WO2017006860A1 - Imaging device, object behavior measurement device, imaging control method, and object behavior measurement method - Google Patents

Imaging device, object behavior measurement device, imaging control method, and object behavior measurement method Download PDF

Info

Publication number
WO2017006860A1
WO2017006860A1 PCT/JP2016/069650 JP2016069650W WO2017006860A1 WO 2017006860 A1 WO2017006860 A1 WO 2017006860A1 JP 2016069650 W JP2016069650 W JP 2016069650W WO 2017006860 A1 WO2017006860 A1 WO 2017006860A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
imaging
photographing
detection range
behavior
Prior art date
Application number
PCT/JP2016/069650
Other languages
French (fr)
Japanese (ja)
Inventor
三枝 宏
Original Assignee
株式会社プロギア
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社プロギア filed Critical 株式会社プロギア
Priority to KR1020177037424A priority Critical patent/KR102104846B1/en
Priority to KR1020207009398A priority patent/KR102277827B1/en
Publication of WO2017006860A1 publication Critical patent/WO2017006860A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B69/00Training appliances or apparatus for special sports
    • A63B69/36Training appliances or apparatus for special sports for golf
    • A63B69/3658Means associated with the ball for indicating or measuring, e.g. speed, direction
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B69/00Training appliances or apparatus for special sports
    • A63B69/36Training appliances or apparatus for special sports for golf
    • A63B69/3623Training appliances or apparatus for special sports for golf for driving
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B57/00Golfing accessories
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/61Control of cameras or camera modules based on recognised objects
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2102/00Application of clubs, bats, rackets or the like to the sporting activity ; particular sports involving the use of balls and clubs, bats, rackets, or the like
    • A63B2102/32Golf
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2220/00Measuring of physical parameters relating to sporting activity
    • A63B2220/80Special sensors, transducers or devices therefor
    • A63B2220/805Optical or opto-electronic sensors
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2220/00Measuring of physical parameters relating to sporting activity
    • A63B2220/80Special sensors, transducers or devices therefor
    • A63B2220/806Video cameras

Definitions

  • the present invention relates to an imaging device for imaging an object, an object behavior measuring device, an imaging control method, and an object behavior measuring method.
  • a method for measuring the behavior of a moving body such as a golf ball
  • a method using an image photographed by a photographing device is known.
  • a means for recognizing that the moving body has entered the imaging range of the imaging apparatus is required.
  • an optical sensor is widely used.
  • first method of shooting a moving object using an optical sensor when shooting a ball for a ball game that starts moving by striking with a striking tool, on the travel path of the striking tool (position just before striking, etc.) ), The detection range of the optical sensor is set, and shooting is performed with the passage of the impact tool as a trigger.
  • a detection range of an optical sensor is set on a predicted movement path of a ball game ball after hitting and shooting is performed using the passage of the ball game ball as a trigger.
  • the detection range of the reflective optical sensor is set at the fixed position (such as on a golf tee) of the ball game ball before hitting, and the ball game ball is retreated from the fixed position.
  • shooting There is a method of shooting.
  • a golf swing by a practitioner is continuously photographed and the presence or absence of a golf ball on the tee is detected by a ball sensor.
  • a swing analysis system is disclosed that outputs a trigger signal when it is detected that there is no golf ball on the tee after the start of shooting, and stops shooting after a predetermined time has elapsed from the output of the trigger signal.
  • the hitting tool is detected by the optical sensor as in the first method, there is a distance between the passing position of the hitting tool and the shooting range of the camera (movement path of the ball for ball game). There is a problem that a mechanism for adjusting the photographing timing by calculating the speed and the like is required.
  • the optical sensor is covered so as to cover the entire area through which the ball game ball may pass. There is a problem that it is necessary to set a detection range, and the equipment becomes expensive.
  • an object of the present invention is to provide a photographing apparatus and a photographing control method capable of easily and accurately controlling photographing timing when photographing a moving object, and the same. It is an object to provide a behavior measuring apparatus and a behavior measuring method of an object using an object.
  • an imaging apparatus includes an imaging unit for imaging a moving object, a detection unit in which a light projecting unit and a light receiving unit are integrated, and light reception by the light receiving unit.
  • a reflective optical sensor comprising: a detection unit that detects the presence or absence of the object in a detection range on the light emitting direction side of the light projecting unit based on the amount of light emitted; and the object is detected in the detection range.
  • a shooting control unit that controls the shooting timing of the shooting unit with reference to the leaving timing when it is detected that the object has left the detection range.
  • the photographing control unit performs photographing by the photographing unit only when the retreat is detected after the object is continuously detected within the detection range for a predetermined time or more. It is characterized by implementing.
  • a photographing apparatus further comprising a notifying unit that notifies that the object is continuously detected for a predetermined time or more within the detection range.
  • the reflective optical sensor has a function of identifying the color of the object, and the object is within the detection range only when the object has a predetermined color. It is detected that it is present.
  • the imaging apparatus is characterized in that a response speed of the reflective optical sensor is 1 ms or less.
  • the object is a ball game ball launched by a hitting tool
  • the detection range includes a launch position of the ball game ball
  • the shooting control unit includes the hitting tool.
  • the photographing unit is controlled so as to photograph a plurality of images after launching the ball for ball game.
  • An object behavior measuring apparatus is an object behavior measuring apparatus using the photographing apparatus according to any one of the first to sixth aspects, wherein the photographing control unit includes: The imaging timing is controlled so as to capture a plurality of images while the object is located in the imaging range, and the moving direction, the rotation axis direction, and the moving speed of the object using the plurality of images captured by the imaging unit.
  • a behavior calculating unit that calculates at least one of the above is provided.
  • a plurality of the photographing units are provided along a target movement direction of the object, and the behavior calculating unit is configured to detect the plurality of objects on the photographed image.
  • the object behavior measuring apparatus is characterized in that the object is a ball having a known diameter, and the behavior calculating unit is configured based on a ratio of the diameter of the ball between a plurality of captured images. The moving direction in a direction orthogonal to the shooting direction of the shooting unit is calculated.
  • the behavior calculation unit is configured to detect the object during a period when a plurality of images are captured based on a ratio between a distance on the plurality of images and a distance on the real space.
  • a moving distance is calculated, and the moving speed is further calculated by dividing the moving distance by an elapsed time during which the plurality of images are captured.
  • the moving body has a symbol that can be visually recognized from all directions, and the behavior calculating unit determines the position and orientation of the symbol between a plurality of captured images.
  • the rotation axis direction is calculated from the difference.
  • An object behavior measuring method is an object behavior measuring method using the photographing control method according to the twelfth aspect, wherein the object is placed in a photographing range of the photographing apparatus in the photographing control step.
  • the imaging timing is controlled so as to capture a plurality of images while the image is positioned, and at least any one of the moving direction, the rotation axis direction, and the moving speed of the object using the plurality of images captured by the imaging device It further includes a behavior calculating step for calculating the above.
  • the imaging timing of the imaging unit is controlled based on the timing at which the object moves out of the detection range after the object is detected within the detection range of the reflective optical sensor. It is possible to take an image after detecting that the object has started to move, which is advantageous in reliably taking an image of the movement of the object. For example, it is possible to obtain a stable detection result as compared to the case where the start of movement of an object is detected by sound (such as a hitting sound). Further, it is advantageous in simplifying the system configuration as compared with the case where the start of movement of the object is detected from the movement of the impact tool.
  • the information processing apparatus further includes a notification unit that notifies that the object has been continuously detected within the detection range for a predetermined time or longer, so that when the operator starts moving the object, The movement start timing can be accurately set, which is advantageous for efficiently capturing an image of an object.
  • the reflective optical sensor since the reflective optical sensor has a function of identifying the color of an object, it is easy to recognize a specific object, which is advantageous in improving the recognition accuracy of the reflective optical sensor. Become.
  • the response speed of the reflective optical sensor is 1 ms or less, it is possible to quickly take an image after the object has left the detection range, even when the moving speed of the object is high. This is advantageous for sure shooting.
  • the detection range of the reflective optical sensor since the object is a ball game ball that is launched by a hitting tool, and the detection range of the reflective optical sensor includes the launch position of the ball game ball, the ball game ball immediately after launch is photographed. This is advantageous in applying the photographing apparatus to a behavior calculation apparatus that calculates the behavior.
  • the detection range of the reflective optical sensor is set as the launch position of the ball game ball, the detection range of the sensor is a minimum range, which is advantageous in simplifying the system of the photographing apparatus.
  • the detection range of the sensor is a minimum range, which is advantageous in simplifying the system of the photographing apparatus.
  • since the behavior of the object is measured using an image taken at an arbitrary time after the movement of the object starts, it is advantageous in accurately measuring the behavior of the object. Become.
  • the displacement direction of the center position of the object position in the plurality of images is calculated as the vertical movement direction, the movement direction in the image plane can be easily measured.
  • the moving direction in the direction orthogonal to the photographing direction is calculated based on the ratio of the diameters of the objects in the plurality of images. It is possible to measure and obtain more detailed behavior information of the moving body.
  • the moving speed immediately after the start of the movement of the object can be calculated, and the behavior of the object can be grasped in more detail.
  • the rotation axis direction is calculated from the difference between the positions and orientations of the symbols in a plurality of images, the rotation axis direction that is difficult to measure even with a Doppler sensor or the like can be easily measured.
  • FIG. 2 is a block diagram illustrating a functional configuration of the imaging apparatus 10.
  • FIG. 2 is a block diagram showing a hardware configuration of a computer 18.
  • FIG. 3 is a flowchart illustrating a processing procedure performed by the imaging apparatus 10. It is explanatory drawing which shows typically an example of the picked-up image by the imaging
  • FIG. 6 is an explanatory diagram illustrating another configuration of the photographing apparatus 10.
  • FIG. 1 is an explanatory diagram illustrating a schematic configuration of an imaging apparatus 10 according to the embodiment.
  • FIG. 2 is a block diagram showing a functional configuration of the photographing apparatus 10.
  • 1A is a view of the configuration of the photographing apparatus 10 as viewed from the rear with respect to the launch direction
  • FIG. 1B is a view of the periphery of the golf ball 20 in FIG.
  • FIG. 1A shows an operator (player) I who wants to hit the golf ball 20 with the golf club 22.
  • the golf ball 20 is placed on a tee 24 inserted into the ground (horizontal plane) G.
  • the golf ball 20 is hit by the golf club 22 and starts moving. That is, in the example of FIG. 1A, the position of the golf ball 20 on the tee 24 is the movement start position P0.
  • the position of the golf ball 20 on the tee 24 is set as the movement start position P0.
  • the position of the golf ball 20 on the ground G is set as the movement start position P0 is arbitrary by the operator I, but is adjusted so that the detection range of the reflective optical sensor 14 described later includes the movement start position P0. There is a need to.
  • the symbol T shown in FIG. 1B is the target movement direction when the golf ball 20 is hit with the golf club 22.
  • the target movement direction T is also displaced in the vertical direction (gravity direction).
  • the origin of the coordinates of the space in which the photographing apparatus 10 is installed is set as the movement start position P0
  • the x axis is parallel to the projection line on the ground G in the target movement direction T
  • the z axis is the direction opposite to the gravity direction
  • x The direction orthogonal to the axis and the z-axis is taken as the y-axis.
  • each coordinate axis is illustrated at a position away from the movement start position P0 that is the origin.
