WO2017008196A1 - 一种抑制单端模拟信号噪声的电路及终端附件 - Google Patents

一种抑制单端模拟信号噪声的电路及终端附件 Download PDF

Info

Publication number
WO2017008196A1
WO2017008196A1 PCT/CN2015/083748 CN2015083748W WO2017008196A1 WO 2017008196 A1 WO2017008196 A1 WO 2017008196A1 CN 2015083748 W CN2015083748 W CN 2015083748W WO 2017008196 A1 WO2017008196 A1 WO 2017008196A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
analog signal
signal line
differential
circuit
Prior art date
Application number
PCT/CN2015/083748
Other languages
English (en)
French (fr)
Inventor
陈国华
陈志强
Original Assignee
海能达通信股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海能达通信股份有限公司 filed Critical 海能达通信股份有限公司
Priority to PCT/CN2015/083748 priority Critical patent/WO2017008196A1/zh
Priority to US15/743,540 priority patent/US10452591B2/en
Publication of WO2017008196A1 publication Critical patent/WO2017008196A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/38Information transfer, e.g. on bus
    • G06F13/42Bus transfer protocol, e.g. handshake; Synchronisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J21/00Vacuum tubes
    • H01J21/02Tubes with a single discharge path
    • H01J21/06Tubes with a single discharge path having electrostatic control means only
    • H01J21/10Tubes with a single discharge path having electrostatic control means only with one or more immovable internal control electrodes, e.g. triode, pentode, octode
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/26Modifications of amplifiers to reduce influence of noise generated by amplifying elements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/181Low-frequency amplifiers, e.g. audio preamplifiers
    • H03F3/183Low-frequency amplifiers, e.g. audio preamplifiers with semiconductor devices only
    • H03F3/187Low-frequency amplifiers, e.g. audio preamplifiers with semiconductor devices only in integrated circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • H03F3/45475Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using IC blocks as the active amplifying circuit
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/042Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/03Indexing scheme relating to amplifiers the amplifier being designed for audio applications
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/181Low-frequency amplifiers, e.g. audio preamplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers

Definitions

  • the utility model relates to the field of communication, in particular to a circuit and a terminal accessory for suppressing single-ended analog signal noise.
  • the expansion module includes a digital circuit, a radio frequency circuit and the like.
  • the original circuit is a host module
  • the extended module is an accessory module.
  • the digital circuit module in the expansion module circuit is self-contained, when a single-ended analog signal (a single-ended analog signal is an analog signal composed of a ground circuit) is likely to cause noise when used in long-line transmission or digital-analog mixing,
  • the ground and the power supply cause a large disturbance, which causes the ground potential of the host module and the accessory module to be unbalanced.
  • the ground line corresponding to the accessory module has a potential difference with respect to the ground of the host module, and this potential difference can be regarded as noise.
  • the original signal line reference potential is the ground line of the host module.
  • the ground line of the accessory module is used as a reference, and the signal line connected to the accessory module is no longer the original ground line of the host module.
  • the signal is superimposed on the noise of the accessory ground. After amplification, the noise is also amplified, affecting the signal quality.
  • the analog signal line is particularly affected by the interference and the signal is attenuated.
  • the current solution is usually: (1) filtering the analog signal in the accessory module to increase the capacitance filtering to the ground; and (2) isolating and filtering the power signal and the digital signal.
  • the current solution has the following disadvantages: for the solution (1) the selection of the filter capacitor is difficult, the capacitor is too small to function, the capacitor is too large to affect the signal; for the solution (2) requires additional resources, Increase the board, the cost is higher.
  • the utility model provides a circuit and a terminal accessory for suppressing single-ended analog signal noise, which can eliminate the noise introduced by the single-ended analog signal transmission and save the cost without changing the original interface.
  • a technical solution adopted by the present invention is to provide a circuit for suppressing single-ended analog signal noise, the circuit being used for connecting with a host, wherein the circuit includes an input interface module and a differential amplification module.
  • the output of the differential amplification module is connected to the analog signal processing module; wherein the analog signal line is used for transmitting an analog signal, the analog signal is a single-ended analog signal, and the single-ended analog signal is a ground signal Forming an analog signal of the loop; the digital signal line is for transmitting a digital signal, the digital signal is a control type signal; the input interface module is connected to the isolation module by the digital signal line, and the isolation module is connected to the a control module; the input interface module is configured to connect an interface module of the host ; Means for amplifying the differential voltage difference between the differential input terminal of the differential amplification performed; said analog signal processing means for processing said output signal of said differential amplifying module output.
  • the working mode of the digital signal and the analog signal is a simplex mode or a half duplex mode.
  • the isolation module includes an input end, an output end, and a control end.
  • the input end is connected to the data signal line, the output end is connected to a ground line, and the control end is connected to the control module.
  • the differential amplification module includes a differential amplifier including a differential input terminal and an output terminal, the differential input terminal is connected to the analog signal line and the digital signal line, and the output terminal is connected to the analog signal processing module. .
  • another technical solution adopted by the present invention is to provide a circuit for suppressing noise of a single-ended analog signal, the circuit being used for connection with a host, wherein the circuit includes an input interface module and differential amplification a module, an analog signal processing module, an isolation module, and a control module, wherein the differential amplification module includes a differential input terminal and an output terminal; the input interface module connects the differential input of the differential amplification module through an analog signal line and a digital signal line The output end of the differential amplification module is connected to the analog signal processing module; the input interface module is connected to the isolation module by the digital signal line, and the isolation module is connected to the control module; the input interface module An interface module for connecting the host; the differential amplification module is configured to differentially amplify a voltage difference of the differential input; the analog signal processing module is configured to process the output of the output of the differential amplification module signal.
  • the analog signal line is used for transmitting an analog signal, and the analog signal is a single-ended analog signal, wherein the single-ended analog signal is an analog signal that forms a loop with the ground signal.
  • the digital signal line is used to transmit a digital signal, and the digital signal is a control type signal.
  • the working mode of the digital signal transmitted by the digital signal line and the analog signal transmitted by the analog signal line is a simplex mode or a half duplex mode.
  • the isolation module includes an input end, an output end, and a control end.
  • the input end is connected to the data signal line, the output end is connected to a ground line, and the control end is connected to the control module.
  • the differential amplification module includes a differential amplifier including a differential input terminal and an output terminal, the differential input terminal is connected to the analog signal line and the digital signal line, and the output terminal is connected to the analog signal processing module. .
  • the isolation module comprises a transistor.
  • the transistor is a field effect transistor
  • the field effect transistor includes a gate, a source and a drain
  • the gate is the control terminal
  • the source is the input end
  • the drain is the output end.
  • the transistor is a triode
  • the triode comprises a base, a collector and an emitter
  • the base is a control end
  • the collector is an input end
  • the emission is an output end.
  • another technical solution adopted by the present invention is to provide a terminal accessory for connecting to a terminal, wherein the terminal accessory is configured to suppress single-ended simulation according to any one of the above items.
  • Signal noise circuit
  • the analog signal line and the data signal line from the host side lead are connected to the differential input terminal of the differential amplifying module, so that the analog signal line and the data signal line form a pseudo differential pair.
  • the reference ground is the ground of the host, and the differential characteristics of the differential amplifier are used to suppress the common mode interference of the analog signal during transmission; avoid the interference of the terminal accessory.
  • the ground line serves as a reference ground, and it is possible to suppress noise existing in the potential of the terminal accessory and noise during transmission.
  • the isolation module isolates the control module from the digital signal line to prevent looping coupling noise between the digital signal line and the control signal of the control module.
  • FIG. 1 is a schematic structural view of an embodiment of a circuit for suppressing single-ended analog signal noise according to the present invention
  • FIG. 2 is a circuit structural diagram of an embodiment of a circuit for suppressing single-ended analog signal noise according to the present invention
  • FIG. 3 is a circuit diagram of a transistor in which the transistor of the isolation module of FIG. 2 is a field effect transistor;
  • FIG. 4 is a circuit diagram of a transistor in which the transistor of the isolation module of FIG. 2 is a three-stage transistor.
  • FIG. 1 is a schematic structural diagram of an embodiment of a circuit for suppressing single-ended analog signal noise according to the present invention.
  • the circuit 200 for suppressing single-ended analog signal noise in the present invention is used for connection with the host 100.
  • the circuit 200 for suppressing single-ended analog signal noise includes an input interface module 210, a differential amplification module 220, an analog signal processing module 230, an isolation module 240, and a control module 250.
  • the input interface module 210 further includes an analog signal line and a digital signal line.
  • the input interface module 210 may further include a ground line and a power line.
  • the differential amplification module 220 includes differential input ends 221 and 222 and an output end 223.
  • the input interface module 210 is respectively connected to the differential input terminals 221 and 222 of the differential amplification module 220 through analog signal lines and digital signal lines, so that the analog signal lines and the digital signal lines form a pseudo differential pair, and the output terminal 223 of the differential amplification module 220 is connected to the simulation.
  • the digital signal line is also connected to the isolation module 240, and the isolation module 240 is also connected to the control module 250.
  • the input interface module 210 is used to connect an interface module (not shown) of the host 100, and the input interface module 210 is the same as the signal line included in the interface module of the host 100.
  • the analog signal line is used to transmit an analog signal
  • the digital signal line is used to transmit a digital signal.
