WO2017011980A1 - 信息发送方法和装置、以及信息接收方法和装置 - Google Patents

信息发送方法和装置、以及信息接收方法和装置 Download PDF

Info

Publication number
WO2017011980A1
WO2017011980A1 PCT/CN2015/084490 CN2015084490W WO2017011980A1 WO 2017011980 A1 WO2017011980 A1 WO 2017011980A1 CN 2015084490 W CN2015084490 W CN 2015084490W WO 2017011980 A1 WO2017011980 A1 WO 2017011980A1
Authority
WO
WIPO (PCT)
Prior art keywords
length
information
threshold
crc code
equal
Prior art date
Application number
PCT/CN2015/084490
Other languages
English (en)
French (fr)
Inventor
吕永霞
官磊
闫志宇
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP15898536.6A priority Critical patent/EP3355477B1/en
Priority to PCT/CN2015/084490 priority patent/WO2017011980A1/zh
Priority to CN201580080392.XA priority patent/CN107636974B/zh
Priority to US15/780,460 priority patent/US10637610B2/en
Publication of WO2017011980A1 publication Critical patent/WO2017011980A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0061Error detection codes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/09Error detection only, e.g. using cyclic redundancy check [CRC] codes or single parity bit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/35Unequal or adaptive error protection, e.g. by providing a different level of protection according to significance of source information or by adapting the coding according to the change of transmission channel characteristics
    • H03M13/356Unequal error protection [UEP]
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/65Purpose and implementation aspects
    • H03M13/6508Flexibility, adaptability, parametrability and configurability of the implementation
    • H03M13/6516Support of multiple code parameters, e.g. generalized Reed-Solomon decoder for a variety of generator polynomials or Galois fields
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/65Purpose and implementation aspects
    • H03M13/6522Intended application, e.g. transmission or communication standard
    • H03M13/65253GPP LTE including E-UTRA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1671Details of the supervisory signal the supervisory signal being transmitted together with control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK

