WO2017007138A1 - 이온주입기용 리펠러, 캐소드, 챔버 월, 슬릿 부재 및 이를 포함하는 이온발생장치 - Google Patents

이온주입기용 리펠러, 캐소드, 챔버 월, 슬릿 부재 및 이를 포함하는 이온발생장치 Download PDF

Info

Publication number
WO2017007138A1
WO2017007138A1 PCT/KR2016/006190 KR2016006190W WO2017007138A1 WO 2017007138 A1 WO2017007138 A1 WO 2017007138A1 KR 2016006190 W KR2016006190 W KR 2016006190W WO 2017007138 A1 WO2017007138 A1 WO 2017007138A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
crystal structure
refractory metal
semicarbide
ion
Prior art date
Application number
PCT/KR2016/006190
Other languages
English (en)
French (fr)
Inventor
황규태
임경태
김성균
Original Assignee
주식회사 밸류엔지니어링
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020150096701A external-priority patent/KR101582640B1/ko
Priority claimed from KR1020150096700A external-priority patent/KR101582631B1/ko
Priority claimed from KR1020150096699A external-priority patent/KR101565916B1/ko
Priority claimed from KR1020150096702A external-priority patent/KR101582645B1/ko
Application filed by 주식회사 밸류엔지니어링 filed Critical 주식회사 밸류엔지니어링
Priority to US15/742,283 priority Critical patent/US10573486B2/en
Priority to EP16821544.0A priority patent/EP3316277A4/en
Priority to JP2018519662A priority patent/JP6539414B2/ja
Priority to CN201680039789.9A priority patent/CN107735850B/zh
Priority to SG11201710396UA priority patent/SG11201710396UA/en
Publication of WO2017007138A1 publication Critical patent/WO2017007138A1/ko
Priority to US16/583,183 priority patent/US10796878B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement or ion-optical arrangement
    • H01J37/147Arrangements for directing or deflecting the discharge along a desired path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J27/00Ion beam tubes
    • H01J27/02Ion sources; Ion guns
    • H01J27/022Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement or ion-optical arrangement
    • H01J37/08Ion sources; Ion guns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement or ion-optical arrangement
    • H01J37/09Diaphragms; Shields associated with electron or ion-optical arrangements; Compensation of disturbing fields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • H01J37/3171Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation for ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J5/00Details relating to vessels or to leading-in conductors common to two or more basic types of discharge tubes or lamps
    • H01J5/02Vessels; Containers; Shields associated therewith; Vacuum locks
    • H01J5/08Vessels; Containers; Shields associated therewith; Vacuum locks provided with coatings on the walls thereof; Selection of materials for the coatings
    • H01J5/10Vessels; Containers; Shields associated therewith; Vacuum locks provided with coatings on the walls thereof; Selection of materials for the coatings on internal surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/02Details
    • H01J2237/022Avoiding or removing foreign or contaminating particles, debris or deposits on sample or tube
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/06Sources
    • H01J2237/08Ion sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26506Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors
    • H01L21/26513Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors of electrically active species

