JP7085818B2 - Gas treatment device and gas treatment method, CO2 recovery device and CO2 recovery method - Google Patents

Gas treatment device and gas treatment method, CO2 recovery device and CO2 recovery method Download PDF

Info

Publication number
JP7085818B2
JP7085818B2 JP2017210570A JP2017210570A JP7085818B2 JP 7085818 B2 JP7085818 B2 JP 7085818B2 JP 2017210570 A JP2017210570 A JP 2017210570A JP 2017210570 A JP2017210570 A JP 2017210570A JP 7085818 B2 JP7085818 B2 JP 7085818B2
Authority
JP
Japan
Prior art keywords
gas
tower
cleaning
liquid
cleaning liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017210570A
Other languages
Japanese (ja)
Other versions
JP2019081154A (en
Inventor
琢也 平田
裕士 田中
正幸 乾
真也 岸本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Engineering Ltd
Original Assignee
Mitsubishi Heavy Industries Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Engineering Ltd filed Critical Mitsubishi Heavy Industries Engineering Ltd
Priority to JP2017210570A priority Critical patent/JP7085818B2/en
Priority to EP18873341.4A priority patent/EP3705167B1/en
Priority to PCT/JP2018/039526 priority patent/WO2019087901A1/en
Priority to AU2018359289A priority patent/AU2018359289B2/en
Priority to US16/635,302 priority patent/US20200368682A1/en
Priority to CA3071767A priority patent/CA3071767C/en
Publication of JP2019081154A publication Critical patent/JP2019081154A/en
Application granted granted Critical
Publication of JP7085818B2 publication Critical patent/JP7085818B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D45/00Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces
    • B01D45/04Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by utilising inertia
    • B01D45/06Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by utilising inertia by reversal of direction of flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D47/00Separating dispersed particles from gases, air or vapours by liquid as separating agent
    • B01D47/02Separating dispersed particles from gases, air or vapours by liquid as separating agent by passing the gas or air or vapour over or through a liquid bath
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D47/00Separating dispersed particles from gases, air or vapours by liquid as separating agent
    • B01D47/06Spray cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D50/00Combinations of methods or devices for separating particles from gases or vapours
    • B01D50/40Combinations of devices covered by groups B01D45/00 and B01D47/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • B01D53/507Sulfur oxides by treating the gases with other liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/78Liquid phase processes with gas-liquid contact
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/96Regeneration, reactivation or recycling of reactants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/50Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2247/00Details relating to the separation of dispersed particles from gases, air or vapours by liquid as separating agent
    • B01D2247/08Means for controlling the separation process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2247/00Details relating to the separation of dispersed particles from gases, air or vapours by liquid as separating agent
    • B01D2247/10Means for removing the washing fluid dispersed in the gas or vapours
    • B01D2247/106Means for removing the washing fluid dispersed in the gas or vapours using a structured demister, e.g. tortuous channels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Description

本発明は、ガス中の粒子を除去するガス処理装置及びガス処理方法、CO2回収装置及びCO2回収方法に関する。 The present invention relates to a gas treatment device and a gas treatment method for removing particles in a gas, a CO 2 recovery device, and a CO 2 recovery method.

近年、地球の温暖化現象の原因の一つとして、CO2による温室効果が指摘され、地球環境を守る上で国際的にもその対策が急務となってきた。CO2の発生源としては化石燃料を燃焼させるあらゆる人間の活動分野に及び、その排出抑制への要求が一層強まる傾向にある。これに伴い大量の化石燃料を使用する火力発電所などの動力発生設備を対象に、ボイラやガスタービン等、産業設備の燃焼排ガスをアミン系CO2吸収液と接触させ、燃焼排ガス中のCO2を除去・回収する方法および回収されたCO2を大気へ放出することなく貯蔵する排ガス処理システムが精力的に研究されている。 In recent years, the greenhouse effect of CO 2 has been pointed out as one of the causes of global warming, and there is an urgent need for countermeasures internationally in order to protect the global environment. The sources of CO 2 cover all fields of human activity that burn fossil fuels, and the demand for their emission control tends to increase. Along with this, for power generation equipment such as thermal power plants that use a large amount of fossil fuel, the combustion exhaust gas of industrial equipment such as boilers and gas turbines is brought into contact with the amine-based CO 2 absorption liquid, and CO 2 in the combustion exhaust gas Exhaust gas treatment systems that store the recovered CO 2 without releasing it to the atmosphere are being energetically studied.

前記のようなCO2吸収液を用い、燃焼排ガスからCO2を除去・回収する工程としては、CO2吸収塔(以下、単に「吸収塔」ともいう。)において燃焼排ガスとCO2吸収液とを接触させる工程と、CO2を吸収したCO2吸収液を再生する吸収液再生塔(以下、単に「再生塔」ともいう。)において加熱し、CO2を放散させるとともにCO2吸収液を再生して再びCO2吸収塔に循環して再利用する工程とを有するCO2回収装置が種々提案されている。 In the process of removing and recovering CO 2 from the combustion exhaust gas using the CO 2 absorption liquid as described above, the combustion exhaust gas and the CO 2 absorption liquid are used in the CO 2 absorption tower (hereinafter, also simply referred to as “absorption tower”). And the process of contacting CO 2 and heating in an absorption liquid regeneration tower (hereinafter, also simply referred to as “regeneration tower”) that regenerates the CO 2 absorption liquid that has absorbed CO 2 to dissipate CO 2 and regenerate the CO 2 absorption liquid. Then, various CO 2 recovery devices having a step of circulating to the CO 2 absorption tower and reusing them have been proposed.

この吸収塔では、例えばアルカノールアミン等の吸収剤を含むCO2吸収液を用いて、向流接触し、排ガス中のCO2は、化学反応(発熱反応)によりCO2吸収液に吸収され、CO2が除去された排ガスは系外に放出される。CO2を吸収したCO2吸収液はリッチ溶液とも呼称される。このリッチ溶液はポンプにより昇圧され、再生塔でCO2が放散し再生した高温のCO2吸収液(リーン溶液)により、熱交換器において加熱され、再生塔に供給される。 In this absorption tower, for example, a CO 2 absorbing liquid containing an absorbent such as alkanolamine is used for countercurrent contact, and CO 2 in the exhaust gas is absorbed by the CO 2 absorbing liquid by a chemical reaction (exothermic reaction), and CO The exhaust gas from which 2 has been removed is released to the outside of the system. A CO 2 absorbent that has absorbed CO 2 is also called a rich solution. This rich solution is boosted by a pump, and is heated in a heat exchanger by a high-temperature CO 2 absorbent (lean solution) in which CO 2 is dissipated and regenerated in the regeneration tower, and is supplied to the regeneration tower.

ところで、燃焼排ガス中には粒子が含まれており、この粒子を含むガスを、CO2を除去・回収する工程の前段階で処理するガス洗浄、ガス冷却等を行うガス処理装置が設置されている。このガス処理装置においては、ガス洗浄塔の充填部での向流気液接触によるガス処理方式が提案されている(例えば特許文献1参照)。また、並流気液接触によるガス処理後、向流気液接触によるガス処理方式が提案されている(例えば特許文献2参照)。 By the way, particles are contained in the combustion exhaust gas, and a gas treatment device that performs gas cleaning, gas cooling, etc. that treats the gas containing these particles before the process of removing and recovering CO 2 is installed. There is. In this gas treatment apparatus, a gas treatment method by contacting countercurrent gas and liquid at a filling portion of a gas scrubber has been proposed (see, for example, Patent Document 1). Further, a gas treatment method by contacting countercurrent gas and liquid after gas treatment by contact with parallel gas and liquid has been proposed (see, for example, Patent Document 2).

特開2005-87828号公報Japanese Unexamined Patent Publication No. 2005-87828 特開昭59-160519号公報Japanese Unexamined Patent Publication No. 59-160519

しかしながら、特許文献1に開示する向流気液接触方式では、ガス中粒子の捕集性能向上が十分ではない、という問題がある。また、特許文献2に開示する並流気液接触後に向流気液接触する方式においては、並流気液接触部への補給水の供給量が増大するという問題がある。さらに、ガス洗浄塔での粒子捕集効率が低い場合には、ガス洗浄塔の後段にて捕集された液中粒子の装置への付着による汚れや詰りの問題、粒子含有液のガスへの飛散によるガス処理装置後流側への影響等の問題がある。 However, the countercurrent gas-liquid contact method disclosed in Patent Document 1 has a problem that the collection performance of particles in gas is not sufficiently improved. Further, in the method of contacting countercurrent gas and liquid after contact with parallel gas and liquid disclosed in Patent Document 2, there is a problem that the supply amount of make-up water to the parallel gas and liquid contact portion increases. Furthermore, if the particle collection efficiency in the gas cleaning tower is low, the problem of dirt and clogging due to the adhesion of the particles in the liquid collected in the latter stage of the gas cleaning tower to the device, and the problem of the particle-containing liquid in the gas. There is a problem such as the influence of the scattering on the wake side of the gas treatment device.

本発明は、前記問題に鑑み、粒子を含むガスをガス洗浄する際、ガス洗浄塔での粒子捕集性能が向上するガス処理装置及びガス処理方法、CO2回収装置及びCO2回収方法を提供することを課題とする。 In view of the above problems, the present invention provides a gas treatment device and a gas treatment method, a CO 2 recovery device and a CO 2 recovery method for improving the particle collection performance in a gas cleaning tower when gas cleaning a gas containing particles. The task is to do.

