WO2017009963A1 - Power supply device - Google Patents

Power supply device Download PDF

Info

Publication number
WO2017009963A1
WO2017009963A1 PCT/JP2015/070230 JP2015070230W WO2017009963A1 WO 2017009963 A1 WO2017009963 A1 WO 2017009963A1 JP 2015070230 W JP2015070230 W JP 2015070230W WO 2017009963 A1 WO2017009963 A1 WO 2017009963A1
Authority
WO
WIPO (PCT)
Prior art keywords
short
circuit
voltage
power supply
signal
Prior art date
Application number
PCT/JP2015/070230
Other languages
French (fr)
Japanese (ja)
Inventor
健太 小岩
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2017528066A priority Critical patent/JPWO2017009963A1/en
Priority to PCT/JP2015/070230 priority patent/WO2017009963A1/en
Publication of WO2017009963A1 publication Critical patent/WO2017009963A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • the present invention relates to a power supply device mounted on an inverter device or the like for driving a motor or the like.
  • Patent Document 1 a reactor connected to the input side of a rectifier circuit is used as a switching element for storing and releasing energy as necessary, and a timing with reference to the zero cross point of the voltage of the AC power supply.
  • a DC power supply device is proposed that includes a switching control unit that is continuously turned on and then intermittently turned on, and that sets both ON times based on the load state of the DC power supply device.
  • An object of the present invention is to provide a DC power supply device that can maintain a power factor at an appropriate value with a simple configuration, suppress harmonics, and control a DC bus voltage to a desired voltage.
  • a power supply device includes a rectifier circuit that rectifies an AC voltage, and a bus current detector that detects a bus current output from the rectifier circuit.
  • a bus voltage detection unit that detects a bus voltage output from the rectifier circuit, a short circuit unit that short-circuits the input side of the rectifier circuit, and a switching control unit that controls a short circuit state by the short circuit, The switching control unit performs a short-circuit operation on the short-circuit portion continuously with the zero-cross point where the AC voltage becomes zero as a reference, and then intermittently operates the short-circuit portion.
  • the power supply device has an effect that the power factor can be maintained at an appropriate value with a simple configuration, harmonics can be suppressed, and the DC bus voltage can be controlled to a desired voltage.
  • the figure which shows the structure of the power supply device concerning Embodiment 1 of this invention The figure which shows the example of the waveform of the voltage and electric current obtained by the continuous short circuit operation
  • the figure which shows the operation example of the zero cross detection part of FIG. The figure explaining the operation example of the control block in the switching control part of the power supply device concerning Embodiment 1 of this invention.
  • the figure explaining the operation example of the control block in the switching control part of the power supply device concerning Embodiment 1 of this invention.
  • the figure which shows the example of the waveform of the voltage of the power supply device obtained by short-circuiting the short circuit of the power supply device concerning Embodiment 1 of this invention with a short circuit signal, and an electric current.
  • FIG. 1 is a diagram illustrating a configuration of the power supply device according to the first embodiment.
  • a rectifier circuit 2 is connected to an AC power supply 1
  • a load 4 is connected to an output terminal of the rectifier circuit 2 via a smoothing capacitor 3.
  • the AC power source 1 is, for example, a commercial AC power source.
  • the output of the AC power supply 1 periodically changes in voltage value and positive / negative direction.
  • the load 4 is, for example, a switching circuit such as an inverter.
  • the inverter is, for example, an inverter for outputting drive power to a brushless DC motor.
  • An inductive reactance element so-called reactor 5 is connected to the energization line between the AC power source 1 and the rectifier circuit 2.
  • the short circuit 6 is connected to the energization lines L1 and L2 on the downstream side from the connection position of the reactor 5.
  • the short circuit 6 functions as a short-circuit portion that short-circuits the energization line L1 and the energization line L2.
  • the short circuit 6 includes a rectifier circuit 7 composed of a diode bridge and a switching element 8.
  • the switching element 8 is, for example, a bipolar transistor or a MOSFET (metal-oxide-semiconductor field-effect transistor).
  • MOSFET metal-oxide-semiconductor field-effect transistor
  • a zero cross detection unit 10 is connected to the AC power source 1.
  • the zero cross detector 10 detects a zero cross point of the voltage of the AC power supply 1.
  • the zero cross detection unit 10 includes, for example, a photocoupler or a current transformer.
  • a zero cross signal 101 as a detection result of the zero cross detection unit 10 is supplied to a control block in the switching control unit 11.
  • the bus voltage detector 12 is connected in parallel between the energization lines L3 and L4 between the smoothing capacitor 3 and the load 4.
  • the bus voltage detection unit 12 detects a bus voltage that is a voltage between the energization lines L3 and L4.
  • a bus voltage detection value 120 that is a detection result of the bus voltage detection unit 12 is supplied to the switching control unit 11.
  • a bus current detection unit 13 is connected in series with the energization line L4 between the smoothing capacitor 3 and the load 4.
  • the bus current detection unit 13 detects a bus current that is a direct current flowing through the energization line L4.
  • a bus current detection value 130 which is a detection result of the bus current by the bus current detection unit 13, is supplied to the switching control unit 11.
  • the switching control unit 11 generates a pulsed short circuit signal 110 for causing the short circuit 6 to be continuously turned on and intermittently turned on.
  • the switching control unit 11 generates the short circuit signal 110 based on the bus voltage detected by the bus voltage detection unit 12 and an arbitrary target voltage level.
  • the switching control unit 11 generates the short circuit signal 110 based on the zero cross point detected by the zero cross detection unit 10.
  • the switching control unit 11 turns on the switching element 8 of the short circuit 6 when the pulse of the short circuit signal 110 is on, and turns off the switching element 8 when the pulse of the short circuit signal 110 is off.
  • the switching control unit 11 detects the power value of the load 4 obtained by the bus current detection unit 13 and the bus voltage detection unit 12 and the bus voltage detection unit 12 based on the detection timing of the zero cross detection unit 10. Based on the deviation between the voltage and the target voltage level, the short circuit 6 is first continuously turned on and then intermittently turned on. That is, the switching control unit 11 detects the bus voltage detected by the bus voltage detection unit 12 during the period in which the short circuit 6 is continuously short-circuited and the period in which the short circuit 6 is intermittently short-circuited. The value is set based on the deviation between the target bus voltage and the target bus voltage.
  • the operation of the power supply device having the above configuration will be described.
  • the AC power supply 1 When the AC power supply 1 is turned on, the AC voltage is supplied to the rectifier circuit 2 via the reactor 5.
  • an alternating voltage is converted into a direct voltage.
  • This DC voltage is smoothed by the smoothing capacitor 3.
  • the DC voltage smoothed by the smoothing capacitor 3 is supplied to the load 4.
  • the zero cross point of the voltage of the AC power supply 1 is detected by the zero cross detection unit 10.
  • the short circuit 6 is based on the deviation value between the bus voltage detection value detected by the bus voltage detection unit 12 and the target bus voltage. Intermittently on operation.
  • FIG. 2 is a diagram illustrating an example of a waveform of a current obtained by a continuous short circuit operation and an intermittent short circuit operation by the short circuit 6 of the power supply device according to the first embodiment of the present invention. As shown in FIG. 2, the current waveform approaches a sine wave due to the presence of the intermittent on-operation period T2 in the short-circuit signal 110 following the continuous on-operation period T1.
  • FIG. 3 is a diagram illustrating a configuration example of the switching control unit 11 of the power supply device according to the first embodiment of the present invention. As shown in FIG. 3, the switching control unit 11 includes control blocks 100 and 200.
  • the control block 100 includes a power calculation unit 15 and a target bus voltage calculation unit 16.
  • the power calculation unit 15 calculates a power value of the load 4 (hereinafter referred to as a load power value) based on the bus voltage detection value 120 and the bus current detection value 130.
  • the target bus voltage calculation unit 16 generates a pulse corresponding to the load power value 150 calculated by the power calculation unit 15.
  • the pulse generated by the target bus voltage calculation unit 16 is output as the target bus voltage 160.
  • Target bus voltage 160 is input to control block 200.
  • the control block 200 includes an arithmetic unit 9, a PI (Proportional-Integral) control unit 17, and an arithmetic / comparison unit 18.
  • the calculator 9 calculates a deviation between the target bus voltage 160 and the detected bus voltage 120.