Definitions

  • the present invention relates to an ion implanter repeller, a cathode, a chamber wall, a slit member, and an ion generator including the same, and more particularly, to constitute an arc chamber of an ion implantation ion generator used in the manufacture of a semiconductor device.
  • the manufacturing process of a semiconductor device is largely comprised of a deposition process and an ion implantation process.
  • the deposition process is a process of forming a conductive film or an insulating film of a semiconductor device, and sputtering, chemical vapor deposition, etc. are used
  • the photo process is a process of patterning the photosensitive resin with a photomask having a predetermined pattern as a preliminary step of the etching process.
  • the etching process is a process of patterning a lower conductive film or insulating film by using the photosensitive resin pattern.
  • the ion implantation process is a process for controlling the operation characteristics of an electronic device formed on a silicon wafer.
  • a process of doping impurities into a film by using thermal diffusion has been used, but recently, ions having a constant energy are introduced into the film.
  • the ion implantation method which penetrates and dopes an impurity is mainly used.
  • the impurity doping process using the ion implantation method has an advantage that it is easier to control the concentration of the impurity and to control or limit the depth of the doping as compared with the thermal diffusion process.
  • An ion implanter is used as an ion implanter, which includes an ion generator for generating ions to dope impurities and an ion analyzer for controlling the type and energy of ions generated.
  • the ion generating device emits hot electrons by heating the filament, and generates ions by colliding the released hot electrons with the injected ion source gas while accelerating by the electric field.
  • the method of emitting hot electrons is a method of heating the tungsten filament directly to emit hot electrons, and the method of accelerating the hot electrons emitted from the tungsten filament to the cathode to emit electrons from the cathode secondary again. Since the deterioration of the filament material can be prevented, the replacement cycle of the part can be improved.
  • a gas that is a source of ions is injected, and the ion source gas is decomposed while colliding with electrons emitted from the cathode.
  • the base material of the components constituting the arc chamber is Mo (molybdenum), W (tungsten), Ta (tantalum), Re (rhenium), Nb (niobium) Refractory metal is used.
  • Mo molecular metal
  • W tungsten
  • Ta tantalum
  • Re rhenium
  • Nb (niobium) Refractory metal is used.
  • the weight of the chamber itself is heavy, which causes deformation due to heat along with the load.
  • the ion generating position is shifted and the arc chamber itself is twisted, thus precise ion implantation process. This can be difficult.
  • US Patent Publication No. 2011-0139613 is a prior art document that uses tungsten, a kind of refractory metal, as a repeller for ion implanters.
  • the above-mentioned prior art discloses the use of tungsten, carbon, etc. as the electrode body of the repeller, but provides structural improvement such as miniaturization of the repeller, but is not related to material improvement.
  • Korean Patent No. 10-0553716 is a prior document for manufacturing the front plate of the ion implanter with tungsten. Since the prior art document causes the maintenance cost of the equipment to be increased during frequent replacement of the front plate to obtain a good beam uniformity, it is possible to solve this problem and to obtain a good beam uniformity.
  • the chamber body using the metal base material is very disadvantageous in dissipating heat as the inner temperature of the chamber body rises above 900 ° C.
  • the ion beam is emitted through the slit. Due to the difference in thermal expansion coefficient of carbon material and refractory metal material, the ion emission position is changed due to heat deformation along with the load when used in high temperature process. Not only does the precise ion implantation process not be possible due to the entire distortion, but also peeling occurs at the interface between the carbon layer and the refractory metal coating layer, resulting in foreign particles, and thus there is a risk of defects in semiconductor production, and the durability of semiconductor equipment may be reduced. have.
  • the first problem to be solved by the present invention is to provide thermal deformation stabilization, wear protection, deposit separation resistance, etc. even if the ion implanter is used for a long time without parts replacement It is to provide a repeller, a cathode, a chamber wall and a slit member for an ion implanter.
  • the second problem to be solved by the present invention is to provide an ion generating device comprising a repeller, a cathode, a chamber wall and a slit member for the ion implanter.
  • the present invention is installed inside the arc chamber of the ion generator for the ion implanter, and extends from the reflector and the reflector provided opposite the cathode of the ion generator, and a predetermined voltage is
  • a repeller comprising an applied terminal portion, wherein the reflecting portion has a refractory metal material as a base material to form a part shape, and has a coating structure including a semi-carbide layer on at least one surface to be the inner surface of the base material Provide a repeller for the injector.
  • the cathode side portion is installed in the arc chamber of the ion generator for the ion implanter, fixed to one side of the arc chamber and the filament is installed therein, and the An electron-emitting cathode comprising a cathode front portion having a surface exposed in an arc chamber and emitting electrons, the cathode having a refractory metal material as a base material forming a part shape, and having at least one surface to be an inner surface of the base material. It is possible to provide an electron-emitting cathode for an ion implanter, which has a coating structure including a semi-carbide layer.
  • the present invention is a chamber wall which is installed inside the arc chamber for constituting the ion generating space of the ion generating device for the ion implanter in order to achieve the first object, one surface of the chamber wall constituting the slope of the arc chamber
  • the above wall may have a refractory metal material as a base material for forming a part shape, and may provide a chamber wall for an ion implanter, having a coating structure including a semicarbide layer on at least one surface that is an inner surface of the base material.
  • the present invention is a slit member having a slit for emitting an ion beam from the ion generator for the ion implanter, in order to achieve the first object, the slit portion in which the slit is formed is a fire-resistant as a base material to form the part shape It is possible to provide a slit member for an ion implanter, which has a metal material and has a coating structure including a semicarbide layer on at least one surface that becomes an inner surface of the base material.
  • the semicarbide coating layer includes a carbide structure of a refractory metal in which a monocarbide continuous or discontinuous layer of the refractory metal is layered on a semicarbide continuous or discontinuous layer of the refractory metal. It may be to include.
  • the semicarbide-containing coating structure includes an epsilon phase ( ⁇ -Fe 2 N type) crystal structure and a beta phase (PbO 2 type, Mo 2 C type or C 6 type) crystal structure, or the like.
  • the continuous or discontinuous layer having a hexagonal phase crystal structure on the continuous or discontinuous layer having at least one crystal structure selected from the group consisting of may include a carbide structure of refractory metal constituting a continuous or discontinuous layered. .
  • X is the weight ratio Wm / Ws of the content Wm of the crystal structure constituting the semicarbide layer of the refractory metal and the content Ws of the crystal structure constituting the monocarbide layer of the refractory metal.
  • X may be 5 or less (where Wm and Ws are values obtained by polyphase analysis by EBSD (Electron Back-Scattered Diffraction) method).
  • the content Ww of the base material, the content Wm of the crystal structure constituting the semi-carbide layer of the refractory metal as the coating structure containing the semi-carbide layer, and the refractory metal monocarbide layer Content ratio of the crystal structure Ws Ww: Wm: Ws is 90 to 95: 0.8 to 4: 9.2 to 1 (where Ww, Wm and Ws are obtained by polyphase analysis by EBSD (Electron Back-Scattered Diffraction) method. Value).
  • the semicarbide-containing coating layer may have a minimum layer thickness of 2 ⁇ m or more and a maximum layer thickness of 300 ⁇ m or less.
  • the terminal portion may have a refractory metal material as a base material forming a part shape, and have a coating structure including a semicarbide layer on at least one surface of the base material.
  • the present invention provides an ion generator comprising the repeller for the ion implanter, in order to achieve the second object.
  • a coating structure including a semi-semiconductor layer it enables precise ion implantation process without changing ion generation position or equipment, and evenly reflects electrons into the arc chamber, thereby increasing the uniformity of plasma and increasing the uniformity of ion source gas. It not only improves the decomposition efficiency but also significantly improves the service life compared to the existing parts.
  • FIG. 1 shows the structure of an ion generator for an ion implanter.
  • Figure 2 shows the structure of the repeller for the ion implanter.
  • FIG 3 shows the structure of the electron-emitting cathode for the ion implanter.
  • FIG 5 illustrates the structure of the slit member for the ion implanter.
  • FIG. 6 is a coating structure including a semi-carbide layer on the surface of the tungsten material base material according to an embodiment of the present invention, the surface analysis according to EBSD (Electron BackScattered Diffraction) having a monocarbide layer layered on the semi-carbide layer
  • EBSD Electro BackScattered Diffraction
  • FIG. 7 is a coating structure including a semi-carbide layer on the surface of the tungsten material base material according to an embodiment of the present invention, XRD showing that the monocarbide layer has a layered structure on the semi-carbide layer in the XRD transmission depth region ( ⁇ 3 ⁇ m) It is a diffraction graph.
  • the present invention relates to thermal deformation stabilization, wear protection, or deposit stripping resistance for components such as repellers, cathodes, chamber walls, or slit members that constitute the arc chamber of ion implantation ion generators used in the manufacture of semiconductor devices.
  • a coating structure including a semi-semiconductor layer it enables precise ion implantation process without changing ion generation position or equipment, and evenly reflects electrons into the arc chamber, thereby increasing the uniformity of plasma and increasing the uniformity of ion source gas.
  • the present invention relates to an ion implanter component and an ion generator including the same, which not only improve the decomposition efficiency but also significantly improve the service life of existing components.
  • the ion generating apparatus 100 includes an arc chamber 104 forming a predetermined space, a cathode 102 installed on one side of the arc chamber, a filament 101 installed in an inner space of the cathode, and the And a repeller 103 installed opposite the cathode.
  • the filament 101 may be made of a metal having a high melting point, such as tungsten, and functions to emit hot electrons to the outside while being heated to a predetermined temperature when a current flows from a power source connected to the outside.
  • the cathode 102 is installed spaced apart from the filament 101 by a predetermined distance.
  • the cathode is connected to the cathode of an external power source, and hot electrons emitted from the filament collide with the cathode by an electric field formed between the filament and the cathode. Electrons are emitted again from the surface.
  • the arc chamber 104 forms a predetermined space in a direction in which electrons are emitted from the cathode, and a gas injection unit 105 is formed to inject gas and carrier gas used for doping impurities in one direction, and in the other direction.
  • Slit member 106 is formed as an ion emitting portion through which gas and ions are discharged.
  • the power supply is connected to the arc chamber 104 to accelerate the electrons emitted from the cathode 102.
  • a repeller 103 is installed at one side of the arc chamber opposite to the cathode 102.
  • the repeller functions to distribute ions in a limited space while pushing out electrons emitted and accelerated from the cathode, and the bias is applied. Or may remain floating.
  • Magnets 110a and 110b may be installed around the arc chamber 104.
  • the magnet may be an electromagnet, and electrons that are accelerated and moved along an electric field formed inside the arc chamber 104 may rotate by a magnetic field. Make sure The rotational motion of the electrons increases the probability of collision between electrons and gas particles, thereby increasing ionization efficiency.
  • the slit member 106 as an ion emitting unit is provided with an analyzer for accelerating ions using an electric field and filtering ions having a specific type and specific energy.
  • the slit member 106 may be provided on the upper surface of the ion chamber 104 or on the lower surface of the ion chamber 104 as the ion emitting unit, and may be provided with a gas injection unit facing the ion emitting unit 106. 105 may be provided.
  • the ion implanter repeller 103 includes a reflector 103a and a terminal 103b.
  • the reflector 103a is provided to face the cathode and may be formed in a plate shape (eg, a disc) having a predetermined area and thickness.
  • the terminal part 103b is electrically connected to the reflecting part and serves as a terminal to which a predetermined voltage can be applied, and serves as a fixing part for fixing the repeller 103 inside the arc chamber 104.
  • the ion implanter repeller 103 of the present invention is installed inside the arc chamber 104 of the ion generator ion generator, and is provided with a reflector 103a facing the cathode 102 of the ion generator and the A repeller 103 including a terminal portion 103b extending from the reflecting portion 103a and to which a predetermined voltage is applied, wherein the reflecting portion 103a is a base material for forming a component shape and is formed of Mo (molybdenum) and W (tungsten).
  • refractory metal material such as Ta (tantalum), Re (rhenium), and Nb (niobium)
  • a coating structure including a semicarbide layer on at least one surface that becomes an inner surface of the base material. do.
  • the cathode 102 consists of a cathode side portion 102a providing an interior space in which the filament 101 can be installed and a cathode front portion 102b providing a surface for emitting electrons.
  • the cathode side portion 102a may be formed in a tubular shape having a predetermined length, and a cathode inner space 102d is formed therein, and a fastening portion 102c is formed.
  • the cathode front portion 102b may have a recessed surface, and may include a cathode front edge 102b, a cathode recessed inclination portion (not shown), and a cathode recessed flat portion (not shown).
  • the cathode front edge portion 102b is formed in the outer region of the cathode front portion, and provides a flat surface in the arc chamber direction with a predetermined width at the boundary of the outer region, and protrudes in the arc chamber direction relative to the recessed region. It is.
  • the cathode front edge 102b has a flat surface to prevent electron emission from concentrating on a portion.
  • the cathode outermost structure is not formed. It is formed at an acute angle so that the emission of electrons may be concentrated on only the edge portion.
  • the cathode recessed inclined portion forms an inclined direction toward the center of the cathode front portion.
  • the inclined surface can increase the area of the cathode surface from which the electrons are emitted, and the electrons emitted from the inclined surface are formed in the direction of the center of the cathode. The electrons are accelerated to a high density region.
  • the cathode recessed inclination portion is preferably formed to be concave in the direction of the arc chamber, and in such a structure, it is possible to maximize the effect of the movement of the electrons in the direction of high density of the doping gas by controlling the emission position of the electrons.
  • the cathode recessed flat portion is formed at the center of the cathode front portion and has a flat surface. The ionization efficiency can be improved by adjusting the ratio of the width of the cathode recessed slope to the radius of the cathode recessed flat portion.
  • the radius ratio of the cathode recessed flat portion and the width of the cathode recessed slope may be in the range of 1: 0.5 to 1: 1.5, for example. Within this range, the effect of electron emission direction control by the inclined portion and the ionization efficiency can be improved.
  • the depression depth of the cathode recessed flat portion may be in the range of 0.5 to 1.5 times the radius of the cathode recessed flat portion, and the cathode area increase effect and the ionization efficiency may be improved within the range.
  • the cathode 102 of the present invention is installed in the arc chamber 104 of the ion generator for the ion implanter, the cathode having a space fixed to one side of the arc chamber 104 and the filament 101 is installed therein
  • An electron-emitting cathode comprising a side portion and a cathode front portion having a surface exposed in the arc chamber direction and emitting electrons, the cathode having a refractory metal material as a base material forming a part shape, and being an inner surface of the base material.
  • an electron-emitting cathode for an ion implanter characterized in that it has a coating structure comprising a semi-carbide layer on at least one surface.
  • the arc chamber 104 is formed with a chamber wall 104a constituting four surfaces, a gas injection unit 105, and a slit member 106 as an ion discharge unit, and is doped injected into the gas injection unit.
  • the gas and the carrier gas are partially ionized and discharged to the ion emitter 106.
  • the pressure difference of the gas is generated in the arc chamber 104, the density of the gas (pressure of the gas) is increased in the region close to the gas injection portion 105. Therefore, the ionization probability becomes high when the amount of electrons accelerated to a region of high gas density is high.
  • the chamber wall 104a of the present invention is a chamber wall installed inside the arc chamber for constituting the ion generating space of the ion generator for the ion implanter, and at least one wall of the chamber walls constituting the slope of the arc chamber has a part shape. It has a refractory metal material as a base material to form a, characterized in that it has a coating structure including a semi-carbide layer on at least one surface to be the inner surface of the base material.
  • Figure 5 shows the structure of the slit member for the ion implanter.
  • the slit member 106 for the ion implanter has a slit portion 106b in which a slit 106a is formed, and an insertion hole (not shown) to which the slit 106b is coupled.
  • the frame 106c is formed in the slit portion 106b and the frame 106c may be connected to each other by the connecting member 106d.
  • the connection member 106d may be a screw type, and a plurality of screw holes (not shown) may be formed in the slit portion 106b and the frame 106c to insert the screws, respectively.
  • the slit portion 106b and the frame 106c may be different materials or the same material, respectively.
  • the slit member 106 of the present invention is a slit member having a slit for emitting an ion beam from the ion generator for ion implanter, wherein the slit in which the slit is formed has a refractory metal material as a base material for forming a part shape, It characterized in that it has a coating structure containing a semi-carbide layer on at least one surface to be the inner surface of the base material.
  • coating structure including a semicarbide layer refers to a structure in which a semicarbide layer is layered as a coating underlayer, unless otherwise specified, using a separate additive or applying a protective layer / intermediate layer, and the like. It provides features that provide improved thermal deformation stability, abrasion protection, deposit delamination deterioration and phase stability without the need for CVD.
  • the semicarbide-containing coating structure may include, for example, a carbide structure of refractory metal in which a monocarbide continuous or discontinuous layer of refractory metal constitutes a layered layer on a semicarbide continuous or discontinuous layer of refractory metal.
  • the structure can provide improved properties in terms of thermal deformation stability, wear protection and deposit delamination resistance compared to semicarbide monolayers or monocarbide monolayers.
  • the semicarbide coating layer includes, as another example, 1 selected from a group consisting of an epsilon ( ⁇ -Fe 2 N type) crystal structure and a beta phase (PbO 2 type, Mo 2 C type, or C 6 type) crystal structure, and the like.
  • the continuous or discontinuous layer having a hexagonal crystal structure on the continuous or discontinuous layer having a crystal structure of at least one species may have a structure that continuously or discontinuously layered, such that the different crystal structure is a continuous or discontinuous layered According to the structure of the configuration, it is possible to further provide a property of improved phase stability.
  • the bilayer has a structure in which a continuous layer having a hexagonal phase crystal structure is continuously layered on a continuous layer having the epsilon phase ( ⁇ -Fe 2 N type) crystal structure.
  • X may be 5 or less, Within this range, it is possible to simultaneously provide improved thermal deformation stability, wear protection and deposition delamination resistance.
  • Wm and Ws are values obtained by multiphase analysis by EBSD (Electron BackScattered Diffraction) method.
  • X may be, for example, in the range of 0.01 to 5, 0.03 to 4, 0.1 to 4, 0.05 to 0.3, or 0.1 to 0.2.
  • Ww: Wm: Ws may be in the range of 90 to 95: 0.8 to 4: 9.2 to 1, and within this range may also provide improved thermal strain stability, wear protection properties and deposit stripping resistance at the same time.
  • Ww, Wm, and Ws are values obtained by polyphase analysis by EBSD (Electron Back-Scattered Diffraction) method.
  • Y may be 91 to 94: 0.8 to 3: 8.2 to 3.
  • the continuous layer having the hexagonal phase crystal structure is a peak in which the first peak having the maximum peak intensity (see the peak inside the graph in FIG. 7) in the range of 35 ° to 36 ° when measured by XRD diffraction analysis, and the second peak is It may be a peak present in the range of 48 ° to 50 °, and the third peak may have a peak present in the range of 31 ° to 32 °.
  • the continuous layer having one or more crystal structures selected from the group consisting of the epsilon phase ( ⁇ -Fe 2 N type) crystal structure and beta phase (PbO 2 type, Mo 2 C type or C 6 type) crystal structure, etc. is XRD
  • the first peak with the maximum peak intensity (see graph bottom peak in FIG. 7) in the measurement is the peak present in the range 69.5 ° to 70.0 °
  • the second peak is the peak present in the range 39.5 ° to 40.0 °
  • the third The peak may be one having a peak present in the range of 52.0 ° to 52.5 °.
  • the semicarbide layer is capable of providing sufficiently improved thermal deformation stability, wear protection properties, deposition resistance, and phase stability even at a fine thickness, and a minimum layer thickness of 2 ⁇ m or more and a maximum layer thickness of 300 ⁇ m or less. Or it is preferable to exist in the range of 200 micrometers or less.
  • minimum layer thickness and maximum layer thickness refer to the numerical values of the minimum thickness and the maximum thickness of the various parts of the layer, unless otherwise specified.
  • the semicarbide layer-containing coating structure may be, for example, a monocarbide layer having a layer thickness of 1 to 10 ⁇ m on a semicarbide layer having a layer thickness of 1 to 50 ⁇ m, and having a layered structure within this range. It can simultaneously provide improved wear protection and deposit delamination resistance.
  • the semicarbide layer-containing coating structure may be a monocarbide layer having a layer thickness of 1 to 6 ⁇ m on the semicarbide layer having a layer thickness of 1 to 8 ⁇ m.
  • components constituting the arc chamber 104 of the ion generator 100 for the ion implanter components such as a repeller 103, a cathode 102, a chamber wall 104a, or a slit member 106.
  • Residual parts constituting the ion chamber 104 are made of a refractory metal material as a base material, or a material having a coating structure including a semi-carbide layer on the surface of the refractory metal material base material, which is the inner surface as described above, or carbon Or it can be produced in a variety of known materials such as carbon and hydrogen compounds.
  • the semi-carbide coating layer including the semi-carbide layer is coated with a semi-carbide layer including a semi-carbide layer by heat-treating the selected component using a refractory metal material as a base material, and then heat-treated with an element containing carbon on at least one surface of the base material. Can be formed.
  • heat treatment with the element containing carbon it may be formed by a carburizing or chemical vapor deposition using a graphite sheet or carbon black powder, and may have a structure having a multilayer coating layer including the semicarbide layer as a coating lower layer.
  • the multilayer coating layer including the semicarbide layer may have a minimum layer thickness of 2 ⁇ m or more and a maximum layer thickness of 300 ⁇ m or less.
  • the heat treatment with the carbon-containing element is carried out under operating conditions in which, for example, a monocarbide layer can form a multilayer coating layer layered with a layer thickness of 1 to 10 ⁇ m on a semicarbide layer having a layer thickness of 1 to 30 ⁇ m. It is desirable to.
  • the heat treatment with the carbon-containing element is carried out under operating conditions in which a monocarbide layer can form a layered coating layer with a layer thickness of 1 to 6 ⁇ m on a semicarbide layer having a layer thickness of 1 to 8 ⁇ m. More preferred.
  • the operating condition (heating pressurization condition) of the heat treatment is a maximum temperature 1100 ⁇ 2200 °C, heating rate 1 ⁇ 100 °C / min, dwell time in a vacuum or inert gas atmosphere conditions 0 seconds ⁇ 30 hours ( In this case, 0 seconds means immediate cooling), and the heat treatment process may be performed, and the present invention is not limited thereto and may be controlled within a known range according to the material of the repeller.
  • Operating conditions (heating pressurized condition) of the chemical vapor deposition is 900 ⁇ 2200 °C lower than the atmospheric pressure at a temperature of 10 - and a pressure range of less than 2 torr ⁇ 760torr, is hydrogen and the compound ratio of hydrogen and carbon 70: 30 to 99.9:
  • the reaction time may be to perform a chemical vapor deposition process in the range of 0 seconds to 30 hours, not limited to this, and may be controlled within a known range according to the material of the repeller.
  • the component for ion implanter of the present invention has a refractory metal material as a base material forming a part shape, and has a coating structure including a semicarbide layer on at least one surface of the base material, such peeling phenomenon is effectively prevented.
  • the application of heat deformation stabilization, abrasion protection, or deposit separation resistance to components such as a repeller, a cathode, a chamber wall, or a slit member constituting an arc chamber of an ion implantation ion generator used in the manufacture of a semiconductor device of the present invention By providing a coating structure including a semi-carbide layer for the purpose, it enables precise ion implantation process without changing the ion generation position or equipment, and can evenly reflect electrons into the arc chamber, increasing the uniformity of the plasma to increase ion source gas. In addition to improving the disassembly efficiency, the service life can be significantly improved compared to existing components.
  • a reflector 103a having a circular surface having a radius of 12 mm and a cathode 102 having a circular surface having a radius of 10.85 mm are provided opposite to the sidewalls.
  • a generator was produced.
  • the reflector 103a of FIG. 2 is formed by using a tungsten material as a base material, and the graphite sheet is placed as a material containing carbon on the surface of the tungsten material base material, which is the inner surface, and the maximum temperature is 1380 ° C., and a heating rate.
  • a material having a two-layer coating structure in which tungsten monocarbide continuous or discontinuous layers were continuously or discontinuously layered on a tungsten semicarbide continuous or discontinuous layer by heating at 4.5 ° C./min and a holding time of 15 hr without applying an intermediate layer / protective layer was prepared. This was then shaped.
  • the terminal portion 103b for applying a predetermined voltage to the reflecting portion 103a was formed using tungsten material as a base material and then integrated into the reflecting portion 103a.
  • EBSD Electro BackScattered Diffraction, JEOL, TSL model
  • the semicarbide-containing coating structure has a multilayer coating structure in which the monocarbide layer has a layer thickness of 3 ⁇ m or less on a semicarbide layer having a layer thickness of 8 ⁇ m or less.
  • the tungsten semicarbide was identified as an epsilon phase ( ⁇ -Fe 2 N type) crystal structure, and the tungsten monocarbide was identified as a hexagonal phase (h-WC) crystal structure (see FIG. 7).
  • the content of tungsten layer (Ww) was 0.913 fraction, and the content of crystal structure (Ws) of tungsten semicarbide layer was 0.079 fraction. And it was confirmed that the content of the crystal structure (Wm) of the tungsten monocarbide layer was 0.008 fraction, and the weight ratio (Ww: Wm: Ws) calculated therefrom was 91.3: 0.8: 7.9.
  • the coating structure in which the tungsten monocarbide layer was layered on the tungsten semicarbide layer was determined in the epsilon phase ( ⁇ -Fe 2 N type) in the XRD transmission depth region ( ⁇ 3 ⁇ m) as shown in FIG. 7.
  • Continuous or discontinuous layer with hexagonal crystal structure on the continuous or discontinuous layer having at least one crystal structure selected from the group consisting of a structure and a beta phase (PbO 2 type, Mo 2 C type or C 6 type) crystal structure and the like It was confirmed that this had a continuous or discontinuous layered multilayer coating structure.
  • the tungsten monocarbide continuous or discontinuous layer is a peak in which the first peak having the maximum peak intensity in the XRD diffraction analysis is present in the range of 35 ° to 36 °. 2 peaks were present in the range of 48 ° to 49 ° and the third peak was present at 31 ° to 32 °.
  • the tungsten semicarbide continuous or discontinuous layer has a peak peak when the peaks of tungsten monocarbide and tungsten semicarbide overlap in the XRD measurement, and thus no peak of tungsten semicarbide is observed.
  • the first peak having intensity is a peak present in a range of 69.5 ° to 70.0 °
  • the second peak is a peak present in a range of 39.5 ° to 40.0 °
  • the third peak is a peak present in a range of 52.0 ° to 52.5 °. Seemed.
  • the fraction calculated from the result of phase separation through surface analysis according to EBSD is determined by the weight ratio Wm / of the content Wm of the crystal structure constituting the tungsten monocarbide layer and the content Ws of the crystal structure constituting the tungsten semicarbide layer. Applying to the factor X of Ws (hereinafter referred to as X), it was possible to calculate that X was 0.008 / 0.079 as 0.1.
  • a reflector 103a having a circular surface having a radius of 12 mm and a cathode 102 having a circular surface having a radius of 10.85 mm are provided opposite to the sidewalls.
  • a generator was produced.
  • the cathode front portion 102b of FIG. 3 is formed by using a tungsten material as a base material, and the graphite sheet is placed as a material containing carbon on the surface of the tungsten material base material, which is the inner surface, and heated at a maximum temperature of 1380 ° C.