上述した課題を解決するための本発明の第1の発明は、粒子含有ガスと洗浄液とを接触させ、前記粒子含有ガス中の粒子を捕集するガス処理装置であって、前記粒子含有ガスと前記洗浄液とを並流接触させるガス洗浄部を有するガス洗浄塔と、前記ガス洗浄塔のガス流れ後流側に設けられ、洗浄後の前記粒子含有ガスと冷却液とを向流接触させるガス冷却塔と、前記ガス洗浄塔と前記ガス冷却塔とを底部側で連通し、前記ガス洗浄塔で洗浄された洗浄後ガスを前記ガス冷却塔の内部に導入するガス連通路と、を具備し、前記ガス洗浄塔が、前記ガス洗浄部のガス流れ後流側に設け、落下する洗浄液を貯留する洗浄液貯留部と、該洗浄液貯留部からの洗浄液をガス洗浄塔の頂部側に循環させる洗浄液循環ラインと、前記ガス連通路のガス洗浄塔側の接続開口部に設けられ、ガス流れを抑制する傾斜板と、を有し、前記ガス冷却塔が、前記洗浄後ガスから凝縮された凝縮水を貯留する凝縮水貯留部と、該凝縮水貯留部からの凝縮水をガス冷却部に循環させる凝縮水循環ラインと、前記凝縮水循環ラインに介装され、前記凝縮水を冷却する冷却器と、前記ガス冷却部のガス流れ後流側に設けたデミスタと、前記ガス冷却塔の前記凝縮水を前記ガス洗浄塔に移送する凝縮水移送ラインと、を有することを特徴とするガス処理装置にある。 The first invention of the present invention for solving the above-mentioned problems is a gas treatment device that brings a particle-containing gas into contact with a cleaning liquid and collects particles in the particle-containing gas, and is a gas treatment device that collects the particles in the particle-containing gas. A gas cleaning tower having a gas cleaning unit for parallel flow contact with the cleaning liquid, and gas cooling provided on the gas flow wake side of the gas cleaning tower to bring the particles-containing gas and the cooling liquid into countercurrent contact after cleaning. The tower is provided with a gas communication passage that communicates the gas cleaning tower and the gas cooling tower on the bottom side and introduces the cleaned gas cleaned by the gas cleaning tower into the inside of the gas cooling tower. The gas cleaning tower is provided on the gas flow wake side of the gas cleaning unit, and a cleaning liquid storage unit that stores the falling cleaning liquid and a cleaning liquid circulation line that circulates the cleaning liquid from the cleaning liquid storage unit to the top side of the gas cleaning tower. The gas cooling tower has a inclined plate provided at the connection opening on the gas cleaning tower side of the gas communication passage to suppress the gas flow, and the gas cooling tower stores condensed water condensed from the gas after cleaning. Condensed water storage unit, a condensed water circulation line that circulates condensed water from the condensed water storage unit to a gas cooling unit, a cooler that is interposed in the condensed water circulation line and cools the condensed water, and a gas cooling unit. The gas treatment apparatus is characterized by having a demista provided on the wake side of the gas flow of the unit, and a condensed water transfer line for transferring the condensed water of the gas cooling tower to the gas cleaning tower.

第2の発明は、第1の発明において、前記洗浄液貯留部に、洗浄液の液貯留量を測定する液レベル計を有することを特徴とするガス処理装置にある。 A second invention is in the gas processing apparatus according to the first invention, wherein the cleaning liquid storage unit includes a liquid level meter for measuring a liquid storage amount of the cleaning liquid.

第3の発明は、第1又は2の発明において、前記粒子含有ガスが、硫黄酸化物を含有すると共に、前記洗浄液内に、塩基性化合物を供給する塩基性化合物供給部を有することを特徴とするガス処理装置にある。 The third invention is characterized in that, in the first or second invention, the particle-containing gas contains a sulfur oxide and has a basic compound supply unit for supplying the basic compound in the cleaning liquid. It is in the gas processing equipment.

第4の発明は、第3の発明に記載のガス処理装置と、前記ガス冷却塔から排出された処理後ガスを排出するガス排出ラインと、ガス排出ラインにより導入され、冷却後ガス中のCO2とCO2吸収液とを接触させてCO2を除去するCO2吸収塔と、CO2を吸収したリッチ溶液をリボイラの蒸気により再生するCO2吸収液再生塔と、前記CO2吸収塔から前記リッチ溶液を抜出すと共に、前記CO2吸収液再生塔側に導入するリッチ溶液供給ラインと、前記CO2吸収液再生塔で再生されたCO2が放散されたリーン溶液を前記CO2吸収液再生塔から抜出すと共に、前記CO2吸収塔に導入し、CO2吸収液として再利用するリーン溶液供給ラインと、を具備することを特徴とするCO2回収装置にある。 The fourth invention is introduced by the gas treatment apparatus according to the third invention, a gas discharge line that discharges the treated gas discharged from the gas cooling tower, and a gas discharge line, and CO in the cooled gas. From the CO 2 absorption tower that removes CO 2 by bringing 2 into contact with the CO 2 absorption liquid, the CO 2 absorption liquid regeneration tower that regenerates the rich solution that has absorbed CO 2 with the steam of the reboiler, and the CO 2 absorption tower. The CO 2 absorbing solution is a rich solution supply line that extracts the rich solution and introduces it to the CO 2 absorbing liquid regeneration tower side, and a lean solution in which CO 2 regenerated in the CO 2 absorbing liquid regeneration tower is released. The CO 2 recovery device is provided with a lean solution supply line that is taken out from the regeneration tower and introduced into the CO 2 absorption tower and reused as a CO 2 absorption liquid.

第5の発明は、粒子含有ガスと洗浄液とを接触させ、前記粒子含有ガス中の粒子を捕集するガス処理方法であって、ガス洗浄塔内において、前記粒子含有ガスと前記洗浄液とを並流接触させ、ガス洗浄後ガスを落下させると共に、ガス流れ抑制板によりガス流路を狭めつつ洗浄液貯留部の液面に衝突させて除塵する除塵工程と、除塵後の洗浄後ガスをガス冷却塔で冷却する際、洗浄後ガス中の水分を冷却水により凝縮して凝縮水を得る冷却工程と、得られた凝縮水をガス洗浄塔側に供給して、洗浄液を補給する洗浄液補給工程とを有することを特徴とするガス処理方法にある。 A fifth invention is a gas treatment method in which a particle-containing gas and a cleaning liquid are brought into contact with each other to collect particles in the particle-containing gas, and the particle-containing gas and the cleaning liquid are arranged in parallel in a gas cleaning tower. A dust removal process that makes the gas flow contact, drops the gas after cleaning the gas, narrows the gas flow path by the gas flow suppression plate, and collides with the liquid surface of the cleaning liquid storage unit to remove dust, and a gas cooling tower that removes the gas after cleaning after dust removal. When cooling with, the cooling step of condensing the water in the gas with cooling water after cleaning to obtain condensed water, and the cleaning liquid replenishment step of supplying the obtained condensed water to the gas cleaning tower side to replenish the cleaning liquid. It is a gas treatment method characterized by having.

第6の発明は、第5の発明において、前記洗浄液貯留部の液レベルの調整により、ガス洗浄塔の圧力損失を調整することを特徴とするガス処理方法にある。 A sixth aspect of the present invention is the gas treatment method according to the fifth aspect, wherein the pressure loss of the gas scrubber is adjusted by adjusting the liquid level of the cleaning liquid storage portion.

第7の発明は、第5又は6の発明において、前記粒子含有ガスが、硫黄酸化物を含有すると共に、前記洗浄液内に、塩基性化合物を供給して脱硫することを特徴とするガス処理方法にある。 A seventh aspect of the invention is the gas treatment method according to the fifth or sixth aspect, wherein the particle-containing gas contains a sulfur oxide and a basic compound is supplied into the cleaning liquid to desulfurize. It is in.

第8の発明は、硫黄酸化物とCO2とを含有する粒子含有ガスをガス洗浄塔内に導入し、循環する洗浄液内に塩基性化合物を供給して、粒子含有ガスを除塵すると共に脱硫する洗浄脱硫工程と、除塵脱硫後の洗浄後ガスをガス冷却塔で冷却する際、洗浄後ガス中の水分を冷却水により凝縮して凝縮水を得る冷却工程と、得られた凝縮水をガス洗浄塔側に供給して、洗浄液を補給する洗浄液補給工程と、ガス冷却後の処理後ガスをCO2吸収塔に導入し、冷却後ガス中のCO2とCO2吸収液とを接触させてCO2を除去するCO2吸収工程と、CO2を吸収したリッチ溶液をCO2吸収液再生塔に導入し、リボイラ蒸気により再生するCO2吸収液再生工程と、前記CO2吸収液を前記CO2吸収塔と前記CO2吸収液再生塔とを循環ラインにより循環再利用する工程と、を有することを特徴とするCO2回収方法にある。 In the eighth invention, a particle-containing gas containing sulfur oxide and CO 2 is introduced into a gas cleaning tower, and a basic compound is supplied into a circulating cleaning liquid to remove dust and desulfurize the particle-containing gas. Cleaning and desulfurization steps, when cooling the gas after cleaning after dust removal and desulfurization with a gas cooling tower, a cooling step in which the moisture in the gas after cleaning is condensed with cooling water to obtain condensed water, and the obtained condensed water is gas-cleaned. The cleaning liquid replenishment process that supplies the cleaning liquid to the tower side and the treated gas after gas cooling is introduced into the CO 2 absorption tower, and the CO 2 in the cooled gas and the CO 2 absorbing liquid are brought into contact with each other to produce CO. A CO 2 absorption step that removes 2 and a CO 2 absorption liquid regeneration step in which a rich solution that has absorbed CO 2 is introduced into a CO 2 absorption liquid regeneration tower and regenerated by a reboiler gas, and the CO 2 absorption liquid is used as the CO 2 The CO 2 recovery method is characterized by having a step of circulating and reusing the absorption tower and the CO 2 absorbing liquid regeneration tower by a circulation line.

