WO2017008365A1 - 液晶面板的驱动方法及驱动装置 - Google Patents

液晶面板的驱动方法及驱动装置 Download PDF

Info

Publication number
WO2017008365A1
WO2017008365A1 PCT/CN2015/086792 CN2015086792W WO2017008365A1 WO 2017008365 A1 WO2017008365 A1 WO 2017008365A1 CN 2015086792 W CN2015086792 W CN 2015086792W WO 2017008365 A1 WO2017008365 A1 WO 2017008365A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
actual
pixel
values
color
Prior art date
Application number
PCT/CN2015/086792
Other languages
English (en)
French (fr)
Inventor
康志聪
陈黎暄
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US14/781,136 priority Critical patent/US9805670B2/en
Publication of WO2017008365A1 publication Critical patent/WO2017008365A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3607Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals for displaying colours or for displaying grey scales with a specific pixel layout, e.g. using sub-pixels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2003Display of colours
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2007Display of intermediate tones
    • G09G3/2074Display of intermediate tones using sub-pixels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • G01J3/463Colour matching
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134345Subdivided pixels, e.g. for grey scale or redundancy
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0439Pixel structures
    • G09G2300/0443Pixel structures with several sub-pixels for the same colour in a pixel, not specifically used to display gradations
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0439Pixel structures
    • G09G2300/0452Details of colour pixel setup, e.g. pixel composed of a red, a blue and two green components
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/027Details of drivers for data electrodes, the drivers handling digital grey scale data, e.g. use of D/A converters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0242Compensation of deficiencies in the appearance of colours
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0271Adjustment of the gradation levels within the range of the gradation scale, e.g. by redistribution or clipping
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0271Adjustment of the gradation levels within the range of the gradation scale, e.g. by redistribution or clipping
    • G09G2320/0276Adjustment of the gradation levels within the range of the gradation scale, e.g. by redistribution or clipping for the purpose of adaptation to the characteristics of a display device, i.e. gamma correction
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/028Improving the quality of display appearance by changing the viewing angle properties, e.g. widening the viewing angle, adapting the viewing angle to the view direction
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2340/00Aspects of display data processing
    • G09G2340/04Changes in size, position or resolution of an image
    • G09G2340/0407Resolution change, inclusive of the use of different resolutions for different screen areas
    • G09G2340/0428Gradation resolution change
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2360/00Aspects of the architecture of display systems
    • G09G2360/16Calculation or use of calculated indices related to luminance levels in display data