  • the analog signal is a single-ended analog signal, and the single-ended analog signal is an analog signal that forms a loop with the ground signal, for example, an audio signal, a voltage, a current acquisition signal, and the like.
  • the digital signal is a digital signal with less signal variation during transmission, that is, less data is transmitted, for example, a control signal such as an enable signal.
  • the differential amplification module 220 is configured to differentially amplify the voltage difference between the differential input terminals 221 and 222.
  • the analog signal processing module 230 is configured to process the signal output by the output 223 of the differential amplification module 220.
  • the isolation module 240 is configured to isolate the control module 250 from the digital signal line to prevent the digital signal line from forming loop coupling noise with the control signal of the control module 250.
  • FIG. 2 is a circuit configuration diagram of an embodiment of a circuit for suppressing single-ended analog signal noise according to the present invention.
  • the circuit for suppressing single-ended analog signal noise includes an input interface module 210, a differential amplification module 220, an analog signal processing module 230, an isolation module 240, and a control module 250.
  • the input interface module 210 includes at least an analog signal line, a digital signal line, and a ground line. It can be understood that the input interface module 210 may further include a power line when the circuit 200 for suppressing single-ended analog signal noise needs to be powered.
  • the differential amplification module 220 includes differential inputs 221, 222 and an output 223.
  • the differential amplification module 220 includes a differential amplifier (not shown).
  • the differential amplifier includes a differential input terminal and an output terminal.
  • the differential input terminal of the differential amplifier is a differential input terminal 221 and 222 of the differential amplification module 220.
  • the output of the differential amplifier is The output 223 of the differential amplification module 220.
  • the isolation module 240 includes an input terminal 241, an output terminal 242, and a control terminal 243.
  • the input interface module 210 is respectively connected to the differential input terminals 221 and 222 of the differential amplification module 220 through analog signal lines and digital signal lines, so that the analog signal lines and the digital signal lines form a pseudo differential pair, and the output terminal 223 of the differential amplification module 220 is connected to the simulation.
  • Signal processing module 230 The differential input terminal 221 can be a positive polarity differential input terminal, the differential input terminal 222 can be a negative polarity differential input terminal, the differential input terminal 221 can also be a negative polarity differential input terminal, and the differential input terminal 222 can also be a positive polarity differential input terminal. End, there are no restrictions here.
  • the input interface module 210 is also connected to the input end 241 of the isolation module 240 through a digital signal line.
  • the output end 242 of the isolation module 240 is connected to the ground line, and the control end 243 of the isolation module 240 is connected to the control module 250.
  • the input interface module 210 is used to connect an interface module (not shown) of the host 100, and the input interface module 210 is the same as the signal line included in the interface module of the host 100.
  • the analog signal line is used to transmit an analog signal
  • the digital signal line is used to transmit a digital signal.
  • the analog signal is a single-ended analog signal, and the single-ended analog signal is an analog signal that forms a loop with the ground signal, for example, an audio signal, a voltage, a current acquisition signal, and the like.
  • the digital signal is a digital signal with less signal variation during transmission, that is, less data is transmitted, for example, a control signal such as an enable signal.
  • the differential amplification module 220 is configured to differentially amplify the voltage difference between the differential input terminals 221 and 222.
  • the analog signal processing module 230 is configured to process the signal output by the output 223 of the differential amplification module 220.
  • the isolation module 240 is configured to isolate the control module 250 from the digital signal line to prevent the digital signal line from forming loop coupling noise with the control signal of the control module 250.
  • the input interface module 210 includes a microphone (Micro phone, MIC) signal line, an instant call (Push to Talk, PPT) Signal line, speaker (SPK) signal line, but not limited to this, when the accessory terminal consisting of a circuit that suppresses single-ended analog signal noise needs to expand more functions (for example, liquid crystal display function, wireless communication)
  • the input interface module 210 includes a signal line that is the same as the signal line included in the interface module of the host, so that the extended terminal accessory can be realized without changing the circuit of the host 100.
  • the analog signals and digital signals constituting the pseudo differential pair are selected according to actual conditions.
  • the MIC signal line is used for inputting an audio signal; the PPT signal line is used for transmitting a control type signal, and the control type signal is triggered by a user by a button.
  • the SPK signal line is used to transmit audio signals.
  • the SPK signal and the PPT signal form a pseudo differential pair, the SPK signal is an analog signal, and the PPT signal is a digital signal.
  • the working mode of the SPK signal and the PPT signal is a simplex mode, that is, when the PPT signal is transmitted, the receiving SPK signal can be turned off, and when the SPK signal is received, the transmitting PPT signal is turned off.
  • the control module 250 When the PPT signal is transmitted, the control module 250 inputs a control signal to the control terminal 243 of the isolation module 240 to control the input terminal 241 of the isolation module 240 to establish a connection with the output terminal 242 to implement the transmission of the digital signal PPT. At this time, the differential amplifier does not operate to prevent the data line PPT from introducing noise.
  • the control module 250 When receiving the analog signal SPK, the control module 250 inputs a control signal to the control terminal 243 of the isolation module 240 to control the input terminal 241 of the isolation module 240 to be disconnected from the output terminal 242.
  • the SPK signal transmitted from the host 100 is differentially amplified by the analog signal line to the differential amplifier 220, and then output back to the host 100 through the data signal line, so that the SPK signal is connected to the ground of the host 100 as a digital signal line.
  • the differentially amplified signal via the differential amplifier 220 is input to the analog signal processing module 230 for further processing.
  • the SPK signal transmitted from the host 100 to the terminal accessory through the SPK signal transmitted to the terminal accessory passes through the differential amplifier and is combined with the data signal line to return to the host 100, and finally the terminal line of the host 100 is referenced, and the terminal accessory is not attached to the terminal accessory. Affected by disturbed ground. This prevents the ground potential of the terminal accessory from being different from the ground potential of the host 100 when the analog signal is transmitted.
  • the differential characteristics of the differential amplifier it suppresses the common mode interference that the analog signal and the digital signal are subjected to during transmission, and can suppress the interference of the noise existing in the potential of the terminal accessory to the analog signal and the digital signal.
  • the differential amplifier may be an integrated differential amplifier, a differential amplifier composed of two operational amplifiers, or a differential amplifier composed of discrete transistors and/or MOS transistors, which is not limited herein.
  • the capacity of the capacitor between the digital signal line and the ground line of the high frequency loop of the host 100 can be increased without affecting the data transmission.
  • the analog signal line and the data signal line are connected to the differential input end of the differential amplifying module, so that the analog signal line and the data signal line form a pseudo differential pair, so that the analog signal and the digital signal form a loop connected to the ground of the host.
  • the reference ground is the ground of the host, and the differential characteristics of the differential amplifier are used to suppress the common mode interference of the single-ended analog signal during transmission;
  • the ground line of the interference serves as a reference ground, and it is possible to suppress noise existing in the potential of the terminal accessory and noise during transmission.
  • the isolation module isolates the control module from the digital signal line to prevent looping coupling noise between the digital signal line and the control signal of the control module.
  • FIG. 3 is a circuit diagram of a transistor in which the transistor of the isolation module of FIG. 2 is a field effect transistor.
  • the isolation module 240 includes a transistor, and the transistor is an N-type or P-type field effect transistor.
  • the FET includes a gate g, a source s, and a drain d.
  • the gate g is the control terminal 243
  • the source s is the input terminal 242
  • the drain d is the output terminal 241.
  • the gate g is the control terminal 243
  • the source s is the output terminal 242
  • the drain d is the input terminal 241.
  • the input interface module 210 includes at least a MIC signal line, a PPT signal line, and an SPK signal line as an example, but is not limited thereto.
