WO2017010192A1 - System for processing exhaust gas - Google Patents

System for processing exhaust gas Download PDF

Info

Publication number
WO2017010192A1
WO2017010192A1 PCT/JP2016/066805 JP2016066805W WO2017010192A1 WO 2017010192 A1 WO2017010192 A1 WO 2017010192A1 JP 2016066805 W JP2016066805 W JP 2016066805W WO 2017010192 A1 WO2017010192 A1 WO 2017010192A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
temperature
water
control unit
discharged
Prior art date
Application number
PCT/JP2016/066805
Other languages
French (fr)
Japanese (ja)
Inventor
小松 正
邦幸 高橋
将隆 吉田
Original Assignee
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社 filed Critical 富士電機株式会社
Priority to JP2016569465A priority Critical patent/JPWO2017010192A1/en
Publication of WO2017010192A1 publication Critical patent/WO2017010192A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D51/00Auxiliary pretreatment of gases or vapours to be cleaned
    • B01D51/10Conditioning the gas to be cleaned
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/18Absorbing units; Liquid distributors therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/78Liquid phase processes with gas-liquid contact
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases

Definitions

  • the present invention relates to a system for treating exhaust gas.
  • the exhaust gas has been desulfurized using seawater (see, for example, Patent Document 1).
  • seawater was sprayed to the exhaust gas to lower the temperature of the exhaust gas to the dew point temperature or less, solid particles such as soot and sulfuric acid mist were collected by an electrostatic precipitator (see, for example, Patent Document 2).
  • the temperature of the exhaust gas is adjusted in order to prevent the sulfur component in the exhaust gas from condensing in the electrostatic precipitator and causing corrosion of the electrostatic precipitator (for example, see Patent Document 3).
  • Patent Document 1 JP-A-2011-524800
  • Patent Document 2 JP-A-2009-052440
  • Patent Document 3 JP-A-2001-041663
  • the temperature of the exhaust gas entering the electrostatic precipitator is lower than the dew point temperature, there is a problem that the electrostatic precipitator is corroded. Therefore, it is desirable that the temperature of the exhaust gas entering the electrostatic precipitator be higher than the dew point temperature.
  • a system for treating exhaust gas.
  • the system for treating exhaust gas may comprise a temperature control unit.
  • the temperature control unit may lower the temperature of the discharged exhaust gas.
  • the system for treating the exhaust gas may comprise a dust collector.
  • the dust collector may collect particulates in the exhaust gas discharged from the temperature control unit.
  • the system for treating exhaust gas may comprise an exhaust gas treatment device.
  • the exhaust gas processing device may process the exhaust gas discharged from the dust collector.
  • the temperature control unit may adjust the discharged exhaust gas to a temperature higher than the sulfuric acid dew point temperature.
  • the temperature control unit may cool the discharged exhaust gas with a fluid.
  • the fluid may be liquid.
  • the liquid may be fresh water.
  • the liquid may be water obtained by condensing water contained in the exhaust gas.
  • the temperature control unit may control the flow rate of the fluid.
  • the temperature control unit may control the flow rate of the fluid based on the load of the motor.
  • the temperature adjustment unit may correct the flow rate of the fluid.
  • the temperature control unit may correct the flow rate of the fluid based on the difference between the measured temperature of the exhaust gas discharged from the temperature control unit and a predetermined temperature.
  • the exhaust gas treatment apparatus may process the exhaust gas by injecting cleaning water to the exhaust gas.
  • the system for treating exhaust gas may further comprise a heat exchanger.
  • the heat exchanger may produce the fluid by cooling the exhaust gas obtained from the exhaust gas treatment device.
  • the temperature control unit may cool the exhaust gas with the fluid generated by the heat exchanger.
  • the exhaust gas processing device may have an exhaust gas acquisition unit.
  • the exhaust gas acquisition unit may supply the exhaust gas to the heat exchanger.
  • the exhaust gas acquisition unit may have an opening in a direction different from the injection direction of the cleaning water for treating the exhaust gas. The opening may take in exhaust gases.
  • the exhaust gas acquisition unit may be provided at an intermediate point in the height direction of the exhaust gas processing device.
  • the exhaust gas processing device may have an exhaust gas reintroduction unit.
  • the exhaust gas reintroduction part may return the exhaust gas after being cooled in the heat exchanger to the same position or lower side as the exhaust gas acquisition part in the height direction of the exhaust gas processing device.
  • the exhaust gas treatment device may comprise a recovered water tank.
  • the recovered water tank may contain the fluid produced by the heat exchanger.
  • the recovered water tank may be a supply source of the fluid transported to the temperature control unit.
  • the fluid may be a gas.
  • the temperature control unit may adjust the discharged exhaust gas to a temperature lower than the spark temperature of the dust collector.
  • the temperature control unit may adjust the temperature of the discharged exhaust gas to a temperature lower than the spark temperature of the dust collector.
  • the spark temperature of the dust collector may decrease according to the length of time of operation of the dust collector.
  • FIG. 1 is a figure showing system 100 which processes exhaust gas in a 1st example. It is a figure which shows the detail of the temperature control part 10.
  • FIG. FIG. 2 is a view showing a configuration of an electrostatic precipitator 20. It is a figure which shows the relationship between the applied voltage in the electrostatic precipitator 20, and a discharge current. It is a figure which shows the modification of the temperature control part 10 and the electrostatic precipitator 20. As shown in FIG. It is a figure which shows the system 110 which processes waste gas in 2nd Example.
  • FIG. 1 is a diagram showing a system 100 for treating exhaust gas in the first embodiment.
  • the system 100 for treating exhaust gas removes harmful substances such as sulfur components contained in the exhaust gas discharged from an engine or the like of a ship.
  • the system 100 for treating exhaust gas includes a temperature control unit 10, an electrostatic precipitator 20, an exhaust gas treatment device 30, a heat exchanger 50, a recovery water tank 60, a recovery water pump 62, a temperature measurement unit 70, and a pumping pump 80.
  • the exhaust gas sources include a main engine for ship propulsion, an auxiliary engine for power generation, a boiler for steam supply, and the like.
  • the temperature of the exhaust gas discharged from the main engine for ship propulsion is, for example, 270.degree.
  • the temperature of the exhaust gas discharged from the auxiliary engine for power generation is, for example, 350 ° C.
  • Exhaust gas is discharged from the exhaust gas source to the temperature control unit 10.
  • the temperature control unit 10 lowers the temperature of the discharged exhaust gas.
  • the temperature control unit 10 adjusts the temperature of the exhaust gas to a temperature higher than the sulfuric acid dew point temperature.
  • the sulfuric acid dew point temperature is around 140 ° C. Therefore, the temperature control unit 10 may lower the temperature of the exhaust gas to a range of 180 ° C. to 260 ° C.
  • the temperature adjustment unit 10 lowers the temperature of the exhaust gas so that the target value becomes 220 ° C.
  • the supply water is supplied to the temperature control unit 10 from the recovered water pump 62.
  • the temperature control unit 10 reduces the temperature of the discharged exhaust gas by spraying the supplied water on the exhaust gas. That is, the temperature control unit 10 cools the exhaust gas.
  • the feed water in this example is a liquid, and is water obtained by condensing the water contained in the exhaust gas.
  • the feed water may be water generated in a boiler or rainwater stored in water.
  • water obtained by condensing water contained in exhaust gas, water generated in a boiler, and stored rainwater are collectively referred to as recovered water.
  • the recovered water is temporarily stored in the recovered water tank 60.
  • the liquid supplied from the recovered water tank 60 to the temperature control unit 10 via the recovered water pump 62 is referred to as feed water.
  • the temperature control unit 10 since the temperature control unit 10 lowers the temperature of the exhaust gas by gas-liquid contact between the feed water and the exhaust gas, the temperature of the exhaust gas can be lowered more simply and in a compact device than using a heat exchanger or the like.
  • the fluid which the temperature control part 10 uses for cooling of waste gas should just be liquid or gas.
  • the temperature control unit 10 may lower the temperature of the exhaust gas by adding air to the discharged exhaust gas.
  • the temperature control unit 10 may lower the temperature of the exhaust gas using a heat exchanger or the like. That is, the temperature control unit 10 may cool the discharged exhaust gas with a fluid.
  • Exhaust gas is discharged from the temperature control unit 10 to the electrostatic precipitator 20.
  • the temperature control unit 10 of this example adjusts the temperature of the exhaust gas discharged to the electrostatic precipitator 20 to a temperature higher than the sulfuric acid dew point temperature. Therefore, the electrostatic precipitator 20 is not exposed to liquefied sulfuric acid. Therefore, the corrosion of the electrostatic precipitator 20 can be prevented.
  • the electrostatic precipitator 20 collects particulates in the exhaust gas. Particulates include soot and dust.
  • the electrostatic precipitator 20 may have a discharge line to which a positive high voltage is applied and a pair of dust collection plates installed across the discharge line. In another example, the electrostatic precipitator 20 may have a pair of dust collection plates, a negative high electric field may be applied to one of the dust collection plates, and the other dust collection plate may be grounded. The details of the structure of the electrostatic precipitator 20 are omitted in FIG. In the electrostatic precipitator 20, charged fine particles in the exhaust gas are collected on the dust collection plate by Coulomb force.
  • the exhaust gas processing device 30 has a reaction tower 31, a nozzle 35, an exhaust gas introduction pipe 38, a washing water introduction pipe 39, an exhaust gas acquisition unit 40, an exhaust gas reintroduction blower 46 and an exhaust gas reintroduction pipe 48.
  • the exhaust gas acquisition unit 40 includes an exhaust gas suction blower 41 and an exhaust gas suction pipe 44.
  • the exhaust gas processing device 30 may be a marine exhaust gas processing device 30 installed on a ship. Exhaust gas is introduced into the exhaust gas processing device 30 from the electrostatic precipitator 20 through the exhaust gas introduction pipe 38.
  • the reaction tower 31 has an internal space extending in the height direction.
  • the height direction indicates a direction in which the bottom side 34 of the reaction tower 31 to which the exhaust gas is introduced extends in the upper side 32 to which the exhaust gas is discharged.
  • the exhaust gas processing device 30 is provided on a ship, the height direction is, for example, perpendicular to the floor of the ship or parallel to the gravity direction.
  • the exhaust gas introduction pipe 38 is located in the vicinity of the bottom side 34 of the reaction tower 31.
  • the exhaust gas introduction pipe 38 may be provided such that the exhaust gas introduced from the exhaust gas introduction pipe 38 spirally swirls along the inner side surface of the reaction tower 31.
  • the radius of the reaction tower 31 may be about 0.3 m to several m.
  • a wash water pipe 37 in which wash water 36 flows is disposed inside the reaction tower 31.
  • the washing water pipe 37 is disposed in the vicinity of the upper side 32 of the reaction tower 31.
  • the washing water pipe 37 of this example conveys the washing water 36 in the direction perpendicular to the height direction of the reaction tower 31.
  • the washing water pipe 37 is supplied with washing water 36 from a suction pump 80.
  • the washing water pipe 37 is provided with a nozzle 35.
  • the nozzle 35 jets the washing water 36 from the top side 32 to the bottom side 34 with respect to the exhaust gas to process the exhaust gas.
  • the washing water 36 supplied to the washing water pipe 37 by the pumping pump 80 may be seawater, lake water, river water, or the like.
  • the washing water 36 injected from the nozzle 35 contacts the exhaust gas passing through the inside of the reaction tower 31, and absorbs the sulfur component and the like contained in the exhaust gas.
  • the liquid having absorbed the sulfur component and the like is accumulated on the bottom side 34 of the reaction tower 31 and discharged to the outside of the reaction tower 31 as drainage.
  • the exhaust gas suction pipe 44 of the exhaust gas acquisition unit 40 has an opening 42 for taking in the exhaust gas in the reaction tower 31. In the vicinity of the opening 42, the exhaust gas is cooled by the washing water 36 and reaches about 60.degree. About 20 vol% of the exhaust gas at about 60 ° C. is water.
  • the opening 42 is positioned to take in the exhaust gas in a direction different from the injection direction of the cleaning water 36 for treating the exhaust gas.
  • the injection direction of the washing water 36 is downward, while the opening 42 of the exhaust gas suction pipe 44 takes the exhaust gas upward.
  • the opening 42 may be oriented so as not to take in the washing water 36.
  • the opening 42 of this example is located in the opposite direction to the height direction of the reaction tower 31 in order to take in the exhaust gas upward. That is, the opening 42 of this example faces the bottom side 34 of the reaction tower 31.
  • the injection direction of the washing water 36 is also in the direction of injection to the bottom side 34.
  • the exhaust gas acquisition unit 40 can acquire only the exhaust gas without acquiring the washing water 36 from the inside of the reaction tower 31.
  • the downward and downward directions are directions from the top side 32 to the bottom side 34 of the exhaust gas processing device 30. Upward and downward directions are opposite to downward and downward directions.