  • the calculator 9 outputs a deviation between the target bus voltage 160 and the detected bus voltage 120 as a deviation signal 90.
  • the PI control unit 17 outputs a proportional-integral control signal that changes so that the deviation of the deviation signal 90 calculated by the calculator 9 becomes zero as much as possible.
  • the output signal 170 of the PI control unit 17 is input to the calculation / comparison unit 18.
  • the calculation / comparison unit 18 includes a signal generation unit 171 and a comparison unit 172.
  • the signal generation unit 171 generates an internal signal 173.
  • the internal signal 173 is a signal that gradually decreases the deviation between the detected bus voltage 120 and the target bus voltage 160.
  • the internal signal 173 has a period T1 in which the H level continues and a period T2 in which the internal signal 173 gradually transitions from the H level to the L level.
  • the signal generation unit 171 linearly changes the length of the period T1 of the internal signal 173 and the length of the period T2 of the internal signal 173 in accordance with the H level period of the output signal 170 of the PI control unit 17.
  • the signal generation unit 171 maintains the ratio between the length of the H level period of the output signal 170 and the length of the period T1, and the length of the period T2 according to the H level period of the output signal 170.
  • the signal generation unit 171 generates an internal signal 173 that gradually transitions from the H level to the L level from the end point of the period T1 to the end point of the H level period of the output signal 170 by linear approximation.
  • the comparison unit 172 compares the internal signal 173 and the triangular wave signal 181.
  • the comparison unit 172 outputs the short circuit signal 110 that becomes L level when the voltage level of the triangular wave signal 181 exceeds the voltage level of the internal signal 173 and becomes H level during other periods.
  • the triangular wave signal 181 has an arbitrary frequency set in advance. For example, a triangular wave carrier signal used in PWM (Pulse Width Modulation) control can be used as the triangular wave signal 181.
  • FIG. 4 is a diagram illustrating a configuration example of the zero cross detection unit 10 of the power supply device according to the first embodiment of the present invention.
  • FIG. 5 is a diagram illustrating an operation example of the zero cross detection unit 10 illustrated in FIG. 4.
  • the zero-cross detection unit 10 includes a diode 27, a photocoupler 28, a pull-up resistor 29, and a resistor 30.
  • the photocoupler 28 includes a light emitting diode 281 and a phototransistor 282.
  • the light emitting diode 281 and the diode 27 are connected so that the directions of the anode and the cathode are opposite to each other.
  • the phototransistor 282 has a collector connected to the pull-up resistor 29 and an emitter connected to the ground.
  • the phototransistor 282 is turned on when the light emitting diode 281 is emitting light, and is turned off when not emitting light.
  • the phototransistor 282 is turned on, the zero cross signal 101 becomes L level, and when the phototransistor 282 is turned off, the zero cross signal 101 becomes H level.
  • the voltage of the AC power supply 1 changes periodically.
  • the light emitting diode 281 emits light when the voltage of the AC power supply 1 is positive (+), and does not emit light when the voltage is negative ( ⁇ ).
  • the zero cross signal 101 becomes L level
  • the zero cross signal 101 becomes H level. That is, every time the voltage of the AC power supply 1 passes zero volts, the zero cross signal 101 changes from the L level to the H level or from the H level to the L level. That is, the zero cross signal 101 becomes zero volts every half cycle of the output voltage of the AC power supply 1. Therefore, the zero cross signal 101 is a signal indicating a zero cross point (each timing indicated by an arrow in FIG. 5) at which the output voltage of the AC power supply 1 becomes zero volts.
  • FIG. 1 is a diagram from the zero cross point by the zero cross signal 101 to a quarter cycle of the power supply voltage.
  • the short circuit signal 110 is output during the period up to 1 ⁇ 4 period of the power supply voltage.
  • the internal signal 173 is from the H level to the L level from the end point of the period T11 to the end point of the H level period of the output signal 170 after the elapse of the period T11 and the period T11. And a period T21 in which the transition is made gradually.
  • the voltage levels of the internal signal 173 and the triangular wave signal 181 are compared by the calculation / comparison unit 18. Since the internal signal 173 gradually changes to the L level, the short circuit signal 110 that is the output of the calculation / comparison unit 18 is set to the L level during a period in which the voltage level of the triangular wave signal 181 is higher than the voltage level of the internal signal 173. Become.
  • the width of the H level of the short circuit signal 110 gradually decreases, and finally the width disappears.
  • the ratio between the short circuit state and the short circuit release state by the short circuit 6 is sequentially changed.
  • the internal signal 173 includes a period T12 in which the H level continues, and a period T22 in which the transition from the end point of the period T12 to the end point of the H level period of the output signal 170 gradually transitions from the H level to the L level after the elapse of the period T11.
  • the internal signal 173 varies depending on the length of the H level period of the output signal 170 of the PI control unit 17 and the length of the period T12 in which the H level continues and the length of the period T22 in which the H level gradually changes from the L level. To do. In the operation example shown in FIG. 7, the H level period of the output signal 170 is shorter than that in the operation example shown in FIG.
  • both the period T12 and the period T22 of the internal signal 173 are shorter than the operation example shown in FIG. That is, the period T12 in which the H level of the internal signal 173 continues in the operation example shown in FIG. 7 is shorter than the period T11 in which the H level of the internal signal 173 continues in the operation example shown in FIG. Further, the period T22 in which the H level of the internal signal 173 continues in the operation example shown in FIG. 7 is shorter than the period T21 in which the internal signal 173 gradually transitions from the H level to the L level in the operation example shown in FIG. . Therefore, the timing at which the H level width of the short circuit signal 110 disappears is earlier in the operation example shown in FIG. 7 than in the operation example shown in FIG.
  • FIG. 8 is a diagram illustrating an example of voltage and current waveforms of the power supply device obtained by short-circuiting the short circuit 6 of the power supply device according to the first exemplary embodiment of the present invention with the short-circuit signal 110.
  • FIG. 8 shows an operation example of the power supply apparatus when the short circuit signal 110 is generated based on the comparison result between the detected bus voltage 120 and the target bus voltage 160.
  • the width of the H level during the period in which the short circuit signal 110 is intermittently short-circuited is changed depending on the comparison result between the bus voltage detection value 120 and the target bus voltage 160.
  • the short circuit signal 110 includes a period T 1 for continuously short-circuiting the short circuit 6 and a short circuit. There is a period T2 for intermittently short-circuiting the circuit 6.
  • a period T1 shown in FIG. 8 is a period corresponding to the load power value obtained from the bus voltage detection value 120 detected by the bus voltage detection unit 12 and the bus current detection value 130 detected by the bus current detection unit 13. .
  • the period T2 shown in FIG. 8 is a period after the lapse of the period T1 for continuously short-circuiting.
  • the period T2 is a period including the second and subsequent pulses.
  • the period T ⁇ b> 2 includes a period in which the deviation between the bus voltage detection value 120 and the target bus voltage 160 is larger than the predetermined voltage 221 and a period smaller than the predetermined voltage 221. Note that no short circuit is performed from the zero cross point to the next zero cross point after a period T corresponding to a quarter cycle of the AC voltage output from the AC power supply 1.
  • the short circuit signal 110 whose H level width changes as in the periods T1 and T2 becomes the switching control signal of the switching element 8 of the short circuit 6. For this reason, as shown in FIG. 8, the waveform obtained by the continuous short circuit operation and the intermittent short circuit operation of the short circuit 6 expands the rising waveform of the input current to the rectifier circuit 2 toward the zero cross point. . As a result, the waveform obtained is close to the rising waveform of the AC power supply voltage. Note that the waveform obtained is ideally a sine wave.
  • the input current rises by the first continuous short-circuit operation (first pulse of the short-circuit signal 110), and the input current becomes smooth by the next intermittent short-circuit operation (second and subsequent pulses of the short-circuit signal 110). Will change.
  • This smooth change suppresses harmonic components and improves the power factor.
  • the bus voltage detection value can be controlled according to the value of the target bus voltage by turning on and off so that the deviation becomes zero. Can do.
  • the configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Rectifiers (AREA)