Definitions

  • the invention belongs to the technical field of liquid crystal displays, and more particularly to a driving method and a driving device for a liquid crystal panel.
  • liquid crystal displays have gradually replaced conventional cathode ray tube (CRT) displays with their small size, light weight, and high display quality.
  • the screen displayed by the liquid crystal panel in the liquid crystal display is composed of a plurality of pixels arranged in an array, and each pixel is usually composed of sub-pixels respectively displaying various colors, and the brightness displayed by each sub-pixel is controlled by the brightness of the backlight module of the liquid crystal display. It is determined together with the gray scale of the sub-pixels of the liquid crystal panel.
  • the driving method of the existing liquid crystal display the most common method is to maintain a fixed brightness by using the brightness of the backlight module, and driving each sub-pixel of the liquid crystal panel with different gray scale voltages according to the input image data.
  • the liquid crystal is rotated to determine the light transmittance (ie, brightness) of each sub-pixel by the rotation angle of the liquid crystal molecules to achieve gray scale display and development.
  • 2D1G technology divides the sub-pixels in the liquid crystal panel into a main sub-pixel area and a sub-sub-pixel area.
  • the sub-pixel is displayed with a corresponding gray scale by applying a data signal (ie, a gray scale voltage) to the main sub-pixel region and the sub-sub-pixel region of the sub-pixel, thereby performing development.
  • a data signal ie, a gray scale voltage
  • the number of data lines for applying the data signal is twice as large as the original, which greatly reduces the aperture ratio of the liquid crystal panel and affects the transmittance. .
  • an exemplary embodiment of the present invention provides a driving method of a liquid crystal panel simulating 2D1G, which can improve the color of the liquid crystal panel without affecting the aperture ratio and the transmittance of the liquid crystal panel. Partial.
  • a driving method of a liquid crystal panel includes: (A) grouping pixels in a liquid crystal panel in groups of two, wherein two pixels in any one group are two pixels adjacent in a predetermined direction; (B) determining each in each group The original grayscale value of the first color subpixel of the pixel and the original grayscale value of the second color subpixel; (C) the original grayscale value of the first color subpixel of the two pixels of each group At least one of obtaining two actual grayscale values of each group for driving the first color subpixel; at least one of the original grayscale values of the second color subpixel of the two pixels of each group One, obtaining two actual grayscale values of each group for driving the second color sub-pixel; (D) determining each group for driving the first one according to the position of each pixel in each group The actual grayscale value of the first color subpixel for driving each pixel among the two actual grayscale values of the color subpixel, and determining two of each group for driving the second
  • step (D) comprises: determining a larger actual grayscale value of each of the two actual grayscale values of each group for driving the first color subpixel as two for driving each group
  • the sum of the row number and the column number in the pixels is the actual grayscale value of the first color subpixel of the even number of pixels
  • the two actual grayscale values of each group for driving the first color subpixel are The smaller actual grayscale value in the medium grayscale value of the first color subpixel of the pixel used to drive the sum of the row number and the column number in the two pixels of each group
  • the larger actual grayscale value of the two actual grayscale values of the group for driving the second color subpixel is determined to be used to drive the row number and the column number of the two pixels of each group
  • the smaller actual grayscale value of each of the two actual grayscale values used to drive the second color subpixel A second color sub-image determined as a pixel for driving an even number of line numbers and column numbers in two pixels of each group
  • the predetermined direction is a lateral direction or a longitudinal direction.
  • the two actual grayscale values of the one group for driving the one color sub-pixel are acquired.
  • the step of determining an index value includes: using an original grayscale value of the one color sub-pixel of any one of the two pixels of the one group as the one index value.
  • the step of determining an index value includes: using an average value of original grayscale values of the one color sub-pixel of two pixels of the one group as the one index value.
  • the display lookup table of the color sub-pixels is obtained by acquiring the color sub-pixels in the case of the front view and the squint respectively in the range of the grayscale values of the liquid crystal panel.
  • the actual brightness value under the grayscale value respectively calculating the theoretical brightness value of each of the color sub-pixels in the case of the front view and the squint in the range of the gray scale values; according to the obtained actual brightness values And calculating the respective theoretical luminance values, determining two actual grayscale values satisfying a predetermined condition corresponding to each grayscale value within the range of values as the index value; based on each index value and the actual grayscale value
  • the correspondence relationship is obtained by the display lookup table.
  • the gray scale value of the one color sub-pixel in the liquid crystal panel in the case of the front view and the squint is obtained by respectively measuring the gamma curve of the one color sub-pixel in the case of the front view and the squint.
  • the actual brightness value under each grayscale value within the range of values.
  • the theoretical brightness value of the one color sub-pixel in any one of the viewing angles at any gray scale value g within the range of values is calculated by the following formula:
  • is a predetermined gamma value
  • Lv(g) is a theoretical luminance value of the one color sub-pixel at the one gray scale value g in the case of the one viewing angle
  • Lv(g max )′ An actual luminance value when the one color sub-pixel is in the range of the maximum gray scale value g max within the range of values, wherein the one viewing angle is a front view or a squint.
  • the gray level value g and the corresponding two actual gray level values g H and g L in the range of the value of the index value satisfy the following predetermined conditions:
  • Min y [Lv positive (g)+Lv positive (g)-Lv positive (g H )'-Lv positive (g L )'] 2 +[Lv oblique (g)+Lv oblique (g)-Lv oblique ( g H ) '-Lv oblique (g L )'] 2
  • Lv positive (g) and Lv oblique (g) are the theoretical luminance values of the one color sub-pixel in the case of the front view and the squint, respectively, at the gray scale value g
  • Lv is positive (g H ) 'Lv oblique (g H )' is the actual luminance value of the one color sub-pixel in the case of the front view and the squint, respectively, at the actual gray scale value g H
  • Lv positive (g L )', Lv oblique (g L )' is the actual luminance value of the one color sub-pixel in the case of the front view and the squint, respectively, at the actual grayscale value g L .
  • the first color sub-pixel is a blue sub-pixel
  • the second color sub-pixel is a green sub-pixel or a red sub-pixel
  • the first color sub-pixel is a green sub-pixel or a red sub-pixel
  • the second color sub-pixel is a blue sub-pixel.
  • a driving apparatus for a liquid crystal panel comprising: a grouping unit that groups two or two pixels in a liquid crystal panel, wherein two pixels in any one group For the two pixels adjacent in the predetermined direction; the original grayscale value determining unit, determining the original grayscale value of the first color subpixel of each pixel in each group and the original grayscale of the second color subpixel a step value; the actual gray scale value obtaining unit acquires, according to at least one of the original gray scale values of the first color sub-pixels of the two pixels of each group, the group for driving the first color sub-pixel Two actual grayscale values; according to at least one of the original grayscale values of the second color subpixel of two pixels of each group, obtaining two actual values of each group for driving the second color subpixel a grayscale value; a driving determining unit that determines, according to the position of each pixel in each group, each of the two actual grayscale values for driving the first color subpixel for driving each pixel
  • the driving determining unit is configured to determine a larger actual grayscale value among two actual grayscale values of each group for driving the first color subpixel as being used to drive each group
  • the sum of the row number and the column number in the two pixels is the actual grayscale value of the first color subpixel of the even number of pixels; and the two actual grayscales of each group for driving the first color subpixel a smaller actual grayscale value among the values, determined as an actual grayscale value of a first color subpixel of a pixel for driving an odd number of row numbers and column numbers in two pixels of each group;
  • the sum of the column numbers is the actual grayscale value of the second color subpixel of the odd number of pixels; and the smaller of the actual grayscale values of each group used to drive the second color subpixel a gray scale value determined to be a pixel for driving an even number of line numbers and column numbers in two pixels of each group
  • the predetermined direction is a lateral direction or a longitudinal direction.
  • the actual grayscale value obtaining unit sequentially acquires two actual grayscale values of each group for driving the first color subpixel and two actual grayscale values for driving the second color subpixel, wherein
  • the actual grayscale value obtaining unit includes: an index value determining unit that determines an index value according to at least one of original grayscale values of any one of the two color pixels of any one of the groups; Searching, in a display lookup table of the one color sub-pixel, two actual grayscale values corresponding to the one index value, to obtain two actual grayscales of the one group for driving the one color subpixel value.
  • the index value determining unit uses the original grayscale value of the one color sub-pixel of any one of the two pixels of the one group as the one index value.
  • the index value determining unit uses an average value of original grayscale values of the one color sub-pixel of two pixels of the one group as the one index value.
  • the actual grayscale value obtaining unit further includes: a table establishing unit, configured to establish a display lookup table of the one color subpixel, wherein the table establishing unit includes: an actual brightness value acquiring unit, respectively acquiring the front view and the squint The actual brightness value of each color sub-pixel in each of the grayscale values in the range of the grayscale value of the liquid crystal panel; the theoretical luminance value calculation unit calculates the case of the front view and the squint respectively a theoretical luminance value of each color sub-pixel under each grayscale value in the range of values; the relationship determining unit determines, according to each obtained actual luminance value and each calculated theoretical luminance value, Determining, by the grayscale value in the range of values, two actual grayscale values satisfying a predetermined condition; and establishing a unit, obtaining the display lookup table based on a correspondence between each index value and an actual grayscale value.
  • a table establishing unit configured to establish a display lookup table of the one color subpixel, wherein the table establishing unit
  • the actual luminance value acquiring unit obtains the one color sub-pixel in the case of the front view and the squint by measuring the gamma curve of the one color sub-pixel in the case of the front view and the squint respectively The actual brightness value of each grayscale value within the range of the grayscale value of the liquid crystal panel.
  • the theoretical brightness value calculation unit calculates the theoretical brightness value of the one color sub-pixel in any one of the angles of view in any one of the grayscale values g in the range of values:
  • is a predetermined gamma value
  • Lv(g) is a theoretical luminance value of the one color sub-pixel at the one gray scale value g in the case of the one viewing angle
  • Lv(g max )′ An actual luminance value when the one color sub-pixel is in the range of the maximum gray scale value g max within the range of values, wherein the one viewing angle is a front view or a squint.
  • any gray scale value g in the range of values determined as the index value determined by the relationship determining unit and the corresponding two actual gray scale values g H and g L satisfy the following predetermined conditions:
  • Min y [Lv positive (g)+Lv positive (g)-Lv positive (g H )'-Lv positive (g L )'] 2 +[Lv oblique (g)+Lv oblique (g)-Lv oblique ( g H ) '-Lv oblique (g L )'] 2
  • Lv positive (g) and Lv oblique (g) are the theoretical luminance values of the one color subpixel in the case of the front view and the squint, respectively, at the gray scale value g
  • Lv is positive (g H ) '
  • Lv oblique (g H )' is the actual luminance value of the one color sub-pixel in the case of the front view and the squint, respectively, at the actual gray level value g H
  • Lv is positive (g L )'
  • Lv oblique ( g L )' is the actual luminance value of the one color sub-pixel in the case of the front view and the squint, respectively, at the actual gray scale value g L .
  • the first color sub-pixel is a blue sub-pixel
  • the second color sub-pixel is a green sub-pixel or a red sub-pixel
  • the first color sub-pixel is a green sub-pixel or a red sub-pixel
  • the second color sub-pixel is a blue sub-pixel.
  • the driving method and driving device of the liquid crystal panel provided by the exemplary embodiment of the present invention, it is possible to improve the color shift of the liquid crystal panel without affecting the aperture ratio and the transmittance of the liquid crystal panel.
  • FIG. 1 is a flow chart showing a driving method of a liquid crystal panel according to an exemplary embodiment of the present invention
  • FIG. 2 is a diagram showing at least one of original grayscale values of any one of color pixels of two pixels according to an arbitrary one of groups, for acquiring the one of the groups, according to an exemplary embodiment of the present invention.
  • FIG. 3 is a flowchart illustrating a procedure of obtaining a display lookup table of any one color sub-pixel, according to an exemplary embodiment of the present invention
  • FIG. 4 is a schematic diagram showing actual grayscale values respectively determined for a first color sub-pixel and a second color sub-pixel of a pixel of a portion of a liquid crystal panel, according to an exemplary embodiment of the present invention
  • FIG. 5 is a block diagram showing a driving device of a liquid crystal panel according to an exemplary embodiment of the present invention.
  • FIG. 1 is a flowchart illustrating a driving method of a liquid crystal panel according to an exemplary embodiment of the present invention.
  • pixels in the liquid crystal panel are grouped in groups.
  • two pixels in any one group are two pixels adjacent in a predetermined direction.
  • the predetermined direction may be lateral or longitudinal.
  • each pixel of the liquid crystal panel includes a plurality of sub-pixels of different colors.
  • a red (R) sub-pixel, a green (G) sub-pixel, and a blue (B) sub-pixel may be included.
  • a yellow (Y) sub-pixel or a white (W) sub-pixel may also be included.
  • the present invention is not limited thereto, and may be a liquid crystal panel including other color sub-pixels in each pixel.
  • the pixels in each row of the liquid crystal panel may be grouped in groups of two adjacent pixels. For example, when there are only 4 pixels in each row of the liquid crystal panel, two adjacent pixels with column numbers 1 and 2 in each row can be grouped, and the column numbers in each row are 3 and 4. The two adjacent pixels are grouped together.
  • pixels in each column of the liquid crystal panel may be grouped in groups of two adjacent pixels. For example, when there are only 4 pixels in each column of the liquid crystal panel, two adjacent pixels with row numbers 1 and 2 in each column can be grouped, and the column numbers in each column are 3 and 4. The two adjacent pixels are grouped together.
  • step S102 the original grayscale value of the first color subpixel of each pixel in each group and the original grayscale value of the second color subpixel are determined. That is, for each pixel in each group, the original grayscale value of the first color subpixel and the original grayscale value of the second color subpixel are determined, respectively.
  • the first color sub-pixel and the second color sub-pixel are two sub-pixels of different colors.
  • the colors of the first color sub-pixel and the second color sub-pixel may be determined correspondingly according to the type of the liquid crystal panel.
  • the first color sub-pixel may be any one of R, G, and B
  • the second color sub-pixel may be any one of the R, G, and B colors different from the color of the first color sub-pixel.
  • the first color sub-pixel is a blue sub-pixel
  • the second color sub-pixel is a green sub-pixel or a red sub-pixel
  • the first color sub-pixel is a green sub-pixel or a red sub-pixel
  • the second The color sub-pixels are blue sub-pixels.
  • the original grayscale value is an original grayscale value of the subpixel display image (for example, a grayscale value set to a subpixel when the liquid crystal panel is driven to display an image in the related art). It can be understood that the original gray scale value and the second color of the first color sub-pixel of each pixel in each group can be determined by various existing methods. The original grayscale value of the color subpixel.
  • step S103 according to at least one of the original grayscale values of the first color sub-pixels of the two pixels of each group determined in step S102, two sets of each group for driving the first color sub-pixel are acquired. Actual grayscale values; and acquiring at least one of the original grayscale values of the second color subpixels of the two pixels of each group determined in step S102, for acquiring the second color subpixels of each group Two actual grayscale values.
  • the actual grayscale value is the actual grayscale value of the subpixel display image. It can be understood that various existing methods can be used to obtain two actual grayscale values of each group for driving the first color subpixel and two actual grayscale values for driving the second color subpixel. .
  • the two actual gray levels of the one group for driving the one color sub-pixel are acquired according to at least one of the original gray scale values of any one of the two color pixels of any one of the groups.
  • the value steps are shown in Figure 2.
  • FIG. 2 is a diagram showing at least one of original grayscale values of any one of color pixels of two pixels according to an arbitrary one of groups, for acquiring the one of the groups, according to an exemplary embodiment of the present invention. Flowchart of the steps of two actual grayscale values of a color subpixel.
  • an index value is determined according to at least one of the original grayscale values of the one color sub-pixel of the two pixels of the one group.
  • the index value is used to find the grayscale value of the display lookup table described later. It can be understood that the existing index methods can be determined by various existing methods.
  • an original grayscale value of the one color subpixel of any one of the two pixels of the one group may be used as the one index value.
  • an average of original grayscale values of the one color subpixel of two pixels of the one group may be used as the one index value.
  • step S202 searching from the display lookup table of the one color sub-pixel and determining in step S201 The two actual grayscale values corresponding to one index value are obtained, and two actual grayscale values of the one group for driving the one color subpixel are obtained.
  • Each index value in the display lookup table corresponds to two actual grayscale values.
  • the display lookup table can be determined by various existing methods.
  • the step of obtaining a display lookup table of the one color sub-pixel is as shown in FIG.
  • FIG. 3 is a flowchart illustrating a step of obtaining a display lookup table of any one color sub-pixel, according to an exemplary embodiment of the present invention.
  • step S301 the actual luminance values of the gray scale values in the range of the grayscale values of the liquid crystal panel of the one color sub-pixel in the case of the front view and the squint are respectively obtained.
  • the liquid crystal panel is observed at a viewing angle of 0 degrees from the vertical direction of the liquid crystal panel.
  • the slanting is regarded as observing the liquid crystal panel at a viewing angle of about 60 degrees from the vertical direction of the liquid crystal panel.
  • the range of the grayscale value varies from liquid crystal panel.
  • the liquid crystal panel is an 8-bit liquid crystal panel (that is, an 8-bit binary number is used to represent the grayscale value)
  • the liquid crystal panel is a 10-bit liquid crystal panel (that is, a 10-bit binary number is used to represent a gray scale value)
  • the value range is [0, 1023]. It will be appreciated that the actual brightness values can be determined by various methods available.
  • the one color sub-pixel in the case of the front view and the squint can be obtained within the range of values by measuring the gamma curve of the one color sub-pixel in the case of the front view and the squint, respectively.
  • the gamma curve is a curve representing a relationship between gray scale and brightness of the one color sub-pixel.
  • the gamma curve can be measured by various existing methods.
  • step S302 the theoretical brightness values of the respective color sub-pixels in the case of the front view and the squint in the respective gray scale values in the range of the values are respectively calculated.
  • the theoretical brightness value can be calculated by various existing calculation methods.
  • the theoretical brightness value of the one color sub-pixel in any one of the viewing angles at any one of the grayscale values g in the range of values can be calculated by the following formula:
  • is a predetermined gamma value
  • Lv(g) is a theoretical luminance value of the one color sub-pixel at the one gray scale value g in the case of the one viewing angle
  • Lv(g max )' The actual luminance value of the one color sub-pixel in the case of the one viewing angle at the maximum grayscale value g max within the range of values.
  • the one viewing angle may be frontal or squint. It should be understood that the above formula (1) can also calculate the theoretical brightness value in the case of other viewing angles of the front view and the squint.
  • the grayscale value g and the maximum value within the range of values are calculated
  • the gray scale value g max , the predetermined gamma value ⁇ is substituted into the equation (1), and the actual luminance value Lv(g max )′ of the one color sub-pixel in the case of the maximum gray scale value g max is substituted
  • the theoretical luminance value of the one color sub-pixel in the case of the one gray scale value g can be obtained. Based on this, the theoretical brightness value of each of the color sub-pixels in the case of the respective gray scale values within the range of values can be calculated.
  • the grayscale value g and the maximum value within the range of the value are The gray scale value g max , the predetermined gamma value ⁇ is substituted into the equation (1), and the actual luminance value Lv(g max )′ of the one color subpixel at the maximum gray scale value g max in the case of squint is substituted
  • a theoretical luminance value of the one color sub-pixel at the one gray scale value g in the case of squint can be obtained. Based on this, the theoretical luminance value of each of the color sub-pixels in the squint case under each grayscale value within the range of values can be calculated.
  • the predetermined gamma value ⁇ may be 2.2, but is not limited thereto, and may be set according to actual conditions.