本発明によれば、ガス洗浄塔とガス冷却塔とを連通するガス連通路のガス洗浄塔側の接続開口部にガス流れを抑制する傾斜板を設けることにより、洗浄後ガスが連通路に流入するガスの液浴への衝突効率を向上する。また、ガス冷却塔で回収された凝縮水をガス洗浄塔側に移送する凝縮水移送ラインを設け、ガス冷却塔の凝縮水をガス洗浄塔へ導入することにより、ガス洗浄塔への補給水が不要、或いは必要補給量の低減を図ることができる。 According to the present invention, the gas after cleaning flows into the communication passage by providing an inclined plate for suppressing the gas flow at the connection opening on the gas cleaning tower side of the gas communication passage connecting the gas cleaning tower and the gas cooling tower. Improves the efficiency of collision of gas with the liquid bath. In addition, by providing a condensed water transfer line that transfers the condensed water collected in the gas cooling tower to the gas cleaning tower side and introducing the condensed water in the gas cooling tower into the gas cleaning tower, the supplementary water to the gas cleaning tower can be supplied. It is possible to reduce unnecessary or necessary replenishment amount.

図1は、実施例1に係るガス処理装置の概略図である。FIG. 1 is a schematic view of the gas treatment apparatus according to the first embodiment. 図2Aは、従来技術に係るガス洗浄塔の要部概略図である。FIG. 2A is a schematic view of a main part of a gas scrubber according to the prior art. 図2Bは、実施例1に係るガス洗浄塔の要部概略図である。FIG. 2B is a schematic view of a main part of the gas scrubber according to the first embodiment. 図3は、実施例2に係るガス処理装置の概略図である。FIG. 3 is a schematic view of the gas treatment apparatus according to the second embodiment. 図4は、実施例3に係るガス処理装置の概略図である。FIG. 4 is a schematic view of the gas treatment apparatus according to the third embodiment. 図5は、実施例4に係るガス処理装置を備えたCO2回収装置の概略図である。FIG. 5 is a schematic view of a CO 2 recovery device provided with the gas treatment device according to the fourth embodiment.

以下に添付図面を参照して、本発明の好適な実施例を詳細に説明する。なお、この実施例により本発明が限定されるものではなく、また、実施例が複数ある場合には、各実施例を組み合わせて構成するものも含むものである。 Preferred embodiments of the present invention will be described in detail below with reference to the accompanying drawings. It should be noted that the present invention is not limited to this example, and when there are a plurality of examples, the present invention also includes a combination of the respective examples.

図1は、実施例1に係るガス処理装置の概略図である。
図1に示すように、本実施例に係るガス処理装置100Aは、粒子含有ガス101と洗浄液102とを接触させ、粒子含有ガス101中の粒子を捕集するガス処理装置であって、粒子含有ガス101と洗浄液102とを並流接触させるガス洗浄部103を有するガス洗浄塔104と、ガス洗浄塔104のガス流れ後流側に設けられ、洗浄後の粒子含有ガス(洗浄後ガス)101aと冷却液105とを向流接触させるガス冷却部106を有するガス冷却塔107と、ガス洗浄塔104とガス冷却塔107とを底部側で連通し、ガス洗浄塔104で洗浄された洗浄後ガス101aをガス冷却塔107の内部に導入するガス連通路108と、を具備している。
FIG. 1 is a schematic view of the gas treatment apparatus according to the first embodiment.
As shown in FIG. 1, the gas treatment device 100A according to the present embodiment is a gas treatment device that brings the particle-containing gas 101 into contact with the cleaning liquid 102 and collects the particles in the particle-containing gas 101, and contains particles. A gas cleaning tower 104 having a gas cleaning unit 103 that brings the gas 101 and the cleaning liquid 102 into parallel flow contact, and a particle-containing gas (after cleaning gas) 101a provided on the gas flow wake side of the gas cleaning tower 104 and after cleaning. The gas cooling tower 107 having the gas cooling unit 106 for countercurrent contact with the coolant 105, and the gas cleaning tower 104 and the gas cooling tower 107 are communicated with each other on the bottom side, and the gas after cleaning 101a cleaned by the gas cleaning tower 104a. Is provided with a gas communication passage 108 for introducing the gas into the inside of the gas cooling tower 107.

ガス洗浄塔104は、粒子含有ガス101をその頂部側からガス導入ライン104eを介して導入し、ガス洗浄塔104の底部に向かって大流速のガス流れとしている。 The gas scrubber 104 introduces the particle-containing gas 101 from the top side thereof via the gas introduction line 104e, and has a large flow velocity gas flow toward the bottom of the gas scrubber 104.

そして、ガス洗浄塔104は、ガス洗浄部103のガス流れ後流側に設け、落下する洗浄液102を貯留する洗浄液貯留部104aと、該洗浄液貯留部104aからの洗浄液102をガス洗浄塔104の頂部側に循環させる洗浄液循環ライン104bと、ガス連通路108のガス洗浄塔104側の接続開口部108aに、ガス流れを抑制する傾斜板104cと、を有している。 The gas cleaning tower 104 is provided on the gas flow wake side of the gas cleaning unit 103, and the cleaning liquid storage unit 104a for storing the falling cleaning liquid 102 and the cleaning liquid 102 from the cleaning liquid storage unit 104a are stored at the top of the gas cleaning tower 104. It has a cleaning liquid circulation line 104b that circulates to the side, and an inclined plate 104c that suppresses gas flow at the connection opening 108a on the gas cleaning tower 104 side of the gas communication passage 108.

洗浄液循環ライン104bの先端側には、循環する洗浄液102を噴霧するノズル104dが設けられ、洗浄液貯留部104aに向かって洗浄液102を落下させている。洗浄液循環ライン104bには、洗浄液貯留部104aから洗浄液102を抜出してノズル104dに向かって循環させる液循環ポンプP1が設けられている。なお、余剰の洗浄液102は余剰水102aとして外部に排出される。 A nozzle 104d for spraying the circulating cleaning liquid 102 is provided on the tip end side of the cleaning liquid circulation line 104b, and the cleaning liquid 102 is dropped toward the cleaning liquid storage unit 104a. The cleaning liquid circulation line 104b is provided with a liquid circulation pump P 1 that extracts the cleaning liquid 102 from the cleaning liquid storage unit 104a and circulates the cleaning liquid 102 toward the nozzle 104d. The surplus cleaning liquid 102 is discharged to the outside as surplus water 102a.

導入された粒子含有ガス101と洗浄液102とは並流気液接触により粒子を除去しており、向流気液接触方式に比較して、塔内を落下するガス流速を大きくすることができる。大きなガス流速としては、例えば10~20m/秒前後とするのが好ましい。 The introduced particle-containing gas 101 and the cleaning liquid 102 have particles removed by parallel gas-liquid contact, and the gas flow velocity falling in the column can be increased as compared with the countercurrent gas-liquid contact method. The large gas flow rate is preferably around 10 to 20 m / sec, for example.

この結果、粒子含有ガス101を比較的早い流速(例えば、ガス流速10m/s~20m/s前後)としているので、洗浄液貯留部104aの液浴表面近傍へのガスの衝突が激しいものとなり、粒子含有ガス101中の粒子が、貯留する洗浄液102への捕集性能が向上する。 As a result, since the particle-containing gas 101 has a relatively high flow rate (for example, a gas flow rate of about 10 m / s to 20 m / s), the gas collides violently with the vicinity of the liquid bath surface of the cleaning liquid storage unit 104a, and the particles The collection performance of the particles in the contained gas 101 in the stored cleaning liquid 102 is improved.

ガス連通路108のガス洗浄塔104側の接続開口部108aに設けた傾斜板104cは、接続開口部108aの上端側から所定角度をもって、開口通路108bを形成しつつ傾斜して設けられている。この傾斜板104cはガス洗浄塔104の側壁のインコーナ部を起点として開口通路108bを形成しつつ設けているので、ガス洗浄塔104の側壁のインコーナ部を通過する洗浄後ガス101aのガス流れを抑制するようにしている。 The inclined plate 104c provided at the connection opening 108a on the gas cleaning tower 104 side of the gas communication passage 108 is provided at an inclined angle from the upper end side of the connection opening 108a while forming the opening passage 108b. Since the inclined plate 104c is provided while forming the opening passage 108b starting from the in-corner portion of the side wall of the gas scrubber 104, the gas flow of the gas 101a after cleaning passing through the in-corner portion of the side wall of the gas scrubber 104 is suppressed. I try to do it.

図2Aは、従来技術に係るガス洗浄塔の要部概略図である。図2Bは、実施例1に係るガス洗浄塔の要部概略図である。図2Aに示す従来技術のように、ガス連通路108のガス洗浄塔104側の接続開口部108aに傾斜板を設けない場合には、インコーナ部を洗浄後ガス101aが抑制されることなく素通りするので、洗浄液貯留部104aへの衝突割合が少なく、粒子が貯留する洗浄液102で除去されずに、そのままほとんどがガス連通路108に流れる。 FIG. 2A is a schematic view of a main part of a gas scrubber according to the prior art. FIG. 2B is a schematic view of a main part of the gas scrubber according to the first embodiment. When the inclined plate is not provided in the connection opening 108a on the gas cleaning tower 104 side of the gas communication passage 108 as in the prior art shown in FIG. 2A, the in-corner portion is passed through the in-corner portion without being suppressed. Therefore, the collision rate with the cleaning liquid storage unit 104a is small, and most of the particles flow into the gas communication passage 108 as they are without being removed by the cleaning liquid 102 in which the particles are stored.