Abstract

Provided is a power supply device that can improve the power factor and suppress harmonics, and can bring a DC bus voltage close to a target voltage, without the need for using a large inductive reactance element, and in turn not lead to a rise in costs, and without causing the problem of decreased power conversion efficiency due to switching loss. This power supply device includes: a rectifier circuit for rectifying AC voltage; a bus current detection unit for detecting a bus current outputted from the rectifier circuit; a bus voltage detection unit for detecting a bus voltage outputted by the rectifier circuit; a short-circuiting unit that short-circuits the input side of the rectifier circuit; and a switching control unit for controlling the short-circuit state due to a short circuit. The switching control unit has, as a standard, a zero-crossing point at which AC voltage becomes zero, and after continuously causing short-circuit operation of a short-circuiting unit, intermittently causes short-circuit operation of the short-circuiting unit.

Description

電源装置Power supply
 本発明は、モータ等を駆動するためのインバータ装置等に搭載される電源装置に関する。 The present invention relates to a power supply device mounted on an inverter device or the like for driving a motor or the like.
 交流電力を直流電力に変換して負荷に供給する直流電源装置において、電力変換効率およびEMC(Electro Magnetic Interference)の観点から力率および高調波を抑制することが重要である。上記課題を解決するべく種々の装置、方法等が提案されている。 In a DC power supply device that converts AC power into DC power and supplies it to a load, it is important to suppress power factor and harmonics from the viewpoint of power conversion efficiency and EMC (Electro Magnetic Interference). In order to solve the above problems, various apparatuses, methods, and the like have been proposed.
 特許文献1には、整流回路の入力側に接続されたリアクトルを、必要に応じてエネルギの蓄積及び放出を行うためのスイッチング素子であるトランジスタを交流電源の電圧の零クロス点を基準としたタイミングで連続オンさせたのち断続オンさせるとともに、その両オン時間を該直流電源装置の負荷の状態に基づいて設定するスイッチング制御部を備えた直流電源装置が提案されている。 In Patent Document 1, a reactor connected to the input side of a rectifier circuit is used as a switching element for storing and releasing energy as necessary, and a timing with reference to the zero cross point of the voltage of the AC power supply. A DC power supply device is proposed that includes a switching control unit that is continuously turned on and then intermittently turned on, and that sets both ON times based on the load state of the DC power supply device.
特開2009-100499号公報JP 2009-1000049 A
 しかしながら、特許文献1に記載の直流電源装置においては、直流母線電圧の制御は考慮されていない。このため、負荷にインバータ等の駆動装置を接続しモータなどを制御した場合に、所定の電圧が供給できない可能性がある。 However, in the DC power supply device described in Patent Document 1, control of the DC bus voltage is not considered. For this reason, when a drive device such as an inverter is connected to the load and the motor is controlled, there is a possibility that a predetermined voltage cannot be supplied.
 本発明は、簡素な構成で力率を適正値に保ち、高調波を抑制するとともに直流母線電圧を所望の電圧に制御することができる直流電源装置を提供することを目的とする。 An object of the present invention is to provide a DC power supply device that can maintain a power factor at an appropriate value with a simple configuration, suppress harmonics, and control a DC bus voltage to a desired voltage.
 上述した課題を解決し、目的を達成するために、本発明のある態様による電源装置は、交流電圧を整流する整流回路と、前記整流回路から出力される母線電流を検出する母線電流検出部と、前記整流回路から出力される母線電圧を検出する母線電圧検出部と、前記整流回路の入力側を短絡する短絡部と、前記短絡回路による短絡状態を制御するスイッチング制御部と、を含み、前記スイッチング制御部は、前記交流電圧が零になる零クロス点を基準とし、前記短絡部を連続して短絡動作させた後、前記短絡部を断続して短絡動作させる。 In order to solve the above-described problems and achieve the object, a power supply device according to an aspect of the present invention includes a rectifier circuit that rectifies an AC voltage, and a bus current detector that detects a bus current output from the rectifier circuit. A bus voltage detection unit that detects a bus voltage output from the rectifier circuit, a short circuit unit that short-circuits the input side of the rectifier circuit, and a switching control unit that controls a short circuit state by the short circuit, The switching control unit performs a short-circuit operation on the short-circuit portion continuously with the zero-cross point where the AC voltage becomes zero as a reference, and then intermittently operates the short-circuit portion.
 本発明にかかる電源装置は、簡素な構成で力率を適正値に保ち、高調波を抑制するとともに直流母線電圧を所望の電圧に制御することができるという効果を奏する。 The power supply device according to the present invention has an effect that the power factor can be maintained at an appropriate value with a simple configuration, harmonics can be suppressed, and the DC bus voltage can be controlled to a desired voltage.
本発明の実施の形態1にかかる電源装置の構成を示す図The figure which shows the structure of the power supply device concerning Embodiment 1 of this invention. 本発明の実施の形態1にかかる電源装置の短絡回路による連続的短絡動作及び断続的短絡動作によって得られる電圧及び電流の波形の例を示す図The figure which shows the example of the waveform of the voltage and electric current obtained by the continuous short circuit operation | movement and the intermittent short circuit operation by the short circuit of the power supply device concerning Embodiment 1 of this invention. 本発明の実施の形態1にかかる電源装置のスイッチング制御部の構成例を示す図The figure which shows the structural example of the switching control part of the power supply device concerning Embodiment 1 of this invention. 本発明の実施の形態1にかかる電源装置の零クロス検出部の構成例を示す図The figure which shows the structural example of the zero cross detection part of the power supply device concerning Embodiment 1 of this invention. 図4の零クロス検出部の動作例を示す図The figure which shows the operation example of the zero cross detection part of FIG. 本発明の実施の形態1にかかる電源装置のスイッチング制御部内の制御ブロックの動作例を説明する図The figure explaining the operation example of the control block in the switching control part of the power supply device concerning Embodiment 1 of this invention. 本発明の実施の形態1にかかる電源装置のスイッチング制御部内の制御ブロックの動作例を説明する図The figure explaining the operation example of the control block in the switching control part of the power supply device concerning Embodiment 1 of this invention. 本発明の実施の形態1にかかる電源装置の短絡回路を短絡信号によって短絡することによって得られる電源装置の電圧及び電流の波形の例を示す図The figure which shows the example of the waveform of the voltage of the power supply device obtained by short-circuiting the short circuit of the power supply device concerning Embodiment 1 of this invention with a short circuit signal, and an electric current.
 以下に、本発明の実施の形態にかかる電源装置を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 Hereinafter, a power supply device according to an embodiment of the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.
実施の形態1.
 図1は、実施の形態1にかかる電源装置の構成を示す図である。図1に示すように、実施の形態1にかかる電源装置は、交流電源1に整流回路2が接続され、その整流回路2の出力端に平滑コンデンサ3を介して負荷4が接続される。交流電源1は、例えば、商用の交流電源である。交流電源1の出力は、電圧値及び正負の向きが周期的に変化する。
Embodiment 1 FIG.
FIG. 1 is a diagram illustrating a configuration of the power supply device according to the first embodiment. As shown in FIG. 1, in the power supply device according to the first embodiment, a rectifier circuit 2 is connected to an AC power supply 1, and a load 4 is connected to an output terminal of the rectifier circuit 2 via a smoothing capacitor 3. The AC power source 1 is, for example, a commercial AC power source. The output of the AC power supply 1 periodically changes in voltage value and positive / negative direction.
 負荷4は、例えばインバータ等のスイッチング回路等である。インバータは、例えば、ブラシレスDCモータへの駆動電力を出力するためのインバータである。 The load 4 is, for example, a switching circuit such as an inverter. The inverter is, for example, an inverter for outputting drive power to a brushless DC motor.
 交流電源1と整流回路2との間の通電ラインには、誘導性リアクタンス素子いわゆるリアクトル5が接続される。そして、リアクトル5の接続位置より下流側の通電ラインL1,L2に短絡回路6が接続される。短絡回路6は、通電ラインL1と通電ラインL2とを短絡する短絡部として機能する。 An inductive reactance element so-called reactor 5 is connected to the energization line between the AC power source 1 and the rectifier circuit 2. And the short circuit 6 is connected to the energization lines L1 and L2 on the downstream side from the connection position of the reactor 5. The short circuit 6 functions as a short-circuit portion that short-circuits the energization line L1 and the energization line L2.