  • the maximum gray scale value g max varies depending on the liquid crystal panel. For example, when the liquid crystal panel is an 8-bit liquid crystal panel (that is, an 8-bit binary number is used to represent a gray scale value), the maximum gray scale value g max may be 255, when the liquid crystal panel is a 10-bit liquid crystal panel (ie, The 10-bit binary number is used to represent the grayscale value), and the maximum grayscale value gmax may be 1023, but is not limited thereto, and may be determined according to actual parameters of the liquid crystal panel.
  • step S303 according to the respective actual brightness values acquired in step S301 and the respective theoretical brightness values calculated in step S302, two actual conditions satisfying the predetermined condition corresponding to each grayscale value within the value range as the index value are determined.
  • a gray scale value that is, for each gray scale value within the range of values as an index value, two actual gray scale values may be determined to correspond thereto, and each of the gray scale values and the two actual values A predetermined condition is satisfied between the grayscale values.
  • Those skilled in the art can make settings based on experience for the predetermined conditions.
  • any one of the gray scale values g and the corresponding two actual gray scale values g H and g L as the index value satisfy the following predetermined condition:
  • Min y [Lv positive (g)+Lv positive (g)-Lv positive (g H )'-Lv positive (g L )'] 2 +[Lv oblique (g)+Lv oblique (g)-Lv oblique ( g H ) '-Lv oblique (g L )'] 2 (2)
  • Lv positive (g) and Lv oblique (g) are the theoretical luminance values of the one color subpixel in the case of the front view and the squint, respectively, at the one gray scale value g
  • Lv is positive (g H ) '
  • Lv oblique (g H )' is the actual luminance value of the one color sub-pixel in the case of the front view and the squint, respectively, at the actual gray level value g H
  • Lv is positive (g L )'
  • Lv oblique ( g L )' is the actual luminance value of the one color sub-pixel in the case of the front view and the squint, respectively, at the actual gray scale value g L .
  • step S304 the display lookup table is obtained based on the correspondence between each index value and the actual grayscale value within the value range determined in step S303.
  • two actual grays corresponding to one index value determined in step S201 can be searched from the display lookup table.
  • the order value thereby obtaining the two actual grayscale values of the one group for driving the one color subpixel.
  • two actual grayscale values for driving the first color subpixel and two actual grayscale values for driving the second color subpixel can be sequentially acquired.
  • step S104 based on the position of each pixel in each group, it is determined that the two actual grayscale values for driving the first color subpixel of each group acquired in step S103 are used for Driving the actual grayscale value of the first color subpixel of each pixel, and determining each of the two actual grayscale values of each group for driving the second color subpixel acquired in step S103 for driving each The actual grayscale value of the second color subpixel of the pixel.
  • the two actual grayscale values of the one group for driving the first color sub-pixel obtained in step S103 are respectively taken as An actual grayscale value of a first color subpixel of two pixels in the one group to drive a first color subpixel of the two pixels, and the one group obtained in step S103 is used for driving
  • the two actual grayscale values of the second color subpixel are respectively used as actual grayscale values of the second color subpixel of the two pixels in the one group to drive the second color subpixel of the two pixels .
  • step S104 after determining the actual grayscale value of each group for driving the first color subpixel of each pixel, each group of the first color subpixel for driving each pixel is utilized.
  • the actual grayscale value drives the first color subpixel of each pixel of each group; and after determining the actual grayscale value of each of the second color subpixels of each group for driving each pixel, Each group is used for driving The actual grayscale value of the second color subpixel of each pixel drives the second color subpixel of each pixel of each group.
  • any one of the two actual grayscale values of the one group for driving the first color subpixel may be used as the first color subpixel of any one of the pixels of the group.
  • Actual grayscale value; any one of the two actual grayscale values of the one group for driving the second color subpixel may be used as the second of any one of the pixels of the group The actual grayscale value of the color subpixel.
  • a larger actual grayscale value of each of the two actual grayscale values for driving the first color subpixel may be determined as two for driving each group.
  • the sum of the row number and the column number in the pixel is the actual grayscale value of the first color subpixel of the even number of pixels; and the two actual grayscale values of each group for driving the first color subpixel are The smaller actual grayscale value in the determination, is the actual grayscale value of the first color subpixel of the pixel used to drive the sum of the row number and the column number in the two pixels of each group;
  • the larger actual grayscale value of each of the two actual grayscale values of each group for driving the second color subpixel is determined as the row number and column number in the two pixels for driving each group And the actual grayscale value of the second color subpixel of the odd number of pixels; and the smaller actual grayscale of each of the two actual grayscale values used to drive the second color subpixel a value determined as the number of pixels in which the sum of the row number and the column number in the two pixels for driving each group is an even number
  • FIG. 4 is a schematic diagram showing actual grayscale values respectively determined for a first color sub-pixel and a second color sub-pixel of a pixel of a portion of a liquid crystal panel, according to an exemplary embodiment of the present invention.
  • a pixel of a portion of the liquid crystal panel (3 rows ⁇ 2 columns of pixels (each thick solid frame represents one pixel)) is shown in FIG. 4, and each pixel includes an R sub-pixel, a G sub-pixel, and a B sub-pixel. Also, two pixels adjacent in the lateral direction are grouped into three groups (as indicated by a broken line). Here, it is assumed that the B sub-pixel is the first color sub-pixel and the G sub-pixel is the second color sub-pixel.
  • the first color sub-pixel of the pixel of the first row and the first column of the two pixels of the first group The actual grayscale value is the larger actual grayscale value g BH1 of the first set of two gray scale values g BH1 , g BL1 for driving the first color subpixel, and the first set of two pixels
  • the actual grayscale values of the first color subpixels of the pixels of the first row and the second column are the values of the two actual grayscale values g BH1 and g BL1 of the first group for driving the first color subpixel.
  • Small actual grayscale value g BL1 Small actual grayscale value g BL1 .
  • the actual grayscale value of the second color subpixel of the first row and the first column of the two pixels of the first group is two actual values of the first group for driving the second color subpixel
  • the smaller actual gray scale value g GL1 of the gray scale values g GH1 , g GL1 , the actual gray scale values of the second color subpixel of the pixels of the first row and the second column of the two pixels of the first group Is the larger actual grayscale value g GH1 of the first set of two actual grayscale values g GH1 , g GL1 for driving the second color subpixel.
  • the actual gray scale value of the first color sub-pixel of the pixel of the second row and the first column of the two pixels of the second group is the first for driving two groups of a first color sub-pixel values of two actual gray g BH2, g BL2 smaller in the actual gray level value g BL2, the second row in the second set of two pixels, the second The actual grayscale value of the first color subpixel of the column of pixels is the larger actual grayscale value of the two actual grayscale values gBH2 , gBL2 of the second group for driving the first color subpixel g BH2 .
  • the actual grayscale value of the second color sub-pixel of the second row and the second column of the second pixel of the second group is two actual values of the second group for driving the second color sub-pixel
  • the actual gray scale value of the first color sub-pixel of the pixel of the third row and the first column of the two pixels of the third group is the first three sets for driving a first subpixel color two actual gray level value g BH3, g BL3 the larger the actual gray level value g BH3, the third row of the third set of two pixels, the second The actual grayscale value of the first color subpixel of the column of pixels is the smaller actual grayscale value of the two actual grayscale values g BH3 , g BL3 of the third group for driving the first color subpixel g BL3 .
  • the actual grayscale value of the second color sub-pixel of the third row and the first column of the two pixels of the third group is two actual values of the third group for driving the second color sub-pixel
  • the smaller actual grayscale value g GL3 of the gray scale values g GH3 , g GL3 , the actual gray scale values of the second color subpixel of the third row and the second column of the two pixels of the third group a third group for driving the two second actual color subpixel gray values g GH3, g GL3 of the actual larger grayscale value g GH3.
  • the actual grayscale values of the first color subpixel and the second color subpixel of each pixel determined by the above preferred embodiment can improve the resolution of the liquid crystal panel when simulating 2D1G. influences.
  • FIG. 5 is a block diagram showing a driving device of a liquid crystal panel according to an exemplary embodiment of the present invention.
  • a driving apparatus 100 of a liquid crystal panel includes a grouping unit 101, an original grayscale value determining unit 102, an actual grayscale value acquiring unit 103, and a driving determining unit.
  • the grouping unit 101 is configured to group the pixels in the liquid crystal panel in groups of two.
  • two pixels in any one group are two pixels adjacent in a predetermined direction.
  • the predetermined direction may be lateral or longitudinal.
  • each pixel of the liquid crystal panel includes a plurality of sub-pixels of different colors.
  • a red (R) sub-pixel, a green (G) sub-pixel, and a blue (B) sub-pixel may be included.
  • a yellow (Y) sub-pixel or a white (W) sub-pixel may also be included.
  • the present invention is not limited thereto, and may be a liquid crystal panel including other color sub-pixels in each pixel.
  • the grouping unit 101 may perform non-repetition grouping of pixels in each row of the liquid crystal panel in groups of two adjacent pixels. For example, when there are only 4 pixels in each row of the liquid crystal panel, two adjacent pixels with column numbers 1 and 2 in each row can be grouped, and the column numbers in each row are 3 and 4. The two adjacent pixels are grouped together.
  • the grouping unit 101 may also perform non-repetition grouping of pixels in each column of the liquid crystal panel in groups of two adjacent pixels. For example, when there are only 4 pixels in each column of the liquid crystal panel, two adjacent pixels with row numbers 1 and 2 in each column can be grouped, and the column numbers in each column are 3 and 4. The two adjacent pixels are grouped together.
  • the original grayscale value determining unit 102 is configured to determine an original grayscale value of a first color subpixel of each pixel in each group and an original grayscale value of the second color subpixel. That is, for each pixel in each group, the original grayscale value of the first color subpixel of each pixel and the original grayscale value of the second color subpixel are determined separately.
  • the first color sub-pixel and the second color sub-pixel are two sub-pixels of different colors.
  • the colors of the first color sub-pixel and the second color sub-pixel may be determined correspondingly according to the type of the liquid crystal panel.
  • the first color sub-pixel may be any one of R, G, and B
  • the second color sub-pixel may be any one of the R, G, and B colors different from the color of the first color sub-pixel.
  • the first color sub-pixel is a blue sub-pixel
  • the second color sub-pixel is a green sub-pixel or The red sub-pixel
  • the first color sub-pixel is a green sub-pixel or a red sub-pixel
  • the second color sub-pixel is a blue sub-pixel.
  • the original grayscale value is an original grayscale value of the subpixel display image (for example, a grayscale value set to a subpixel when the liquid crystal panel is driven to display an image in the related art). It can be understood that the original grayscale value determining unit 102 can determine the original grayscale value of the first color subpixel of each pixel in each group and the original gray color of the second color subpixel by various existing methods. Order value.
  • the actual grayscale value obtaining unit 103 is configured to acquire at least one of the original grayscale values of the first color subpixels of the two pixels of each group determined by the original grayscale value determining unit 102, for acquiring each group Driving two actual grayscale values of the first color subpixel; and determining at least one of the original grayscale values of the second color subpixel of the two pixels of each group determined by the unit 102 according to the original grayscale value, Get the two actual grayscale values for each group that drive the second color subpixel.
  • the actual grayscale value is the actual grayscale value of the subpixel display image. It can be understood that the actual grayscale value obtaining unit 103 can acquire two actual grayscale values of each group for driving the first color subpixel and use to drive the second color subpixel by using various existing methods. The two actual grayscale values.
  • the actual grayscale value obtaining unit 103 may sequentially acquire two actual grayscale values of each group for driving the first color subpixel and two actual grayscale values for driving the second color subpixel. .
  • the actual grayscale value obtaining unit 103 may acquire, according to at least one of the original grayscale values of any one of the two color pixels of any one of the groups, the driving of the one group. The two actual grayscale values of the color subpixel. Then, two actual grayscale values for driving the first color subpixel and two actual grayscale values for driving the second color subpixel are sequentially acquired for each group.
  • the actual grayscale value obtaining unit 103 includes an index value determining unit and a lookup table unit.
  • the index value determining unit is configured to determine an index value according to at least one of original gray scale values of any one of the color sub-pixels of the two pixels of any one of the groups.
  • the index value is used to find the following Displays the grayscale value of the lookup table. It can be understood that the index value determining unit can determine the one index value by using various existing methods.
  • the index value determining unit may use the original grayscale value of the one color subpixel of any one of the two pixels of the one group as the one index value.
  • the index value determining unit may use an average of original grayscale values of the one color sub-pixel of two pixels of the one group as the one index value.
  • the table lookup unit is configured to search, from the display lookup table of the one color sub-pixel, two actual grayscale values corresponding to an index value determined by the index value determining unit, to obtain the one group for driving the one Two actual grayscale values of a color subpixel.
  • Each index value in the display lookup table corresponds to two actual grayscale values.
  • the display lookup table may be a table stored in advance at a predetermined position of the driving device of the liquid crystal panel, or may be a table created by a dedicated unit.
  • the actual grayscale value obtaining unit 103 further includes: a table establishing unit, configured to establish a display lookup table of the one color subpixel. It can be understood that the table establishing unit can establish a display lookup table for any color sub-pixel.
  • the table establishing unit includes an actual luminance value acquiring unit, a theoretical luminance value calculating unit, a relationship determining unit, and an establishing unit.
  • the actual brightness value obtaining unit is configured to respectively obtain actual brightness values under respective gray scale values within a range of values of the gray scale values of the liquid crystal panel of the one color sub-pixel in the case of the front view and the squint.
  • the liquid crystal panel is observed at a viewing angle of 0 degrees from the vertical direction of the liquid crystal panel.
  • the slanting is regarded as observing the liquid crystal panel at a viewing angle of about 60 degrees from the vertical direction of the liquid crystal panel.
  • the range of the grayscale value varies from liquid crystal panel.
  • the liquid crystal panel is an 8-bit liquid crystal panel (that is, an 8-bit binary number is used to represent the grayscale value)
  • the value ranges from [0, 255].
  • the liquid crystal panel is a 10-bit liquid crystal panel (that is, a 10-bit binary number is used to represent a gray scale value)
  • the value range is [0, 1023]. It can be understood that the actual brightness value acquisition unit can determine the actual brightness value by various existing methods.
  • the actual luminance value acquisition unit may obtain the one color sub-pixel in the case of the front view and the squint by measuring the gamma curve of the one color sub-pixel in the case of the front view and the squint, respectively.
  • the actual brightness value under each grayscale value in the range of values is described.
  • the gamma curve is a curve representing a relationship between gray scale and brightness of the one color sub-pixel.
  • the actual luminance value acquisition unit The gamma curve can be measured by various methods available.
  • the theoretical luminance value calculation unit is configured to separately calculate the theoretical luminance values of the one color sub-pixels in the case of the front view and the squint in the respective gray scale values within the range of values.
  • the theoretical luminance value calculation unit may calculate the theoretical luminance value by various existing calculation methods.
  • the theoretical luminance value calculation unit may calculate, by using the foregoing formula (1), the theoretical luminance value of the one color sub-pixel in any one of the viewing angles at any one of the grayscale values g within the range of values. Assuming that the theoretical luminance value of the one color sub-pixel in the case of the front view is in the range of the grayscale values in the range of values and the color sub-pixel in the case of the squint is within the value range The theoretical brightness value for each grayscale value.
  • the relationship determining unit is configured to determine, according to each actual brightness value acquired by the actual brightness value acquiring unit and each theoretical brightness value calculated by the theoretical brightness value calculating unit, corresponding to each gray level value in the value range as the index value.
  • Two actual gray scale values satisfying a predetermined condition that is, for each gray scale value within the range of values as an index value, two actual gray scale values may be determined to correspond thereto, and each gray scale A predetermined condition is satisfied between the value and the two actual grayscale values.
  • any one of the grayscale values g within the range of values determined as the index value determined by the relationship determining unit and the corresponding two actual grayscale values g H and g L satisfy the foregoing formula (2).
  • the establishing unit is configured to obtain the display lookup table according to a correspondence between each index value and the actual grayscale value in the value range determined by the relationship determining unit.
  • the driving determining unit 104 is configured to determine, according to the position of each pixel in each group, among the two actual grayscale values of each group acquired by the actual grayscale value acquiring unit 103 for driving the first color subpixel An actual grayscale value for driving the first color subpixel of each pixel, and determining two actual grayscales of each group acquired by the actual grayscale value acquiring unit 103 for driving the second color subpixel The actual grayscale value of the second color subpixel used to drive each pixel among the values.
  • the two actual numbers of the one group of the first color sub-pixels obtained by the actual gray-scale value acquiring unit 103 are driven.
  • the grayscale value is the actual grayscale of the first color subpixel of the two pixels in the one group, respectively.
  • a value to drive the first color sub-pixel of the two pixels, and the two actual grayscale values of the one group for driving the second color sub-pixel obtained by the actual gray-scale value obtaining unit 103 are respectively taken as The actual grayscale values of the second color subpixels of the two pixels in the one group to drive the second color subpixels of the two pixels.
  • the drive determining unit 104 utilizes the first color sub-function of each group for driving each pixel.
  • the actual grayscale value of the pixel drives the first color subpixel of each pixel of each group; and after determining the actual grayscale value of each of the second color subpixels used to drive each pixel
  • the second color sub-pixel of each pixel of each group is driven with the actual grayscale value of each set of second color sub-pixels for driving each pixel.
  • the actual grayscale value obtaining unit 103 may use any one of the two actual grayscale values of the one group for driving the first color subpixel as an arbitrary pixel of the one group.
  • the actual grayscale value of the first color sub-pixel; and any one of the two actual grayscale values of the one group for driving the second color sub-pixel may be used as the one The actual grayscale value of the second color subpixel of any one of the pixels of the group.
  • the drive determining unit 104 may determine a larger actual grayscale value among the two actual grayscale values of each group for driving the first color subpixel as being used to drive each The sum of the row number and the column number in the two pixels of the group is the actual grayscale value of the first color sub-pixel of the even-numbered pixel; and the two actual values of each group for driving the first color sub-pixel
  • the smaller actual grayscale value among the grayscale values is determined as the actual grayscale of the first color subpixel of the pixel for driving the sum of the row number and the column number in the two pixels of each group a value; and determining a larger actual grayscale value of each of the two actual grayscale values of each group for driving the second color subpixel as a row for driving two pixels of each group
  • the sum of the number and the column number is the actual grayscale value of the second color subpixel of the odd number of pixels; and the smaller of the two actual grayscale values of each group for driving the second color subpixel
  • the driving method and driving device of the liquid crystal panel of the exemplary embodiment of the present invention it is possible to improve the color shift of the liquid crystal panel without affecting the aperture ratio and the transmittance of the liquid crystal panel.
  • the above method according to the present invention can be implemented as computer code in a computer readable recording medium.
  • the computer code can be implemented by those skilled in the art in accordance with the description of the above method.
  • the above method of the present invention is implemented when the computer code is executed in a computer.
  • each unit in the driving device of the liquid crystal panel may be implemented as a hardware component.
  • Those skilled in the art can implement the various units using, for example, a Field Programmable Gate Array (FPGA) or an Application Specific Integrated Circuit (ASIC), depending on the processing performed by the various defined units.
  • FPGA Field Programmable Gate Array
  • ASIC Application Specific Integrated Circuit