  • Reference symbol M is a mark given to the surface of the golf ball 20.
  • the imaging device 10 includes an imaging unit 12, a reflective optical sensor 14, a lamp 15, and a computer 18.
  • the imaging unit 12 is a camera that captures a still image.
  • two cameras (first camera 12A and second camera 12B) are installed along the target movement direction T.
  • the first camera 12A uses a predetermined range FA along the target movement direction T including the movement start position P0 as a shooting range.
  • the second camera 12B is installed at a position away from the first camera 12A toward the target movement direction T, and is a predetermined range that is shifted toward the target movement direction T from the shooting range FA of the first camera 12A.
  • the shooting range is FB.
  • a plurality of photographing units 12 are provided along the launch direction of the golf ball 20, and a plurality of images after the golf ball 20 is launched by the golf club 22 are photographed.
  • a plurality of images may be photographed using a single camera at different photographing times.
  • the shooting range FA of the first camera 12A and the shooting range FB of the second camera 12B are illustrated as partially overlapping, but they may not overlap.
  • the positions of the first camera 12A and the second camera 12B are known, and the positions of the imaging ranges FA and FB with respect to the movement start position P0 are also known.
  • An image photographed by the photographing unit 12 is output to a computer 18 described later.
  • the shooting timing of the shooting unit 12 is controlled by a shooting control unit 182 of the computer 18 described later.
  • the reflective optical sensor 14 includes a detection unit 1406 in which a light projecting unit 1402 and a light receiving unit 1404 are integrated, and a detection range on the light projecting direction side of the light projecting unit 1402 based on the amount of light received by the light receiving unit 1404. And a detection unit 1408 for detecting the presence or absence of an object inside.
  • a diffuse reflection type sensor is used as the reflection type optical sensor 14, but a regression reflection type sensor or a transmission type sensor may be used.
  • the detection range of the reflective optical sensor 14 is matched with the movement start position P0. That is, the projection light LI from the light projecting unit 1402 is installed so as to pass through the movement start position P0. When there is no golf ball 20 on the tee 24, the projection light LI passes through the movement start position P0. On the other hand, when the golf ball 20 is on the tee 24, the reflected light LR reflected by the surface of the golf ball 20 is directed to the light receiving unit 1404, and the amount of light received by the light receiving unit 1404 increases. Thereby, the presence or absence of the golf ball 20 on the tee 24 can be detected.
  • the reflective optical sensor 14 may have a function of identifying the color of an object using an image sensor such as a CMOS sensor. In this case, it is detected that the object is within the detection range only when the object has a specific color. More specifically, for example, a sensor that detects an object only when a white object that is the color of a general golf ball 20 is within the detection range is used. Accordingly, it is possible to prevent erroneous detection of the golf club 22 and the limbs of the operator I around the tee 24 as the golf ball 20 and to improve the detection accuracy of the reflective optical sensor 14.
  • the reaction speed of the reflective optical sensor 14 is preferably 1 ms or less. This is because, depending on the moving speed of the golf ball 20 and the position of the photographing unit 12, the photographing timing of the photographing unit 12 is required to be immediately after the golf ball 20 starts to move. By using the reflective optical sensor 14 having a fast reaction speed, it is possible to set the photographing timing to a faster timing, and the photographing accuracy by the photographing apparatus 10 can be improved.
  • the lamp 15 is an example of a notification unit that notifies that an object has been continuously detected within a detection range of the reflective optical sensor 14 for a predetermined time or more.
  • the golf ball 20 is placed on the tee 24. When it is detected continuously for a predetermined time or longer, it is turned on to visually notify. This is to notify the operator I that the preparation for photographing has been completed, as will be described later.
  • the lamp 15 is installed, for example, in the vicinity of the reflective optical sensor 14 (integrated with the reflective optical sensor 14 in FIG. 1) at a position where the operator I can reasonably visually recognize it in an addressed posture. Note that an audio output means such as a speaker may be used as the notification unit.
  • the lamp 15 (notification unit) and the computer 18 are connected to each other, but the lamp 15 (notification unit) and the reflective optical sensor 14 may be directly connected.
  • FIG. 3 is a block diagram illustrating a hardware configuration of the computer 18.
  • the computer 18 includes a CPU 1802, a ROM 1804, a RAM 1806, a hard disk device (HDD) 1808, a disk device 1810, a keyboard 1812, a mouse 1814, a display 1816, a printer 1818, and input / output connected via an interface circuit (not shown) and a bus line.
  • An interface (I / F) 1820 is included.
  • a ROM 1804 stores a control program and the like, and a RAM 1806 provides a working area.
  • the hard disk device 1808 stores a shooting control program for controlling shooting timing of the shooting unit 12 and a dedicated program (behavior measurement program) for measuring the behavior of the golf ball 20.
  • the disk device 1810 records and / or reproduces data on a recording medium such as a CD or a DVD.
  • a keyboard 1812 and a mouse 1814 receive operation inputs from the operator.
  • a display 1816 displays and outputs data, and a printer 1818 prints and outputs data.
  • the display 1816 and the printer 1818 output data.
  • the input / output interface 1820 exchanges data with the photographing unit 12, the reflective optical sensor 14, the lamp 15, and the like.
  • a small information device such as a smart phone or a tablet may be used as the computer 18.
  • the computer 18 and devices such as the photographing unit 12 are connected by wiring, but communication between these devices may be performed by wireless communication.
  • the computer 18 includes a camera or a speaker
  • an image is captured using the camera included in the computer 18 or a notification unit is configured using the speaker included in the computer 18. Notification may be performed. In this case, it is possible to reduce the number of devices constituting the photographing apparatus 10 and to save time and space for installing the devices.
  • the shooting control unit 182 sets the moving-out timing.
  • the photographing timing by the photographing unit 12 is controlled.
  • the imaging timing control is, for example, that imaging at the imaging unit 12 is performed at a timing at which a predetermined delay time Tx is taken from the reference time T0, where T0 (reference time) is the time when the object has left the detection range.
  • the first delay time Tx1 is set for the first camera 12A, while the second camera 12B is located farther from the movement start position P0 than the first camera 12A.
  • a second delay time Tx2 longer than Tx1 is set.
  • the shooting control unit 182 controls the shooting timing of each of the cameras 12A and 12B so that an image is shot while the object is located in the shooting range of each of the cameras 12A and 12B (shooting unit).
  • Each of the delay times Tx1 and Tx2 predicts an approximate value of the moving speed (especially the initial speed) of the golf ball 20 from the golf skill level of the operator I, the type of the golf club 22, and the like, and the position of each camera (movement start position). What is necessary is just to set suitably from the distance from P0).
  • the imaging control unit 182 includes the imaging unit only when an object is detected within the detection range of the reflective optical sensor 14 for a predetermined time or longer and then the object is detected. 12 is performed. Even if an object is detected on or near the tee 24 that is the detection range of the reflective optical sensor 14, the object is not the golf ball 20, for example, the limb of the operator I or the golf club 22. This is because if the photographing is performed in this case, erroneous photographing is performed.
  • the object in the detection range of the reflective optical sensor 14 on the tee 24
  • the operator I sets the golf ball 20 on the tee and then takes an address posture to swing. A certain amount of time should be required during the implementation.
  • the shooting control unit 182 performs shooting by the shooting unit 12 only when the detection of the object by the reflective optical sensor 14 is continued for a predetermined time or more, and prevents the object from being erroneously detected, thereby reliably shooting the golf ball 20. It is possible to shoot.
  • the lamp I serving as a notification unit notifies that an object has been continuously detected within a detection range of the reflective optical sensor 14 for a predetermined time or more, so that the operator I can play the golf ball 20 After the tee 24 is set, the swing may be started after the lamp 15 is turned on.
  • the behavior calculation unit 184 calculates the behavior of the golf ball 20 using the image photographed by the photographing unit 12.
  • the images photographed by the photographing unit 12 are two images: a first image photographed by the first camera 12A and a second image photographed by the second camera 12B.
  • the behavior of the golf ball 20 is the movement direction, the rotation axis direction, and the movement speed of the golf ball 20 after hitting.
  • FIG. 5 is an explanatory diagram schematically illustrating an example of an image captured by the imaging unit 12.
  • FIG. 5A shows a first image
  • a shooting range FA after the first delay time Tx1 is shot with the first camera 12A from the reference time T0 when the golf ball 20 has left the detection range of the reflective optical sensor 14. It is an image.
  • FIG. 5B shows a second image.
  • the shooting range FB after the second delay time Tx2 (> Tx1) from the reference time T0 when the golf ball 20 moved out of the detection range of the reflective optical sensor 14 is shown in the second camera. It is the image image
  • FIG. 5C is obtained by superposing FIGS. 5A and 5B after erasing the golf club 22 from FIG. 5A. Since the positions of the two cameras 12A and 12B and the positions of the shooting ranges FA and FB are known, two images can be superimposed as shown in FIG. 5C.
  • FIG. 6 is also an explanatory view schematically showing an example of an image taken by the photographing unit 12, FIG. 6A is the same as FIG. 5A, and FIG. 6B is a direction in which the golf ball 20 approaches the second camera 12B.
  • FIG. 6C is an image when the golf ball 20 moves in a direction away from the second camera 12B (y coordinate minus direction).
  • a method for calculating the moving direction ⁇ h in the up-down direction (on the xz plane) will be described.
  • a line segment L1 connecting the center point P1 of the golf ball 20 in the first image and the center point P2 of the golf ball 20 in the second image, and the center of the golf ball 20 in the first image The moving direction in the vertical direction (on the xz plane) can be specified by the angle ⁇ h formed by the line segment L2 that passes through the point P1 and is parallel to the ground G. That is, the behavior calculation unit 184 calculates the displacement direction between the position of the golf ball 20 in the first image and the position of the golf ball 20 in the second image as the movement direction.
  • an angle formed by a line segment (L1) connecting the center positions of objects on a plurality of captured images and a line segment (L2) parallel to the ground G is defined as the vertical movement direction of the object. calculate.
  • the vertical movement direction ⁇ h is calculated after correcting the inclination.
  • the moving direction ⁇ w in the left-right direction (on the xy plane) is specified based on the difference in the diameter of the golf ball 20 on the two images. Can do. For example, when the golf ball 20 moves in the direction approaching the second camera 12B (the y-coordinate plus direction) as shown in FIG. 6B, the larger the diameter of the golf ball 20 on the image, the larger the direction of the second camera 12B. It will be bent greatly. In addition, when the golf ball 20 moves in a direction away from the second camera 12B (y coordinate minus direction) as shown in FIG. 6C, the smaller the diameter of the golf ball 20 on the image, the opposite to the second camera 12B.
  • the behavior calculation unit 184 calculates a moving direction in a direction orthogonal to the shooting direction of the shooting unit 12 based on the ratio of the diameter of the golf ball between the first image and the second image (between a plurality of images). To do.
  • FIG. 7 is an explanatory diagram showing another configuration of the photographing apparatus 10.
  • two cameras 13A and 13B are installed so as to overlap the imaging ranges FA and FB as much as possible.
  • camera parameters such as the positions of the cameras 13A and 123, the shooting direction (orientation), and the shooting magnification are specified in advance.
  • the cameras 13A and 13B capture images twice at the same time and with a predetermined time to obtain a total of four images.
  • the shooting time is after a predetermined delay time Tx3, Tx4 (Tx3 ⁇ Tx4) has elapsed from the reference time, but the time when the golf ball 20 is located in the shooting range FA, FB at any shooting time.