  • heat treatment was performed without application of an intermediate layer / protective layer to prepare a material having a two-layer coating structure in which tungsten monocarbide continuous or discontinuous layers were continuously or discontinuously layered on a tungsten semicarbide continuous or discontinuous layer. It was then shaped.
  • EBSD Electro BackScattered Diffraction, JEOL, TSL model
  • the semicarbide-containing coating structure has a multilayer coating structure in which the monocarbide layer has a layer thickness of 3 ⁇ m or less on a semicarbide layer having a layer thickness of 8 ⁇ m or less.
  • the tungsten semicarbide was identified as an epsilon phase ( ⁇ -Fe 2 N type) crystal structure, and the tungsten monocarbide was identified as a hexagonal phase (h-WC) crystal structure (see FIG. 7).
  • the content of tungsten layer (Ww) was 0.913 fraction, and the content of crystal structure (Ws) of tungsten semicarbide layer was 0.079 fraction. And it was confirmed that the content of the crystal structure (Wm) of the tungsten monocarbide layer was 0.008 fraction, and the weight ratio (Ww: Wm: Ws) calculated therefrom was 91.3: 0.8: 7.9.
  • the coating structure in which the tungsten monocarbide layer was layered on the tungsten semicarbide layer was determined in the epsilon phase ( ⁇ -Fe 2 N type) in the XRD transmission depth region ( ⁇ 3 ⁇ m) as shown in FIG. 7.
  • Continuous or discontinuous layer with hexagonal crystal structure on the continuous or discontinuous layer having at least one crystal structure selected from the group consisting of a structure and a beta phase (PbO 2 type, Mo 2 C type or C 6 type) crystal structure and the like It was confirmed that this had a continuous or discontinuous layered multilayer coating structure.
  • the tungsten monocarbide continuous or discontinuous layer is a peak in which the first peak having the maximum peak intensity in the XRD diffraction analysis is present in the range of 35 ° to 36 °. 2 peaks were present in the range of 48 ° to 49 ° and the third peak was present at 31 ° to 32 °.
  • the tungsten semicarbide continuous or discontinuous layer has a peak peak when the peaks of tungsten monocarbide and tungsten semicarbide overlap in the XRD measurement, and thus no peak of tungsten semicarbide is observed.
  • the first peak having intensity is a peak present in a range of 69.5 ° to 70.0 °
  • the second peak is a peak present in a range of 39.5 ° to 40.0 °
  • the third peak is a peak present in a range of 52.0 ° to 52.5 °. Seemed.
  • the fraction calculated from the result of phase separation through surface analysis according to EBSD is determined by the weight ratio Wm / of the content Wm of the crystal structure constituting the tungsten monocarbide layer and the content Ws of the crystal structure constituting the tungsten semicarbide layer. Applying to the factor X of Ws (hereinafter referred to as X), it was possible to calculate that X was 0.008 / 0.079 as 0.1.
  • a reflector 103a having a circular surface having a radius of 12 mm and a cathode 102 having a circular surface having a radius of 10.85 mm are provided opposite to the sidewalls.
  • a generator was produced.
  • the chamber wall 104a of FIG. 4 is formed by using a tungsten material as a base material, and the graphite sheet is placed as a material containing carbon on the surface of the tungsten material base material, which is the inner surface, and the maximum temperature is 1380 ° C and a heating rate of 4.5 ° C.
  • EBSD Electro BackScattered Diffraction, JEOL, TSL model
  • the semicarbide-containing coating structure has a multilayer coating structure in which the monocarbide layer has a layer thickness of 3 ⁇ m or less on a semicarbide layer having a layer thickness of 8 ⁇ m or less.
  • the tungsten semicarbide was identified as an epsilon phase ( ⁇ -Fe 2 N type) crystal structure, and the tungsten monocarbide was identified as a hexagonal phase (h-WC) crystal structure (see FIG. 7).
  • the content of tungsten layer (Ww) is 0.913 fraction
  • the content of crystal structure (Ws) of tungsten semicarbide layer is 0.079 fraction
  • the content of the crystal structure (Wm) of the tungsten monocarbide layer was 0.008 fraction
  • the weight ratio (Ww: Wm: Ws) calculated therefrom was 91.3: 0.8: 7.9.
  • the coating structure in which the tungsten monocarbide layer was layered on the tungsten semicarbide layer was determined in the epsilon phase ( ⁇ -Fe 2 N type) in the XRD transmission depth region ( ⁇ 3 ⁇ m) as shown in FIG. 7.
  • Continuous or discontinuous layer with hexagonal crystal structure on the continuous or discontinuous layer having at least one crystal structure selected from the group consisting of a structure and a beta phase (PbO 2 type, Mo 2 C type or C 6 type) crystal structure and the like It was confirmed that this had a continuous or discontinuous layered multilayer coating structure.
  • the tungsten monocarbide continuous or discontinuous layer is a peak in which the first peak having the maximum peak intensity in the XRD diffraction analysis is present in the range of 35 ° to 36 °. 2 peaks were present in the range of 48 ° to 49 ° and the third peak was present at 31 ° to 32 °.
  • the tungsten semicarbide continuous or discontinuous layer has a peak peak when the peaks of tungsten monocarbide and tungsten semicarbide overlap in the XRD measurement, and thus no peak of tungsten semicarbide is observed.
  • the first peak having intensity is a peak present in a range of 69.5 ° to 70.0 °
  • the second peak is a peak present in a range of 39.5 ° to 40.0 °
  • the third peak is a peak present in a range of 52.0 ° to 52.5 °. Seemed.
  • the fraction calculated from the result of phase separation through surface analysis according to EBSD is determined by the weight ratio Wm / of the content Wm of the crystal structure constituting the tungsten monocarbide layer and the content Ws of the crystal structure constituting the tungsten semicarbide layer. Applying to the factor X of Ws (hereinafter referred to as X), it was possible to calculate that X was 0.008 / 0.079 as 0.1.
  • a reflector 103a having a circular surface having a radius of 12 mm and a cathode 102 having a circular surface having a radius of 10.85 mm are provided opposite to the sidewalls.
  • a generator was produced.
  • the slit portion 106b of FIG. 5 is formed by using a tungsten material as a base material, and the graphite sheet is placed as a material containing carbon on the surface of the tungsten material base material, which becomes the inner surface, and the maximum temperature is 1380 ° C. and the heating rate is 4.5 ° C.
  • EBSD Electro BackScattered Diffraction, JEOL, TSL model
  • the coating structure including the semicarbide layer has a multilayer coating structure in which the monocarbide layer has a layer thickness of 3 ⁇ m or less on a semicarbide layer having a layer thickness of 8 ⁇ m or less.
  • the tungsten semicarbide was identified as an epsilon phase ( ⁇ -Fe 2 N type) crystal structure, and the tungsten monocarbide was identified as a hexagonal phase (h-WC) crystal structure (see FIG. 7).
  • the content of tungsten layer (Ww) was 0.913 fraction, and the content of crystal structure (Ws) of tungsten semicarbide layer was 0.079 fraction. And it was confirmed that the content of the crystal structure (Wm) of the tungsten monocarbide layer was 0.008 fraction, and the weight ratio (Ww: Wm: Ws) calculated therefrom was 91.3: 0.8: 7.9.
  • the coating structure in which the tungsten monocarbide layer was layered on the tungsten semicarbide layer was determined in the epsilon phase ( ⁇ -Fe 2 N type) in the XRD transmission depth region ( ⁇ 3 ⁇ m).
  • the tungsten monocarbide continuous or discontinuous layer is a peak in which the first peak having the maximum peak intensity in the XRD diffraction analysis is present in the range of 35 ° to 36 °. 2 peaks were present in the range of 48 ° to 49 ° and the third peak was present at 31 ° to 32 °.
  • the tungsten semicarbide continuous or discontinuous layer has a peak peak when the peaks of tungsten monocarbide and tungsten semicarbide overlap in the XRD measurement, and thus no peak of tungsten semicarbide is observed.
  • the first peak having intensity is a peak present in a range of 69.5 ° to 70.0 °
  • the second peak is a peak present in a range of 39.5 ° to 40.0 °
  • the third peak is a peak present in a range of 52.0 ° to 52.5 °. Seemed.
  • the fraction calculated from the result of phase separation through surface analysis according to EBSD is determined by the weight ratio Wm / of the content Wm of the crystal structure constituting the tungsten monocarbide layer and the content Ws of the crystal structure constituting the tungsten semicarbide layer. Applying to the factor X of Ws (hereinafter referred to as X), it was possible to calculate that X was 0.008 / 0.079 as 0.1.
  • an ion generator for an ion implanter having the structure as shown in FIG.
  • the reflective portion 103a and the terminal portion 103b of FIG. 2 are each shaped using a tungsten material as a base material, and then carbon black powder is used as the carbon material on the surface of the tungsten material base material to be the inner side, and the intermediate layer /
  • the above embodiment except that the tungsten monocarbide continuous or discontinuous layer on the tungsten semi-carbide continuous or discontinuous layer was processed using a material having a two-layer coating structure layered by continuous or discontinuous layer The same process as 1-1 was repeated.
  • the semicarbide layer had a multilayer structure of monocarbide layer having a layer thickness of 6 ⁇ m or less on a semicarbide layer having a layer thickness of 7 ⁇ m or less.
  • the tungsten semicarbide was identified as an epsilon phase ( ⁇ -Fe 2 N type) crystal structure, and the tungsten monocarbide was identified as a hexagonal phase (h-WC) crystal structure (see FIG. 7).
  • the content of tungsten layer (Ww) is 0.912 fraction
  • the content of crystal structure (Ws) of tungsten semicarbide layer is 0.074 fraction
  • the content of the crystal structure (Wm) of the tungsten monocarbide layer was 0.014 fraction
  • the weight ratio (Ww: Wm: Ws) calculated therefrom was 91.2: 1.4: 7.4.
  • the coating structure in which the tungsten monocarbide layer was layered on the tungsten semicarbide layer was determined in the epsilon phase ( ⁇ -Fe 2 N type) in the XRD transmission depth region ( ⁇ 3 ⁇ m) as shown in FIG. 7.
  • the continuous or discontinuous layer having the hexagonal phase crystal structure is a peak having a maximum peak intensity in the range of 35 ° to 36 ° when measured by XRD diffraction analysis. It was confirmed that two peaks are peaks present in the range of 49 ° to 50 °, and the third peak shows peaks present in the range of 31 ° to 32 °.
  • the fraction calculated from the result of phase separation through surface analysis according to EBSD is determined by the weight ratio Wm / of the content Wm of the crystal structure constituting the tungsten monocarbide layer and the content Ws of the crystal structure constituting the tungsten semicarbide layer. Applying to the factor X of Ws, it can be calculated that X is 0.19 as 0.014 / 0.074.
  • an ion generating device for an ion implanter having the structure as shown in FIG.
  • the cathode front portion 102b of FIG. 3 is formed by using tungsten material as a base material, and then carbon black powder is used as the carbon material on the surface of the tungsten material base material which becomes the inner side, and without applying the intermediate layer / protective layer.
  • the tungsten monocarbide continuous or discontinuous layer was formed on the tungsten semicarbide continuous or discontinuous layer using a material having a two-layer coating structure in which the layer was continuously or discontinuously layered. The process was repeated.
  • the semicarbide layer had a multilayer structure of monocarbide layer having a layer thickness of 6 ⁇ m or less on a semicarbide layer having a layer thickness of 7 ⁇ m or less.
  • the tungsten semicarbide was identified as an epsilon phase ( ⁇ -Fe 2 N type) crystal structure, and the tungsten monocarbide was identified as a hexagonal phase (h-WC) crystal structure (see FIG. 7).
  • the content of tungsten layer (Ww) is 0.912 fraction
  • the content of crystal structure (Ws) of tungsten semicarbide layer is 0.074 fraction
  • the content of the crystal structure (Wm) of the tungsten monocarbide layer was 0.014 fraction
  • the weight ratio (Ww: Wm: Ws) calculated therefrom was 91.2: 1.4: 7.4.
  • the coating structure in which the tungsten monocarbide layer was layered on the tungsten semicarbide layer was formed in the epsilon phase ( ⁇ -Fe 2 N type) crystal structure in the XRD transmission depth region ( ⁇ 3 ⁇ m) as shown in FIG. 7.
  • the continuous or discontinuous layer having the hexagonal phase crystal structure was a peak having a first peak having a maximum peak intensity in the range of 35 ° to 36 ° when measured by XRD diffraction analysis, and a second layer. It was confirmed that the peak is in the range of 49 ° to 50 ° and the third peak shows the peak in the range of 31 ° to 32 °.
  • the fraction calculated from the result of phase separation through surface analysis according to EBSD is determined by the weight ratio Wm / of the content Wm of the crystal structure constituting the tungsten monocarbide layer and the content Ws of the crystal structure constituting the tungsten semicarbide layer. Applying to the factor X of Ws, it can be calculated that X is 0.19 as 0.014 / 0.074.
  • an ion generating device for an ion implanter having the structure as shown in FIG.
  • the shape of the chamber wall 104a of FIG. 4 using a tungsten material as a base material, and then using carbon black powder as a carbon material on the surface of the tungsten material base material to be the inner surface, and heat treatment without applying the intermediate layer / protective layer The same process as in Example 1-3 was repeated except that the tungsten monocarbide continuous or discontinuous layer was formed on a tungsten semicarbide continuous or discontinuous layer using a material having a two-layer coating structure in which the tungsten monocarbide continuous or discontinuous layer was continuously or discontinuously layered. It was.
  • the semicarbide layer had a multilayer structure of monocarbide layer having a layer thickness of 6 ⁇ m or less on a semicarbide layer having a layer thickness of 7 ⁇ m or less.
  • the tungsten semicarbide was identified as an epsilon phase ( ⁇ -Fe 2 N type) crystal structure, and the tungsten monocarbide was identified as a hexagonal phase (h-WC) crystal structure (see FIG. 7).
  • the content of tungsten layer (Ww) is 0.912 fraction
  • the content of crystal structure (Ws) of tungsten semicarbide layer is 0.074 fraction
  • the content of the crystal structure (Wm) of the tungsten monocarbide layer was 0.014 fraction
  • the weight ratio (Ww: Wm: Ws) calculated therefrom was 91.2: 1.4: 7.4.
  • the coating structure in which the tungsten monocarbide layer was layered on the tungsten semicarbide layer was determined in the epsilon phase ( ⁇ -Fe 2 N type) in the XRD transmission depth region ( ⁇ 3 ⁇ m) as shown in FIG. 7.
  • the continuous or discontinuous layer having the hexagonal phase crystal structure is a peak having a maximum peak intensity in the range of 35 ° to 36 ° when measured by XRD diffraction analysis. It was confirmed that two peaks are peaks present in the range of 49 ° to 50 °, and the third peak shows peaks present in the range of 31 ° to 32 °.
  • the fraction calculated from the result of phase separation through surface analysis according to EBSD is determined by the weight ratio Wm / of the content Wm of the crystal structure constituting the tungsten monocarbide layer and the content Ws of the crystal structure constituting the tungsten semicarbide layer. Applying to the factor X of Ws, it can be calculated that X is 0.19 as 0.014 / 0.074.
  • Example 1-4 an ion generator for an ion implanter having the structure shown in FIG. 1 was manufactured.
  • the shape of the slit portion 106b of Figure 5 using a tungsten material as a base material and then using carbon black powder as a carbon material on the surface of the tungsten material base material to be the inner surface, when heat treatment without applying the intermediate layer / protective layer The same process as in Example 1-4 was repeated except that the tungsten monocarbide continuous or discontinuous layer was formed on a tungsten semicarbide continuous or discontinuous layer using a material having a two-layer coating structure in which the layer was continuously or discontinuously layered. It was.
  • the semicarbide layer had a multilayer structure of monocarbide layer having a layer thickness of 6 ⁇ m or less on a semicarbide layer having a layer thickness of 7 ⁇ m or less.
  • the tungsten semicarbide was identified as an epsilon phase ( ⁇ -Fe 2 N type) crystal structure, and the tungsten monocarbide was identified as a hexagonal phase (h-WC) crystal structure (see FIG. 7).
  • the content of tungsten layer (Ww) is 0.912 fraction
  • the content of crystal structure (Ws) of tungsten semicarbide layer is 0.074 fraction
  • the content of the crystal structure (Wm) of the tungsten monocarbide layer was 0.014 fraction
  • the weight ratio (Ww: Wm: Ws) calculated therefrom was 91.2: 1.4: 7.4.
  • the coating structure in which the tungsten monocarbide layer was layered on the tungsten semicarbide layer was determined in the epsilon phase ( ⁇ -Fe 2 N type) in the XRD transmission depth region ( ⁇ 3 ⁇ m) as shown in FIG. 7 as a result of XRD diffraction analysis.
  • the continuous or discontinuous layer having the hexagonal phase crystal structure is a peak having a maximum peak intensity in the range of 35 ° to 36 ° when measured by XRD diffraction analysis. It was confirmed that two peaks are peaks present in the range of 49 ° to 50 °, and the third peak shows peaks present in the range of 31 ° to 32 °.
  • the fraction calculated from the result of phase separation through surface analysis according to EBSD is determined by the weight ratio Wm / of the content Wm of the crystal structure constituting the tungsten monocarbide layer and the content Ws of the crystal structure constituting the tungsten semicarbide layer. Applying to the factor X of Ws, it can be calculated that X is 0.19 as 0.014 / 0.074.
  • Example 1-1 an ion generator for an ion implanter having the structure as shown in FIG. 1 is manufactured, but a tungsten material having no coating structure including a semicarbide layer is not formed because the heat treatment process is not performed on the reflector.
  • the reflecting part and the terminal part were produced using (The factor X of Example 1-1 is 0, and the weight ratio of Ww: Wm: Ws is 100: 0: 0).
  • Example 1 an ion generator for an ion implanter having the structure as shown in FIG. 1 is manufactured, but a tungsten material having no coating structure including a semi-carbide layer is not formed since the heat treatment process is not performed on the cathode front surface.
  • the reflecting part and the terminal part were produced (the factor X of Example 1-2 is 0, and the weight ratio of Ww: Wm: Ws is 100: 0: 0).
  • Example 1-3 an ion generator for an ion implanter having the structure as shown in FIG. 1 was manufactured, but a tungsten material having no coating structure including a semicarbide layer was not formed by performing a heat treatment process on a chamber wall.
  • the reflecting part and the terminal part were produced using (The factor X of Example 1-3 is 0, and the weight ratio of Ww: Wm: Ws is 100: 0: 0).
  • Example 1-4 an ion generator for an ion implanter having the structure as shown in FIG. 1 was manufactured, but a tungsten material having no coating structure including a semicarbide layer was not formed by performing a heat treatment process on the slit part.
  • the reflecting portion and the terminal portion were fabricated using (the factor X of Example 1-4 was 0, and the weight ratio of Ww: Wm: Ws was 100: 0: 0).
  • An ion generator for an ion implanter having the structure shown in FIG. 1 was manufactured in the same manner as in Example 1-1, and EBSD (Electron BackScattered Diffraction) was applied to the coating structure including the semicarbide layer on the reflector formed according to Example 1-1.
  • the top tungsten monocarbide layer was dropped by applying a mechanical polishing method such as a chemical electrolytic polishing process or polishing performed for surface analysis according to the present invention, and a structure in which the tungsten semicarbide layer was exposed was provided (in Example 1-1).
  • Factor X is zero).
  • the tungsten semicarbide layer had a layer thickness of 10.435 ⁇ m or less.
  • the content (Ww) of the tungsten layer was 0.879 fraction, and the crystal structure (Ws) of the tungsten semicarbide layer It was confirmed that the content was 0.121 fraction, and the weight ratio (Ww: Wm: Ws) calculated therefrom was 87.9: 12.1: 0.
  • the tungsten semicarbide was identified as an epsilon phase ( ⁇ -Fe 2 N type) crystal structure.
  • the layer having the epsilon phase ( ⁇ -Fe 2 N type) crystal structure overlaps the peaks of tungsten monocarbide and tungsten semicarbide during XRD measurement, and thus has a maximum peak intensity when the peak of tungsten semicarbide is not observed. It was confirmed that one peak is a peak present in a range of 69.5 ° to 70.0 °, a second peak is present in a range of 39.5 ° to 40.0 °, and a third peak has a peak present in a range of 52.0 ° to 52.5 °. .
  • Example 1-2 the ion generator for the ion implanter having the structure as shown in FIG. 1 was manufactured, and in the EBSD (Electron BackScattered Diffraction) for the coating structure including the semi-carbide layer on the cathode front part formed according to Example 1
  • EBSD Electro BackScattered Diffraction
  • the top tungsten monocarbide layer was dropped, and the structure of the tungsten semicarbide layer was exposed (the factor of Example 1-2).
  • X is 0).
  • the tungsten semicarbide layer had a layer thickness of 10.435 ⁇ m or less.
  • the content (Ww) of the tungsten layer was 0.879 fraction, and the crystal structure (Ws) of the tungsten semicarbide layer It was confirmed that the content was 0.121 fraction, and the weight ratio (Ww: Wm: Ws) calculated therefrom was 87.9: 12.1: 0.
  • the tungsten semicarbide was identified as an epsilon phase ( ⁇ -Fe 2 N type) crystal structure.
  • the layer having the epsilon phase ( ⁇ -Fe 2 N type) crystal structure overlaps the peaks of tungsten monocarbide and tungsten semicarbide during XRD measurement, and thus has a maximum peak intensity when the peak of tungsten semicarbide is not observed. It was confirmed that one peak is a peak present in a range of 69.5 ° to 70.0 °, a second peak is present in a range of 39.5 ° to 40.0 °, and a third peak has a peak present in a range of 52.0 ° to 52.5 °. .
  • An ion generator for an ion implanter having the structure as shown in FIG. 1 was manufactured in the same manner as in Example 1-3, and EBSD (Electron BackScattered Diffraction) was applied to the coating structure including the semicarbide layer on the chamber wall formed according to Example 1-3.
  • the top tungsten monocarbide layer was dropped by applying a mechanical polishing method such as a chemical electrolytic polishing process or polishing performed for surface analysis according to the present invention, and a structure in which the tungsten semicarbide layer was exposed was provided (in Example 1-3).
  • Factor X is zero).
  • the tungsten semicarbide layer had a layer thickness of 10.435 ⁇ m or less.
  • the content (Ww) of the tungsten layer was 0.879 fraction, and the crystal structure (Ws) of the tungsten semicarbide layer It was confirmed that the content was 0.121 fraction, and the weight ratio (Ww: Wm: Ws) calculated therefrom was 87.9: 12.1: 0.
  • the tungsten semicarbide was identified as an epsilon phase ( ⁇ -Fe 2 N type) crystal structure.
  • the layer having the epsilon phase ( ⁇ -Fe 2 N type) crystal structure overlaps the peaks of tungsten monocarbide and tungsten semicarbide during XRD measurement, and thus has a maximum peak intensity when the peak of tungsten semicarbide is not observed. It was confirmed that one peak is a peak present in a range of 69.5 ° to 70.0 °, a second peak is present in a range of 39.5 ° to 40.0 °, and a third peak has a peak present in a range of 52.0 ° to 52.5 °. .
  • An ion generator for an ion implanter having a structure as shown in FIG. 1 was manufactured in the same manner as in Example 1-4, and EBSD (Electron BackScattered Diffraction) was applied to the coating structure including the semicarbide layer on the slit formed according to Example 1-4.
  • EBSD Electro BackScattered Diffraction
  • the top tungsten monocarbide layer was dropped, and a structure in which the tungsten semicarbide layer was exposed (see Example 1-4).
  • Factor X is zero).
  • the tungsten semicarbide layer had a layer thickness of 10.435 ⁇ m or less.
  • the content (Ww) of the tungsten layer was 0.879 fraction, and the crystal structure (Ws) of the tungsten semicarbide layer It was confirmed that the content was 0.121 fraction, and the weight ratio (Ww: Wm: Ws) calculated therefrom was 87.9: 12.1: 0.
  • the tungsten semicarbide was identified as an epsilon phase ( ⁇ -Fe 2 N type) crystal structure.
  • the layer having the epsilon phase ( ⁇ -Fe 2 N type) crystal structure overlaps the peaks of tungsten monocarbide and tungsten semicarbide during XRD measurement, and thus has a maximum peak intensity when the peak of tungsten semicarbide is not observed. It was confirmed that one peak is a peak present in a range of 69.5 ° to 70.0 °, a second peak is present in a range of 39.5 ° to 40.0 °, and a third peak has a peak present in a range of 52.0 ° to 52.5 °. .
  • the cathode collides with the cathode and / or the repeller, and in the case of the anion, it collides with the wall of the arc chamber, which is the anode, to cause sputtering to move atoms on the part surface. Due to the phenomenon, deposits are formed in the peripheral area inside the arc chamber, and when the deposits are separated between the anode and the cathode and connect the anode and the cathode, an electrical short occurs, and a voltage is applied to the arc chamber for 10 minutes. The process was carried out with a cycle of stopping for 5 minutes, and after the electrical short circuit occurred, the operation of the ion generator was stopped, and the number of processes up to this time was measured to determine wear protection characteristics.
  • Example 2-1 Comparative Example 1-1 Comparative Example 2-1 Thermal deformation protection Good Good Good Good Wear protection characteristics (process count) Episode 221 Episode 244 195 times Episode 206
  • the cathode collides with the cathode and / or the repeller, and in the case of the anion, it collides with the wall of the arc chamber, which is the anode, to cause sputtering to move atoms on the part surface. Due to the phenomenon, deposits are formed in the peripheral area inside the arc chamber, and when the deposits are separated between the anode and the cathode and connect the anode and the cathode, an electrical short occurs, and a voltage is applied to the arc chamber for 10 minutes. The process was carried out with a cycle of stopping for 5 minutes, and after the electrical short circuit occurred, the operation of the ion generator was stopped, and the number of processes up to this time was measured to determine wear protection characteristics.
  • Example 2-2 Comparative Example 1-2 Comparative Example 2-2 Thermal deformation protection Good Good Good Good Wear protection characteristics (process count) Episode 223 Episode 245 Episode 196 Episode 207
  • the cathode collides with the cathode and / or the repeller, and in the case of the anion, it collides with the wall of the arc chamber, which is the anode, to cause sputtering to move atoms on the part surface. Due to the phenomenon, deposits are formed in the peripheral area inside the arc chamber, and when the deposits are separated between the anode and the cathode and connect the anode and the cathode, an electrical short occurs, and a voltage is applied to the arc chamber for 10 minutes. The process was carried out with a cycle of stopping for 5 minutes, and after the electrical short circuit occurred, the operation of the ion generator was stopped, and the number of processes up to this time was measured to determine wear protection characteristics.
  • Comparative Examples 1-4 and Comparative Example 2-4 are operated in an environment using BF 3 as an ion source gas, an arc chamber ionized from the ion source gas is operated. After the ions passed through the extraction electrode and the mass spectrometer through the slit, the beam size was adjusted and the number of ions was measured through the Faraday system. At this time, if the material is warped due to heat deformation in the material of the arc chamber, the irregular number of ions are measured. If the number of ions to be injected is constantly measured, it is determined to be good and the number of ions is rapidly decreased and / or increased. In the case of a cycle such as the above, it was judged to be defective.
  • the cathode collides with the cathode and / or the repeller, and in the case of the anion, it collides with the wall of the arc chamber, which is the anode, to cause sputtering to move atoms on the part surface. Due to the phenomenon, deposits are formed in the peripheral area inside the arc chamber, and when the deposits are separated between the anode and the cathode and connect the anode and the cathode, an electrical short occurs, and a voltage is applied to the arc chamber for 10 minutes. The process was carried out with a cycle of stopping for 5 minutes, and after the electrical short circuit occurred, the operation of the ion generator was stopped, and the number of processes up to this time was measured to determine wear protection characteristics.
  • Example 2-4 Comparative Example 1-4 Comparative Example 2-4 Thermal deformation protection Good Good Good Good Wear protection characteristics (process count) Episode 222 Episode 245 Episode 197 Episode 208
  • Beam current (unit: mA) was measured to compare the generation efficiency of ions while operating the ion generators of Examples 1-1 and 2-1 and Comparative Examples 1-1 and 2-1. It was. At this time, the width of the arc chamber 40mm, length 105mm, height 40mm, the distance between the repeller and 85mm, gas was used BF3, the pressure was 2.5 torr. The voltage supplied to the arc chamber was supplied at 80V, the current supplied to the filament was 160A and the voltage supplied to the cathode and the repeller was 600V.
  • Example 1-1 and Example 2-1 The results measured in Example 1-1 and Example 2-1, Comparative Example 1-1 and Comparative Example 2-1 in the ion generating device are summarized in Table 5 below.
  • Example 1-1 Example 2-1 Comparative Example 1-1 Comparative Example 2-1 Beam current 22.1 mA 23.2 mA 20.0 mA 21.2 mA
  • Beam current (unit: mA) was measured to compare the generation efficiency of ions while operating the ion generating devices of Examples 1-2 and Example 2-2 and Comparative Examples 1-2 and Comparative Example 2-2 It was.
  • the width of the arc chamber 40mm, length 105mm, height 40mm, the distance between the repeller and 85mm, gas was used BF3, the pressure was 2.5 torr.
  • the voltage supplied to the arc chamber was supplied at 80V, the current supplied to the filament was 160A and the voltage supplied to the cathode and the repeller was 600V.
  • Example 1-2 Example 2-2 Comparative Example 1-2 Comparative Example 2-2 Beam current 22.0 mA 23.2 mA 20.0 mA 21.2 mA
  • Example 6 it was confirmed that the ion generation efficiency was increased compared to the comparative examples 1-2, especially, in Example 2-2 it can be seen that the ion generation efficiency is further increased.
  • Beam current (unit: mA) was measured to compare the generation efficiency of ions while operating the ion generating devices of Examples 1-3 and 2-3 and Comparative Examples 1-3 and Comparative Example 2-3 It was.
  • the width of the arc chamber 40mm, length 105mm, height 40mm, the distance between the repeller and 85mm, gas was used BF3, the pressure was 2.5 torr.
  • the voltage supplied to the arc chamber was supplied at 80V, the current supplied to the filament was 160A and the voltage supplied to the cathode and the repeller was 600V.
  • Example 1-3 Example 2-3 Comparative Example 1-3 Comparative Example 2-3 Beam current 22.0 mA 23.0 mA 20.0 mA 21.2 mA
  • Beam current (unit: mA) was measured to compare the generation efficiency of ions while operating the ion generators of Examples 1-4 and 2-4 and Comparative Examples 1-4 and 2-4. It was. At this time, the width of the arc chamber 40mm, length 105mm, height 40mm, the distance between the repeller and 85mm, gas was used BF3, the pressure was 2.5 torr. The voltage supplied to the arc chamber was supplied at 80V, the current supplied to the filament was 160A and the voltage supplied to the cathode and the repeller was 600V.
  • Example 1-4 Example 2-4 Comparative Example 1-4 Comparative Example 2-4 Beam current 22.0 mA 23.1 mA 20.0 mA 21.3 mA