Definitions

  • the embodiments of the present invention relate to communication technologies, and in particular, to an information sending method and apparatus, and an information receiving method and apparatus.
  • the user equipment User Equipment; UE
  • the Evolved NodeB eNB
  • Add a check code to the original information that needs to be transmitted to achieve reliable transmission of information.
  • the transmitting end adds a fixed length check bit to the original information by using a Cyclic Redundancy Check (CRC) technology, and then sends the information of the added check bit to the receiving end; After receiving the information with the added check digit, the receiving end performs the CRC check. If the check succeeds, the transmission is considered to be correct.
  • CRC Cyclic Redundancy Check
  • Embodiments of the present invention provide an information transmitting method and apparatus, and an information receiving method and apparatus, so as to improve reliability of information transmission.
  • an embodiment of the present invention provides a method for sending information, including:
  • the first length meets 2 L-1 -1-L ⁇ A, L is the first length, and A is the first The length of the message.
  • the first length is 8 bits
  • the first threshold is 119.
  • the first threshold is less than or equal to 2 L-1 -1-L, and L is the first length.
  • the first threshold is preset or pre-received.
  • the first length is 8 bits
  • the first threshold is less than or equal to 119.
  • a sixth possible implementation manner of the first aspect Determining the length of the cyclic redundancy check CRC code according to the length of the first information, including:
  • the second length is 16 bits.
  • the eighth possible implementation of the first aspect is preset or received in advance.
  • the second threshold is 22 or 11.
  • the first information is uplink control signaling.
  • the first information includes any one of the following or a combination thereof:
  • Hybrid automatic repeat request-acknowledgment signaling HARQ-ACK
  • the uplink scheduling request indicates an SRI
  • an embodiment of the present invention provides a method for receiving information, including:
  • Second information includes first information and a cyclic redundancy check CRC code, where the first information is control information;
  • the first information is verified according to a generator polynomial corresponding to the length of the CRC code.
  • the first length satisfies 2 L-1 -1-L ⁇ A, L is the first length, and A is the first The length of the message.
  • the first length is 8 bits
  • the first threshold is 119.
  • the first threshold is less than or equal to 2 L-1 -1-L, and L is the first length.
  • the first threshold is preset or pre-received.
  • the first length is 8 bits
  • the first threshold is less than or equal to 119.
  • the first possible implementation of the second aspect, and the possible implementation manner of the fifth possible implementation manner of the second aspect, in a sixth possible implementation manner of the second aspect Determining the length of the cyclic redundancy check CRC code according to the length of the first information, including:
  • the second length is 16 bits.
  • the eighth possible implementation manner of the second aspect is preset or received in advance.
  • the second threshold is 22 or 11.
  • the first information is uplink control signaling.
  • the first information includes any one of the following or a combination thereof:
  • Hybrid automatic repeat request-acknowledgment signaling HARQ-ACK
  • the uplink scheduling request indicates an SRI
  • an information sending apparatus including:
  • a processing module configured to determine a length of the cyclic redundancy check CRC code according to the length of the first information, where the first information is control information, and if the length of the first information is less than or equal to the first threshold, Determining that the length of the CRC code is the first length, or determining that the length of the CRC code is the first length if the length of the first information is less than or equal to the first threshold and greater than the second threshold.
  • the processing module is further configured to generate a CRC code according to a generator polynomial corresponding to a length of the CRC code and the first information;
  • the processing module is further configured to generate second information, where the second information includes the first information and the CRC code;
  • a sending module configured to send the second information generated by the processing module.
  • the first length satisfies 2 L-1 -1-L ⁇ A, L is the first length, and A is the first The length of the message.
  • the first length is 8 bits
  • the first threshold is 119.
  • the first threshold is less than or equal to 2 L-1 -1-L, where L is the first length.
  • the first threshold is preset or pre-received.
  • the first length is 8 bits
  • the first threshold is less than or equal to 119.
  • the processing module is further configured to:
  • the second length is 16 bits.
  • the eighth possible implementation manner of the third aspect is preset or received in advance.
  • the second threshold is 22.
  • the first information is uplink control signaling.
  • the first information includes any one of the following or a combination thereof:
  • Hybrid automatic repeat request-acknowledgment signaling HARQ-ACK
  • the uplink scheduling request indicates an SRI
  • an information receiving apparatus including:
  • a receiving module configured to receive second information, where the second information includes first information and a cyclic redundancy check CRC code, where the first information is control information;
  • a processing module configured to determine a length of the CRC code according to a length of the first information in the second information received by the receiving module, where, if the length of the first information is less than or equal to a first threshold, determining The length of the CRC code is a first length, or if the length of the first information is less than or equal to the first threshold and greater than the second threshold, determining that the length of the CRC code is the first length;
  • the processing module is further configured to check the first information according to a generator polynomial corresponding to the length of the CRC code.
  • the first length satisfies 2 L-1 -1-L ⁇ A, L is the first length, and A is the first The length of the message.
  • the first threshold is 119.
  • the first threshold is less than or equal to 2 L-1 -1-L, where L is the first length.
  • the first threshold is preset or pre-received.
  • the first length is 8 bits
  • the first threshold is less than or equal to 119.
  • the processing module is further configured to:
  • the second length is 16 bits.
  • the eighth possible implementation manner of the fourth aspect is preset or received in advance.
  • the second threshold is 22.
  • the first information is uplink control signaling.
  • the first information includes any one of the following or a combination thereof:
  • Hybrid automatic repeat request-acknowledgment signaling HARQ-ACK
  • the uplink scheduling request indicates an SRI
  • the information sending method and device and the information receiving method and device provided by the embodiment of the present invention determine the length of the CRC code according to the length of the first information, where the first information is control information, and if the length of the first information is less than or equal to
  • the first threshold value determines whether the length of the CRC code is the first length, or determines that the length of the CRC code is the first length if the length of the first information is less than or equal to the first threshold and greater than the second threshold.
  • the length of the code is determined according to the length of the control information, by comparing the length of the first information with the size of the first threshold or by comparing the length of the first information with the size of the first threshold and the second threshold.
  • FIG. 1 is a schematic flowchart of an embodiment of an information sending method according to an embodiment of the present disclosure
  • FIG. 2 is a schematic flowchart of an embodiment of an information receiving method according to an embodiment of the present disclosure
  • FIG. 3 is a schematic structural diagram of an embodiment of an information sending apparatus according to an embodiment of the present disclosure
  • FIG. 4 is a schematic structural diagram of an embodiment of an information receiving apparatus according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of an embodiment of an information transmission system according to an embodiment of the present invention.
  • the information transmitting and receiving method provided by the present invention can be applied in a scenario in which information is transmitted between a UE and an eNB.
  • the information sending method determines the length of the CRC code according to the length of the first information, generates a CRC code according to the generated polynomial corresponding to the length of the CRC code, and generates the second information, where the second information includes the first information and the CRC code.
  • the second information is sent, and when the information to be transmitted is CRC encoded, the number of bits CRC-encoded and the corresponding generator polynomial can be determined according to the length of the information to be transmitted, thereby improving the reliability of information transmission.
  • the first information in the embodiments of the present invention is the control information, which may be the control information content of the general uplink or downlink transmission, for example, hybrid automatic repeat request-acknowledgement (Hybrid Automatic Repeat Request-ACKnowledge; ACK); Scheduling Request Indication (SRI); Channel State Information (CSI), etc., for which the present invention is not limited.
  • hybrid automatic repeat request-acknowledgement Hybrid Automatic Repeat Request-ACKnowledge
  • SRI Scheduling Request Indication
  • CSI Channel State Information
  • FIG. 1 is a schematic flowchart diagram of an embodiment of an information sending method according to an embodiment of the present invention. As shown in FIG. 1, the information sending method provided in this embodiment includes:
  • S101 Determine a length of the CRC code according to the length of the first information.
  • the first information is the control information. If the length of the first information is less than or equal to the first threshold, the length of the CRC code is determined to be the first length, or if the length of the first information is less than or equal to the first threshold If it is greater than the second threshold, it is determined that the length of the CRC code is the first length.
  • the embodiment is performed by the sending end of the information, and the method is used by the UE or other terminal in the process of uplink information transmission.
  • the method is used in the downlink information transmission process, and may be performed by a base station or other
  • the NE device is executed.
  • the first information is control information sent by the sender of the information.
  • the length of the first information can be based on the agreement between the sender and the receiver.
  • the rule is determined. For example, when the UE sends the uplink control signaling to the receiving eNB, the eNB informs the UE how many bits of information to send according to the agreed rules.
  • the first length satisfies 2 L-1 -1-L ⁇ A
  • L is the first length
  • A is the length of the first information.
  • the first length is 8 bits and the first threshold is 119
  • the length of the first information is less than or equal to 119
  • the length of the CRC code is determined to be the first length, that is, 8 bits.
  • the first threshold is less than or equal to 2 L-1 -1-L, and L is the first length.
  • L is the first length.
  • the first threshold is less than or equal to 119, that is, the first threshold may be 119 or any value less than 119.
  • the first threshold is preset or pre-received.
  • the first threshold may be preset by the information sending end and the information receiving end, or may be sent by the sending end to the receiving end. Alternatively, the sender and the receiver may receive other network elements and send them to them in advance.
  • the second threshold is preset or pre-received.
  • the second threshold may be preset by the information sending end and the information receiving end, or may be sent by the sending end to the receiving end.
  • the sender and the receiver may receive other network elements and send them to them in advance.
  • the size of the second threshold may be determined according to some existing values, and the existing uplink protocol (Physical Uplink Control Channel; PUCCH) format is supported.
  • PUCCH Physical Uplink Control Channel
  • the maximum number of bits, etc., for example, the second threshold value can be selected to be 22. That is, if the first length is 8 bits and the first threshold value is 119, if the length of the first information is less than or equal to 119 and greater than 22, the first information is encoded by the first length, that is, the 8-bit CRC code.
  • the first information is not CRC encoded.
  • the length of the first information may also be determined by the sending end according to the air interface resource, and the length of the information to be received by the receiving end is notified by the control signaling, so that the receiving end selects the length corresponding to the length of the information.
  • the generator polynomial of the length of the CRC code performs a CRC check.
  • the length of the first information may also be determined by the receiving end, and the length of the information to be sent by the sending end is notified by the control signaling, so that the transmitting end selects the CRC code corresponding to the length of the information, and the CRC code is attached.
  • the receiving end knows the length of the first information. Therefore, when receiving the second information, the receiving end can directly determine the length of the CRC code by using the length of the first information that is known by the receiving end.
  • the sending end and the receiving end adopt an agreeding manner, or the manner of notifying in the transmission process, and other manners that enable the two parties to know the length of the first information.
  • the present invention is not limited, as long as the transmitting end and the receiving end determine.
  • the first information can be the same length.
  • S102 Generate a CRC code according to a generator polynomial corresponding to the length of the CRC code and the first information.
  • the lengths of different CRC codes correspond to different generator polynomials.
  • a generator polynomial corresponding thereto is selected, and a CRC code is generated according to the generator polynomial and the first information.
  • the generator polynomial of the CRC code is agreed in advance by the information transmitting end and the information receiving end.
  • S103 Generate second information, where the second information includes the first information and the CRC code.
  • the first information is CRC-encoded according to the generated CRC code to generate second information.
  • the second information is obtained by appending the generated CRC code to the sequence of the first information, and the sequence representation of the second information is (a 0 , a 1 , a 2 , a 3 , ..., a A-1 , p 0 , p 1 , p 2 , p 3 , ..., p L-1 ), the length of the second information is A + L bits.
  • the second information is finally obtained as (a 0 , a 1 , a 2 , a 3 , . . . , a A-1 , p 0 , p 1 , p 2 , p 3 , . . . , p L-1 ).
  • the sending end sends the second information.
  • the sending end may encode and modulate the second information before sending.
  • the information sending method provided in this embodiment determines the CRC by using the length of the first information.
  • the length of the code wherein the first information is control information, and if the length of the first information is less than or equal to the first threshold, determining that the length of the CRC code is the first length, or if the length of the first information is less than or equal to the first
  • the threshold value is greater than the second threshold value, and the length of the CRC code is determined to be the first length.
  • the CRC code is generated according to the generator polynomial corresponding to the length of the CRC code and the first information, and the second information is generated. The information and the CRC code are sent to the second information.
  • the length of the CRC code that is CRC-encoded in this embodiment is determined according to the length of the control information, by comparing the length of the first information with the size of the first threshold or Comparing the length of the first information with the size of the first threshold and the second threshold to determine the length of the CRC code, thereby avoiding the CRC check after the receiving end receives the information, but the information transmission is incorrect, and the situation is improved.
  • the reliability of information transmission is improved.
  • determining the length of the CRC code according to the length of the first information further comprising: if the length of the first information is greater than the first threshold, determining that the length of the CRC code is the second length, The value of the two lengths is greater than the value of the first length.
  • the value of the second length may be 16 bits, and the value of the first length is 8 bits, and the first threshold is less than or equal to 119, and if the first threshold is 119, If the length of the first information is greater than 119, it is determined that the length of the CRC code is the second length, that is, 16 bits.
  • determining the length of the CRC code according to the length of the first information may further be implemented as follows: if the length of the first information is less than the first threshold, determining the CRC code The length of the first information is the first length, or if the length of the first information is less than the first threshold and greater than the second threshold, determining that the length of the CRC code is the first length; if the length of the first information is greater than or equal to the first The threshold value determines that the length of the CRC code is the second length, and the value of the second length is greater than the value of the first length.
  • the first threshold is less than or equal to 2 L-1 -L.
  • the first threshold is less than or equal to 120.
  • the length of the first information is less than 120, determining that the length of the CRC code is the first length, that is, 8 bits.
  • the second length and the maximum length of the first information are met.
  • MAX is the maximum length of the first information and L 1 is the first length.
  • the first information is uplink control signaling, including any one of the following or a combination thereof: hybrid automatic repeat request-acknowledgment signaling (Hybrid Automatic Repeat) Request-ACKnowledge; abbreviated as: HARQ-ACK), Schduling Request Indication (SRI), Channel State Information (CSI), where CSI may include precoding matrix indication (Precoding Matrix) Indicator; abbreviated as: PMI), Channel Quality Indicator (CQI), Rank Indication (RI), or Precoding Type Indicator (PTI), PMI can be a broadband PMI Or sub-band PMI, CQI can be broadband, sub-band, or beam index (Beam Index; referred to as: BI).
  • Hybrid Automatic Repeat Request-ACKnowledge
  • SRI Schduling Request Indication
  • CSI Channel State Information