  • the position of the golf ball 20 on the images photographed by the respective cameras 13A and 13B is specified, and the position of the golf ball 20 in the three-dimensional space at two times (image shooting time) is specified using the above camera parameters. .
  • the moving direction ⁇ w of the golf ball 20 can be calculated from the difference in position of the golf ball 20 in the three-dimensional space at these two times. Further, as shown in FIG.
  • the first camera pair 19A composed of two cameras 17A and 17B installed so that the respective shooting ranges FA and FB overlap with each other and the shooting ranges FC and FD overlap.
  • a total of four cameras with the second camera pair 19B composed of the two cameras 17C and 17D installed in this manner may be provided for photographing.
  • the first camera pair 19A cameras 17A and 17B
  • the second camera pair 19B an image is simultaneously shot by the second camera pair 19B (cameras 17C and 17D).
  • four images may be obtained with a total of four cameras.
  • a mark M is added to the golf ball 20.
  • the rotation axis direction of the golf ball 20 can be specified.
  • the mark M added to the golf ball 20 has a pattern that appears on the image no matter which direction the golf ball 20 rotates.
  • various conventionally known symbols such as a line segment drawn over the entire circumference of the golf ball 20 as shown in FIG. 5 can be used.
  • the moving distance of the golf ball 20 is calculated. As described above, since the installation positions and shooting magnifications of the cameras 12A and 12B are known, the ratio between the distance on the image and the distance on the real space is known, and the position of the golf ball 20 in the first image The two-dimensional movement distance on the xz plane of the golf ball 20 can be calculated from the relationship with the position of the golf ball 20 in the second image. Further, the second image after the first image is captured from the difference between the first delay time Tx1 set for the first camera 12A and the second delay time Tx2 set for the second camera 12B. The elapsed time until shooting can be specified.
  • the behavior calculation unit 184 calculates the moving distance of the object between the plurality of images taken based on the ratio of the distance on the plurality of images and the distance on the real space, and the plurality of images are taken.
  • the moving speed is calculated by dividing the moving distance by the elapsed time. That is, the moving speed of the golf ball 20 can be calculated by dividing the moving distance of the golf ball 20 between the two images by the elapsed time while the two images are captured.
  • FIG. 4 is a flowchart illustrating a processing procedure performed by the imaging apparatus 10.
  • the operator I activates the reflective optical sensor 14 (step S400).
  • the reflective optical sensor 14 projects light within the detection range, and determines whether there is an object within the detection range based on the received light amount (step S402).
  • the reflective optical sensor 14 waits until an object is detected within the detection range (step S402: No loop).
  • step S402 Yes
  • a predetermined time elapses while the object is detected.
  • the process returns to step S402 and waits (step S404: No loop). If the object has left the detection range before the predetermined time has elapsed, the process returns to step S402 and the subsequent processing is repeated.
  • the lamp 15 as the notification unit is turned on to notify the operator I that the preparation for photographing has been completed (step S406).
  • step S408 No loop.
  • the imaging control unit 182 determines the exit time (reference time T0).
  • the first image is taken by the first camera 12A (step S410).
  • the second delay time Tx2 (> Tx1) has elapsed from the exit time (reference time T0)
  • the second image is taken by the second camera 12B (step S412).
  • the behavior calculation unit 184 calculates the behavior of the golf ball 20 using the two images taken in steps S410 and S412 (step S414), and displays the calculated behavior information on a display 1816, printing paper, or the like ( Step S416), the process according to this flowchart is terminated.
  • the imaging apparatus 10 performs imaging by the imaging unit 12 with reference to the timing at which the object moves out of the detection range after the object is detected within the detection range of the reflective optical sensor 14. Since the timing is controlled, it is possible to take a picture after detecting that the object has started to move, which is advantageous in reliably taking a picture of the movement of the object. For example, it is possible to obtain a stable detection result as compared to the case where the start of movement of an object is detected by sound (such as a hitting sound). Further, it is advantageous in simplifying the system configuration as compared with the case where the start of movement of the object is detected from the movement of the impact tool.
  • the photographing timing can be set according to the moving speed of the object, the installation position of the photographing unit 12, and the like. This is advantageous in improving the performance.
  • the imaging device 10 performs imaging by the imaging unit 12 only when an object within the detection range is continuously detected for a predetermined time or more, when an object that is not an object to be captured enters the detection range. This is advantageous in preventing accidental shooting.
  • the photographing apparatus 10 further includes a lamp 15 (notification unit) that notifies that an object has been continuously detected within a detection range for a predetermined time or more, when the operator I starts moving the object.
  • the reflective optical sensor 14 has a function of identifying the color of an object, it becomes easy to recognize a specific object such as a golf ball 20, for example. This is advantageous in improving recognition accuracy.
  • the response speed of the reflective optical sensor 14 is set to 1 ms or less, it is possible to quickly take an image after the object has left the detection range, and even if the moving speed of the object is fast, it is ensured. This is advantageous for shooting.
  • the imaging device 10 is a ball game ball in which an object is launched by a hitting tool, and the detection range of the reflective optical sensor 14 includes the launch position of the ball game ball.
  • the detection range of the reflective optical sensor 14 includes the launch position of the ball game ball.
  • DESCRIPTION OF SYMBOLS 10 ... Imaging device, 12 ... Imaging

Abstract

In order to easily and precisely control imaging timing when capturing images of a moving object, an imaging device 10 comprises: an imaging unit 12 that captures images of a moving golf ball 20; a reflective optical sensor 14 that detects the presence of the golf ball 20 inside a detection range; and an imaging control unit 182. After detecting a golf ball 20 inside the detection range above a tee 24, the imaging control unit 182 controls the imaging timing for the imaging unit 12, if departure by the golf ball 20 from the detection range is detected and using the timing of the departure as a reference. The detection range of the reflective optical sensor 14 is set, for example, above the tee 24.

Description

撮影装置、物体の挙動計測装置、撮影制御方法および物体の挙動計測方法Imaging apparatus, object behavior measuring apparatus, imaging control method, and object behavior measuring method
 本発明は、物体を撮影する撮影装置、物体の挙動計測装置、撮影制御方法および物体の挙動計測方法に関する。 The present invention relates to an imaging device for imaging an object, an object behavior measuring device, an imaging control method, and an object behavior measuring method.
 従来、ゴルフボールなどの移動体の挙動を計測する方法として、撮影装置(カメラ)で撮影した画像を用いる方法が知られている。
 ここで、高速で移動する移動体を撮影するためには、撮影装置の撮影範囲内に移動体が入ったことを認識する手段が必要となる。このような通過認識手段としては、例えば光学式センサが広く用いられている。
 光学式センサを用いた移動体の撮影方法の一例(第1の方法)として、打撃具による打撃により移動を開始する球技用ボールを撮影する場合に、打撃具の移動経路上(打撃直前位置など)に光学式センサの検出範囲を設定し、打撃具の通過をトリガとして撮影を行う方法がある。
 また、例えば第2の方法として、打撃後の球技用ボールの予測移動経路上に光学式センサの検出範囲を設定し、球技用ボールの通過をトリガとして撮影を行う方法がある。
 また、例えば第3の方法として、打撃前の球技用ボールの固定位置(ゴルフのティー上など)に反射型光学式センサの検出範囲を設定し、球技用ボールが固定位置から退去したことをトリガとして撮影を行う方法がある。
Conventionally, as a method for measuring the behavior of a moving body such as a golf ball, a method using an image photographed by a photographing device (camera) is known.
Here, in order to image a moving body that moves at high speed, a means for recognizing that the moving body has entered the imaging range of the imaging apparatus is required. As such a passage recognition means, for example, an optical sensor is widely used.
As an example (first method) of shooting a moving object using an optical sensor, when shooting a ball for a ball game that starts moving by striking with a striking tool, on the travel path of the striking tool (position just before striking, etc.) ), The detection range of the optical sensor is set, and shooting is performed with the passage of the impact tool as a trigger.
For example, as a second method, there is a method in which a detection range of an optical sensor is set on a predicted movement path of a ball game ball after hitting and shooting is performed using the passage of the ball game ball as a trigger.
For example, as a third method, the detection range of the reflective optical sensor is set at the fixed position (such as on a golf tee) of the ball game ball before hitting, and the ball game ball is retreated from the fixed position. There is a method of shooting.
 上記第3の方法を用いた技術の一例として、例えば下記特許文献1では、練習者によるゴルフスイングを連続的に撮影するとともに、ボールセンサによりティー上のゴルフボールの有無を検出する。そして、撮影開始後ティー上にゴルフボールがなくなったことを検出すると、トリガ信号を出力し、トリガ信号の出力から所定時間経過後に撮影を停止するスイング解析システムが開示されている。 As an example of the technique using the third method, for example, in Patent Document 1 below, a golf swing by a practitioner is continuously photographed and the presence or absence of a golf ball on the tee is detected by a ball sensor. A swing analysis system is disclosed that outputs a trigger signal when it is detected that there is no golf ball on the tee after the start of shooting, and stops shooting after a predetermined time has elapsed from the output of the trigger signal.
特開平5-15628号公報JP-A-5-15628
 しかしながら、第1の方法のように光学式センサで打撃具を検知する場合には、打撃具の通過位置とカメラの撮影範囲(球技用ボールの移動経路)との間に距離があるため、移動速度などを算出して撮影タイミングを調整する機構が必要となるという課題がある。
 また、第2の方法のように光学式センサで移動体である球技用ボールの通過を認識する場合には、球技用ボールの通過する可能性がある領域全体をカバーするように光学式センサの検出範囲を設定する必要があり、機材が高価になるという課題がある。
 また、第3の方法のように反射型光学式センサで物体の通過を認識する場合、検出対象物以外(人の手や足など)が通過しても誤反応してしまうという課題がある。
 本発明は、このような事情に鑑みなされたものであり、その目的は、移動する物体を撮影する際に、簡易かつ精度よく撮影タイミングを制御することができる撮影装置および撮影制御方法、およびこれを用いた物体の挙動計測装置および挙動計測方法を提供することにある。
However, when the hitting tool is detected by the optical sensor as in the first method, there is a distance between the passing position of the hitting tool and the shooting range of the camera (movement path of the ball for ball game). There is a problem that a mechanism for adjusting the photographing timing by calculating the speed and the like is required.
In addition, when the passage of a ball game ball as a moving object is recognized by the optical sensor as in the second method, the optical sensor is covered so as to cover the entire area through which the ball game ball may pass. There is a problem that it is necessary to set a detection range, and the equipment becomes expensive.
In addition, when the passage of an object is recognized by a reflective optical sensor as in the third method, there is a problem that even if objects other than the detection target (such as a human hand or foot) pass, a false reaction occurs.
The present invention has been made in view of such circumstances, and an object of the present invention is to provide a photographing apparatus and a photographing control method capable of easily and accurately controlling photographing timing when photographing a moving object, and the same. It is an object to provide a behavior measuring apparatus and a behavior measuring method of an object using an object.