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal Display Device Control (AREA)

Abstract

提供一种液晶面板的驱动方法及驱动装置,包括:将液晶面板中的像素两两一组进行分组(S101);确定每个组中的每个像素的第一种颜色子像素的原始灰阶值和第二种颜色子像素的原始灰阶值(S102);获取每个组的用于驱动第一种颜色子像素的两个实际灰阶值和用于驱动第二种颜色子像素的两个实际灰阶值(S103);根据每个组中的每个像素的位置,确定每个组的用于驱动第一种颜色子像素的两个实际灰阶值之中的用于驱动每个像素的第一种颜色子像素的实际灰阶值,并确定每个组的用于驱动第二种颜色子像素的两个实际灰阶值之中的用于驱动每个像素的第二种颜色子像素的实际灰阶值(S104)。能够在对液晶面板的开口率和穿透率不产生影响的情况下改善液晶面板的色偏。

Description

液晶面板的驱动方法及驱动装置 技术领域
本发明属于液晶显示器技术领域,更具体地说,涉及一种液晶面板的驱动方法及驱动装置。
背景技术
近年来,液晶显示器(LCD)以其体积小、重量轻、显示质量高等优点逐渐替代了以往的阴极射线显像管(CRT)显示器。液晶显示器中的液晶面板所显示的画面由许多阵列排列的像素构成,每一个像素通常由分别显示各种颜色的子像素组成,每一个子像素所显示的亮度由液晶显示器的背光模组的亮度和该液晶面板的子像素的灰阶共同决定。现有的液晶显示器的驱动方法中,最常用的方法是利用背光模组的亮度维持一固定亮度,根据输入的影像资料,分别以不同大小的灰阶电压驱动该液晶面板的每一个子像素内的液晶进行旋转,从而通过液晶分子的旋转角度来决定各个子像素的透光率(即,亮度),以达到灰阶显示和显像的目的。
随着液晶显示器技术的发展,为了改善液晶显示器的色偏问题,提出了2D1G技术。所谓的2D1G技术,就是将液晶面板中的子像素分为主子像素区域和次子像素区域。通过向子像素的主子像素区域和次子像素区域施加数据信号(即,灰阶电压)来使子像素显示相应的灰阶,进而进行显像。但是,在对每个子像素划分主子像素区域和次子像素区域之后,用来施加数据信号的数据线的数量变为原来的两倍,这大大减小了液晶面板的开口率,影响穿透率。
发明内容
为克服现有技术的不足,本发明的示例性实施例提供一种模拟2D1G的液晶面板的驱动方法,能够在对液晶面板的开口率和穿透率不产生影响的情况下改善液晶面板的色偏。
根据本发明的示例性实施例一方面提供一种液晶面板的驱动方法,其中, 包括:(A)将液晶面板中的像素两两一组进行分组,其中,任意一组中的两个像素为在预定方向上相邻的两个像素;(B)确定每个组中的每个像素的第一种颜色子像素的原始灰阶值和第二种颜色子像素的原始灰阶值;(C)根据每个组的两个像素的第一种颜色子像素的原始灰阶值中的至少一个,获取每个组的用于驱动第一种颜色子像素的两个实际灰阶值;根据每个组的两个像素的第二种颜色子像素的原始灰阶值中的至少一个,获取每个组的用于驱动第二种颜色子像素的两个实际灰阶值;(D)根据每个组中的每个像素的位置,确定每个组的用于驱动第一种颜色子像素的两个实际灰阶值之中的用于驱动每个像素的第一种颜色子像素的实际灰阶值,并确定每个组的用于驱动第二种颜色子像素的两个实际灰阶值之中的用于驱动每个像素的第二种颜色子像素的实际灰阶值。
其中,步骤(D)包括:将每个组的用于驱动第一种颜色子像素的两个实际灰阶值之中的较大的实际灰阶值,确定为用于驱动每个组的两个像素中的行号与列号之和为偶数的像素的第一种颜色子像素的实际灰阶值;将每个组的用于驱动第一种颜色子像素的两个实际灰阶值之中的较小的实际灰阶值,确定为用于驱动每个组的两个像素中的行号与列号之和为奇数的像素的第一种颜色子像素的实际灰阶值;将每个组的用于驱动第二种颜色子像素的两个实际灰阶值之中的较大的实际灰阶值,确定为用于驱动每个组的两个像素中的行号与列号之和为奇数的像素的第二种颜色子像素的实际灰阶值;将每个组的用于驱动第二种颜色子像素的两个实际灰阶值之中的较小的实际灰阶值,确定为用于驱动每个组的两个像素中的行号与列号之和为偶数的像素的第二种颜色子像素的实际灰阶值。
其中,所述预定方向为横向或纵向。
其中,根据任意一个组的两个像素的任意一种颜色子像素的原始灰阶值中的至少一个,获取所述一个组的用于驱动所述一种颜色子像素的两个实际灰阶值的步骤包括:根据所述一个组的两个像素的所述一种颜色子像素的原始灰阶值中的至少一个,确定一个索引值;从所述一种颜色子像素的显示查找表中查找与所述一个索引值对应的两个实际灰阶值,得到所述一个组的用于驱动所述一种颜色子像素的两个实际灰阶值。
其中,确定一个索引值的步骤包括:将所述一个组的两个像素中的任意一个像素的所述一种颜色子像素的原始灰阶值作为所述一个个索引值。
其中,确定一个索引值的步骤包括:将所述一个组的两个像素的所述一种颜色子像素的原始灰阶值的平均值作为所述一个索引值。
其中,所述一种颜色子像素的显示查找表通过如下步骤获得:分别获取正视情况下和斜视情况下的所述一种颜色子像素在所述液晶面板的灰阶值的取值范围内各个灰阶值下的实际亮度值;分别计算正视情况下和斜视情况下的所述一种颜色子像素在所述取值范围内各个灰阶值下的理论亮度值;根据获取的各个实际亮度值和计算的各个理论亮度值,确定与作为索引值的所述取值范围内的每个灰阶值对应的满足预定条件的两个实际灰阶值;基于每个索引值与实际灰阶值的对应关系得到所述显示查找表。
其中,通过分别测量正视情况下和斜视情况下的所述一种颜色子像素的伽马曲线来获取正视情况下和斜视情况下的所述一种颜色子像素在所述液晶面板的灰阶值的取值范围内各个灰阶值下的实际亮度值。
其中,通过下式计算在任意一种视角情况下的所述一种颜色子像素在所述取值范围内的任意一个灰阶值g下的理论亮度值:
Lv(g)=Lv(gmax)′×(g/gmax)γ
其中,γ为预定伽马值,Lv(g)为在所述一种视角情况下的所述一种颜色子像素在所述一个灰阶值g时的理论亮度值,Lv(gmax)′为在所述一种视角情况下的所述一种颜色子像素在所述取值范围内的最大灰阶值gmax时的实际亮度值,其中,所述一种视角为正视或斜视。
其中,作为索引值的所述取值范围内的任意一个灰阶值g与对应的两个实际灰阶值gH和gL满足如下预定条件:
min y=[Lv(g)+Lv(g)-Lv(gH)′-Lv(gL)′]2+[Lv(g)+Lv(g)-Lv(gH)′-Lv(gL)′]2
其中,Lv(g)、Lv(g)分别为正视情况下和斜视情况下的所述一种颜色子像素在所述一个灰阶值g时的理论亮度值,Lv(gH)′Lv(gH)′分别为正视情况下和斜视情况下的所述一种颜色子像素在实际灰阶值gH时的实际亮度值,Lv(gL)′、Lv(gL)′分别为正视情况下和斜视情况下的所述一种颜色子像素在实际灰阶值gL时的实际亮度值。
其中,所述第一种颜色子像素为蓝色子像素,所述第二种颜色子像素为绿色子像素或红色子像素,或者,第一种颜色子像素为绿色子像素或红色子像素,第二种颜色子像素为蓝色子像素。
根据本发明的示例性实施例另一方面提供一种液晶面板的驱动装置,其中,包括:分组单元,将液晶面板中的像素两两一组进行分组,其中,任意一组中的两个像素为在预定方向上相邻的两个像素;原始灰阶值确定单元,确定每个组中的每个像素的第一种颜色子像素的原始灰阶值和第二种颜色子像素的原始灰阶值;实际灰阶值获取单元,根据每个组的两个像素的第一种颜色子像素的原始灰阶值中的至少一个,获取每个组的用于驱动第一种颜色子像素的两个实际灰阶值;根据每个组的两个像素的第二种颜色子像素的原始灰阶值中的至少一个,获取每个组的用于驱动第二种颜色子像素的两个实际灰阶值;驱动确定单元,根据每个组中的每个像素的位置,确定每个组的用于驱动第一种颜色子像素的两个实际灰阶值之中的用于驱动每个像素的第一种颜色子像素的实际灰阶值,并确定每个组的用于驱动第二种颜色子像素的两个实际灰阶值之中的用于驱动每个像素的第二种颜色子像素的实际灰阶值。
其中,所述驱动确定单元用于将每个组的用于驱动第一种颜色子像素的两个实际灰阶值之中的较大的实际灰阶值,确定为用于驱动每个组的两个像素中的行号与列号之和为偶数的像素的第一种颜色子像素的实际灰阶值;并将每个组的用于驱动第一种颜色子像素的两个实际灰阶值之中的较小的实际灰阶值,确定为用于驱动每个组的两个像素中的行号与列号之和为奇数的像素的第一种颜色子像素的实际灰阶值;并将每个组的用于驱动第二种颜色子像素的两个实际灰阶值之中的较大的实际灰阶值,确定为用于驱动每个组的两个像素中的行号与列号之和为奇数的像素的第二种颜色子像素的实际灰阶值;并将每个组的用于驱动第二种颜色子像素的两个实际灰阶值之中的较小的实际灰阶值,确定为用于驱动每个组的两个像素中的行号与列号之和为偶数的像素的第二种颜色子像素的实际灰阶值。
其中,所述预定方向为横向或纵向。
其中,实际灰阶值获取单元依次获取每个组的用于驱动第一种颜色子像素的两个实际灰阶值和用于驱动第二种颜色子像素的两个实际灰阶值,其中,实际灰阶值获取单元包括:索引值确定单元,根据任意一个组的两个像素的任意一种颜色子像素的原始灰阶值中的至少一个,确定一个索引值;查表单元,从 所述一种颜色子像素的显示查找表中查找与所述一个索引值对应的两个实际灰阶值,得到所述一个组的用于驱动所述一种颜色子像素的两个实际灰阶值。
其中,所述索引值确定单元将所述一个组的两个像素中的任意一个像素的所述一种颜色子像素的原始灰阶值作为所述一个个索引值。
其中,所述索引值确定单元将所述一个组的两个像素的所述一种颜色子像素的原始灰阶值的平均值作为所述一个索引值。
其中,所述实际灰阶值获取单元还包括:表建立单元,建立所述一种颜色子像素的显示查找表,其中,表建立单元包括:实际亮度值获取单元,分别获取正视情况下和斜视情况下的所述一种颜色子像素在所述液晶面板的灰阶值的取值范围内各个灰阶值下的实际亮度值;理论亮度值计算单元,分别计算正视情况下和斜视情况下的所述一种颜色子像素在所述取值范围内各个灰阶值下的理论亮度值;关系确定单元,根据获取的各个实际亮度值和计算的各个理论亮度值,确定与作为索引值的所述取值范围内的每个灰阶值对应的满足预定条件的两个实际灰阶值;建立单元,基于每个索引值与实际灰阶值的对应关系得到所述显示查找表。
其中,实际亮度值获取单元,通过分别测量正视情况下和斜视情况下的所述一种颜色子像素的伽马曲线来获取正视情况下和斜视情况下的所述一种颜色子像素在所述液晶面板的灰阶值的取值范围内各个灰阶值下的实际亮度值。
其中,理论亮度值计算单元,通过下式计算在任意一种视角情况下的所述一种颜色子像素在所述取值范围内的任意一个灰阶值g下的理论亮度值:
Lv(g)=Lv(gmax)′×(g/gmax)γ
其中,γ为预定伽马值,Lv(g)为在所述一种视角情况下的所述一种颜色子像素在所述一个灰阶值g时的理论亮度值,Lv(gmax)′为在所述一种视角情况下的所述一种颜色子像素在所述取值范围内的最大灰阶值gmax时的实际亮度值,其中,所述一种视角为正视或斜视。
其中,关系确定单元确定的作为索引值的所述取值范围内的任意一个灰阶值g与对应的两个实际灰阶值gH和gL满足如下预定条件:
min y=[Lv(g)+Lv(g)-Lv(gH)′-Lv(gL)′]2+[Lv(g)+Lv(g)-Lv(gH)′-Lv(gL)′]2
其中,Lv(g)、Lv(g)分别为正视情况下和斜视情况下的所述一种颜色子像 素在所述一个灰阶值g时的理论亮度值,Lv(gH)′、Lv(gH)′分别为正视情况下和斜视情况下的所述一种颜色子像素在实际灰阶值gH时的实际亮度值,Lv(gL)′、Lv(gL)′分别为正视情况下和斜视情况下的所述一种颜色子像素在实际灰阶值gL时的实际亮度值。
其中,所述第一种颜色子像素为蓝色子像素,所述第二种颜色子像素为绿色子像素或红色子像素,或者,第一种颜色子像素为绿色子像素或红色子像素,第二种颜色子像素为蓝色子像素。
根据本发明的示例性实施例提供的液晶面板的驱动方法及驱动装置,能够在对液晶面板的开口率和穿透率不产生影响的情况下改善液晶面板的色偏。
将在接下来的描述中部分阐述本发明另外的方面和/或优点,还有一部分通过描述将是清楚的,或者可以经过本发明的实施而得知。
附图说明
通过下面结合附图进行的对实施例的描述,本发明的上述和/或其它目的和优点将会变得更加清楚,其中:
图1是示出根据本发明示例性实施例的液晶面板的驱动方法的流程图;
图2是示出根据本发明示例性实施例的根据任意一个组的两个像素的任意一种颜色子像素的原始灰阶值中的至少一个,获取所述一个组的用于驱动所述一种颜色子像素的两个实际灰阶值的步骤的流程图;
图3是示出根据本发明示例性实施例的获得任意一种颜色子像素的显示查找表的步骤的流程图;
图4是示出根据本发明示例性实施例的针对液晶面板的一部分的像素的第一种颜色子像素和第二种颜色子像素分别确定的实际灰阶值的示意图;
图5是示出根据本发明示例性实施例的液晶面板的驱动装置的框图。
具体实施方式
现将详细描述本发明的示例性实施例,所述实施例的示例在附图中示出,其中,相同的标号指示相同的部分。以下将通过参照附图来说明所述实施例,以便解释本发明。