これに対して、図2Bに示すように、ガス連通路108のガス洗浄塔側の接続開口部108aに傾斜板104cを設けた場合には、インコーナ部を通過する洗浄後ガス101aは、先ず該傾斜板104cの上面側に衝突して、洗浄液貯留部104aの液面に導かれ、液面に激しく衝突することとなり、粒子含有ガス101中の粒子の液浴内における粒子の捕集性能が向上する。 On the other hand, as shown in FIG. 2B, when the inclined plate 104c is provided in the connection opening 108a on the gas cleaning tower side of the gas communication passage 108, the cleaned gas 101a passing through the in-corner portion is first described. It collides with the upper surface side of the inclined plate 104c, is guided to the liquid surface of the cleaning liquid storage portion 104a, and violently collides with the liquid surface, and the collection performance of particles in the liquid bath of the particles in the particle-containing gas 101 is improved. do.

また、傾斜板104cを設置することで、ガス洗浄塔104の下部を通過する流路が狭められ(D1>D2)、これにより、洗浄後ガス101aのガス流れの流速がさらに増大し、洗浄液貯留部104aの液面への衝突効率を向上させることができる。 Further, by installing the inclined plate 104c, the flow path passing through the lower part of the gas cleaning tower 104 is narrowed (D1> D2), whereby the flow velocity of the gas flow of the gas 101a after cleaning is further increased, and the cleaning liquid is stored. The collision efficiency of the portion 104a with the liquid surface can be improved.

このように、傾斜板104cの設置により、洗浄後ガス101aがガス冷却塔107側へ導入する際、洗浄後ガス101aが洗浄液貯留部104aの液面への直接衝突するので、液面での粒子除去効率の向上を図ることができる。 As described above, when the cleaning gas 101a is introduced to the gas cooling tower 107 side by installing the inclined plate 104c, the cleaning gas 101a directly collides with the liquid surface of the cleaning liquid storage unit 104a, so that the particles on the liquid surface The removal efficiency can be improved.

ここで、粒子含有ガス101を除去するガス洗浄塔104の圧力損失は、1,000~3,000Paの範囲とするのが好ましい。 Here, the pressure loss of the gas cleaning tower 104 for removing the particle-containing gas 101 is preferably in the range of 1,000 to 3,000 Pa.

また、ガス洗浄塔104は、傾斜板104cを設置する頂部側において、ガス流路を縮小するスロート部を形成し、さらに洗浄後ガス101aのガス流れの流速を増大させ、洗浄液貯留部104aの液面への衝突効率を向上させるようにしてもよい。 Further, the gas cleaning tower 104 forms a throat portion that reduces the gas flow path on the top side where the inclined plate 104c is installed, further increases the flow velocity of the gas flow of the gas 101a after cleaning, and liquid in the cleaning liquid storage portion 104a. The efficiency of collision with the surface may be improved.

また、ガス冷却塔107は、洗浄後ガス101aから凝縮された凝縮水107aを貯留する凝縮水貯留部107bと、該凝縮水貯留部107bからの凝縮水107aを冷却液105としてガス冷却部106に循環させる凝縮水循環ライン107cと、凝縮水循環ライン107cに介装され、凝縮水107aを冷却する冷却器107dと、ガス冷却部106のガス流れ後流側に設けたデミスタ110と、ガス冷却塔107の凝縮水排出液107eをガス洗浄塔104に移送する凝縮水移送ライン107fと、を有している。 Further, the gas cooling tower 107 uses the condensed water storage unit 107b for storing the condensed water 107a condensed from the gas 101a after cleaning and the condensed water 107a from the condensed water storage unit 107b as the cooling liquid 105 in the gas cooling unit 106. Condensed water circulation line 107c to be circulated, a cooler 107d interposed in the condensed water circulation line 107c to cool the condensed water 107a, a demista 110 provided on the gas flow wake side of the gas cooling unit 106, and a gas cooling tower 107. It has a condensed water transfer line 107f for transferring the condensed water discharge liquid 107e to the gas cleaning tower 104.

ガス冷却塔107は、洗浄後ガス101aを循環する冷却水CWにより冷却するものであり、洗浄後ガス101aの凝縮水107aを循環させる凝縮水循環ライン107cに設置した冷却器107dにより冷却液105を得ている。 The gas cooling tower 107 is cooled by the cooling water CW that circulates the gas 101a after cleaning, and the coolant 105 is obtained by the cooler 107d installed in the condensed water circulation line 107c that circulates the condensed water 107a of the gas 101a after cleaning. ing.

凝縮水循環ライン107cは循環する冷却液105を噴霧するノズル107gが設けられ、凝縮水貯留部107bに向かって落下させ、洗浄後ガス101aに含まれる水分を凝縮させている。なお、凝縮水循環ライン107cには、冷却液105を循環させる液循環ポンプP2が設けられている。 The condensed water circulation line 107c is provided with a nozzle 107g for spraying the circulating cooling liquid 105, and is dropped toward the condensed water storage unit 107b to condense the water contained in the gas 101a after cleaning. The condensed water circulation line 107c is provided with a liquid circulation pump P 2 for circulating the cooling liquid 105.

また、ガス冷却塔107で発生した凝縮水107aをガス洗浄塔104に移送する凝縮水移送ライン107fと、を有している。
このように、ガス冷却塔107においては、塔内で洗浄後ガス101aに含まれる水分を凝縮水107aとして回収し、この回収した凝縮水107aを凝縮水排出液107eとして、ガス洗浄塔104側に凝縮水移送ライン107fにより移送することで、ガス洗浄塔で用いる洗浄液の補給水として導入することができる。この結果、ガス洗浄塔104への補給水が不要、或いは必要補給量の低減を図ることができる。
It also has a condensed water transfer line 107f that transfers the condensed water 107a generated in the gas cooling tower 107 to the gas cleaning tower 104.
As described above, in the gas cooling tower 107, the water contained in the gas 101a after cleaning in the tower is recovered as condensed water 107a, and the recovered condensed water 107a is used as the condensed water discharge liquid 107e on the gas cleaning tower 104 side. By transferring by the condensed water transfer line 107f, it can be introduced as make-up water for the cleaning liquid used in the gas cleaning tower. As a result, the replenishment water for the gas scrubber 104 is unnecessary, or the required replenishment amount can be reduced.

また、ガス冷却塔107に設置するガス中に残存する微粒子を捕集するデミスタ110は、その圧力損失が500~2,500Paの範囲とするのが好ましい。また、このデミスタ110はガラス繊維層を含むようにしてもよい。 Further, the demista 110 for collecting fine particles remaining in the gas installed in the gas cooling tower 107 preferably has a pressure loss in the range of 500 to 2,500 Pa. Further, the demista 110 may include a glass fiber layer.

本実施例1に係るガス処理方法は、粒子含有ガス101と洗浄液102とを接触させ、粒子含有ガス101中の粒子を捕集するガス処理方法であって、ガス洗浄塔104内において、粒子含有ガス101と洗浄液102とを並流接触させ、洗浄後ガス101aを落下させると共に、ガス流れ抑制板である傾斜板104cによりガス流路を狭めつつ洗浄液貯留部104aの液面に衝突させて除塵する除塵工程と、除塵後の洗浄後ガス101aをガス冷却塔107で冷却する際、洗浄後ガス101a中の水分を冷却液105により凝縮して凝縮水107aを得る冷却工程と、得られた凝縮水107aを凝縮水排出液107eとしてガス洗浄塔104側に供給して、洗浄液102を補給する洗浄液補給工程とを有する。 The gas treatment method according to the first embodiment is a gas treatment method in which the particle-containing gas 101 and the cleaning liquid 102 are brought into contact with each other to collect the particles in the particle-containing gas 101, and the particles are contained in the gas cleaning tower 104. The gas 101 and the cleaning liquid 102 are brought into parallel flow contact, and after cleaning, the gas 101a is dropped, and the gas flow path is narrowed by the inclined plate 104c which is a gas flow suppressing plate and collides with the liquid surface of the cleaning liquid storage unit 104a to remove dust. A dust removing step, a cooling step of condensing the water in the cleaned gas 101a with a cooling liquid 105 to obtain condensed water 107a when the gas 101a after cleaning after dust removal is cooled by the gas cooling tower 107, and a cooling step obtained. It has a cleaning liquid replenishment step of supplying 107a as a condensed water discharge liquid 107e to the gas cleaning tower 104 side to replenish the cleaning liquid 102.

本ガス処理方法によれば、ガス洗浄塔104とガス冷却塔107とを連通するガス連通路108のガス洗浄塔104側の接続開口部108aにガス流れを抑制する傾斜板104cにより、洗浄後ガス101aのガス連通路108に流入する際のガスの液浴への衝突効率を向上することができる。また、ガス冷却塔107で回収された凝縮水107aを凝縮水排出液107eとして、ガス洗浄塔104側に移送することで、ガス洗浄塔104への補給水が不要、或いは必要補給量の低減を図ることができる。 According to this gas treatment method, the gas after cleaning is provided by the inclined plate 104c that suppresses the gas flow at the connection opening 108a on the gas cleaning tower 104 side of the gas communication passage 108 that communicates the gas cleaning tower 104 and the gas cooling tower 107. It is possible to improve the collision efficiency of the gas with the liquid bath when flowing into the gas communication passage 108 of the 101a. Further, by transferring the condensed water 107a recovered by the gas cooling tower 107 to the gas cleaning tower 104 side as the condensed water discharge liquid 107e, the replenishing water to the gas cleaning tower 104 is unnecessary or the required replenishment amount can be reduced. Can be planned.