  • the MIC signal line is used for inputting an audio signal; the PPT signal line is used for transmitting a control type signal, and the control type signal is triggered by a user by a button.
  • the SPK signal line is used to transmit audio signals.
  • the SPK signal and the PPT signal form a pseudo differential pair, the SPK signal is an analog signal, and the PPT signal is a digital signal.
  • the working mode of the SPK signal and the PPT signal is a simplex mode, that is, when the PPT signal is transmitted, the receiving SPK signal can be turned off, and when the SPK signal is received, the transmitting PPT signal is turned off.
  • the control module 250 When the PPT signal is transmitted, the control module 250 inputs a control signal to the gate 243 of the FET 240 to control the FET 240 to be turned on, and the source 241 and the drain 242 are connected to each other to realize the transmission of the digital signal PPT. At this time, the differential amplifier does not operate to prevent the data line PPT from introducing noise.
  • the control signal input by the control module 250 to the gate 243 is a low level, so that the P-type field effect transistor is turned on; when the field effect transistor is an N-type field effect transistor, The control signal input by the control module 250 to the gate 243 is at a high level to turn on the N-type FET.
  • the control module 250 When receiving the analog signal SPK, the control module 250 inputs a control signal to the gate 243 of the FET 240 to control the FET 240 to turn off, causing its source 241 and drain 242 to be disconnected.
  • the SPK signal transmitted from the host 100 is differentially amplified by the analog signal line to the differential amplifier 240, and then output back to the host 100 through the data signal line, so that the SPK signal is connected to the ground of the host 100 as a digital signal line.
  • the differentially amplified signal via the differential amplifier 240 is input to the analog signal processing module 230 for further processing.
  • the control signal when the field effect transistor is a P-type field effect transistor, the control signal is at a high level to turn off the P-type field effect transistor; when the field effect transistor is an N-type field effect transistor, the control signal is at a low level, so that N Type FET cut-off.
  • the SPK signal transmitted to the terminal accessory is not looped by the ground of the terminal accessory, the SPK signal transmitted from the host 100 to the terminal accessory passes through the differential amplifier and is combined with the data signal line to return to the host 100, and finally the ground of the host 100. For reference, this prevents the ground potential of the terminal accessory from being different from the ground potential of the host 100 when the analog signal is transmitted, thereby suppressing the ground line of the terminal accessory from interfering with the analog signal SPK.
  • the differential amplifier may be an integrated differential amplifier, a differential amplifier composed of two operational amplifiers, or a differential amplifier composed of discrete transistors and/or MOS transistors, which is not limited herein.
  • the capacity of the capacitor between the digital signal line and the ground line of the high frequency loop of the host 100 can be increased without affecting the data transmission.
  • the single-ended analog signal line and the data signal line are connected to the differential input end of the differential amplifying module, so that the analog signal line and the data signal line form a pseudo differential pair, so that the analog signal and the digital signal form a loop connection to the host.
  • Ground wire Since both the analog signal and the digital signal are taken from the host, the reference ground is the ground of the host, and the differential characteristics of the differential amplifier are used to suppress the common mode interference of the single-ended analog signal during transmission;
  • the ground line of the interference serves as a reference ground, and it is possible to suppress noise existing in the potential of the terminal accessory and noise during transmission.
  • the isolation module isolates the control module from the digital signal line to prevent looping coupling noise between the digital signal line and the control signal of the control module.
  • FIG. 4 is a circuit structural diagram of a transistor in the isolation module of FIG.
  • the isolation module 240 includes a transistor, and the transistor is an N-type or P-type tertiary tube.
  • the tertiary tube includes a base b, an emitter c, and a collector e.
  • the transistor is an N-type transistor
  • the base b is the control terminal 243
  • the collector c is the input terminal 241
  • the emitter e is the output terminal 242.
  • the transistor is a P-type transistor
  • the base b is the control terminal 243
  • the collector c is the output terminal 242
  • the emitter e is the input terminal 241.
  • the input interface module 210 includes at least a MIC signal line, a PPT signal line, and an SPK signal line as an example, but is not limited thereto.
  • the MIC signal line is used for inputting an audio signal; the PPT signal line is used for transmitting a control type signal, and the control type signal is triggered by a user by a button.
  • the SPK signal line is used to transmit audio signals.
  • the SPK signal and the PPT signal form a pseudo differential pair, the SPK signal is an analog signal, and the PPT signal is a digital signal.
  • the working mode of the SPK signal and the PPT signal is a simplex mode, that is, when the PPT signal is transmitted, the receiving SPK signal can be turned off, and when the SPK signal is received, the transmitting PPT signal is turned off.
  • the control module 250 When the PPT signal is transmitted, the control module 250 inputs a control signal to the base 243 of the transistor 240 to control the conduction of the transistor 240 to establish a connection between the collector 241 and the emitter 242 to implement the transmission of the digital signal PPT. At this time, the differential amplifier does not operate to prevent the data line PPT from introducing noise.
  • the control signal input to the base of the control module 250 is a low level to turn on the P-type transistor; and when the triode is an N-type triode, the control module 250 inputs to the base. The signal is high to turn the N-type transistor on.
  • the control module 250 When receiving the analog signal SPK, the control module 250 inputs a control signal to the base 243 of the transistor 240 to control the transistor 240 to be turned off, causing its collector 241 to be disconnected from the emitter 242.
  • the SPK signal transmitted from the host 100 is differentially amplified by the analog signal line to the differential amplifier 240, and then output back to the host 100 through the data signal line, so that the SPK signal is connected to the ground of the host with the digital signal line as a loop.
  • the differentially amplified signal via the differential amplifier 240 is input to the analog signal processing module 230 for further processing.
  • the control signal input by the control module 250 to the base is at a high level to turn off the P-type transistor; when the triode is an N-type triode, the control signal input by the control module 250 to the base is Low level to turn off the N-type transistor.
  • the SPK signal transmitted to the terminal accessory is not looped by the ground of the terminal accessory, the SPK signal transmitted from the host 100 to the terminal accessory passes through the differential amplifier and is combined with the data signal line to return to the host 100, and finally the ground of the host 100. For reference, this prevents the ground potential of the terminal accessory from being different from the ground potential of the host 100 when the analog signal is transmitted, thereby suppressing the ground line of the terminal accessory from interfering with the analog signal SPK.
  • the differential amplifier may be an integrated differential amplifier, a differential amplifier composed of two operational amplifiers, or a differential amplifier composed of discrete transistors and/or MOS transistors, which is not limited herein.
  • the capacitance value of the capacitance between the digital signal line and the ground line of the high-frequency circuit disposed in the host can be increased without affecting the data transmission.
  • reducing the noise introduced by the analog signal In order to provide an AC loop for the analog signal, reducing the noise introduced by the analog signal.
  • the single-ended analog signal line and the data signal line are connected to the differential input end of the differential amplifying module, so that the analog signal and the digital signal form a loop connected to the ground of the host, so that the analog signal line and the data signal line constitute a pseudo.
  • the differential pair is such that the analog signal and the digital signal form a loop connected to the ground of the host. Since both the analog signal and the digital signal are taken from the host, the reference ground is the ground of the host, and the differential characteristics of the differential amplifier are used to suppress the common mode interference of the single-ended analog signal during transmission;
  • the ground line of the interference serves as a reference ground, and it is possible to suppress noise existing in the potential of the terminal accessory and noise during transmission.
  • the isolation module isolates the control module from the digital signal line to prevent looping coupling noise between the digital signal line and the control signal of the control module.
  • the present invention further provides a terminal accessory.
  • the terminal accessory includes a circuit for suppressing single-ended analog signal noise in any of the above embodiments.
  • the terminal accessory can be an interphone audio accessory, a bluetooth earphone, etc., and the terminal accessory can also expand functions such as liquid crystal display and wireless communication, and is not limited herein.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Multimedia (AREA)
  • Amplifiers (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Abstract