 上述の目的を達成するため、請求項1の発明にかかる撮影装置は、移動する物体を撮影する撮影部と、投光部と受光部とが一体となった検出部と、前記受光部で受光される光量に基づいて前記投光部の投光方向側の検出範囲内における前記物体の有無を検知する検知部と、を備える反射型光学式センサと、前記検出範囲内に前記物体が検知された後、前記検出範囲から前記物体が退去したことが検知された場合に、当該退去タイミングを基準として前記撮影部による撮影タイミングを制御する撮影制御部と、を備えることを特徴とする。
 請求項2の発明にかかる撮影装置は、前記撮影制御部は、前記検出範囲内に前記物体が所定時間以上継続して検知された後に前記退去が検知された場合にのみ、前記撮影部による撮影を実施する、ことを特徴とする。
 請求項3の発明にかかる撮影装置は、前記検出範囲内に前記物体が所定時間以上継続して検知されたことを報知する報知部をさらに備える、ことを特徴とする。
 請求項4の発明にかかる撮影装置は、前記反射型光学式センサは、前記物体の色を識別する機能を有し、前記物体が所定の色であった場合にのみ前記検出範囲内に物体が有ると検知する、ことを特徴とする。
 請求項5の発明にかかる撮影装置は、前記反射型光学式センサの反応速度が1ms以下である、ことを特徴とする。
 請求項6の発明にかかる撮影装置は、前記物体は、打撃具により打ち出される球技用ボールであり、前記検出範囲は、前記球技用ボールの打ち出し位置を含み、前記撮影制御部は、前記打撃具による前記球技用ボールの打ち出し後の画像を複数撮影するよう前記撮影部を制御する、ことを特徴とする。
 請求項7の発明にかかる物体の挙動計測装置は、請求項1から6のいずれか1項記載の撮影装置を用いた物体の挙動計測装置であって、前記撮影制御部は、前記撮影部の撮影範囲に前記物体が位置する間に複数の画像を撮影するように前記撮影タイミングを制御し、前記撮影部で撮影された複数の画像を用いて前記物体の移動方向、回転軸方向および移動速度のうちの少なくともいずれかを算出する挙動算出部を備えることを特徴とする。
 請求項8の発明にかかる物体の挙動計測装置は、前記撮影部は、前記物体の目標移動方向に沿って複数設けられており、前記挙動算出部は、複数撮影された画像上の前記物体の中心位置をつなぐ線分と、地面と平行な線分とのなす角度を前記物体の上下方向の前記移動方向として算出する、ことを特徴とする。
 請求項9の発明にかかる物体の挙動計測装置は、前記物体は、直径が既知のボールであり、前記挙動算出部は、複数撮影された画像間の前記ボールの直径の比率に基づいて、複数の前記撮影部の撮影方向と直交する方向の前記移動方向を算出する、ことを特徴とする。
 請求項10の発明にかかる物体の挙動計測装置は、前記挙動算出部は、複数の画像上の距離と実空間上の距離との比率に基づいて複数の画像が撮影された間の前記物体の移動距離を算出し、前記複数の画像が撮影される間の経過時間で前記移動距離を除して前記移動速度を更に算出する、ことを特徴とする。
 請求項11の発明にかかる物体の挙動計測装置は、前記移動体は、全方位から視認可能な図柄を有し、前記挙動算出部は、複数撮影された画像間における前記図柄の位置および向きの差分から前記回転軸方向を算出する、ことを特徴とする。
 請求項12の発明にかかる撮影制御方法は、移動する物体を撮影する撮影装置を制御する撮影制御方法であって、投光部から投光した光を受光部で受光し、前記受光部で受光される光量に基づいて前記投光部の投光方向側の検出範囲内における前記物体の有無を検知する検知工程と、前記検出範囲内に前記物体が検知された後、前記検出範囲から前記物体が退去したことが検知された場合に、当該退去タイミングを基準として前記撮影装置による撮影タイミングを制御する撮影制御工程と、を含んだことを特徴とする。
 請求項13の発明にかかる物体の挙動計測方法は、請求項12に記載の撮影制御方法を用いた物体の挙動計測方法であって、前記撮影制御工程では、前記撮影装置の撮影範囲に前記物体が位置する間に複数の画像を撮影するように前記撮影タイミングを制御し、前記撮影装置で撮影された複数の画像を用いて前記物体の移動方向、回転軸方向および移動速度のうちの少なくともいずれかを算出する挙動算出工程をさらに含むことを特徴とする。
In order to achieve the above-described object, an imaging apparatus according to a first aspect of the present invention includes an imaging unit for imaging a moving object, a detection unit in which a light projecting unit and a light receiving unit are integrated, and light reception by the light receiving unit. A reflective optical sensor comprising: a detection unit that detects the presence or absence of the object in a detection range on the light emitting direction side of the light projecting unit based on the amount of light emitted; and the object is detected in the detection range. And a shooting control unit that controls the shooting timing of the shooting unit with reference to the leaving timing when it is detected that the object has left the detection range.
In the photographing apparatus according to a second aspect of the present invention, the photographing control unit performs photographing by the photographing unit only when the retreat is detected after the object is continuously detected within the detection range for a predetermined time or more. It is characterized by implementing.
According to a third aspect of the present invention, there is provided a photographing apparatus further comprising a notifying unit that notifies that the object is continuously detected for a predetermined time or more within the detection range.
According to a fourth aspect of the present invention, the reflective optical sensor has a function of identifying the color of the object, and the object is within the detection range only when the object has a predetermined color. It is detected that it is present.
The imaging apparatus according to a fifth aspect of the invention is characterized in that a response speed of the reflective optical sensor is 1 ms or less.
According to a sixth aspect of the present invention, the object is a ball game ball launched by a hitting tool, the detection range includes a launch position of the ball game ball, and the shooting control unit includes the hitting tool. The photographing unit is controlled so as to photograph a plurality of images after launching the ball for ball game.
An object behavior measuring apparatus according to a seventh aspect of the invention is an object behavior measuring apparatus using the photographing apparatus according to any one of the first to sixth aspects, wherein the photographing control unit includes: The imaging timing is controlled so as to capture a plurality of images while the object is located in the imaging range, and the moving direction, the rotation axis direction, and the moving speed of the object using the plurality of images captured by the imaging unit. A behavior calculating unit that calculates at least one of the above is provided.
In the object behavior measuring apparatus according to an eighth aspect of the present invention, a plurality of the photographing units are provided along a target movement direction of the object, and the behavior calculating unit is configured to detect the plurality of objects on the photographed image. An angle formed by a line segment connecting the center positions and a line segment parallel to the ground is calculated as the moving direction in the vertical direction of the object.
The object behavior measuring apparatus according to the invention of claim 9 is characterized in that the object is a ball having a known diameter, and the behavior calculating unit is configured based on a ratio of the diameter of the ball between a plurality of captured images. The moving direction in a direction orthogonal to the shooting direction of the shooting unit is calculated.
In the object behavior measurement apparatus according to the invention of claim 10, the behavior calculation unit is configured to detect the object during a period when a plurality of images are captured based on a ratio between a distance on the plurality of images and a distance on the real space. A moving distance is calculated, and the moving speed is further calculated by dividing the moving distance by an elapsed time during which the plurality of images are captured.
In the behavior measuring apparatus for an object according to an eleventh aspect of the invention, the moving body has a symbol that can be visually recognized from all directions, and the behavior calculating unit determines the position and orientation of the symbol between a plurality of captured images. The rotation axis direction is calculated from the difference.
According to a twelfth aspect of the present invention, there is provided a photographing control method for controlling a photographing device for photographing a moving object, wherein light projected from a light projecting unit is received by a light receiving unit and received by the light receiving unit. A detection step of detecting the presence or absence of the object within a detection range on the light emitting direction side of the light projecting unit based on the amount of light emitted, and after detecting the object within the detection range, the object from the detection range And a shooting control step of controlling shooting timing by the shooting device with reference to the leaving timing when it is detected that the camera has left.
An object behavior measuring method according to a thirteenth aspect of the invention is an object behavior measuring method using the photographing control method according to the twelfth aspect, wherein the object is placed in a photographing range of the photographing apparatus in the photographing control step. The imaging timing is controlled so as to capture a plurality of images while the image is positioned, and at least any one of the moving direction, the rotation axis direction, and the moving speed of the object using the plurality of images captured by the imaging device It further includes a behavior calculating step for calculating the above.
 請求項1および請求項12の発明によれば、反射型光学式センサの検出範囲内に物体が検知された後、検出範囲から物体が退去したタイミングを基準として撮影部による撮影タイミングを制御するので、物体が移動開始したことを検知した上で撮影を行うことができ、物体が移動する様子を確実に撮影する上で有利となる。例えば、物体の移動開始を音声(打撃音など)によって検知する場合と比較して、安定した検知結果を得ることができる。また、物体の移動開始を打撃具の動きから検知する場合と比較して、システム構成の簡素化を図る上で有利となる。また、物体が移動開始した後の任意の時刻で撮影を行うことができるので、物体の移動速度や撮影部の位置等に合わせて撮影タイミングを設定することができ、撮影装置の汎用性を向上させる上で有利となる。
 請求項2の発明によれば、検出範囲内に物体が所定時間以上継続して検知された場合にのみ撮影部による撮影を実施するので、撮影対象の物体ではないものが検出範囲に入った場合に誤って撮影するのを防止する上で有利となる。
 請求項3の発明によれば、検出範囲内に物体が所定時間以上継続して検知されたことを報知する報知部をさらに備えたので、物体の移動を操作者が開始させる場合に、物体の移動開始タイミングを的確に設定することができ、効率的に物体の画像を撮影する上で有利となる。
 請求項4の発明によれば、反射型光学式センサが物体の色を識別する機能を有するので、特定の物体を認識しやすくなり、反射型光学式センサの認識精度を向上させる上で有利となる。
 請求項5の発明によれば、反射型光学式センサの反応速度が1ms以下であるので、検出範囲から物体が退去した後に迅速に撮影を行うことが可能となり、物体の移動速度が速い場合でも確実に撮影を行う上で有利となる。
 請求項6の発明によれば、物体が打撃具により打ち出される球技用ボールであり、反射型光学式センサの検出範囲は球技用ボールの打ち出し位置を含むので、打ち出し直後の球技用ボールを撮影してその挙動を算出する挙動算出装置に撮影装置を適用する上で有利となる。また、反射型光学式センサの検出範囲を球技用ボールの打ち出し位置とするので、センサの検出範囲が最低限の範囲で済み、撮影装置のシステムを簡素化する上で有利となる。
 請求項7および請求項13の発明によれば、物体が移動開始した後の任意の時刻で撮影した画像を用いて物体の挙動を計測するので、物体の挙動を精度よく計測する上で有利となる。
 請求項8の発明によれば、複数の画像における物体の位置の中心位置の変位方向を上下方向の移動方向として算出するので、画像平面内における移動方向を簡易に計測することができる。
 請求項9の発明によれば、複数の画像における物体の直径の比率に基づいて撮影方向(画像平面)と直交する方向の移動方向を算出するので、3次元空間内における移動体の移動方向を計測することができ、より詳細な移動体の挙動情報を得ることができる。
 請求項10の発明によれば、物体の移動開始直後の移動速度を算出することができ、物体の挙動をより詳細に把握することができる。
 請求項11の発明によれば、複数の画像における図柄の位置および向きの差分から回転軸方向を算出するので、ドップラーセンサ等でも測定が困難な回転軸方向を容易に計測することができる。
According to the first and twelfth aspects of the present invention, the imaging timing of the imaging unit is controlled based on the timing at which the object moves out of the detection range after the object is detected within the detection range of the reflective optical sensor. It is possible to take an image after detecting that the object has started to move, which is advantageous in reliably taking an image of the movement of the object. For example, it is possible to obtain a stable detection result as compared to the case where the start of movement of an object is detected by sound (such as a hitting sound). Further, it is advantageous in simplifying the system configuration as compared with the case where the start of movement of the object is detected from the movement of the impact tool. In addition, since shooting can be performed at any time after the object starts moving, shooting timing can be set according to the moving speed of the object, the position of the shooting unit, etc., improving the versatility of the shooting device This is advantageous.