図3は、実施例2に係るガス処理装置の概略図である。なお、実施例1の構成と同一構成については、同一符号を付してその重複した説明は省略する。図3に示すように、本実施例に係るガス処理装置100Bは、洗浄液貯留部104aの液レベルを計測する液レベル計120と、ガス洗浄塔104の導入部内の圧力を計測する第1圧力計121Aと、ガス連通路108内の圧力を計測する第2圧力計121Bと、を設置している。 FIG. 3 is a schematic view of the gas treatment apparatus according to the second embodiment. The same configurations as those of the first embodiment are designated by the same reference numerals, and the duplicated description thereof will be omitted. As shown in FIG. 3, the gas treatment apparatus 100B according to the present embodiment has a liquid level meter 120 for measuring the liquid level of the cleaning liquid storage unit 104a and a first pressure gauge for measuring the pressure in the introduction portion of the gas cleaning tower 104. A 121A and a second pressure gauge 121B for measuring the pressure in the gas communication passage 108 are installed.

ガス洗浄塔104には、ガス洗浄塔104に導入する粒子含有ガス101のガス流速の変動がある場合、この変動に対応するように、液レベル計120を設置している。そして、粒子含有ガス101の導入するガス流量の変化を第1圧力計121A、第2圧力計121Bの測定により感知した際に、洗浄液貯留部104aの液レベルの調整により、ガス洗浄塔104の圧力損失を調整するようにしている。 When the gas flow velocity of the particle-containing gas 101 to be introduced into the gas cleaning tower 104 fluctuates, the gas cleaning tower 104 is provided with a liquid level meter 120 so as to cope with the fluctuation. Then, when the change in the gas flow rate introduced by the particle-containing gas 101 is sensed by the measurement of the first pressure gauge 121A and the second pressure gauge 121B, the pressure of the gas cleaning tower 104 is adjusted by adjusting the liquid level of the cleaning liquid storage unit 104a. I try to adjust the loss.

すなわち、圧力損失が小さくなる場合には、液レベルを調整し、液レベル計120の液レベルが大きくなるようにして、開口通路108bを通過するガス量の流速の増大を図るようにしている。 That is, when the pressure loss becomes small, the liquid level is adjusted so that the liquid level of the liquid level meter 120 becomes large so that the flow velocity of the amount of gas passing through the opening passage 108b is increased. ..

この結果、粒子含有ガス101のガス流量の変動によっても、ガス洗浄塔104の圧力損失を概ね一定に保ち、ガス洗浄塔104での粒子捕集性能を保持することができる。 As a result, even if the gas flow rate of the particle-containing gas 101 fluctuates, the pressure loss of the gas cleaning tower 104 can be kept substantially constant, and the particle collection performance of the gas cleaning tower 104 can be maintained.

図4は、実施例3に係るガス処理装置の概略図である。なお、実施例1の構成と同一構成については、同一符号を付してその重複した説明は省略する。図3に示すように、本実施例に係るガス処理装置100Cは、ガス洗浄塔104に導入するガスに粒子以外に硫黄酸化物を含む場合に対応するものである。 FIG. 4 is a schematic view of the gas treatment apparatus according to the third embodiment. The same configurations as those of the first embodiment are designated by the same reference numerals, and the duplicated description thereof will be omitted. As shown in FIG. 3, the gas treatment apparatus 100C according to the present embodiment corresponds to a case where the gas introduced into the gas cleaning tower 104 contains sulfur oxides in addition to the particles.

本実施例のガス洗浄塔104には、粒子、硫黄酸化物含有ガス101Aがガス導入ライン104eを介して導入される。また、洗浄液循環ライン104bには、塩基性化合物(例えばNaOH、Na2CO3、Ca(OH)2、CaCO3等)131を供給ライン132により供給する塩基性化合物供給部133が設置されている。
この塩基性化合物131が洗浄液102中で混合されることで、ノズル104dから噴霧される噴霧液により、ガス洗浄の際に除塵と共に、脱硫を行うようにしている。
Particles and sulfur oxide-containing gas 101A are introduced into the gas scrubber 104 of this embodiment via the gas introduction line 104e. Further, the cleaning liquid circulation line 104b is provided with a basic compound supply unit 133 that supplies a basic compound (for example, NaOH, Na 2 CO 3 , Ca (OH) 2 , CaCO 3 , etc.) 131 by the supply line 132. ..
By mixing this basic compound 131 in the cleaning liquid 102, the spray liquid sprayed from the nozzle 104d is used to remove dust and desulfurize during gas cleaning.

これにより、ガス洗浄塔104において、除塵とともに脱硫を同時に実施することができる。この結果、別途硫黄酸化物を除去する装置を設置することが不要となる。 As a result, in the gas scrubber 104, desulfurization can be carried out at the same time as dust removal. As a result, it is not necessary to separately install a device for removing sulfur oxides.

図5は、実施例4に係るガス処理装置を備えたCO2回収装置の概略図である。なお、実施例1の構成と同一構成については、同一符号を付してその重複した説明は省略する。本実施例のCO2回収装置10は、粒子、硫黄酸化物含有ガス101Aを導入する実施例3に係るガス処理装置100Cと、ガス冷却塔107から排出された処理後ガス101bを排出するガス排出ライン12と、ガス排出ライン12により導入され、冷却後ガス中のCO2とCO2吸収液(リーン溶液)13とを接触させてCO2を除去するCO2吸収塔14と、CO2を吸収したCO2吸収液(リッチ溶液)15をリボイラ16の蒸気により再生する吸収液再生塔17と、CO2吸収塔14からリッチ溶液15を抜出すと共に、吸収液再生塔17側に導入するリッチ溶液供給ライン18と、吸収液再生塔17で再生されたCO2が放散されたCO2吸収液(リーン溶液)19を吸収液再生塔17から抜出すと共に、CO2吸収塔14に導入し、CO2吸収液として再利用するリーン溶液供給ライン20と、を具備する。 FIG. 5 is a schematic view of a CO 2 recovery device provided with the gas treatment device according to the fourth embodiment. The same configurations as those of the first embodiment are designated by the same reference numerals, and the duplicated description thereof will be omitted. The CO 2 recovery device 10 of this embodiment is a gas treatment device 100C according to the third embodiment for introducing particles and a sulfur oxide-containing gas 101A, and a gas discharge for discharging the treated gas 101b discharged from the gas cooling tower 107. A CO 2 absorption tower 14 introduced by the line 12 and a gas discharge line 12 to remove CO 2 by contacting CO 2 in the gas after cooling with a CO 2 absorbing liquid (lean solution) 13 and absorbing CO 2 . The absorption liquid regeneration tower 17 that regenerates the CO 2 absorption liquid (rich solution) 15 with the steam of the reboiler 16, and the rich solution 15 that is extracted from the CO 2 absorption tower 14 and introduced into the absorption liquid regeneration tower 17 side. The CO 2 absorbing liquid (lean solution) 19 from which the CO 2 regenerated in the supply line 18 and the CO 2 regenerated in the absorbing liquid regenerating tower 17 is dissipated is taken out from the absorbing liquid regenerating tower 17 and introduced into the CO 2 absorbing tower 14, and the CO is introduced. ( 2 ) A lean solution supply line 20 that is reused as an absorbing liquid is provided.

このCO2回収装置10を用いたCO2回収方法では、まず、粒子、CO2を含んだ粒子、硫黄酸化物含有ガス101Aは、ガス処理装置100Cのガス洗浄塔104に送られ、洗浄液102により洗浄すると共に、除塵される。洗浄後ガス101aは、ガス連通路108を経由して、ガス冷却塔107に導入され、ここで冷却液105により冷却され、ガス排出ライン12により処理後ガス101bとしてCO2吸収塔14に送られる。 In the CO 2 recovery method using the CO 2 recovery device 10, first, the particles, the particles containing CO 2 , and the sulfur oxide-containing gas 101A are sent to the gas cleaning tower 104 of the gas treatment device 100C, and are sent by the cleaning liquid 102. It is cleaned and dust is removed. The cleaned gas 101a is introduced into the gas cooling tower 107 via the gas communication passage 108, cooled by the coolant 105 here, and sent to the CO 2 absorption tower 14 as the treated gas 101b by the gas discharge line 12. ..

CO2吸収塔14において、処理後ガス101bは本実施例に係るアミン吸収液であるCO2吸収液13と向流接触し、処理後ガス101b中のCO2は、化学反応によりCO2吸収液13に吸収される。CO2回収塔14でCO2が除去された後のCO2除去排ガス101dは、CO2吸収塔14内の水洗部21でノズルから供給されるCO2吸収液13を含む循環する洗浄水22と気液接触して、CO2除去排ガス101dに同伴するCO2吸収剤が回収され、その後塔頂部から系外に放出される。また、CO2を吸収したリッチ溶液15は、リッチ溶液ポンプ23により昇圧され、リッチ・リーン溶液熱交換器24において、吸収液再生塔17で再生されたリーン溶液19により加熱され、吸収液再生塔17に供給される。 In the CO 2 absorption tower 14, the treated gas 101b is in countercurrent contact with the CO 2 absorbing liquid 13 which is the amine absorbing liquid according to this embodiment, and the CO 2 in the treated gas 101b is a CO 2 absorbing liquid by a chemical reaction. It is absorbed by 13. The CO 2 removed exhaust gas 101d after CO 2 is removed by the CO 2 recovery tower 14 is the circulating washing water 22 containing the CO 2 absorbing liquid 13 supplied from the nozzle in the washing unit 21 in the CO 2 absorbing tower 14. Upon contact with gas and liquid, the CO 2 absorber accompanying the CO 2 removed exhaust gas 101d is recovered and then released from the top of the column to the outside of the system. Further, the rich solution 15 that has absorbed CO 2 is boosted by the rich solution pump 23 and heated by the lean solution 19 regenerated in the absorbent liquid regeneration tower 17 in the rich lean solution heat exchanger 24 to be heated by the absorbent liquid regeneration tower 17. It is supplied to 17.

