02-22

Similar Documents

Publication Publication Date Title
US7127131B2 (en) Wavelength insensitive integrated optic polarization splitter
US7228015B2 (en) Integrated optic polarization converter based on structural chirality
WO2016131355A1 (en) Photonic chip surface grating coupler (sgc) -based optical splitter and optical combiner
CN110412685B (zh) 基于集成电介质光波导的圆偏振模式鉴别与分束器件
US9523820B1 (en) Adiabatic polarization rotation and splitting
CN109791255B (zh) 包括法拉第旋转器的光学耦合器
US10001601B2 (en) Device for coupling a plurality of different fibre modes
US12072531B2 (en) Integrated polarization rotation and splitting using mode hybridization between multiple core structures
Zou et al. Single step etched two dimensional grating coupler based on the SOI platform
US10191214B2 (en) Photonic integrated circuit having a relative polarization-rotating splitter/combiner
EP0591381A1 (en) ADIABATIC POLARIZATION BEAM DIVIDER.
CN103217803A (zh) 采用棱镜的半导体激光器偏振耦合装置
JPH02275402A (ja) 断熱偏波操作デバイス
Fattal et al. A silicon lens for integrated free-space optics
WO2017012586A1 (zh) 一种偏振分束器
CN102402019A (zh) 基于亚波长全刻蚀光栅的偏振分束器
Zhou et al. Silicon photonic devices based on binary blazed gratings
US9170375B2 (en) TM-polarization splitter based on photonic crystal waveguide
Yoo et al. Design of a high efficient fiber-to-chip coupler with reflectors
JP5908369B2 (ja) 受光デバイス
CN1708707A (zh) 波长不敏感的集成偏振光学分束器
Ma et al. A compact silicon-on-Insulator MMI-based polarization splitter
Chen et al. Ultra-broadband and compact 2$\times $2 3-dB silicon adiabatic coupler based on supermode-injected adjoint shape optimization
Ciminelli et al. Variable oblique incidence for tunability in a two-dimensional photonic-crystal guided-wave filter
Liao et al. Design of novel composite beam splitter with directional couplers and ring resonators using photonic crystal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16827277

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16827277

Country of ref document: EP

Kind code of ref document: A1