  • the exhaust gas acquisition unit 40 is provided at an appropriate position between the upper side 32 and the lower side 34.
  • the exhaust gas acquisition unit 40 is provided between the upper side 32 and the lower side 34.
  • the exhaust gas acquisition unit 40 may be provided at an intermediate point in the height direction of the exhaust gas processing device 30. The middle point may be 40% to 60% of the length from the bottom of the bottom side 34 to the position where the nozzle 32 on the top side 32 is provided, even if it is 45% to 55% Good. Since the temperature of the exhaust gas is low near the upper side 32, the amount of water contained in the exhaust gas is smaller than that of the bottom side 34. Therefore, it is not preferable that the position of the exhaust gas acquisition unit 40 approaches the upper side 32 too much. In the vicinity of the bottom side 34, the exhaust gas contains more sulfur components than the top side 32. Therefore, it is not preferable that the position of the exhaust gas acquisition unit 40 approaches the bottom side 34 too much.
  • the exhaust gas acquisition unit 40 supplies the acquired exhaust gas to the heat exchanger 50.
  • the heat exchanger 50 cools the exhaust gas acquired from the exhaust gas acquisition unit 40 to generate a fluid (in this example, recovered water and feed water).
  • the heat exchanger 50 cools the exhaust gas acquired by the exhaust gas acquisition unit 40 by the cleaning water 36 supplied through the cleaning water pipe 37. The moisture of the exhaust gas becomes recovered water after being cooled in the heat exchanger 50.
  • the sulfur content of the recovered water can be less than the distilled water obtained by condensing the exhaust gas before being treated with the wash water 36.
  • the exhaust gas acquired by the exhaust gas acquisition unit 40 contains nitrogen, carbon dioxide and sulfur components in addition to water. Among these components, gas components not dissolved in the recovered water are sucked by the exhaust gas reintroduction blower 46 and returned to the reaction tower 31 as exhaust gas through the exhaust gas reintroduction pipe 48.
  • the exhaust gas reintroduction blower 46 returns the cooled exhaust gas to the same position as the exhaust gas acquisition unit 40 in the height direction, or to the bottom side 34 of the exhaust gas acquisition unit 40 in the height direction. That is, the exhaust gas reintroduction blower 46 returns the cooled exhaust gas to the lower side than the exhaust gas acquisition unit 40 in the height direction. Thereby, the exhaust gas can be cleaned again.
  • the opening of the exhaust gas reintroduction pipe 48 is positioned to reintroduce the exhaust gas in the same direction as the injection direction of the cleaning water 36 for treating the exhaust gas.
  • the injection direction of the washing water 36 is downward, while the opening of the exhaust gas reintroduction pipe 48 reintroduces the exhaust gas downward.
  • the opening of the exhaust gas reintroduction pipe 48 may be oriented so as not to take in the washing water 36.
  • the opening of the exhaust gas reintroduction pipe 48 in this example is located in the opposite direction to the height direction of the reaction tower 31 in order to reintroduce the exhaust gas downward. That is, the opening of the exhaust gas reintroduction pipe 48 of this example faces the bottom side 34 of the reaction tower 31.
  • the injection direction of the washing water 36 is also in the direction of injection to the bottom side 34.
  • the exhaust gas reintroduction pipe 48 can prevent the cleaning water 36 from being taken in from the reaction tower 31.
  • the recovered water generated by the heat exchanger 50 is accommodated in the recovered water tank 60.
  • the recovered water tank 60 functions as a supply source of feed water.
  • the recovered water pump 62 pumps the recovered water from the recovered water tank 60 and conveys it to the temperature control unit 10 as feed water.
  • the temperature control unit 10 can spray the recovered water (supply water) generated by the heat exchanger 50 on the exhaust gas.
  • seawater is directly sprayed to the exhaust gas
  • salts contained in the seawater are transported together with the exhaust gas, which adversely affects the electrostatic precipitator 20.
  • the temperature control unit 10 sprays the recovered water (supply water) generated by the heat exchanger 50 on the exhaust gas, it is possible to prevent salts from being captured by the electrostatic precipitator 20.
  • the recovered water may be fresh water. In the present specification, fresh water refers to water having a salt concentration of 0.05% or less. Further, the recovered water may be water obtained by condensing water contained in the exhaust gas.
  • FIG. 2 is a diagram showing the details of the temperature control unit 10.
  • the temperature adjustment unit 10 includes a control unit 12 and an evaporator 17.
  • Control unit 12 includes a first processing unit 13 and a second processing unit 15.
  • the evaporator 17 includes one or more nozzles 18.
  • the first processing unit 13 calculates the flow rate of the supplied water based on the load of an engine such as a main engine for ship propulsion, an auxiliary engine for power generation, and a boiler for steam supply.
  • the first processing unit 13 of the present embodiment has the standard exhaust gas temperature (° C.) and exhaust gas flow rate (m 3 / h) at the load factor of the motor, and the supply water required to lower the exhaust gas to the set temperature of the evaporator 17 And a table in which the relationship with the flow rate (m 3 / h) is recorded.
  • the first processing unit 13 of this example adjusts the flow rate of the feed water corresponding to the load of the motor with reference to the table.
  • the first processing unit 13 outputs a flow rate adjustment signal to the adder 16 in order to adjust the flow rate of the feed water to a specific flow rate.
  • the temperature measurement unit 70 measures the temperature T of the exhaust gas discharged from the temperature adjustment unit 10 at the outlet of the evaporator 17 near the electrostatic precipitator 20 in the evaporator 17.
  • the second processing unit 15 acquires the temperature of the exhaust gas measured by the temperature measurement unit 70.
  • the second processing unit 15 also acquires a set temperature, which is a temperature predetermined in the evaporator 17.
  • the second processing unit 15 calculates the flow rate (m 3 / h) of the feed water based on the difference between the measurement temperature T and the set temperature of the evaporator 17.
  • the second processing unit 15 of this example increases the flow rate of the supplied water when the measured temperature T is higher than the set temperature, and reduces the flow rate of the supplied water when the measured temperature T is lower than the set temperature. Compensate for the flow rate of the feed water.
  • the second processing unit 15 outputs the flow rate of the feed water to be compensated to the adder 16 as a flow rate compensation signal.
  • the control unit 12 corrects the flow rate of the supplied water to be sprayed, based on the flow rate adjustment signal from the first processing unit 13 and the flow rate compensation signal from the second processing unit 15. Specifically, the adder 16 adds the flow rate adjustment signal from the first processing unit 13 and the flow rate compensation signal from the second processing unit 15 and outputs a flow rate control signal to the recovered water pump 62.
  • the control unit 12 can control the load of the motor and the flow rate of the feed water sprayed onto the exhaust gas in consideration of the difference between the measured temperature T and the set temperature. Therefore, the controllability of the flow rate of the feed water sprayed to the exhaust gas by the evaporator 17 is improved.
  • the recovered water generated by the heat exchanger 50 is temporarily stored in the recovered water tank 60, the recovered water tank 60 exhibits a function as a buffer, and the evaporator 17 sprays the exhaust gas. Flow controllability can be improved.
  • FIG. 3 is a view showing the configuration of the electric dust collector 20.
  • the electrostatic precipitator 20 of this example has a pair of dust collection plates 22.
  • the pair of dust collection plates 22 are metal plates that function as electrodes.
  • a negative high voltage is applied to one of the dust collection plates 22-1 by the power supply 25, and the other dust collection plate 22-2 is grounded. Thereby, a high electric field area is formed between the pair of dust collection plates 22.
  • the fine particles in the exhaust gas are positively or negatively charged between the pair of dust collection plates 22.
  • the positively charged fine particles are collected on the dust collection plate 22-1 by the Coulomb force, and the negatively charged fine particles are collected on the dust collection plate 22-2 by the Coulomb force.
  • FIG. 4 is a diagram showing the relationship between the applied voltage and the discharge current in the electrostatic precipitator 20. As shown in FIG. The horizontal axis represents applied voltage (-kV), and the vertical axis represents discharge current (mA) flowing between the pair of dust collection plates. The increase in the applied voltage ( ⁇ kV) will be expressed below as the absolute value of the applied voltage increases.
  • the temperature of the exhaust gas indicated by the solid line is 350 ° C., 300 ° C., 250 ° C. and 220 ° C., respectively.
  • the temperature of the exhaust gas is 350 ° C.
  • no discharge current flows even if a voltage of ⁇ 6 kV is applied to one of the dust collection plates.
  • the applied voltage is gradually increased and a voltage of -8 kV is applied to one of the dust collection plates, a spark is generated. Sparks are similar to lightning.
  • the value of the discharge current increases as the absolute value of the applied voltage increases. This means that the number of microparticles per unit volume that can be collected increases. That is, the dust collection rate becomes higher as the absolute value of the applied voltage increases.
  • the temperature control unit 10 reduces the temperature of the exhaust gas.
  • the voltage applied to the dust collection plate 22-1 of the electrostatic precipitator 20 of this embodiment may be a predetermined value. For example, a voltage of -12 kV is applied to the dust collection plate 22-1.
  • the temperature control unit 10 of the present example adjusts the discharged exhaust gas to a temperature lower than the spark temperature of the electrostatic precipitator 20.
  • the temperature control unit 10 adjusts the temperature of the exhaust gas discharged to the electrostatic precipitator 20 to a temperature of 220 ° C. or more and less than 250 ° C. Thereby, the generation of sparks in the electrostatic precipitator 20 can be prevented.
  • FIG. 5 is a view showing a modification of the temperature control unit 10 and the electrostatic precipitator 20.
  • the temperature adjustment unit 10 of this example further includes a third processing unit 19.
  • the third processing unit 19 acquires information on the operation time of the electrostatic precipitator 20 from the electrostatic precipitator 20.
  • the third processing unit 19 converts the information on the operation time of the electrostatic precipitator 20 into a second flow rate compensation signal for compensating the flow rate of the added water.
  • the flow rate compensation signal output from the second processing unit 15 to the adder 16 is distinguished from the second flow rate compensation signal as the first flow rate compensation signal.
  • the electrostatic precipitator 20 reduces the temperature at which a spark starts (referred to as a spark temperature in the present specification) according to the length of operation time. For example, at the beginning of use, an applied voltage of -12 kV was applied to the dust collection plate 22-1, and even if exhaust gas at 220 ° C was flowed between the pair of dust collection plates 22, sparks were not generated. Sparking may occur even under the same conditions as time operation.
  • the operation time of the electrostatic precipitator 20 becomes long, the collected particulates are deposited. When the layer of the deposited fine particles is formed, the distance between the pair of dust collection plates 22 becomes short, which makes it easier to spark. Therefore, spark temperature falls in the electric precipitator 20 which became long in operation time.
  • the temperature adjustment unit 10 may adjust the temperature of the exhaust gas to a temperature lower than the spark temperature of the electrostatic precipitator, which decreases according to the length of operation time of the electrostatic precipitator 20.
  • the third processing unit 19 increases the flow rate of the supplied water in order to further cool the exhaust gas in the evaporator 17 in proportion to the operation time of the electrostatic precipitator 20.
  • the third processing unit 19 inputs a second flow compensation signal to the adder 16 in order to increase the flow rate of the supply water in proportion to the operation time of the electrostatic precipitator 20.
  • the operation time can be reset after the step.
  • FIG. 6 is a diagram showing a system 110 for treating exhaust gas in the second embodiment.
  • the system 110 of this example includes a neutralization tank 92 and a pumping pump 90 in place of the pumping pump 80 for pumping seawater and the like.
  • the waste water pumped up by the pumping pump 90 is recycled and used as the washing water 36 for reprocessing the exhaust gas.
  • the point which concerns is different from 1st Example. The other points are the same as in the first embodiment.
  • the neutralization tank 92 performs an alkali treatment on the waste water generated by treating the exhaust gas in the exhaust gas treatment device 30 to neutralize it.
  • the pump pump 90 pumps up the wastewater neutralized by the neutralization tank 92 and supplies it to the flush water pipe 37.
  • drainage can be circulated and used.
  • the system 100 or 110 is mounted on a ship.
  • the system 100 according to the first embodiment releases waste water to the sea etc. after neutralizing the pH to a certain value or more in compliance with the environmental standard. If the vessel equipped with the system 100 is underway, there is no problem in discharging the neutralized wastewater into the sea. However, when the ship equipped with the system 100 is anchored in a port or the like, the drainage will continue to be discharged to a specific location, which is not preferable.