  • PMI precoding Matrix Indicator
  • CQI Channel Quality Indicator
  • RI Rank Indication
  • PTI Precoding Type Indicator
  • PMI can be a
  • the method in the foregoing embodiment may be used in a scenario in which a UE performs feedback of HARQ-ACK signaling to an eNB in Frequency Division Duplexing (FDD) or Time Division Duplexing (TDD) in an LTE system. It can be applied to a communication system of a terminal to device (Device to Device; referred to as D2D).
  • D2D a terminal to device
  • the UE receives the information on the physical downlink shared channel (Physical Downlink Shared Channel; PDSCH). If the UE accepts the information, the UE will be in the physical state.
  • PDSCH Physical Downlink Shared Channel
  • the acknowledgment (ACKnowledge: ACK) information is transmitted on the uplink control channel (Physical Uplink Control Channel; abbreviated as: PUCCH). If the acknowledgment is incorrect, the acknowledgment information (NACK) is transmitted.
  • the eNB allocates multiple carriers to one UE to increase the data rate of the UE. At this time, the UE feeds back HARQ-ACKs of multiple carriers to the base station.
  • the method of the foregoing embodiment may be further used by the UE to report the CSI signaling on each carrier to the eNB, where the CSI reporting is divided into a periodic CSI and an aperiodic CSI.
  • the periodic CSI is transmitted through the PUCCH; the aperiodic CSI is transmitted through the Physical Uplink Shared Channel (PUSCH).
  • PUSCH Physical Uplink Shared Channel
  • the first length is 8 bits
  • the second length is 16 bits
  • the first threshold is 119.
  • the generator polynomial corresponding to the 16-bit CRC code when the length of the first information is greater than 119, the generator polynomial corresponding to the 16-bit CRC code is used.
  • CRC16 (D) D 16 +D 12 + D 5 +1 encodes it; when the length of the first information is less than or equal to 119, the generator polynomial corresponding to the 8-bit CRC code is used.
  • CRC8 (D) D 8 +D 7 +D 4 +D 3 + D+1 encodes it.
  • the second threshold is 22.
  • the 16-bit CRC code corresponding to the generator polynomial is used to encode; when the length of the first information is greater than 22 and less than or equal to 119, the generator polynomial pair corresponding to the 8-bit CRC code is used. It is encoded.
  • the first information is not CRC encoded.
  • the second threshold is taken as 11.
  • the 16-bit CRC code corresponding to the generator polynomial is used to encode; when the length of the first information is greater than 11 and less than or equal to 119, the generator polynomial pair corresponding to the 8-bit CRC code is used. It is encoded.
  • the first information is not CRC encoded.
  • the 16-bit CRC code corresponding to the generator polynomial is used to encode; when the length of the first information is less than or equal to At 119, it is encoded using a generator polynomial corresponding to the 8-bit CRC code.
  • the 16-bit CRC code corresponding to the generator polynomial is used to encode; when the length of the first information is less than or equal to 360, the 8-bit CRC code is used.
  • the corresponding generator polynomial encodes it.
  • the first information is HARQ-ACK, SRI, and CSI transmitted simultaneously
  • the 16-bit CRC code corresponding to the generator polynomial is used to encode; when the length of the first information is less than or equal to 119 At this time, the 8-bit CRC code corresponding to the generator polynomial is used to encode it.
  • the foregoing implementation manner is adopted, which improves the reliability of information transmission and reduces the communication cost.
  • FIG. 2 is a schematic flowchart diagram of an embodiment of an information receiving method according to an embodiment of the present invention. As shown in FIG. 32, the information receiving method provided in this embodiment includes:
  • S201 Receive second information, where the second information includes the first information and the CRC code, where the first information is control information.
  • the embodiment is performed by the receiving end of the information, and the method is used for receiving the uplink information.
  • the base station or other network element device may perform execution, and the method may be performed by the UE or other terminal during the downlink information receiving process.
  • the second information includes the first information and the CRC code.
  • the first information is control information.
  • the information receiving end demodulates the second information.
  • S202 Determine a length of the CRC code according to the length of the first information.
  • the length of the first information is less than or equal to the first threshold, determining that the length of the CRC code is the first length, or, if the length of the first information is less than or equal to the first threshold and greater than the second threshold, Then, the length of the CRC code is determined to be the first length.
  • the length of the first information may be determined according to an agreed rule between the transmitting end and the receiving end. It may also be determined by the receiving end according to the air interface resource, the manner of notification during the transmission process, and other manners that enable the transmitting end and the receiving end to know the length of the first information. Alternatively, the length of the first information may also be determined by the receiving end, and the length of the information to be sent by the sending end is notified by the control signaling, so that the transmitting end selects the CRC code corresponding to the length of the information, and the CRC code is attached. The receiving end knows the length of the first information. Therefore, when receiving the second information, the receiving end can directly determine the length of the CRC code by using the length of the first information that is known by the receiving end. The invention is not limited as long as the lengths of the first information determined by the transmitting end and the receiving end are the same.
  • the receiving end determines the length of the CRC code according to the length of the first information, and if the length of the first information is less than or equal to the first threshold, determining that the length of the CRC code is the first length. In another implementation manner, the receiving end determines, according to the length of the first information, the length of the CRC code, if the length of the first information is less than or equal to the first threshold and greater than the second threshold, determining the CRC code. The length is the first length.
  • the first length satisfies 2 L-1 -1-L ⁇ A
  • L is the first length
  • A is the length of the first information.
  • the first length is 8 bits and the first threshold is 119
  • the length of the first information is less than or equal to 119
  • the length of the CRC code is determined to be the first length, that is, 8 bits.
  • the first threshold is less than or equal to 2 L-1 -1-L, and L is the first length.
  • L is the first length.
  • the first threshold is less than or equal to 119, that is, the first threshold may be 119 or any value less than 119.
  • the first threshold is preset or pre-received.
  • the first threshold may be preset by the information sending end and the information receiving end, or may be sent by the sending end to the receiving end. Alternatively, the sender and the receiver may receive other network elements and send them to them in advance.
  • the second threshold is preset or pre-received.
  • the second threshold may be preset by the information sending end and the information receiving end, or may be sent by the sending end to the receiving end.
  • the sender and the receiver may receive other network elements and send them to them in advance.
  • the size of the second threshold may be determined according to some existing values, and the existing uplink protocol (Physical Uplink Control Channel; PUCCH) format is supported.
  • PUCCH Physical Uplink Control Channel
  • the maximum number of bits, etc., for example, the second threshold value can be selected to be 22. That is, if the first length is 8 bits and the first threshold value is 119, if the length of the first information is less than or equal to 119 and greater than 22, the first information is encoded by the first length, that is, the 8-bit CRC code.
  • the method before determining the length of the cyclic redundancy check CRC code corresponding to the length of the first information according to the length of the first information, the method further includes: determining, according to the length of the second information, the first information length. Specifically, the length of the first information is determined by the total length of the second information and the relationship between the first information and the length of the CRC code.
  • S203 Verify the first information according to a generator polynomial corresponding to the length of the CRC code.
  • the first information is verified by selecting a generator polynomial corresponding to the length of the CRC code. It should be noted that the generator polynomial of the CRC code is agreed in advance by the information transmitting end and the information receiving end. The second information is subjected to a modulo-2 division operation with a generator polynomial of the corresponding CRC code. If the remainder is zero, the CRC check passes and the first information is transmitted correctly. If the remainder is not zero, the CRC check fails and the first message is transmitted incorrectly.
  • the information receiving method provided in this embodiment is configured to receive the second information, where the second information includes the first information and the CRC code, where the first information is control information, and the length of the CRC code is determined according to the length of the first information, where If the length of the information is less than or equal to the first threshold, the length of the CRC code is determined to be the first length, or if the length of the first information is less than or equal to the first threshold and greater than the second threshold, the CRC code is determined.
  • the length is the first length, and the first information is verified according to the generator polynomial corresponding to the length of the CRC code. It can be seen that the length of the CRC encoding in the embodiment is determined according to the length of the first information, thereby avoiding receiving at the receiving end. After the information is passed, the CRC check passes, but the information transmission is incorrect, which improves the reliability of information transmission.
  • determining the length of the CRC code according to the length of the first information further comprising: if the length of the first information is greater than the first threshold, determining that the length of the CRC code is the second length, The value of the two lengths is greater than the value of the first length.
  • the value of the second length can be If the value of the first length is 8 bits, the first threshold is less than or equal to 119. If the first threshold is 119, if the length of the first information is greater than 119, the CRC code is determined.
  • the length is the second length, that is, 16 bits.
  • the first information is uplink control signaling, including any one or a combination of the following: HARQ-ACK, SRI, and CSI, where the CSI may include PMI, CQI, RI, or PTI, PMI. It can be a wideband PMI or a subband PMI.
  • the CQI can be broadband, subband, or BI.
  • FIG. 3 is a schematic structural diagram of an embodiment of an information sending apparatus according to an embodiment of the present invention.
  • the information sending apparatus 30 provided in this embodiment includes:
  • the processing module 301 is configured to determine the length of the CRC code according to the length of the first information.
  • the first information is the control information. If the length of the first information is less than or equal to the first threshold, the length of the CRC code is determined to be the first length, or if the length of the first information is less than or equal to the first threshold If it is greater than the second threshold, it is determined that the length of the CRC code is the first length. .
  • the processing module 301 is further configured to generate a CRC code according to the generator polynomial corresponding to the length of the CRC code and the first information.
  • the processing module 301 is further configured to generate second information, where the first information includes the first information and the CRC code.
  • the sending module 302 is configured to send the second information generated by the processing module 301.
  • the first length satisfies 2 L-1 -1-L ⁇ A
  • L is the first length
  • A is the length of the first information.
  • the first length is 8 bits and the first threshold is 119.
  • the first threshold is less than or equal to 2 L-1 -1-L, and L is the first length.
  • the first threshold is preset or pre-received.
  • the first length is 8 bits, and the first threshold is less than or equal to 119.
  • the second threshold is pre-set or pre-received.
  • the second threshold can be 22.
  • the processing module 301 is further configured to: if the length of the first information is greater than the first threshold, determine that the length of the CRC code is the second length, and the value of the second length is greater than the value of the first length.
  • the second length is 16 bits.
  • the device provided in this embodiment is correspondingly used to implement the technical solution of the method embodiment shown in FIG. 1 , and the implementation principle is similar, and details are not described herein again.
  • the information transmission apparatus is configured to use the processing module according to the first information.
  • the length of the CRC code wherein the first information control information, if the length of the first information is less than or equal to the first threshold, determining whether the length of the CRC code is the first length, or if the length of the first information If the first threshold is greater than or equal to the second threshold, the length of the CRC code is determined to be the first length, and the CRC code is generated according to the generator polynomial corresponding to the length of the CRC code and the first information, and the second information is generated.
  • the second information includes the first information and the CRC code, and the sending module is configured to send the second information generated by the processing module.
  • the length of the CRC code that is CRC encoded in this embodiment is determined according to the length of the control information, thereby avoiding After the receiving device receives the information, the CRC check passes, but the information transmission is incorrect, which improves the reliability of information transmission.
  • the first information is uplink control signaling, including any one or a combination of the following: HARQ-ACK, SRI, and CSI, where the CSI may include PMI, CQI, RI, or PTI, PMI. It can be a wideband PMI or a subband PMI.
  • the CQI can be broadband, subband, or BI.
  • FIG. 4 is a schematic structural diagram of an embodiment of an information receiving apparatus according to an embodiment of the present invention. As shown in FIG. 4, the information receiving apparatus 40 provided in this embodiment includes:
  • the receiving module 401 is configured to receive second information, where the second information includes the first information and the CRC code, where the first information is control information.
  • the processing module 402 is configured to determine a length of the CRC code according to the length of the first information in the second information received by the receiving module 401, where the length of the CRC code is determined if the length of the first information is less than or equal to the first threshold For the first length, or if the length of the first information is less than or equal to the first threshold and greater than the second threshold, the length of the CRC code is determined to be the first length.
  • the processing module 402 is further configured to check the first information according to a generator polynomial corresponding to the length of the CRC code.
  • the processing module 402 is further configured to check the first information according to a generator polynomial corresponding to the length of the CRC code.
  • the first length satisfies 2 L-1 -1-L ⁇ A
  • L is the first length
  • A is the length of the first information.
  • the first length is 8 bits and the first threshold is 119.
  • the first threshold is less than or equal to 2 L-1 -1-L, and L is the first length.
  • the first threshold is preset or pre-received.
  • the first length is 8 bits, and the first threshold is less than or equal to 119.
  • the second threshold is pre-set or pre-received.
  • the second threshold can be 22.
  • the processing module 402 is further configured to determine the CRC if the length of the first information is greater than the first threshold.
  • the length of the code is a second length, and the value of the second length is greater than the value of the first length.
  • the second length is 16 bits.
  • the device provided in this embodiment is correspondingly used to implement the technical solution of the method embodiment shown in FIG. 2, and the implementation principle is similar, and details are not described herein again.
  • the information receiving method provided in this embodiment is configured to receive the second information by using the receiving module, where the second information includes the first information and the CRC code, where the first information is control information, and the processing module is configured to determine the CRC according to the length of the first information.
  • the length of the code wherein if the length of the first information is less than or equal to the first threshold, determining that the length of the CRC code is the first length, or if the length of the first information is less than or equal to the first threshold and greater than the second
  • the threshold value is determined by the length of the CRC code being the first length
  • the processing module is further configured to check the first information according to the generator polynomial corresponding to the length of the CRC code, and the length of the CRC encoding in the embodiment is The length of a message is determined, thereby avoiding the CRC check after the receiving end receives the information, but the information transmission is incorrect, and the reliability of the information transmission is improved.
  • the first information is uplink control signaling, including any one or a combination of the following: HARQ-ACK, SRI, and CSI, where the CSI may include PMI, CQI, RI, or PTI, PMI. It can be a wideband PMI or a subband PMI.
  • the CQI can be broadband, subband, or BI.
  • FIG. 5 is a schematic structural diagram of an embodiment of an information transmission system according to an embodiment of the present invention.
  • the information transmission system 50 provided in this embodiment includes:
  • the aforementioned program can be stored in a computer readable storage medium.
  • the program when executed, performs the steps including the foregoing method embodiments; and the foregoing storage medium includes various media that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Probability & Statistics with Applications (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供一种信息发送方法和装置、以及信息接收方法和装置。所述发送方法包括:根据第一信息的长度,确定循环冗余校验CRC码的长度,其中,所述第一信息为控制信息,若所述第一信息的长度小于等于第一门限值,则确定所述CRC码的长度为第一长度,或者,若所述第一信息的长度小于等于第一门限值且大于第二门限值,则确定所述CRC码的长度为第一长度;根据所述CRC码的长度对应的生成多项式以及所述第一信息,生成CRC码;生成第二信息;发送所述第二信息。本发明提高了信息传输的可靠性。