图1是示出根据本发明示例性实施例的液晶面板的驱动方法的流程图。
如图1所示,在步骤S101,将液晶面板中的像素两两一组进行分组。这里,任意一组中的两个像素为在预定方向上相邻的两个像素。所述预定方向可以为横向或纵向。
这里,液晶面板的每个像素包括多个颜色不同的子像素。例如,可以包括红色(R)子像素、绿色(G)子像素和蓝色(B)子像素。此外,还可以包括黄色(Y)子像素或白色(W)子像素。可以理解,本发明不仅限于此,还可以是每个像素中包括其他颜色子像素的液晶面板。
具体说来,可以将液晶面板的每一行中的像素按相邻的两个像素为一组进行不重复分组。例如,在液晶面板的每一行中只有4个像素时,可以将每一行中的列号为1和2的两个相邻的像素分为一组,将每一行中的列号为3和4的两个相邻的像素分为一组。
此外,还可以将液晶面板的每一列中的像素按相邻的两个像素为一组进行不重复分组。例如,在液晶面板的每一列中只有4个像素时,可以将每一列中的行号为1和2的两个相邻的像素分为一组,将每一列中的列号为3和4的两个相邻的像素分为一组。
在步骤S102,确定每个组中的每个像素的第一种颜色子像素的原始灰阶值和第二种颜色子像素的原始灰阶值。即,针对每个组中的每个像素,分别确定第一种颜色子像素的原始灰阶值和第二种颜色子像素的原始灰阶值。
这里,第一种颜色子像素和第二种颜色子像素为两个颜色不同的子像素。可以根据液晶面板的种类来相应确定第一种颜色子像素和第二种颜色子像素的颜色。例如,在液晶面板的每个像素包括R子像素、G子像素和B子像素时,第一种颜色子像素可以是R、G、B中的任意一种颜色子像素,第二种颜色子像素可以为R、G、B中与第一种颜色子像素的颜色不同的任意一种颜色子像素。优选地,第一种颜色子像素为蓝色子像素,第二种颜色子像素为绿色子像素或红色子像素,或者,第一种颜色子像素为绿色子像素或红色子像素,第二种颜色子像素为蓝色子像素。
此外,原始灰阶值为子像素显示图像的原本的灰阶值(例如,在现有技术中驱动液晶面板显示图像时设置给子像素的灰阶值)。可以理解,可通过现有的各种方法来确定每个组中的每个像素的第一种颜色子像素的原始灰阶值和第二 种颜色子像素的原始灰阶值。
在步骤S103,根据步骤S102确定的每个组的两个像素的第一种颜色子像素的原始灰阶值中的至少一个,获取每个组的用于驱动第一种颜色子像素的两个实际灰阶值;并根据步骤S102确定的每个组的两个像素的第二种颜色子像素的原始灰阶值中的至少一个,获取每个组的用于驱动第二种颜色子像素的两个实际灰阶值。
换言之,针对每个组的两个像素的第一种颜色子像素(即,针对每个组中的两个第一种颜色子像素),利用他们的两个原始灰阶值中的至少一个,获取用于驱动他们的两个实际灰阶值;并针对每个组的两个像素的第二种颜色子像素(即,针对每个组中的两个第二种颜色子像素),利用他们的两个原始灰阶值中的至少一个,获取用于驱动他们的两个实际灰阶值。
这里,实际灰阶值为子像素显示图像的实际的灰阶值。可以理解,可以利用现有的各种方法来获取每个组的用于驱动第一种颜色子像素的两个实际灰阶值和用于驱动第二种颜色子像素的两个实际灰阶值。
作为示例,根据任意一个组的两个像素的任意一种颜色子像素的原始灰阶值中的至少一个,获取所述一个组的用于驱动所述一种颜色子像素的两个实际灰阶值的步骤如图2所示。
图2是示出根据本发明示例性实施例的根据任意一个组的两个像素的任意一种颜色子像素的原始灰阶值中的至少一个,获取所述一个组的用于驱动所述一种颜色子像素的两个实际灰阶值的步骤的流程图。
如图2所示,在步骤S201,根据所述一个组的两个像素的所述一种颜色子像素的原始灰阶值中的至少一个,确定一个索引值。这里,索引值为用来查找后述的显示查找表的灰阶值。可以理解,可以利用现有的各种方法来确定所述一个索引值。
作为示例,可将所述一个组的两个像素中的任意一个像素的所述一种颜色子像素的原始灰阶值作为所述一个索引值。
作为另一示例,可将所述一个组的两个像素的所述一种颜色子像素的原始灰阶值的平均值作为所述一个索引值。
在步骤S202,从所述一种颜色子像素的显示查找表中查找与步骤S201中确 定的一个索引值对应的两个实际灰阶值,得到所述一个组的用于驱动所述一种颜色子像素的两个实际灰阶值。所述显示查找表中每个索引值对应两个实际灰阶值。
这里,所述显示查找表可通过现有的各种方法确定。优选地,获得所述一种颜色子像素的显示查找表的步骤如图3所示。
图3是示出根据本发明示例性实施例的获得任意一种颜色子像素的显示查找表的步骤的流程图。
如图3所示,在步骤S301,分别获取正视情况下和斜视情况下的所述一种颜色子像素在所述液晶面板的灰阶值的取值范围内各个灰阶值下的实际亮度值。这里,所述正视为以与液晶面板的垂直方向呈0度的视角观察液晶面板。所述斜视为以与液晶面板的垂直方向呈大约60度左右的视角观察液晶面板。灰阶值的取值范围由液晶面板的不同而不同,当液晶面板为8比特的液晶面板时(即,使用8位二进制数来表示灰阶值),所述取值范围为[0,255],当液晶面板为10比特的液晶面板时(即,使用10位二进制数来表示灰阶值),所述取值范围为[0,1023]。可以理解,可通过现有的各种方法确定所述实际亮度值。
作为示例,可通过分别测量正视情况下和斜视情况下的所述一种颜色子像素的伽马曲线来获取正视情况下和斜视情况下的所述一种颜色子像素在所述取值范围内各个灰阶值下的实际亮度值。所述伽马曲线为表示所述一种颜色子像素的灰阶与亮度关系的曲线。这里,可通过现有的各种方法来测量所述伽马曲线。
在步骤S302,分别计算正视情况下和斜视情况下的所述一种颜色子像素在所述取值范围内各个灰阶值下的理论亮度值。这里,可通过现有的各种计算方法来计算所述理论亮度值。
作为示例,可通过下式计算在任意一种视角情况下的所述一种颜色子像素在所述取值范围内的任意一个灰阶值g下的理论亮度值:
Lv(g)=Lv(gmax)′×(g/gmax)γ  (1)
这里,γ为预定伽马值,Lv(g)为在所述一种视角情况下的所述一种颜色子像素在所述一个灰阶值g时的理论亮度值,Lv(gmax)′为在所述一种视角情况下的所述一种颜色子像素在所述取值范围内的最大灰阶值gmax时的实际亮度值。这 里,所述一种视角可以为正视或斜视。应该理解,上述式(1)也可计算除正视和斜视的其他视角情况下的所述理论亮度值。
在计算正视情况下所述一种颜色子像素在所述取值范围内的任意一个灰阶值g下的理论亮度值时,将所述一个灰阶值g、所述取值范围内的最大灰阶值gmax、预定伽马值γ代入式(1),并将正视情况下的所述一种颜色子像素在最大灰阶值gmax时的实际亮度值Lv(gmax)′代入即可得到正视情况下的所述一种颜色子像素在所述一个灰阶值g下的理论亮度值。基于此,可计算正视情况下的所述一种颜色子像素在所述取值范围内的各个灰阶值下的理论亮度值。
在计算斜视情况下所述一种颜色子像素在所述取值范围内的任意一个灰阶值g下的理论亮度值时,将所述一个灰阶值g、所述取值范围内的最大灰阶值gmax、预定伽马值γ代入式(1),并将斜视情况下的所述一种颜色子像素在最大灰阶值gmax时的实际亮度值Lv(gmax)′代入即可得到斜视情况下的所述一种颜色子像素在所述一个灰阶值g下的理论亮度值。基于此,可计算斜视情况下的所述一种颜色子像素在所述取值范围内的各个灰阶值下的理论亮度值。
这里,预定伽马值γ可以为2.2,但并不限于此,可根据实际情况进行设定。最大灰阶值gmax根据液晶面板的不同而不同。例如,在液晶面板为8比特的液晶面板时(即,使用8位二进制数来表示灰阶值),最大灰阶值gmax可以为255,在液晶面板为10比特的液晶面板时(即,使用10位二进制数来表示灰阶值),最大灰阶值gmax可以为1023,但并不限于此,还可根据液晶面板的实际参数来确定。
在步骤S303,根据步骤S301获取的各个实际亮度值和步骤S302计算的各个理论亮度值,确定与作为索引值的所述取值范围内的每个灰阶值对应的满足预定条件的两个实际灰阶值,即,对于作为索引值的所述取值范围内的每个灰阶值都可确定两个实际灰阶值与之对应,且所述每个灰阶值与所述两个实际灰阶值之间满足预定条件。对于所述预定条件,本领域技术人员可根据经验进行设置。
优选地,作为索引值的所述取值范围内的任意一个灰阶值g与对应的两个实际灰阶值gH和gL满足如下预定条件:
min y=[Lv(g)+Lv(g)-Lv(gH)′-Lv(gL)′]2+[Lv(g)+Lv(g)-Lv(gH)′-Lv(gL)′]2  (2)
这里,Lv(g)、Lv(g)分别为正视情况下和斜视情况下的所述一种颜色子像 素在所述一个灰阶值g时的理论亮度值,Lv(gH)′、Lv(gH)′分别为正视情况下和斜视情况下的所述一种颜色子像素在实际灰阶值gH时的实际亮度值,Lv(gL)′、Lv(gL)′分别为正视情况下和斜视情况下的所述一种颜色子像素在实际灰阶值gL时的实际亮度值。
由此,可确定与所述取值范围内的每个索引值对应的满足式(2)的两个实际灰阶值。
在步骤S304,基于步骤S303确定的所述取值范围内的每个索引值与实际灰阶值的对应关系得到所述显示查找表。
返回图2,利用根据图3所示的步骤获得的所述一种颜色子像素的显示查找表,即可从所述显示查找表中查找与步骤S201确定的一个索引值对应的两个实际灰阶值,从而得到所述一个组的用于驱动所述一种颜色子像素的两个实际灰阶值。
这样,根据图2所示的步骤即可依次获取每个组的用于驱动第一种颜色子像素的两个实际灰阶值和用于驱动第二种颜色子像素的两个实际灰阶值。
返回图1,在步骤S104,根据每个组中的每个像素的位置,确定步骤S103获取的每个组的用于驱动第一种颜色子像素的两个实际灰阶值之中的用于驱动每个像素的第一种颜色子像素的实际灰阶值,并确定步骤S103获取的每个组的用于驱动第二种颜色子像素的两个实际灰阶值之中的用于驱动每个像素的第二种颜色子像素的实际灰阶值。
具体说来,针对任意一个组,根据所述一个组中的每个像素的位置,将步骤S103获取的所述一个组的用于驱动第一种颜色子像素的两个实际灰阶值分别作为所述一个组中的两个像素的第一种颜色子像素的实际灰阶值以驱动所述两个像素的第一种颜色子像素,并将步骤S103获取的所述一个组的用于驱动第二种颜色子像素的两个实际灰阶值分别作为所述一个组中的两个像素的第二种颜色子像素的实际灰阶值以驱动所述两个像素的第二种颜色子像素。
此外,步骤S104在确定了每个组的用于驱动每个像素的第一种颜色子像素的实际灰阶值后,利用每个组的用于驱动每个像素的第一种颜色子像素的实际灰阶值来驱动每个组的每个像素的第一种颜色子像素;并在确定了每个组的用于驱动每个像素的第二种颜色子像素的实际灰阶值后,利用每个组的用于驱动 每个像素的第二种颜色子像素的实际灰阶值来驱动每个组的每个像素的第二种颜色子像素。
这里,可将所述一个组的用于驱动第一种颜色子像素的两个实际灰阶值之中的任意一个实际灰阶值作为所述一个组的任意一个像素的第一种颜色子像素的实际灰阶值;可将所述一个组的用于驱动第二种颜色子像素的两个实际灰阶值之中的任意一个实际灰阶值作为所述一个组的任意一个像素的第二种颜色子像素的实际灰阶值。
作为一个优选实施例,可以将每个组的用于驱动第一种颜色子像素的两个实际灰阶值之中的较大的实际灰阶值,确定为用于驱动每个组的两个像素中的行号与列号之和为偶数的像素的第一种颜色子像素的实际灰阶值;并将每个组的用于驱动第一种颜色子像素的两个实际灰阶值之中的较小的实际灰阶值,确定为用于驱动每个组的两个像素中的行号与列号之和为奇数的像素的第一种颜色子像素的实际灰阶值;并将每个组的用于驱动第二种颜色子像素的两个实际灰阶值之中的较大的实际灰阶值,确定为用于驱动每个组的两个像素中的行号与列号之和为奇数的像素的第二种颜色子像素的实际灰阶值;并将每个组的用于驱动第二种颜色子像素的两个实际灰阶值之中的较小的实际灰阶值,确定为用于驱动每个组的两个像素中的行号与列号之和为偶数的像素的第二种颜色子像素的实际灰阶值。
图4是示出根据本发明示例性实施例的针对液晶面板的一部分的像素的第一种颜色子像素和第二种颜色子像素分别确定的实际灰阶值的示意图。
图4中示出液晶面板的一部分的像素(3行×2列个像素(每个粗实线框代表一个像素)),每个像素包括R子像素、G子像素和B子像素。并且,将横向相邻的两个像素分为一组,共有三个组(如虚线所示)。这里,假设B子像素为第一种颜色子像素,G子像素为第二种颜色子像素。
如图4所示,由于1与1之和为偶数,1与2之和为奇数,所以第一组的两个像素中的第1行、第1列的像素的第一种颜色子像素的实际灰阶值为第一组的用于驱动第一种颜色子像素的两个实际灰阶值gBH1、gBL1中的较大的实际灰阶值gBH1,第一组两个像素中的第1行、第2列的像素的第一种颜色子像素的实际灰阶值为第一组的用于驱动第一种颜色子像素的两个实际灰阶值gBH1、gBL1中的较小的实际灰阶值gBL1
并且,第一组的两个像素中的第1行、第1列的像素的第二种颜色子像素的实际灰阶值为第一组的用于驱动第二种颜色子像素的两个实际灰阶值gGH1、gGL1中的较小的实际灰阶值gGL1,第一组的两个像素中的第1行、第2列的像素的第二种颜色子像素的实际灰阶值为第一组的用于驱动第二种颜色子像素的两个实际灰阶值gGH1、gGL1中的较大的实际灰阶值gGH1