Abstract

There is a problem that an electric dust collector is corroded by liquefied sulfuric acid when the temperature of exhaust gas entering into the electric dust collector is the dew-point temperature of sulfuric acid or lower. Therefore, the present invention prevents an electric dust collector from being corroded. Provided is a system for processing exhaust gas, the system including: a temperature adjustment unit for reducing the temperature of the discharged exhaust gas; a dust collector for collecting fine particles in the exhaust gas discharged from the temperature adjustment unit; and an exhaust gas processing device for processing exhaust gas discharged from the dust collector. The temperature adjustment unit adjusts the discharged exhaust gas to a temperature higher than the dew-point temperature of sulfuric acid.

Description

排ガスを処理するシステムSystem to process exhaust gas
 本発明は、排ガスを処理するシステムに関する。 The present invention relates to a system for treating exhaust gas.
 従来、海水を用いて排ガスを脱硫していた(例えば、特許文献1参照)。また、海水を排ガスに噴霧して排ガスの温度を露点温度以下に下げた後に、電気集塵機により煤等の固体粒子と硫酸ミストとを集めていた(例えば、特許文献2参照)。なお、熔錬炉においては、排ガス中の硫黄成分が電気集塵機内で結露して電気集塵機が腐食することを防ぐべく、排ガスの温度を調整していた(例えば、特許文献3参照)。
[先行技術文献]
[特許文献]
 [特許文献1] 特表2011-524800号公報
 [特許文献2] 特開2009-052440号公報
 [特許文献3] 特開2001-041663号公報
Conventionally, the exhaust gas has been desulfurized using seawater (see, for example, Patent Document 1). In addition, after seawater was sprayed to the exhaust gas to lower the temperature of the exhaust gas to the dew point temperature or less, solid particles such as soot and sulfuric acid mist were collected by an electrostatic precipitator (see, for example, Patent Document 2). In the smelting furnace, the temperature of the exhaust gas is adjusted in order to prevent the sulfur component in the exhaust gas from condensing in the electrostatic precipitator and causing corrosion of the electrostatic precipitator (for example, see Patent Document 3).
[Prior art document]
[Patent Document]
[Patent Document 1] JP-A-2011-524800 [Patent Document 2] JP-A-2009-052440 [Patent Document 3] JP-A-2001-041663
 電気集塵機に入る排ガスの温度が露点温度以下の場合、電気集塵機が腐食される問題がある。それゆえ、電気集塵機に入る排ガスの温度は露点温度より高い温度とすることが望まれる。 If the temperature of the exhaust gas entering the electrostatic precipitator is lower than the dew point temperature, there is a problem that the electrostatic precipitator is corroded. Therefore, it is desirable that the temperature of the exhaust gas entering the electrostatic precipitator be higher than the dew point temperature.
 (発明の一般的開示)本発明の第1の態様においては、排ガスを処理するシステムを提供する。排ガスを処理するシステムは、温度調整部を備えてよい。温度調整部は、排出された排ガスの温度を下げてよい。排ガスを処理するシステムは、集塵機を備えてよい。集塵機は、温度調整部から排出された排ガス中の微粒子を捕集してよい。排ガスを処理するシステムは、排ガス処理装置を備えてよい。排ガス処理装置は、集塵機から排出された排ガスを処理してよい。温度調整部は、排出された排ガスを硫酸露点温度より高い温度に調整してよい。 General Disclosure of the Invention In a first aspect of the invention, a system is provided for treating exhaust gas. The system for treating exhaust gas may comprise a temperature control unit. The temperature control unit may lower the temperature of the discharged exhaust gas. The system for treating the exhaust gas may comprise a dust collector. The dust collector may collect particulates in the exhaust gas discharged from the temperature control unit. The system for treating exhaust gas may comprise an exhaust gas treatment device. The exhaust gas processing device may process the exhaust gas discharged from the dust collector. The temperature control unit may adjust the discharged exhaust gas to a temperature higher than the sulfuric acid dew point temperature.
 温度調整部は、排出された排ガスを流体で冷却してよい。 The temperature control unit may cool the discharged exhaust gas with a fluid.
 流体は、液体であってよい。 The fluid may be liquid.
 液体は、淡水であってよい。 The liquid may be fresh water.
 液体は、排ガスに含まれる水分を凝縮した水であってよい。 The liquid may be water obtained by condensing water contained in the exhaust gas.
 温度調整部は、流体の流量を制御してよい。温度調整部は、発動機の負荷に基づいて、流体の流量を制御してよい。 The temperature control unit may control the flow rate of the fluid. The temperature control unit may control the flow rate of the fluid based on the load of the motor.
 温度調整部は、流体の流量を補正してよい。温度調整部は、温度調整部から排出された排ガスの測定温度と予め定められた温度との差に基づいて、流体の流量を補正してよい。 The temperature adjustment unit may correct the flow rate of the fluid. The temperature control unit may correct the flow rate of the fluid based on the difference between the measured temperature of the exhaust gas discharged from the temperature control unit and a predetermined temperature.
 排ガス処理装置は、排ガスに洗浄水を噴射して排ガスを処理してよい。排ガスを処理するシステムは、熱交換器を更に備えてよい。熱交換器は、排ガス処理装置から取得した排ガスを冷却することにより流体を生成してよい。温度調整部は、熱交換器が生成した流体で排ガスを冷却してよい。 The exhaust gas treatment apparatus may process the exhaust gas by injecting cleaning water to the exhaust gas. The system for treating exhaust gas may further comprise a heat exchanger. The heat exchanger may produce the fluid by cooling the exhaust gas obtained from the exhaust gas treatment device. The temperature control unit may cool the exhaust gas with the fluid generated by the heat exchanger.
 排ガス処理装置は、排ガス取得部を有してよい。排ガス取得部は、熱交換器に排ガスを供給してよい。排ガス取得部は、排ガスを処理する洗浄水の噴射方向とは異なる向きに開口を有してよい。開口は、排ガスを取り込んでよい。 The exhaust gas processing device may have an exhaust gas acquisition unit. The exhaust gas acquisition unit may supply the exhaust gas to the heat exchanger. The exhaust gas acquisition unit may have an opening in a direction different from the injection direction of the cleaning water for treating the exhaust gas. The opening may take in exhaust gases.
 排ガス取得部は、排ガス処理装置の高さ方向における中間点に設けられてよい。 The exhaust gas acquisition unit may be provided at an intermediate point in the height direction of the exhaust gas processing device.
 排ガス処理装置は、排ガス再導入部を有してよい。排ガス再導入部は、熱交換器において冷却された後の排ガスを、排ガス処理装置の高さ方向における排ガス取得部と同じ位置、または、下部側に戻してよい。 The exhaust gas processing device may have an exhaust gas reintroduction unit. The exhaust gas reintroduction part may return the exhaust gas after being cooled in the heat exchanger to the same position or lower side as the exhaust gas acquisition part in the height direction of the exhaust gas processing device.
 排ガス処理装置は、回収水タンクを備えてよい。回収水タンクは、熱交換器が生成した流体を収容してよい。回収水タンクは、温度調整部へ搬送される流体の供給源であってよい。 The exhaust gas treatment device may comprise a recovered water tank. The recovered water tank may contain the fluid produced by the heat exchanger. The recovered water tank may be a supply source of the fluid transported to the temperature control unit.
 流体は気体であってよい。 The fluid may be a gas.
 温度調整部は、排出された排ガスを集塵機のスパーク温度より低い温度に調整してよい。 The temperature control unit may adjust the discharged exhaust gas to a temperature lower than the spark temperature of the dust collector.
 温度調整部は、集塵機のスパーク温度より低い温度に、排出された排ガスの温度を調整してよい。集塵機のスパーク温度は、集塵機の運転時間の長さに応じて低下してよい。 The temperature control unit may adjust the temperature of the discharged exhaust gas to a temperature lower than the spark temperature of the dust collector. The spark temperature of the dust collector may decrease according to the length of time of operation of the dust collector.
 なお、上記の発明の概要は、本発明の必要な特徴の全てを列挙したものではない。また、これらの特徴群のサブコンビネーションもまた、発明となりうる。 Note that the above summary of the invention does not enumerate all the necessary features of the present invention. In addition, a subcombination of these feature groups can also be an invention.
第1実施例における排ガスを処理するシステム100を示す図である。It is a figure showing system 100 which processes exhaust gas in a 1st example. 温度調整部10の詳細を示す図である。It is a figure which shows the detail of the temperature control part 10. FIG. 電気集塵機20の構成を示す図である。FIG. 2 is a view showing a configuration of an electrostatic precipitator 20. 電気集塵機20における印加電圧と放電電流との関係を示す図である。It is a figure which shows the relationship between the applied voltage in the electrostatic precipitator 20, and a discharge current. 温度調整部10および電気集塵機20の変形例を示す図である。It is a figure which shows the modification of the temperature control part 10 and the electrostatic precipitator 20. As shown in FIG. 第2実施例における排ガスを処理するシステム110を示す図である。It is a figure which shows the system 110 which processes waste gas in 2nd Example.
 以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。 Hereinafter, the present invention will be described through the embodiments of the invention, but the following embodiments do not limit the invention according to the claims. Moreover, not all combinations of features described in the embodiments are essential to the solution of the invention.
 図1は、第1実施例における排ガスを処理するシステム100を示す図である。排ガスを処理するシステム100は、船舶のエンジン等から排出される排ガスに含まれる、硫黄成分等の有害物質を除去する。排ガスを処理するシステム100は、温度調整部10、電気集塵機20、排ガス処理装置30、熱交換器50、回収水タンク60、回収水ポンプ62、温度測定部70および汲み上げポンプ80を備える。 FIG. 1 is a diagram showing a system 100 for treating exhaust gas in the first embodiment. The system 100 for treating exhaust gas removes harmful substances such as sulfur components contained in the exhaust gas discharged from an engine or the like of a ship. The system 100 for treating exhaust gas includes a temperature control unit 10, an electrostatic precipitator 20, an exhaust gas treatment device 30, a heat exchanger 50, a recovery water tank 60, a recovery water pump 62, a temperature measurement unit 70, and a pumping pump 80.
 排ガス発生源は、船舶推進用のメインエンジン、発電用の補機エンジン、および、蒸気供給用のボイラ等である。船舶推進用のメインエンジンから排出される排ガスの温度は、例えば270℃である。また、発電用の補機エンジンから排出される排ガスの温度は、例えば350℃である。 The exhaust gas sources include a main engine for ship propulsion, an auxiliary engine for power generation, a boiler for steam supply, and the like. The temperature of the exhaust gas discharged from the main engine for ship propulsion is, for example, 270.degree. In addition, the temperature of the exhaust gas discharged from the auxiliary engine for power generation is, for example, 350 ° C.
 温度調整部10には、排ガス発生源から排ガスが排出される。温度調整部10は、排出された排ガスの温度を下げる。ただし、温度調整部10は、排ガスの温度を硫酸露点温度より高い温度に調整する。一般に、硫酸露点温度は140℃前後である。そこで、温度調整部10は、排ガスの温度を180℃から260℃までの範囲に下げてよい。例えば、温度調整部10は、目標値220℃となるように排ガスの温度を下げる。 Exhaust gas is discharged from the exhaust gas source to the temperature control unit 10. The temperature control unit 10 lowers the temperature of the discharged exhaust gas. However, the temperature control unit 10 adjusts the temperature of the exhaust gas to a temperature higher than the sulfuric acid dew point temperature. In general, the sulfuric acid dew point temperature is around 140 ° C. Therefore, the temperature control unit 10 may lower the temperature of the exhaust gas to a range of 180 ° C. to 260 ° C. For example, the temperature adjustment unit 10 lowers the temperature of the exhaust gas so that the target value becomes 220 ° C.
 温度調整部10には、回収水ポンプ62から供給水が供給される。温度調整部10は、排ガスに供給水を噴霧することにより、排出された排ガスの温度を下げる。つまり、温度調整部10は排ガスを冷却する。本例の供給水は、液体であり、排ガスに含まれる水分を凝縮させた水である。ただし、供給水は、ボイラにおいて生成した水、または、貯水した雨水であってもよい。本明細書においては、排ガスに含まれる水分を凝縮させた水、ボイラにおいて生成した水、および、貯水した雨水を総称して回収水と称する。回収水は回収水タンク60に一旦収容される。本明細書においては、回収水タンク60から回収水ポンプ62を経て温度調整部10に供給される液体を供給水と称する。 The supply water is supplied to the temperature control unit 10 from the recovered water pump 62. The temperature control unit 10 reduces the temperature of the discharged exhaust gas by spraying the supplied water on the exhaust gas. That is, the temperature control unit 10 cools the exhaust gas. The feed water in this example is a liquid, and is water obtained by condensing the water contained in the exhaust gas. However, the feed water may be water generated in a boiler or rainwater stored in water. In the present specification, water obtained by condensing water contained in exhaust gas, water generated in a boiler, and stored rainwater are collectively referred to as recovered water. The recovered water is temporarily stored in the recovered water tank 60. In the present specification, the liquid supplied from the recovered water tank 60 to the temperature control unit 10 via the recovered water pump 62 is referred to as feed water.