Description

信息发送方法和装置、以及信息接收方法和装置 技术领域
本发明实施例涉及通信技术,尤其涉及一种信息发送方法和装置、以及信息接收方法和装置。
背景技术
随着通信技术的发展,在长期演进(Long Term Evolution;简称:LTE)系统中,用户设备(User Equipment;简称:UE)和演进型基站(Evolved NodeB;简称:eNB)进行信息传输时,通过给需要传输的原始信息增加校验码来实现信息的可靠传输。
现有技术中,发送端通过循环冗余校验码(Cyclic Redundancy Check;简称:CRC)技术在原始信息中增加固定长度的校验位,然后将增加了校验位的信息发送给接收端;接收端接收到增加了校验位的信息后进行CRC校验,如果校验通过则认为传输无误。
然而,采用现有技术的方法,仍然存在接收端校验通过,但原始信息传输有误的情况,因此,采用上述方法,信息传输的可靠性不高。
发明内容
本发明实施例提供一种信息发送方法和装置、以及信息接收方法和装置,以提高信息传输的可靠性。
第一方面,本发明实施例提供一种信息发送方法,包括:
根据第一信息的长度,确定循环冗余校验CRC码的长度,其中,所述第一信息为控制信息,若所述第一信息的长度小于等于第一门限值,则确定所述CRC码的长度为第一长度,或者,若所述第一信息的长度小于等于第一门限值且大于第二门限值,则确定所述CRC码的长度为第一长度;
根据所述CRC码的长度对应的生成多项式以及所述第一信息,生成CRC码;
生成第二信息,所述第二信息包括所述第一信息和所述CRC码;以及
发送所述第二信息。
结合第一方面,在第一方面的第一种可能的实现方式中,所述第一长度满足2L-1-1-L≥A,L为所述第一长度,A为所述第一信息的长度。
结合第一方面或第一方面的第一种可能的实现方式,在第一方面的第二种可能的实现方式中,所述第一长度为8比特,所述第一门限值为119。
结合第一方面,在第一方面的第三种可能的实现方式中,所述第一门限值小于或等于2L-1-1-L,L为所述第一长度。
结合第一方面的第三种可能的实现方式,在第一方面的第四种可能的实现方式中,所述第一门限值为预先设置的或预先接收到的。
结合第一方面的第三种可能的实现方式或第一方面的第四种可能的实现方式,在第一方面的第五种可能的实现方式中,所述第一长度为8比特,所述第一门限值小于或等于119。
结合第一方面或第一方面第一种可能的实现方式至第一方面第五种可能的实现方式中的任一种可能的实现方式,在第一方面的第六种可能的实现方式中,根据第一信息的长度,确定循环冗余校验CRC码的长度,包括:
若所述第一信息的长度大于第一门限值,则确定所述CRC码的长度为第二长度,所述第二长度的值大于所述第一长度的值。
结合第一方面的第六种可能的实现方式,在第一方面的第七种可能的实现方式中,所述第二长度为16比特。
结合第一方面或第一方面的第一种可能的实现方式至第一方面的第七种可能的实现方式中的任一种可能的实现方式,在第一方面的第八种可能的实现方式中,所述第二门限值为预先设置的或者预先接收到的。
结合第一方面的第八种可能的实现方式,在第一方面的第九种可能的实现方式中,所述第二门限值为22或11。
结合第一方面或第一方面的第一种可能的实现方式至第一方面的第九种可能的实现方式中的任一种可能的实现方式,在第一方面的第十种可能的实现方式中,所述第一信息为上行控制信令。
结合第一方面的第十种可能的实现方式,在第一方面的第十一种可能的实现方式中,所述第一信息包括下述任一种或其组合:
混合自动重传请求-确认信令HARQ-ACK;
上行调度请求指示SRI;
信道状态信息CSI。
第二方面,本发明实施例提供一种信息接收方法,包括:
接收第二信息,所述第二信息包括第一信息和循环冗余校验CRC码,所述第一信息为控制信息;
根据所述第一信息的长度确定所述CRC码的长度,其中,若所述第一信息的长度小于等于第一门限值,则确定所述CRC码的长度为第一长度,或者,若所述第一信息的长度小于等于第一门限值且大于第二门限值,则确定所述CRC码的长度为第一长度;
根据所述CRC码的长度对应的生成多项式对所述第一信息进行校验。
结合第二方面,在第二方面的第一种可能的实现方式中,所述第一长度满足2L-1-1-L≥A,L为所述第一长度,A为所述第一信息的长度。
结合第二方面或第二方面的第一种可能的实现方式,在第二方面的第二种可能的实现方式中,所述第一长度为8比特,所述第一门限值为119。
结合第二方面,在第二方面的第三种可能的实现方式中,所述第一门限值小于或等于2L-1-1-L,L为所述第一长度。
结合第二方面的第三种可能的实现方式,在第二方面的第四种可能的实现方式中,所述第一门限值为预先设置的或预先接收到的。
结合第二方面的第三种可能的实现方式或第二方面的第四种可能的实现方式,在第二方面的第五种可能的实现方式中,所述第一长度为8比特,所述第一门限值小于或等于119。
结合第二方面或第二方面第一种可能的实现方式至第二方面第五种可能的实现方式中的任一种可能的实现方式,在第二方面的第六种可能的实现方式中,根据第一信息的长度,确定循环冗余校验CRC码的长度,包括:
若所述第一信息的长度大于第一门限值,则确定所述CRC码的长度为第二长度,所述第二长度的值大于所述第一长度的值。
结合第二方面的第六种可能的实现方式,在第二方面的第七种可能的实现方式中,所述第二长度为16比特。
结合第二方面或第二方面的第一种可能的实现方式至第二方面的第七种可能的实现方式中的任一种可能的实现方式,在第二方面的第八种可能的实现方式中,所述第二门限值为预先设置的或者预先接收到的。
结合第二方面的第八种可能的实现方式,在第二方面的第九种可能的实现方式中,所述第二门限值为22或11。
结合第二方面或第二方面的第一种可能的实现方式至第二方面的第九种可能的实现方式中的任一种可能的实现方式,在第二方面的第十种可能的实现方式中,所述第一信息为上行控制信令。
结合第二方面的第十种可能的实现方式,在第二方面的第十一种可能的实现方式中,所述第一信息包括下述任一种或其组合:
混合自动重传请求-确认信令HARQ-ACK;
上行调度请求指示SRI;
信道状态信息CSI。
第三方面,本发明实施例提供一种信息发送装置,包括:
处理模块,用于根据第一信息的长度,确定循环冗余校验CRC码的长度,其中,所述第一信息为控制信息,若所述第一信息的长度小于等于第一门限值,则确定所述CRC码的长度为第一长度,或者,若所述第一信息的长度小于等于第一门限值且大于第二门限值,则确定所述CRC码的长度为第一长度;
所述处理模块还用于根据所述CRC码的长度对应的生成多项式以及所述第一信息,生成CRC码;
所述处理模块还用于生成第二信息,所述第二信息包括所述第一信息和所述CRC码;
发送模块,用于发送所述处理模块生成的所述第二信息。
结合第三方面,在第三方面的第一种可能的实现方式中,所述第一长度满足2L-1-1-L≥A,L为所述第一长度,A为所述第一信息的长度。
结合第三方面或第三方面的第一种可能的实现方式,在第三方面的第二种可能的实现方式中,所述第一长度为8比特,所述第一门限值为119。
结合第三方面,在第三方面的第三种可能的实现方式中,所述第一门限值小于或等于2L-1-1-L,L为所述第一长度。
结合第三方面的第三种可能的实现方式,在第三方面的第四种可能的实现方式中,所述第一门限值为预先设置的或预先接收到的。
结合第三方面的第三种可能的实现方式或第三方面的第四种可能的实现方式,在第三方面的第五种可能的实现方式中,所述第一长度为8比特,所述第一门限值小于或等于119。
结合第三方面或第三方面第一种可能的实现方式至第三方面第五种可能的实现方式中的任一种可能的实现方式,在第三方面的第六种可能的实现方式中,所述处理模块还用于:
若所述第一信息的长度大于第一门限值,则确定所述CRC码的长度为第二长度,所述第二长度的值大于所述第一长度的值。
结合第三方面的第六种可能的实现方式,在第三方面的第七种可能的实现方式中,所述第二长度为16比特。
结合第三方面或第三方面的第一种可能的实现方式至第三方面的第七种可能的实现方式中的任一种可能的实现方式,在第三方面的第八种可能的实现方式中,所述第二门限值为预先设置的或者预先接收到的。
结合第三方面的第八种可能的实现方式,在第三方面的第九种可能的实现方式中,所述第二门限值为22。
结合第三方面或第三方面的第一种可能的实现方式至第三方面的第九种可能的实现方式中的任一种可能的实现方式,在第三方面的第十种可能的实现方式中,所述第一信息为上行控制信令。
结合第三方面的第十种可能的实现方式,在第三方面的第十一种可能的实现方式中,所述第一信息包括下述任一种或其组合:
混合自动重传请求-确认信令HARQ-ACK;
上行调度请求指示SRI;
信道状态信息CSI。
第四方面,本发明实施例提供一种信息接收装置,包括:
接收模块,用于接收第二信息,所述第二信息包括第一信息和循环冗余校验CRC码,所述第一信息为控制信息;
处理模块,用于根据所述接收模块接收的第二信息中的第一信息的长度确定所述CRC码的长度,其中,若所述第一信息的长度小于等于第一门限值,则确定所述CRC码的长度为第一长度,或者,若所述第一信息的长度小于等于第一门限值且大于第二门限值,则确定所述CRC码的长度为第一长度;
所述处理模块还用于根据所述CRC码的长度对应的生成多项式对所述第一信息进行校验。
结合第四方面,在第四方面的第一种可能的实现方式中,所述第一长度满足2L-1-1-L≥A,L为所述第一长度,A为所述第一信息的长度。
结合第四方面或第四方面的第一种可能的实现方式,在第四方面的第二种可能的实现方式中,所述第一门限值为119。
结合第四方面,在第四方面的第三种可能的实现方式中,所述第一门限值小于或等于2L-1-1-L,L为所述第一长度。
结合第四方面的第三种可能的实现方式,在第四方面的第四种可能的实现方式中,所述第一门限值为预先设置的或预先接收到的。
结合第四方面的第三种可能的实现方式或第四方面的第四种可能的实现方式,在第四方面的第五种可能的实现方式中,所述第一长度为8比特,所述第一门限值小于或等于119。
结合第四方面或第四方面第一种可能的实现方式至第四方面第五种可能的实现方式中的任一种可能的实现方式,在第四方面的第六种可能的实现方式中,所述处理模块还用于:
若所述第一信息的长度大于第一门限值,则确定所述CRC码的长度为第二长度,所述第二长度的值大于所述第一长度的值。
结合第四方面的第六种可能的实现方式,在第四方面的第七种可能的实现方式中,所述第二长度为16比特。
结合第四方面或第四方面的第一种可能的实现方式至第四方面的第七种可能的实现方式中的任一种可能的实现方式,在第四方面的第八种可能的实现方式中,所述第二门限值为预先设置的或者预先接收到的。
结合第四方面的第八种可能的实现方式,在第四方面的第九种可能的实现方式中,所述第二门限值为22。
结合第四方面或第四方面的第一种可能的实现方式至第四方面的第九种可能的实现方式中的任一种可能的实现方式,在第四方面的第十种可能的实现方式中,所述第一信息为上行控制信令。
结合第四方面的第十种可能的实现方式,在第四方面的第十一种可能的实现方式中,所述第一信息包括下述任一种或其组合:
混合自动重传请求-确认信令HARQ-ACK;
上行调度请求指示SRI;
信道状态信息CSI。
本发明实施例提供的信息发送方法和装置、以及信息接收方法和装置,通过根据第一信息的长度,确定CRC码的长度,其中,第一信息为控制信息,若第一信息的长度小于等于第一门限值,则确定CRC码的长度为第一长度,或者,若第一信息的长度小于等于第一门限值且大于第二门限值,则确定CRC码的长度为第一长度,根据CRC码的长度对应的生成多项式以及第一信息,生成CRC码,生成第二信息,第二信息包括第一信息和CRC码,发送第二信息,可见,本实施例进行CRC编码的CRC码的长度是根据控制信息的长度确定的,通过比较第一信息的长度与第一门限值的大小或者通过比较第一信息的长度与第一门限值和第二门限值的大小确定CRC码的长度,从而,避免了接收端接收信息后CRC校验通过,但信息传输有误的情况,提高了信息传输的可靠性。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的信息发送方法实施例的流程示意图;