由于2与1之和为奇数,2与2之和为偶数,所以第二组的两个像素中的第2行、第1列的像素的第一种颜色子像素的实际灰阶值为第二组的用于驱动第一种颜色子像素的两个实际灰阶值gBH2、gBL2中的较小的实际灰阶值gBL2,第二组两个像素中的第2行、第2列的像素的第一种颜色子像素的实际灰阶值为第二组的用于驱动第一种颜色子像素的两个实际灰阶值gBH2、gBL2中的较大的实际灰阶值gBH2
并且,第二组的两个像素中的第2行、第1列的像素的第二种颜色子像素的实际灰阶值为第二组的用于驱动第二种颜色子像素的两个实际灰阶值gGH2、gGL2中的较大的实际灰阶值gGH2,第二组的两个像素中的第2行、第2列的像素的第二种颜色子像素的实际灰阶值为第二组的用于驱动第二种颜色子像素的两个实际灰阶值gGH2、gGL2中的较小的实际灰阶值gGL2
由于3与1之和为偶数,3与2之和为奇数,所以第三组的两个像素中的第3行、第1列的像素的第一种颜色子像素的实际灰阶值为第三组的用于驱动第一种颜色子像素的两个实际灰阶值gBH3、gBL3中的较大的实际灰阶值gBH3,第三组两个像素中的第3行、第2列的像素的第一种颜色子像素的实际灰阶值为第三组的用于驱动第一种颜色子像素的两个实际灰阶值gBH3、gBL3中的较小的实际灰阶值gBL3
并且,第三组的两个像素中的第3行、第1列的像素的第二种颜色子像素的实际灰阶值为第三组的用于驱动第二种颜色子像素的两个实际灰阶值gGH3、gGL3中的较小的实际灰阶值gGL3,第三组的两个像素中的第3行、第2列的像素的第二种颜色子像素的实际灰阶值为第三组的用于驱动第二种颜色子像素的两个实际灰阶值gGH3、gGL3中的较大的实际灰阶值gGH3
根据图4可知通过上述优选实施例确定的每个像素的第一种颜色子像素和第二种颜色子像素的实际灰阶值能够改善模拟2D1G时对液晶面板的分辨率的 影响。
图5是示出根据本发明示例性实施例的液晶面板的驱动装置的框图。
如图5所示,根据本发明示例性实施例的液晶面板的驱动装置100包括:分组单元101、原始灰阶值确定单元102、实际灰阶值获取单元103和驱动确定单元。
分组单元101用于将液晶面板中的像素两两一组进行分组。这里,任意一组中的两个像素为在预定方向上相邻的两个像素。所述预定方向可以为横向或纵向。
这里,液晶面板的每个像素包括多个颜色不同的子像素。例如,可以包括红色(R)子像素、绿色(G)子像素和蓝色(B)子像素。此外,还可以包括黄色(Y)子像素或白色(W)子像素。可以理解,本发明不仅限于此,还可以是每个像素中包括其他颜色子像素的液晶面板。
具体说来,分组单元101可以将液晶面板的每一行中的像素按相邻的两个像素为一组进行不重复分组。例如,在液晶面板的每一行中只有4个像素时,可以将每一行中的列号为1和2的两个相邻的像素分为一组,将每一行中的列号为3和4的两个相邻的像素分为一组。
此外,分组单元101还可以将液晶面板的每一列中的像素按相邻的两个像素为一组进行不重复分组。例如,在液晶面板的每一列中只有4个像素时,可以将每一列中的行号为1和2的两个相邻的像素分为一组,将每一列中的列号为3和4的两个相邻的像素分为一组。
原始灰阶值确定单元102用于确定每个组中的每个像素的第一种颜色子像素的原始灰阶值和第二种颜色子像素的原始灰阶值。即,针对每个组中的每个像素,分别确定每个像素的第一种颜色子像素的原始灰阶值和第二种颜色子像素的原始灰阶值。
这里,第一种颜色子像素和第二种颜色子像素为两个颜色不同的子像素。可以根据液晶面板的种类来相应确定第一种颜色子像素和第二种颜色子像素的颜色。例如,在液晶面板的每个像素包括R子像素、G子像素和B子像素时,第一种颜色子像素可以是R、G、B中的任意一种颜色子像素,第二种颜色子像素可以为R、G、B中与第一种颜色子像素的颜色不同的任意一种颜色子像素。优选地,第一种颜色子像素为蓝色子像素,第二种颜色子像素为绿色子像素或 红色子像素,或者,第一种颜色子像素为绿色子像素或红色子像素,第二种颜色子像素为蓝色子像素。
此外,原始灰阶值为子像素显示图像的原本的灰阶值(例如,在现有技术中驱动液晶面板显示图像时设置给子像素的灰阶值)。可以理解,原始灰阶值确定单元102可通过现有的各种方法来确定每个组中的每个像素的第一种颜色子像素的原始灰阶值和第二种颜色子像素的原始灰阶值。
实际灰阶值获取单元103用于根据原始灰阶值确定单元102确定的每个组的两个像素的第一种颜色子像素的原始灰阶值中的至少一个,获取每个组的用于驱动第一种颜色子像素的两个实际灰阶值;并根据原始灰阶值确定单元102确定的每个组的两个像素的第二种颜色子像素的原始灰阶值中的至少一个,获取每个组的用于驱动第二种颜色子像素的两个实际灰阶值。
换言之,针对每个组的两个像素的第一种颜色子像素(即,针对每个组中的两个第一种颜色子像素),利用他们的两个原始灰阶值中的至少一个,获取用于驱动他们的两个实际灰阶值;并针对每个组的两个像素的第二种颜色子像素(即,针对每个组中的两个第二种颜色子像素),利用他们的两个原始灰阶值中的至少一个,获取用于驱动他们的两个实际灰阶值。
这里,实际灰阶值为子像素显示图像的实际的灰阶值。可以理解,实际灰阶值获取单元103可以利用现有的各种方法来获取每个组的用于驱动第一种颜色子像素的两个实际灰阶值和用于驱动第二种颜色子像素的两个实际灰阶值。
作为示例,实际灰阶值获取单元103可以依次获取每个组的用于驱动第一种颜色子像素的两个实际灰阶值和用于驱动第二种颜色子像素的两个实际灰阶值。
具体说来,实际灰阶值获取单元103可以根据任意一个组的两个像素的任意一种颜色子像素的原始灰阶值中的至少一个,获取所述一个组的用于驱动所述一种颜色子像素的两个实际灰阶值。然后,针对每个组依次获取用于驱动第一种颜色子像素的两个实际灰阶值和用于驱动第二种颜色子像素的两个实际灰阶值。
这里,实际灰阶值获取单元103包括:索引值确定单元和查表单元。
索引值确定单元用于根据任意一个组的两个像素的任意一种颜色子像素的原始灰阶值中的至少一个,确定一个索引值。这里,索引值为用来查找后述的 显示查找表的灰阶值。可以理解,索引值确定单元可以利用现有的各种方法来确定所述一个索引值。
作为示例,索引值确定单元可将所述一个组的两个像素中的任意一个像素的所述一种颜色子像素的原始灰阶值作为所述一个索引值。
作为另一示例,索引值确定单元可将所述一个组的两个像素的所述一种颜色子像素的原始灰阶值的平均值作为所述一个索引值。
查表单元用于从所述一种颜色子像素的显示查找表中查找与索引值确定单元确定的一个索引值对应的两个实际灰阶值,得到所述一个组的用于驱动所述一种颜色子像素的两个实际灰阶值。所述显示查找表中每个索引值对应两个实际灰阶值。
这里,所述显示查找表可以是预先存储在液晶面板的驱动装置的预定位置的表,也可以是由专用单元建立的表。在由专用单元建立所述显示查找表时,所述实际灰阶值获取单元103还包括:表建立单元,用于建立所述一种颜色子像素的显示查找表。可以理解,表建立单元可以对任意一种颜色子像素建立显示查找表。
这里,表建立单元包括:实际亮度值获取单元、理论亮度值计算单元、关系确定单元和建立单元。
实际亮度值获取单元用于分别获取正视情况下和斜视情况下的所述一种颜色子像素在所述液晶面板的灰阶值的取值范围内各个灰阶值下的实际亮度值。这里,所述正视为以与液晶面板的垂直方向呈0度的视角观察液晶面板。所述斜视为以与液晶面板的垂直方向呈大约60度左右的视角观察液晶面板。灰阶值的取值范围由液晶面板的不同而不同,当液晶面板为8比特的液晶面板时(即,使用8位二进制数来表示灰阶值),所述取值范围为[0,255],当液晶面板为10比特的液晶面板时(即,使用10位二进制数来表示灰阶值),所述取值范围为[0,1023]。可以理解,实际亮度值获取单元可通过现有的各种方法确定所述实际亮度值。
作为示例,实际亮度值获取单元可通过分别测量正视情况下和斜视情况下的所述一种颜色子像素的伽马曲线来获取正视情况下和斜视情况下的所述一种颜色子像素在所述取值范围内各个灰阶值下的实际亮度值。所述伽马曲线为表示所述一种颜色子像素的灰阶与亮度关系的曲线。这里,实际亮度值获取单元 可通过现有的各种方法来测量所述伽马曲线。
理论亮度值计算单元用于分别计算正视情况下和斜视情况下的所述一种颜色子像素在所述取值范围内各个灰阶值下的理论亮度值。这里,理论亮度值计算单元可通过现有的各种计算方法来计算所述理论亮度值。
作为示例,理论亮度值计算单元可通过前述式(1)计算在任意一种视角情况下的所述一种颜色子像素在所述取值范围内的任意一个灰阶值g下的理论亮度值,从而计算正视情况下的所述一种颜色子像素在所述取值范围内的各个灰阶值下的理论亮度值和斜视情况下的所述一种颜色子像素在所述取值范围内的各个灰阶值下的理论亮度值。
关系确定单元用于根据实际亮度值获取单元获取的各个实际亮度值和理论亮度值计算单元计算的各个理论亮度值,确定与作为索引值的所述取值范围内的每个灰阶值对应的满足预定条件的两个实际灰阶值,即,对于作为索引值的所述取值范围内的每个灰阶值都可确定两个实际灰阶值与之对应,且所述每个灰阶值与所述两个实际灰阶值之间满足预定条件。对于所述预定条件,本领域技术人员可根据经验进行设置。
优选地,关系确定单元确定的作为索引值的所述取值范围内的任意一个灰阶值g与对应的两个实际灰阶值gH和gL满足前述式(2)。
由此,可确定与所述取值范围内的每个索引值对应的满足式(2)的两个实际灰阶值。
建立单元用于基于关系确定单元确定的所述取值范围内的每个索引值与实际灰阶值的对应关系得到所述显示查找表。
驱动确定单元104用于根据每个组中的每个像素的位置,确定实际灰阶值获取单元103获取的每个组的用于驱动第一种颜色子像素的两个实际灰阶值之中的用于驱动每个像素的第一种颜色子像素的实际灰阶值,并确定实际灰阶值获取单元103获取的每个组的用于驱动第二种颜色子像素的两个实际灰阶值之中的用于驱动每个像素的第二种颜色子像素的实际灰阶值。
具体说来,针对任意一个组,根据所述一个组中的每个像素的位置,将实际灰阶值获取单元103获取的所述一个组的用于驱动第一种颜色子像素的两个实际灰阶值分别作为所述一个组中的两个像素的第一种颜色子像素的实际灰阶 值以驱动所述两个像素的第一种颜色子像素,并将实际灰阶值获取单元103获取的所述一个组的用于驱动第二种颜色子像素的两个实际灰阶值分别作为所述一个组中的两个像素的第二种颜色子像素的实际灰阶值以驱动所述两个像素的第二种颜色子像素。
此外,驱动确定单元104在确定了每个组的用于驱动每个像素的第一种颜色子像素的实际灰阶值后,利用每个组的用于驱动每个像素的第一种颜色子像素的实际灰阶值来驱动每个组的每个像素的第一种颜色子像素;并在确定了每个组的用于驱动每个像素的第二种颜色子像素的实际灰阶值后,利用每个组的用于驱动每个像素的第二种颜色子像素的实际灰阶值来驱动每个组的每个像素的第二种颜色子像素。
这里,实际灰阶值获取单元103可将所述一个组的用于驱动第一种颜色子像素的两个实际灰阶值之中的任意一个实际灰阶值作为所述一个组的任意一个像素的第一种颜色子像素的实际灰阶值;并可将所述一个组的用于驱动第二种颜色子像素的两个实际灰阶值之中的任意一个实际灰阶值作为所述一个组的任意一个像素的第二种颜色子像素的实际灰阶值。
作为一个优选实施例,驱动确定单元104可以将每个组的用于驱动第一种颜色子像素的两个实际灰阶值之中的较大的实际灰阶值,确定为用于驱动每个组的两个像素中的行号与列号之和为偶数的像素的第一种颜色子像素的实际灰阶值;并将每个组的用于驱动第一种颜色子像素的两个实际灰阶值之中的较小的实际灰阶值,确定为用于驱动每个组的两个像素中的行号与列号之和为奇数的像素的第一种颜色子像素的实际灰阶值;并将每个组的用于驱动第二种颜色子像素的两个实际灰阶值之中的较大的实际灰阶值,确定为用于驱动每个组的两个像素中的行号与列号之和为奇数的像素的第二种颜色子像素的实际灰阶值;并将每个组的用于驱动第二种颜色子像素的两个实际灰阶值之中的较小的实际灰阶值,确定为用于驱动每个组的两个像素中的行号与列号之和为偶数的像素的第二种颜色子像素的实际灰阶值。
根据本发明的示例性实施例的液晶面板的驱动方法及驱动装置,能够在对液晶面板的开口率和穿透率不产生影响的情况下改善液晶面板的色偏。
此外,根据本发明的上述方法可以被实现为计算机可读记录介质中的计算机代码。本领域技术人员可以根据对上述方法的描述来实现所述计算机代码。当所述计算机代码在计算机中被执行时实现本发明的上述方法。
此外,根据本发明的示例性实施例的液晶面板的驱动装置中的各个单元可被实现为硬件组件。本领域技术人员根据限定的各个单元所执行的处理,可以使用例如现场可编程门阵列(FPGA)或专用集成电路(ASIC)来实现各个单元。
本发明的以上实施例仅仅是示例性的,而本发明并不受限于此。本领域技术人员应该理解:在不脱离本发明的原理和精神的情况下,可对这些实施例进行改变,其中,本发明的范围在权利要求及其等同物中限定。