According to the invention of claim 2, since the photographing by the photographing unit is performed only when the object is detected within the detection range continuously for a predetermined time or longer, when the object that is not the object to be photographed enters the detection range This is advantageous in preventing accidental shooting.
According to the third aspect of the present invention, the information processing apparatus further includes a notification unit that notifies that the object has been continuously detected within the detection range for a predetermined time or longer, so that when the operator starts moving the object, The movement start timing can be accurately set, which is advantageous for efficiently capturing an image of an object.
According to the invention of claim 4, since the reflective optical sensor has a function of identifying the color of an object, it is easy to recognize a specific object, which is advantageous in improving the recognition accuracy of the reflective optical sensor. Become.
According to the fifth aspect of the present invention, since the response speed of the reflective optical sensor is 1 ms or less, it is possible to quickly take an image after the object has left the detection range, even when the moving speed of the object is high. This is advantageous for sure shooting.
According to the invention of claim 6, since the object is a ball game ball that is launched by a hitting tool, and the detection range of the reflective optical sensor includes the launch position of the ball game ball, the ball game ball immediately after launch is photographed. This is advantageous in applying the photographing apparatus to a behavior calculation apparatus that calculates the behavior. In addition, since the detection range of the reflective optical sensor is set as the launch position of the ball game ball, the detection range of the sensor is a minimum range, which is advantageous in simplifying the system of the photographing apparatus.
According to the seventh and thirteenth aspects of the present invention, since the behavior of the object is measured using an image taken at an arbitrary time after the movement of the object starts, it is advantageous in accurately measuring the behavior of the object. Become.
According to the invention of claim 8, since the displacement direction of the center position of the object position in the plurality of images is calculated as the vertical movement direction, the movement direction in the image plane can be easily measured.
According to the ninth aspect of the present invention, since the moving direction in the direction orthogonal to the photographing direction (image plane) is calculated based on the ratio of the diameters of the objects in the plurality of images, the moving direction of the moving body in the three-dimensional space is determined. It is possible to measure and obtain more detailed behavior information of the moving body.
According to the invention of claim 10, the moving speed immediately after the start of the movement of the object can be calculated, and the behavior of the object can be grasped in more detail.
According to the eleventh aspect of the invention, since the rotation axis direction is calculated from the difference between the positions and orientations of the symbols in a plurality of images, the rotation axis direction that is difficult to measure even with a Doppler sensor or the like can be easily measured.
実施の形態にかかる撮影装置10の概略構成を示す説明図である。It is explanatory drawing which shows schematic structure of the imaging device 10 concerning embodiment. 撮影装置10の機能的構成を示すブロック図である。2 is a block diagram illustrating a functional configuration of the imaging apparatus 10. FIG. コンピュータ18のハードウェア構成を示すブロック図である。2 is a block diagram showing a hardware configuration of a computer 18. FIG. 撮影装置10による処理の手順を示すフローチャートである。3 is a flowchart illustrating a processing procedure performed by the imaging apparatus 10. 撮影部12による撮影画像の一例を模式的に示す説明図である。It is explanatory drawing which shows typically an example of the picked-up image by the imaging | photography part. 撮影部12による撮影画像の一例を模式的に示す説明図である。It is explanatory drawing which shows typically an example of the picked-up image by the imaging | photography part. 撮影装置10の他の構成を示す説明図である。FIG. 6 is an explanatory diagram illustrating another configuration of the photographing apparatus 10.
 以下に添付図面を参照して、本発明にかかる撮影装置および撮影制御方法の好適な実施の形態を詳細に説明する。
 本実施の形態では、物体の一例として、ゴルフクラブ22によって打撃されて移動するゴルフボール20を挙げ、撮影装置10の撮影画像からゴルフボール20の挙動を計測する場合について説明する。
 図1は、実施の形態にかかる撮影装置10の概略構成を示す説明図である。
 また、図2は、撮影装置10の機能的構成を示すブロック図である。
 図1Aは撮影装置10の構成を打ち出し方向に対して後方から見た図であり、図1Bは図1Aにおけるゴルフボール20の周辺を上面から見た図である。
 図1Aには、ゴルフクラブ22によってゴルフボール20を打撃しようとする操作者(プレイヤー)Iが示されている。ゴルフボール20は、地面(水平面)Gに差し込まれたティー24上に載置されており、この状態でゴルフクラブ22により打撃され、移動を開始する。すなわち、図1Aの例では、ティー24上のゴルフボール20の位置が移動開始位置P0となる。
 なお、ゴルフボール20をティー24に載置した状態で計測を行うか、地面Gに載置した状態で計測を行うか、すなわち、ティー24上のゴルフボール20の位置を移動開始位置P0とするか、地面G上のゴルフボール20の位置を移動開始位置P0とするかは操作者Iの任意であるが、後述する反射型光学式センサ14の検出範囲が移動開始位置P0を含むように調整する必要がある。
Exemplary embodiments of a photographing apparatus and a photographing control method according to the present invention will be explained below in detail with reference to the accompanying drawings.
In the present embodiment, a golf ball 20 that is hit by a golf club 22 and moves is taken as an example of an object, and a case where the behavior of the golf ball 20 is measured from a captured image of the imaging device 10 will be described.
FIG. 1 is an explanatory diagram illustrating a schematic configuration of an imaging apparatus 10 according to the embodiment.
FIG. 2 is a block diagram showing a functional configuration of the photographing apparatus 10.
1A is a view of the configuration of the photographing apparatus 10 as viewed from the rear with respect to the launch direction, and FIG. 1B is a view of the periphery of the golf ball 20 in FIG. 1A as viewed from above.
FIG. 1A shows an operator (player) I who wants to hit the golf ball 20 with the golf club 22. The golf ball 20 is placed on a tee 24 inserted into the ground (horizontal plane) G. In this state, the golf ball 20 is hit by the golf club 22 and starts moving. That is, in the example of FIG. 1A, the position of the golf ball 20 on the tee 24 is the movement start position P0.
Whether the measurement is performed with the golf ball 20 placed on the tee 24 or the measurement is performed with the golf ball 20 placed on the ground G, that is, the position of the golf ball 20 on the tee 24 is set as the movement start position P0. Whether the position of the golf ball 20 on the ground G is set as the movement start position P0 is arbitrary by the operator I, but is adjusted so that the detection range of the reflective optical sensor 14 described later includes the movement start position P0. There is a need to.
 また、図1Bに示す符号Tは、ゴルフクラブ22によってゴルフボール20を打撃した際の目標移動方向である。なお、図中には表れていないが、目標移動方向Tは上下方向(重力方向)にも変位があるものとする。
 以下、撮影装置10が設置された空間の座標の原点を移動開始位置P0とし、目標移動方向Tの地面Gへの投影線と平行な方向にx軸、重力方向と反対方向をz軸、x軸およびz軸と直交する方向をy軸とする。なお、図1では図示の都合上、各座標軸を原点である移動開始位置P0から離れた位置に図示している。
 また、符号Mは、ゴルフボール20の表面に付与されたマークである。
Moreover, the symbol T shown in FIG. 1B is the target movement direction when the golf ball 20 is hit with the golf club 22. Although not shown in the figure, it is assumed that the target movement direction T is also displaced in the vertical direction (gravity direction).
Hereinafter, the origin of the coordinates of the space in which the photographing apparatus 10 is installed is set as the movement start position P0, the x axis is parallel to the projection line on the ground G in the target movement direction T, the z axis is the direction opposite to the gravity direction, and x The direction orthogonal to the axis and the z-axis is taken as the y-axis. In FIG. 1, for convenience of illustration, each coordinate axis is illustrated at a position away from the movement start position P0 that is the origin.
Reference symbol M is a mark given to the surface of the golf ball 20.
 撮影装置10は、撮影部12、反射型光学式センサ14、ランプ15およびコンピュータ18を含んで構成される。
 撮影部12は、静止画を撮影するカメラである。
 本実施の形態では、目標移動方向Tに沿って2台のカメラ(第1カメラ12A、第2カメラ12B)を設置している。第1カメラ12Aは、移動開始位置P0を含み目標移動方向Tに沿った所定範囲FAを撮影範囲としている。また、第2カメラ12Bは、第1カメラ12Aに対して目標移動方向T側に離れた位置に設置されており、第1カメラ12Aの撮影範囲FAよりも目標移動方向T側にずれた所定範囲FBを撮影範囲としている。
 すなわち、撮影部12はゴルフボール20の打ち出し方向に沿って複数設けられており、ゴルフクラブ22によるゴルフボール20の打ち出し後の画像を複数撮影する。なお、1台のカメラを用いて撮影時刻をずらして複数の画像を撮影するようにしてもよい。
 また、図1Bでは、第1カメラ12Aの撮影範囲FAと第2カメラ12Bの撮影範囲FBとが一部重複しているように図示しているが、重複していなくてもよい。
 第1カメラ12Aおよび第2カメラ12Bの位置は既知であり、移動開始位置P0に対する撮影範囲FA,FBの位置も既知である。
 撮影部12によって撮影された画像は、後述するコンピュータ18へと出力される。
 また、撮影部12の撮影タイミングは、後述するコンピュータ18の撮影制御部182で制御される。
The imaging device 10 includes an imaging unit 12, a reflective optical sensor 14, a lamp 15, and a computer 18.
The imaging unit 12 is a camera that captures a still image.
In the present embodiment, two cameras (first camera 12A and second camera 12B) are installed along the target movement direction T. The first camera 12A uses a predetermined range FA along the target movement direction T including the movement start position P0 as a shooting range. Further, the second camera 12B is installed at a position away from the first camera 12A toward the target movement direction T, and is a predetermined range that is shifted toward the target movement direction T from the shooting range FA of the first camera 12A. The shooting range is FB.
That is, a plurality of photographing units 12 are provided along the launch direction of the golf ball 20, and a plurality of images after the golf ball 20 is launched by the golf club 22 are photographed. Note that a plurality of images may be photographed using a single camera at different photographing times.
In FIG. 1B, the shooting range FA of the first camera 12A and the shooting range FB of the second camera 12B are illustrated as partially overlapping, but they may not overlap.
The positions of the first camera 12A and the second camera 12B are known, and the positions of the imaging ranges FA and FB with respect to the movement start position P0 are also known.
An image photographed by the photographing unit 12 is output to a computer 18 described later.
The shooting timing of the shooting unit 12 is controlled by a shooting control unit 182 of the computer 18 described later.
 反射型光学式センサ14は、投光部1402と受光部1404とが一体となった検出部1406と、受光部1404で受光される光量に基づいて投光部1402の投光方向側の検出範囲内における物体の有無を検知する検知部1408とを備える。
 本実施の形態では、反射型光学式センサ14として拡散反射型のセンサを用いているが、回帰反射式のセンサや透過型のセンサを用いてもよい。
The reflective optical sensor 14 includes a detection unit 1406 in which a light projecting unit 1402 and a light receiving unit 1404 are integrated, and a detection range on the light projecting direction side of the light projecting unit 1402 based on the amount of light received by the light receiving unit 1404. And a detection unit 1408 for detecting the presence or absence of an object inside.