图2为本发明实施例提供的信息接收方法实施例的流程示意图;
图3为本发明实施例提供的信息发送装置实施例的结构示意图;
图4为本发明实施例提供的信息接收装置实施例的结构示意图;
图5为本发明实施例提供的信息传输系统实施例的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明提供的信息发送和接收方法可以应用在UE和eNB之间进行信息传输的场景中。信息发送方法根据第一信息的长度,确定CRC码的长度,根据CRC码的长度对应的生成多项式以及第一信息,生成CRC码,生成第二信息,第二信息包括第一信息和CRC码,发送第二信息,在对待传输的信息进行CRC编码时,能根据待传输的信息的长度,确定对其进行CRC编码的位数及对应的生成多项式,从而,提高了信息传输的可靠性。
本发明各实施例中的第一信息为控制信息,可以是一般的上行或下行传输的控制信息内容,例如:混合自动重传请求-确认信令(Hybrid Automatic Repeat Request-ACKnowledge;简称:HARQ-ACK);上行调度请求指示(Schduling Request Indication;简称:SRI);信道状态信息(Channel State Information;简称:CSI)等,对此,本发明不作限制。
下面以具体的实施例对本发明的技术方案进行详细说明。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例不再赘述。
图1为本发明实施例提供的信息发送方法实施例的流程示意图。如图1所示,本实施例提供的信息发送方法包括:
S101:根据第一信息的长度,确定CRC码的长度。
其中,第一信息为控制信息,若第一信息的长度小于等于第一门限值,则确定CRC码的长度为第一长度,或者,若第一信息的长度小于等于第一门限值且大于第二门限值,则确定CRC码的长度为第一长度。
具体地,本实施例由信息的发送端执行,该方法用于上行信息传输过程中,则可以由UE或其他的终端执行,该方法用于下行信息传输过程中,则可以由基站或其他的网元设备执行。以由UE执行为例,第一信息为信息的发送端发送的控制信息。第一信息的长度可以根据发送端和接收端之间约定 的规则进行确定,例如:UE发送上行控制信令给接收端eNB时,eNB会根据约定的规则告知UE需要发送多少比特的信息。
在其中一种实现方式中,发送端根据第一信息的长度,确定CRC码的长度包括:若第一信息的长度小于等于第一门限值,则确定CRC码的长度为第一长度。在另外一种实现方式中,发送端根据第一信息的长度,确定CRC码的长度包括:若第一信息的长度小于等于第一门限值且大于第二门限值,则确定CRC码的长度为第一长度。
在上述任一实现方式中,第一长度满足2L-1-1-L≥A,L为第一长度,A为第一信息的长度。举例来说,若第一长度为8比特,第一门限值为119,则若第一信息的长度小于等于119,则确定CRC码的长度为第一长度即8比特。
在另一种实现方式中,第一门限值小于或等于2L-1-1-L,L为第一长度。举例来说,当第一长度为8比特时,第一门限值小于或等于119,即第一门限值可以是119或者是小于119的任何一个值。第一门限值为预先设置的或预先接收到的,例如,第一门限值可以是信息发送端和信息接收端预先设置好的,也可以是发送端预先接收到接收端发送给它的,也可以是发送端和接收端预先接收到其他网元发送给它们的。
第二门限值为预先设置的或者预先接收到的,例如,第二门限值可以是信息发送端和信息接收端预先设置好的,也可以是发送端预先接收到接收端发送给它的,也可以是发送端和接收端预先接收到其他网元发送给它们的。可选的,第二门限值的大小可以根据现有的一些值进行确定,考虑到不影响已有的协议,例如某种物理上行控制信道(Physical Uplink Control Channel;简称:PUCCH)格式支持的最大比特数目等,例如可以选取第二门限值为22。即,若第一长度为8比特,第一门限值为119,则若第一信息的长度小于等于119且大于22,采用第一长度即8比特的CRC码对第一信息进行编码。
可选的,若第一信息的长度小于等于22,则不对第一信息进行CRC编码。
第一信息的长度也可以由发送端根据空口资源确定,并通过控制信令通知接收端待接收的信息的长度,以便于接收端选择与信息的长度对应的 CRC码的长度的生成多项式进行CRC校验。或者,第一信息的长度也可以由接收端确定,并通过控制信令通知发送端待发送的信息的长度,以便于发送端选择与信息的长度对应的CRC码进行CRC码的附着,这样,接收端是知道该第一信息的长度的,因此,接收端在接收到第二信息时,可以直接用接收端知道的第一信息的长度确定CRC码的长度。
对于第一信息的长度,发送端和接收端采用约定的方式,还是在传输过程中通知的方式以及其他可以使双方获知第一信息长度的方式,本发明不作限制,只要发送端和接收端确定的第一信息的长度相同即可。
S102:根据CRC码的长度对应的生成多项式以及第一信息,生成CRC码。
具体地,不同的CRC码的长度,对应不同的生成多项式,根据S101确定的CRC码的长度,选取与其对应的生成多项式,根据生成多项式以及第一信息生成CRC码。CRC码的生成多项式为信息发送端和信息接收端事先约定好的。
用B(D)=a0DA-1+a1DA-2+...+aA-1表示第一信息,其序列表示方式为(a0,a1,a2,a3,...,aA-1),用gCRC-L(D)=DL+…+1表示L位的CRC码的生成多项式,CRC码的生成公式为RL(D)=DLB(D)modgCRC-L(D),生成的CRC码的序列表示方式为(p0,p1,p2,p3,...,pL-1)。
S103:生成第二信息,第二信息包括第一信息和CRC码。
具体地,根据生成的CRC码对第一信息进行CRC编码,生成第二信息。将生成的CRC码附在第一信息的序列后面即得到第二信息,第二信息的序列表示方式为(a0,a1,a2,a3,...,aA-1,p0,p1,p2,p3,...,pL-1),第二信息的长度为A+L位。
第二信息的生成过程可以用下式表示:用(b0,b1,b2,b3,...,bB-1)表示第二信息,其中B=A+L,则当0≤k≤A-1,且k为整数,第二信息的数据位bk=ak;当A≤k≤A+L-1,且k为整数,第二信息的数据位bk=pk-A。最终得到第二信息为(a0,a1,a2,a3,...,aA-1,p0,p1,p2,p3,...,pL-1)。
S104:发送第二信息。
具体地,发送端发送第二信息。可选的,发送端在发送第二信息之前,可以对第二信息进行编码调制后再进行发送。
本实施例提供的信息发送方法,通过根据第一信息的长度,确定CRC 码的长度,其中,第一信息为控制信息,若第一信息的长度小于等于第一门限值,则确定CRC码的长度为第一长度,或者,若第一信息的长度小于等于第一门限值且大于第二门限值,则确定CRC码的长度为第一长度,根据CRC码的长度对应的生成多项式以及第一信息,生成CRC码,生成第二信息,第二信息包括第一信息和CRC码,发送第二信息,可见,本实施例进行CRC编码的CRC码的长度是根据控制信息的长度确定的,通过比较第一信息的长度与第一门限值的大小或者通过比较第一信息的长度与第一门限值和第二门限值的大小确定CRC码的长度,从而,避免了接收端接收信息后CRC校验通过,但信息传输有误的情况,提高了信息传输的可靠性。
进一步地,在上述实施例中,根据第一信息的长度,确定CRC码的长度,还包括:若第一信息的长度大于第一门限值,则确定CRC码的长度为第二长度,第二长度的值大于第一长度的值。具体地,举例来说,第二长度的值可以为16比特,第一长度的值为8比特,则第一门限值为小于或等于119,如取第一门限值为119,则若第一信息的长度大于119,则确定CRC码的长度为第二长度即16比特。通过设置若第一信息的长度大于第一门限值,则确定CRC码的长度为第二长度,从而,提高了信息传输的可靠性。
需要说明的是,在上述实施例中,根据第一信息的长度,确定CRC码的长度中,还可以有以下的实现方式:若第一信息的长度小于第一门限值,则确定CRC码的长度为第一长度,或者,若第一信息的长度小于第一门限值且大于第二门限值,则确定CRC码的长度为第一长度;若第一信息的长度大于等于第一门限值,则确定CRC码的长度为第二长度,第二长度的值大于第一长度的值。其中,第一门限值为小于或等于2L-1-L。举例来说,当第一长度为8比特,第二长度为12比特时,第一门限值为小于或等于120,当取第一门限值为120时,则若第一信息的长度小于120,则确定CRC码的长度为第一长度即8比特。
可选的,第二长度和第一信息的最大长度之间满足
Figure PCTCN2015084490-appb-000001
其中,MAX为第一信息的最大长度,L1为第一长度。
进一步地,在上述实施例中,第一信息为上行控制信令,包括下述任一种或其组合:混合自动重传请求-确认信令(Hybrid Automatic Repeat  Request-ACKnowledge;简称:HARQ-ACK),上行调度请求指示(Schduling Request Indication;简称:SRI),信道状态信息(Channel State Information;简称:CSI),其中,CSI可以包括预编码矩阵指示(Precoding Matrix Indicator;简称:PMI)、信道质量指示(Channel Quality Indicator;简称:CQI)、秩指示(Rank Indication;简称:RI)或预编码类型指示(Precoding Type Indicator;简称:PTI),PMI可以是宽带PMI或子带PMI,CQI可以是宽带,也可以是子带,还可以是波束索引(Beam Index;简称:BI)。
上述实施例的方法可用于LTE系统中频分双工(Frequency Division Duplexing;简称:FDD)或时分双工(Time Division Duplexing;简称:TDD)中UE反馈HARQ-ACK信令给eNB的场景中,也可以应用终端对终端(Device to Device;简称:D2D)的通信系统里。在采用混合自动重传请求(Hybrid Automatic Repeat Request;简称:HARQ)技术时,UE接收到物理下行共享信道(Physical Downlink Shared Channel;简称:PDSCH)上的信息后,如果接受正确,UE会在物理上行控制信道(Physical Uplink Control Channel;简称:PUCCH)上发送确认(ACKnowledge;简称:ACK)信息,如果接受不正确,则发送不确认信息(NACKnowledge;简称:NACK)。在载波聚合(Carrier Aggregation;简称:CA)场景下,eNB把多个载波配置给一个UE来提高UE的数据速率,此时,UE反馈多个载波的HARQ-ACK给基站。
上述实施例的方法还可用于UE向eNB上报各载波上CSI信令,CSI的上报分为周期CSI和非周期CSI。周期CSI通过PUCCH发送;非周期CSI通过物理上行共享信道(Physical Uplink Shared Channel;简称:PUSCH)发送。
当第一信息为上行控制信令时,取第一长度为8比特,第二长度为16比特,第一门限值为119。为了减少上述实施例实现的复杂度,采用LTE系统中现有的CRC码的生成多项式,16比特CRC码对应的生成多项式为gCRC16(D)=D16+D12+D5+1,8比特CRC码对应的生成多项式为gCRC8(D)=D8+D7+D4+D3+D+1。
若第一信息为HARQ-ACK和SRI同时传输或只传输HARQ-ACK时:当第一信息的长度大于119时,采用16比特的CRC码对应的生成多项式 gCRC16(D)=D16+D12+D5+1对其进行编码;当第一信息的长度小于等于119时,采用8比特的CRC码对应的生成多项式gCRC8(D)=D8+D7+D4+D3+D+1对其进行编码。