Claims (20)

  1. 一种液晶面板的驱动方法,其中,包括:
    (A)将液晶面板中的像素两两一组进行分组,其中,任意一组中的两个像素为在预定方向上相邻的两个像素;
    (B)确定每个组中的每个像素的第一种颜色子像素的原始灰阶值和第二种颜色子像素的原始灰阶值;
    (C)根据每个组的两个像素的第一种颜色子像素的原始灰阶值中的至少一个,获取每个组的用于驱动第一种颜色子像素的两个实际灰阶值;根据每个组的两个像素的第二种颜色子像素的原始灰阶值中的至少一个,获取每个组的用于驱动第二种颜色子像素的两个实际灰阶值;
    (D)根据每个组中的每个像素的位置,确定每个组的用于驱动第一种颜色子像素的两个实际灰阶值之中的用于驱动每个像素的第一种颜色子像素的实际灰阶值,并确定每个组的用于驱动第二种颜色子像素的两个实际灰阶值之中的用于驱动每个像素的第二种颜色子像素的实际灰阶值。
  2. 根据权利要求1所述的驱动方法,其中,步骤(D)包括:
    将每个组的用于驱动第一种颜色子像素的两个实际灰阶值之中的较大的实际灰阶值,确定为用于驱动每个组的两个像素中的行号与列号之和为偶数的像素的第一种颜色子像素的实际灰阶值;
    将每个组的用于驱动第一种颜色子像素的两个实际灰阶值之中的较小的实际灰阶值,确定为用于驱动每个组的两个像素中的行号与列号之和为奇数的像素的第一种颜色子像素的实际灰阶值;
    将每个组的用于驱动第二种颜色子像素的两个实际灰阶值之中的较大的实际灰阶值,确定为用于驱动每个组的两个像素中的行号与列号之和为奇数的像素的第二种颜色子像素的实际灰阶值;
    将每个组的用于驱动第二种颜色子像素的两个实际灰阶值之中的较小的实际灰阶值,确定为用于驱动每个组的两个像素中的行号与列号之和为偶数的像素的第二种颜色子像素的实际灰阶值。
  3. 根据权利要求1所述的驱动方法,其中,所述预定方向为横向或纵向。
  4. 根据权利要求1所述的驱动方法,其中,根据任意一个组的两个像素的任意一种颜色子像素的原始灰阶值中的至少一个,获取所述一个组的用于驱动所述一种颜色子像素的两个实际灰阶值的步骤包括:
    根据所述一个组的两个像素的所述一种颜色子像素的原始灰阶值中的至少一个,确定一个索引值;
    从所述一种颜色子像素的显示查找表中查找与所述一个索引值对应的两个实际灰阶值,得到所述一个组的用于驱动所述一种颜色子像素的两个实际灰阶值。
  5. 根据权利要求4所述的驱动方法,其中,确定一个索引值的步骤包括:
    将所述一个组的两个像素中的任意一个像素的所述一种颜色子像素的原始灰阶值作为所述一个个索引值。
  6. 根据权利要求4所述的驱动方法,其中,确定一个索引值的步骤包括:
    将所述一个组的两个像素的所述一种颜色子像素的原始灰阶值的平均值作为所述一个索引值。
  7. 根据权利要求4所述的驱动方法,其中,所述一种颜色子像素的显示查找表通过如下步骤获得:
    分别获取正视情况下和斜视情况下的所述一种颜色子像素在所述液晶面板的灰阶值的取值范围内各个灰阶值下的实际亮度值;
    分别计算正视情况下和斜视情况下的所述一种颜色子像素在所述取值范围内各个灰阶值下的理论亮度值;
    根据获取的各个实际亮度值和计算的各个理论亮度值,确定与作为索引值的所述取值范围内的每个灰阶值对应的满足预定条件的两个实际灰阶值;
    基于每个索引值与实际灰阶值的对应关系得到所述显示查找表。
  8. 根据权利要求7所述的驱动方法,其中,通过分别测量正视情况下和斜视情况下的所述一种颜色子像素的伽马曲线来获取正视情况下和斜视情况下的所述一种颜色子像素在所述液晶面板的灰阶值的取值范围内各个灰阶值下的实际亮度值。
  9. 根据权利要求7所述的驱动方法,其中,通过下式计算在任意一种视角情况下的所述一种颜色子像素在所述取值范围内的任意一个灰阶值g下的理论亮度值:
    Lv(g)=Lv(gmax)′×(g/gmax)γ
    其中,γ为预定伽马值,Lv(g)为在所述一种视角情况下的所述一种颜色子像素在所述一个灰阶值g时的理论亮度值,Lv(gmax)′为在所述一种视角情况下的所述一种颜色子像素在所述取值范围内的最大灰阶值gmax时的实际亮度值,其中,所述一种视角为正视或斜视。
  10. 根据权利要求7所述的驱动方法,其中,作为索引值的所述取值范围内的任意一个灰阶值g与对应的两个实际灰阶值gH和gL满足如下预定条件:
    min y=[Lv(g)+Lv(g)-Lv(gH)′-Lv(gL)′]2+[Lv(g)+Lv(g)-Lv(gH)′-Lv(gL)′]2
    其中,Lv(g)、Lv(g)分别为正视情况下和斜视情况下的所述一种颜色子像素在所述一个灰阶值g时的理论亮度值,Lv(gH)′、Lv(gH)′分别为正视情况下和斜视情况下的所述一种颜色子像素在实际灰阶值gH时的实际亮度值,Lv(gL)′、Lv(gL)′分别为正视情况下和斜视情况下的所述一种颜色子像素在实际灰阶值gL时的实际亮度值。
  11. 一种液晶面板驱动装置,其中,包括:
    分组单元,将液晶面板中的像素两两一组进行分组,其中,任意一组中的两个像素为在预定方向上相邻的两个像素;
    原始灰阶值确定单元,确定每个组中的每个像素的第一种颜色子像素的原始灰阶值和第二种颜色子像素的原始灰阶值;
    实际灰阶值获取单元,根据每个组的两个像素的第一种颜色子像素的原始灰阶值中的至少一个,获取每个组的用于驱动第一种颜色子像素的两个实际灰阶值;根据每个组的两个像素的第二种颜色子像素的原始灰阶值中的至少一个,获取每个组的用于驱动第二种颜色子像素的两个实际灰阶值;
    驱动确定单元,根据每个组中的每个像素的位置,确定每个组的用于驱动第一种颜色子像素的两个实际灰阶值之中的用于驱动每个像素的第一种颜色子 像素的实际灰阶值,并确定每个组的用于驱动第二种颜色子像素的两个实际灰阶值之中的用于驱动每个像素的第二种颜色子像素的实际灰阶值。
  12. 根据权利要求11所述的驱动装置,其中,所述驱动确定单元用于将每个组的用于驱动第一种颜色子像素的两个实际灰阶值之中的较大的实际灰阶值,确定为用于驱动每个组的两个像素中的行号与列号之和为偶数的像素的第一种颜色子像素的实际灰阶值;并将每个组的用于驱动第一种颜色子像素的两个实际灰阶值之中的较小的实际灰阶值,确定为用于驱动每个组的两个像素中的行号与列号之和为奇数的像素的第一种颜色子像素的实际灰阶值;并将每个组的用于驱动第二种颜色子像素的两个实际灰阶值之中的较大的实际灰阶值,确定为用于驱动每个组的两个像素中的行号与列号之和为奇数的像素的第二种颜色子像素的实际灰阶值;并将每个组的用于驱动第二种颜色子像素的两个实际灰阶值之中的较小的实际灰阶值,确定为用于驱动每个组的两个像素中的行号与列号之和为偶数的像素的第二种颜色子像素的实际灰阶值。
  13. 根据权利要求11所述的驱动装置,其中,所述预定方向为横向或纵向。
  14. 根据权利要求11所述的驱动装置,其中,实际灰阶值获取单元依次获取每个组的用于驱动第一种颜色子像素的两个实际灰阶值和用于驱动第二种颜色子像素的两个实际灰阶值,
    其中,实际灰阶值获取单元包括:
    索引值确定单元,根据任意一个组的两个像素的任意一种颜色子像素的原始灰阶值中的至少一个,确定一个索引值;
    查表单元,从所述一种颜色子像素的显示查找表中查找与所述一个索引值对应的两个实际灰阶值,得到所述一个组的用于驱动所述一种颜色子像素的两个实际灰阶值。
  15. 根据权利要求14所述的驱动装置,其中,所述索引值确定单元将所述一个组的两个像素中的任意一个像素的所述一种颜色子像素的原始灰阶值作为所述一个个索引值。
  16. 根据权利要求14所述的驱动装置,其中,所述索引值确定单元将所述一个组的两个像素的所述一种颜色子像素的原始灰阶值的平均值作为所述一个索引值。
  17. 根据权利要求14所述的驱动装置,其中,所述实际灰阶值获取单元还包括:表建立单元,建立所述一种颜色子像素的显示查找表,
    其中,表建立单元包括:
    实际亮度值获取单元,分别获取正视情况下和斜视情况下的所述一种颜色子像素在所述液晶面板的灰阶值的取值范围内各个灰阶值下的实际亮度值;
    理论亮度值计算单元,分别计算正视情况下和斜视情况下的所述一种颜色子像素在所述取值范围内各个灰阶值下的理论亮度值;
    关系确定单元,根据获取的各个实际亮度值和计算的各个理论亮度值,确定与作为索引值的所述取值范围内的每个灰阶值对应的满足预定条件的两个实际灰阶值;
    建立单元,基于每个索引值与实际灰阶值的对应关系得到所述显示查找表。
  18. 根据权利要求17所述的驱动装置,其中,实际亮度值获取单元,通过分别测量正视情况下和斜视情况下的所述一种颜色子像素的伽马曲线来获取正视情况下和斜视情况下的所述一种颜色子像素在所述液晶面板的灰阶值的取值范围内各个灰阶值下的实际亮度值。
  19. 根据权利要求17所述的驱动装置,其中,理论亮度值计算单元,通过下式计算在任意一种视角情况下的所述一种颜色子像素在所述取值范围内的任意一个灰阶值g下的理论亮度值:
    Lv(g)=Lv(gmax)′×(g/gmax)γ
    其中,γ为预定伽马值,Lv(g)为在所述一种视角情况下的所述一种颜色子像素在所述一个灰阶值g时的理论亮度值,Lv(gmax)′为在所述一种视角情况下的所述一种颜色子像素在所述取值范围内的最大灰阶值gmax时的实际亮度值,其中,所述一种视角为正视或斜视。
  20. 根据权利要求17所述的驱动装置,其中,关系确定单元确定的作为索引值的所述取值范围内的任意一个灰阶值g与对应的两个实际灰阶值gH和gL满足如下预定条件:
    min y=[Lv(g)+Lv(g)-Lv(gH)′-Lv(gL)′]2+[Lv(g)+Lv(g)-Lv(gH)′-Lv(gL)′]2
    其中,Lv(g)、Lv(g)分别为正视情况下和斜视情况下的所述一种颜色子像 素在所述一个灰阶值g时的理论亮度值,Lv(gH)′、Lv(gH)′分别为正视情况下和斜视情况下的所述一种颜色子像素在实际灰阶值gH时的实际亮度值,Lv(gL)′、Lv(gL)′分别为正视情况下和斜视情况下的所述一种颜色子像素在实际灰阶值gL时的实际亮度值。
PCT/CN2015/086792 2015-07-15 2015-08-12 液晶面板的驱动方法及驱动装置 WO2017008365A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/781,136 US9805670B2 (en) 2015-07-15 2015-08-12 Driving method and driving device of liquid crystal panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510417239.3A CN104952412B (zh) 2015-07-15 2015-07-15 液晶面板的驱动方法及驱动装置
CN201510417239.3 2015-07-15