 短絡回路6は、ダイオードブリッジからなる整流回路7と、スイッチング素子8とを含む。スイッチング素子8は、例えば、バイポーラトランジスタ又はMOSFET(metal-oxide-semiconductor field-effect transistor)などである。短絡回路6において、スイッチング素子8がオンすると、リアクトル5を含む通電ラインL1と通電ラインL2との間を短絡する短絡状態になる。その後、スイッチング素子8がオフすると、通電ラインL1と通電ラインL2との間の短絡を解除する短絡解除状態になる。 The short circuit 6 includes a rectifier circuit 7 composed of a diode bridge and a switching element 8. The switching element 8 is, for example, a bipolar transistor or a MOSFET (metal-oxide-semiconductor field-effect transistor). In the short circuit 6, when the switching element 8 is turned on, a short circuit is established in which the energization line L 1 including the reactor 5 and the energization line L 2 are short-circuited. Thereafter, when the switching element 8 is turned off, a short-circuit release state is released in which the short circuit between the energization line L1 and the energization line L2 is released.
 また、交流電源1には、零クロス検出部10が接続される。零クロス検出部10は、交流電源1の電圧の零クロス点を検出する。零クロス検出部10は、例えば、フォトカプラ又はカレントトランスを備えている。零クロス検出部10の検出結果である零クロス信号101は、スイッチング制御部11内の制御ブロックに供給される。 Also, a zero cross detection unit 10 is connected to the AC power source 1. The zero cross detector 10 detects a zero cross point of the voltage of the AC power supply 1. The zero cross detection unit 10 includes, for example, a photocoupler or a current transformer. A zero cross signal 101 as a detection result of the zero cross detection unit 10 is supplied to a control block in the switching control unit 11.
 母線電圧検出部12は、平滑コンデンサ3と負荷4との間の通電ラインL3とL4との間に並列に接続される。母線電圧検出部12は、通電ラインL3とL4との間の電圧である母線電圧を検出する。母線電圧検出部12の検出結果である母線電圧検出値120は、スイッチング制御部11に供給される。 The bus voltage detector 12 is connected in parallel between the energization lines L3 and L4 between the smoothing capacitor 3 and the load 4. The bus voltage detection unit 12 detects a bus voltage that is a voltage between the energization lines L3 and L4. A bus voltage detection value 120 that is a detection result of the bus voltage detection unit 12 is supplied to the switching control unit 11.
 平滑コンデンサ3と負荷4との間の通電ラインL4に直列に、母線電流検出部13が接続される。母線電流検出部13は、通電ラインL4に流れる直流電流である母線電流を検出する。母線電流検出部13による母線電流の検出結果である母線電流検出値130は、スイッチング制御部11に供給される。 A bus current detection unit 13 is connected in series with the energization line L4 between the smoothing capacitor 3 and the load 4. The bus current detection unit 13 detects a bus current that is a direct current flowing through the energization line L4. A bus current detection value 130, which is a detection result of the bus current by the bus current detection unit 13, is supplied to the switching control unit 11.
 スイッチング制御部11は、短絡回路6を連続オン動作及び断続オン動作させるためのパルス状の短絡信号110を生成する。スイッチング制御部11は、母線電圧検出部12より検出した母線電圧と任意の目標とする電圧レベルとを基に短絡信号110を生成する。スイッチング制御部11は、零クロス検出部10によって検出された零クロス点を基準に、短絡信号110を生成する。スイッチング制御部11は、短絡信号110のパルスがオン期間の時、短絡回路6のスイッチング素子8をオンし、短絡信号110のパルスがオフ期間の時、スイッチング素子8をオフする。 The switching control unit 11 generates a pulsed short circuit signal 110 for causing the short circuit 6 to be continuously turned on and intermittently turned on. The switching control unit 11 generates the short circuit signal 110 based on the bus voltage detected by the bus voltage detection unit 12 and an arbitrary target voltage level. The switching control unit 11 generates the short circuit signal 110 based on the zero cross point detected by the zero cross detection unit 10. The switching control unit 11 turns on the switching element 8 of the short circuit 6 when the pulse of the short circuit signal 110 is on, and turns off the switching element 8 when the pulse of the short circuit signal 110 is off.
 このスイッチング制御部11は、零クロス検出部10の検出タイミングを基準にして、母線電流検出部13と母線電圧検出部12とによって求めた負荷4の電力値、及び、母線電圧検出部12によって検出した電圧と目標とする電圧レベルとの偏差に基づいて、短絡回路6を先ず連続オン動作させ、続いて断続オン動作させる。つまり、スイッチング制御部11は、短絡信号110の、短絡回路6を連続して短絡動作させる期間及び短絡回路6を断続して短絡動作させる期間を、母線電圧検出部12によって検出される母線電圧検出値と目標とする目標母線電圧との偏差に基づいて設定する。 The switching control unit 11 detects the power value of the load 4 obtained by the bus current detection unit 13 and the bus voltage detection unit 12 and the bus voltage detection unit 12 based on the detection timing of the zero cross detection unit 10. Based on the deviation between the voltage and the target voltage level, the short circuit 6 is first continuously turned on and then intermittently turned on. That is, the switching control unit 11 detects the bus voltage detected by the bus voltage detection unit 12 during the period in which the short circuit 6 is continuously short-circuited and the period in which the short circuit 6 is intermittently short-circuited. The value is set based on the deviation between the target bus voltage and the target bus voltage.
 次に、上記構成の電源装置の動作について説明する。交流電源1が投入されると、その交流電圧がリアクトル5を介して整流回路2に供給される。整流回路2では、交流電圧が直流電圧に変換される。この直流電圧は平滑コンデンサ3によって平滑される。平滑コンデンサ3によって平滑された直流電圧は、負荷4に供給される。 Next, the operation of the power supply device having the above configuration will be described. When the AC power supply 1 is turned on, the AC voltage is supplied to the rectifier circuit 2 via the reactor 5. In the rectifier circuit 2, an alternating voltage is converted into a direct voltage. This DC voltage is smoothed by the smoothing capacitor 3. The DC voltage smoothed by the smoothing capacitor 3 is supplied to the load 4.
 交流電源1の電圧の零クロス点が零クロス検出部10で検出される。零クロス検出部10で検出される零クロス点の検出タイミングを基準に、短絡回路6は母線電圧検出部12によって検出された母線電圧検出値と目標とする母線電圧との偏差の値を基に断続オン動作する。 The zero cross point of the voltage of the AC power supply 1 is detected by the zero cross detection unit 10. Based on the detection timing of the zero cross point detected by the zero cross detection unit 10, the short circuit 6 is based on the deviation value between the bus voltage detection value detected by the bus voltage detection unit 12 and the target bus voltage. Intermittently on operation.
 図2は、本発明の実施の形態1にかかる電源装置の短絡回路6による連続的短絡動作及び断続的短絡動作によって得られる電流の波形の例を示す図である。図2に示すように、短絡信号110に、連続オン動作の期間T1に続いて、断続オン動作の期間T2が存在することにより、電流の波形は正弦波に近づく。 FIG. 2 is a diagram illustrating an example of a waveform of a current obtained by a continuous short circuit operation and an intermittent short circuit operation by the short circuit 6 of the power supply device according to the first embodiment of the present invention. As shown in FIG. 2, the current waveform approaches a sine wave due to the presence of the intermittent on-operation period T2 in the short-circuit signal 110 following the continuous on-operation period T1.
 (スイッチング制御部)
 図3は、本発明の実施の形態1にかかる電源装置のスイッチング制御部11の構成例を示す図である。図3に示すように、スイッチング制御部11は、制御ブロック100及び200を備えている。
(Switching control unit)
FIG. 3 is a diagram illustrating a configuration example of the switching control unit 11 of the power supply device according to the first embodiment of the present invention. As shown in FIG. 3, the switching control unit 11 includes control blocks 100 and 200.
 (制御ブロック100)
 制御ブロック100は、電力算出部15と、目標母線電圧算出部16とを備えている。電力算出部15は、母線電圧検出値120及び母線電流検出値130に基づいて負荷4の電力値(以下、負荷電力値と記す)を算出する。目標母線電圧算出部16は、電力算出部15が算出した負荷電力値150に対応するパルスを生成する。目標母線電圧算出部16が生成するパルスは、目標母線電圧160として出力される。目標母線電圧160は、制御ブロック200に入力される。
(Control block 100)
The control block 100 includes a power calculation unit 15 and a target bus voltage calculation unit 16. The power calculation unit 15 calculates a power value of the load 4 (hereinafter referred to as a load power value) based on the bus voltage detection value 120 and the bus current detection value 130. The target bus voltage calculation unit 16 generates a pulse corresponding to the load power value 150 calculated by the power calculation unit 15. The pulse generated by the target bus voltage calculation unit 16 is output as the target bus voltage 160. Target bus voltage 160 is input to control block 200.
 (制御ブロック200)
 制御ブロック200は、演算器9と、PI(Proportional-Integral)制御部17と、演算・比較部18とを備えている。演算器9は、目標母線電圧160と母線電圧検出値120との偏差を算出する。演算器9は、目標母線電圧160と母線電圧検出値120との偏差を偏差信号90として出力する。PI制御部17は、演算器9が算出する偏差信号90の偏差が限りなく零になるように変化する比例積分制御信号を出力する。PI制御部17の出力信号170は、演算・比較部18に入力される。
(Control block 200)
The control block 200 includes an arithmetic unit 9, a PI (Proportional-Integral) control unit 17, and an arithmetic / comparison unit 18. The calculator 9 calculates a deviation between the target bus voltage 160 and the detected bus voltage 120. The calculator 9 outputs a deviation between the target bus voltage 160 and the detected bus voltage 120 as a deviation signal 90. The PI control unit 17 outputs a proportional-integral control signal that changes so that the deviation of the deviation signal 90 calculated by the calculator 9 becomes zero as much as possible. The output signal 170 of the PI control unit 17 is input to the calculation / comparison unit 18.