若第一信息为HARQ-ACK和SRI同时传输或只传输HARQ-ACK时,取第二门限值为22。当第一信息的长度大于119时,采用16比特的CRC码对应的生成多项式对其进行编码;当第一信息的长度大于22且小于等于119时,采用8比特的CRC码对应的生成多项式对其进行编码。可选的,当第一信息的长度小于等于22时,对第一信息不进行CRC编码。
若第一信息为周期CSI时,取第二门限值为11。当第一信息的长度大于119时,采用16比特的CRC码对应的生成多项式对其进行编码;当第一信息的长度大于11且小于等于119时,采用8比特的CRC码对应的生成多项式对其进行编码。可选的,当第一信息的长度小于等于11时,对第一信息不进行CRC编码。
若第一信息为非周期CSI时,在一种实现方式中,当第一信息的长度大于119时,采用16比特的CRC码对应的生成多项式对其进行编码;当第一信息的长度小于等于119时,采用8比特的CRC码对应的生成多项式对其进行编码。在另外一种实现方式中,当第一信息的长度大于360时,采用16比特的CRC码对应的生成多项式对其进行编码;当第一信息的长度小于等于360时,采用8比特的CRC码对应的生成多项式对其进行编码。
若第一信息为HARQ-ACK、SRI和CSI同时传输时,当第一信息的长度大于119时,采用16比特的CRC码对应的生成多项式对其进行编码;当第一信息的长度小于等于119时,采用8比特的CRC码对应的生成多项式对其进行编码。
当第一信息为上行控制信令时,采用上述实现方式,提高了信息传输的可靠性,同时,降低了通信成本。
图2为本发明实施例提供的信息接收方法实施例的流程示意图。如图32所示,本实施例提供的信息接收方法包括:
S201:接收第二信息,第二信息包括第一信息和CRC码,第一信息为控制信息。
具体地,本实施例由信息的接收端执行,该方法用于上行信息接收过 程中,则可以由基站或其他的网元设备执行执行,该方法用于下行信息接收过程中,则可以由UE或其他的终端执行。第二信息包括第一信息和CRC码。第一信息为控制信息,可选的,信息接收端接收到第二信息后,对第二信息先进行解调。
S202:根据第一信息的长度确定CRC码的长度。
其中,若第一信息的长度小于等于第一门限值,则确定CRC码的长度为第一长度,或者,若第一信息的长度小于等于第一门限值且大于第二门限值,则确定CRC码的长度为第一长度。
具体地,第一信息的长度可以根据发送端和接收端之间约定的规则进行确定。还可以由接收端根据空口资源确定、在传输过程中通知的方式以及其他可以使发送端和接收端获知第一信息长度的方式。或者,第一信息的长度也可以由接收端确定,并通过控制信令通知发送端待发送的信息的长度,以便于发送端选择与信息的长度对应的CRC码进行CRC码的附着,这样,接收端是知道该第一信息的长度的,因此,接收端在接收到第二信息时,可以直接用接收端知道的第一信息的长度确定CRC码的长度。本发明不作限制,只要发送端和接收端确定的第一信息的长度相同即可。
在其中一种实现方式中,接收端根据第一信息的长度,确定CRC码的长度包括:若第一信息的长度小于等于第一门限值,则确定CRC码的长度为第一长度。在另外一种实现方式中,接收端根据第一信息的长度,确定CRC码的长度包括:若第一信息的长度小于等于第一门限值且大于第二门限值,则确定CRC码的长度为第一长度。
在上述任一实现方式中,第一长度满足2L-1-1-L≥A,L为第一长度,A为第一信息的长度。举例来说,若第一长度为8比特,第一门限值为119,则若第一信息的长度小于等于119,则确定CRC码的长度为第一长度即8比特。
第一门限值小于或等于2L-1-1-L,L为第一长度。举例来说,当第一长度为8比特时,第一门限值小于或等于119,即第一门限值可以是119或者是小于119的任何一个值。第一门限值为预先设置的或预先接收到的,例如,第一门限值可以是信息发送端和信息接收端预先设置好的,也可以是发送端预先接收到接收端发送给它的,也可以是发送端和接收端预先接收到其他网元发送给它们的。
第二门限值为预先设置的或者预先接收到的,例如,第二门限值可以是信息发送端和信息接收端预先设置好的,也可以是发送端预先接收到接收端发送给它的,也可以是发送端和接收端预先接收到其他网元发送给它们的。可选的,第二门限值的大小可以根据现有的一些值进行确定,考虑到不影响已有的协议,例如某种物理上行控制信道(Physical Uplink Control Channel;简称:PUCCH)格式支持的最大比特数目等,例如可以选取第二门限值为22。即,若第一长度为8比特,第一门限值为119,则若第一信息的长度小于等于119且大于22,采用第一长度即8比特的CRC码对第一信息进行编码。
在另外一种实现方式中,在根据第一信息的长度确定与第一信息的长度对应的循环冗余校验CRC码的长度之前,还包括:根据第二信息的长度,确定第一信息的长度。具体地,通过第二信息的总长度、第一信息与CRC码的长度对应的关系确定第一信息的长度。
S203:根据CRC码的长度对应的生成多项式对第一信息进行校验。
具体地,确定了CRC码的长度,则选取与CRC码的长度对应的生成多项式对第一信息进行校验。需要说明的是,CRC码的生成多项式为信息发送端和信息接收端事先约定好的。第二信息与相应的CRC码的生成多项式进行模2除运算,如果余数为零,则CRC校验通过,第一信息传输正确。如果余数不为零,则CRC校验未通过,第一信息传输有误。
本实施例提供的信息接收方法,通过接收第二信息,第二信息包括第一信息和CRC码,第一信息为控制信息,根据第一信息的长度确定CRC码的长度,其中,若第一信息的长度小于等于第一门限值,则确定CRC码的长度为第一长度,或者,若第一信息的长度小于等于第一门限值且大于第二门限值,则确定CRC码的长度为第一长度,根据CRC码的长度对应的生成多项式对第一信息进行校验,可见,本实施例进行CRC编码的长度是根据第一信息的长度确定的,从而,避免了接收端接收信息后CRC校验通过,但信息传输有误的情况,提高了信息传输的可靠性。
进一步地,在上述实施例中,根据第一信息的长度,确定CRC码的长度,还包括:若第一信息的长度大于第一门限值,则确定CRC码的长度为第二长度,第二长度的值大于第一长度的值。具体地,举例来说,第二长度的值可 以为16比特,第一长度的值为8比特,则第一门限值为小于或等于119,如取第一门限值为119,则若第一信息的长度大于119,则确定CRC码的长度为第二长度即16比特。通过设置若第一信息的长度大于第一门限值,则确定CRC码的长度为第二长度,从而,提高了信息传输的可靠性。
进一步地,在上述实施例中,第一信息为上行控制信令,包括下述任一种或其组合:HARQ-ACK、SRI和CSI,其中,CSI可以包括PMI、CQI、RI或PTI,PMI可以是宽带PMI或子带PMI,CQI可以是宽带,也可以是子带,还可以是BI。
图3为本发明实施例提供的信息发送装置实施例的结构示意图。如图3所示,本实施例提供的信息发送装置30包括:
处理模块301,用于根据第一信息的长度,确定CRC码的长度。
其中,第一信息为控制信息,若第一信息的长度小于等于第一门限值,则确定CRC码的长度为第一长度,或者,若第一信息的长度小于等于第一门限值且大于第二门限值,则确定CRC码的长度为第一长度。。
处理模块301还用于根据CRC码的长度对应的生成多项式以及第一信息,生成CRC码。
处理模块301还用于生成第二信息,第一信息包括第一信息和CRC码。
发送模块302,用于发送处理模块301生成的第二信息。
具体地,第一长度满足2L-1-1-L≥A,L为第一长度,A为第一信息的长度。第一长度为8比特,第一门限值为119。
第一门限值小于或等于2L-1-1-L,L为第一长度。第一门限值为预先设置的或预先接收到的。第一长度为8比特,则第一门限值小于或等于119。
第二门限值为预先设置的或者预先接收到的。例如,第二门限值可以为22。
处理模块301还用于若第一信息的长度大于第一门限值,则确定CRC码的长度为第二长度,第二长度的值大于第一长度的值。第二长度为16比特。
本实施例提供的装置对应地可用于执行图1所示方法实施例的技术方案,其实现原理类似,此处不再赘述。
本实施例提供的信息传输装置,通过设置处理模块,用于根据第一信息 的长度,确定CRC码的长度,其中,第一信息控制信息,若第一信息的长度小于等于第一门限值,则确定CRC码的长度为第一长度,或者,若第一信息的长度小于等于第一门限值且大于第二门限值,则确定CRC码的长度为第一长度,根据CRC码的长度对应的生成多项式以及第一信息,生成CRC码,生成第二信息,第二信息包括第一信息和CRC码,发送模块,用于发送处理模块生成的第二信息,可见,本实施例进行CRC编码的CRC码的长度是根据控制信息的长度确定的,从而,避免了接收装置接收信息后CRC校验通过,但信息传输有误的情况,提高了信息传输的可靠性。
进一步地,在上述实施例中,第一信息为上行控制信令,包括下述任一种或其组合:HARQ-ACK、SRI和CSI,其中,CSI可以包括PMI、CQI、RI或PTI,PMI可以是宽带PMI或子带PMI,CQI可以是宽带,也可以是子带,还可以是BI。
图4为本发明实施例提供的信息接收装置实施例的结构示意图。如图4所示,本实施例提供的信息接收装置40包括:
接收模块401,用于接收第二信息,第二信息包括第一信息和CRC码,第一信息为控制信息。
处理模块402,用于根据接收模块401接收的第二信息中的第一信息的长度确定CRC码的长度,其中,若第一信息的长度小于等于第一门限值,则确定CRC码的长度为第一长度,或者,若第一信息的长度小于等于第一门限值且大于第二门限值,则确定CRC码的长度为第一长度。处理模块402还用于根据所述CRC码的长度对应的生成多项式对第一信息进行校验。
处理模块402,还用于根据CRC码的长度对应的生成多项式对第一信息进行校验。
具体地,第一长度满足2L-1-1-L≥A,L为第一长度,A为第一信息的长度。第一长度为8比特,第一门限值为119。
第一门限值小于或等于2L-1-1-L,L为第一长度。第一门限值为预先设置的或预先接收到的。第一长度为8比特,则第一门限值小于或等于119。
第二门限值为预先设置的或者预先接收到的。例如,第二门限值可以为22。
处理模块402还用于若第一信息的长度大于第一门限值,则确定CRC 码的长度为第二长度,第二长度的值大于第一长度的值。第二长度为16比特。
本实施例提供的装置对应地可用于执行图2所示方法实施例的技术方案,其实现原理类似,此处不再赘述。
本实施例提供的信息接收方法,通过设置接收模块用于接收第二信息,第二信息包括第一信息和CRC码,第一信息为控制信息,处理模块用于根据第一信息的长度确定CRC码的长度,其中,若第一信息的长度小于等于第一门限值,则确定CRC码的长度为第一长度,或者,若第一信息的长度小于等于第一门限值且大于第二门限值,则确定CRC码的长度为第一长度,处理模块还用于根据CRC码的长度对应的生成多项式对第一信息进行校验,可见,本实施例进行CRC编码的长度是根据第一信息的长度确定的,从而,避免了接收端接收信息后CRC校验通过,但信息传输有误的情况,提高了信息传输的可靠性。
进一步地,在上述实施例中,第一信息为上行控制信令,包括下述任一种或其组合:HARQ-ACK、SRI和CSI,其中,CSI可以包括PMI、CQI、RI或PTI,PMI可以是宽带PMI或子带PMI,CQI可以是宽带,也可以是子带,还可以是BI。
图5为本发明实施例提供的信息传输系统实施例的结构示意图。如图5所示,本实施例提供的信息传输系统50包括:
上述图3所示的信息发送装置30和上述图4所示的信息接收装置40。
本领域普通技术人员可以理解:实现上述各方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成。前述的程序可以存储于一计算机可读取存储介质中。该程序在执行时,执行包括上述各方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (40)