In this embodiment, a diffuse reflection type sensor is used as the reflection type optical sensor 14, but a regression reflection type sensor or a transmission type sensor may be used.
 本実施の形態では、反射型光学式センサ14の検出範囲を移動開始位置P0に合わせている。すなわち、投光部1402からの投影光LIが移動開始位置P0を通過するように設置する。ティー24上にゴルフボール20がない場合には、投影光LIは移動開始位置P0を通過していく。一方、ティー24上にゴルフボール20がある場合には、ゴルフボール20の表面で反射した反射光LRが受光部1404に向かい、受光部1404での受光量が増加する。これにより、ティー24上のゴルフボール20の有無を検知することができる。 In the present embodiment, the detection range of the reflective optical sensor 14 is matched with the movement start position P0. That is, the projection light LI from the light projecting unit 1402 is installed so as to pass through the movement start position P0. When there is no golf ball 20 on the tee 24, the projection light LI passes through the movement start position P0. On the other hand, when the golf ball 20 is on the tee 24, the reflected light LR reflected by the surface of the golf ball 20 is directed to the light receiving unit 1404, and the amount of light received by the light receiving unit 1404 increases. Thereby, the presence or absence of the golf ball 20 on the tee 24 can be detected.
 なお、反射型光学式センサ14は、CMOSセンサなどの画像センサを用いて物体の色を識別する機能を有するものであってもよい。この場合、物体が特定の色であった場合にのみ検出範囲内に物体が有ると検知する。
 より詳細には、例えば一般的なゴルフボール20の色である白色の物体が検出範囲内にあった場合にのみ物体を検出するセンサを用いる。これにより、ゴルフクラブ22や操作者Iの手足等がティー24周辺にあるのをゴルフボール20として誤検知するのを防止して、反射型光学式センサ14の検出精度を向上させることができる。
The reflective optical sensor 14 may have a function of identifying the color of an object using an image sensor such as a CMOS sensor. In this case, it is detected that the object is within the detection range only when the object has a specific color.
More specifically, for example, a sensor that detects an object only when a white object that is the color of a general golf ball 20 is within the detection range is used. Accordingly, it is possible to prevent erroneous detection of the golf club 22 and the limbs of the operator I around the tee 24 as the golf ball 20 and to improve the detection accuracy of the reflective optical sensor 14.
 また、反射型光学式センサ14の反応速度は、1ms以下であることが好ましい。
 これは、ゴルフボール20の移動速度や撮影部12の位置によっては、撮影部12の撮影タイミングをゴルフボール20の移動開始直後とすることが要求されるためである。反応速度の速い反射型光学式センサ14を使用することによって、撮影タイミングをより速いタイミングに設定することが可能となり、撮影装置10による撮影精度を向上させることができる。
The reaction speed of the reflective optical sensor 14 is preferably 1 ms or less.
This is because, depending on the moving speed of the golf ball 20 and the position of the photographing unit 12, the photographing timing of the photographing unit 12 is required to be immediately after the golf ball 20 starts to move. By using the reflective optical sensor 14 having a fast reaction speed, it is possible to set the photographing timing to a faster timing, and the photographing accuracy by the photographing apparatus 10 can be improved.
 ランプ15は、反射型光学式センサ14検出範囲内に物体が所定時間以上継続して検知されたことを報知する報知部の一例であり、本実施の形態では、ティー24上にゴルフボール20が所定時間以上継続して検出された場合に点灯して視覚的に報知を行う。
 これは後述するように、操作者Iに対して撮影の準備が整ったことを報知するためである。
 ランプ15は、例えば反射型光学式センサ14の近傍(図1では反射型光学式センサ14と一体)の、操作者Iがアドレス姿勢を取った状態で無理なく視認できる位置に設置される。
 なお、報知部としてスピーカ等の音声出力手段などを用いてもよい。
 また、図2ではランプ15(報知部)とコンピュータ18とを接続して図示しているが、ランプ15(報知部)と反射型光学式センサ14とを直接接続してもよい。
The lamp 15 is an example of a notification unit that notifies that an object has been continuously detected within a detection range of the reflective optical sensor 14 for a predetermined time or more. In this embodiment, the golf ball 20 is placed on the tee 24. When it is detected continuously for a predetermined time or longer, it is turned on to visually notify.
This is to notify the operator I that the preparation for photographing has been completed, as will be described later.
The lamp 15 is installed, for example, in the vicinity of the reflective optical sensor 14 (integrated with the reflective optical sensor 14 in FIG. 1) at a position where the operator I can reasonably visually recognize it in an addressed posture.
Note that an audio output means such as a speaker may be used as the notification unit.
In FIG. 2, the lamp 15 (notification unit) and the computer 18 are connected to each other, but the lamp 15 (notification unit) and the reflective optical sensor 14 may be directly connected.
 コンピュータ18は、CPU1802が各種プログラムを実行することにより、撮影制御部182および挙動算出部184を実現する。
 図3は、コンピュータ18のハードウェア構成を示すブロック図である。
 コンピュータ18は、CPU1802と、不図示のインターフェース回路およびバスラインを介して接続されたROM1804、RAM1806、ハードディスク装置(HDD)1808、ディスク装置1810、キーボード1812、マウス1814、ディスプレイ1816、プリンタ1818、入出力インターフェース(I/F)1820などを有している。
 ROM1804は制御プログラムなどを格納し、RAM1806はワーキングエリアを提供するものである。
 ハードディスク装置1808は撮影部12の撮影タイミングを制御する撮影制御プログラムやゴルフボール20の挙動の計測を行うための専用のプログラム(挙動計測プログラム)を格納している。
 ディスク装置1810はCDやDVDなどの記録媒体に対してデータの記録および/または再生を行うものである。
 キーボード1812およびマウス1814は、操作者による操作入力を受け付けるものである。
 ディスプレイ1816はデータを表示出力するものであり、プリンタ1818はデータを印刷出力するものであり、ディスプレイ1816およびプリンタ1818によってデータを出力する。
 入出力インターフェース1820は、撮影部12、反射型光学式センサ14、ランプ15等との間でデータの授受を行うものである。
The computer 18 implements an imaging control unit 182 and a behavior calculation unit 184 by the CPU 1802 executing various programs.
FIG. 3 is a block diagram illustrating a hardware configuration of the computer 18.
The computer 18 includes a CPU 1802, a ROM 1804, a RAM 1806, a hard disk device (HDD) 1808, a disk device 1810, a keyboard 1812, a mouse 1814, a display 1816, a printer 1818, and input / output connected via an interface circuit (not shown) and a bus line. An interface (I / F) 1820 is included.
A ROM 1804 stores a control program and the like, and a RAM 1806 provides a working area.
The hard disk device 1808 stores a shooting control program for controlling shooting timing of the shooting unit 12 and a dedicated program (behavior measurement program) for measuring the behavior of the golf ball 20.
The disk device 1810 records and / or reproduces data on a recording medium such as a CD or a DVD.
A keyboard 1812 and a mouse 1814 receive operation inputs from the operator.
A display 1816 displays and outputs data, and a printer 1818 prints and outputs data. The display 1816 and the printer 1818 output data.
The input / output interface 1820 exchanges data with the photographing unit 12, the reflective optical sensor 14, the lamp 15, and the like.
 なお、コンピュータ18としてスマートホンやタブレット等の小型情報機器を用いてもよい。
 また、図1ではコンピュータ18と撮影部12等の機器とを配線で接続して図示しているが、これらの機器間の通信を無線通信で行ってもよい。
 また、コンピュータ18(スマートホンやタブレット等を含む)がカメラやスピーカを備えている場合には、コンピュータ18が備えるカメラを用いて画像の撮影をしたり、コンピュータ18が備えるスピーカを用いて報知部による報知をおこなったりしてもよい。この場合、撮影装置10を構成する機器の数を少なくして、機器の設置の手間やスペースを省くことができる。
Note that a small information device such as a smart phone or a tablet may be used as the computer 18.
In FIG. 1, the computer 18 and devices such as the photographing unit 12 are connected by wiring, but communication between these devices may be performed by wireless communication.
Further, when the computer 18 (including a smart phone, a tablet, or the like) includes a camera or a speaker, an image is captured using the camera included in the computer 18 or a notification unit is configured using the speaker included in the computer 18. Notification may be performed. In this case, it is possible to reduce the number of devices constituting the photographing apparatus 10 and to save time and space for installing the devices.
 図2の説明に戻り、撮影制御部182は、反射型光学式センサ14の検出範囲内に物体が検知された後、検出範囲から物体が退去したことが検知された場合に、当該退去タイミングを基準として撮影部12による撮影タイミングを制御する。
 撮影タイミングの制御とは、例えば検出範囲から物体が退去した時刻をT0(基準時刻)として、基準時刻T0から所定の遅れ時間Txを取ったタイミングで撮影部12での撮影を行うものである。
Returning to the description of FIG. 2, when the imaging control unit 182 detects that the object has moved out of the detection range after the object is detected within the detection range of the reflective optical sensor 14, the shooting control unit 182 sets the moving-out timing. As a reference, the photographing timing by the photographing unit 12 is controlled.
The imaging timing control is, for example, that imaging at the imaging unit 12 is performed at a timing at which a predetermined delay time Tx is taken from the reference time T0, where T0 (reference time) is the time when the object has left the detection range.
 本実施の形態では、撮影部12として2台のカメラ12A,12Bが設置されているので、各カメラ12A,12Bに対してそれぞれ異なる遅れ時間Txを設定する。より詳細には、第1カメラ12Aには第1の遅れ時間Tx1を設定する一方で、第2カメラ12Bは第1カメラ12Aよりも移動開始位置P0から遠い位置にあるため、第1の遅れ時間Tx1よりも長い第2の遅れ時間Tx2を設定する。撮影制御部182は、それぞれのカメラ12A,12B(撮影部)の撮影範囲に物体が位置する間に画像を撮影するようにそれぞれのカメラ12A,12Bの撮影タイミングを制御する。
 各遅れ時間Tx1,Tx2は、例えば操作者Iのゴルフ熟練度やゴルフクラブ22の種類等からゴルフボール20の移動速度(特に初速)の概算値を予測したり、各カメラの位置(移動開始位置P0からの距離)などから適宜設定すればよい。
In the present embodiment, since two cameras 12A and 12B are installed as the photographing unit 12, different delay times Tx are set for the respective cameras 12A and 12B. More specifically, the first delay time Tx1 is set for the first camera 12A, while the second camera 12B is located farther from the movement start position P0 than the first camera 12A. A second delay time Tx2 longer than Tx1 is set. The shooting control unit 182 controls the shooting timing of each of the cameras 12A and 12B so that an image is shot while the object is located in the shooting range of each of the cameras 12A and 12B (shooting unit).
Each of the delay times Tx1 and Tx2 predicts an approximate value of the moving speed (especially the initial speed) of the golf ball 20 from the golf skill level of the operator I, the type of the golf club 22, and the like, and the position of each camera (movement start position). What is necessary is just to set suitably from the distance from P0).