一种抑制单端模拟信号噪声的电路及终端附件。所述电路包括输入接口模块(210)、差分放大模块(220)、模拟信号处理模块(230)、隔离模块(240)以及控制模块(250),其中,所述输入接口模块(210)至少包括模拟信号线、数字信号线,所述差分放大模块(220)包括差分输入端(221、222)以及输出端(223);所述输入接口模块(210)的所述模拟信号线以及所述数字信号线分别连接所述差分放大模块(220)的差分输入端(221、222),以使所述模拟信号线以及所述数字信号线组成伪差分对,所述差分放大模块(220)的输出端(223)连接所述模拟信号处理模块(230);所述数字信号线还连接所述隔离模块(240),所述隔离模块(240)还连接控制模块(250)。据此,能够避免使用终端附件的受干扰的地线作为参考地,能够抑制终端附件地电位存在的噪声和传输过程中的噪声。

Description

一种抑制单端模拟信号噪声的电路及终端附件
【技术领域】
本实用新型涉及通信领域,特别是一种抑制单端模拟信号噪声的电路及终端附件。
【背景技术】
在电路设计中,因市场需求变化,需要在扩展功能时,通常在原有电路的基础上增加扩展模块。其中,扩展模块包括数字电路、无线射频电路等模块。此时,原有的电路为主机模块,扩展的模块为附件模块。
然而由于扩展模块电路中的数字电路模块自成回路,当单端模拟信号(单端模拟信号为与地组成回路的模拟信号)在长线传输或数模混合使用时容易引起噪声的问题,会对地和电源产生较大的干扰,从而导致主机模块和附件模块的地电位不平衡。相当于附件模块的地线相对于主机模块的地有一个电位差,此电位差可视为噪声。其中,原有的信号线参考电位是主机模块的地线,连接到附件模块时,以附件模块的地线为参考,连接到附件模块的信号线相对于主机模块的地线不再是原有的信号,而是叠加了附件地的噪声,经过放大处理后,噪声也同样放大,影响信号质量。模拟信号线受干扰情况特别明显,信号衰减。
目前的解决方案,通常为:(1)在附件模块中对模拟信号进行滤波,增加对地电容滤波;(2)对电源信号和数字信号进行隔离、滤波等处理。
但目前的解决方案存在以下不足:对于解决方案(1)滤波电容的选择比较困难,电容过小起不到作用,电容过大会对信号产生影响;对于解决方案(2)需要额外的资源投入,加大电路板,成本较高。
【发明内容】
本实用新型提供一种抑制单端模拟信号噪声的电路及终端附件,能够在不改变原有接口的前提下,消除传输单端模拟信号引入的噪声,节省成本。
为解决上述技术问题,本实用新型采用的一个技术方案是:提供一种抑制单端模拟信号噪声的电路,所述电路用于与主机连接,其中,所述电路包括输入接口模块、差分放大模块、模拟信号处理模块、隔离模块以及控制模块,其中,所述差分放大模块包括差分输入端以及输出端;所述输入接口模块通过模拟信号线以及数字信号线连接所述差分放大模块的差分输入端,所述差分放大模块的输出端连接所述模拟信号处理模块;其中,所述模拟信号线用于传输模拟信号,所述模拟信号为单端模拟信号,所述单端模拟信号是与地信号形成回路的模拟信号;所述数字信号线用于传输数字信号,所述数字信号为控制类信号;所述输入接口模块通过所述数字信号线连接所述隔离模块,所述隔离模块连接所述控制模块;所述输入接口模块用于连接所述主机的接口模块;所述差分放大模块用于将所述差分输入端的电压差进行差分放大;所述模拟信号处理模块用于处理所述差分放大模块的所述输出端输出的信号。
其中,所述数字信号以及所述模拟信号的工作模式为单工模式或半双工模式。
其中,所述隔离模块包括输入端、输出端以及控制端,所述输入端连接所述数据信号线,所述输出端连接地线,所述控制端连接所述控制模块。
其中,所述差分放大模块包括差分放大器,差分放大器包括差分输入端以及输出端,所述差分输入端连接所述模拟信号线以及所述数字信号线,所述输出端连接所述模拟信号处理模块。
为解决上述技术问题,本实用新型采用的另一个技术方案是:提供一种抑制单端模拟信号噪声的电路,所述电路用于与主机连接,其中,所述电路包括输入接口模块、差分放大模块、模拟信号处理模块、隔离模块以及控制模块,其中,所述差分放大模块包括差分输入端以及输出端;所述输入接口模块通过模拟信号线以及数字信号线连接所述差分放大模块的差分输入端,所述差分放大模块的输出端连接所述模拟信号处理模块;所述输入接口模块通过所述数字信号线连接所述隔离模块,所述隔离模块连接所述控制模块;所述输入接口模块用于连接所述主机的接口模块;所述差分放大模块用于将所述差分输入端的电压差进行差分放大;所述模拟信号处理模块用于处理所述差分放大模块的所述输出端输出的信号。
其中,所述模拟信号线用于传输模拟信号,所述模拟信号为单端模拟信号,其中,所述单端模拟信号是与地信号形成回路的模拟信号。
其中,所述数字信号线用于传输数字信号,所述数字信号为控制类信号。
其中,所述数字信号线传输的数字信号以及所述模拟信号线传输的模拟信号的工作模式为单工模式或半双工模式。
其中,所述隔离模块包括输入端、输出端以及控制端,所述输入端连接所述数据信号线,所述输出端连接地线,所述控制端连接所述控制模块。
其中,所述差分放大模块包括差分放大器,差分放大器包括差分输入端以及输出端,所述差分输入端连接所述模拟信号线以及所述数字信号线,所述输出端连接所述模拟信号处理模块。
其中,所述隔离模块包括晶体管。
其中,所述晶体管为场效应管,所述场效应管包括栅极、源极以及漏极,所述栅极为所述控制端,所述源极为所述输入端,所述漏极为所述输出端。
其中,所述晶体管为三极管,所述三极管包括基极、集电极以及发射极,所述基极为控制端,所述集电极为输入端,所述发射极为输出端。
为解决上述技术问题,本实用新型采用的再一个技术方案是:提供一种终端附件,所述终端附件用于与终端连接,其中,所述终端附件上述任一项所述的抑制单端模拟信号噪声的电路。
上述方案中,通过将从主机侧引线出来的模拟信号线以及数据信号线连接差分放大模块的差分输入端,以使模拟信号线以及数据信号线组成伪差分对。由于模拟信号与数字信号均从主机引出,其参考地线均为主机的地线,利用差分放大器的差分特性,抑制模拟信号在传输过程中受到的共模干扰;避免使用终端附件的受干扰的地线作为参考地,能够抑制终端附件地电位存在的噪声和传输过程中的噪声。通过隔离模块隔离控制模块与数字信号线,能够防止数字信号线与控制模块的控制信号形成回路耦合噪声。
【附图说明】
图1是本实用新型抑制单端模拟信号噪声的电路一实施方式的结构示意图;
图2是本实用新型抑制单端模拟信号噪声的电路一实施方式的电路结构图;
图3是图2的隔离模块中晶体管为场效应管的电路结构图;
图4是图2的隔离模块中晶体管为三级管的电路结构图。
【具体实施方式】
以下描述中,为了说明而不是为了限定,提出了诸如特定系统结构、接口、技术之类的具体细节,以便透彻理解本实用新型。
参阅图1,图1是本实用新型抑制单端模拟信号噪声的电路一实施方式的结构示意图。本实用新型中抑制单端模拟信号噪声的电路200用于与主机100连接。抑制单端模拟信号噪声的电路200包括输入接口模块210、差分放大模块220、模拟信号处理模块230、隔离模块240以及控制模块250。其中,输入接口模块210至少包括模拟信号线、数字信号线,输入接口模块210还可以包括地线以及电源线,差分放大模块220包括差分输入端221、222以及输出端223。
输入接口模块210通过模拟信号线以及数字信号线分别连接差分放大模块220的差分输入端221、222,以使模拟信号线以及数字信号线组成伪差分对,差分放大模块220的输出端223连接模拟信号处理模块230。数字信号线还连接隔离模块240,隔离模块240还连接控制模块250。
输入接口模块210用于连接主机100的接口模块(图未示),输入接口模块210与主机100的接口模块包含的信号线相同。其中,模拟信号线用于传输模拟信号,数字信号线用于传输数字信号。模拟信号为单端模拟信号,单端模拟信号是与地信号形成回路的模拟信号,例如,音频信号、电压、电流采集信号等。数字信号为传输过程中信号变化少的数字信号,即,传输的数据较少,例如,使能信号等控制类信号。
差分放大模块220用于将差分输入端221、222的电压差进行差分放大。模拟信号处理模块230用于处理差分放大模块220的输出端223输出的信号。
隔离模块240用于隔离控制模块250与数字信号线,以防止数字信号线与控制模块250的控制信号形成回路耦合噪声。
具体地,图2是本实用新型抑制单端模拟信号噪声的电路一实施方式的电路结构图。
抑制单端模拟信号噪声的电路包括输入接口模块210、差分放大模块220、模拟信号处理模块230、隔离模块240以及控制模块250。输入接口模块210至少包括模拟信号线、数字信号线以及地线,可以理解的是当抑制单端模拟信号噪声的电路200需要供电时,输入接口模块210还可以包括电源线。差分放大模块220包括差分输入端221、222以及输出端223。其中,差分放大模块220包括差分放大器(图未示),差分放大器包括差分输入端以及输出端,差分放大器的差分输入端为差分放大模块220的差分输入端221、222,差分放大器的输出端为差分放大模块220的输出端223。隔离模块240包括输入端241、输出端242以及控制端243。
输入接口模块210通过模拟信号线以及数字信号线分别连接差分放大模块220的差分输入端221、222,以使模拟信号线以及数字信号线组成伪差分对,差分放大模块220的输出端223连接模拟信号处理模块230。其中,差分输入端221可以为正极性差分输入端,差分输入端222可以为负极性差分输入端;差分输入端221也可以为负极性差分输入端,差分输入端222也可以为正极性差分输入端,此处不作限制。
输入接口模块210还通过数字信号线连接隔离模块240的输入端241,隔离模块240的输出端242连接地线,隔离模块240的控制端243连接控制模块250。
输入接口模块210用于连接主机100的接口模块(图未示),输入接口模块210与主机100的接口模块包含的信号线相同。其中,模拟信号线用于传输模拟信号,数字信号线用于传输数字信号。模拟信号为单端模拟信号,单端模拟信号是与地信号形成回路的模拟信号,例如,音频信号、电压、电流采集信号等。数字信号为传输过程中信号变化少的数字信号,即,传输的数据较少,例如,使能信号等控制类信号。
差分放大模块220用于将差分输入端221、222的电压差进行差分放大。模拟信号处理模块230用于处理差分放大模块220的输出端223输出的信号。
隔离模块240用于隔离控制模块250与数字信号线,以防止数字信号线与控制模块250的控制信号形成回路耦合噪声。