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Toxicology (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Electron Sources, Ion Sources (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

본 발명은 이온주입기용 리펠러 및 이를 포함하는 이온발생장치에 관한 것으로서, 본 발명에 따르면, 반도체 소자의 제조에 이용되는 이온주입용 이온발생장치의 아크챔버를 구성하는 리펠러, 캐소드, 챔버 월, 또는 슬릿 부재 등의 부품에 열변형 안정화 용도, 마모 보호 용도 혹은 증착물 박리 저항 용도로 세미카바이드층 포함 코팅구조를 제공함으로써 이온발생위치가 틀어지거나 장비의 틀어짐 없이 정밀한 이온주입공정을 가능케 하고, 아크챔버 내부로 전자를 균일하게 반사시킬 수 있으므로 플라즈마의 균일도를 증가시켜 이온소스기체의 분해 효율을 향상시킬 뿐 아니라 기존 부품 대비 수명을 현저하게 개선시킨 이온주입기용 부품 및 이를 포함하는 이온발생장치를 제공할 수 있다.

Description

이온주입기용 리펠러, 캐소드, 챔버 월, 슬릿 부재 및 이를 포함하는 이온발생장치
본 발명은 이온주입기용 리펠러, 캐소드, 챔버 월, 슬릿 부재 및 이를 포함하는 이온발생장치에 관한 것으로서, 더욱 상세하게는 반도체 소자의 제조에 이용되는 이온주입용 이온발생장치의 아크챔버를 구성하는 리펠러, 캐소드, 챔버 월, 또는 슬릿 부재 등의 부품에 열변형 안정화 용도, 마모 보호 용도 혹은 증착물 박리 저항 용도로 세미카바이드층 포함 코팅구조를 제공함으로써 이온발생위치가 틀어지거나 장비의 틀어짐 없이 정밀한 이온주입공정을 가능케 하고, 아크챔버 내부로 전자를 균일하게 반사시킬 수 있으므로 플라즈마의 균일도를 증가시켜 이온소스기체의 분해 효율을 향상시킬 뿐 아니라 기존 부품 대비 수명을 현저하게 개선가능한 이온주입기용 부품 및 이를 포함하는 이온발생장치에 관한 것이다.
반도체 소자의 제조공정은 크게 증착공정, 이온주입공정으로 이루어진다. 증착공정은 반도체 소자의 전도막 또는 절연막을 형성하는 공정으로서 스퍼터링, 화학증기증착 공정 등이 이용되고, 포토공정은 식각공정의 전단계로서 소정의 패턴을 가지는 광 마스크로 감광성 수지를 패터팅하는 공정이며, 식각공정은 상기 감광성 수지 패턴을 이용하여 하부의 전도막 또는 절연막을 패터닝하는 공정이다.
이온주입공정은 실리콘 웨이퍼 상에 형성되는 전자소자의 동작특성을 제어하기 위한 공정으로서, 종래에는 열확산을 이용하여 불순물을 막의 내부에 도핑하는 공정이 이용되었으나, 최근에는 일정한 에너지를 가지는 이온을 막의 내부에 침투시켜 불순물을 도핑하는 이온주입법이 주로 이용되고 있다.
이온주입법을 이용한 불순물 도핑공정은 열확산 공정에 비하여 불순물의 농도 제어가 용이하고, 도핑되는 깊이를 조절하거나 한정하는데 유리하다는 장점을 가지고 있다. 이온주입법에는 이온주입기라는 장치가 이용되는데, 이온주입기는 불순물을 도핑할 이온을 생성시키는 이온발생부와 발생된 이온의 종류와 에너지를 제어하는 이온분석부로 이루어진다.
이온발생장치는 필라멘트를 가열하여 열전자를 방출시키고, 방출된 열전자를 전기장에 의하여 가속시키면서 주입된 이온소스가스와 충돌시켜서 이온을 발생시키게 된다. 이때, 열전자를 방출시키는 방법은 텅스텐 필라멘트를 가열하여 직접 열전자를 방출시키는 방법과, 텅스텐 필라멘트로부터 방출된 열전자를 캐소드로 가속시켜 캐소드에서 다시 전자를 2차적으로 방출시키는 방법이 있는데, 후자의 방식은 필라멘트 소재의 열화를 방지할 수 있어서 부품의 교환주기를 향상시킬 수 있는 장점을 가진다.
이온주입기용 이온발생장치는 이온의 소스가 되는 기체가 주입되며, 아크챔버 내부에서 상기 이온소스 기체는 캐소드에서 방출된 전자와 충돌하면서 분해된다. 상기 아크챔버의 공정 온도가 1500℃ 이상인 점을 고려하여 상기 아크챔버를 구성하는 부품의 모재는 Mo(molybdenum), W(tungsten), Ta(tantalum), Re(rhenium), Nb(niobium)와 같은 내화 금속(Refractory metal)을 사용하게 되며, 이 경우 챔버 자체의 중량이 무거우므로 하중과 함께 열로 인한 변형이 발생하게 되고, 이로 인해 이온 발생위치가 틀어지고 나아가 아크챔버 자체가 틀어져 정밀한 이온주입공정이 어려워질 수 있다.
일례로, 이온주입기용 리펠러로서 내화금속의 일종인 텅스텐을 사용하는 선행문헌으로는 미국공개특허 제2011-0139613호가 있다. 상기 선행문헌은 리펠러의 전극 본체로서 텅스텐, 카본 등의 사용을 개시하나, 리펠러의 소형화를 도모하는 등 구조 개선을 제공할 뿐 재질 개선과는 무관하다.
다른 예로, 이온주입기의 전면 플레이트를 텅스텐으로 제작하는 선행문헌으로 한국등록특허 제10-0553716호가 있다. 상기 선행문헌은 양호한 빔의 균일도를 얻기 위한 전면 플레이트의 잦은 교체시 설비의 유지보수 비용을 증가시키는 원인이 되므로, 이를 해결하고 양호한 빔 균일도를 얻을 수 있는 새로운 형태, 즉 내화금속 소재로 부품 전체를 제작하는 대신 상대적으로 가공이 쉬운 특정 금속 모재로 원하는 부품 형상을 제작한 뒤 챔버 몸체의 내측면이 되는 금속모재 표면에 텅스텐을 박막 증착하여 코팅하는 기술을 제안한다. 그러나 이 경우 또한 챔버 몸체의 내부 온도가 900℃ 이상으로 상승하고 이온들이 챔버 몸체의 내벽을 계속해서 때리는 상태에서, 금속 모재를 사용한 챔버 몸체의 경우 열을 방출하는데 매우 불리할 뿐 아니라 금속 모재가 도전성이므로 불순물이 쉽게 박히면서 챔버 몸체의 내벽이 오염되거나 파이는 현상이 발생하게 되며, 특히 온도 과열시 내부 물질들이 버텨내는 한계점에 도달하므로 부품 손상을 초래하게 된다. 관련하여 다양한 코팅 기술이 제안되고 있으나, 코팅을 위한 고가의 장비와 고가의 원료 분말을 사용해야 하는 단점이 뒤따른다.
더구나, 이온주입기의 경우 이온빔이 슬릿을 통해 방출되는데, 탄소 소재와 내화금속 소재의 열팽창계수의 차이로 인하여, 고온의 공정에서 사용시 하중과 함께 열로 인한 변형이 발생하여 이온 방출 위치가 틀어지고, 장비 전체의 틀어짐 발생으로 정밀한 이온 주입 공정이 불가능해질 뿐만 아니라, 탄소층과 내화금속 코팅층과의 계면에서 박리가 일어나서 이물질 파티클이 발생하고, 따라서 반도체 생산시 불량 위험이 있으며, 반도체 장비의 내구성 저하 우려가 있다.
따라서, 이온발생위치가 틀어지거나 장비의 틀어짐 없이 정밀한 이온주입공정을 가능케 하고, 아크챔버 내부로 전자를 균일하게 반사시킬 수 있으므로 플라즈마의 균일도를 증가시켜 이온소스 기체의 분해 효율을 향상시킬 뿐 아니라 기존 부품 대비 수명을 현저하게 개선가능한 리펠러, 전자방출 캐소드, 챔버 월, 슬릿 부재 및 이를 각각 포함하는 이온발생장치에 대한 개발 필요성이 크다.
따라서, 본 발명이 해결하고자 하는 첫 번째 과제는 이온주입기를 부품 교체없이 장시간 사용하여도, 열변형 안정화, 마모 보호, 증착물 박리 저항 등을 제공할 수 있는 이온주입기용 리펠러, 캐소드, 챔버 월 및 슬릿 부재를 제공하는 것이다.
본 발명이 해결하고자 하는 두 번째 과제는 상기 이온주입기용 리펠러, 캐소드, 챔버 월 및 슬릿 부재를 포함하는 이온발생장치를 제공하는 것이다.
본 발명은 상기 첫 번째 과제를 달성하기 위하여, 이온주입기용 이온발생장치의 아크챔버 내측에 설치되고, 상기 이온발생장치의 캐소드에 대향하여 설치되는 반사부 및 상기 반사부에서 연장되며 소정의 전압이 인가되는 단자부를 포함하는 리펠러로서, 상기 반사부는 부품 형상을 형성하는 모재로서 내화금속 소재를 갖고, 상기 모재의 내측면이 되는 하나 이상의 표면에 세미카바이드층 포함 코팅구조를 갖는 것을 특징으로 하는 이온주입기용 리펠러를 제공한다.
또한, 본 발명은 상기 첫 번째 과제를 달성하기 위하여, 이온주입기용 이온발생장치의 아크챔버 내부에 설치되고, 상기 아크챔버의 일측에 고정되고 내부에 필라멘트가 설치되는 공간이 형성된 캐소드 측부와, 상기 아크챔버 방향으로 노출되고 전자를 방출하는 표면을 가지는 캐소드 전면부를 포함하는 전자방출 캐소드로서, 상기 캐소드는 부품 형상을 형성하는 모재로서 내화금속 소재를 갖고, 상기 모재의 내측면이 되는 하나 이상의 표면에 세미카바이드층 포함 코팅구조를 갖는 것을 특징으로 하는 이온주입기용 전자방출 캐소드를 제공할 수 있다.
또한, 본 발명은 상기 첫 번째 과제를 달성하기 위하여, 이온주입기용 이온발생장치의 이온발생공간을 구성하기 위한 아크챔버 내측에 설치되는 챔버 월로서, 상기 아크챔버의 사면을 구성하는 챔버 월 중 일면 이상의 월은 부품 형상을 형성하는 모재로서 내화금속 소재를 갖고, 상기 모재의 내측면이 되는 하나 이상의 표면에 세미카바이드층 포함 코팅구조를 갖는 것을 특징으로 하는 이온주입기용 챔버 월을 제공할 수 있다.
또한, 본 발명은 상기 첫 번째 과제를 달성하기 위하여, 이온주입기용 이온발생장치로부터 이온빔을 방출하기 위한 슬릿을 구비한 슬릿 부재로서, 상기 슬릿이 형성되어 있는 슬릿부는 부품 형상을 형성하는 모재로서 내화금속 소재를 갖고, 상기 모재의 내측면이 되는 하나 이상의 표면에 세미카바이드층 포함 코팅구조를 갖는 것을 특징으로 하는 이온주입기용 슬릿 부재를 제공할 수 있다.
본 발명의 일 구현예에 따르면, 상기 세미카바이드층 포함 코팅구조는 내화금속의 세미카바이드 연속 또는 불연속 층상에 내화금속의 모노카바이드 연속 또는 불연속 층이 레이어드(layered)를 구성하는 내화금속의 카바이드 구조를 포함하는 것일 수 있다.
본 발명의 다른 구현예에 따르면, 상기 세미카바이드층 포함 코팅구조는 엡실론상(ε-Fe2N형) 결정구조 및 베타상(PbO2형, Mo2C형 또는 C6형) 결정구조 등으로 이루어진 그룹 중에서 선택된 1종 이상의 결정구조를 갖는 연속 또는 불연속 층상에 헥사고날상 결정구조를 갖는 연속 또는 불연속 층이 연속 또는 불연속적으로 레이어드(layered)를 구성하는 내화금속의 카바이드 구조를 포함할 수 있다.
본 발명의 다른 구현예에 따르면, 상기 내화금속의 세미카바이드층을 구성하는 결정구조의 함유량 Wm과, 상기 내화금속의 모노카바이드층을 구성하는 결정구조의 함유량 Ws의 중량비율 Wm/Ws를 X라 할 때, X가 5 이하(여기서, Wm과 Ws는 EBSD(Electron Back-Scattered Diffraction)법에 의한 다상 해석에 의해 구해진 값이다)일 수 있다.
본 발명의 또 다른 구현예에 따르면, 상기 모재의 함유량 Ww와, 상기 세미카바이드층 포함 코팅구조로서 내화금속의 세미카바이드층을 구성하는 결정구조의 함유량 Wm과, 상기 내화금속 모노카바이드층을 구성하는 결정구조의 함유량 Ws의 중량비율 Ww:Wm:Ws는 90 내지 95: 0.8 내지 4: 9.2 내지 1(여기서, Ww, Wm과 Ws은 EBSD(Electron Back-Scattered Diffraction)법에 의한 다상 해석에 의해 구해진 값이다)일 수 있다.
본 발명의 또 다른 구현예에 따르면, 상기 세미카바이드 포함 코팅층은 최소 층 두께가 2㎛ 이상이고 최대 층 두께가 300㎛ 이하일 수 있다.
본 발명의 또 다른 구현예에 따르면, 상기 단자부는 부품 형상을 형성하는 모재로서 내화금속 소재를 갖고, 상기 모재의 일 이상 표면에 세미카바이드층 포함 코팅구조를 갖는 것일 수 있다.
본 발명은 상기 두 번째 과제를 달성하기 위하여, 상기 이온주입기용 리펠러를 포함하는 이온발생장치를 제공한다.
본 발명의 반도체 소자의 제조에 이용되는 이온주입용 이온발생장치의 아크챔버를 구성하는 리펠러, 캐소드, 챔버 월, 또는 슬릿 부재 등의 부품에 열변형 안정화 용도, 마모 보호 용도 혹은 증착물 박리 저항 용도로 세미카바이드층 포함 코팅구조를 제공함으로써 이온발생위치가 틀어지거나 장비의 틀어짐 없이 정밀한 이온주입공정을 가능케 하고, 아크챔버 내부로 전자를 균일하게 반사시킬 수 있으므로 플라즈마의 균일도를 증가시켜 이온소스 기체의 분해 효율을 향상시킬 뿐 아니라 기존 부품 대비 수명을 현저하게 개선시키는 효과를 제공한다.
도 1은 이온주입기용 이온발생장치의 구조를 도시한 것이다.
도 2는 상기 이온주입기용 리펠러의 구조를 도시한 것이다.
도 3은 상기 이온주입기용 전자방출 캐소드의 구조를 도시한 것이다.
도 4는 아크챔버 내부의 가스 밀도 분포를 설명하기 위한 도면이다.
도 5는 상기 이온주입기용 슬릿 부재의 구조를 도시한 것이다.
도 6은 본 발명의 일 구현예에 따른 텅스텐 소재 모재의 표면에 세미카바이드층 포함 코팅구조로서, 세미카바이드층상에 모노카바이드층이 레이어드(layered) 구조를 갖는 EBSD(Electron BackScattered Diffraction)에 따른 표면 분석사진으로서, (a)는 그라파이트 시트를 사용한 사진이고, (b)는 카본 블랙 파우더를 사용한 사진이다.
도 7은 본 발명의 일 구현예에 따른 텅스텐 소재 모재의 표면에 세미카바이드층 포함 코팅구조로서, XRD 투과 깊이 영역(~3㎛)에서 세미카바이드층상에 모노카바이드층이 레이어드 구조를 갖음을 보이는 XRD 회절분석 그래프이다.
이하 본 발명을 첨부된 도면을 참고하여 상세하게 설명하면 다음과 같다.
본 발명은 반도체 소자의 제조에 이용되는 이온주입용 이온발생장치의 아크챔버를 구성하는 리펠러, 캐소드, 챔버 월, 또는 슬릿 부재 등의 부품에 열변형 안정화 용도, 마모 보호 용도 혹은 증착물 박리 저항 용도로 세미카바이드층 포함 코팅구조를 제공함으로써 이온발생위치가 틀어지거나 장비의 틀어짐 없이 정밀한 이온주입공정을 가능케 하고, 아크챔버 내부로 전자를 균일하게 반사시킬 수 있으므로 플라즈마의 균일도를 증가시켜 이온소스 기체의 분해 효율을 향상시킬 뿐 아니라 기존 부품 대비 수명을 현저하게 개선가능한 이온주입기용 부품 및 이를 포함하는 이온발생장치에 관한 것이다.
다음 도 1은 이온주입기용 이온발생장치의 구조를 도시한 것이다. 도 1을 참조하면, 이온발생장치(100)는 소정의 공간을 형성하는 아크챔버(104), 상기 아크챔버의 일측에 설치된 캐소드(102), 상기 캐소드의 내부공간에 설치된 필라멘트(101) 및 상기 캐소드에 대향하여 설치된 리펠러(103)를 포함한다.
필라멘트(101)는 텅스텐과 같이 녹는점이 높은 금속으로 이루어질 수 있고, 외부에 연결된 전원에서 전류가 흐르면 일정온도까지 가열되면서 외부로 열전자를 방출시키는 기능을 한다. 캐소드(102)는 상기 필라멘트(101)에서 소정의 거리로 이격되어 설치되는데, 캐소드에는 외부 전원의 음극부가 연결되어 필라멘트와 캐소드 사이에 형성된 전계에 의하여 필라멘트에서 방출된 열전자가 캐소드와 충돌하면서 캐소드의 표면에서 다시 전자가 방출된다. 아크챔버(104)는 캐소드에서 전자가 방출되는 방향으로 소정의 공간을 형성하는데, 일 방향으로 불순물 도핑에 이용되는 가스와 캐리어 가스가 주입되도록 가스 주입부(105)가 형성되어 있고, 다른 방향으로는 가스와 이온들이 방출되는 이온 방출부로서 슬릿 부재(106)가 형성되어 있다.
아크챔버(104)에는 전원부가 연결되어서 캐소드(102)에서 방출된 전자를 가속시킨다. 캐소드(102)에 대향하는 아크챔버의 일측에는 리펠러(103)가 설치되어 있는데, 리펠러는 캐소드에서 방출되어 가속되는 전자를 밀어내면서 한정된 공간에서 이온들이 분포하도록 하는 기능을 하며, 바이어스가 걸리거나 플로팅된 채로 유지될 수 있다. 아크챔버(104)의 주변에는 마그네트(110a, 110b)가 설치될 수 있는데, 마그네트는 전자석일 수 있고, 아크챔버(104) 내부에 형성된 전기장을 따라 가속되어 이동하는 전자가 자기장에 의하여 회전할 수 있도록 한다. 전자의 회전운동은 전자와 가스 입자의 충돌 확률을 높여 이온화 효율을 높이는 기능을 한다. 도면에는 도시하지 않았지만 이온 방출부로서 슬릿 부재(106)에는 전기장을 이용하여 이온을 가속시키고, 특정 종류 및 특정 에너지를 가지는 이온을 필터링하는 분석장치가 설치되어 있다.
또한, 상기 이온방출부로서 슬릿 부재(106)는 이온챔버(104)의 상면에 구비되거나 혹은 이온챔버(104)의 하면에 구비될 수 있고, 상기 이온방출부(106)와 대향하여 가스 주입부(105)가 구비될 수 있다.
다음 도 2는 이온주입기용 리펠러의 구조를 도시한 것이다. 도 2를 참조하면, 상기 이온주입기용 리펠러(103)는 반사부(103a)와 단자부(103b)를 포함한다. 반사부(103a)는 캐소드와 대향하여 설치되며, 소정의 면적과 두께를 가지는 판형(일례로, 원판) 형태로 이루어질 수 있다. 단자부(103b)는 반사부와 전기적으로 연결되며 소정의 전압이 인가될 수 있는 단자의 역할과, 아크챔버(104) 내부에 리펠러(103)를 고정하기 위한 고정부의 역할을 한다.
본 발명의 이온주입기용 리펠러(103)는 이온주입기용 이온발생장치의 아크챔버(104) 내부에 설치되고, 상기 이온발생장치의 캐소드(102)에 대향하여 설치되는 반사부(103a) 및 상기 반사부(103a)에서 연장되며 소정의 전압이 인가되는 단자부(103b)를 포함하는 리펠러(103)로서, 상기 반사부(103a)는 부품 형상을 형성하는 모재로서 Mo(molybdenum), W(tungsten), Ta(tantalum), Re(rhenium), Nb(niobium)와 같은 내화 금속(Refractory metal) 소재를 갖고, 상기 모재의 내측면이 되는 하나 이상의 표면에 세미카바이드층 포함 코팅구조를 갖는 것을 특징으로 한다.
다음 도 3은 이온주입기용 전자방출 캐소드(102)의 구조를 도시한 것이다. 도 3을 참조하면, 캐소드(102)는 필라멘트(101)가 설치될 수 있는 내부 공간을 제공하는 캐소드 측부(102a)와 전자를 방출하는 표면을 제공하는 캐소드 전면부(102b)로 이루어진다.
캐소드 측부(102a)는 소정의 길이를 가지는 관 형태로 이루어질 수 있고, 내부에는 캐소드 내부공간(102d)이 형성되고 있으며, 체결부(102c)가 형성되어 있다.
일례로, 상기 캐소드 전면부(102b)는 함몰 형상의 표면을 가지고, 캐소드 전면 테두리부(102b), 캐소드 함몰 경사부(미도시) 및 캐소드 함몰 평탄부(미도시)를 포함할 수 있다. 캐소드 전면 테두리부(102b)는 캐소드 전면부의 외곽영역에 형성되는데, 상기 외곽영역의 경계에서 소정의 폭을 가지면서 아크챔버 방향으로 평탄한 표면을 제공하고, 함몰영역에 비하여 상대적으로 아크챔버 방향으로 돌출되어 있다. 캐소드 전면 테두리부(102b)는 평탄한 표면을 가져 전자의 방출이 일 부분에 집중되는 것을 방지하는데, 예를 들어 캐소드 전면 테두리부가 형성되지 않고, 캐소드 함몰 경사부가 바로 형성된 구조에서는 캐소드 최외곽의 구조가 예각으로 형성되어서 전자의 방출이 테두리 부분에만 집중되어 이루어질 수 있다. 캐소드 함몰 경사부는 캐소드 전면부의 중심방향으로 경사를 형성하는데, 이러한 경사면에 의하여 전자방출이 이루어지는 캐소드 표면의 면적이 증가될 수 있고, 경사면에서의 전자방출이 캐소드의 중심부 방향으로 이루어지도록 하여 도핑 가스의 밀도가 높은 영역으로 전자의 가속이 이루어지도록 한다. 캐소드 함몰 경사부는 아크챔버의 방향으로 오목하게 형성되는 것이 바람직하고, 이러한 구조에서는 전자의 방출 위치를 제어하여 도핑 가스의 밀도가 높은 방향으로 전자의 운동이 이루어지는 효과를 극대화할 수 있다. 캐소드 함몰 평탄부는 캐소드 전면부의 중심부에 형성되고 평탄한 표면을 가지는데, 캐소드 함몰 경사부의 폭과 캐소드 함몰 평탄부의 반지름의 비율을 조절하여 이온화 효율을 향상시킬 수 있다. 상기 캐소드 전면부가 원형을 이루면서 캐소드 함몰 경사부와 캐소드 함몰 평탄부가 동심원을 이루는 경우에, 캐소드 함몰 평탄부의 반지름과 캐소드 함몰 경사부의 폭 비율은 일례로 1:0.5 내지 1:1.5의 범위 내일 수 있고, 상기 범위 내에서 경사부에 의한 전자방출 방향 제어의 효과 및 이온화 효율 개선을 도모할 수 있다. 또한, 캐소드 함몰 평탄부의 함몰 깊이는 상기 캐소드 함몰 평탄부 반지름의 0.5 내지 1.5배 범위 내일 수 있고, 상기 범위 내에서 캐소드 면적 증가 효과 및 이온화 효율 개선을 도모할 수 있다.
본 발명의 캐소드(102)는 상기 이온주입기용 이온발생장치의 아크챔버(104) 내부에 설치되고, 상기 아크챔버(104)의 일측에 고정되고 내부에 필라멘트(101)가 설치되는 공간이 형성된 캐소드 측부와, 상기 아크챔버 방향으로 노출되고 전자를 방출하는 표면을 가지는 캐소드 전면부를 포함하는 전자방출 캐소드로서, 상기 캐소드는 부품 형상을 형성하는 모재로서 내화금속 소재를 갖고, 상기 모재의 내측면이 되는 하나 이상의 표면에 세미카바이드층 포함 코팅구조를 갖는 것을 특징으로 하는 이온주입기용 전자방출 캐소드를 제공한다.
다음 도 4는 아크챔버 내부의 가스 밀도 분포를 설명하기 위한 도면이다. 도 4를 참조하면, 아크챔버(104)에는 4면을 구성하는 챔버 월(104a), 가스 주입부(105)와 이온 방출부로서 슬릿 부재(106)가 형성되어 있고, 가스 주입부로 주입된 도핑가스와 캐리어 가스는 일부가 이온화되어 이온 방출부(106)로 배출된다. 이때 아크챔버(104) 내부에는 가스의 압력차가 발생하는데, 가스 주입부(105)에 가까운 영역에서 가스의 밀도(가스의 압력)가 높아지게 된다. 따라서, 가스의 밀도가 높은 영역으로 가속되는 전자의 양이 많은 경우에 이온화 확률이 높아지게 된다.
본 발명의 챔버 월(104a)은 이온주입기용 이온발생장치의 이온발생공간을 구성하기 위한 아크챔버 내측에 설치되는 챔버 월로서, 상기 아크챔버의 사면을 구성하는 챔버 월 중 일면 이상의 월은 부품 형상을 형성하는 모재로서 내화금속 소재를 갖고, 상기 모재의 내측면이 되는 하나 이상의 표면에 세미카바이드층 포함 코팅구조를 갖는 것을 특징으로 한다.
다음 도 5는 이온주입기용 슬릿 부재의 구조를 도시한 것이다. 도 5를 참조하면, 상기 이온주입기용 슬릿 부재(106)는 슬릿(106a)이 형성되어 있는 슬릿부(106b)와, 상기 슬릿부(106b)가 결합될 수 있는 삽입홀(미도시)이 중앙에 형성된 프레임(106c)을 구비하고, 상기 슬릿부(106b)와 프레임(106c)은 연결 부재(106d)에 의해 상호 연결될 수 있다. 상기 연결 부재(106d)는 스크류 타입일 수 있고, 상기 슬릿부(106b)와 프레임(106c)에는 각각 상기 스크류를 삽입할 수 있는 복수의 스크류 홀(미도시)이 형성될 수 있다. 상기 슬릿부(106b)와 프레임(106c)은 각각 서로 다른 재질이거나 혹은 동일한 재질일 수 있다.
본 발명의 슬릿 부재(106)는 이온주입기용 이온발생장치로부터 이온빔을 방출하기 위한 슬릿을 구비한 슬릿 부재로서, 상기 슬릿이 형성되어 있는 슬릿부는 부품 형상을 형성하는 모재로서 내화금속 소재를 갖고, 상기 모재의 내측면이 되는 하나 이상의 표면에 세미카바이드층 포함 코팅구조를 갖는 것을 특징으로 한다.
본 명세서에서 사용되는 용어 “세미카바이드층 포함 코팅구조”는 달리 특정하지 않는 한, 세미카바이드층을 코팅 하부층으로 레이어드된(layered) 구조를 지칭하며, 별다른 첨가제의 사용 혹은 보호층/중간층의 적용 등을 필요하지 않으면서 개선된 열변형 안정성, 마모보호성, 증착물 박리 저하성 및 상 안정성 등을 제공하는 특징을 갖는다.
상기 세미카바이드층 포함 코팅구조는 일례로, 내화금속의 세미카바이드 연속 또는 불연속 층상에 내화금속의 모노카바이드 연속 또는 불연속 층이 레이어드(layered)를 구성하는 내화금속의 카바이드 구조를 가질 수 있고, 이같은 레이어드 구조에 따르면 세미카바이드 단일층 혹은 모노카바이드 단일층 대비 열변형 안정성, 마모 보호특성과 증착물 박리 저항성에 대하여 개선된 특성을 제공할 수 있다.
상기 세미카바이드층 포함 코팅구조는 다른 일례로, 엡실론상(ε-Fe2N형) 결정구조 및 베타상(PbO2형, Mo2C형 또는 C6형) 결정구조 등으로 이루어진 그룹 중에서 선택된 1종 이상의 결정구조를 갖는 연속 또는 불연속 층상에 헥사고날상 결정구조를 갖는 연속 또는 불연속 층이 연속 또는 불연속적으로 레이어드를 구성하는 구조를 갖는 것일 수 있고, 이같이 서로 상이한 결정구조가 연속 또는 불연속 레이어드를 구성하는 구조에 따르면 상 안정성이 개선된 특성을 추가로 제공할 수 있다. 여기서 상기 이중층은 상기 엡실론상(ε-Fe2N형) 결정구조를 갖는 연속 층상에 헥사고날상 결정구조를 갖는 연속 층이 레이어드를 연속하여 구성하는 구조인 것이 바람직하다.
상기 내화금속의 세미카바이드층을 구성하는 결정구조의 함유량 Wm과, 상기 내화금속 모노카바이드층을 구성하는 결정구조의 함유량 Ws의 중량비율 Wm/Ws를 X라 할 때, X가 5 이하일 수 있고, 이 범위 내에서 개선된 열변형 안정성, 마모 보호특성과 증착물 박리 저항성을 동시에 제공할 수 있다. 여기서 Wm과 Ws는 EBSD(Electron BackScattered Diffraction)법에 의한 다상 해석에 의해 구해진 값이다.
상기 X는 구체적인 예로, 0.01 내지 5, 0.03 내지 4, 0.1 내지 4, 0.05 내지 0.3 혹은 0.1 내지 0.2 범위 내일 수 있다.
상기 내화금속 소재 모재의 함유량 Ww와, 상기 세미카바이드층 포함 코팅구조로서 내화금속 세미카바이드층을 구성하는 결정구조의 함유량 Wm과, 상기 내화금속 모노카바이드층을 구성하는 결정구조의 함유량 Ws의 중량비율 Ww:Wm:Ws는 90 내지 95: 0.8 내지 4: 9.2 내지 1의 범위 내일 수 있고, 이 범위 내에서 또한 개선된 열변형 안정성, 마모 보호특성과 증착물 박리 저항성을 동시에 제공할 수 있다. 여기서, Ww, Wm과 Ws은 EBSD(Electron Back-Scattered Diffraction)법에 의한 다상 해석에 의해 구해진 값이다.
상기 Y는 구체적인 예로, 91 내지 94: 0.8 내지 3: 8.2 내지 3일 수 있다.
상기 헥사고날상 결정구조를 갖는 연속 층은 XRD 회절분석 측정시 최대 피크 강도(도 7의 그래프 내부 피크 참조)를 갖는 제1 피크가 35° 내지 36° 범위에 존재하는 피크이고, 제2 피크가 48° 내지 50° 범위에 존재하는 피크이고, 제3 피크가 31° 내지 32° 범위에 존재하는 피크를 갖는 것일 수 있다.
또한 상기 엡실론상(ε-Fe2N형) 결정구조 및 베타상(PbO2형, Mo2C형 또는 C6형) 결정구조 등으로 이루어진 그룹 중에서 선택된 1종 이상의 결정구조를 갖는 연속 층은 XRD 측정시 최대 피크 강도(도 7의 그래프 하부 피크 참조)를 갖는 제1 피크가 69.5° 내지 70.0° 범위에 존재하는 피크이고, 제2 피크가 39.5° 내지 40.0° 범위에 존재하는 피크이고, 제3 피크가 52.0° 내지 52.5° 범위에 존재하는 피크를 갖는 것일 수 있다.
상기 세미카바이드층은 미세한 두께로도 충분히 개선된 열변형 안정성과, 마모 보호특성, 증착물 박리 저항성, 및 상 안정성을 제공할 수 있는 것으로, 최소 층 두께가 2㎛ 이상이면서 최대 층 두께가 300㎛ 이하, 혹은 200㎛ 이하 범위 내인 것이 바람직하다. 여기서 사용된 용어 “최소 층 두께”와 “최대 층 두께”는 달리 특정하지 않는 한, 층의 여러 부위 중 두께가 최소인 부분과 두께가 최대인 부분의 각 수치를 지칭한다.
상기 세미카바이드층 포함 코팅구조는 일례로, 1 내지 50㎛의 층 두께를 갖는 세미카바이드층 상에 1 내지 10㎛의 층 두께를 갖는 모노카바이드층이 레이어드 구조를 갖는 것일 수 있고, 이 범위 내에서 개선된 마모 보호특성과 증착물 박리 저항성을 동시에 제공할 수 있다.