吸収液再生塔17の上部から内部に放出されたリッチ溶液15は、底部から供給されるリボイラ16による水蒸気により吸熱反応を生じて、大部分のCO2を放出する。吸収液再生塔17内で一部または大部分のCO2を放出したCO2吸収液はセミリーン溶液と呼称される。このセミリーン溶液は、吸収液再生塔17の底部に至る頃には、ほぼ全てのCO2が除去されたCO2吸収液(リーン溶液)19となる。このリーン溶液19はその一部がリボイラ16により加熱され、吸収液再生塔17内部に水蒸気を供給している。 The rich solution 15 discharged from the upper part of the absorption liquid regeneration tower 17 to the inside causes an endothermic reaction by the water vapor from the reboiler 16 supplied from the bottom, and releases most of CO 2 . The CO 2 absorption liquid that has released a part or most of CO 2 in the absorption liquid regeneration tower 17 is called a semi-lean solution. By the time the semi-lean solution reaches the bottom of the absorption liquid regeneration tower 17, it becomes a CO 2 absorption liquid (lean solution) 19 from which almost all CO 2 has been removed. A part of the lean solution 19 is heated by the reboiler 16 to supply water vapor to the inside of the absorption liquid regeneration tower 17.

一方、吸収液再生塔17の頭頂部からは、塔内においてリッチ溶液15およびセミリーン溶液から放出された水蒸気を伴ったCO2同伴ガス31が導出され、コンデンサ32により水蒸気が凝縮され、分離ドラム33にて凝縮水34とCO2ガス35とが分離され。分離したCO2ガス35は、図示しない分離ドラムを経由した後、石油増進回収法(EOR:Enhanced Oil Recovery)を用いて油田中に圧入するか、帯水層へ貯留し、温暖化対策を図っている。水蒸気を伴ったCO2同伴ガス31から分離ドラム33にて分離・還流された凝縮水34は還流水循環ポンプ36にて吸収液再生塔17の上部と、吸収塔14の洗浄水22側に各々供給される。再生されたCO2吸収液(リーン溶液)19は、リッチ・リーン溶液熱交換器24にて、リッチ溶液15により冷却され、つづいてリーン溶液ポンプ37にて昇圧され、さらにリーン溶液クーラ38にて冷却された後、CO2吸収塔14内に供給される。なお、この実施の形態では、あくまでその概要を説明するものであり、付属する機器を一部省略して説明している。 On the other hand, a CO 2 accompanying gas 31 accompanied by water vapor released from the rich solution 15 and the semi-lean solution is derived from the top of the absorption liquid regeneration tower 17, the water vapor is condensed by the condenser 32, and the separation drum 33 is used. The condensed water 34 and the CO 2 gas 35 are separated at. After passing through a separation drum (not shown), the separated CO 2 gas 35 is press-fitted into an oil field using Enhanced Oil Recovery (EOR) or stored in a watershed to take measures against global warming. ing. The condensed water 34 separated and recirculated from the CO 2 accompanying gas 31 accompanied by water vapor by the separation drum 33 is supplied to the upper part of the absorption liquid regeneration tower 17 and the washing water 22 side of the absorption tower 14 by the recirculation water circulation pump 36, respectively. Will be done. The regenerated CO 2 absorbent (lean solution) 19 is cooled by the rich solution 15 in the rich lean solution heat exchanger 24, subsequently boosted by the lean solution pump 37, and further by the lean solution cooler 38. After being cooled, it is supplied into the CO 2 absorption tower 14. It should be noted that, in this embodiment, only the outline thereof is explained, and some of the attached devices are omitted.

本実施例では、ガス洗浄塔104において、除塵とともに脱硫を同時に実施することができる。さらに、ガス冷却塔107で冷却して、CO2吸収塔14に流入する処理後ガス101b中の粒子量が少なくなるため、CO2吸収塔14にてCO2吸収液(このCO2吸収液13は、CO2の吸収・放散を繰り返し、循環再利用される。)に捕集される液中粒子の蓄積速度が抑制される。この結果、CO2回収装置10の設備への付着による汚れや詰りの問題を防止できる。 In this embodiment, desulfurization can be carried out at the same time as dust removal in the gas scrubber 104. Further, since the amount of particles in the treated gas 101b that is cooled by the gas cooling tower 107 and flows into the CO 2 absorption tower 14 is reduced, the CO 2 absorption liquid (this CO 2 absorption liquid 13) is reduced by the CO 2 absorption tower 14. Repeats absorption and emission of CO 2 and is circulated and reused.) The accumulation rate of liquid particles collected in the liquid is suppressed. As a result, it is possible to prevent the problem of dirt and clogging due to adhesion of the CO 2 recovery device 10 to the equipment.

本実施例では、CO2吸収塔14に流入するガス中粒子量が少なくなるため、粒子の周囲に付着して付随する水に吸収されたCO2吸収液成分のCO2吸収塔出口ガスへの同伴によるエミッションが抑制される。 In this embodiment, since the amount of particles in the gas flowing into the CO 2 absorption tower 14 is reduced, the CO 2 absorption liquid component adhering to the periphery of the particles and absorbed by the accompanying water is transferred to the CO 2 absorption tower outlet gas. Emissions due to companionship are suppressed.

本実施例では、図3に示すガス処理装置100Cを用いているが、さらに実施例2の液レベル計120を設置し、ガス流量の変動に対応するようにしてもよい。 In this embodiment, the gas treatment device 100C shown in FIG. 3 is used, but a liquid level meter 120 of the second embodiment may be further installed to cope with fluctuations in the gas flow rate.

本実施例にかかるCO2回収方法は、硫黄酸化物とCO2とを含有する粒子含有ガス101をガス洗浄塔104内に導入し、循環する洗浄液102内に塩基性化合物131を供給して、粒子含有ガス101を除塵すると共に脱硫する洗浄脱硫工程と、除塵脱硫後の洗浄後ガス101aをガス冷却塔107で冷却する際、洗浄後ガス101a中の水分を冷却液105により凝縮して凝縮水107aを得る冷却工程と、得られた凝縮水107aをガス洗浄塔104側に供給して、洗浄液102を補給する洗浄液補給工程と、ガス冷却後の処理後ガスをCO2吸収塔14に導入し、冷却後ガス中のCO2とCO2吸収液13とを接触させてCO2を除去するCO2吸収工程と、CO2を吸収したリッチ溶液15をリボイラの蒸気により再生するCO2吸収液再生工程と、CO2吸収液をCO2吸収塔14と吸収液再生塔17とを循環ラインにより循環再利用する工程と、を有する。 In the CO 2 recovery method according to this embodiment, a particle-containing gas 101 containing a sulfur oxide and CO 2 is introduced into the gas cleaning tower 104, and the basic compound 131 is supplied into the circulating cleaning liquid 102. When the cleaning and desulfurization step of removing dust and desulfurizing the particle-containing gas 101 and the cleaning gas 101a after dust removal and desulfurization are cooled by the gas cooling tower 107, the water content in the cleaning gas 101a is condensed by the cooling liquid 105 to condense water. A cooling step of obtaining 107a, a cleaning liquid replenishment step of supplying the obtained condensed water 107a to the gas cleaning tower 104 side to replenish the cleaning liquid 102, and introducing the treated gas after gas cooling into the CO 2 absorption tower 14. A CO 2 absorption step that removes CO 2 by bringing CO 2 in the gas into contact with the CO 2 absorbing liquid 13 after cooling, and a CO 2 absorbing liquid regeneration that regenerates the rich solution 15 that has absorbed CO 2 with the steam of the reboiler. It includes a step and a step of circulating and reusing the CO 2 absorbing liquid between the CO 2 absorbing tower 14 and the absorbing liquid regeneration tower 17 by a circulation line.

本CO2回収方法によれば、ガス洗浄塔104において、除塵とともに脱硫を同時に実施することができる。
さらに、ガス冷却塔107で冷却して、CO2吸収塔14に流入する処理後ガス101b中の粒子量が少なくなるため、CO2吸収塔14にてCO2吸収液13に捕集された液中粒子の蓄積速度が抑制される。この結果、CO2回収装置10の設備への付着による汚れや詰りの問題を防止できる。
According to this CO 2 recovery method, desulfurization can be carried out at the same time as dust removal in the gas scrubber 104.
Further, since the amount of particles in the treated gas 101b that has been cooled by the gas cooling tower 107 and flows into the CO 2 absorption tower 14 is reduced, the liquid collected by the CO 2 absorption liquid 13 by the CO 2 absorption tower 14 is reduced. The accumulation rate of medium particles is suppressed. As a result, it is possible to prevent the problem of dirt and clogging due to adhesion of the CO 2 recovery device 10 to the equipment.