例如,当输入接口模块210包括麦克风(Micro phone,MIC)信号线、即时通话(Push to Talk,PPT)信号线、喇叭(Speaker,SPK)信号线,但不限于此,当由抑制单端模拟信号噪声的电路组成的附件终端需要扩展更多的功能(例如,液晶显示功能、无线通信功能)时,还可以包括其他的信号线,输入接口模块210包含的信号线与主机的接口模块包含的信号线相同,以使得在不更改主机100的电路的前提下就能实现扩展终端附件的功能。具体根据实际情况选择组成伪差分对的模拟信号以及数字信号。
其中,MIC信号线用于输入音频信号;PPT信号线用于传输控制类信号,控制类信号为用户通过按键触发的。SPK信号线用于传输音频信号。SPK信号以及PPT信号组成伪差分对,SPK信号为模拟信号,PPT信号为数字信号。SPK信号以及PPT信号的工作模式为单工模式,即发射PPT信号时,可以关闭接收SPK信号,接收SPK信号时,关闭发射PPT信号。
当发射PPT信号时,控制模块250向隔离模块240的控制端243输入控制信号,以控制隔离模块240的输入端241与输出端242建立连接,以实现发射数字信号PPT。此时,差分放大器不工作,以防止数据线PPT引入噪声。
当接收模拟信号SPK时,控制模块250向隔离模块240的控制端243输入控制信号,以控制隔离模块240的输入端241与输出端242断开连接。从主机100发送的SPK信号通过模拟信号线传输到差分放大器220进行差分放大后,通过数据信号线输出回主机100,以使SPK信号以数字信号线为回路连接到主机100的地线。其中,经差分放大器220进行差分放大后的信号输入到模拟信号处理模块230进行进一步处理。
由于传输到终端附件的SPK信号从主机100传输到终端附件的SPK信号通过差分放大器后与数据信号线组成回路回到主机100,最终以主机100的地线为参考,不被终端附件的终端附件的受干扰的地线所影响。这样可以防止传输模拟信号时,终端附件的地电位与主机100的地电位不相同的情况。利用差分放大器的差分特性,抑制模拟信号以及数字信号在传输过程中受到的共模干扰,能够抑制终端附件地电位存在的噪声对模拟信号以及数字信号的干扰。
在本实施方式中,差分放大器可以为集成的差分放大器,也可以为两个运算放大器组成的差分放大器,还可以为由分立的三极管和/或MOS管组成的差分放大器,此处不作限制。
可以理解的是,为了能更好地抑制单端模拟信号噪声,还可以在不影响数据传输的前提下,增加设置于主机100的高频回路的数字信号线与地线之间的电容的容值,从而为模拟信号提供交流回路,降低模拟信号引入的噪声。
上述方案,通过将模拟信号线以及数据信号线连接差分放大模块的差分输入端,以使模拟信号线以及数据信号线组成伪差分对,从而使得模拟信号以及数字信号形成回路连接到主机的地线。由于模拟信号与数字信号均从主机引出,其参考地线均为主机的地线,利用差分放大器的差分特性,抑制单端模拟信号在传输过程中受到的共模干扰;避免使用终端附件的受干扰的地线作为参考地,能够抑制终端附件地电位存在的噪声和传输过程中的噪声。通过隔离模块隔离控制模块与数字信号线,能够防止数字信号线与控制模块的控制信号形成回路耦合噪声。
请参阅图3,图3是图2的隔离模块中晶体管为场效应管的电路结构图。
如图3所示,隔离模块240包括晶体管,晶体管为N型或P型场效应管。场效应管包括栅极g、源极s以及漏极d。当晶体管为P型场效应管时,栅极g为控制端243,源极s为输入端242,漏极d为输出端241。当晶体管为P型场效应管时,栅极g为控制端243,源极s为输出端242,漏极d为输入端241。
下面以输入接口模块210至少包括MIC信号线、PPT信号线、SPK信号线为例进行说明,但并不限于此。
其中,MIC信号线用于输入音频信号;PPT信号线用于传输控制类信号,控制类信号为用户通过按键触发的。SPK信号线用于传输音频信号。SPK信号以及PPT信号组成伪差分对,SPK信号为模拟信号,PPT信号为数字信号。SPK信号以及PPT信号的工作模式为单工模式,即发射PPT信号时,可以关闭接收SPK信号,接收SPK信号时,关闭发射PPT信号。
当发射PPT信号时,控制模块250向场效应管240的栅极243输入控制信号,以控制场效应管240导通,使其源极241与漏极242建立连接,以实现发射数字信号PPT。此时,差分放大器不工作,以防止数据线PPT引入噪声。其中,当场效应管为P型场效应管时,控制模块250向栅极243输入的控制信号为低电平,以使P型场效应管导通;当场效应管为N型场效应管时,控制模块250向栅极243输入的控制信号为高电平,以使N型场效应管导通。
当接收模拟信号SPK时,控制模块250向场效应管240的栅极243输入控制信号,以控制场效应管240截止,使其源极241与漏极242断开连接。从主机100发送的SPK信号通过模拟信号线传输到差分放大器240进行差分放大后,通过数据信号线输出回主机100,以使SPK信号以数字信号线为回路连接到主机100的地线。其中,经差分放大器240进行差分放大后的信号输入到模拟信号处理模块230进行进一步处理。其中,当场效应管为P型场效应管时,控制信号为高电平,以使P型场效应管截止;当场效应管为N型场效应管时,控制信号为低电平,以使N型场效应管截止。
由于传输到终端附件的SPK信号不以终端附件的地线为回路,从主机100传输到终端附件的SPK信号通过差分放大器后与数据信号线组成回路回到主机100,最终以主机100的地线为参考,这样可以防止传输模拟信号时,终端附件的地电位与主机100的地电位不相同的情况,进而抑制终端附件的地线对模拟信号SPK造成干扰。
在本实施方式中,差分放大器可以为集成的差分放大器,也可以为两个运算放大器组成的差分放大器,还可以为由分立的三极管和/或MOS管组成的差分放大器,此处不作限制。
可以理解的是,为了能更好地抑制单端模拟信号噪声,还可以在不影响数据传输的前提下,增加设置于主机100的高频回路的数字信号线与地线之间的电容的容值,从而为模拟信号提供交流回路,降低模拟信号引入的噪声。
上述方案,通过将单端模拟信号线以及数据信号线连接差分放大模块的差分输入端,以使模拟信号线以及数据信号线组成伪差分对,从而使得模拟信号以及数字信号形成回路连接到主机的地线。由于模拟信号与数字信号均从主机引出,其参考地线均为主机的地线,利用差分放大器的差分特性,抑制单端模拟信号在传输过程中受到的共模干扰;避免使用终端附件的受干扰的地线作为参考地,能够抑制终端附件地电位存在的噪声和传输过程中的噪声。通过隔离模块隔离控制模块与数字信号线,能够防止数字信号线与控制模块的控制信号形成回路耦合噪声。
请参阅图4,图4是图2的隔离模块中晶体管为三级管的电路结构图。
如图4所示,隔离模块240包括晶体管,晶体管为N型或P型三级管。三级管包括基极b、发射极c以及集电极e。当晶体管为N型三极管时,基极b为控制端243,集电极c为输入端241,发射极e为输出端242。当晶体管为P型三极管时,基极b为控制端243,集电极c为输出端242,发射极e为输入端241。
下面以输入接口模块210至少包括MIC信号线、PPT信号线、SPK信号线为例进行说明,但并不限于此。
其中,MIC信号线用于输入音频信号;PPT信号线用于传输控制类信号,控制类信号为用户通过按键触发的。SPK信号线用于传输音频信号。SPK信号以及PPT信号组成伪差分对,SPK信号为模拟信号,PPT信号为数字信号。SPK信号以及PPT信号的工作模式为单工模式,即发射PPT信号时,可以关闭接收SPK信号,接收SPK信号时,关闭发射PPT信号。
当发射PPT信号时,控制模块250向三极管240的基极243输入控制信号,以控制三极管240导通,使其集电极241与发射极242建立连接,以实现发射数字信号PPT。此时,差分放大器不工作,以防止数据线PPT引入噪声。其中,当三极管为P型三极管时,控制模块250向基极输入的控制信号为低电平,以使P型三极管导通;当三极管为N型三极管时,控制模块250向基极输入的控制信号为高电平,以使N型三极管管导通。
当接收模拟信号SPK时,控制模块250向三极管240的基极243输入控制信号,以控制三极管240截止,使其集电极241与发射极242断开连接。从主机100发送的SPK信号通过模拟信号线传输到差分放大器240进行差分放大后,通过数据信号线输出回主机100,以使SPK信号以数字信号线为回路连接到主机的地线。其中,经差分放大器240进行差分放大后的信号输入到模拟信号处理模块230进行进一步处理。其中,当三极管为P型三极管时,控制模块250向基极输入的控制信号为高电平,以使P型三极管截止;当三极管为N型三极管时,控制模块250向基极输入的控制信号为低电平,以使N型三极管截止。
由于传输到终端附件的SPK信号不以终端附件的地线为回路,从主机100传输到终端附件的SPK信号通过差分放大器后与数据信号线组成回路回到主机100,最终以主机100的地线为参考,这样可以防止传输模拟信号时,终端附件的地电位与主机100的地电位不相同的情况,进而抑制终端附件的地线对模拟信号SPK造成干扰。
在本实施方式中,差分放大器可以为集成的差分放大器,也可以为两个运算放大器组成的差分放大器,还可以为由分立的三极管和/或MOS管组成的差分放大器,此处不作限制。
可以理解的是,为了能更好地抑制单端模拟信号噪声,还可以在不影响数据传输的前提下,增加设置于主机的高频回路的数字信号线与地线之间的电容的容值,从而为模拟信号提供交流回路,降低模拟信号引入的噪声。
上述方案,通过将单端模拟信号线以及数据信号线连接差分放大模块的差分输入端,以使得模拟信号以及数字信号形成回路连接到主机的地线,以使模拟信号线以及数据信号线组成伪差分对,从而使得模拟信号以及数字信号形成回路连接到主机的地线。由于模拟信号与数字信号均从主机引出,其参考地线均为主机的地线,利用差分放大器的差分特性,抑制单端模拟信号在传输过程中受到的共模干扰;避免使用终端附件的受干扰的地线作为参考地,能够抑制终端附件地电位存在的噪声和传输过程中的噪声。通过隔离模块隔离控制模块与数字信号线,能够防止数字信号线与控制模块的控制信号形成回路耦合噪声。
本实用新型还提供一种终端附件,终端附件包括上述任一实施方式中的抑制单端模拟信号噪声的电路,具体请参阅上述实施方式中的相关描述,此处不赘述。其中,终端附件可以为对讲机音频配件、蓝牙耳机等,终端附件也可以扩展液晶显示、无线通信等功能,此处不作限制。
以上描述中,为了说明而不是为了限定,提出了诸如特定系统结构、接口、技术之类的具体细节,以便透彻理解本实用新型。然而,本领域的技术人员应当清楚,在没有这些具体细节的其它实施方式中也可以实现本实用新型。在其它情况中,省略对众所周知的装置、电路以及方法的详细说明,以免不必要的细节妨碍本实用新型的描述。