구체적인 예로, 상기 세미카바이드층 포함 코팅구조는 1 내지 8㎛의 층 두께를 갖는 세미카바이드층 상에 1 내지 6㎛의 층 두께를 갖는 모노카바이드층이 레이어드 구조를 갖는 것일 수 있다.
참조로, 상기 이온주입기용 이온발생장치(100)의 아크챔버(104)를 구성하는 부품 중 리펠러(103), 캐소드(102), 챔버 월(104a), 또는 슬릿 부재(106) 등의 부품 중에서 선택된 하나 또는 그 이상의 부품을 부품 형상을 형성하는 모재로서 내화금속 소재를 갖고, 상기 모재의 일 이상의 표면에 상술한 세미카바이드층 포함 코팅구조를 갖는 소재로 제작할 경우, 선택되지 않은 부품들을 포함하여 이온챔버(104)를 구성하는 잔류 부품들은 모재로서 내화금속 소재로 제작되거나, 필요에 따라 상술한 내측면이 되는 내화금속 소재 모재의 표면에 세미카바이드층 포함 코팅구조를 갖는 소재로 제작되거나, 탄소 또는 탄소 및 수소화합물 등의 공지된 소재로 다양하게 제작될 수 있다.
상기와 같은 세미카바이드층 포함 코팅구조는, 일례로 선택된 부품을 모재로서 내화금속 소재를 사용하여 형상 가공한 뒤 상기 모재의 일 이상 표면에서 탄소가 포함된 원소로 열처리함으로써 세미카바이드층 포함 레이어드 코팅층을 형성할 수 있다.
상기 탄소가 포함된 원소로 열처리의 일례로서, 그라파이트 시트 또는 카본블랙 파우더를 사용하여 침탄 또는 화학기상증착 방식으로 수행하고 상기 세미카바이드층를 코팅 최하층으로 포함하는 다층 코팅층을 갖는 구조로 형성할 수 있다.
상기 세미카바이드층 포함 다층 코팅층은 최소 층 두께가 2㎛ 이상이면서 최대 층 두께가 300㎛ 이하인 것일 수 있다.
상기 탄소가 포함된 원소로 열처리는, 일례로 1 내지 30㎛의 층 두께를 갖는 세미카바이드층 상에 1 내지 10㎛의 층 두께로 모노카바이드층이 레이어드 다층 코팅층을 형성시킬 수 있는 운전 조건 하에 수행하는 것이 바람직하다.
상기 탄소가 포함된 원소로 열처리는, 구체적인 예로 1 내지 8㎛의 층 두께를 갖는 세미카바이드층상에 1 내지 6㎛의 층 두께로 모노카바이드층이 레이어드 코팅층을 형성시킬 수 있는 운전 조건 하에 수행하는 것이 보다 바람직할 수 있다.
구체적인 예로, 상기 열처리의 운전조건(가온가압 조건)은 진공 또는 불활성 가스 분위기 조건에서 최대온도 1100 ~ 2200℃, 가열속도 1 ~ 100℃/min, 유지시간(dwell time)은 0초 ~ 30시간(여기서 0초는 즉시 냉각을 의미함) 하에서 열처리 공정을 수행할 수 있는 것으로, 이에 특정하는 것은 아니고 리펠러의 재질 등에 따라 공지된 범위 내에서 조절될 수도 있다. 상기 화학기상증착의 운전조건(가온가압 조건)은 900 ~ 2200℃의 온도에서 상압보다 낮은 10- 2torr ~ 760torr 미만의 압력 범위이며, 수소 및 수소와 탄소의 화합물 비율이 70:30 ~ 99.9:0.1 범위 이내이며, 반응 시간은 0초 ~ 30시간 이내의 범위하에 화학기상증착 공정을 수행하는 것일 수 있는 것으로, 이에 특정하는 것은 아니고 리펠러의 재질 등에 따라 공지된 범위 내에서 조절될 수도 있다.
참고로, 아크챔버 내부에서 분해된 이온소스 기체가 리펠러 표면에 증착되는 과정을 보면, 먼저 일부 영역에서 증착이 발생하면서 증착막의 면적이 증가되다가 서로 다른 증착막끼리 만나면서 전체적으로 균일한 막이 형성된다. 이때 분리된 형태의 증착막이 박리되는 경우도 있고, 균일한 증착막에서 크랙이 발생하면서 박리되는 경우도 있다. 본 발명의 이온주입기용 부품이 부품 형상을 형성하는 모재로서 내화금속 소재를 갖고, 상기 모재의 일 이상의 표면에 세미카바이드층 포함 코팅구조를 갖는 경우 이러한 박리현상을 효과적으로 방지한다.
따라서 본 발명의 반도체 소자의 제조에 이용되는 이온주입용 이온발생장치의 아크챔버를 구성하는 리펠러, 캐소드, 챔버 월, 또는 슬릿 부재 등의 부품에 열변형 안정화 용도, 마모 보호 용도 혹은 증착물 박리 저항 용도로 세미카바이드층 포함 코팅구조를 제공함으로써 이온발생위치가 틀어지거나 장비의 틀어짐 없이 정밀한 이온주입공정을 가능케 하고, 아크챔버 내부로 전자를 균일하게 반사시킬 수 있으므로 플라즈마의 균일도를 증가시켜 이온소스 기체의 분해 효율을 향상시킬 뿐 아니라 기존 부품 대비 수명을 현저하게 개선할 수 있다.
아래에서 실시예를 이용하여 본 발명의 다양한 구현예와 그 효과를 설명한다. 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다.
실시예 1-1
리펠러(103)로서 반경 12mm의 원형 표면을 갖는 반사부(103a)와, 반경 10.85mm의 원형 표면을 갖는 캐소드(102)가 양 측벽에 대향하여 설치된 도 1과 같은 구조를 갖는 이온주입기용 이온발생장치를 제작하였다. 이때, 도 2의 반사부(103a)는 모재로서 텅스텐 소재를 사용하여 형상 가공한 것으로, 내측면이 되는 텅스텐 소재 모재의 표면에 탄소를 포함한 소재로서 그라파이트 시트를 재치하고 최대 온도 1380℃, 가열속도 4.5℃/min, 유지시간 15hr 하에서, 중간층/보호층의 적용 없이 열처리하여 텅스텐 세미카바이드 연속 또는 불연속 층상에 텅스텐 모노카바이드 연속 또는 불연속 층이 연속 또는 불연속하여 레이어드된 이층 코팅구조를 갖는 소재를 제조한 다음 이를 형상 가공하였다.
또한, 상기 반사부(103a)에 소정의 전압을 인가하기 위한 단자부(103b)는 모재로서 텅스텐 소재를 사용하여 형상 가공한 다음 상기 반사부(103a)에 일체화시켰다.
상기 텅스텐 세미카바이드 연속 또는 불연속 층상에 텅스텐 모노카바이드 연속 또는 불연속 층이 연속 또는 불연속하여 레이어드된 코팅소재의 EBSD(Electron BackScattered Diffraction, JEOL사, TSL model)에 따른 표면 분석사진을 도 6(a)로서 도시하였다. 도 6(a)에서 보듯이, 텅스텐층 상에 텅스텐 세미카바이드의 연속 또는 불연속 층이 형성되어 있고, 그 상부에 텅스텐 모노카바이드의 연속 또는 불연속 층이 연속 또는 불연속하여 레이어드 구조를 갖는 것을 확인하였다. 실제, EBSD에 따른 표면 분석을 통한 상 분리 결과, 상기 세미카바이드층 포함 코팅구조는 8㎛ 이하의 층 두께를 갖는 세미카바이드 층상에 3㎛ 이하의 층 두께로 모노카바이드층이 레이어드 다층 코팅구조를 갖는 것을 확인할 수 있었다. 상기 텅스텐 세미카바이드는 엡실론상(ε-Fe2N형) 결정구조로 확인되었고, 상기 텅스텐 모노카바이드는 헥사고날상(h-WC) 결정구조로 확인되었다(도 7 참조).
상술한 EBSD에 따른 표면 분석을 통한 상 분리 결과로부터 컴퓨터 소프트웨어를 사용하여 분율을 계산한 결과, 텅스텐층의 함유량(Ww)은 0.913 분율, 텅스텐 세미카바이드층의 결정구조(Ws)의 함유량은 0.079 분율, 그리고 텅스텐 모노카바이드층의 결정구조(Wm)의 함유량은 0.008 분율인 것을 확인하였고, 이로부터 계산된 중량비율(Ww:Wm:Ws)은 91.3:0.8:7.9인 것을 확인하였다.
상기 텅스텐 세미카바이드 층상에 텅스텐 모노카바이드층이 레이어드된 코팅구조는 XRD 회절 분석 결과, 도 7에 도시한 바와 같이, XRD 투과 깊이 영역(~3㎛)에서 엡실론상(ε-Fe2N형) 결정구조 및 베타상(PbO2형, Mo2C형 또는 C6형) 결정구조 등으로 이루어진 그룹 중에서 선택된 1종 이상의 결정구조를 갖는 연속 또는 불연속 층 상에 헥사고날상 결정구조를 갖는 연속 또는 불연속 층이 연속 또는 불연속하여 레이어드 다층 코팅구조를 갖는 것을 확인할 수 있었다.
구체적으로는, 도 7의 그래프 내부 피크에서 보듯이, 상기 텅스텐 모노카바이드 연속 또는 불연속 층은 XRD 회절분석 측정시 최대 피크 강도를 갖는 제1 피크가 35° 내지 36° 범위에 존재하는 피크이고, 제2 피크가 48° 내지 49° 범위에 존재하는 피크이고, 제3 피크가 31° 내지 32° 범위에 존재하는 피크를 보였다.
또한, 도 7의 그래프 하단 피크에서 보듯이, 상기 텅스텐 세미카바이드 연속또는 불연속 층은 XRD 측정시 텅스텐 모노카바이드와 텅스텐 세미카바이드의 피크가 중첩되어, 텅스텐 세미카바이드의 피크가 관찰되지 않을 경우, 최대 피크 강도를 갖는 제1 피크가 69.5° 내지 70.0° 범위에 존재하는 피크이고, 제2 피크가 39.5° 내지 40.0° 범위에 존재하는 피크이고, 제3 피크가 52.0° 내지 52.5° 범위에 존재하는 피크를 보였다.
앞서 EBSD에 따른 표면 분석을 통한 상 분리 결과로부터 계산한 분율을, 상기 텅스텐 모노카바이드층을 구성하는 결정구조의 함유량 Wm과, 상기 텅스텐 세미카바이드층을 구성하는 결정구조의 함유량 Ws의 중량비율 Wm/Ws의 팩터 X(이하, X라 함)에 적용하면, X가 0.008/0.079로서 0.1인 것을 계산할 수 있었다.
실시예 1-2
리펠러(103)로서 반경 12mm의 원형 표면을 갖는 반사부(103a)와, 반경 10.85mm의 원형 표면을 갖는 캐소드(102)가 양 측벽에 대향하여 설치된 도 1과 같은 구조를 갖는 이온주입기용 이온발생장치를 제작하였다. 이때, 도 3의 캐소드 전면부(102b)는 모재로서 텅스텐 소재를 사용하여 형상 가공한 것으로, 내측면이 되는 텅스텐 소재 모재의 표면에 탄소를 포함한 소재로서 그라파이트 시트를 재치하고 최대 온도 1380℃, 가열속도 4.5℃/min, 유지시간 15hr 하에서, 중간층/보호층의 적용 없이 열처리하여 텅스텐 세미카바이드 연속 또는 불연속 층상에 텅스텐 모노카바이드 연속 또는 불연속 층이 연속 또는 불연속하여 레이어드된 이층 코팅구조를 갖는 소재를 제조한 다음 이를 형상 가공하였다.
상기 텅스텐 세미카바이드 연속 또는 불연속 층상에 텅스텐 모노카바이드 연속 또는 불연속 층이 연속 또는 불연속하여 레이어드된 코팅소재의 EBSD(Electron BackScattered Diffraction, JEOL사, TSL model)에 따른 표면 분석사진을 도 6(a)로서 도시하였다. 도 6(a)에서 보듯이, 텅스텐층 상에 텅스텐 세미카바이드의 연속 또는 불연속 층이 형성되어 있고, 그 상부에 텅스텐 모노카바이드의 연속 또는 불연속 층이 연속 또는 불연속하여 레이어드 구조를 갖는 것을 확인하였다. 실제, EBSD에 따른 표면 분석을 통한 상 분리 결과, 상기 세미카바이드층 포함 코팅구조는 8㎛ 이하의 층 두께를 갖는 세미카바이드 층상에 3㎛ 이하의 층 두께로 모노카바이드층이 레이어드 다층 코팅구조를 갖는 것을 확인할 수 있었다. 상기 텅스텐 세미카바이드는 엡실론상(ε-Fe2N형) 결정구조로 확인되었고, 상기 텅스텐 모노카바이드는 헥사고날상(h-WC) 결정구조로 확인되었다(도 7 참조).
상술한 EBSD에 따른 표면 분석을 통한 상 분리 결과로부터 컴퓨터 소프트웨어를 사용하여 분율을 계산한 결과, 텅스텐층의 함유량(Ww)은 0.913 분율, 텅스텐 세미카바이드층의 결정구조(Ws)의 함유량은 0.079 분율, 그리고 텅스텐 모노카바이드층의 결정구조(Wm)의 함유량은 0.008 분율인 것을 확인하였고, 이로부터 계산된 중량비율(Ww:Wm:Ws)은 91.3:0.8:7.9인 것을 확인하였다.
상기 텅스텐 세미카바이드 층상에 텅스텐 모노카바이드층이 레이어드된 코팅구조는 XRD 회절 분석 결과, 도 7에 도시한 바와 같이, XRD 투과 깊이 영역(~3㎛)에서 엡실론상(ε-Fe2N형) 결정구조 및 베타상(PbO2형, Mo2C형 또는 C6형) 결정구조 등으로 이루어진 그룹 중에서 선택된 1종 이상의 결정구조를 갖는 연속 또는 불연속 층 상에 헥사고날상 결정구조를 갖는 연속 또는 불연속 층이 연속 또는 불연속하여 레이어드 다층 코팅구조를 갖는 것을 확인할 수 있었다.
구체적으로는, 도 7의 그래프 내부 피크에서 보듯이, 상기 텅스텐 모노카바이드 연속 또는 불연속 층은 XRD 회절분석 측정시 최대 피크 강도를 갖는 제1 피크가 35° 내지 36° 범위에 존재하는 피크이고, 제2 피크가 48° 내지 49° 범위에 존재하는 피크이고, 제3 피크가 31° 내지 32° 범위에 존재하는 피크를 보였다.
또한, 도 7의 그래프 하단 피크에서 보듯이, 상기 텅스텐 세미카바이드 연속또는 불연속 층은 XRD 측정시 텅스텐 모노카바이드와 텅스텐 세미카바이드의 피크가 중첩되어, 텅스텐 세미카바이드의 피크가 관찰되지 않을 경우, 최대 피크 강도를 갖는 제1 피크가 69.5° 내지 70.0° 범위에 존재하는 피크이고, 제2 피크가 39.5° 내지 40.0° 범위에 존재하는 피크이고, 제3 피크가 52.0° 내지 52.5° 범위에 존재하는 피크를 보였다.
앞서 EBSD에 따른 표면 분석을 통한 상 분리 결과로부터 계산한 분율을, 상기 텅스텐 모노카바이드층을 구성하는 결정구조의 함유량 Wm과, 상기 텅스텐 세미카바이드층을 구성하는 결정구조의 함유량 Ws의 중량비율 Wm/Ws의 팩터 X(이하, X라 함)에 적용하면, X가 0.008/0.079로서 0.1인 것을 계산할 수 있었다.
실시예 1-3
리펠러(103)로서 반경 12mm의 원형 표면을 갖는 반사부(103a)와, 반경 10.85mm의 원형 표면을 갖는 캐소드(102)가 양 측벽에 대향하여 설치된 도 1과 같은 구조를 갖는 이온주입기용 이온발생장치를 제작하였다. 이때, 도 4의 챔버 월 104a은 모재로서 텅스텐 소재를 사용하여 형상 가공한 것으로, 내측면이 되는 텅스텐 소재 모재의 표면에 탄소를 포함한 소재로서 그라파이트 시트를 재치하고 최대 온도 1380℃, 가열속도 4.5℃/min, 유지시간 15hr 하에서, 중간층/보호층의 적용 없이 열처리하여 텅스텐 세미카바이드 연속 또는 불연속 층상에 텅스텐 모노카바이드 연속 또는 불연속 층이 연속 또는 불연속하여 레이어드된 이층 코팅구조를 갖는 소재를 제조한 다음 이를 형상 가공하였다.
상기 텅스텐 세미카바이드 연속 또는 불연속 층상에 텅스텐 모노카바이드 연속 또는 불연속 층이 연속 또는 불연속하여 레이어드된 코팅소재의 EBSD(Electron BackScattered Diffraction, JEOL사, TSL model)에 따른 표면 분석사진을 도 6(a)로서 도시하였다. 도 6(a)에서 보듯이, 텅스텐층 상에 텅스텐 세미카바이드의 연속 또는 불연속 층이 형성되어 있고, 그 상부에 텅스텐 모노카바이드의 연속 또는 불연속 층이 연속 또는 불연속하여 레이어드 구조를 갖는 것을 확인하였다. 실제, EBSD에 따른 표면 분석을 통한 상 분리 결과, 상기 세미카바이드층 포함 코팅구조는 8㎛ 이하의 층 두께를 갖는 세미카바이드 층상에 3㎛ 이하의 층 두께로 모노카바이드층이 레이어드 다층 코팅구조를 갖는 것을 확인할 수 있었다. 상기 텅스텐 세미카바이드는 엡실론상(ε-Fe2N형) 결정구조로 확인되었고, 상기 텅스텐 모노카바이드는 헥사고날상(h-WC) 결정구조로 확인되었다(도 7 참조).
상술한 EBSD에 따른 표면 분석을 통한 상 분리 결과로부터 컴퓨터 소프트웨어를 사용하여 분율을 계산한 결과, 텅스텐 층의 함유량(Ww)은 0.913 분율, 텅스텐 세미카바이드 층의 결정구조(Ws)의 함유량은 0.079 분율, 그리고 텅스텐 모노카바이드 층의 결정구조(Wm)의 함유량은 0.008분율인 것을 확인하였고, 이로부터 계산된 중량비율(Ww:Wm:Ws)은 91.3:0.8:7.9인 것을 확인하였다.
상기 텅스텐 세미카바이드 층상에 텅스텐 모노카바이드층이 레이어드된 코팅구조는 XRD 회절 분석 결과, 도 7에 도시한 바와 같이, XRD 투과 깊이 영역(~3㎛)에서 엡실론상(ε-Fe2N형) 결정구조 및 베타상(PbO2형, Mo2C형 또는 C6형) 결정구조 등으로 이루어진 그룹 중에서 선택된 1종 이상의 결정구조를 갖는 연속 또는 불연속 층 상에 헥사고날상 결정구조를 갖는 연속 또는 불연속 층이 연속 또는 불연속하여 레이어드 다층 코팅구조를 갖는 것을 확인할 수 있었다.
구체적으로는, 도 7의 그래프 내부 피크에서 보듯이, 상기 텅스텐 모노카바이드 연속 또는 불연속 층은 XRD 회절분석 측정시 최대 피크 강도를 갖는 제1 피크가 35° 내지 36° 범위에 존재하는 피크이고, 제2 피크가 48° 내지 49° 범위에 존재하는 피크이고, 제3 피크가 31° 내지 32° 범위에 존재하는 피크를 보였다.
또한, 도 7의 그래프 하단 피크에서 보듯이, 상기 텅스텐 세미카바이드 연속또는 불연속 층은 XRD 측정시 텅스텐 모노카바이드와 텅스텐 세미카바이드의 피크가 중첩되어, 텅스텐 세미카바이드의 피크가 관찰되지 않을 경우, 최대 피크 강도를 갖는 제1 피크가 69.5° 내지 70.0° 범위에 존재하는 피크이고, 제2 피크가 39.5° 내지 40.0° 범위에 존재하는 피크이고, 제3 피크가 52.0° 내지 52.5° 범위에 존재하는 피크를 보였다.
앞서 EBSD에 따른 표면 분석을 통한 상 분리 결과로부터 계산한 분율을, 상기 텅스텐 모노카바이드층을 구성하는 결정구조의 함유량 Wm과, 상기 텅스텐 세미카바이드층을 구성하는 결정구조의 함유량 Ws의 중량비율 Wm/Ws의 팩터 X(이하, X라 함)에 적용하면, X가 0.008/0.079로서 0.1인 것을 계산할 수 있었다.
실시예 1-4
리펠러(103)로서 반경 12mm의 원형 표면을 갖는 반사부(103a)와, 반경 10.85mm의 원형 표면을 갖는 캐소드(102)가 양 측벽에 대향하여 설치된 도 1과 같은 구조를 갖는 이온주입기용 이온발생장치를 제작하였다. 이때, 도 5의 슬릿부106b는 모재로서 텅스텐 소재를 사용하여 형상 가공한 것으로, 내측면이 되는 텅스텐 소재 모재의 표면에 탄소를 포함한 소재로서 그라파이트 시트를 재치하고 최대 온도 1380℃, 가열속도 4.5℃/min, 유지시간 15hr 하에서, 중간층/보호층의 적용 없이 열처리하여 텅스텐 세미카바이드 연속 또는 불연속 층상에 텅스텐 모노카바이드 연속 또는 불연속 층이 연속 또는 불연속하여 레이어드된 이층 코팅구조를 갖는 소재를 제조한 다음 이를 형상 가공하였다.
상기 텅스텐 세미카바이드 연속 또는 불연속 층상에 텅스텐 모노카바이드 연속 또는 불연속 층이 연속 또는 불연속하여 레이어드된 코팅소재의 EBSD(Electron BackScattered Diffraction, JEOL사, TSL model)에 따른 표면 분석사진을 도 6(a)로서 도시하였다. 도 6(a)에서 보듯이, 텅스텐층 상에 텅스텐 세미카바이드의 연속 또는 불연속 층이 형성되어 있고, 그 상부에 텅스텐 모노카바이드의 연속 또는 불연속 층이 연속 또는 불연속하여 레이어드 구조를 갖는 것을 확인하였다. 실제, EBSD에 따른 표면 분석을 통한 상 분리 결과, 상기 세미카바이드층 포함 코팅구조는 8㎛ 이하의 층 두께를 갖는 세미카바이드층상에 3㎛ 이하의 층 두께로 모노카바이드층이 레이어드 다층 코팅구조를 갖는 것을 확인할 수 있었다. 상기 텅스텐 세미카바이드는 엡실론상(ε-Fe2N형) 결정구조로 확인되었고, 상기 텅스텐 모노카바이드는 헥사고날상(h-WC) 결정구조로 확인되었다(도 7 참조).
상술한 EBSD에 따른 표면 분석을 통한 상 분리 결과로부터 컴퓨터 소프트웨어를 사용하여 분율을 계산한 결과, 텅스텐층의 함유량(Ww)은 0.913 분율, 텅스텐 세미카바이드층의 결정구조(Ws)의 함유량은 0.079 분율, 그리고 텅스텐 모노카바이드층의 결정구조(Wm)의 함유량은 0.008 분율인 것을 확인하였고, 이로부터 계산된 중량비율(Ww:Wm:Ws)은 91.3:0.8:7.9인 것을 확인하였다.
상기 텅스텐 세미카바이드층상에 텅스텐 모노카바이드층이 레이어드된 코팅구조는 XRD 회절 분석 결과, 도 7에 도시한 바와 같이, XRD 투과 깊이 영역(~3㎛)에서 엡실론상(ε-Fe2N형) 결정구조 및 베타상(PbO2형, Mo2C형 또는 C6형) 결정구조 등으로 이루어진 그룹 중에서 선택된 1종 이상의 결정구조를 갖는 연속 또는 불연속 층상에 헥사고날상 결정구조를 갖는 연속 또는 불연속 층이 연속 또는 불연속하여 레이어드 다층 코팅구조를 갖는 것을 확인할 수 있었다.
구체적으로는, 도 7의 그래프 내부 피크에서 보듯이, 상기 텅스텐 모노카바이드 연속 또는 불연속 층은 XRD 회절분석 측정시 최대 피크 강도를 갖는 제1 피크가 35° 내지 36° 범위에 존재하는 피크이고, 제2 피크가 48° 내지 49° 범위에 존재하는 피크이고, 제3 피크가 31° 내지 32° 범위에 존재하는 피크를 보였다.
또한, 도 7의 그래프 하단 피크에서 보듯이, 상기 텅스텐 세미카바이드 연속또는 불연속 층은 XRD 측정시 텅스텐 모노카바이드와 텅스텐 세미카바이드의 피크가 중첩되어, 텅스텐 세미카바이드의 피크가 관찰되지 않을 경우, 최대 피크 강도를 갖는 제1 피크가 69.5° 내지 70.0° 범위에 존재하는 피크이고, 제2 피크가 39.5° 내지 40.0° 범위에 존재하는 피크이고, 제3 피크가 52.0° 내지 52.5° 범위에 존재하는 피크를 보였다.
앞서 EBSD에 따른 표면 분석을 통한 상 분리 결과로부터 계산한 분율을, 상기 텅스텐 모노카바이드층을 구성하는 결정구조의 함유량 Wm과, 상기 텅스텐 세미카바이드층을 구성하는 결정구조의 함유량 Ws의 중량비율 Wm/Ws의 팩터 X(이하, X라 함)에 적용하면, X가 0.008/0.079로서 0.1인 것을 계산할 수 있었다.
실시예 2-1
실시예 1-1과 동일한 반경을 가지는 리펠러와 캐소드를 이용하여 도 1과 같은 구조를 갖는 이온주입기용 이온발생장치를 제작하였다. 이때, 도 2의 반사부(103a)와 단자부(103b)를 각각 모재로서 텅스텐 소재를 사용하여 형상 가공한 다음 내측면이 되는 텅스텐 소재 모재의 표면에 탄소 소재로서 카본블랙 파우더를 사용하고, 중간층/보호층의 적용 없이 열처리시, 텅스텐 세미카바이드 연속 또는 불연속 층상에 텅스텐 모노카바이드 연속 또는 불연속 층이 연속 또는 불연속하여 레이어드된 이층 코팅구조를 갖는 소재를 사용하여 형상 가공한 것을 제외하고는, 상기 실시예 1-1과 동일한 공정을 반복하였다.
상기 텅스텐 세미카바이드 연속 또는 불연속 층상에 텅스텐 모노카바이드 연속 또는 불연속 층이 연속 또는 불연속하여 레이어드된 코팅소재의 EBSD(Electron BackScattered Diffraction, JEOL사, TSL model)에 따른 표면 분석사진을 도 6(b)로서 도시하였다. 도 6(b)에서 보듯이, 텅스텐층 상에 텅스텐 세미카바이드의 연속 또는 불연속 층이 형성되어 있고, 그 상부에 텅스텐 모노카바이드의 연속 또는 불연속 층이 연속 또는 불연속하여 레이어드 구조를 갖는 것을 확인하였다. 실제, EBSD에 따른 표면 분석을 통한 상 분리 결과, 상기 세미카바이드층은 7㎛ 이하의 층 두께를 갖는 세미카바이드 층상에 6㎛ 이하의 층 두께로 모노카바이드층이 레이어드 다층 구조를 갖는 것을 확인할 수 있었다. 상기 텅스텐 세미카바이드는 엡실론상(ε-Fe2N형) 결정구조로 확인되었고, 상기 텅스텐 모노카바이드는 헥사고날상(h-WC) 결정구조로 확인되었다(도 7 참조).
상술한 EBSD에 따른 표면 분석을 통한 상 분리 결과로부터 컴퓨터 소프트웨어를 사용하여 분율을 계산한 결과, 텅스텐층의 함유량(Ww)은 0.912 분율, 텅스텐 세미카바이드층의 결정구조(Ws)의 함유량은 0.074 분율, 그리고 텅스텐 모노카바이드층의 결정구조(Wm)의 함유량은 0.014 분율인 것을 확인하였고, 이로부터 계산된 중량비율(Ww:Wm:Ws)은 91.2:1.4:7.4인 것을 확인하였다.
상기 텅스텐 세미카바이드 층상에 텅스텐 모노카바이드층이 레이어드된 코팅구조는 XRD 회절 분석 결과, 도 7에 도시한 것과 마찬가지로, XRD 투과 깊이 영역(~3㎛)에서 엡실론상(ε-Fe2N형) 결정구조 및 베타상(PbO2형, Mo2C형 또는 C6형) 결정구조 등으로 이루어진 그룹 중에서 선택된 1종 이상의 결정구조를 갖는 연속 또는 불연속 층상에 헥사고날상 결정구조를 갖는 연속 또는 불연속 층이 레이어드 다층 코팅구조를 확인할 수 있었고, 특히 상기 헥사고날상 결정구조를 갖는 연속 또는 불연속 층은 XRD 회절분석 측정시 최대 피크 강도를 갖는 제1 피크가 35° 내지 36° 범위에 존재하는 피크이고, 제2 피크가 49° 내지 50° 범위에 존재하는 피크이고, 제3 피크가 31° 내지 32° 범위에 존재하는 피크를 도시하는 것을 확인하였다.
앞서 EBSD에 따른 표면 분석을 통한 상 분리 결과로부터 계산한 분율을, 상기 텅스텐 모노카바이드층을 구성하는 결정구조의 함유량 Wm과, 상기 텅스텐 세미카바이드층을 구성하는 결정구조의 함유량 Ws의 중량비율 Wm/Ws의 팩터 X에 적용하면, X가 0.014/0.074로서 0.19인 것을 계산할 수 있다.
실시예 2-2
실시예 1-2과 동일한 반경을 가지는 리펠러와 캐소드를 이용하여 도 1과 같은 구조를 갖는 이온주입기용 이온발생장치를 제작하였다. 이때, 도 3의 캐소드 전면부(102b)를 모재로서 텅스텐 소재를 사용하여 형상 가공한 다음 내측면이 되는 텅스텐 소재 모재의 표면에 탄소 소재로서 카본블랙 파우더를 사용하고, 중간층/보호층의 적용 없이 열처리시, 텅스텐 세미카바이드 연속 또는 불연속 층상에 텅스텐 모노카바이드 연속 또는 불연속 층이 연속 또는 불연속하여 레이어드된 이층 코팅구조를 갖는 소재를 사용하여 형상 가공한 것을 제외하고는, 상기 실시예 1-2과 동일한 공정을 반복하였다.
상기 텅스텐 세미카바이드 연속 또는 불연속 층상에 텅스텐 모노카바이드 연속 또는 불연속 층이 연속 또는 불연속하여 레이어드된 코팅소재의 EBSD(Electron BackScattered Diffraction, JEOL사, TSL model)에 따른 표면 분석사진을 도 6(b)로서 도시하였다. 도 6(b)에서 보듯이, 텅스텐층 상에 텅스텐 세미카바이드의 연속 또는 불연속 층이 형성되어 있고, 그 상부에 텅스텐 모노카바이드의 연속 또는 불연속 층이 연속 또는 불연속하여 레이어드 구조를 갖는 것을 확인하였다. 실제, EBSD에 따른 표면 분석을 통한 상 분리 결과, 상기 세미카바이드층은 7㎛ 이하의 층 두께를 갖는 세미카바이드 층상에 6㎛ 이하의 층 두께로 모노카바이드층이 레이어드 다층 구조를 갖는 것을 확인할 수 있었다. 상기 텅스텐 세미카바이드는 엡실론상(ε-Fe2N형) 결정구조로 확인되었고, 상기 텅스텐 모노카바이드는 헥사고날상(h-WC) 결정구조로 확인되었다(도 7 참조).
상술한 EBSD에 따른 표면 분석을 통한 상 분리 결과로부터 컴퓨터 소프트웨어를 사용하여 분율을 계산한 결과, 텅스텐층의 함유량(Ww)은 0.912 분율, 텅스텐 세미카바이드 층의 결정구조(Ws)의 함유량은 0.074 분율, 그리고 텅스텐 모노카바이드 층의 결정구조(Wm)의 함유량은 0.014 분율인 것을 확인하였고, 이로부터 계산된 중량비율(Ww:Wm:Ws)은 91.2:1.4:7.4인 것을 확인하였다.
상기 텅스텐 세미카바이드 층상에 텅스텐 모노카바이드층이 레이어드된 코팅구조는 XRD 회절 분석 결과, 도 7에 도시한 것과 마찬가지로 XRD 투과 깊이 영역(~3㎛)에서 엡실론상(ε-Fe2N형) 결정구조 및 베타상(PbO2형, Mo2C형 또는 C6형) 결정구조 등으로 이루어진 그룹 중에서 선택된 1종 이상의 결정구조를 갖는 연속 또는 불연속 층상에 헥사고날상 결정구조를 갖는 연속 또는 불연속 층이 레이어드 다층 코팅구조를 확인할 수 있었고, 특히 상기 헥사고날상 결정구조를 갖는 연속 또는 불연속 층은 XRD 회절분석 측정시 최대 피크 강도를 갖는 제1 피크가 35° 내지 36° 범위에 존재하는 피크이고, 제2 피크가 49° 내지 50° 범위에 존재하는 피크이고, 제3 피크가 31° 내지 32° 범위에 존재하는 피크를 도시하는 것을 확인하였다.