10 CO2回収装置
12 ガス排出ライン
13 CO2吸収液(リーン溶液)
14 CO2吸収塔
15 CO2吸収液(リッチ溶液)
16 リボイラ
17 吸収液再生塔
18 リッチ溶液供給ライン
19 CO2吸収液(リーン溶液)
20 リーン溶液供給ライン
100A~100C ガス処理装置
101 粒子含有ガス
101A 粒子、硫黄酸化物含有ガス
102 洗浄液
103 ガス洗浄部
104 ガス洗浄塔
105 冷却液
106 ガス冷却部
107 ガス冷却塔
108 ガス連通路
10 CO 2 recovery device 12 Gas discharge line 13 CO 2 absorbent (lean solution)
14 CO 2 absorption tower 15 CO 2 absorption liquid (rich solution)
16 Riboira 17 Absorbent Regeneration Tower 18 Rich Solution Supply Line 19 CO 2 Absorbent (Lean Solution)
20 Lean solution supply line 100A-100C Gas treatment equipment 101 Particle-containing gas 101A Particles, sulfur oxide-containing gas 102 Cleaning liquid 103 Gas cleaning unit 104 Gas cleaning tower 105 Cooling liquid 106 Gas cooling unit 107 Gas cooling tower 108 Gas continuous passage

Claims (6)

粒子含有ガスと洗浄液とを接触させ、前記粒子含有ガス中の粒子を捕集するガス処理装置であって、
前記粒子含有ガスと前記洗浄液とを並流接触させるガス洗浄部を有するガス洗浄塔と、
前記ガス洗浄塔のガス流れ後流側に設けられ、洗浄後の前記粒子含有ガスと冷却液とを向流接触させるガス冷却塔と、
前記ガス洗浄塔と前記ガス冷却塔とを底部側で連通し、前記ガス洗浄塔で洗浄された洗浄後ガスを前記ガス冷却塔の内部に導入するガス連通路と、
を具備し、
前記ガス洗浄塔が、前記ガス洗浄部のガス流れ後流側に設けられ、落下する洗浄液を貯留する洗浄液貯留部と、
該洗浄液貯留部からの洗浄液をガス洗浄塔の頂部側に循環させる洗浄液循環ラインと、
前記ガス連通路のガス洗浄塔側の接続開口部に設けられ、ガス流れを抑制する傾斜板と、を有し、
前記洗浄液貯留部に設けられ、洗浄液の液貯留量を測定する液レベル計と、
前記ガス洗浄塔の導入部内の圧力を計測する第1圧力計と、
前記ガス連通路内の圧力を計測する第2圧力計と、を具備し、
前記ガス冷却塔が、前記洗浄後ガスから凝縮された凝縮水を貯留する凝縮水貯留部と、
該凝縮水貯留部からの凝縮水をガス冷却部に循環させる凝縮水循環ラインと、
前記凝縮水循環ラインに介装され、前記凝縮水を冷却する冷却器と、
前記ガス冷却部のガス流れ後流側に設けられたデミスタと、
前記ガス冷却塔の前記凝縮水を前記ガス洗浄塔に移送する凝縮水移送ラインと、を有し、
前記洗浄液貯留部は、前記ガス洗浄塔に導入する前記粒子含有ガスのガス流量の変化を前記第1圧力計、前記第2圧力計の測定により感知した際に、前記洗浄液貯留部の液レベル調整し、前記ガス洗浄塔の圧力損失を調整することを特徴とするガス処理装置。
A gas treatment device that brings the particle-containing gas into contact with the cleaning liquid and collects the particles in the particle-containing gas.
A gas cleaning tower having a gas cleaning unit that brings the particle-containing gas and the cleaning liquid into parallel flow contact with each other.
A gas cooling tower provided on the gas flow wake side of the gas cleaning tower and in which the particle-containing gas after cleaning and the cooling liquid are brought into countercurrent contact with each other.
A gas communication passage that communicates the gas cleaning tower and the gas cooling tower on the bottom side and introduces the gas after cleaning cleaned by the gas cleaning tower into the inside of the gas cooling tower.
Equipped with
The gas scrubber is provided on the gas flow wake side of the gas cleaning unit, and has a cleaning liquid storage unit that stores the falling cleaning liquid.
A cleaning liquid circulation line that circulates the cleaning liquid from the cleaning liquid storage unit to the top side of the gas cleaning tower, and
It has an inclined plate provided at the connection opening on the gas scrubber side of the gas passage and suppresses the gas flow.
A liquid level meter provided in the cleaning liquid storage unit to measure the amount of the cleaning liquid stored,
A first pressure gauge that measures the pressure inside the introduction of the gas scrubber,
A second pressure gauge for measuring the pressure in the gas passage is provided.
The gas cooling tower has a condensed water storage unit that stores condensed water condensed from the gas after cleaning.
A condensed water circulation line that circulates condensed water from the condensed water storage unit to the gas cooling unit,
A cooler that is interposed in the condensed water circulation line and cools the condensed water,
A demista provided on the gas flow wake side of the gas cooling unit and
It has a condensed water transfer line for transferring the condensed water of the gas cooling tower to the gas scrubber.
When the change in the gas flow rate of the particle-containing gas introduced into the gas cleaning tower is sensed by the measurement of the first pressure gauge and the second pressure gauge, the cleaning liquid storage unit determines the liquid level of the cleaning liquid storage unit. A gas processing apparatus characterized by adjusting and adjusting the pressure loss of the gas cleaning tower.
請求項1において、
前記粒子含有ガスが、硫黄酸化物を含有すると共に、
前記洗浄液内に、塩基性化合物を供給する塩基性化合物供給部を有することを特徴とするガス処理装置。
In claim 1,
The particle-containing gas contains sulfur oxides and also contains
A gas treatment apparatus comprising a basic compound supply unit for supplying a basic compound in the cleaning liquid.
請求項2に記載のガス処理装置と、
前記ガス冷却塔から排出された処理後ガスを排出するガス排出ラインと、
ガス排出ラインにより導入され、冷却後ガス中のCOとCO吸収液とを接触させてCOを除去するCO吸収塔と、
COを吸収したリッチ溶液をリボイラの蒸気により再生するCO2吸収液再生塔と、
前記CO吸収塔から前記リッチ溶液を抜出すと共に、前記CO2吸収液再生塔側に導入するリッチ溶液供給ラインと、
前記CO吸収液再生塔で再生されたCOが放散されたリーン溶液を前記CO2吸収液再生塔から抜出すと共に、前記CO吸収塔に導入し、CO吸収液として再利用するリーン溶液供給ラインと、を具備することを特徴とするCO回収装置。
The gas treatment apparatus according to claim 2 and
A gas discharge line that discharges the treated gas discharged from the gas cooling tower, and
A CO 2 absorption tower introduced by a gas discharge line that removes CO 2 by bringing CO 2 in the gas into contact with the CO 2 absorbing liquid after cooling.
A CO2 absorption liquid regeneration tower that regenerates a rich solution that has absorbed CO2 with the vapor of a reboiler,
A rich solution supply line that extracts the rich solution from the CO 2 absorption tower and introduces the rich solution to the CO 2 absorption tower side.
A lean solution in which CO 2 regenerated in the CO 2 absorption tower is extracted from the CO 2 absorption tower and introduced into the CO 2 absorption tower and reused as a CO 2 absorber. A CO 2 recovery device comprising a supply line.
粒子含有ガスと洗浄液とを接触させ、前記粒子含有ガス中の粒子を捕集するガス処理方法であって、
ガス洗浄塔内において、前記粒子含有ガスと前記洗浄液とを並流接触させ、ガス洗浄後ガスを落下させると共に、ガス流れ抑制板によりガス流路を狭めつつ洗浄液貯留部の液面に衝突させて除塵する除塵工程と、
除塵後の洗浄後ガスをガス冷却塔で冷却する際、洗浄後ガス中の水分を冷却水により凝縮して凝縮水を得る冷却工程と、
得られた凝縮水をガス洗浄塔側に供給して、洗浄液を補給する洗浄液補給工程と、
前記ガス洗浄塔の導入部内の圧力を第1圧力計により計測する第1圧力計測工程と、
前記ガス洗浄塔で洗浄された洗浄後ガスを前記ガス冷却塔の内部に導入するガス連通路内の圧力を第2圧力計により計測する第2圧力計測工程と、を有し、
前記ガス洗浄塔に導入する前記粒子含有ガスのガス流量の変化を第1圧力計、第2圧力計の測定により感知した際に、前記洗浄液貯留部の液レベルの調整により、前記ガス洗浄塔の圧力損失を調整することを特徴とするガス処理方法。
A gas treatment method in which a particle-containing gas is brought into contact with a cleaning liquid to collect particles in the particle-containing gas.
In the gas cleaning tower, the particle-containing gas and the cleaning liquid are brought into parallel flow contact, and after gas cleaning, the gas is dropped, and the gas flow path is narrowed by the gas flow suppression plate to collide with the liquid surface of the cleaning liquid storage portion. The dust removal process to remove dust and
When the gas after cleaning after dust removal is cooled by the gas cooling tower, the cooling process of condensing the water in the gas with cooling water to obtain condensed water,
A cleaning liquid replenishment process in which the obtained condensed water is supplied to the gas scrubber side to replenish the cleaning liquid,
The first pressure measuring step of measuring the pressure in the introduction part of the gas scrubber with the first pressure gauge, and
It has a second pressure measuring step of measuring the pressure in the gas communication passage for introducing the cleaned gas washed in the gas washing tower into the inside of the gas cooling tower with a second pressure gauge.
When the change in the gas flow rate of the particle-containing gas introduced into the gas cleaning tower is sensed by the measurement of the first pressure gauge and the second pressure gauge, the liquid level of the cleaning liquid storage unit is adjusted to adjust the gas cleaning tower. A gas treatment method characterized by adjusting the pressure loss.
請求項4において、
前記粒子含有ガスが、硫黄酸化物を含有すると共に、
前記洗浄液内に、塩基性化合物を供給して脱硫することを特徴とするガス処理方法。
In claim 4,
The particle-containing gas contains sulfur oxides and also contains
A gas treatment method comprising supplying a basic compound into the cleaning liquid to desulfurize.
硫黄酸化物とCOとを含有する粒子含有ガスをガス洗浄塔内に導入し、
前記ガス洗浄塔内において、前記粒子含有ガスと塩基性化合物を含む洗浄液とを並流接触させ、ガス洗浄後ガスを落下させると共に、ガス流れ抑制板によりガス流路を狭めつつ洗浄液貯留部の液面に衝突させて除塵すると共に脱硫する洗浄脱硫工程と、
除塵脱硫後の洗浄後ガスをガス冷却塔で冷却する際、洗浄後ガス中の水分を冷却水により凝縮して凝縮水を得る冷却工程と、
得られた凝縮水をガス洗浄塔側に供給して、洗浄液を補給する洗浄液補給工程と、
ガス冷却後の処理後ガスをCO吸収塔に導入し、冷却後ガス中のCOとCO吸収液とを接触させてCOを除去するCO吸収工程と、
COを吸収したリッチ溶液をCO吸収液再生塔に導入し、リボイラ蒸気により再生するCO吸収液再生工程と、
前記CO吸収液を前記CO吸収塔と前記CO吸収液再生塔とを循環ラインにより循環再利用する工程と、を有し、
前記洗浄脱硫工程が、前記ガス洗浄塔の導入部内の圧力を第1圧力計により計測する第1圧力計測工程と、
前記ガス洗浄塔で洗浄された洗浄後ガスを前記ガス冷却塔の内部に導入するガス連通路内の圧力を第2圧力計により計測する第2圧力計測工程と、を有し、
前記ガス洗浄塔に導入する前記粒子含有ガスの変化を第1圧力計、第2圧力計の測定により感知した際に、前記洗浄液貯留部の液レベルの調整により、前記ガス洗浄塔の圧力損失を調整することを特徴とするCO回収方法。
A particle-containing gas containing sulfur oxides and CO 2 was introduced into the gas scrubber,
In the gas cleaning tower, the particle-containing gas and the cleaning liquid containing the basic compound are brought into parallel flow contact with each other, the gas is dropped after the gas cleaning, and the liquid in the cleaning liquid storage portion is narrowed by the gas flow suppression plate. A scrubbering and degassing step that collides with a surface to remove dust and degass,
When the gas after cleaning after dust removal and desulfurization is cooled in the gas cooling tower, the cooling step of condensing the water in the gas with cooling water to obtain condensed water,
A cleaning liquid replenishment process in which the obtained condensed water is supplied to the gas scrubber side to replenish the cleaning liquid,
A CO 2 absorption step in which the treated gas after cooling is introduced into the CO 2 absorption tower, and the CO 2 in the cooled gas is brought into contact with the CO 2 absorbing liquid to remove CO 2 .
A CO 2 absorption liquid regeneration process in which a rich solution that has absorbed CO 2 is introduced into a CO 2 absorption liquid regeneration tower and regenerated by reboiler vapor, and
It has a step of circulating and reusing the CO 2 absorbing liquid between the CO 2 absorbing tower and the CO 2 absorbing liquid regeneration tower by a circulation line.
The washing and desulfurization step includes a first pressure measuring step in which the pressure in the introduction portion of the gas scrubber is measured by a first pressure gauge.
It has a second pressure measuring step of measuring the pressure in the gas communication passage for introducing the cleaned gas washed in the gas washing tower into the inside of the gas cooling tower with a second pressure gauge.
When the change of the particle-containing gas introduced into the gas cleaning tower is detected by the measurement of the first pressure gauge and the second pressure gauge, the pressure loss of the gas cleaning tower is reduced by adjusting the liquid level of the cleaning liquid storage unit. A CO 2 recovery method characterized by adjustment.
JP2017210570A 2017-10-31 2017-10-31 Gas treatment device and gas treatment method, CO2 recovery device and CO2 recovery method Active JP7085818B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2017210570A JP7085818B2 (en) 2017-10-31 2017-10-31 Gas treatment device and gas treatment method, CO2 recovery device and CO2 recovery method
EP18873341.4A EP3705167B1 (en) 2017-10-31 2018-10-24 Gas treatment device, gas treatment method, co2 recovery device, and co2 recovery method
PCT/JP2018/039526 WO2019087901A1 (en) 2017-10-31 2018-10-24 Gas treatment device, gas treatment method, co2 recovery device, and co2 recovery method
AU2018359289A AU2018359289B2 (en) 2017-10-31 2018-10-24 Gas treatment device, gas treatment method, co2 recovery device, and co2 recovery method
US16/635,302 US20200368682A1 (en) 2017-10-31 2018-10-24 Air pollution control unit and air pollution control method, and co2 recovery unit and co2 recovery method
CA3071767A CA3071767C (en) 2017-10-31 2018-10-24 Air pollution control unit and air pollution control method, and co2 recovery unit and co2 recovery method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017210570A JP7085818B2 (en) 2017-10-31 2017-10-31 Gas treatment device and gas treatment method, CO2 recovery device and CO2 recovery method