Claims (14)

  1. 一种抑制单端模拟信号噪声的电路,所述电路用于与主机连接,其中,所述电路包括输入接口模块、差分放大模块、模拟信号处理模块、隔离模块以及控制模块,其中,所述差分放大模块包括差分输入端以及输出端;
    所述输入接口模块通过模拟信号线以及数字信号线连接所述差分放大模块的差分输入端,所述差分放大模块的输出端连接所述模拟信号处理模块;其中,所述模拟信号线用于传输模拟信号,所述模拟信号为单端模拟信号,所述单端模拟信号是与地信号形成回路的模拟信号;所述数字信号线用于传输数字信号,所述数字信号为控制类信号;
    所述输入接口模块通过所述数字信号线连接所述隔离模块,所述隔离模块连接所述控制模块;
    所述输入接口模块用于连接所述主机的接口模块;
    所述差分放大模块用于将所述差分输入端的电压差进行差分放大;所述模拟信号处理模块用于处理所述差分放大模块的所述输出端输出的信号。
  2. 根据权利要求1所述的电路,其中,所述数字信号以及所述模拟信号的工作模式为单工模式或半双工模式。
  3. 根据权利要求1-2任一项所述的电路,其中,所述隔离模块包括输入端、输出端以及控制端,所述输入端连接所述数据信号线,所述输出端连接地线,所述控制端连接所述控制模块。
  4. 根据权利要求1-2任一项所述的电路,其中,所述差分放大模块包括差分放大器,差分放大器包括差分输入端以及输出端,所述差分输入端连接所述模拟信号线以及所述数字信号线,所述输出端连接所述模拟信号处理模块。
  5. 一种抑制单端模拟信号噪声的电路,所述电路用于与主机连接,其中,所述电路包括输入接口模块、差分放大模块、模拟信号处理模块、隔离模块以及控制模块,其中,所述差分放大模块包括差分输入端以及输出端;
    所述输入接口模块通过模拟信号线以及数字信号线连接所述差分放大模块的差分输入端,所述差分放大模块的输出端连接所述模拟信号处理模块;
    所述输入接口模块通过所述数字信号线连接所述隔离模块,所述隔离模块连接所述控制模块;
    所述输入接口模块用于连接所述主机的接口模块;
    所述差分放大模块用于将所述差分输入端的电压差进行差分放大;
    所述模拟信号处理模块用于处理所述差分放大模块的所述输出端输出的信号。
  6. 根据权利要求5所述的电路,其中,所述模拟信号线用于传输模拟信号,所述模拟信号为单端模拟信号,其中,所述单端模拟信号是与地信号形成回路的模拟信号。
  7. 根据权利要求5所述的电路,其中,所述数字信号线用于传输数字信号,所述数字信号为控制类信号。
  8. 根据权利要求5所述的电路,其中,所述数字信号线传输的数字信号以及所述模拟信号线传输的模拟信号的工作模式为单工模式或半双工模式。
  9. 根据权利要求5-8任一项所述的电路,其中,所述隔离模块包括输入端、输出端以及控制端,所述输入端连接所述数据信号线,所述输出端连接地线,所述控制端连接所述控制模块。
  10. 根据权利要求5-8任一项所述的电路,其中,所述差分放大模块包括差分放大器,差分放大器包括差分输入端以及输出端,所述差分输入端连接所述模拟信号线以及所述数字信号线,所述输出端连接所述模拟信号处理模块。
  11. 根据权利要求9所述的电路,其中,所述隔离模块包括晶体管。
  12. 根据权利要求9所述的电路,其中,所述晶体管为场效应管,所述场效应管包括栅极、源极以及漏极,所述栅极为所述控制端,所述源极为所述输入端,所述漏极为所述输出端。
  13. 根据权利要求9所述的电路,其中,所述晶体管为三极管,所述三极管包括基极、集电极以及发射极,所述基极为控制端,所述集电极为输入端,所述发射极为输出端。
  14. 一种终端附件,所述终端附件用于与终端连接,其中,所述终端附件包括如权利要求1-4或5-13任一项所述的抑制单端模拟信号噪声的电路。
PCT/CN2015/083748 2015-07-10 2015-07-10 一种抑制单端模拟信号噪声的电路及终端附件 WO2017008196A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2015/083748 WO2017008196A1 (zh) 2015-07-10 2015-07-10 一种抑制单端模拟信号噪声的电路及终端附件
US15/743,540 US10452591B2 (en) 2015-07-10 2015-07-10 Circuit for inhibiting single-ended analogue signal noise, and terminal attachment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/083748 WO2017008196A1 (zh) 2015-07-10 2015-07-10 一种抑制单端模拟信号噪声的电路及终端附件