 温度調整部10は供給水と排ガスとの気液接触により排ガスの温度を下げるので、熱交換器等を用いるよりも簡易にかつコンパクトな装置で排ガスの温度を下げることができる。なお、温度調整部10が排ガスの冷却に用いる流体は、液体または気体であればよい。他の例では、温度調整部10は、排出された排ガスに空気を添加することにより、排ガスの温度を下げてもよい。他の例では、温度調整部10は、熱交換器等を用いて排ガスの温度を下げてもよい。つまり、温度調整部10は、排出された排ガスを流体で冷却してよい。 Since the temperature control unit 10 lowers the temperature of the exhaust gas by gas-liquid contact between the feed water and the exhaust gas, the temperature of the exhaust gas can be lowered more simply and in a compact device than using a heat exchanger or the like. In addition, the fluid which the temperature control part 10 uses for cooling of waste gas should just be liquid or gas. In another example, the temperature control unit 10 may lower the temperature of the exhaust gas by adding air to the discharged exhaust gas. In another example, the temperature control unit 10 may lower the temperature of the exhaust gas using a heat exchanger or the like. That is, the temperature control unit 10 may cool the discharged exhaust gas with a fluid.
 電気集塵機20には温度調整部10から排ガスが排出される。本例の温度調整部10は、電気集塵機20へ排出する排ガスの温度を硫酸露点温度よりも高い温度に調整する。それゆえ、電気集塵機20は液化した硫酸に曝されない。したがって、電気集塵機20の腐食を防止することができる。 Exhaust gas is discharged from the temperature control unit 10 to the electrostatic precipitator 20. The temperature control unit 10 of this example adjusts the temperature of the exhaust gas discharged to the electrostatic precipitator 20 to a temperature higher than the sulfuric acid dew point temperature. Therefore, the electrostatic precipitator 20 is not exposed to liquefied sulfuric acid. Therefore, the corrosion of the electrostatic precipitator 20 can be prevented.
 電気集塵機20は、排ガス中の微粒子を捕集する。微粒子は、煤および粉塵などである。電気集塵機20は、正の高電圧が印加される放電線と放電線を挟んで設置された一対の集塵板とを有してよい。他の例では、電気集塵機20は、一対の集塵板を有し、一方の集塵板には負の高電界が印加され、他方の集塵板は接地されてよい。図1においては、電気集塵機20の構造の詳細は省略する。電気集塵機20では、排ガス中の帯電した微粒子がクーロン力により集塵板に捕集される。 The electrostatic precipitator 20 collects particulates in the exhaust gas. Particulates include soot and dust. The electrostatic precipitator 20 may have a discharge line to which a positive high voltage is applied and a pair of dust collection plates installed across the discharge line. In another example, the electrostatic precipitator 20 may have a pair of dust collection plates, a negative high electric field may be applied to one of the dust collection plates, and the other dust collection plate may be grounded. The details of the structure of the electrostatic precipitator 20 are omitted in FIG. In the electrostatic precipitator 20, charged fine particles in the exhaust gas are collected on the dust collection plate by Coulomb force.
 排ガス処理装置30は、反応塔31、ノズル35、排ガス導入管38、洗浄水導入管39、排ガス取得部40、排ガス再導入ブロワ46および排ガス再導入管48を有する。なお、排ガス取得部40は、排ガス吸入ブロワ41および排ガス吸入管44を含む。排ガス処理装置30は、船舶に設置される船舶用排ガス処理装置30であってよい。排ガス処理装置30には、電気集塵機20から排ガス導入管38を通って排ガスが導入される。 The exhaust gas processing device 30 has a reaction tower 31, a nozzle 35, an exhaust gas introduction pipe 38, a washing water introduction pipe 39, an exhaust gas acquisition unit 40, an exhaust gas reintroduction blower 46 and an exhaust gas reintroduction pipe 48. The exhaust gas acquisition unit 40 includes an exhaust gas suction blower 41 and an exhaust gas suction pipe 44. The exhaust gas processing device 30 may be a marine exhaust gas processing device 30 installed on a ship. Exhaust gas is introduced into the exhaust gas processing device 30 from the electrostatic precipitator 20 through the exhaust gas introduction pipe 38.
 反応塔31は、高さ方向に延伸する内部空間を有する。本例において高さ方向とは、反応塔31において排ガスが導入される底部側34から、排ガスが排出される上部側32に延伸する方向を指す。排ガス処理装置30が船舶に設けられる場合、高さ方向は、例えば船舶の床面と垂直な方向または重力方向と平行である。 The reaction tower 31 has an internal space extending in the height direction. In the present example, the height direction indicates a direction in which the bottom side 34 of the reaction tower 31 to which the exhaust gas is introduced extends in the upper side 32 to which the exhaust gas is discharged. When the exhaust gas processing device 30 is provided on a ship, the height direction is, for example, perpendicular to the floor of the ship or parallel to the gravity direction.
 排ガス処理装置30において、排ガス導入管38は反応塔31の底部側34近傍に位置する。排ガス導入管38から導入される排ガスが反応塔31の内側側面に沿って螺旋状に旋回するように、排ガス導入管38は設けられてよい。反応塔31の半径は0.3mから数m程度であってよい。 In the exhaust gas processing device 30, the exhaust gas introduction pipe 38 is located in the vicinity of the bottom side 34 of the reaction tower 31. The exhaust gas introduction pipe 38 may be provided such that the exhaust gas introduced from the exhaust gas introduction pipe 38 spirally swirls along the inner side surface of the reaction tower 31. The radius of the reaction tower 31 may be about 0.3 m to several m.
 反応塔31の内部には、洗浄水36が流れる洗浄水管37が配置される。本例では、反応塔31の上部側32近傍に洗浄水管37が配置される。本例の洗浄水管37は、反応塔31の高さ方向に垂直な方向に洗浄水36を搬送する。洗浄水管37には、汲み上げポンプ80から洗浄水36が供給される。 A wash water pipe 37 in which wash water 36 flows is disposed inside the reaction tower 31. In the present embodiment, the washing water pipe 37 is disposed in the vicinity of the upper side 32 of the reaction tower 31. The washing water pipe 37 of this example conveys the washing water 36 in the direction perpendicular to the height direction of the reaction tower 31. The washing water pipe 37 is supplied with washing water 36 from a suction pump 80.
 洗浄水管37にはノズル35が設けられる。ノズル35は排ガスに対して上部側32から底部側34へ洗浄水36を噴射して排ガスを処理する。排ガス処理装置30が船舶に設けられる場合、汲み上げポンプ80が洗浄水管37に供給する洗浄水36は海水、湖水または川水等であってよい。 The washing water pipe 37 is provided with a nozzle 35. The nozzle 35 jets the washing water 36 from the top side 32 to the bottom side 34 with respect to the exhaust gas to process the exhaust gas. When the exhaust gas processing device 30 is provided on a ship, the washing water 36 supplied to the washing water pipe 37 by the pumping pump 80 may be seawater, lake water, river water, or the like.
 ノズル35から噴射された洗浄水36は、反応塔31の内部を通過する排ガスと接触して、排ガスに含まれる硫黄成分等を吸収する。硫黄成分等を吸収した液体は、反応塔31の底部側34に溜り、排水として反応塔31の外部に排出される。 The washing water 36 injected from the nozzle 35 contacts the exhaust gas passing through the inside of the reaction tower 31, and absorbs the sulfur component and the like contained in the exhaust gas. The liquid having absorbed the sulfur component and the like is accumulated on the bottom side 34 of the reaction tower 31 and discharged to the outside of the reaction tower 31 as drainage.
 排ガス取得部40の排ガス吸入管44は、反応塔31内において排ガスを取り込む開口42を有する。開口42の近傍では、排ガスは洗浄水36により冷却されて60℃程度となる。60℃程度の排ガスは、約20vol%が水分である。 The exhaust gas suction pipe 44 of the exhaust gas acquisition unit 40 has an opening 42 for taking in the exhaust gas in the reaction tower 31. In the vicinity of the opening 42, the exhaust gas is cooled by the washing water 36 and reaches about 60.degree. About 20 vol% of the exhaust gas at about 60 ° C. is water.
 開口42は、排ガスを処理する洗浄水36の噴射方向とは異なる向きに排ガスを取り込むように位置する。本例では、洗浄水36の噴射方向が下向きであるのに対し、排ガス吸入管44の開口42は、排ガスを上向きに取り込む。開口42は、洗浄水36を取り込まない向きであればよい。本例の開口42は、排ガスを上向きに取り込むため、反応塔31の高さ方向とは反対の向きに位置する。つまり、本例の開口42は、反応塔31の底部側34を向いている。一方、洗浄水36の噴射方向も底部側34へ噴射する向きに位置する。これにより、排ガス取得部40は、反応塔31内からは洗浄水36を取得せず、排ガスのみを取得することができる。なお、本明細書において、下および下向きとは、排ガス処理装置30の上部側32から底部側34への向きである。上および上向きとは、下および下向きとは反対の向きである。 The opening 42 is positioned to take in the exhaust gas in a direction different from the injection direction of the cleaning water 36 for treating the exhaust gas. In this example, the injection direction of the washing water 36 is downward, while the opening 42 of the exhaust gas suction pipe 44 takes the exhaust gas upward. The opening 42 may be oriented so as not to take in the washing water 36. The opening 42 of this example is located in the opposite direction to the height direction of the reaction tower 31 in order to take in the exhaust gas upward. That is, the opening 42 of this example faces the bottom side 34 of the reaction tower 31. On the other hand, the injection direction of the washing water 36 is also in the direction of injection to the bottom side 34. Thereby, the exhaust gas acquisition unit 40 can acquire only the exhaust gas without acquiring the washing water 36 from the inside of the reaction tower 31. In the present specification, the downward and downward directions are directions from the top side 32 to the bottom side 34 of the exhaust gas processing device 30. Upward and downward directions are opposite to downward and downward directions.
 排ガス取得部40は、上部側32と底部側34との間の適切な位置に設けられる。一例において、排ガス取得部40は、上部側32と底部側34との間に設けられる。また、排ガス取得部40は、排ガス処理装置30の高さ方向における中間点に設けられてよい。中間点とは、底部側34の最も底部から上部側32のノズル35が設けられる位置までの長さの40%~60%の位置であってよく、45%~55%の位置であってもよい。上部側32近傍では排ガスの温度が低いので、排ガスが含有する水分量は底部側34よりも少なくなる。それゆえ、排ガス取得部40の位置は上部側32に接近しすぎると好ましくない。また、底部側34近傍では排ガスが含有する硫黄成分が上部側32よりも多い。それゆえ、排ガス取得部40の位置は底部側34に接近しすぎると好ましくない。 The exhaust gas acquisition unit 40 is provided at an appropriate position between the upper side 32 and the lower side 34. In one example, the exhaust gas acquisition unit 40 is provided between the upper side 32 and the lower side 34. In addition, the exhaust gas acquisition unit 40 may be provided at an intermediate point in the height direction of the exhaust gas processing device 30. The middle point may be 40% to 60% of the length from the bottom of the bottom side 34 to the position where the nozzle 32 on the top side 32 is provided, even if it is 45% to 55% Good. Since the temperature of the exhaust gas is low near the upper side 32, the amount of water contained in the exhaust gas is smaller than that of the bottom side 34. Therefore, it is not preferable that the position of the exhaust gas acquisition unit 40 approaches the upper side 32 too much. In the vicinity of the bottom side 34, the exhaust gas contains more sulfur components than the top side 32. Therefore, it is not preferable that the position of the exhaust gas acquisition unit 40 approaches the bottom side 34 too much.
 排ガス取得部40は、取得した排ガスを熱交換器50に供給する。熱交換器50は、排ガス取得部40から取得した排ガスを冷却することにより流体(本例においては、回収水および供給水)を生成する。熱交換器50は、洗浄水管37を通じて供給される洗浄水36により排ガス取得部40が取得した排ガスを冷却する。排ガスの水分は、熱交換器50において冷却された後に、回収水となる。 The exhaust gas acquisition unit 40 supplies the acquired exhaust gas to the heat exchanger 50. The heat exchanger 50 cools the exhaust gas acquired from the exhaust gas acquisition unit 40 to generate a fluid (in this example, recovered water and feed water). The heat exchanger 50 cools the exhaust gas acquired by the exhaust gas acquisition unit 40 by the cleaning water 36 supplied through the cleaning water pipe 37. The moisture of the exhaust gas becomes recovered water after being cooled in the heat exchanger 50.
 排ガス取得部40に取得される前に、反応塔31において排ガスの硫黄成分等は洗浄水36により既に粗く除去されている。それゆえ、回収水の硫黄成分は、洗浄水36で処理する前の排ガスを凝縮して得る蒸留水よりも少なくすることができる。 Before being acquired by the exhaust gas acquisition unit 40, sulfur components and the like of the exhaust gas in the reaction tower 31 have already been roughly removed by the washing water 36. Therefore, the sulfur content of the recovered water can be less than the distilled water obtained by condensing the exhaust gas before being treated with the wash water 36.