  1. 一种信息发送方法,其特征在于,包括:
    根据第一信息的长度,确定循环冗余校验CRC码的长度,其中,所述第一信息为控制信息,若所述第一信息的长度小于等于第一门限值,则确定所述CRC码的长度为第一长度,或者,若所述第一信息的长度小于等于第一门限值且大于第二门限值,则确定所述CRC码的长度为第一长度;
    根据所述CRC码的长度对应的生成多项式以及所述第一信息,生成CRC码;
    生成第二信息,所述第二信息包括所述第一信息和所述CRC码;以及
    发送所述第二信息。
  2. 根据权利要求1所述的方法,其特征在于,所述第一长度为8比特,所述第一门限值为119。
  3. 根据权利要求1所述的方法,其特征在于,
    所述第一门限值小于或等于2L-1-1-L,L为所述第一长度。
  4. 根据权利要求3所述的方法,其特征在于,
    所述第一门限值为预先设置的或预先接收到的。
  5. 根据权利要求3或4所述的方法,其特征在于,所述第一长度为8比特,所述第一门限值小于或等于119。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,根据第一信息的长度,确定循环冗余校验CRC码的长度,包括:
    若所述第一信息的长度大于第一门限值,则确定所述CRC码的长度为第二长度,所述第二长度的值大于所述第一长度的值。
  7. 根据权利要求6所述的方法,其特征在于,所述第二长度为16比特。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,所述第二门限值为预先设置的或者预先接收到的。
  9. 根据权利要求8所述的方法,其特征在于,所述第二门限值为22 或11。
  10. 根据权利要求1至9中任一项所述的方法,其特征在于,所述第一信息包括下述任一种或其组合:
    混合自动重传请求-确认信令HARQ-ACK;
    上行调度请求指示SRI;
    信道状态信息CSI。
  11. 一种信息接收方法,其特征在于,包括:
    接收第二信息,所述第二信息包括第一信息和循环冗余校验CRC码,所述第一信息为控制信息;
    根据所述第一信息的长度确定所述CRC码的长度,其中,若所述第一信息的长度小于等于第一门限值,则确定所述CRC码的长度为第一长度,或者,若所述第一信息的长度小于等于第一门限值且大于第二门限值,则确定所述CRC码的长度为第一长度;
    根据所述CRC码的长度对应的生成多项式对所述第一信息进行校验。
  12. 根据权利要求11所述的方法,其特征在于,所述第一长度为8比特,所述第一门限值为119。
  13. 根据权利要求11所述的方法,其特征在于,所述第一门限值小于或等于2L-1-1-L,L为所述第一长度。
  14. 根据权利要求13所述的方法,其特征在于,所述第一门限值为预先设置的或预先接收到的。
  15. 根据权利要求13或14所述的方法,其特征在于,所述第一长度为8比特,所述第一门限值小于或等于119。
  16. 根据权利要求11至15中任一项所述的方法,其特征在于,根据第一信息的长度,确定循环冗余校验CRC码的长度,包括:
    若所述第一信息的长度大于第一门限值,则确定所述CRC码的长度为第二长度,所述第二长度的值大于所述第一长度的值。
  17. 根据权利要求16所述的方法,其特征在于,所述第二长度为16比特。
  18. 根据权利要求11至17中任一项所述的方法,其特征在于,所述第二门限值为预先设置的或者预先接收到的。
  19. 根据权利要求18所述的方法,其特征在于,所述第二门限值为22或11。
  20. 根据权利要求11至19中任一项所述的方法,其特征在于,所述第一信息包括下述任一种或其组合:
    混合自动重传请求-确认信令HARQ-ACK;
    上行调度请求指示SRI;
    信道状态信息CSI。
  21. 一种信息发送装置,其特征在于,包括:
    处理模块,用于根据第一信息的长度,确定循环冗余校验CRC码的长度,其中,所述第一信息为控制信息,若所述第一信息的长度小于等于第一门限值,则确定所述CRC码的长度为第一长度,或者,若所述第一信息的长度小于等于第一门限值且大于第二门限值,则确定所述CRC码的长度为第一长度;
    所述处理模块还用于根据所述CRC码的长度对应的生成多项式以及所述第一信息,生成CRC码;
    所述处理模块还用于生成第二信息,所述第二信息包括所述第一信息和所述CRC码;
    发送模块,用于发送所述处理模块生成的所述第二信息。
  22. 根据权利要求21所述的装置,其特征在于,所述第一长度为8比特,所述第一门限值为119。
  23. 根据权利要求21所述的装置,其特征在于,
    所述第一门限值小于或等于2L-1-1-L,L为所述第一长度。
  24. 根据权利要求23所述的装置,其特征在于,
    所述第一门限值为预先设置的或预先接收到的。
  25. 根据权利要求23或24所述的装置,其特征在于,所述第一长度为8比特,所述第一门限值小于或等于119。
  26. 根据权利要求21至25中任一项所述的装置,其特征在于,所述处理模块还用于:
    若所述第一信息的长度大于第一门限值,则确定所述CRC码的长度 为第二长度,所述第二长度的值大于所述第一长度的值。
  27. 根据权利要求26所述的装置,其特征在于,所述第二长度为16比特。
  28. 根据权利要求21至27中任一项所述的装置,其特征在于,所述第二门限值为预先设置的或者预先接收到的。
  29. 根据权利要求28所述的装置,其特征在于,所述第二门限值为22或11。
  30. 根据权利要求21至29中任一项所述的装置,其特征在于,所述第一信息包括下述任一种或其组合:
    混合自动重传请求-确认信令HARQ-ACK;
    上行调度请求指示SRI;
    信道状态信息CSI。
  31. 一种信息接收装置,其特征在于,包括:
    接收模块,用于接收第二信息,所述第二信息包括第一信息和循环冗余校验CRC码,所述第一信息为控制信息;
    处理模块,用于根据所述接收模块接收的第二信息中的第一信息的长度确定所述CRC码的长度,其中,若所述第一信息的长度小于等于第一门限值,则确定所述CRC码的长度为第一长度,或者,若所述第一信息的长度小于等于第一门限值且大于第二门限值,则确定所述CRC码的长度为第一长度;
    所述处理模块还用于根据所述CRC码的长度对应的生成多项式对所述第一信息进行校验。
  32. 根据权利要求31所述的装置,其特征在于,所述第一长度为8比特,所述第一门限值为119。
  33. 根据权利要求31所述的装置,其特征在于,所述第一门限值小于或等于2L-1-1-L,L为所述第一长度。
  34. 根据权利要求33所述的装置,其特征在于,所述第一门限值为预先设置的或预先接收到的。
  35. 根据权利要求33或34所述的装置,其特征在于,所述第一长度为8比特,所述第一门限值小于或等于119。
  36. 根据权利要求31至35中任一项所述的装置,其特征在于,所述处理模块还用于:
    若所述第一信息的长度大于第一门限值,则确定所述CRC码的长度为第二长度,所述第二长度的值大于所述第一长度的值。
  37. 根据权利要求36所述的装置,其特征在于,所述第二长度为16比特。
  38. 根据权利要求31至37中任一项所述的装置,其特征在于,所述第二门限值为预先设置的或者预先接收到的。
  39. 根据权利要求38所述的装置,其特征在于,所述第二门限值为22或11。
  40. 根据权利要求31至38中任一项所述的装置,其特征在于,所述第一信息包括下述任一种或其组合:
    混合自动重传请求-确认信令HARQ-ACK;
    上行调度请求指示SRI;
    信道状态信息CSI。
PCT/CN2015/084490 2015-07-20 2015-07-20 信息发送方法和装置、以及信息接收方法和装置 WO2017011980A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15898536.6A EP3355477B1 (en) 2015-07-20 2015-07-20 Information sending method and apparatus with a crc code adapted to the length of control information
PCT/CN2015/084490 WO2017011980A1 (zh) 2015-07-20 2015-07-20 信息发送方法和装置、以及信息接收方法和装置
CN201580080392.XA CN107636974B (zh) 2015-07-20 2015-07-20 信息发送方法和装置、以及信息接收方法和装置
US15/780,460 US10637610B2 (en) 2015-07-20 2015-07-20 Information sending method and apparatus, and information receiving method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/084490 WO2017011980A1 (zh) 2015-07-20 2015-07-20 信息发送方法和装置、以及信息接收方法和装置