 演算・比較部18は、信号生成部171と、比較部172とを有する。信号生成部171は、内部信号173を生成する。内部信号173は、母線電圧検出値120と目標母線電圧160との偏差を徐々に低下させる信号である。内部信号173は、Hレベルが継続する期間T1とHレベルからLレベルまで徐々に遷移する期間T2とを有する。信号生成部171は、PI制御部17の出力信号170のHレベルの期間に応じて、内部信号173の期間T1の長さ及び内部信号173の期間T2の長さをリニアに変化させる。例えば、信号生成部171は、出力信号170のHレベルの期間の長さと期間T1の長さとの比を一定に保ったままで、出力信号170のHレベルの期間に応じて、期間T2の長さを変化させる。信号生成部171は、期間T1の終点から、出力信号170のHレベルの期間の終点まで、HレベルからLレベルまで徐々に遷移する内部信号173を、線形近似によって生成する。比較部172は、内部信号173と三角波信号181とを比較する。比較部172は、三角波信号181の電圧レベルが内部信号173の電圧レベルを超える期間にLレベルとなり、それ以外の期間にHレベルとなる短絡信号110を出力する。三角波信号181は、予め設定した任意の周波数を有する。例えば、PWM(Pulse Width Modulation)制御において用いられる三角波キャリア信号を、三角波信号181として利用することができる。 The calculation / comparison unit 18 includes a signal generation unit 171 and a comparison unit 172. The signal generation unit 171 generates an internal signal 173. The internal signal 173 is a signal that gradually decreases the deviation between the detected bus voltage 120 and the target bus voltage 160. The internal signal 173 has a period T1 in which the H level continues and a period T2 in which the internal signal 173 gradually transitions from the H level to the L level. The signal generation unit 171 linearly changes the length of the period T1 of the internal signal 173 and the length of the period T2 of the internal signal 173 in accordance with the H level period of the output signal 170 of the PI control unit 17. For example, the signal generation unit 171 maintains the ratio between the length of the H level period of the output signal 170 and the length of the period T1, and the length of the period T2 according to the H level period of the output signal 170. To change. The signal generation unit 171 generates an internal signal 173 that gradually transitions from the H level to the L level from the end point of the period T1 to the end point of the H level period of the output signal 170 by linear approximation. The comparison unit 172 compares the internal signal 173 and the triangular wave signal 181. The comparison unit 172 outputs the short circuit signal 110 that becomes L level when the voltage level of the triangular wave signal 181 exceeds the voltage level of the internal signal 173 and becomes H level during other periods. The triangular wave signal 181 has an arbitrary frequency set in advance. For example, a triangular wave carrier signal used in PWM (Pulse Width Modulation) control can be used as the triangular wave signal 181.
 (零クロス検出部)
 図4は、本発明の実施の形態1にかかる電源装置の零クロス検出部10の構成例を示す図である。図5は、図4に示す零クロス検出部10の動作例を示す図である。
(Zero cross detector)
FIG. 4 is a diagram illustrating a configuration example of the zero cross detection unit 10 of the power supply device according to the first embodiment of the present invention. FIG. 5 is a diagram illustrating an operation example of the zero cross detection unit 10 illustrated in FIG. 4.
 図4に示すように零クロス検出部10は、ダイオード27と、フォトカプラ28と、プルアップ抵抗29と、抵抗30とを備えている。 As shown in FIG. 4, the zero-cross detection unit 10 includes a diode 27, a photocoupler 28, a pull-up resistor 29, and a resistor 30.
 抵抗30は、交流電源1による電流を制限する。フォトカプラ28は、発光ダイオード281及びフォトトランジスタ282を内蔵している。発光ダイオード281とダイオード27とは、アノード、カソードの向きが、互いに逆になるように接続される。フォトトランジスタ282は、コレクタがプルアップ抵抗29に接続され、エミッタがグランドに接続される。フォトトランジスタ282は、発光ダイオード281が発光しているときにオンになり、発光していないときにオフになる。フォトトランジスタ282がオンになると零クロス信号101はLレベル、フォトトランジスタ282がオフになると零クロス信号101はHレベルになる。 Resistor 30 limits current from AC power supply 1. The photocoupler 28 includes a light emitting diode 281 and a phototransistor 282. The light emitting diode 281 and the diode 27 are connected so that the directions of the anode and the cathode are opposite to each other. The phototransistor 282 has a collector connected to the pull-up resistor 29 and an emitter connected to the ground. The phototransistor 282 is turned on when the light emitting diode 281 is emitting light, and is turned off when not emitting light. When the phototransistor 282 is turned on, the zero cross signal 101 becomes L level, and when the phototransistor 282 is turned off, the zero cross signal 101 becomes H level.
 図5に示すように、交流電源1の電圧は、周期的に変化する。ここで、発光ダイオード281は、交流電源1の電圧がプラス(+)であるときに発光し、電圧がマイナス(-)であるときに発光しないものとする。このため、交流電源1の電圧がプラス(+)であるときに零クロス信号101はLレベル、交流電源1の電圧がマイナス(-)であるときに零クロス信号101はHレベルになる。つまり、交流電源1の電圧が零ボルトを通過するごとに、零クロス信号101はLレベルからHレベルへ又はHレベルからLレベルへ遷移する。つまり、零クロス信号101は、交流電源1の出力電圧の1/2周期毎に零ボルトになる。このため、零クロス信号101は、交流電源1の出力電圧が零ボルトになる零クロス点(図5中の矢印で示す各タイミング)を示す信号になる。 As shown in FIG. 5, the voltage of the AC power supply 1 changes periodically. Here, the light emitting diode 281 emits light when the voltage of the AC power supply 1 is positive (+), and does not emit light when the voltage is negative (−). For this reason, when the voltage of the AC power supply 1 is plus (+), the zero cross signal 101 becomes L level, and when the voltage of the AC power supply 1 is minus (−), the zero cross signal 101 becomes H level. That is, every time the voltage of the AC power supply 1 passes zero volts, the zero cross signal 101 changes from the L level to the H level or from the H level to the L level. That is, the zero cross signal 101 becomes zero volts every half cycle of the output voltage of the AC power supply 1. Therefore, the zero cross signal 101 is a signal indicating a zero cross point (each timing indicated by an arrow in FIG. 5) at which the output voltage of the AC power supply 1 becomes zero volts.
 (制御ブロック200の動作例)
 図6及び図7は、本発明の実施の形態1にかかる電源装置のスイッチング制御部11内の制御ブロック300の動作例を説明する図である。図6及び図7は、零クロス信号101、PI制御部17の出力信号170、内部信号173、三角波信号181、短絡信号110について、波形の例を示す。PI制御部17の出力信号170がHレベルになる期間の最大値Ton_maxは、零クロス信号101による零クロス点から電源電圧の1/4周期までの期間である。この電源電圧の1/4周期までの期間において、短絡信号110が出力される。
(Operation example of control block 200)
6 and 7 are diagrams for explaining an operation example of the control block 300 in the switching control unit 11 of the power supply device according to the first embodiment of the present invention. 6 and 7 show examples of waveforms for the zero cross signal 101, the output signal 170 of the PI control unit 17, the internal signal 173, the triangular wave signal 181 and the short circuit signal 110. FIG. The maximum value Ton_max during which the output signal 170 of the PI control unit 17 is at the H level is a period from the zero cross point by the zero cross signal 101 to a quarter cycle of the power supply voltage. The short circuit signal 110 is output during the period up to ¼ period of the power supply voltage.
 図6に示すように、内部信号173は、Hレベルが継続する期間T11と、期間T11の経過後に、期間T11の終点から出力信号170のHレベルの期間の終点まで、HレベルからLレベルまで徐々に遷移する期間T21とを有する。内部信号173と三角波信号181とは演算・比較部18で電圧レベルが比較される。内部信号173が徐々にLレベルになるように変化するため、三角波信号181の電圧レベルが内部信号173の電圧レベルよりも高い期間は演算・比較部18の出力である短絡信号110がLレベルになる。内部信号173は徐々にLレベルになるように変化するため、短絡信号110のHレベルの幅は、徐々に短くなり、最後は幅が無くなる。このように、内部信号173と三角波信号181との比較結果に基づいて、短絡回路6による短絡状態と短絡解除状態との割合が順次変更される。 As shown in FIG. 6, the internal signal 173 is from the H level to the L level from the end point of the period T11 to the end point of the H level period of the output signal 170 after the elapse of the period T11 and the period T11. And a period T21 in which the transition is made gradually. The voltage levels of the internal signal 173 and the triangular wave signal 181 are compared by the calculation / comparison unit 18. Since the internal signal 173 gradually changes to the L level, the short circuit signal 110 that is the output of the calculation / comparison unit 18 is set to the L level during a period in which the voltage level of the triangular wave signal 181 is higher than the voltage level of the internal signal 173. Become. Since the internal signal 173 gradually changes to the L level, the width of the H level of the short circuit signal 110 gradually decreases, and finally the width disappears. Thus, based on the comparison result between the internal signal 173 and the triangular wave signal 181, the ratio between the short circuit state and the short circuit release state by the short circuit 6 is sequentially changed.