 排ガス取得部40が取得した排ガスは、水の他に、窒素、二酸化炭素および硫黄成分を含む。これらのうち回収水に溶解しなかったガス成分は、排ガス再導入ブロワ46により吸入されて、排ガス再導入管48を通じて排ガスとして反応塔31に戻される。排ガス再導入ブロワ46は、冷却された後の排ガスを、高さ方向における排ガス取得部40と同じ位置、または、高さ方向における排ガス取得部40よりも底部側34に戻す。つまり、排ガス再導入ブロワ46は、冷却された後の排ガスを、高さ方向における排ガス取得部40よりも下部側に戻す。これにより、排ガスを再度洗浄することができる。また、排ガス再導入管48の開口は、排ガスを処理する洗浄水36の噴射方向と同じ向きに排ガスを再導入するように位置する。本例では、洗浄水36の噴射方向が下向きであるのに対し、排ガス再導入管48の開口は、排ガスを下向きに再導入する。排ガス再導入管48の開口は、洗浄水36を取り込まない向きであればよい。本例の排ガス再導入管48の開口は、排ガスを下向きに再導入するため、反応塔31の高さ方向とは反対の向きに位置する。つまり、本例の排ガス再導入管48の開口は、反応塔31の底部側34を向いている。一方、洗浄水36の噴射方向も底部側34へ噴射する向きに位置する。これにより、排ガス再導入管48は、反応塔31内から洗浄水36を取り込むことを防止することができる。 The exhaust gas acquired by the exhaust gas acquisition unit 40 contains nitrogen, carbon dioxide and sulfur components in addition to water. Among these components, gas components not dissolved in the recovered water are sucked by the exhaust gas reintroduction blower 46 and returned to the reaction tower 31 as exhaust gas through the exhaust gas reintroduction pipe 48. The exhaust gas reintroduction blower 46 returns the cooled exhaust gas to the same position as the exhaust gas acquisition unit 40 in the height direction, or to the bottom side 34 of the exhaust gas acquisition unit 40 in the height direction. That is, the exhaust gas reintroduction blower 46 returns the cooled exhaust gas to the lower side than the exhaust gas acquisition unit 40 in the height direction. Thereby, the exhaust gas can be cleaned again. Further, the opening of the exhaust gas reintroduction pipe 48 is positioned to reintroduce the exhaust gas in the same direction as the injection direction of the cleaning water 36 for treating the exhaust gas. In this example, the injection direction of the washing water 36 is downward, while the opening of the exhaust gas reintroduction pipe 48 reintroduces the exhaust gas downward. The opening of the exhaust gas reintroduction pipe 48 may be oriented so as not to take in the washing water 36. The opening of the exhaust gas reintroduction pipe 48 in this example is located in the opposite direction to the height direction of the reaction tower 31 in order to reintroduce the exhaust gas downward. That is, the opening of the exhaust gas reintroduction pipe 48 of this example faces the bottom side 34 of the reaction tower 31. On the other hand, the injection direction of the washing water 36 is also in the direction of injection to the bottom side 34. Thus, the exhaust gas reintroduction pipe 48 can prevent the cleaning water 36 from being taken in from the reaction tower 31.
 熱交換器50で生成された回収水は回収水タンク60に収容される。回収水タンク60は供給水の供給源として機能する。回収水ポンプ62は回収水タンク60から回収水を汲み出して供給水として温度調整部10に搬送する。これにより、温度調整部10は、熱交換器50で生成した回収水(供給水)を排ガスに噴霧することができる。一方、排ガスに直接、海水を噴霧した場合には、海水に含まれる塩類が排ガスとともに搬送されてしまうため、電気集塵機20に悪影響を与える。本例では、温度調整部10が、熱交換器50で生成した回収水(供給水)を排ガスに噴霧しているため、塩類が電気集塵機20で捕捉されることを防止できる。なお、回収水は、淡水であってよい。なお、本明細書において淡水とは、塩分濃度が0.05%以下の水を指す。また、回収水は、排ガスに含まれる水分を凝縮した水であってよい。 The recovered water generated by the heat exchanger 50 is accommodated in the recovered water tank 60. The recovered water tank 60 functions as a supply source of feed water. The recovered water pump 62 pumps the recovered water from the recovered water tank 60 and conveys it to the temperature control unit 10 as feed water. Thereby, the temperature control unit 10 can spray the recovered water (supply water) generated by the heat exchanger 50 on the exhaust gas. On the other hand, when seawater is directly sprayed to the exhaust gas, salts contained in the seawater are transported together with the exhaust gas, which adversely affects the electrostatic precipitator 20. In this example, since the temperature control unit 10 sprays the recovered water (supply water) generated by the heat exchanger 50 on the exhaust gas, it is possible to prevent salts from being captured by the electrostatic precipitator 20. The recovered water may be fresh water. In the present specification, fresh water refers to water having a salt concentration of 0.05% or less. Further, the recovered water may be water obtained by condensing water contained in the exhaust gas.
 図2は、温度調整部10の詳細を示す図である。温度調整部10は、制御部12と蒸発器17を有する。制御部12は、第1処理部13および第2処理部15を含む。蒸発器17は、1以上のノズル18を含む。 FIG. 2 is a diagram showing the details of the temperature control unit 10. The temperature adjustment unit 10 includes a control unit 12 and an evaporator 17. Control unit 12 includes a first processing unit 13 and a second processing unit 15. The evaporator 17 includes one or more nozzles 18.
 第1処理部13は、船舶推進用のメインエンジン、発電用の補機エンジン、および、蒸気供給用のボイラ等の発動機の負荷に基づいて供給水の流量を算出する。本例の第1処理部13は、発動機の負荷率における標準の排ガス温度(℃)および排ガス流量(m/h)と、排ガスを蒸発器17の設定温度に下げるために必要な供給水の流量(m/h)との関係が記録されたテーブルを有する。 The first processing unit 13 calculates the flow rate of the supplied water based on the load of an engine such as a main engine for ship propulsion, an auxiliary engine for power generation, and a boiler for steam supply. The first processing unit 13 of the present embodiment has the standard exhaust gas temperature (° C.) and exhaust gas flow rate (m 3 / h) at the load factor of the motor, and the supply water required to lower the exhaust gas to the set temperature of the evaporator 17 And a table in which the relationship with the flow rate (m 3 / h) is recorded.
 本例の第1処理部13は、当該テーブルを参照して、発動機の負荷に対応する供給水の流量を調整する。第1処理部13は、供給水の流量を特定の流量に調整すべく流量調整信号を加算器16に出力する。 The first processing unit 13 of this example adjusts the flow rate of the feed water corresponding to the load of the motor with reference to the table. The first processing unit 13 outputs a flow rate adjustment signal to the adder 16 in order to adjust the flow rate of the feed water to a specific flow rate.
 温度測定部70は、蒸発器17における電気集塵機20の近傍である蒸発器17の出口において、温度調整部10から排出された排ガスの温度Tを測定する。第2処理部15は、温度測定部70で測定された排ガスの温度を取得する。第2処理部15は、蒸発器17において予め定められた温度である設定温度も取得する。 The temperature measurement unit 70 measures the temperature T of the exhaust gas discharged from the temperature adjustment unit 10 at the outlet of the evaporator 17 near the electrostatic precipitator 20 in the evaporator 17. The second processing unit 15 acquires the temperature of the exhaust gas measured by the temperature measurement unit 70. The second processing unit 15 also acquires a set temperature, which is a temperature predetermined in the evaporator 17.
 第2処理部15は、測定温度Tと蒸発器17の設定温度との差に基づいて、供給水の流量(m/h)を算出する。本例の第2処理部15は、測定温度Tが設定温度よりも高い場合には供給水の流量を増やし、測定温度Tが設定温度よりも低い場合には供給水の流量を減らすように、供給水の流量を補償する。第2処理部15は、補償する供給水の流量を流量補償信号として加算器16に出力する。 The second processing unit 15 calculates the flow rate (m 3 / h) of the feed water based on the difference between the measurement temperature T and the set temperature of the evaporator 17. The second processing unit 15 of this example increases the flow rate of the supplied water when the measured temperature T is higher than the set temperature, and reduces the flow rate of the supplied water when the measured temperature T is lower than the set temperature. Compensate for the flow rate of the feed water. The second processing unit 15 outputs the flow rate of the feed water to be compensated to the adder 16 as a flow rate compensation signal.
 制御部12は、第1処理部13からの流量調整信号と第2処理部15からの流量補償信号とに基づいて、噴霧する供給水の流量を補正する。具体的には、加算器16が、第1処理部13からの流量調整信号と第2処理部15からの流量補償信号とを加算して流量制御信号を回収水ポンプ62に出力する。これにより、制御部12は、発動機の負荷、ならびに、測定温度Tおよび設定温度の差を考慮して排ガスに噴霧する供給水の流量を制御することができる。よって、蒸発器17が排ガスに噴霧する供給水の流量の制御性が向上する。また、熱交換器50で生成された回収水は、一旦、回収水タンク60に収容されるため、回収水タンク60がバッファとしての機能を発揮し、蒸発器17が排ガスに噴霧する供給水の流量の制御性を向上させることができる。 The control unit 12 corrects the flow rate of the supplied water to be sprayed, based on the flow rate adjustment signal from the first processing unit 13 and the flow rate compensation signal from the second processing unit 15. Specifically, the adder 16 adds the flow rate adjustment signal from the first processing unit 13 and the flow rate compensation signal from the second processing unit 15 and outputs a flow rate control signal to the recovered water pump 62. Thus, the control unit 12 can control the load of the motor and the flow rate of the feed water sprayed onto the exhaust gas in consideration of the difference between the measured temperature T and the set temperature. Therefore, the controllability of the flow rate of the feed water sprayed to the exhaust gas by the evaporator 17 is improved. In addition, since the recovered water generated by the heat exchanger 50 is temporarily stored in the recovered water tank 60, the recovered water tank 60 exhibits a function as a buffer, and the evaporator 17 sprays the exhaust gas. Flow controllability can be improved.
 図3は、電気集塵機20の構成を示す図である。本例の電気集塵機20は一対の集塵板22を有する。一対の集塵板22は、電極として機能する金属の板である。一対の集塵板22のうち、一方の集塵板22‐1には電源25により負の高電圧が印加され、他方の集塵板22‐2は接地される。これにより、一対の集塵板22の間には高電界領域が形成される。排ガス中の微粒子は一対の集塵板22の間において、正または負に帯電する。正に帯電した微粒子はクーロン力により集塵板22‐1に捕集され、負に帯電した微粒子はクーロン力により集塵板22‐2に捕集される。 FIG. 3 is a view showing the configuration of the electric dust collector 20. As shown in FIG. The electrostatic precipitator 20 of this example has a pair of dust collection plates 22. The pair of dust collection plates 22 are metal plates that function as electrodes. Of the pair of dust collection plates 22, a negative high voltage is applied to one of the dust collection plates 22-1 by the power supply 25, and the other dust collection plate 22-2 is grounded. Thereby, a high electric field area is formed between the pair of dust collection plates 22. The fine particles in the exhaust gas are positively or negatively charged between the pair of dust collection plates 22. The positively charged fine particles are collected on the dust collection plate 22-1 by the Coulomb force, and the negatively charged fine particles are collected on the dust collection plate 22-2 by the Coulomb force.
 図4は、電気集塵機20における印加電圧と放電電流との関係を示す図である。本横軸は印加電圧(-kV)を示し、縦軸は一対の集塵板間に流れる放電電流(mA)を示す。なお、印加電圧(-kV)が大きくなることを、印加電圧の絶対値が大きくなると以下では表現する。 FIG. 4 is a diagram showing the relationship between the applied voltage and the discharge current in the electrostatic precipitator 20. As shown in FIG. The horizontal axis represents applied voltage (-kV), and the vertical axis represents discharge current (mA) flowing between the pair of dust collection plates. The increase in the applied voltage (−kV) will be expressed below as the absolute value of the applied voltage increases.
 図4における左から右の順に、実線で示す排ガスの温度はそれぞれ350℃、300℃、250℃および220℃である。例えば、排ガスの温度が350℃である場合に、一方の集塵板に-6kVの電圧が印加されても放電電流は流れない。印加電圧を徐々に増加させて、一方の集塵板に-8kVの電圧を印加すると、スパークが発生する。スパークは雷と同様である。 In the order from left to right in FIG. 4, the temperature of the exhaust gas indicated by the solid line is 350 ° C., 300 ° C., 250 ° C. and 220 ° C., respectively. For example, when the temperature of the exhaust gas is 350 ° C., no discharge current flows even if a voltage of −6 kV is applied to one of the dust collection plates. When the applied voltage is gradually increased and a voltage of -8 kV is applied to one of the dust collection plates, a spark is generated. Sparks are similar to lightning.
 スパークが発生すると、負の高電圧を印加していた一方の集塵板と設置した他方の集塵板とが共に接地電位となる。それゆえ、一旦スパークが発生すると、スパーク発生直前に印加していた電圧値よりも高い絶対値の電圧は印加できなくなる。よって、一旦スパークが発生すると、電気集塵機20は排ガス中の微粒子を捕集できなくなる。 When a spark is generated, one of the dust collection plates to which the negative high voltage is applied and the other dust collection plate installed are at the ground potential. Therefore, once a spark is generated, a voltage with an absolute value higher than the voltage value applied immediately before the spark generation can not be applied. Therefore, once the spark is generated, the electrostatic precipitator 20 can not collect the particulates in the exhaust gas.