 また、本実施の形態において撮影制御部182は、反射型光学式センサ14の検出範囲内に物体が所定時間以上継続して検知された後に当該物体の退去が検知された場合にのみ、撮影部12による撮影を実施する。
 これは、反射型光学式センサ14の検出範囲であるティー24上またはティー24の近傍に物体が検知された場合でも、その物体がゴルフボール20ではなく、例えば操作者Iの手足やゴルフクラブ22のヘッドなどである可能性があり、この場合に撮影を行うと誤撮影となってしまうためである。
 ここで、反射型光学式センサ14の検出範囲(ティー24上)の物体がゴルフボール20である場合には、操作者Iがティー上にゴルフボール20をセットした後、アドレス姿勢を取ってスイングを実施する間に一定の時間が必要となるはずである。一方で、反射型光学式センサ14の検出範囲の物体がゴルフボール20以外である場合には、すぐに移動して検出範囲から外れる可能性が高い。
 よって、撮影制御部182は、反射型光学式センサ14による物体の検知が所定時間以上継続された場合にのみ撮影部12による撮影を行い、物体の誤検知を防止して確実にゴルフボール20を撮影できるようにしている。
 なお、本実施の形態では、報知部であるランプ15によって反射型光学式センサ14の検出範囲内に物体が所定時間以上継続して検知されたことを報知するので、操作者Iはゴルフボール20をティー24にセットした後、ランプ15の点灯を待ってスイングを開始すればよい。
Further, in the present embodiment, the imaging control unit 182 includes the imaging unit only when an object is detected within the detection range of the reflective optical sensor 14 for a predetermined time or longer and then the object is detected. 12 is performed.
Even if an object is detected on or near the tee 24 that is the detection range of the reflective optical sensor 14, the object is not the golf ball 20, for example, the limb of the operator I or the golf club 22. This is because if the photographing is performed in this case, erroneous photographing is performed.
Here, when the object in the detection range of the reflective optical sensor 14 (on the tee 24) is the golf ball 20, the operator I sets the golf ball 20 on the tee and then takes an address posture to swing. A certain amount of time should be required during the implementation. On the other hand, when the object in the detection range of the reflective optical sensor 14 is other than the golf ball 20, there is a high possibility that the object moves immediately and falls outside the detection range.
Therefore, the shooting control unit 182 performs shooting by the shooting unit 12 only when the detection of the object by the reflective optical sensor 14 is continued for a predetermined time or more, and prevents the object from being erroneously detected, thereby reliably shooting the golf ball 20. It is possible to shoot.
In the present embodiment, the lamp I serving as a notification unit notifies that an object has been continuously detected within a detection range of the reflective optical sensor 14 for a predetermined time or more, so that the operator I can play the golf ball 20 After the tee 24 is set, the swing may be started after the lamp 15 is turned on.
 挙動算出部184は、撮影部12で撮影された画像を用いてゴルフボール20の挙動を算出する。
 本実施の形態では、撮影部12で撮影された画像とは、第1カメラ12Aで撮影された第1の画像および第2カメラ12Bで撮影された第2の画像の2枚である。
 また、ゴルフボール20の挙動とは、打撃後のゴルフボール20の移動方向、回転軸方向および移動速度である。
The behavior calculation unit 184 calculates the behavior of the golf ball 20 using the image photographed by the photographing unit 12.
In the present embodiment, the images photographed by the photographing unit 12 are two images: a first image photographed by the first camera 12A and a second image photographed by the second camera 12B.
Further, the behavior of the golf ball 20 is the movement direction, the rotation axis direction, and the movement speed of the golf ball 20 after hitting.
 ここで、挙動算出部184によるゴルフボール20の挙動の算出方法について説明する。
 図5は、撮影部12による撮影画像の一例を模式的に示す説明図である。
 図5Aは第1の画像を示し、反射型光学式センサ14の検出範囲からゴルフボール20が退去した基準時刻T0から、第1の遅れ時間Tx1後の撮影範囲FAを第1カメラ12Aで撮影した画像である。
 図5Bは第2の画像を示し、反射型光学式センサ14の検出範囲からゴルフボール20が退去した基準時刻T0から、第2の遅れ時間Tx2(>Tx1)後の撮影範囲FBを第2カメラ12Bで撮影した画像である。
 また、図5Cは図5Aからゴルフクラブ22を消去した上で、図5Aおよび図5Bを重畳している。なお、2台のカメラ12A,12Bの位置および撮影範囲FA,FBの位置は既知であるため、図5Cのように2つの画像を重畳することが可能である。
Here, a method for calculating the behavior of the golf ball 20 by the behavior calculation unit 184 will be described.
FIG. 5 is an explanatory diagram schematically illustrating an example of an image captured by the imaging unit 12.
FIG. 5A shows a first image, and a shooting range FA after the first delay time Tx1 is shot with the first camera 12A from the reference time T0 when the golf ball 20 has left the detection range of the reflective optical sensor 14. It is an image.
FIG. 5B shows a second image. The shooting range FB after the second delay time Tx2 (> Tx1) from the reference time T0 when the golf ball 20 moved out of the detection range of the reflective optical sensor 14 is shown in the second camera. It is the image image | photographed by 12B.
Further, FIG. 5C is obtained by superposing FIGS. 5A and 5B after erasing the golf club 22 from FIG. 5A. Since the positions of the two cameras 12A and 12B and the positions of the shooting ranges FA and FB are known, two images can be superimposed as shown in FIG. 5C.
 また、図6も、撮影部12による撮影画像の一例を模式的に示す説明図であり、図6Aは図5Aと同一の図、図6Bはゴルフボール20が第2カメラ12Bに対して近づく方向(y座標プラス方向)に移動した場合の画像であり、図6Cはゴルフボール20が第2カメラ12Bに対して遠ざかる方向(y座標マイナス方向)に移動した場合の画像である。 6 is also an explanatory view schematically showing an example of an image taken by the photographing unit 12, FIG. 6A is the same as FIG. 5A, and FIG. 6B is a direction in which the golf ball 20 approaches the second camera 12B. FIG. 6C is an image when the golf ball 20 moves in a direction away from the second camera 12B (y coordinate minus direction).
 まず、上下方向(x-z平面上)における移動方向θhの算出方法について説明する。
 図5Cに示すように、第1の画像におけるゴルフボール20の中心点P1と第2の画像におけるゴルフボール20の中心点P2とを結ぶ線分L1と、第1の画像におけるゴルフボール20の中心点P1を通り地面Gと平行な線分L2とがなす角θhによって、上下方向(x-z平面上)の移動方向を特定することができる。
 すなわち、挙動算出部184は、第1の画像におけるゴルフボール20の位置と第2の画像におけるゴルフボール20の位置との変位方向を移動方向として算出する。より詳細には、複数撮影された画像上の物体の中心位置をつなぐ線分(上記L1)と、地面Gと平行な線分(上記L2)とのなす角度を物体の上下方向の移動方向として算出する。
 なお、各カメラ12A,12Bの光軸が地面Gと平行でなく、上下方向に傾いている場合は、当該傾きを補正した上で上下方向の移動方向θhを算出する。
First, a method for calculating the moving direction θh in the up-down direction (on the xz plane) will be described.
As shown in FIG. 5C, a line segment L1 connecting the center point P1 of the golf ball 20 in the first image and the center point P2 of the golf ball 20 in the second image, and the center of the golf ball 20 in the first image The moving direction in the vertical direction (on the xz plane) can be specified by the angle θh formed by the line segment L2 that passes through the point P1 and is parallel to the ground G.
That is, the behavior calculation unit 184 calculates the displacement direction between the position of the golf ball 20 in the first image and the position of the golf ball 20 in the second image as the movement direction. More specifically, an angle formed by a line segment (L1) connecting the center positions of objects on a plurality of captured images and a line segment (L2) parallel to the ground G is defined as the vertical movement direction of the object. calculate.
When the optical axes of the cameras 12A and 12B are not parallel to the ground G but are inclined in the vertical direction, the vertical movement direction θh is calculated after correcting the inclination.
 つぎに、左右方向(x-y平面上)における移動方向θwの算出方法について説明する。
 ゴルフボール20が目標移動方向Tに対して左右方向に傾いて移動している場合には、図6に示すように移動開始前後で画像上のゴルフボール20の直径が異なる。
 図6の例では、図6Aのゴルフボール20の直径R0に対して、図6Bのようにゴルフボール20が第2カメラ12Bに対して近づく方向に移動した場合には直径R1が大きくなり(R1>R0)、図6Cのようにゴルフボール20が第2カメラ12Bに対して遠ざかる方向に移動した場合には直径R2が小さくなる(R2<R0)。
 各カメラ12A,12Bの撮影倍率および画角は既知であるので、2つの画像上のゴルフボール20の直径の差分に基づいて、左右方向(x-y平面上)の移動方向θwを特定することができる。
 例えば、図6Bのようにゴルフボール20が第2カメラ12Bに対して近づく方向(y座標プラス方向)に移動した場合には、画像上のゴルフボール20の直径が大きいほど第2カメラ12B方向に大きく曲がっていることになる。また、図6Cのようにゴルフボール20が第2カメラ12Bに対して遠ざかる方向(y座標マイナス方向)に移動した場合には、画像上のゴルフボール20の直径が小さいほど第2カメラ12Bと反対方向に大きく曲がっていることになる。
 すなわち、挙動算出部184は、第1の画像および第2の画像間(複数の画像間)のゴルフボールの直径の比率に基づいて、撮影部12の撮影方向と直交する方向の移動方向を算出する。
Next, a method for calculating the moving direction θw in the left-right direction (on the xy plane) will be described.
When the golf ball 20 moves while tilting in the left-right direction with respect to the target movement direction T, the diameter of the golf ball 20 on the image is different before and after the movement is started, as shown in FIG.
In the example of FIG. 6, when the golf ball 20 moves in a direction approaching the second camera 12B as shown in FIG. 6B with respect to the diameter R0 of the golf ball 20 of FIG. 6A, the diameter R1 increases (R1 > R0), when the golf ball 20 moves away from the second camera 12B as shown in FIG. 6C, the diameter R2 becomes smaller (R2 <R0).
Since the shooting magnification and angle of view of each camera 12A, 12B are known, the moving direction θw in the left-right direction (on the xy plane) is specified based on the difference in the diameter of the golf ball 20 on the two images. Can do.
For example, when the golf ball 20 moves in the direction approaching the second camera 12B (the y-coordinate plus direction) as shown in FIG. 6B, the larger the diameter of the golf ball 20 on the image, the larger the direction of the second camera 12B. It will be bent greatly. In addition, when the golf ball 20 moves in a direction away from the second camera 12B (y coordinate minus direction) as shown in FIG. 6C, the smaller the diameter of the golf ball 20 on the image, the opposite to the second camera 12B. It will be bent greatly in the direction.
That is, the behavior calculation unit 184 calculates a moving direction in a direction orthogonal to the shooting direction of the shooting unit 12 based on the ratio of the diameter of the golf ball between the first image and the second image (between a plurality of images). To do.