 図7に示す各信号は、図6に示す各信号と同様に変化する。内部信号173は、Hレベルが継続する期間T12と、期間T11の経過後に、期間T12の終点から出力信号170のHレベルの期間の終点まで、HレベルからLレベルまで徐々に遷移する期間T22とを有する。内部信号173は、PI制御部17の出力信号170のHレベルの期間の長さによって、Hレベルが継続する期間T12の長さとHレベルからLレベルまで徐々に遷移する期間T22の長さとが変化する。図7に示す動作例では、図6に示す動作例よりも、出力信号170のHレベルの期間が短い。このため、図7に示す動作例では、図6に示す動作例よりも、内部信号173の期間T12及び期間T22が共に短い。すなわち、図6に示す動作例において内部信号173のHレベルが継続する期間T11よりも、図7に示す動作例において内部信号173のHレベルが継続する期間T12の方が短い。また、図6に示す動作例において内部信号173のHレベルからLレベルまで徐々に遷移する期間T21よりも、図7に示す動作例において内部信号173のHレベルが継続する期間T22の方が短い。このため、短絡信号110のHレベルの幅が無くなるタイミングは、図6に示す動作例よりも、図7に示す動作例の方が早い。 Each signal shown in FIG. 7 changes in the same manner as each signal shown in FIG. The internal signal 173 includes a period T12 in which the H level continues, and a period T22 in which the transition from the end point of the period T12 to the end point of the H level period of the output signal 170 gradually transitions from the H level to the L level after the elapse of the period T11. Have The internal signal 173 varies depending on the length of the H level period of the output signal 170 of the PI control unit 17 and the length of the period T12 in which the H level continues and the length of the period T22 in which the H level gradually changes from the L level. To do. In the operation example shown in FIG. 7, the H level period of the output signal 170 is shorter than that in the operation example shown in FIG. Therefore, in the operation example shown in FIG. 7, both the period T12 and the period T22 of the internal signal 173 are shorter than the operation example shown in FIG. That is, the period T12 in which the H level of the internal signal 173 continues in the operation example shown in FIG. 7 is shorter than the period T11 in which the H level of the internal signal 173 continues in the operation example shown in FIG. Further, the period T22 in which the H level of the internal signal 173 continues in the operation example shown in FIG. 7 is shorter than the period T21 in which the internal signal 173 gradually transitions from the H level to the L level in the operation example shown in FIG. . Therefore, the timing at which the H level width of the short circuit signal 110 disappears is earlier in the operation example shown in FIG. 7 than in the operation example shown in FIG.
 (電源装置の動作例)
 図8は、本発明の実施の形態1にかかる電源装置の短絡回路6を短絡信号110によって短絡することによって得られる電源装置の電圧及び電流の波形の例を示す図である。図8は、母線電圧検出値120と目標母線電圧160との比較結果に基づいて短絡信号110を生成した場合の電源装置の動作例を示す。図8に示す動作例では、母線電圧検出値120と目標母線電圧160との比較結果によって短絡信号110の断続して短絡動作させる期間のHレベルの幅が変化する。
(Example of power supply operation)
FIG. 8 is a diagram illustrating an example of voltage and current waveforms of the power supply device obtained by short-circuiting the short circuit 6 of the power supply device according to the first exemplary embodiment of the present invention with the short-circuit signal 110. FIG. 8 shows an operation example of the power supply apparatus when the short circuit signal 110 is generated based on the comparison result between the detected bus voltage 120 and the target bus voltage 160. In the operation example shown in FIG. 8, the width of the H level during the period in which the short circuit signal 110 is intermittently short-circuited is changed depending on the comparison result between the bus voltage detection value 120 and the target bus voltage 160.
 図8に示すように、交流電源1の出力である交流電圧の1/4周期に相当する期間Tにおいて、短絡信号110には、短絡回路6を連続して短絡させるための期間T1と、短絡回路6を断続して短絡させるための期間T2とが存在する。 As shown in FIG. 8, in the period T corresponding to a quarter cycle of the AC voltage that is the output of the AC power supply 1, the short circuit signal 110 includes a period T 1 for continuously short-circuiting the short circuit 6 and a short circuit. There is a period T2 for intermittently short-circuiting the circuit 6.
 図8に示す期間T1は、母線電圧検出部12によって検出される母線電圧検出値120と母線電流検出部13によって検出される母線電流検出値130より求めた負荷の電力値に対応する期間である。 A period T1 shown in FIG. 8 is a period corresponding to the load power value obtained from the bus voltage detection value 120 detected by the bus voltage detection unit 12 and the bus current detection value 130 detected by the bus current detection unit 13. .
 図8に示す期間T2は、連続して短絡させるための期間T1の経過後の期間である。期間T1を1つ目のパルスとすると、期間T2は、2つ目以降のパルスが含まれる期間である。期間T2は、母線電圧検出値120と目標母線電圧160との偏差が既定電圧221より大きい期間と既定電圧221より小さい期間とを含む。なお、零クロス点から、交流電源1の出力である交流電圧の1/4周期に相当する期間T以降から次の零クロス点までは短絡を行わない。 The period T2 shown in FIG. 8 is a period after the lapse of the period T1 for continuously short-circuiting. When the period T1 is the first pulse, the period T2 is a period including the second and subsequent pulses. The period T <b> 2 includes a period in which the deviation between the bus voltage detection value 120 and the target bus voltage 160 is larger than the predetermined voltage 221 and a period smaller than the predetermined voltage 221. Note that no short circuit is performed from the zero cross point to the next zero cross point after a period T corresponding to a quarter cycle of the AC voltage output from the AC power supply 1.
 上記のように期間T1及び期間T2のようにHレベルの幅が変化する短絡信号110は、短絡回路6のスイッチング素子8のスイッチング制御信号となる。このため、短絡回路6の連続的な短絡動作及び断続的な短絡動作によって得られる波形は、図8に示すように、整流回路2への入力電流の立上り波形が零クロス点側に拡大される。これによって、得られる波形は、交流電源電圧の立上り波形に近づいた状態となる。なお、得られる波形は、理想的には正弦波である。 As described above, the short circuit signal 110 whose H level width changes as in the periods T1 and T2 becomes the switching control signal of the switching element 8 of the short circuit 6. For this reason, as shown in FIG. 8, the waveform obtained by the continuous short circuit operation and the intermittent short circuit operation of the short circuit 6 expands the rising waveform of the input current to the rectifier circuit 2 toward the zero cross point. . As a result, the waveform obtained is close to the rising waveform of the AC power supply voltage. Note that the waveform obtained is ideally a sine wave.
 以上の動作により、最初の連続的短絡動作(短絡信号110の最初のパルス)により入力電流が立上り、次の断続的短絡動作(短絡信号110の2つ目以降の各パルス)により入力電流が滑らかに変化していく。この滑らかな変化により、高調波成分を抑制するとともに力率が改善される。また、検出した母線電圧と目標母線電圧との偏差がある既定電圧未満になると、その偏差が零になるように断続オンさせることで、母線電圧検出値も目標母線電圧の値通りに制御することができる。 With the above operation, the input current rises by the first continuous short-circuit operation (first pulse of the short-circuit signal 110), and the input current becomes smooth by the next intermittent short-circuit operation (second and subsequent pulses of the short-circuit signal 110). Will change. This smooth change suppresses harmonic components and improves the power factor. In addition, when the deviation between the detected bus voltage and the target bus voltage is less than a certain preset voltage, the bus voltage detection value can be controlled according to the value of the target bus voltage by turning on and off so that the deviation becomes zero. Can do.
 以上により、大型の誘導性リアクタンス素子を用いる必要がなく、ひいてはコストの上昇を招くことなく、スイッチング損失による電力変換効率の低下という問題を生じることもなく、力率の改善および高調波の抑制が可能であるとともに、直流母線電圧を目標とする電圧に近づけることのできる電源装置を実現できる。 As described above, it is not necessary to use a large inductive reactance element, and thus, without causing an increase in cost, without causing a problem of reduction in power conversion efficiency due to switching loss, improvement in power factor and suppression of harmonics can be achieved. It is possible to realize a power supply device that can make the DC bus voltage close to the target voltage.
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.
 1 交流電源、2 整流回路、3 平滑コンデンサ、4 負荷、5 リアクトル、6 短絡回路、7 整流回路、8 スイッチング素子、9 演算器、10 零クロス検出部、11 スイッチング制御部、12 母線電圧検出部、13 母線電流検出部、15 電力算出部、16 目標母線電圧算出部、17 PI制御部、18 制御・比較部、100,200 制御ブロック、171 信号生成部、173 比較部、281 発光ダイオード、282 フォトトランジスタ。 1 AC power supply, 2 rectifier circuit, 3 smoothing capacitor, 4 load, 5 reactor, 6 short circuit, 7 rectifier circuit, 8 switching element, 9 computing unit, 10 zero cross detector, 11 switching controller, 12 bus voltage detector , 13 bus current detection unit, 15 power calculation unit, 16 target bus voltage calculation unit, 17 PI control unit, 18 control / comparison unit, 100, 200 control block, 171 signal generation unit, 173 comparison unit, 281 light emitting diode, 282 Phototransistor.