Publications (2)

Publication Number Publication Date
JP2019081154A JP2019081154A (en) 2019-05-30
JP7085818B2 true JP7085818B2 (en) 2022-06-17

Family

ID=66331951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017210570A Active JP7085818B2 (en) 2017-10-31 2017-10-31 Gas treatment device and gas treatment method, CO2 recovery device and CO2 recovery method

Country Status (6)

Country Link
US (1) US20200368682A1 (en)
EP (1) EP3705167B1 (en)
JP (1) JP7085818B2 (en)
AU (1) AU2018359289B2 (en)
CA (1) CA3071767C (en)
WO (1) WO2019087901A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112023595B (en) * 2020-09-15 2022-03-25 薛瑞婷 But environmental protection special equipment exhaust emission detection treatment pipeline of automatic clearance
CN112744539B (en) * 2020-12-08 2022-04-01 燕山大学 Monitoring system of energy-saving multiphase flow self-circulation dust suppression and removal device
CN114570144A (en) * 2022-04-07 2022-06-03 四川永祥股份有限公司 Acetylene supernatant peculiar smell treatment method and system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5405590A (en) 1993-02-05 1995-04-11 Pedro Buarque de Macedo Off-gas scrubber system
JP4738787B2 (en) 2004-10-12 2011-08-03 富士通株式会社 Process visualization program, process visualization apparatus, and process visualization method
JP2016168574A (en) 2015-03-13 2016-09-23 三菱重工業株式会社 Scrubber, exhaust gas treatment equipment and ship

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4738787B1 (en) * 1968-08-08 1972-09-30
US3834133A (en) * 1972-12-22 1974-09-10 Foster Wheeler Corp Direct contact condenser having an air removal system
JPS59160519A (en) 1983-03-04 1984-09-11 Babcock Hitachi Kk Wet type waste gas desulfurizer
SE454327B (en) * 1984-10-17 1988-04-25 Skf Steel Eng Ab KIT AND INSTALLATION FOR COOLING AND PURIFICATION OF GAS FROM DUST
JPH07246313A (en) * 1994-03-09 1995-09-26 Kansai Electric Power Co Inc:The Method for removing carbon dioxide and sox in exhaust combustion gas
JP2001029741A (en) * 1999-07-27 2001-02-06 Ishikawajima Harima Heavy Ind Co Ltd Water supply replenishing method for wet flue gas treating installation and device therefor
JP4216152B2 (en) 2003-09-16 2009-01-28 関西電力株式会社 Desulfurization decarboxylation method and apparatus
JP5230088B2 (en) * 2006-09-06 2013-07-10 三菱重工業株式会社 CO2 recovery apparatus and method
US7846240B2 (en) * 2008-10-02 2010-12-07 Alstom Technology Ltd Chilled ammonia based CO2 capture system with water wash system
JP6216259B2 (en) * 2014-02-05 2017-10-18 三菱重工業株式会社 CO2 recovery device and cleaning method for filtration membrane device of CO2 recovery device
JP2016000381A (en) * 2014-06-11 2016-01-07 三菱日立パワーシステムズ株式会社 Acidic gas treatment method and acidic gas treatment device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5405590A (en) 1993-02-05 1995-04-11 Pedro Buarque de Macedo Off-gas scrubber system
JP4738787B2 (en) 2004-10-12 2011-08-03 富士通株式会社 Process visualization program, process visualization apparatus, and process visualization method
JP2016168574A (en) 2015-03-13 2016-09-23 三菱重工業株式会社 Scrubber, exhaust gas treatment equipment and ship

Also Published As

Publication number Publication date
AU2018359289B2 (en) 2021-05-27
CA3071767A1 (en) 2019-05-09
EP3705167A1 (en) 2020-09-09
EP3705167A4 (en) 2021-07-14
EP3705167B1 (en) 2023-12-27
US20200368682A1 (en) 2020-11-26
JP2019081154A (en) 2019-05-30
CA3071767C (en) 2022-07-12
WO2019087901A1 (en) 2019-05-09
AU2018359289A1 (en) 2020-02-20

Similar Documents

Publication Publication Date Title
RU2558361C2 (en) Water flushing method and system for carbon dioxide trapping method
US9157353B2 (en) Carbon dioxide capturing system and method of operating same
JP7085818B2 (en) Gas treatment device and gas treatment method, CO2 recovery device and CO2 recovery method
WO2014057567A1 (en) Exhaust gas treatment system and method
JP6083681B2 (en) Mist control method
WO2013039041A1 (en) Co2 recovery device and co2 recovery method
US11235277B2 (en) Carbon dioxide capture system and method of operating carbon dioxide capture system
JP2018001086A (en) Carbon dioxide recovery system and exhaust gas treatment method
EP2537574B1 (en) Air pollution control system and air pollution control method
US10610820B2 (en) Flue gas treatment system and method
WO2014045797A1 (en) Carbon dioxide recovery system and method
JP2023162258A (en) Carbon dioxide recovery system and method for operating carbon dioxide recovery system
JP2011177674A (en) Finishing flue gas desulfurization apparatus and exhaust gas treatment system using the same
JP6162051B2 (en) Gas-liquid contact device and CO2 recovery device provided with the same
CN103328074A (en) Process and system for cleaning a gas stream
WO2017122478A1 (en) Co2 recovery device and recovery method
JP6847762B2 (en) Exhaust gas component removal method, exhaust gas component remover and carbon dioxide separation / recovery method and separation / recovery device
US20220226770A1 (en) Carbon dioxide capture system and method of operating carbon dioxide capture system

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20180618

A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20200611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210720

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220607

R150 Certificate of patent or registration of utility model

Ref document number: 7085818

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350