 印加電圧の絶対値が増加するほど放電電流の値は大きくなる。これは、捕集できる単位体積あたりの微粒子の数が増加することを意味する。すなわち、印加電圧の絶対値が増加するほど、集塵率は高くなる。 The value of the discharge current increases as the absolute value of the applied voltage increases. This means that the number of microparticles per unit volume that can be collected increases. That is, the dust collection rate becomes higher as the absolute value of the applied voltage increases.
 図4に示す様に、350℃の排ガスは-8kVでスパークするのに対して、300℃の排ガスは-10kVで、250℃の排ガスは-12kVで、220℃の排ガスは-13kVで、それぞれスパークする。つまり、排ガスの温度が低いほど、スパーク開始時の印加電圧の絶対値は大きい。言い換えると、排ガスの温度が低いほど、スパークしない印加電圧の絶対値の最大値は大きい。よって、排ガスの温度が低いほど集塵効率を高くすることができる。 As shown in FIG. 4, the exhaust gas at 350 ° C. sparks at -8 kV, while the exhaust gas at 300 ° C. at -10 kV, the exhaust gas at 250 ° C. at -12 kV, and the exhaust gas at 220 ° C. at -13 kV To spark. That is, as the temperature of the exhaust gas is lower, the absolute value of the applied voltage at the start of the spark is larger. In other words, the lower the exhaust gas temperature, the larger the maximum value of the absolute value of the non-sparking applied voltage. Therefore, the lower the temperature of the exhaust gas, the higher the dust collection efficiency can be.
 上述の様に、温度調整部10は排ガスの温度を低下させる。本例の電気集塵機20の集塵板22‐1に印加される電圧は予め定められた値であってよい。例えば、集塵板22‐1には-12kVの電圧が印加される。この場合に、本例の温度調整部10は、排出された排ガスを電気集塵機20のスパーク温度より低い温度に調整する。例えば、温度調整部10は、電気集塵機20へ排出される排ガスの温度を、220℃以上250℃未満の温度に調整する。これにより、電気集塵機20内でのスパーク発生を防止することができる。 As described above, the temperature control unit 10 reduces the temperature of the exhaust gas. The voltage applied to the dust collection plate 22-1 of the electrostatic precipitator 20 of this embodiment may be a predetermined value. For example, a voltage of -12 kV is applied to the dust collection plate 22-1. In this case, the temperature control unit 10 of the present example adjusts the discharged exhaust gas to a temperature lower than the spark temperature of the electrostatic precipitator 20. For example, the temperature control unit 10 adjusts the temperature of the exhaust gas discharged to the electrostatic precipitator 20 to a temperature of 220 ° C. or more and less than 250 ° C. Thereby, the generation of sparks in the electrostatic precipitator 20 can be prevented.
 図5は、温度調整部10および電気集塵機20の変形例を示す図である。本例の温度調整部10は、第3処理部19をさらに有する。第3処理部19は、電気集塵機20の運転時間の情報を電気集塵機20から取得する。第3処理部19は、電気集塵機20の運転時間の情報を添加水の流量を補償するための第2の流量補償信号に変換する。なお、本例では、第2処理部15が加算器16に出力する流量補償信号は、第1の流量補償信号として第2の流量補償信号とは区別する。 FIG. 5 is a view showing a modification of the temperature control unit 10 and the electrostatic precipitator 20. As shown in FIG. The temperature adjustment unit 10 of this example further includes a third processing unit 19. The third processing unit 19 acquires information on the operation time of the electrostatic precipitator 20 from the electrostatic precipitator 20. The third processing unit 19 converts the information on the operation time of the electrostatic precipitator 20 into a second flow rate compensation signal for compensating the flow rate of the added water. In the present example, the flow rate compensation signal output from the second processing unit 15 to the adder 16 is distinguished from the second flow rate compensation signal as the first flow rate compensation signal.
 電気集塵機20は、運転時間の長さに応じて、スパークが開始する温度(本明細書においてスパーク温度と称する)が低下することが知られている。例えば、使用開始当初は、-12kVの印加電圧を集塵板22‐1に印加して、220℃の排ガスを一対の集塵板22の間に流してもスパークは発生しなかったが、長時間運転していると同じ条件でもスパークが発生する場合がある。電気集塵機20は、運転時間が長くなると、捕集した微粒子が堆積する。堆積した微粒子の層が形成されると、一対の集塵板22の間の距離が短くなるため、よりスパークし易くなる。従って、運転時間の長くなった電気集塵機20は、スパーク温度が低下する。 It is known that the electrostatic precipitator 20 reduces the temperature at which a spark starts (referred to as a spark temperature in the present specification) according to the length of operation time. For example, at the beginning of use, an applied voltage of -12 kV was applied to the dust collection plate 22-1, and even if exhaust gas at 220 ° C was flowed between the pair of dust collection plates 22, sparks were not generated. Sparking may occur even under the same conditions as time operation. When the operation time of the electrostatic precipitator 20 becomes long, the collected particulates are deposited. When the layer of the deposited fine particles is formed, the distance between the pair of dust collection plates 22 becomes short, which makes it easier to spark. Therefore, spark temperature falls in the electric precipitator 20 which became long in operation time.
 そこで、温度調整部10は、電気集塵機20の運転時間の長さに応じて低下する電気集塵機のスパーク温度より低い温度に、排ガスの温度を調整してよい。例えば、第3処理部19は、電気集塵機20の運転時間に比例して蒸発器17内で排ガスをより冷却するべく、供給水の流量を増やす。第3処理部19は、電気集塵機20の運転時間に比例して供給水の流量を増加するべく、第2の流量補償信号を加算器16に入力する。これにより、電気集塵機20の運転時間に対応して、電気集塵機20内でのスパーク発生を防止することができる。また、電気集塵機20で集塵した微粒子をエアーブローなどの操作により除去する工程がある場合には、その工程後に、運転時間をリセットすることができる。 Therefore, the temperature adjustment unit 10 may adjust the temperature of the exhaust gas to a temperature lower than the spark temperature of the electrostatic precipitator, which decreases according to the length of operation time of the electrostatic precipitator 20. For example, the third processing unit 19 increases the flow rate of the supplied water in order to further cool the exhaust gas in the evaporator 17 in proportion to the operation time of the electrostatic precipitator 20. The third processing unit 19 inputs a second flow compensation signal to the adder 16 in order to increase the flow rate of the supply water in proportion to the operation time of the electrostatic precipitator 20. Thus, it is possible to prevent the occurrence of sparks in the electrostatic precipitator 20 in accordance with the operation time of the electrostatic precipitator 20. In addition, when there is a step of removing the fine particles collected by the electrostatic precipitator 20 by an operation such as air blowing, the operation time can be reset after the step.
 図6は、第2実施例における排ガスを処理するシステム110を示す図である。本例のシステム110は、海水等を汲み上げる汲み上げポンプ80に代えて、中和槽92および汲み上げポンプ90を備える。本例においては、汲み上げポンプ90により汲み上げられた排水は、排ガスを再度処理する洗浄水36として循環利用される。係る点が第1実施例と異なる。他の点は第1実施例と同じである。 FIG. 6 is a diagram showing a system 110 for treating exhaust gas in the second embodiment. The system 110 of this example includes a neutralization tank 92 and a pumping pump 90 in place of the pumping pump 80 for pumping seawater and the like. In this example, the waste water pumped up by the pumping pump 90 is recycled and used as the washing water 36 for reprocessing the exhaust gas. The point which concerns is different from 1st Example. The other points are the same as in the first embodiment.
 中和槽92は、排ガス処理装置30において排ガスを処理することにより発生した排水をアルカリ化処理して中和する。汲み上げポンプ90は、中和槽92により中和された排水を汲み上げて、洗浄水管37に供給する。このように本例では、排水を循環して使用することができる。 The neutralization tank 92 performs an alkali treatment on the waste water generated by treating the exhaust gas in the exhaust gas treatment device 30 to neutralize it. The pump pump 90 pumps up the wastewater neutralized by the neutralization tank 92 and supplies it to the flush water pipe 37. Thus, in this example, drainage can be circulated and used.
 システム100または110が船舶に搭載されている場合を想定する。第1実施例のシステム100は、環境基準を順守した一定値以上のpHに中和した上で排水を海等に放出する。システム100を搭載した船舶が航行中の場合は、中和後の排水を海に放出しても問題とならない。しかし、システム100を搭載した船舶が港などに停泊中の場合は、特定の箇所に排水を放出し続けることとなるので、好ましくない。 It is assumed that the system 100 or 110 is mounted on a ship. The system 100 according to the first embodiment releases waste water to the sea etc. after neutralizing the pH to a certain value or more in compliance with the environmental standard. If the vessel equipped with the system 100 is underway, there is no problem in discharging the neutralized wastewater into the sea. However, when the ship equipped with the system 100 is anchored in a port or the like, the drainage will continue to be discharged to a specific location, which is not preferable.
 そこで、船舶が港などに停泊中の場合は、本例のシステム110のように、排水を循環して使用することが望ましい。本例のシステム110を用いることにより、船舶が港などに停泊中の場合に、排ガス処理後の排水により水質が汚染されることを防ぐことができる。 Therefore, when the ship is anchored in a port or the like, it is desirable to use the waste water in circulation as in the system 110 of this example. By using the system 110 of this example, it is possible to prevent the water quality from being polluted by the waste water after exhaust gas treatment when the ship is anchored in a port or the like.
 以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更又は改良を加えることが可能であることが当業者に明らかである。その様な変更又は改良を加えた形態も本発明の技術的範囲に含まれ得ることが、請求の範囲の記載から明らかである。 As mentioned above, although this invention was demonstrated using embodiment, the technical scope of this invention is not limited to the range as described in the said embodiment. It is apparent to those skilled in the art that various changes or modifications can be added to the above embodiment. It is also apparent from the scope of the claims that the embodiments added with such alterations or improvements can be included in the technical scope of the present invention.
 請求の範囲、明細書、および図面中において示した装置、システム、プログラム、および方法における動作、手順、ステップ、および段階等の各処理の実行順序は、特段「より前に」、「先立って」等と明示しておらず、また、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現しうることに留意すべきである。請求の範囲、明細書、および図面中の動作フローに関して、便宜上「まず、」、「次に、」等を用いて説明したとしても、この順序で実施することが必須であることを意味するものではない。 The order of execution of each process such as operations, procedures, steps, and steps in the apparatuses, systems, programs, and methods shown in the claims, the specification, and the drawings is particularly "before", "before" It should be noted that it can be realized in any order, unless explicitly stated as etc., and unless the output of the previous process is used in the later process. With regard to the operation flow in the claims, the specification, and the drawings, even if it is described using “first,” “next,” etc. for the sake of convenience, it means that it is essential to carry out in this order. is not.
10・・温度調整部、12・・制御部、13・・第1処理部、15・・第2処理部、16・・加算器、17・・蒸発器、18・・ノズル、19・・第3処理部、20・・電気集塵機、22・・集塵板、25・・電源、30・・排ガス処理装置、31・・反応塔、32・・上部側、34・・底部側、35・・ノズル、36・・洗浄水、37・・洗浄水管、38・・排ガス導入管、39・・洗浄水導入管、40・・排ガス取得部、41・・排ガス吸入ブロワ、42・・開口、44・・排ガス吸入管、46・・排ガス再導入ブロワ、48・・排ガス再導入管、50・・熱交換器、60・・回収水タンク、62・・回収水ポンプ、70・・温度測定部、80・・汲み上げポンプ、90・・汲み上げポンプ、92・・中和槽、100・・システム、110・・システム 10 temperature control unit 12, control unit 13, first processing unit 15, second processing unit 16, adder 17, evaporator 18, nozzle 18, nozzle 19 3 treatment unit, 20 · · · electrostatic precipitator, 22 · · · dust collection plate, 25 · · power supply, 30 · · exhaust gas treatment device, 31 · · reaction tower, 32 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · Nozzle · 36 · · wash water · 37 · · wash water pipe, 38 · · exhaust gas introduction pipe, 39 · · wash water introduction pipe, 40 · · exhaust gas acquisition unit, 41 · · exhaust gas suction blower, 42 · · · · · · · · · · Exhaust gas suction pipe, 46 · · Exhaust gas reintroduction blower, 48 · · Exhaust gas reintroduction pipe, 50 · · Heat exchanger, 60 · · Recovery water tank, 62 · · Recovery water pump, 70 · · Temperature measurement unit, 80 · · Pumping pump, 90 · · Pumping pump 92, · · Neutralization tank, 100 · · · System, 11 ... system