Claims (4)

  1.  交流電圧を整流する整流回路と、
     前記整流回路から出力される母線電流を検出する母線電流検出部と、
     前記整流回路から出力される母線電圧を検出する母線電圧検出部と、
     前記整流回路の入力側を短絡する短絡部と、
     前記短絡部による短絡状態を制御するスイッチング制御部と、
    を含み、
     前記スイッチング制御部は、前記交流電圧が零になる零クロス点を基準とし、前記短絡部を連続して短絡動作させた後、前記短絡部を断続して短絡動作させる
    電源装置。
    A rectifier circuit for rectifying an alternating voltage;
    A bus current detector for detecting a bus current output from the rectifier circuit;
    A bus voltage detector for detecting a bus voltage output from the rectifier circuit;
    A short circuit that short-circuits the input side of the rectifier circuit;
    A switching control unit for controlling a short circuit state by the short circuit unit;
    Including
    The switching control unit is a power supply device that performs a short-circuit operation on the short-circuit unit continuously after the short-circuit unit is continuously short-circuited on the basis of a zero cross point where the AC voltage is zero.
  2.  前記零クロス点を検出する零クロス検出部を更に含み、前記スイッチング制御部は、前記零クロス検出部が検出する前記零クロス点から、前記交流電圧の1/4周期に相当する期間において、前記短絡部を連続して短絡動作させた後、前記短絡部を断続して短絡動作させる短絡信号を出力する
    請求項1に記載の電源装置。
    Further comprising a zero cross detection unit for detecting the zero cross point, the switching control unit, in a period corresponding to a quarter cycle of the AC voltage from the zero cross point detected by the zero cross detection unit, 2. The power supply device according to claim 1, wherein after the short-circuit portion is continuously short-circuited, a short-circuit signal for intermittently short-circuiting the short-circuit portion is output.
  3.  前記スイッチング制御部は、
     前記短絡信号の、前記短絡部を断続して短絡動作させる期間を、前記母線電圧検出部によって検出される母線電圧値と目標とする目標母線電圧との偏差に基づいて設定する
    請求項1又は2に記載の電源装置。
    The switching controller is
    3. A period of the short-circuit signal, in which the short-circuit portion is intermittently operated to be short-circuited, is set based on a deviation between a bus voltage value detected by the bus-bar voltage detection unit and a target target bus voltage. The power supply device described in 1.
  4.  前記スイッチング制御部は、
     前記偏差を徐々に低下させる信号と三角波信号との比較結果に基づいて、前記短絡信号を出力する
    請求項1から請求項3のいずれか1つに記載の電源装置。
    The switching controller is
    4. The power supply device according to claim 1, wherein the short circuit signal is output based on a comparison result between a signal that gradually reduces the deviation and a triangular wave signal. 5.
PCT/JP2015/070230 2015-07-15 2015-07-15 Power supply device WO2017009963A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017528066A JPWO2017009963A1 (en) 2015-07-15 2015-07-15 Power supply
PCT/JP2015/070230 WO2017009963A1 (en) 2015-07-15 2015-07-15 Power supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/070230 WO2017009963A1 (en) 2015-07-15 2015-07-15 Power supply device