Publications (1)

Publication Number Publication Date
WO2017008196A1 true WO2017008196A1 (zh) 2017-01-19

Family

ID=57756658

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/083748 WO2017008196A1 (zh) 2015-07-10 2015-07-10 一种抑制单端模拟信号噪声的电路及终端附件

Country Status (2)

Country Link
US (1) US10452591B2 (zh)
WO (1) WO2017008196A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9894409B2 (en) * 2015-08-30 2018-02-13 EVA Automation, Inc. User interface based on device-state information
US10452332B2 (en) * 2015-08-30 2019-10-22 EVA Automation, Inc. User interface based on device-state information
US11564172B2 (en) * 2019-03-12 2023-01-24 Microchip Technology Incorporated Communication device and system with ground potential difference compensation
CN109743033B (zh) * 2019-03-20 2023-09-01 河北工业大学 一种高速织机经纱张力信号放大调理电路
CN113566920B (zh) * 2021-08-26 2024-03-08 上海市计算技术研究所有限公司 气体流量测量系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040201510A1 (en) * 2003-04-10 2004-10-14 Agilent Technologies, Inc. Single end to differential signal converter
US20110068869A1 (en) * 2009-09-18 2011-03-24 Eutech Microelectronics Inc. Single-ended class-d amplifier with dual feedback loop scheme
CN102857754A (zh) * 2011-06-27 2013-01-02 宏正自动科技股份有限公司 信号传输装置及其传送器与接收器
US20130049713A1 (en) * 2011-08-26 2013-02-28 Kabushiki Kaisha Toshiba A/d conversion apparatus and dc-dc conversion apparatus
CN103353725A (zh) * 2013-03-19 2013-10-16 中国科学院声学研究所 采用fpga实现基于pci接口协议的阵列式可扩展数据采集系统
CN204009460U (zh) * 2014-08-06 2014-12-10 北京中科佰融科技有限公司 一种便携式工业信号采集装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030035406A1 (en) * 1998-04-02 2003-02-20 Pctel, Inc. Multiple handset wireless conferencing system
US7760892B2 (en) * 2005-12-30 2010-07-20 Hong Fu Jin Precision Industry (Shenzhen) Co., Ltd. Noise elimination circuit for audio equipment
US8243944B2 (en) * 2008-08-15 2012-08-14 Voice Muffler Corporation Foldable wireless voice muffling device for mobile communications
JP2011130341A (ja) * 2009-12-21 2011-06-30 Oki Semiconductor Co Ltd 信号処理装置及び信号処理方法
JP6011642B2 (ja) * 2013-01-24 2016-10-19 日本電気株式会社 誘電体共振器、誘電体フィルタ及び誘電体デュプレクサ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040201510A1 (en) * 2003-04-10 2004-10-14 Agilent Technologies, Inc. Single end to differential signal converter
US20110068869A1 (en) * 2009-09-18 2011-03-24 Eutech Microelectronics Inc. Single-ended class-d amplifier with dual feedback loop scheme
CN102857754A (zh) * 2011-06-27 2013-01-02 宏正自动科技股份有限公司 信号传输装置及其传送器与接收器
US20130049713A1 (en) * 2011-08-26 2013-02-28 Kabushiki Kaisha Toshiba A/d conversion apparatus and dc-dc conversion apparatus
CN103353725A (zh) * 2013-03-19 2013-10-16 中国科学院声学研究所 采用fpga实现基于pci接口协议的阵列式可扩展数据采集系统
CN204009460U (zh) * 2014-08-06 2014-12-10 北京中科佰融科技有限公司 一种便携式工业信号采集装置

Also Published As

Publication number Publication date
US10452591B2 (en) 2019-10-22
US20180276172A1 (en) 2018-09-27

Similar Documents

Publication Publication Date Title
WO2017008196A1 (zh) 一种抑制单端模拟信号噪声的电路及终端附件
WO2011088760A1 (zh) 一种消除噪声的耳机及其驱动电路
WO2012094892A2 (zh) 一种返回式电流复用混频器
WO2014180287A1 (zh) 一种移动终端的耳机线控电路及线控方法
CN105263076A (zh) 一种基于usb-c插头的平衡式耳机及移动终端
CN105230042A (zh) 双传声器耳机及通话中音频信号的降噪处理方法
WO2016029633A1 (zh) 一种用于心电检测的耳机及移动终端
CN102238452A (zh) 一种在免提耳机中主动抗噪声的方法及免提耳机
WO2017008542A1 (zh) 同时同频全双工终端和系统
CN205017295U (zh) 一种抑制单端模拟信号噪声的电路及终端附件
WO2017092388A1 (zh) 一种实现智能手表支持多种无线连接的方法及智能手表
CN206272831U (zh) 一种音频播放电路及蓝牙音频播放设备
CN105072241A (zh) 一种对讲系统隔离变压器消侧音电路
CN202907146U (zh) 一种基于nfc技术的蓝牙音箱
CN204795237U (zh) 一种对讲系统隔离变压器消侧音电路
CN108574909A (zh) 一种集成于有源音箱的无线传声器系统网络节点
CN213522340U (zh) 具有tws配对的音箱麦克风一体机
EP3111565A1 (en) Proximity-based audio sharing system
CN208836420U (zh) 一种智能无线音箱系统
CN103368554A (zh) 光耦隔离通信电路
CN206042321U (zh) 一种通过音频线连接的教学有源音箱
CN220457580U (zh) 一种音频传输装置及会议系统
CN220755020U (zh) 手机吸附式无线蓝牙耳机
CN214481236U (zh) 一种四通道立体声耳机放大器
CN202773028U (zh) 单声音线消侧音电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15897926

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15743540

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 15897926

Country of ref document: EP

Kind code of ref document: A1