Claims (15)

  1.  排ガスを処理するシステムであって、
     前記システムは、
     排出された排ガスの温度を下げる温度調整部と、
     前記温度調整部から排出された排ガス中の微粒子を捕集する集塵機と、
     前記集塵機から排出された排ガスを処理する排ガス処理装置と
    を備え、
     前記温度調整部は、排出された前記排ガスを硫酸露点温度より高い温度に調整する、システム。
    A system for treating exhaust gas,
    The system
    A temperature control unit that reduces the temperature of the discharged exhaust gas;
    A dust collector for collecting particulates in exhaust gas discharged from the temperature control unit;
    And an exhaust gas treatment device for treating the exhaust gas discharged from the dust collector.
    The system, wherein the temperature control unit adjusts the discharged exhaust gas to a temperature higher than a sulfuric acid dew point temperature.
  2.  前記温度調整部は、排出された前記排ガスを流体で冷却する
    請求項1に記載のシステム。
    The system according to claim 1, wherein the temperature control unit cools the discharged exhaust gas with a fluid.
  3.  前記流体は、液体である
    請求項2に記載のシステム。
    The system according to claim 2, wherein the fluid is a liquid.
  4.  前記液体は、淡水である
    請求項3に記載のシステム。
    The system according to claim 3, wherein the liquid is fresh water.
  5.  前記液体は、前記排ガスに含まれる水分を凝縮した水である
    請求項3または4に記載のシステム。
    The system according to claim 3, wherein the liquid is water obtained by condensing water contained in the exhaust gas.
  6.  前記温度調整部は、発動機の負荷に基づいて、前記流体の流量を制御する
    請求項2から5のいずれか一項に記載のシステム。
    The system according to any one of claims 2 to 5, wherein the temperature adjustment unit controls the flow rate of the fluid based on a load of a motor.
  7.  前記温度調整部は、前記温度調整部から排出された前記排ガスの測定温度と予め定められた温度との差に基づいて、前記流体の流量を補正する
    請求項6に記載のシステム。
    The system according to claim 6, wherein the temperature adjustment unit corrects the flow rate of the fluid based on a difference between a measured temperature of the exhaust gas discharged from the temperature adjustment unit and a predetermined temperature.
  8.  前記排ガス処理装置は、前記排ガスに洗浄水を噴射して前記排ガスを処理し、
     前記システムは、前記排ガス処理装置から取得した前記排ガスを冷却することにより前記流体を生成する熱交換器を更に備え、
     前記温度調整部は、前記熱交換器が生成した前記流体で前記排ガスを冷却する
    請求項3から7のいずれか一項に記載のシステム。
    The exhaust gas treatment apparatus sprays washing water to the exhaust gas to treat the exhaust gas,
    The system further comprises a heat exchanger that produces the fluid by cooling the exhaust gas obtained from the exhaust gas treatment device,
    The system according to any one of claims 3 to 7, wherein the temperature control unit cools the exhaust gas with the fluid generated by the heat exchanger.
  9.  前記排ガス処理装置は、前記熱交換器に前記排ガスを供給する排ガス取得部を有し、
     前記排ガス取得部は、前記排ガスを処理する前記洗浄水の噴射方向とは異なる向きに、前記排ガスを取り込む開口を有する
    請求項8に記載のシステム。
    The exhaust gas processing apparatus has an exhaust gas acquisition unit for supplying the exhaust gas to the heat exchanger,
    The system according to claim 8, wherein the exhaust gas acquisition unit has an opening for taking in the exhaust gas in a direction different from an injection direction of the cleaning water for treating the exhaust gas.
  10.  前記排ガス処理装置は、前記熱交換器に前記排ガスを供給する排ガス取得部を有し、
     前記排ガス取得部は、前記排ガス処理装置の高さ方向における中間点に設けられる
    請求項8または9に記載のシステム。
    The exhaust gas processing apparatus has an exhaust gas acquisition unit for supplying the exhaust gas to the heat exchanger,
    The system according to claim 8, wherein the exhaust gas acquisition unit is provided at an intermediate point in a height direction of the exhaust gas processing device.
  11.  前記排ガス処理装置は、前記熱交換器において冷却された後の前記排ガスを、前記排ガス処理装置の高さ方向における前記排ガス取得部と同じ位置、または、下部側に戻す排ガス再導入部を有する
    請求項10に記載のシステム。
    The exhaust gas treatment apparatus has an exhaust gas reintroduction unit for returning the exhaust gas after being cooled in the heat exchanger to the same position as the exhaust gas acquisition unit in the height direction of the exhaust gas treatment apparatus or to the lower side. The system according to item 10.
  12.  前記排ガス処理装置は、前記熱交換器が生成した前記流体を収容し、前記温度調整部へ搬送される前記流体の供給源である回収水タンクを更に備える
    請求項8から11のいずれか一項に記載のシステム。
    12. The exhaust gas processing device according to claim 8, further comprising: a recovered water tank which contains the fluid generated by the heat exchanger and which is a supply source of the fluid transported to the temperature control unit. The system described in.
  13.  前記流体が気体である、請求項2に記載のシステム。 The system of claim 2, wherein the fluid is a gas.
  14.  前記温度調整部は、排出された前記排ガスを前記集塵機のスパーク温度より低い温度に調整する
    請求項1から13のいずれか一項に記載のシステム。
    The system according to any one of claims 1 to 13, wherein the temperature control unit adjusts the discharged exhaust gas to a temperature lower than a spark temperature of the dust collector.
  15.  前記温度調整部は、前記集塵機の運転時間の長さに応じて低下する前記集塵機のスパーク温度より低い温度に、排出された前記排ガスの温度を調整する
    請求項1から14のいずれか一項に記載のシステム。
    The temperature control unit adjusts the temperature of the discharged exhaust gas to a temperature lower than the spark temperature of the dust collector, which decreases according to the length of operation time of the dust collector, according to any one of claims 1 to 14. System described.
PCT/JP2016/066805 2015-07-15 2016-06-06 System for processing exhaust gas WO2017010192A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016569465A JPWO2017010192A1 (en) 2015-07-15 2016-06-06 Exhaust gas treatment system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015141472 2015-07-15
JP2015-141472 2015-07-15