Publications (1)

Publication Number Publication Date
WO2017009963A1 true WO2017009963A1 (en) 2017-01-19

Family

ID=57757219

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/070230 WO2017009963A1 (en) 2015-07-15 2015-07-15 Power supply device

Country Status (2)

Country Link
JP (1) JPWO2017009963A1 (en)
WO (1) WO2017009963A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110868060A (en) * 2019-11-29 2020-03-06 广东美的制冷设备有限公司 Control method, control device, household appliance and computer readable storage medium
JP2020184862A (en) * 2019-05-09 2020-11-12 株式会社デンソー On-vehicle charger

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009100499A (en) * 2007-10-15 2009-05-07 Sharp Corp Dc power supply unit
WO2012070201A1 (en) * 2010-11-24 2012-05-31 パナソニック株式会社 Dc power source device
EP2595298A1 (en) * 2010-07-12 2013-05-22 Panasonic Corporation Rectifier circuit device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6122758A (en) * 1984-07-11 1986-01-31 Sanken Electric Co Ltd Switching regulator
JP3175227B2 (en) * 1991-09-13 2001-06-11 モトローラ株式会社 DC / DC voltage converter
JP2000217363A (en) * 1999-01-22 2000-08-04 Toshiba Corp Power supply device
JP3961812B2 (en) * 2001-10-31 2007-08-22 富士通株式会社 Power supply device and control method thereof
JP3742929B2 (en) * 2002-06-12 2006-02-08 ダイキン工業株式会社 Power supply
JP5470150B2 (en) * 2010-04-23 2014-04-16 ローム株式会社 Switching power supply control circuit, control method, and light emitting device and electronic apparatus using them

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009100499A (en) * 2007-10-15 2009-05-07 Sharp Corp Dc power supply unit
EP2595298A1 (en) * 2010-07-12 2013-05-22 Panasonic Corporation Rectifier circuit device
WO2012070201A1 (en) * 2010-11-24 2012-05-31 パナソニック株式会社 Dc power source device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020184862A (en) * 2019-05-09 2020-11-12 株式会社デンソー On-vehicle charger
JP7167843B2 (en) 2019-05-09 2022-11-09 株式会社デンソー car charger
CN110868060A (en) * 2019-11-29 2020-03-06 广东美的制冷设备有限公司 Control method, control device, household appliance and computer readable storage medium
CN110868060B (en) * 2019-11-29 2023-07-21 广东美的制冷设备有限公司 Control method, control device, home appliance and computer readable storage medium

Also Published As

Publication number Publication date
JPWO2017009963A1 (en) 2017-10-19

Similar Documents

Publication Publication Date Title
JP5701283B2 (en) Charger
US9294001B2 (en) Power converter with dead-time control function
WO2013146340A1 (en) Inverter device
US20170279398A1 (en) Electric power conversion device
JP6081214B2 (en) Non-contact power feeding device
JP2014180110A (en) DC-DC converter
RU2016103761A (en) ENGINE CONTROLLER
EP2793382A2 (en) Power transforming apparatus
JP2015070724A (en) Power conversion device
JP5678860B2 (en) AC / DC converter
US9214864B2 (en) Switch mode power supply with switchable output voltage polarity
JP6161998B2 (en) Power supply device and power supply device for arc machining
US20150244287A1 (en) Power conversion apparatus and power conversion method
WO2017009963A1 (en) Power supply device
JP5228609B2 (en) Power supply
JPH10150769A (en) Forward type dc-dc converter
JP6286380B2 (en) Power converter
US20100237053A1 (en) Modified phase shifted gate drive
JP2010068676A (en) Switching power supply
JP6056425B2 (en) Power supply
JP2010284709A (en) Power source device
CN103944437A (en) Power supply device and power supply device for arc processing
JP5471513B2 (en) Power supply
JP2011114963A (en) Method and processing device of inverter control
US20180254696A1 (en) Power Supply for Welding and Cutting Apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15898275

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017528066

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15898275

Country of ref document: EP

Kind code of ref document: A1