앞서 EBSD에 따른 표면 분석을 통한 상 분리 결과로부터 계산한 분율을, 상기 텅스텐 모노카바이드층을 구성하는 결정구조의 함유량 Wm과, 상기 텅스텐 세미카바이드층을 구성하는 결정구조의 함유량 Ws의 중량비율 Wm/Ws의 팩터 X에 적용하면, X가 0.014/0.074로서 0.19인 것을 계산할 수 있다.
실시예 2-3
실시예 1-3과 동일한 반경을 가지는 리펠러와 캐소드를 이용하여 도 1과 같은 구조를 갖는 이온주입기용 이온발생장치를 제작하였다. 이때, 도 4의 챔버 월 104a을 모재로서 텅스텐 소재를 사용하여 형상 가공한 다음 내측면이 되는 텅스텐 소재 모재의 표면에 탄소 소재로서 카본블랙 파우더를 사용하고, 중간층/보호층의 적용 없이 열처리시, 텅스텐 세미카바이드 연속 또는 불연속 층상에 텅스텐 모노카바이드 연속 또는 불연속 층이 연속 또는 불연속하여 레이어드된 이층 코팅구조를 갖는 소재를 사용하여 형상 가공한 것을 제외하고는, 상기 실시예 1-3과 동일한 공정을 반복하였다.
상기 텅스텐 세미카바이드 연속 또는 불연속 층상에 텅스텐 모노카바이드 연속 또는 불연속 층이 연속 또는 불연속하여 레이어드된 코팅소재의 EBSD(Electron BackScattered Diffraction, JEOL사, TSL model)에 따른 표면 분석사진을 도 6(b)로서 도시하였다. 도 6(b)에서 보듯이, 텅스텐층 상에 텅스텐 세미카바이드의 연속 또는 불연속 층이 형성되어 있고, 그 상부에 텅스텐 모노카바이드의 연속 또는 불연속 층이 연속 또는 불연속하여 레이어드 구조를 갖는 것을 확인하였다. 실제, EBSD에 따른 표면 분석을 통한 상 분리 결과, 상기 세미카바이드층은 7㎛ 이하의 층 두께를 갖는 세미카바이드 층상에 6㎛ 이하의 층 두께로 모노카바이드층이 레이어드 다층 구조를 갖는 것을 확인할 수 있었다. 상기 텅스텐 세미카바이드는 엡실론상(ε-Fe2N형) 결정구조로 확인되었고, 상기 텅스텐 모노카바이드는 헥사고날상(h-WC) 결정구조로 확인되었다(도 7 참조).
상술한 EBSD에 따른 표면 분석을 통한 상 분리 결과로부터 컴퓨터 소프트웨어를 사용하여 분율을 계산한 결과, 텅스텐층의 함유량(Ww)은 0.912 분율, 텅스텐 세미카바이드 층의 결정구조(Ws)의 함유량은 0.074 분율, 그리고 텅스텐 모노카바이드 층의 결정구조(Wm)의 함유량은 0.014 분율인 것을 확인하였고, 이로부터 계산된 중량비율(Ww:Wm:Ws)은 91.2:1.4:7.4인 것을 확인하였다.
상기 텅스텐 세미카바이드 층상에 텅스텐 모노카바이드층이 레이어드된 코팅구조는 XRD 회절 분석 결과, 도 7에 도시한 것과 마찬가지로, XRD 투과 깊이 영역(~3㎛)에서 엡실론상(ε-Fe2N형) 결정구조 및 베타상(PbO2형, Mo2C형 또는 C6형) 결정구조 등으로 이루어진 그룹 중에서 선택된 1종 이상의 결정구조를 갖는 연속 또는 불연속 층상에 헥사고날상 결정구조를 갖는 연속 또는 불연속 층이 레이어드 다층 코팅구조를 확인할 수 있었고, 특히 상기 헥사고날상 결정구조를 갖는 연속 또는 불연속 층은 XRD 회절분석 측정시 최대 피크 강도를 갖는 제1 피크가 35° 내지 36° 범위에 존재하는 피크이고, 제2 피크가 49° 내지 50° 범위에 존재하는 피크이고, 제3 피크가 31° 내지 32° 범위에 존재하는 피크를 도시하는 것을 확인하였다.
앞서 EBSD에 따른 표면 분석을 통한 상 분리 결과로부터 계산한 분율을, 상기 텅스텐 모노카바이드층을 구성하는 결정구조의 함유량 Wm과, 상기 텅스텐 세미카바이드층을 구성하는 결정구조의 함유량 Ws의 중량비율 Wm/Ws의 팩터 X에 적용하면, X가 0.014/0.074로서 0.19인 것을 계산할 수 있다.
실시예 2-4
실시예 1-4와 동일하게 도 1과 같은 구조를 갖는 이온주입기용 이온발생장치를 제작하였다. 이때, 도 5의 슬릿부 106b를 모재로서 텅스텐 소재를 사용하여 형상 가공한 다음 내측면이 되는 텅스텐 소재 모재의 표면에 탄소 소재로서 카본블랙 파우더를 사용하고, 중간층/보호층의 적용 없이 열처리시, 텅스텐 세미카바이드 연속 또는 불연속 층상에 텅스텐 모노카바이드 연속 또는 불연속 층이 연속 또는 불연속하여 레이어드된 이층 코팅구조를 갖는 소재를 사용하여 형상 가공한 것을 제외하고는, 상기 실시예 1-4와 동일한 공정을 반복하였다.
상기 텅스텐 세미카바이드 연속 또는 불연속 층상에 텅스텐 모노카바이드 연속 또는 불연속 층이 연속 또는 불연속하여 레이어드된 코팅소재의 EBSD(Electron BackScattered Diffraction, JEOL사, TSL model)에 따른 표면 분석사진을 도 6(b)로서 도시하였다. 도 6(b)에서 보듯이, 텅스텐층 상에 텅스텐 세미카바이드의 연속 또는 불연속 층이 형성되어 있고, 그 상부에 텅스텐 모노카바이드의 연속 또는 불연속 층이 연속 또는 불연속하여 레이어드 구조를 갖는 것을 확인하였다. 실제, EBSD에 따른 표면 분석을 통한 상 분리 결과, 상기 세미카바이드층은 7㎛ 이하의 층 두께를 갖는 세미카바이드층상에 6㎛ 이하의 층 두께로 모노카바이드층이 레이어드 다층 구조를 갖는 것을 확인할 수 있었다. 상기 텅스텐 세미카바이드는 엡실론상(ε-Fe2N형) 결정구조로 확인되었고, 상기 텅스텐 모노카바이드는 헥사고날상(h-WC) 결정구조로 확인되었다(도 7 참조).
상술한 EBSD에 따른 표면 분석을 통한 상 분리 결과로부터 컴퓨터 소프트웨어를 사용하여 분율을 계산한 결과, 텅스텐층의 함유량(Ww)은 0.912 분율, 텅스텐 세미카바이드층의 결정구조(Ws)의 함유량은 0.074 분율, 그리고 텅스텐 모노카바이드층의 결정구조(Wm)의 함유량은 0.014 분율인 것을 확인하였고, 이로부터 계산된 중량비율(Ww:Wm:Ws)은 91.2:1.4:7.4인 것을 확인하였다.
상기 텅스텐 세미카바이드층상에 텅스텐 모노카바이드층이 레이어드된 코팅구조는 XRD 회절 분석 결과, 도 7에 도시한 것과 마찬가지로, XRD 투과 깊이 영역(~3㎛)에서 엡실론상(ε-Fe2N형) 결정구조 및 베타상(PbO2형, Mo2C형 또는 C6형) 결정구조 등으로 이루어진 그룹 중에서 선택된 1종 이상의 결정구조를 갖는 연속 또는 불연속 층상에 헥사고날상 결정구조를 갖는 연속 또는 불연속 층이 레이어드 다층 코팅구조를 확인할 수 있었고, 특히 상기 헥사고날상 결정구조를 갖는 연속 또는 불연속 층은 XRD 회절분석 측정시 최대 피크 강도를 갖는 제1 피크가 35° 내지 36° 범위에 존재하는 피크이고, 제2 피크가 49° 내지 50° 범위에 존재하는 피크이고, 제3 피크가 31° 내지 32° 범위에 존재하는 피크를 도시하는 것을 확인하였다.
앞서 EBSD에 따른 표면 분석을 통한 상 분리 결과로부터 계산한 분율을, 상기 텅스텐 모노카바이드층을 구성하는 결정구조의 함유량 Wm과, 상기 텅스텐 세미카바이드층을 구성하는 결정구조의 함유량 Ws의 중량비율 Wm/Ws의 팩터 X에 적용하면, X가 0.014/0.074로서 0.19인 것을 계산할 수 있다.
비교예 1-1
실시예 1-1과 동일하게 도 1과 같은 구조를 갖는 이온주입기용 이온발생장치를 제작하되, 반사부 상에 열처리 공정을 수행하지 않아 세미카바이드층 포함 코팅구조가 전혀 형성되지 않은 텅스텐 소재를 모재로 사용하여 반사부와 단자부를 제작하였다(실시예 1-1의 팩터 X는 0이고, Ww:Wm:Ws의 중량비율은 100:0:0이다).
비교예 1-2
실시예 1과 동일하게 도 1과 같은 구조를 갖는 이온주입기용 이온발생장치를 제작하되, 캐소드 전면부 상에 열처리 공정을 수행하지 않아 세미카바이드층 포함 코팅구조가 전혀 형성되지 않은 텅스텐 소재를 모재로 사용하여 반사부와 단자부를 제작하였다(실시예 1-2의 팩터 X는 0이고, Ww:Wm:Ws의 중량비율은 100:0:0이다).
비교예 1-3
실시예 1-3과 동일하게 도 1과 같은 구조를 갖는 이온주입기용 이온발생장치를 제작하되, 챔버 월 상에 열처리 공정을 수행하지 않아 세미카바이드층 포함 코팅구조가 전혀 형성되지 않은 텅스텐 소재를 모재로 사용하여 반사부와 단자부를 제작하였다(실시예 1-3의 팩터 X는 0이고, Ww:Wm:Ws의 중량비율은 100:0:0이다).
비교예 1-4
실시예 1-4와 동일하게 도 1과 같은 구조를 갖는 이온주입기용 이온발생장치를 제작하되, 슬릿부 상에 열처리 공정을 수행하지 않아 세미카바이드층 포함 코팅구조가 전혀 형성되지 않은 텅스텐 소재를 모재로 사용하여 반사부와 단자부를 제작하였다(실시예 1-4의 팩터 X는 0이고, Ww:Wm:Ws의 중량비율은 100:0:0이다).
비교예 2-1
실시예 1-1과 동일하게 도 1과 같은 구조를 갖는 이온주입기용 이온발생장치를 제작하였고, 실시예 1-1에 따라 형성된 반사부 상의 세미카바이드층 포함 코팅구조에 대하여 EBSD(Electron BackScattered Diffraction)에 따른 표면분석을 위해 수행하는 화학적 전해 연마공정 또는 폴리싱 등의 기계적 연마방식을 적용하여 최상부의 텅스텐 모노카바이드층을 탈락시키고, 텅스텐 세미카바이드층이 노출된 구조를 제공하였다(실시예 1-1의 팩터 X는 0이다).
상기 EBSD에 따른 표면분석을 통한 상 분리 결과, 상기 텅스텐 세미카바이드층은 10.435㎛ 이하의 층 두께를 갖는 것을 확인할 수 있었다.
또한, 상술한 EBSD에 따른 표면 분석을 통한 상 분리 결과로부터 컴퓨터 소프트웨어를 사용하여 분율을 계산한 결과, 텅스텐층의 함유량(Ww)은 0.879 분율, 텅스텐 세미카바이드 층을 구성하는 결정구조(Ws)의 함유량은 0.121 분율인 것을 확인하였고, 이로부터 계산된 중량비율(Ww:Wm:Ws)은 87.9:12.1:0인 것을 확인하였다.
상기 텅스텐 세미카바이드는 엡실론상(ε-Fe2N형) 결정구조로 확인되었다. 상기 엡실론상(ε-Fe2N형) 결정구조를 갖는 층은 XRD 측정시 텅스텐 모노카바이드와 텅스텐 세미카바이드의 피크가 중첩되어, 텅스텐 세미카바이드의 피크가 관찰되지 않을 경우, 최대 피크 강도를 갖는 제1 피크가 69.5° 내지 70.0° 범위에 존재하는 피크이고, 제2 피크가 39.5° 내지 40.0° 범위에 존재하는 피크이고, 제3 피크가 52.0° 내지 52.5° 범위에 존재하는 피크를 갖는 것을 확인하였다.
비교예 2-2
실시예 1-2와 동일하게 도 1과 같은 구조를 갖는 이온주입기용 이온발생장치를 제작하였고, 실시예 1에 따라 형성된 캐소드 전면부 상의 세미카바이드층 포함 코팅구조에 대하여 EBSD(Electron BackScattered Diffraction)에 따른 표면분석을 위해 수행하는 화학적 전해 연마공정 또는 폴리싱 등의 기계적 연마방식을 적용하여 최상부의 텅스텐 모노카바이드층을 탈락시키고, 텅스텐 세미카바이드층이 노출된 구조를 제공하였다(실시예 1-2의 팩터 X는 0이다).
상기 EBSD에 따른 표면분석을 통한 상 분리 결과, 상기 텅스텐 세미카바이드층은 10.435㎛ 이하의 층 두께를 갖는 것을 확인할 수 있었다.
또한, 상술한 EBSD에 따른 표면 분석을 통한 상 분리 결과로부터 컴퓨터 소프트웨어를 사용하여 분율을 계산한 결과, 텅스텐층의 함유량(Ww)은 0.879 분율, 텅스텐 세미카바이드 층을 구성하는 결정구조(Ws)의 함유량은 0.121 분율인 것을 확인하였고, 이로부터 계산된 중량비율(Ww:Wm:Ws)은 87.9:12.1:0인 것을 확인하였다.
상기 텅스텐 세미카바이드는 엡실론상(ε-Fe2N형) 결정구조로 확인되었다. 상기 엡실론상(ε-Fe2N형) 결정구조를 갖는 층은 XRD 측정시 텅스텐 모노카바이드와 텅스텐 세미카바이드의 피크가 중첩되어, 텅스텐 세미카바이드의 피크가 관찰되지 않을 경우, 최대 피크 강도를 갖는 제1 피크가 69.5° 내지 70.0° 범위에 존재하는 피크이고, 제2 피크가 39.5° 내지 40.0° 범위에 존재하는 피크이고, 제3 피크가 52.0° 내지 52.5° 범위에 존재하는 피크를 갖는 것을 확인하였다.
비교예 2-3
실시예 1-3과 동일하게 도 1과 같은 구조를 갖는 이온주입기용 이온발생장치를 제작하였고, 실시예 1-3에 따라 형성된 챔버 월 상의 세미카바이드층 포함 코팅구조에 대하여 EBSD (Electron BackScattered Diffraction)에 따른 표면분석을 위해 수행하는 화학적 전해 연마공정 또는 폴리싱 등의 기계적 연마방식을 적용하여 최상부의 텅스텐 모노카바이드층을 탈락시키고, 텅스텐 세미카바이드층이 노출된 구조를 제공하였다(실시예 1-3의 팩터 X는 0이다).
상기 EBSD에 따른 표면분석을 통한 상 분리 결과, 상기 텅스텐 세미카바이드층은 10.435㎛ 이하의 층 두께를 갖는 것을 확인할 수 있었다.
또한, 상술한 EBSD에 따른 표면 분석을 통한 상 분리 결과로부터 컴퓨터 소프트웨어를 사용하여 분율을 계산한 결과, 텅스텐층의 함유량(Ww)은 0.879 분율, 텅스텐 세미카바이드 층을 구성하는 결정구조(Ws)의 함유량은 0.121 분율인 것을 확인하였고, 이로부터 계산된 중량비율(Ww:Wm:Ws)은 87.9:12.1:0인 것을 확인하였다.
상기 텅스텐 세미카바이드는 엡실론상(ε-Fe2N형) 결정구조로 확인되었다. 상기 엡실론상(ε-Fe2N형) 결정구조를 갖는 층은 XRD 측정시 텅스텐 모노카바이드와 텅스텐 세미카바이드의 피크가 중첩되어, 텅스텐 세미카바이드의 피크가 관찰되지 않을 경우, 최대 피크 강도를 갖는 제1 피크가 69.5° 내지 70.0° 범위에 존재하는 피크이고, 제2 피크가 39.5° 내지 40.0° 범위에 존재하는 피크이고, 제3 피크가 52.0° 내지 52.5° 범위에 존재하는 피크를 갖는 것을 확인하였다.
비교예 2-4
실시예 1-4와 동일하게 도 1과 같은 구조를 갖는 이온주입기용 이온발생장치를 제작하였고, 실시예 1-4에 따라 형성된 슬릿부 상의 세미카바이드층 포함 코팅구조에 대하여 EBSD(Electron BackScattered Diffraction)에 따른 표면분석을 위해 수행하는 화학적 전해 연마공정 또는 폴리싱 등의 기계적 연마방식을 적용하여 최상부의 텅스텐 모노카바이드층을 탈락시키고, 텅스텐 세미카바이드층이 노출된 구조를 제공하였다(실시예 1-4의 팩터 X는 0이다).
상기 EBSD에 따른 표면분석을 통한 상 분리 결과, 상기 텅스텐 세미카바이드층은 10.435㎛ 이하의 층 두께를 갖는 것을 확인할 수 있었다.
또한, 상술한 EBSD에 따른 표면 분석을 통한 상 분리 결과로부터 컴퓨터 소프트웨어를 사용하여 분율을 계산한 결과, 텅스텐층의 함유량(Ww)은 0.879 분율, 텅스텐 세미카바이드층을 구성하는 결정구조(Ws)의 함유량은 0.121 분율인 것을 확인하였고, 이로부터 계산된 중량비율(Ww:Wm:Ws)은 87.9:12.1:0인 것을 확인하였다.
상기 텅스텐 세미카바이드는 엡실론상(ε-Fe2N형) 결정구조로 확인되었다. 상기 엡실론상(ε-Fe2N형) 결정구조를 갖는 층은 XRD 측정시 텅스텐 모노카바이드와 텅스텐 세미카바이드의 피크가 중첩되어, 텅스텐 세미카바이드의 피크가 관찰되지 않을 경우, 최대 피크 강도를 갖는 제1 피크가 69.5° 내지 70.0° 범위에 존재하는 피크이고, 제2 피크가 39.5° 내지 40.0° 범위에 존재하는 피크이고, 제3 피크가 52.0° 내지 52.5° 범위에 존재하는 피크를 갖는 것을 확인하였다.
실험예 1-1
이온소스 기체로 BF3를 이용하는 환경에서 실시예 1-1 및 실시예 2-1과 비교예 1-1 및 비교예 2-1의 이온발생장치를 작동시키면, 이온소스 기체로부터 이온화된 아크챔버 내 이온들이 슬릿을 통하여 추출 전극 및 질량 분석기를 통과시킨 후 빔 크기를 조절한 후 패러데이 시스템을 통하여 이온의 수를 측정하였다. 이때, 아크챔버의 소재에서 열변형 등이 발생하여, 소재가 뒤틀릴 경우, 불규칙한 이온 수가 측정되는데, 주입하고자 하는 이온의 수가 일정하게 측정될 경우 양호로 판정하였고 이온의 수가 급격한 감소 및/또는 증가 등의 사이클을 나타낼 경우 불량으로 판단하였다.
그리고 아크챔버 내에 존재하는 양이온의 경우, 음극인 캐소드 및/또는 리펠러 측으로 충돌, 음이온의 경우에는 양극인 아크챔버 벽면으로 충돌하여, 부품 표면의 원자를 이동시키는 스퍼터링 현상이 발생하게 되는데, 이러한 스퍼터링 현상으로 인하여 아크챔버 내측의 주변 부위는 증착물이 생성되며, 이 증착물이 양극과 음극 사이에 떨어져 양극과 음극을 연결하게 되면 전기적 단락(short)이 발생하게 되는데, 아크 챔버에 10분간 전압을 인가하고, 5분간 중단하는 것을 한 싸이클로 정하여 공정을 진행하였고, 이러한 전기적 단락이 발생한 후에는 이온 발생장치의 작동을 중지하고, 이때까지의 공정 횟수를 측정하여 마모 보호 특성을 판단하였다.
실시예 1-1 및 실시예 2-1와 비교예 1-1 및 비교예 2-1의 이온발생장치에서 측정된 결과를 아래의 표 1에 정리하였다.
구분 실시예 1-1 실시예 2-1 비교예 1-1 비교예 2-1
열변형 보호특성 양호 양호 양호 양호
마모 보호특성 (공정 횟수) 221회 244회 195회 206회
실험예 1-1의 결과에서 확인할 수 있듯이 실시예들이 비교예들만큼 동등한 열변형 안정성을 갖고, 비교예들보다 마모 보호특성이 개선된 것을 확인하였다.
실험예 1-2
이온소스 기체로 BF3를 이용하는 환경에서 실시예 1-2 내지 실시예 2-2와 비교예 1-2 및 비교예 2-2의 이온발생장치를 작동시키면, 이온소스 기체로부터 이온화된 아크챔버 내 이온들이 슬릿을 통하여 추출 전극 및 질량 분석기를 통과시킨 후 빔 크기를 조절한 후 패러데이 시스템을 통하여 이온의 수를 측정하였다. 이때, 아크챔버의 소재에서 열변형 등이 발생하여, 소재가 뒤틀릴 경우, 불규칙한 이온 수가 측정되는데, 주입하고자 하는 이온의 수가 일정하게 측정될 경우 양호로 판정하였고 이온의 수가 급격한 감소 및/또는 증가 등의 사이클을 나타낼 경우 불량으로 판단하였다.
그리고 아크챔버 내에 존재하는 양이온의 경우, 음극인 캐소드 및/또는 리펠러 측으로 충돌, 음이온의 경우에는 양극인 아크챔버 벽면으로 충돌하여, 부품 표면의 원자를 이동시키는 스퍼터링 현상이 발생하게 되는데, 이러한 스퍼터링 현상으로 인하여 아크챔버 내측의 주변 부위는 증착물이 생성되며, 이 증착물이 양극과 음극 사이에 떨어져 양극과 음극을 연결하게 되면 전기적 단락(short)이 발생하게 되는데, 아크 챔버에 10분간 전압을 인가하고, 5분간 중단하는 것을 한 싸이클로 정하여 공정을 진행하였고, 이러한 전기적 단락이 발생한 후에는 이온 발생장치의 작동을 중지하고, 이때까지의 공정 횟수를 측정하여 마모 보호 특성을 판단하였다.
실시예 1-2 및 실시예 2-2와 비교예 1-2 및 비교예 2-2의 이온발생장치에서 측정된 결과를 아래의 표 2에 정리하였다.
구분 실시예 1-2 실시예 2-2 비교예 1-2 비교예 2-2
열변형 보호특성 양호 양호 양호 양호
마모 보호특성 (공정 횟수) 223회 245회 196회 207회
실험예 1-2의 결과에서 확인할 수 있듯이 실시예들이 비교예들만큼 동등한 열변형 안정성을 갖고, 비교예들보다 마모 보호특성이 개선된 것을 확인하였다.
실험예 1-3
이온소스 기체로 BF3를 이용하는 환경에서 실시예 1-3 및 실시예 2-3과 비교예 1-3 및 비교예 2-3의 이온발생장치를 작동시키면, 이온소스 기체로부터 이온화된 아크챔버 내 이온들이 슬릿을 통하여 추출 전극 및 질량 분석기를 통과시킨 후 빔 크기를 조절한 후 패러데이 시스템을 통하여 이온의 수를 측정하였다. 이때, 아크챔버의 소재에서 열변형 등이 발생하여, 소재가 뒤틀릴 경우, 불규칙한 이온 수가 측정되는데, 주입하고자 하는 이온의 수가 일정하게 측정될 경우 양호로 판정하였고 이온의 수가 급격한 감소 및/또는 증가 등의 사이클을 나타낼 경우 불량으로 판단하였다.
그리고 아크챔버 내에 존재하는 양이온의 경우, 음극인 캐소드 및/또는 리펠러 측으로 충돌, 음이온의 경우에는 양극인 아크챔버 벽면으로 충돌하여, 부품 표면의 원자를 이동시키는 스퍼터링 현상이 발생하게 되는데, 이러한 스퍼터링 현상으로 인하여 아크챔버 내측의 주변 부위는 증착물이 생성되며, 이 증착물이 양극과 음극 사이에 떨어져 양극과 음극을 연결하게 되면 전기적 단락(short)이 발생하게 되는데, 아크 챔버에 10분간 전압을 인가하고, 5분간 중단하는 것을 한 싸이클로 정하여 공정을 진행하였고, 이러한 전기적 단락이 발생한 후에는 이온 발생장치의 작동을 중지하고, 이때까지의 공정 횟수를 측정하여 마모 보호 특성을 판단하였다.
실시예 1-3 및 실시예 2-3과 비교예 1-3 및 비교예 2-3의 이온발생장치에서 측정된 결과를 아래의 표 3에 정리하였다.
구분 실시예 1-3 실시예 2-3 비교예 1-3 비교예 2-3
열변형 보호특성 양호 양호 양호 양호
마모 보호특성 (공정 횟수) 221회 245회 196회 207회
실험예 1-3의 결과에서 확인할 수 있듯이 실시예들이 비교예들만큼 동등한 열변형 안정성을 갖고, 비교예들보다 마모 보호특성이 개선된 것을 확인하였다.
실험예 1-4
이온소스 기체로 BF3를 이용하는 환경에서 실시예 1-4 및 실시예 2-4와 비교예 1-4 및 비교예 2-4의 이온발생장치를 작동시키면, 이온소스 기체로부터 이온화된 아크챔버 내 이온들이 슬릿을 통하여 추출 전극 및 질량 분석기를 통과시킨 후 빔 크기를 조절한 후 패러데이 시스템을 통하여 이온의 수를 측정하였다. 이때, 아크챔버의 소재에서 열변형 등이 발생하여, 소재가 뒤틀릴 경우, 불규칙한 이온 수가 측정되는데, 주입하고자 하는 이온의 수가 일정하게 측정될 경우 양호로 판정하였고 이온의 수가 급격한 감소 및/또는 증가 등의 사이클을 나타낼 경우 불량으로 판단하였다.
그리고 아크챔버 내에 존재하는 양이온의 경우, 음극인 캐소드 및/또는 리펠러 측으로 충돌, 음이온의 경우에는 양극인 아크챔버 벽면으로 충돌하여, 부품 표면의 원자를 이동시키는 스퍼터링 현상이 발생하게 되는데, 이러한 스퍼터링 현상으로 인하여 아크챔버 내측의 주변 부위는 증착물이 생성되며, 이 증착물이 양극과 음극 사이에 떨어져 양극과 음극을 연결하게 되면 전기적 단락(short)이 발생하게 되는데, 아크 챔버에 10분간 전압을 인가하고, 5분간 중단하는 것을 한 싸이클로 정하여 공정을 진행하였고, 이러한 전기적 단락이 발생한 후에는 이온 발생장치의 작동을 중지하고, 이때까지의 공정 횟수를 측정하여 마모 보호 특성을 판단하였다.
실시예 1-4 및 실시예 2-4와 비교예 1-4 및 비교예 2-4의 이온발생장치에서 측정된 결과를 아래의 표 4에 정리하였다.
구분 실시예 1-4 실시예 2-4 비교예 1-4 비교예 2-4
열변형 보호특성 양호 양호 양호 양호
마모 보호특성 (공정 횟수) 222회 245회 197회 208회
실험예 1-4의 결과에서 확인할 수 있듯이 실시예들이 비교예들만큼 동등한 열변형 안정성을 갖고, 비교예들보다 마모 보호특성이 개선된 것을 확인하였다.
실험예 2-1
실시예 1-1 및 실시예 2-1과 비교예 1-1 및 비교예 2-1의 이온발생장치를 작동시키면서 이온의 발생효율을 비교하기 위하여 빔(Beam) 전류(단위:mA)를 측정하였다. 이때 아크 챔버의 폭 40mm, 길이 105mm, 높이 40mm, 리펠러와 거리 85mm, 가스는 BF3을 사용하였으며, 압력은 2.5 torr 였다. 아크 챔버에 공급된 전압은 80V로 공급되었으며, 필라멘트에 공급된 전류는 160A이고 캐소드와 리펠러에 공급된 전압은 600V 였다.
실시예 1-1 및 실시예 2-1과 비교예 1-1 및 비교예 2-1의 이온발생장치에서 측정된 결과를 아래의 표 5에 정리하였다.
실시예 1-1 실시예 2-1 비교예 1-1 비교예 2-1
빔 전류 22.1mA 23.2mA 20.0mA 21.2mA
표 5를 참조하면, 실시예들이 비교예 1-1에 비하여 이온발생 효율이 증가한 것을 확인하였고, 특히 실시예 2-1에서 이온발생 효율이 상대적으로 더욱 증가한 것을 확인할 수 있다.
실험예 2-2
실시예 1-2 및 실시예 2-2와 비교예 1-2 및 비교예 2-2의 이온발생장치를 작동시키면서 이온의 발생효율을 비교하기 위하여 빔(Beam) 전류(단위:mA)를 측정하였다. 이때 아크 챔버의 폭 40mm, 길이 105mm, 높이 40mm, 리펠러와 거리 85mm, 가스는 BF3을 사용하였으며, 압력은 2.5 torr 였다. 아크 챔버에 공급된 전압은 80V로 공급되었으며, 필라멘트에 공급된 전류는 160A이고 캐소드와 리펠러에 공급된 전압은 600V 였다.
실시예 1-2 및 실시예 2-2와 비교예 1-2 및 비교예 2-2의 이온발생장치에서 측정된 결과를 아래의 표 6에 정리하였다.
실시예 1-2 실시예 2-2 비교예 1-2 비교예 2-2
빔 전류 22.0mA 23.2mA 20.0mA 21.2mA
표 6을 참조하면, 실시예들이 비교예 1-2에 비하여 이온발생 효율이 증가한 것을 확인하였고, 특히 실시예 2-2에서 이온발생 효율이 상대적으로 더욱 증가한 것을 확인할 수 있다.
실험예 2-3
실시예 1-3 및 실시예 2-3과 비교예 1-3 및 비교예 2-3의 이온발생장치를 작동시키면서 이온의 발생효율을 비교하기 위하여 빔(Beam) 전류(단위:mA)를 측정하였다. 이때 아크 챔버의 폭 40mm, 길이 105mm, 높이 40mm, 리펠러와 거리 85mm, 가스는 BF3을 사용하였으며, 압력은 2.5 torr 였다. 아크 챔버에 공급된 전압은 80V로 공급되었으며, 필라멘트에 공급된 전류는 160A이고 캐소드와 리펠러에 공급된 전압은 600V 였다.
실시예 1-3 및 실시예 2-3과 비교예 1-3 및 비교예 2-3의 이온발생장치에서 측정된 결과를 아래의 표 7에 정리하였다.
실시예 1-3 실시예 2-3 비교예 1-3 비교예 2-3
빔 전류 22.0mA 23.0mA 20.0mA 21.2mA
표 7을 참조하면, 실시예들이 비교예 1-3에 비하여 이온발생 효율이 증가한 것을 확인하였고, 특히 실시예 2-3에서 이온발생 효율이 상대적으로 더욱 증가한 것을 확인할 수 있다.
실험예 2-4
실시예 1-4 및 실시예 2-4와 비교예 1-4 및 비교예 2-4의 이온발생장치를 작동시키면서 이온의 발생효율을 비교하기 위하여 빔(Beam) 전류(단위:mA)를 측정하였다. 이때 아크 챔버의 폭 40mm, 길이 105mm, 높이 40mm, 리펠러와 거리 85mm, 가스는 BF3을 사용하였으며, 압력은 2.5 torr 였다. 아크 챔버에 공급된 전압은 80V로 공급되었으며, 필라멘트에 공급된 전류는 160A이고 캐소드와 리펠러에 공급된 전압은 600V 였다.
실시예 1-4 및 실시예 2-4와 비교예 1-4 및 비교예 2-4의 이온발생장치에서 측정된 결과를 아래의 표 8에 정리하였다.
실시예 1-4 실시예 2-4 비교예 1-4 비교예 2-4
빔 전류 22.0mA 23.1mA 20.0mA 21.3mA
표 8을 참조하면, 실시예들이 비교예1-4에 비하여 이온발생 효율이 증가한 것을 확인하였고, 특히 실시예 2-4에서 이온발생 효율이 상대적으로 더욱 증가한 것을 확인할 수 있다.
이상의 설명은 본 발명의 기술 사상을 일 구현 예를 이용하여 설명한 것으로써, 본 발명이 속하는 기술 분야에서 통상의 지식을 갖는 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에서 설명된 구현 예는 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이런 구현 예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호범위는 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 한다.