Publications (1)

Publication Number Publication Date
WO2017010192A1 true WO2017010192A1 (en) 2017-01-19

Family

ID=57757326

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/066805 WO2017010192A1 (en) 2015-07-15 2016-06-06 System for processing exhaust gas

Country Status (2)

Country Link
JP (1) JPWO2017010192A1 (en)
WO (1) WO2017010192A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022049917A1 (en) * 2020-09-04 2022-03-10 富士電機株式会社 Exhaust gas treatment device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09239235A (en) * 1996-03-08 1997-09-16 Ishikawajima Harima Heavy Ind Co Ltd Highly concentrated sulfur oxides treatment apparatus
JP2000512899A (en) * 1997-02-15 2000-10-03 プロイセンエレクトラ エンジニアリング ゲー エム ベー ハー Method for controlling sulfuric acid aerosol formation in exhaust gas purification systems
JP2001327830A (en) * 2000-05-22 2001-11-27 Ishikawajima Harima Heavy Ind Co Ltd Flue gas treating device
JP2006326575A (en) * 2005-04-26 2006-12-07 Mitsubishi Heavy Ind Ltd Device and method of treating exhaust gas
WO2014045578A1 (en) * 2012-09-19 2014-03-27 川崎重工業株式会社 Wet scrubber device, engine system, and ship

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09239235A (en) * 1996-03-08 1997-09-16 Ishikawajima Harima Heavy Ind Co Ltd Highly concentrated sulfur oxides treatment apparatus
JP2000512899A (en) * 1997-02-15 2000-10-03 プロイセンエレクトラ エンジニアリング ゲー エム ベー ハー Method for controlling sulfuric acid aerosol formation in exhaust gas purification systems
JP2001327830A (en) * 2000-05-22 2001-11-27 Ishikawajima Harima Heavy Ind Co Ltd Flue gas treating device
JP2006326575A (en) * 2005-04-26 2006-12-07 Mitsubishi Heavy Ind Ltd Device and method of treating exhaust gas
WO2014045578A1 (en) * 2012-09-19 2014-03-27 川崎重工業株式会社 Wet scrubber device, engine system, and ship

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022049917A1 (en) * 2020-09-04 2022-03-10 富士電機株式会社 Exhaust gas treatment device

Also Published As

Publication number Publication date
JPWO2017010192A1 (en) 2017-07-13

Similar Documents

Publication Publication Date Title
JP2014188406A (en) Sea water flue gas desulfurization equipment and operation method thereof
KR101334914B1 (en) Apparatus for purifying marine exhaust gas using heat exchanger
KR101784883B1 (en) Cleaning/cooling device, egr unit and engine system
CN105899282B (en) Scrubber and engine system
US6506348B1 (en) Heavy oil fired boiler exhaust gas treatment apparatus
WO2014156984A1 (en) Seawater flue gas desulfurization apparatus and operating method therefor
CN205127613U (en) Wet type dust collection unit
WO2017010192A1 (en) System for processing exhaust gas
KR101334935B1 (en) Apparatus for treating harmful gas using non-metal precipitation plate
KR20110067285A (en) Apparatus for treatment of exhaust gas
JP2839028B2 (en) Desulfurization and denitrification method and desulfurization and denitrification equipment
KR20140117949A (en) Exhaust Gas Reduction System Using Inline Metal Form Scrubber For Marine Engines
JP7085818B2 (en) Gas treatment device and gas treatment method, CO2 recovery device and CO2 recovery method
KR101824108B1 (en) Exhaust gas pollutant reduction and winterization integrated system for arctic vessel
KR101381833B1 (en) Exhaust gas purification system for marine engines
JP7104833B2 (en) Scrubber and EGR unit
KR101334937B1 (en) Apparatus for purifying exhaust gas using carbon wire collecting system
JP6804233B2 (en) Particle remover
KR102027237B1 (en) Wet scrubber system for ship
CN205699958U (en) Purification dust removal system
KR102576278B1 (en) Electrostatic precipitator linked with POU gas scrubber
CN111684148A (en) Washing tower and washing tower system
JP2018030091A (en) Particle removal device
KR102459461B1 (en) Gas scrubber system removing both ammonia gas and salt
CN209286928U (en) A kind of device handling yellow phosphorus electric furnace slag vapour

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016569465

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16824172

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16824172

Country of ref document: EP

Kind code of ref document: A1