Publications (1)

Publication Number Publication Date
WO2017008365A1 true WO2017008365A1 (zh) 2017-01-19

Family

ID=54167026

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/086792 WO2017008365A1 (zh) 2015-07-15 2015-08-12 液晶面板的驱动方法及驱动装置

Country Status (3)

Country Link
US (1) US9805670B2 (zh)
CN (1) CN104952412B (zh)
WO (1) WO2017008365A1 (zh)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106782371B (zh) * 2016-12-20 2018-01-19 惠科股份有限公司 液晶显示器件及其液晶显示面板的驱动方法
CN106652946A (zh) * 2016-12-26 2017-05-10 深圳市华星光电技术有限公司 一种液晶显示器及其驱动方法
CN107068102B (zh) * 2017-05-22 2018-03-13 惠科股份有限公司 一种图像处理方法、图像处理装置及显示装置
CN107123410B (zh) * 2017-07-06 2018-12-11 惠科股份有限公司 显示面板的驱动方法及显示装置
CN107134270B (zh) 2017-07-06 2018-08-03 惠科股份有限公司 显示面板的驱动方法及显示装置
CN107492359B (zh) * 2017-09-18 2020-03-10 惠科股份有限公司 一种显示装置的驱动方法及显示装置
CN107799079B (zh) * 2017-10-10 2019-06-11 惠科股份有限公司 液晶显示驱动方法、装置及设备
CN107919099B (zh) * 2017-10-10 2019-09-17 惠科股份有限公司 液晶显示驱动方法、装置及设备
CN108231018B (zh) * 2017-12-21 2020-07-10 惠科股份有限公司 显示装置的驱动方法及其驱动装置
CN108269538B (zh) * 2017-12-21 2020-08-11 惠科股份有限公司 显示装置的驱动方法及其驱动装置
CN108231017B (zh) * 2017-12-21 2021-02-09 惠科股份有限公司 显示装置的驱动方法及其驱动装置
CN107967901B (zh) * 2017-12-21 2020-07-10 惠科股份有限公司 显示装置的驱动方法
CN108133692B (zh) * 2017-12-29 2020-11-03 深圳市华星光电技术有限公司 对像素数据进行补偿调整的方法、装置及液晶显示面板
CN109637490B (zh) * 2019-01-30 2020-12-25 惠科股份有限公司 一种显示面板的驱动方法及驱动系统
CN109754768B (zh) * 2019-01-30 2021-01-08 惠科股份有限公司 一种显示面板的驱动方法及驱动系统
CN109949772B (zh) * 2019-01-31 2021-04-23 京东方科技集团股份有限公司 显示装置及其驱动方法
WO2020199111A1 (en) * 2019-04-01 2020-10-08 Shenzhen Yunyinggu Technology Co., Ltd. Method and system for determining overdrive pixel values in display panel
CN115311952B (zh) * 2022-02-24 2023-11-28 友达光电股份有限公司 具非矩形主动区的显示装置与其像素结构

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060055648A1 (en) * 2004-09-16 2006-03-16 Fujitsu Display Technologies Corporation Method of driving liquid crystal display device and liquid crystal display device
CN101855665A (zh) * 2007-11-08 2010-10-06 皇家飞利浦电子股份有限公司 驱动显示器的像素
CN104299592A (zh) * 2014-11-07 2015-01-21 深圳市华星光电技术有限公司 液晶面板及其驱动方法
CN104317084A (zh) * 2014-11-07 2015-01-28 深圳市华星光电技术有限公司 液晶面板及其驱动方法
CN104900203A (zh) * 2015-06-11 2015-09-09 深圳市华星光电技术有限公司 液晶面板及其驱动方法

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5606437A (en) * 1995-03-31 1997-02-25 Rockwell International Direct drive split pixel structure for active matrix liquid crystal displays
GB2323956A (en) * 1997-04-04 1998-10-07 Sharp Kk Diffractive liquid crystal device
DE19811022A1 (de) * 1998-03-13 1999-09-16 Siemens Ag Aktivmatrix-Flüssigkristallanzeige
GB0030592D0 (en) * 2000-12-15 2001-01-31 Koninkl Philips Electronics Nv Active matrix device with reduced power consumption
US6714206B1 (en) * 2001-12-10 2004-03-30 Silicon Image Method and system for spatial-temporal dithering for displays with overlapping pixels
JP2004191490A (ja) * 2002-12-09 2004-07-08 Hitachi Displays Ltd 液晶表示装置
US7495722B2 (en) * 2003-12-15 2009-02-24 Genoa Color Technologies Ltd. Multi-color liquid crystal display
US8310424B2 (en) * 2004-11-05 2012-11-13 Sharp Kabushiki Kaisha Liquid crystal display apparatus and method for driving the same
KR101100882B1 (ko) * 2004-11-05 2012-01-02 삼성전자주식회사 액정 표시 장치 및 그 구동 장치
JP4650845B2 (ja) * 2005-10-31 2011-03-16 シャープ株式会社 カラー液晶表示装置およびそのためのガンマ補正方法
KR101192779B1 (ko) * 2005-12-29 2012-10-18 엘지디스플레이 주식회사 액정 표시장치의 구동장치 및 구동방법
KR101206724B1 (ko) * 2006-02-23 2012-11-30 삼성디스플레이 주식회사 표시 장치
KR101252841B1 (ko) * 2006-03-07 2013-04-09 엘지디스플레이 주식회사 데이터 변환 장치, 그 방법 및 이를 구비한 액정표시장치
CN101647056B (zh) * 2007-03-16 2013-01-23 索尼株式会社 图像处理设备、图像显示器和图像处理方法
JP5037221B2 (ja) * 2007-05-18 2012-09-26 株式会社半導体エネルギー研究所 液晶表示装置及び電子機器
KR101504750B1 (ko) * 2007-06-13 2015-03-25 삼성디스플레이 주식회사 표시장치
US8223179B2 (en) * 2007-07-27 2012-07-17 Omnivision Technologies, Inc. Display device and driving method based on the number of pixel rows in the display
KR20100056613A (ko) * 2008-11-20 2010-05-28 삼성전자주식회사 표시 기판 및 이를 포함하는 표시 패널
BR112012000174A2 (pt) * 2009-07-07 2019-09-24 Sharp Kk dispositivo de tela de cristal líquido e método para controlar a exibição do dispositivo de tela de cristal líquido
JP5849538B2 (ja) * 2011-08-31 2016-01-27 ソニー株式会社 駆動回路、表示装置、および表示装置の駆動方法
US20140043369A1 (en) * 2012-08-08 2014-02-13 Marc ALBRECHT Displays and Display Pixel Adaptation
CN104021767B (zh) * 2013-03-01 2016-12-28 刘鸿达 伽码曲线调整方法与其伽码电压产生器和显示装置
CN104465714B (zh) 2014-12-30 2017-04-26 京东方科技集团股份有限公司 一种像素结构及其显示方法、显示装置
CN104616631B (zh) * 2015-01-27 2017-02-22 青岛海信电器股份有限公司 一种应用于mva广视角液晶屏的显示方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060055648A1 (en) * 2004-09-16 2006-03-16 Fujitsu Display Technologies Corporation Method of driving liquid crystal display device and liquid crystal display device
CN101855665A (zh) * 2007-11-08 2010-10-06 皇家飞利浦电子股份有限公司 驱动显示器的像素
CN104299592A (zh) * 2014-11-07 2015-01-21 深圳市华星光电技术有限公司 液晶面板及其驱动方法
CN104317084A (zh) * 2014-11-07 2015-01-28 深圳市华星光电技术有限公司 液晶面板及其驱动方法
CN104900203A (zh) * 2015-06-11 2015-09-09 深圳市华星光电技术有限公司 液晶面板及其驱动方法

Also Published As

Publication number Publication date
US9805670B2 (en) 2017-10-31
CN104952412B (zh) 2018-04-13
US20170018238A1 (en) 2017-01-19
CN104952412A (zh) 2015-09-30

Similar Documents

Publication Publication Date Title
WO2017008365A1 (zh) 液晶面板的驱动方法及驱动装置
WO2018113613A1 (zh) 液晶显示器件及其液晶显示面板的驱动方法
WO2018121306A1 (zh) 液晶显示器件
CN107256699B (zh) 像素驱动方法及显示装置
TWI567709B (zh) 顯示面板
WO2017193631A1 (zh) 用于图像处理的系统、方法及显示装置
CN104900205B (zh) 液晶面板及其驱动方法
WO2017012157A1 (zh) 液晶面板的驱动方法及驱动装置
KR102026002B1 (ko) 액정 패널 결상 시의 화소의 그레이 스케일 값을 설정하는 방법
CN107492359B (zh) 一种显示装置的驱动方法及显示装置
US9799281B2 (en) Liquid crystal panel and driving method for the same
WO2016183864A1 (zh) 液晶面板及其驱动方法
CN109215598B (zh) 显示面板及其驱动方法
JP6609801B2 (ja) 液晶パネルの駆動方法
WO2018205395A1 (zh) 显示面板像素驱动方法及显示装置
JP2005352483A (ja) 液晶表示装置及びその駆動方法
CN109509456B (zh) 显示器及其显示面板的驱动装置、方法
WO2016131216A1 (zh) 校正液晶面板的子像素的成像时灰阶的方法
CN109493800B (zh) 视角补偿查找表的处理方法及显示装置的驱动方法
WO2017008362A1 (zh) 液晶面板的显示改善方法及其设备
KR102279815B1 (ko) 액정 표시 장치 및 그 구동방법
JP2013061446A (ja) 画像表示装置
US20190019464A1 (en) Image display method and liquid crystal display device
CN107256700B (zh) 一种图像显示方法及液晶显示装置
CN114613338A (zh) 一种像素数据的改善方法、像素矩阵驱动装置及显示器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14781136

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15898092

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15898092

Country of ref document: EP

Kind code of ref document: A1