Claims (29)

  1. 이온주입기용 이온발생장치의 아크챔버 내측에 설치되고, 상기 이온발생장치의 캐소드에 대향하여 설치되는 반사부 및 상기 반사부에서 연장되며 소정의 전압이 인가되는 단자부를 포함하는 리펠러로서, 상기 반사부는 부품 형상을 형성하는 모재로서 내화금속 소재를 갖고, 상기 모재의 내측면이 되는 하나 이상의 표면에 세미카바이드층 포함 코팅구조를 갖는 것을 특징으로 하는 이온주입기용 리펠러.
  2. 청구항 1에 있어서,
    상기 세미카바이드층 포함 코팅구조는 내화금속의 세미카바이드 연속 또는 불연속 층상에 내화금속의 모노카바이드 연속 또는 불연속 층이 레이어드(layered)를 구성하는 내화금속 카바이드 구조를 포함하는 것을 특징으로 하는 이온주입기용 리펠러.
  3. 청구항 1에 있어서,
    상기 세미카바이드층 포함 코팅구조는 엡실론상 결정구조 및 베타상 결정구조로 이루어진 그룹 중에서 선택된 1종 이상의 결정구조를 갖는 연속 또는 불연속 층상에 헥사고날상 결정구조를 갖는 연속 또는 불연속 층이 연속 또는 불연속적으로 레이어드(layered)를 구성하는 내화금속의 카바이드 구조를 포함하는 것을 특징으로 하는 이온주입기용 리펠러.
  4. 청구항 2에 있어서,
    상기 내화금속의 세미카바이드층을 구성하는 결정구조의 함유량 Wm과, 상기 내화금속의 모노카바이드층을 구성하는 결정구조의 함유량 Ws의 중량비율 Wm/Ws를 X라 할 때, X가 5 이하(여기서, Wm과 Ws는 EBSD(Electron Back-Scattered Diffraction)법에 의한 다상 해석에 의해 구해진 값이다)인 것을 특징으로 하는 이온주입기용 리펠러.
  5. 청구항 1에 있어서,
    상기 모재의 함유량 Ww와, 상기 세미카바이드층 포함 코팅구조로서 내화금속의 세미카바이드층을 구성하는 결정구조의 함유량 Wm과, 상기 내화금속의 모노카바이드층을 구성하는 결정구조의 함유량 Ws의 중량비율 Ww:Wm:Ws는 90 내지 95: 0.8 내지 4: 9.2 내지 1(여기서, Ww, Wm과 Ws은 EBSD(Electron Back-Scattered Diffraction)법에 의한 다상 해석에 의해 구해진 값이다)인 것을 특징으로 하는 이온주입기용 리펠러.
  6. 청구항 1에 있어서,
    상기 세미카바이드 포함 코팅층은 최소 층 두께가 2㎛ 이상이고 최대 층 두께가 300㎛ 이하인 것을 특징으로 하는 이온주입기용 리펠러.
  7. 청구항 1에 있어서,
    상기 단자부는 부품 형상을 형성하는 모재로서 내화금속 소재를 갖고, 상기 모재의 일 이상 표면에 세미카바이드층 포함 코팅구조를 갖는 것을 특징으로 하는 이온주입기용 리펠러.
  8. 청구항 1의 이온주입기용 리펠러를 포함하는 이온발생장치.
  9. 이온주입기용 이온발생장치의 아크챔버 내부에 설치되고, 상기 아크챔버의 일측에 고정되고 내부에 필라멘트가 설치되는 공간이 형성된 캐소드 측부와, 상기 아크챔버 방향으로 노출되고 전자를 방출하는 표면을 가지는 캐소드 전면부를 포함하는 전자방출 캐소드로서, 상기 캐소드는 부품 형상을 형성하는 모재로서 내화금속 소재를 갖고, 상기 모재의 내측면이 되는 하나 이상의 표면에 세미카바이드층 포함 코팅구조를 갖는 것을 특징으로 하는 이온주입기용 전자방출 캐소드.
  10. 청구항 9에 있어서,
    상기 세미카바이드층 포함 코팅구조는 내화금속의 세미카바이드 연속 또는 불연속 층상에 내화금속의 모노카바이드 연속 또는 불연속 층이 레이어드(layered)를 구성하는 내화금속의 카바이드 구조를 포함하는 것을 특징으로 하는 이온주입기용 전자방출 캐소드.
  11. 청구항 9에 있어서,
    상기 세미카바이드층 포함 코팅구조는 엡실론상 결정구조 및 베타상 결정구조로 이루어진 그룹 중에서 선택된 1종 이상의 결정구조를 갖는 연속 또는 불연속 층상에 헥사고날상 결정구조를 갖는 연속 또는 불연속 층이 연속 또는 불연속적으로 레이어드(layered)를 구성하는 내화금속의 카바이드 구조를 포함하는 것을 특징으로 하는 이온주입기용 전자방출 캐소드.
  12. 청구항 10에 있어서,
    상기 내화금속의 세미카바이드층을 구성하는 결정구조의 함유량 Wm과, 상기 내화금속의 모노카바이드층을 구성하는 결정구조의 함유량 Ws의 중량비율 Wm/Ws를 X라 할 때, X가 5 이하(여기서, Wm과 Ws는 EBSD(Electron Back-Scattered Diffraction)법에 의한 다상 해석에 의해 구해진 값이다)인 것을 특징으로 하는 이온주입기용 전자방출 캐소드.
  13. 청구항 9에 있어서,
    상기 모재의 함유량 Ww와, 상기 세미카바이드층 포함 코팅구조로서 내화금속의 세미카바이드층을 구성하는 결정구조의 함유량 Wm과, 상기 내화금속의 모노카바이드층을 구성하는 결정구조의 함유량 Ws의 중량비율 Ww:Wm:Ws는 90 내지 95: 0.8 내지 4: 9.2 내지 1(여기서, Ww, Wm과 Ws은 EBSD(Electron Back-Scattered Diffraction)법에 의한 다상 해석에 의해 구해진 값이다)인 것을 특징으로 하는 이온주입기용 전자방출 캐소드.
  14. 청구항 9에 있어서,
    상기 세미카바이드 포함 코팅층은 최소 층 두께가 2㎛ 이상이고 최대 층 두께가 300㎛ 이하인 것을 특징으로 하는 이온주입기용 전자방출 캐소드.
  15. 청구항 9의 이온주입기용 전자방출 캐소드를 포함하는 이온발생장치.
  16. 이온주입기용 이온발생장치의 이온발생공간을 구성하기 위한 아크챔버 내측에 설치되는 챔버 월로서, 상기 아크챔버의 사면을 구성하는 챔버 월 중 일면 이상의 월은 부품 형상을 형성하는 모재로서 내화금속 소재를 갖고, 상기 모재의 내측면이 되는 하나 이상의 표면에 세미카바이드층 포함 코팅구조를 갖는 것을 특징으로 하는 이온주입기용 챔버 월.
  17. 청구항 16에 있어서,
    상기 세미카바이드층 포함 코팅구조는 내화금속의 세미카바이드 연속 또는 불연속 층상에 내화금속의 모노카바이드 연속 또는 불연속 층이 레이어드(layered)를 구성하는 내화금속의 카바이드 구조를 포함하는 것을 특징으로 하는 이온주입기용 챔버 월.
  18. 청구항 16에 있어서,
    상기 세미카바이드층 포함 코팅구조는 엡실론상 결정구조 및 베타상 결정구조로 이루어진 그룹 중에서 선택된 1종 이상의 결정구조를 갖는 연속 또는 불연속 층상에 헥사고날상 결정구조를 갖는 연속 또는 불연속 층이 연속 또는 불연속적으로 레이어드(layered)를 구성하는 내화금속의 카바이드 구조를 포함하는 것을 특징으로 하는 이온주입기용 챔버 월.
  19. 청구항 17에 있어서,
    상기 내화금속의 세미카바이드층을 구성하는 결정구조의 함유량 Wm과, 상기 내화금속의 모노카바이드층을 구성하는 결정구조의 함유량 Ws의 중량비율 Wm/Ws를 X라 할 때, X가 5 이하(여기서, Wm과 Ws는 EBSD(Electron Back-Scattered Diffraction)법에 의한 다상 해석에 의해 구해진 값이다)인 것을 특징으로 하는 이온주입기용 챔버 월.
  20. 청구항 16에 있어서,
    상기 모재의 함유량 Ww와, 상기 세미카바이드층 포함 코팅구조로서 내화금속의 세미카바이드층을 구성하는 결정구조의 함유량 Wm과, 상기 내화금속의 모노카바이드층을 구성하는 결정구조의 함유량 Ws의 중량비율 Ww:Wm:Ws는 90 내지 95: 0.8 내지 4: 9.2 내지 1(여기서, Ww, Wm과 Ws은 EBSD(Electron Back-Scattered Diffraction)법에 의한 다상 해석에 의해 구해진 값이다)인 것을 특징으로 하는 이온주입기용 챔버 월.
  21. 청구항 16에 있어서,
    상기 세미카바이드 포함 코팅층은 최소 층 두께가 2㎛ 이상이고 최대 층 두께가 300㎛ 이하인 것을 특징으로 하는 이온주입기용 챔버 월.
  22. 청구항 16의 이온주입기용 챔버 월을 포함하는 이온발생장치.
  23. 이온주입기용 이온발생장치로부터 이온빔을 방출하기 위한 슬릿을 구비한 슬릿 부재로서, 상기 슬릿이 형성되어 있는 슬릿부는 부품 형상을 형성하는 모재로서 내화금속 소재를 갖고, 상기 모재의 내측면이 되는 하나 이상의 표면에 세미카바이드층 포함 코팅구조를 갖는 것을 특징으로 하는 이온주입기용 슬릿 부재.
  24. 청구항 23에 있어서,
    상기 세미카바이드층 포함 코팅구조는 내화금속의 세미카바이드 연속 또는 불연속 층상에 내화금속의 모노카바이드 연속 또는 불연속 층이 레이어드(layered)를 구성하는 내화금속의 카바이드 구조를 포함하는 것을 특징으로 하는 이온주입기용 슬릿 부재.
  25. 청구항 23에 있어서,
    상기 세미카바이드층 포함 코팅구조는 엡실론상 결정구조 및 베타상 결정구조로 이루어진 그룹 중에서 선택된 1종 이상의 결정구조를 갖는 연속 또는 불연속 층상에 헥사고날상 결정구조를 갖는 연속 또는 불연속 층이 연속 또는 불연속적으로 레이어드(layered)를 구성하는 내화금속의 카바이드 구조를 포함하는 것을 특징으로 하는 이온주입기용 슬릿 부재.
  26. 청구항 24에 있어서,
    상기 내화금속의 세미카바이드층을 구성하는 결정구조의 함유량 Wm과, 상기 내화금속의 모노카바이드층을 구성하는 결정구조의 함유량 Ws의 중량비율 Wm/Ws를 X라 할 때, X가 5 이하(여기서, Wm과 Ws는 EBSD(Electron Back-Scattered Diffraction)법에 의한 다상 해석에 의해 구해진 값이다)인 것을 특징으로 하는 이온주입기용 슬릿 부재.
  27. 청구항 23에 있어서,
    상기 모재의 함유량 Ww와, 상기 세미카바이드층 포함 코팅구조로서 내화금속의 세미카바이드 층을 구성하는 결정구조의 함유량 Wm과, 상기 내화금속의 모노카바이드층을 구성하는 결정구조의 함유량 Ws의 중량비율 Ww:Wm:Ws는 90 내지 95: 0.8 내지 4: 9.2 내지 1(여기서, Ww, Wm과 Ws은 EBSD(Electron Back-Scattered Diffraction)법에 의한 다상 해석에 의해 구해진 값이다)인 것을 특징으로 하는 이온주입기용 슬릿 부재.
  28. 청구항 23에 있어서,
    상기 세미카바이드 포함 코팅층은 최소 층 두께가 2㎛ 이상이고 최대 층 두께가 300㎛ 이하인 것을 특징으로 하는 이온주입기용 슬릿 부재.
  29. 청구항 23의 이온주입기용 슬릿 부재를 포함하는 이온발생장치.
PCT/KR2016/006190 2015-07-07 2016-06-10 이온주입기용 리펠러, 캐소드, 챔버 월, 슬릿 부재 및 이를 포함하는 이온발생장치 WO2017007138A1 (ko)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US15/742,283 US10573486B2 (en) 2015-07-07 2016-06-10 Repeller, cathode, chamber wall and slit member for ion implanter and ion generating devices including the same
EP16821544.0A EP3316277A4 (en) 2015-07-07 2016-06-10 DEVICE FOR ION IMPLANTER, CATHODE, CHAMBER WALL, SLOT ELEMENT AND ION GENERATING DEVICE THEREWITH
JP2018519662A JP6539414B2 (ja) 2015-07-07 2016-06-10 イオン注入器用リペラー、カソード、チャンバーウォール、スリット部材、及びこれを含むイオン発生装置
CN201680039789.9A CN107735850B (zh) 2015-07-07 2016-06-10 用于离子注入器的反射极、阴极、腔壁、狭缝构件以及包括以上部件的离子发生装置
SG11201710396UA SG11201710396UA (en) 2015-07-07 2016-06-10 Repeller for ion implanter, cathode, chamber wall, slit member, and ion generating device comprising same
US16/583,183 US10796878B2 (en) 2015-07-07 2019-09-25 Repeller, cathode, chamber wall and slit member for ion implanter and ion generating devices including the same