Publications (1)

Publication Number Publication Date
WO2017011980A1 true WO2017011980A1 (zh) 2017-01-26

Family

ID=57833538

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/084490 WO2017011980A1 (zh) 2015-07-20 2015-07-20 信息发送方法和装置、以及信息接收方法和装置

Country Status (4)

Country Link
US (1) US10637610B2 (zh)
EP (1) EP3355477B1 (zh)
CN (1) CN107636974B (zh)
WO (1) WO2017011980A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019024116A1 (zh) * 2017-08-04 2019-02-07 Oppo广东移动通信有限公司 信息处理方法、通信设备和计算机存储介质
US10225046B2 (en) * 2017-01-09 2019-03-05 At&T Intellectual Property I, L.P. Adaptive cyclic redundancy check for uplink control information encoding

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10575210B2 (en) * 2015-10-30 2020-02-25 Qualcomm Incorporated Cyclic redundancy check length management
JP7394651B2 (ja) * 2020-02-18 2023-12-08 キヤノン株式会社 交換ユニット及び当該交換ユニットが装着される装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101034952A (zh) * 2006-03-09 2007-09-12 华为技术有限公司 E-dch中调度信息传输方法
CN101471924A (zh) * 2007-12-27 2009-07-01 华为技术有限公司 一种数据包头指示方法及设备
WO2009156798A1 (en) * 2008-06-27 2009-12-30 Nokia Corporation Method and apparatus for crc rate matching in communications systems
WO2014092502A1 (en) * 2012-12-14 2014-06-19 Samsung Electronics Co., Ltd. Encoding method and apparatus using crc code and polar

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6085349A (en) * 1997-08-27 2000-07-04 Qualcomm Incorporated Method for selecting cyclic redundancy check polynomials for linear coded systems
KR100584170B1 (ko) * 2002-07-11 2006-06-02 재단법인서울대학교산학협력재단 터보 부호화된 복합 재전송 방식 시스템 및 오류 검출 방법
KR100915805B1 (ko) * 2006-06-20 2009-09-07 삼성전자주식회사 광대역 무선통신시스템에서 맥계층 데이터 통신 장치 및방법
CN101277509B (zh) 2007-03-26 2012-10-10 展讯通信(上海)有限公司 同步失步门限计算方法及物理层同步失步判决方法和装置
JP4935787B2 (ja) * 2008-09-12 2012-05-23 日本電気株式会社 巡回符号演算処理回路
CN102934384A (zh) 2010-06-07 2013-02-13 Lg电子株式会社 在无线通信系统中发送控制信息的方法和设备
US9191176B2 (en) * 2011-02-23 2015-11-17 Lg Electronics Inc. Method for coding and transmitting uplink control information in a wireless access system
CN103716130A (zh) * 2014-01-09 2014-04-09 苏州英菲泰尔电子科技有限公司 提高网络传输可靠性的物理层自适应处理方法
CN112073158B (zh) * 2015-01-28 2023-08-22 交互数字专利控股公司 用于操作大量载波的上行链路反馈方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101034952A (zh) * 2006-03-09 2007-09-12 华为技术有限公司 E-dch中调度信息传输方法
CN101471924A (zh) * 2007-12-27 2009-07-01 华为技术有限公司 一种数据包头指示方法及设备
WO2009156798A1 (en) * 2008-06-27 2009-12-30 Nokia Corporation Method and apparatus for crc rate matching in communications systems
WO2014092502A1 (en) * 2012-12-14 2014-06-19 Samsung Electronics Co., Ltd. Encoding method and apparatus using crc code and polar

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3355477A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10225046B2 (en) * 2017-01-09 2019-03-05 At&T Intellectual Property I, L.P. Adaptive cyclic redundancy check for uplink control information encoding
WO2019024116A1 (zh) * 2017-08-04 2019-02-07 Oppo广东移动通信有限公司 信息处理方法、通信设备和计算机存储介质
US10959214B2 (en) 2017-08-04 2021-03-23 Guangdong Oppo Mobile Telecommunications Corp. Ltd. Information processing method, communication device, and computer storage medium for ensuring correct generation of a check bit

Also Published As

Publication number Publication date
US20190020442A1 (en) 2019-01-17
EP3355477A1 (en) 2018-08-01
US10637610B2 (en) 2020-04-28
CN107636974A (zh) 2018-01-26
EP3355477A4 (en) 2018-08-15
EP3355477B1 (en) 2021-06-02
CN107636974B (zh) 2021-01-15

Similar Documents

Publication Publication Date Title
US10306608B2 (en) Method for transmitting and receiving uplink control information, terminal, base station
US11240813B2 (en) Method for sending control information, user equipment, and base station
US11197281B2 (en) Control information transmission method and apparatus
US10727985B2 (en) Control information sending method and communications device
US11071134B2 (en) Feedback information receiving method, base station and user equipment
US20120210187A1 (en) Dual reed-muller (rm) code segmentation for uplink control information (uci)
CN107852281B (zh) 基带处理器、基站、用户设备、及其方法
WO2011124129A1 (zh) 传输上行控制信息的方法、系统、用户设备和基站
WO2012094941A1 (zh) 一种信道状态信息的发送方法及终端
CN107222298B (zh) 一种数据传输方法及装置
JP6423790B2 (ja) フィードバック情報を送受信するためのデバイス
US9451596B2 (en) Method and apparatus for transmitting and receiving uplink control information in carrier aggregation environment
WO2017011980A1 (zh) 信息发送方法和装置、以及信息接收方法和装置
WO2018028682A1 (zh) 一种数据传输方法、装置和系统
JP6310459B2 (ja) フィードバック情報を送受信するためのデバイス
WO2018133001A1 (zh) 传输下行控制信息的方法、网络侧设备和终端设备
JP2019146258A (ja) 制御情報を送信するための方法、ユーザ機器、及び基地局

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15898536

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2015898536

Country of ref document: EP