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
KR10-2015-0096699 2015-07-07
KR10-2015-0096701 2015-07-07
KR1020150096701A KR101582640B1 (ko) 2015-07-07 2015-07-07 이온주입기용 챔버 웰 및 이온발생장치
KR1020150096700A KR101582631B1 (ko) 2015-07-07 2015-07-07 이온주입기용 전자방출 캐소드 및 이온발생장치
KR10-2015-0096700 2015-07-07
KR1020150096699A KR101565916B1 (ko) 2015-07-07 2015-07-07 이온주입기용 리펠러 및 이온발생장치
KR10-2015-0096702 2015-07-07
KR1020150096702A KR101582645B1 (ko) 2015-07-07 2015-07-07 이온주입기용 슬릿 부재 및 이온발생장치

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/742,283 A-371-Of-International US10573486B2 (en) 2015-07-07 2016-06-10 Repeller, cathode, chamber wall and slit member for ion implanter and ion generating devices including the same
US16/583,183 Division US10796878B2 (en) 2015-07-07 2019-09-25 Repeller, cathode, chamber wall and slit member for ion implanter and ion generating devices including the same

Publications (1)

Publication Number Publication Date
WO2017007138A1 true WO2017007138A1 (ko) 2017-01-12

Family

ID=57685816

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/006190 WO2017007138A1 (ko) 2015-07-07 2016-06-10 이온주입기용 리펠러, 캐소드, 챔버 월, 슬릿 부재 및 이를 포함하는 이온발생장치

Country Status (6)

Country Link
US (2) US10573486B2 (ko)
EP (1) EP3316277A4 (ko)
JP (1) JP6539414B2 (ko)
CN (1) CN107735850B (ko)
SG (1) SG11201710396UA (ko)
WO (1) WO2017007138A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109841470A (zh) * 2017-11-29 2019-06-04 台湾积体电路制造股份有限公司 用于半导体离子布植的装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10854416B1 (en) * 2019-09-10 2020-12-01 Applied Materials, Inc. Thermally isolated repeller and electrodes
WO2021130805A1 (ja) * 2019-12-23 2021-07-01 株式会社日立ハイテク 荷電粒子線装置
CN111029235B (zh) * 2019-12-25 2022-05-27 上海华力集成电路制造有限公司 离子注入机台中离子源头的结构
US11127558B1 (en) 2020-03-23 2021-09-21 Applied Materials, Inc. Thermally isolated captive features for ion implantation systems
US12033843B2 (en) * 2020-03-26 2024-07-09 Agilent Technologies, Inc. Mass spectrometry ION source
US11251010B1 (en) * 2021-07-27 2022-02-15 Applied Materials, Inc. Shaped repeller for an indirectly heated cathode ion source

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003141986A (ja) * 2001-11-07 2003-05-16 Hitachi Ltd 電極デバイスの製造方法
KR20030060611A (ko) * 2002-01-10 2003-07-16 삼성전자주식회사 보호막을 가지는 탄소나노튜브를 구비하는 전계방출소자
KR20050045216A (ko) * 2003-11-10 2005-05-17 일진디스플레이(주) 코팅막이 형성된 전계방출소자 및 그것의 제조방법
KR20060042145A (ko) * 2004-02-25 2006-05-12 삼성전자주식회사 카바이드 및 나이트라이드 나노 전자 에미터를 구비한 소자의 제조방법
US8742337B2 (en) * 2009-05-13 2014-06-03 Micromass Uk Limited Ion source with surface coating

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4892752A (en) * 1987-08-12 1990-01-09 Oki Electric Industry Co., Ltd. Method of ion implantation
JPH01255140A (ja) * 1988-04-05 1989-10-12 Denki Kagaku Kogyo Kk イオン源用アークチヤンバー
US20020069824A1 (en) * 2000-12-08 2002-06-13 Dangelo Nelson A. Ion implantation system having increased implanter source life
KR100528240B1 (ko) 2000-12-20 2005-11-15 현대중공업 주식회사 저융점 금속을 이용한 원주방향 냉각 통로가 구현된다이캐스트 회전자 제작을 위한 회전자로부터 저융점금속스페이서의 원심분리방법
DE10204182B4 (de) 2002-02-01 2005-07-14 Man B & W Diesel Ag Brennkraftmaschine und Verfahren zu ihrem Betrieb
JP4135499B2 (ja) 2002-12-27 2008-08-20 日本電気株式会社 移動通信システムにおける測位システム並びに測位方法
US7465210B2 (en) * 2004-02-25 2008-12-16 The Regents Of The University Of California Method of fabricating carbide and nitride nano electron emitters
EP1876592A1 (en) 2005-04-13 2008-01-09 FUJIFILM Corporation Optical recording medium and its manufacturing method
JP5152887B2 (ja) 2006-07-07 2013-02-27 学校法人関西学院 単結晶炭化ケイ素基板の表面改質方法、単結晶炭化ケイ素薄膜の形成方法、イオン注入アニール方法及び単結晶炭化ケイ素基板、単結晶炭化ケイ素半導体基板
US7679070B2 (en) * 2007-07-02 2010-03-16 United Microelectronics Corp. Arc chamber for an ion implantation system
KR100855540B1 (ko) 2007-07-10 2008-09-01 주식회사 코미코 이온 주입 장치, 이온 주입 장치의 내부 구조물 및 상기이온 주입 장치의 코팅층 형성 방법
US8471198B2 (en) * 2009-05-13 2013-06-25 Micromass Uk Limited Mass spectrometer sampling cone with coating
JP5343835B2 (ja) 2009-12-10 2013-11-13 日新イオン機器株式会社 反射電極構造体及びイオン源
WO2012093434A1 (ja) 2011-01-06 2012-07-12 日本電気株式会社 移動通信システム、制御装置、ポリシ供給システム、状態遷移の制御方法、及びポリシ供給方法
US8937003B2 (en) * 2011-09-16 2015-01-20 Varian Semiconductor Equipment Associates, Inc. Technique for ion implanting a target
KR20130104585A (ko) * 2012-03-14 2013-09-25 삼성전자주식회사 이온 발생 장치 및 이를 포함하는 이온 주입 장치
JP5925084B2 (ja) 2012-08-28 2016-05-25 住友重機械イオンテクノロジー株式会社 イオン生成方法およびイオン源
JP6076838B2 (ja) * 2013-05-31 2017-02-08 住友重機械イオンテクノロジー株式会社 絶縁構造及び絶縁方法
US9384937B2 (en) * 2013-09-27 2016-07-05 Varian Semiconductor Equipment Associates, Inc. SiC coating in an ion implanter
JP6238689B2 (ja) * 2013-11-13 2017-11-29 住友重機械イオンテクノロジー株式会社 イオン生成装置およびイオン生成方法
US9543110B2 (en) * 2013-12-20 2017-01-10 Axcelis Technologies, Inc. Reduced trace metals contamination ion source for an ion implantation system
AT14861U1 (de) * 2015-03-02 2016-07-15 Plansee Se Ionenimplanter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003141986A (ja) * 2001-11-07 2003-05-16 Hitachi Ltd 電極デバイスの製造方法
KR20030060611A (ko) * 2002-01-10 2003-07-16 삼성전자주식회사 보호막을 가지는 탄소나노튜브를 구비하는 전계방출소자
KR20050045216A (ko) * 2003-11-10 2005-05-17 일진디스플레이(주) 코팅막이 형성된 전계방출소자 및 그것의 제조방법
KR20060042145A (ko) * 2004-02-25 2006-05-12 삼성전자주식회사 카바이드 및 나이트라이드 나노 전자 에미터를 구비한 소자의 제조방법
US8742337B2 (en) * 2009-05-13 2014-06-03 Micromass Uk Limited Ion source with surface coating

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3316277A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109841470A (zh) * 2017-11-29 2019-06-04 台湾积体电路制造股份有限公司 用于半导体离子布植的装置
CN109841470B (zh) * 2017-11-29 2023-08-01 台湾积体电路制造股份有限公司 用于离子布植的装置以及在离子布植过程产生离子的方法

Also Published As

Publication number Publication date
JP6539414B2 (ja) 2019-07-03
US20180226218A1 (en) 2018-08-09
US10796878B2 (en) 2020-10-06
EP3316277A1 (en) 2018-05-02
US10573486B2 (en) 2020-02-25
CN107735850B (zh) 2019-11-01
EP3316277A4 (en) 2019-03-20
CN107735850A (zh) 2018-02-23
SG11201710396UA (en) 2018-01-30
JP2018519649A (ja) 2018-07-19
US20200083018A1 (en) 2020-03-12

Similar Documents

Publication Publication Date Title
WO2017007138A1 (ko) 이온주입기용 리펠러, 캐소드, 챔버 월, 슬릿 부재 및 이를 포함하는 이온발생장치
WO2013022306A2 (ko) 플라즈마 발생장치, 플라즈마 발생장치용 회전 전극의 제조방법, 기판의 플라즈마 처리방법, 및 플라즈마를 이용한 혼합 구조의 박막 형성방법
US20080180357A1 (en) Plasma processing apparatus
JP5766495B2 (ja) 熱処理装置
US10361069B2 (en) Ion source repeller shield comprising a labyrinth seal
KR20130141455A (ko) 반도체 기판의 가변 밀도 플라즈마 프로세싱
US20090084988A1 (en) Single wafer implanter for silicon-on-insulator wafer fabrication
WO2011132885A2 (en) Substrate processing apparatus
US20100326602A1 (en) Electrostatic chuck
WO2020213836A1 (ko) Sic 엣지 링
JP6959914B2 (ja) イオン注入システム用の、リップを有するイオン源ライナー
KR20190085143A (ko) 물리 기상 증착 챔버 내의 입자 감소
WO2013089473A1 (ko) 태양전지의 제조방법
KR101565916B1 (ko) 이온주입기용 리펠러 및 이온발생장치
WO2017164508A1 (ko) 높은 공간 선택성을 가지는 선형 플라즈마 발생 장치
WO2014014178A1 (ko) 반도체 발광소자, 이를 위한 제조 방법, 박막 증착 장치 및 박막 증착 방법
WO2017030315A1 (ko) 증착 장치용 샘플 거치대 및 그 샘플 거치대를 갖는 증착 장치
KR101858921B1 (ko) 이온주입기용 전자방출 캐소드 및 이온발생장치
KR20010089674A (ko) 반도성 및 절연성 재료의 물리기상증착
WO2024205123A1 (ko) 태양전지 및 그 제조방법
WO2021162424A1 (ko) 세라믹 부품 및 이를 포함하는 플라즈마 식각장치
WO2024112078A1 (ko) 활성화된 프로톤 어시스트 플라즈마 식각을 포함하는 박막공정 방법 및 장치
WO2023101330A1 (ko) 극자외선 노광용 펠리클 및 이의 제조방법
WO2021172682A1 (ko) 유리렌즈 성형용 몰드 및 그 제조방법
WO2024219649A1 (ko) 기판 처리 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16821544

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 11201710396U

Country of ref document: SG

ENP Entry into the national phase

Ref document number: 2018519662

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15742283

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016821544

Country of ref document: EP