 また、移動方向θwを算出する他の方法として、2台のカメラを用いたステレオ計測をおこなってもよい。
 図7は、撮影装置10の他の構成を示す説明図である。
 図7Aには、2台のカメラ13A,13Bが、それぞれの撮影範囲FA,FBをなるべく重複するように設置されている。
 なお、カメラ13A,123の位置や撮影方向(向き)や撮影倍率などのカメラパラメータは、予め特定されている。
 そして、カメラ13A,13Bで、それぞれ同時かつ所定時間を置いて2回画像を撮影し、計4枚の画像を得る。撮影時刻は、基準時刻から所定の遅れ時間Tx3,Tx4(Tx3≠Tx4)経過後とするが、いずれの撮影時にも撮影範囲FA,FBにゴルフボール20が位置するような時刻とする。
 それぞれのカメラ13A,13Bで撮影した画像上におけるゴルフボール20の位置を特定し、上記のカメラパラメータを用いて2時刻(画像の撮影時刻)におけるゴルフボール20の3次元空間上の位置を特定する。この2時刻におけるゴルフボール20の3次元空間上の位置の差分からゴルフボール20の移動方向θwを算出することができる。
 また、図7Bのように、それぞれの撮影範囲FA,FBが重複するように設置された2台のカメラ17A,17Bからなる第1のカメラ対19Aと、それぞれの撮影範囲FC,FDが重複するように設置された2台のカメラ17C,17Dからなる第2のカメラ対19Bとの計4台のカメラを設けて撮影を行ってもよい。
 この場合、撮影範囲FA,FB内にゴルフボール20が位置した際に、第1のカメラ対19A(カメラ17A,17B)で同時に画像を撮影する。また、撮影範囲FC,FD内にゴルフボール20が位置した際に、第2のカメラ対19B(カメラ17C,17D)で同時に画像を撮影する。
 このように、計4台のカメラで4枚の画像を得るようにしてもよい。
Further, as another method for calculating the moving direction θw, stereo measurement using two cameras may be performed.
FIG. 7 is an explanatory diagram showing another configuration of the photographing apparatus 10.
In FIG. 7A, two cameras 13A and 13B are installed so as to overlap the imaging ranges FA and FB as much as possible.
Note that camera parameters such as the positions of the cameras 13A and 123, the shooting direction (orientation), and the shooting magnification are specified in advance.
Then, the cameras 13A and 13B capture images twice at the same time and with a predetermined time to obtain a total of four images. The shooting time is after a predetermined delay time Tx3, Tx4 (Tx3 ≠ Tx4) has elapsed from the reference time, but the time when the golf ball 20 is located in the shooting range FA, FB at any shooting time.
The position of the golf ball 20 on the images photographed by the respective cameras 13A and 13B is specified, and the position of the golf ball 20 in the three-dimensional space at two times (image shooting time) is specified using the above camera parameters. . The moving direction θw of the golf ball 20 can be calculated from the difference in position of the golf ball 20 in the three-dimensional space at these two times.
Further, as shown in FIG. 7B, the first camera pair 19A composed of two cameras 17A and 17B installed so that the respective shooting ranges FA and FB overlap with each other and the shooting ranges FC and FD overlap. A total of four cameras with the second camera pair 19B composed of the two cameras 17C and 17D installed in this manner may be provided for photographing.
In this case, when the golf ball 20 is positioned within the shooting ranges FA and FB, an image is simultaneously shot by the first camera pair 19A ( cameras 17A and 17B). Further, when the golf ball 20 is positioned within the shooting ranges FC and FD, an image is simultaneously shot by the second camera pair 19B ( cameras 17C and 17D).
In this way, four images may be obtained with a total of four cameras.
 つぎに、回転軸方向の算出方法について説明する。
 図5に示すように、ゴルフボール20にはマークMが付加されている。第1の画像と第2の画像とにおけるゴルフボール20のマークMの位置の変化および方向の変化に基づいて、ゴルフボール20の回転軸方向を特定することができる。
 なお、ゴルフボール20に付加するマークMは、ゴルフボール20がどの方向に回転しても画像上に写るような図柄にするのが好ましい。このような図柄としては、例えば図5等のようにゴルフボール20の全周に渡って描かれた線分など従来公知の様々な図柄を用いることができる。
Next, a method for calculating the rotation axis direction will be described.
As shown in FIG. 5, a mark M is added to the golf ball 20. Based on the change in the position and the direction of the mark M of the golf ball 20 in the first image and the second image, the rotation axis direction of the golf ball 20 can be specified.
In addition, it is preferable that the mark M added to the golf ball 20 has a pattern that appears on the image no matter which direction the golf ball 20 rotates. As such a symbol, for example, various conventionally known symbols such as a line segment drawn over the entire circumference of the golf ball 20 as shown in FIG. 5 can be used.
 つづいて、移動速度の算出方法について説明する。
 移動速度の算出には、まずゴルフボール20の移動距離を算出する。上述のように各カメラ12A,12Bの設置位置や撮影倍率は既知であるので、画像上の距離と実空間上の距離との比率は既知であり、第1の画像におけるゴルフボール20の位置と第2の画像におけるゴルフボール20の位置との関係からゴルフボール20のx-z平面上の2次元的な移動距離を算出することができる。
 また、第1カメラ12Aに設定された第1の遅れ時間Tx1と第2カメラ12Bに設定された第2の遅れ時間Tx2との差分から、第1の画像が撮影されてから第2の画像が撮影されるまでの経過時間を特定することができる。
 すなわち、挙動算出部184は、複数の画像上の距離と実空間上の距離との比率に基づいて複数の画像が撮影された間の物体の移動距離を算出し、複数の画像が撮影される間の経過時間で移動距離を除して移動速度を算出する。つまり、2枚の画像間におけるゴルフボール20の移動距離を、2枚の画像が撮影される間の経過時間で除すことによって、ゴルフボール20の移動速度を算出することができる。
Next, a method for calculating the moving speed will be described.
In calculating the moving speed, first, the moving distance of the golf ball 20 is calculated. As described above, since the installation positions and shooting magnifications of the cameras 12A and 12B are known, the ratio between the distance on the image and the distance on the real space is known, and the position of the golf ball 20 in the first image The two-dimensional movement distance on the xz plane of the golf ball 20 can be calculated from the relationship with the position of the golf ball 20 in the second image.
Further, the second image after the first image is captured from the difference between the first delay time Tx1 set for the first camera 12A and the second delay time Tx2 set for the second camera 12B. The elapsed time until shooting can be specified.
That is, the behavior calculation unit 184 calculates the moving distance of the object between the plurality of images taken based on the ratio of the distance on the plurality of images and the distance on the real space, and the plurality of images are taken. The moving speed is calculated by dividing the moving distance by the elapsed time. That is, the moving speed of the golf ball 20 can be calculated by dividing the moving distance of the golf ball 20 between the two images by the elapsed time while the two images are captured.
 図4は、撮影装置10による処理の手順を示すフローチャートである。
 まず、操作者Iは反射型光学式センサ14を起動する(ステップS400)。反射型光学式センサ14は、検出範囲内に光を投光し、受光した光量に基づいて検出範囲内に物体があるか否かを判断する(ステップS402)。
 反射型光学式センサ14は、検出範囲内に物体を検出するまで待機し(ステップS402:Noのループ)、物体を検出すると(ステップS402:Yes)、物体を検出した状態で所定時間が経過するまでステップS402に戻って待機する(ステップS404:Noのループ)。なお、所定時間が経過する前に物体が検出範囲から退去した場合には、ステップS402に戻って以降の処理をくり返す。
 物体を検出した状態が所定時間継続した場合(ステップS404:Yes)、報知部であるランプ15を点灯し、操作者Iに撮影準備が完了したことを報知する(ステップS406)。
FIG. 4 is a flowchart illustrating a processing procedure performed by the imaging apparatus 10.
First, the operator I activates the reflective optical sensor 14 (step S400). The reflective optical sensor 14 projects light within the detection range, and determines whether there is an object within the detection range based on the received light amount (step S402).
The reflective optical sensor 14 waits until an object is detected within the detection range (step S402: No loop). When the object is detected (step S402: Yes), a predetermined time elapses while the object is detected. The process returns to step S402 and waits (step S404: No loop). If the object has left the detection range before the predetermined time has elapsed, the process returns to step S402 and the subsequent processing is repeated.
When the state in which the object is detected continues for a predetermined time (step S404: Yes), the lamp 15 as the notification unit is turned on to notify the operator I that the preparation for photographing has been completed (step S406).
 その後、検出範囲から物体が退出するまではステップS406に戻って待機し(ステップS408:Noのループ)、物体が退出すると(ステップS408:Yes)、撮影制御部182は、退出時刻(基準時刻T0)から第1の遅れ時間Tx1経過後に第1カメラ12Aで1枚目の画像を撮影する(ステップS410)。また、退出時刻(基準時刻T0)から第2の遅れ時間Tx2(>Tx1)経過後に第2カメラ12Bで2枚目の画像を撮影する(ステップS412)。
 挙動算出部184は、ステップS410,S412で撮影した2枚の画像を用いてゴルフボール20の挙動を算出し(ステップS414)、算出した挙動の情報をディスプレイ1816や印刷紙等に表示して(ステップS416)、本フローチャートによる処理を終了する。
Thereafter, until the object leaves the detection range, the process returns to step S406 and waits (step S408: No loop). When the object leaves (step S408: Yes), the imaging control unit 182 determines the exit time (reference time T0). ) After the first delay time Tx1 has elapsed, the first image is taken by the first camera 12A (step S410). Further, after the second delay time Tx2 (> Tx1) has elapsed from the exit time (reference time T0), the second image is taken by the second camera 12B (step S412).
The behavior calculation unit 184 calculates the behavior of the golf ball 20 using the two images taken in steps S410 and S412 (step S414), and displays the calculated behavior information on a display 1816, printing paper, or the like ( Step S416), the process according to this flowchart is terminated.
 以上説明したように、実施の形態にかかる撮影装置10は、反射型光学式センサ14の検出範囲内に物体が検知された後、検出範囲から物体が退去したタイミングを基準として撮影部12による撮影タイミングを制御するので、物体が移動開始したことを検知した上で撮影を行うことができ、物体が移動する様子を確実に撮影する上で有利となる。
 例えば、物体の移動開始を音声(打撃音など)によって検知する場合と比較して、安定した検知結果を得ることができる。また、物体の移動開始を打撃具の動きから検知する場合と比較して、システム構成の簡素化を図る上で有利となる。
 また、物体が移動開始した後の任意の時刻で撮影を行うことができるので、物体の移動速度や撮影部12の設置位置等に合わせて撮影タイミングを設定することができ、撮影装置10の汎用性を向上させる上で有利となる。
 また、撮影装置10は、検出範囲内に物体が所定時間以上継続して検知された場合にのみ撮影部12による撮影を実施するので、撮影対象の物体ではないものが検出範囲に入った場合に誤って撮影するのを防止する上で有利となる。
 また、撮影装置10は、検出範囲内に物体が所定時間以上継続して検知されたことを報知するランプ15(報知部)をさらに備えたので、物体の移動を操作者Iが開始させる場合に、物体の移動開始タイミングを的確に設定することができ、効率的に物体の画像を撮影する上で有利となる。
 また、撮影装置10において、反射型光学式センサ14が物体の色を識別する機能を有するものであれば、例えばゴルフボール20などの特定の物体を認識しやすくなり、反射型光学式センサ14の認識精度を向上させる上で有利となる。
 また、撮影装置10において、反射型光学式センサ14の反応速度を1ms以下とすれば、検出範囲から物体が退去した後に迅速に撮影を行うことが可能となり、物体の移動速度が速い場合でも確実に撮影を行う上で有利となる。
 また、撮影装置10は、物体が打撃具により打ち出される球技用ボールであり、反射型光学式センサ14の検出範囲は球技用ボールの打ち出し位置を含むので、打ち出し直後の球技用ボールを撮影してその挙動を算出する挙動算出装置に撮影装置を適用する上で有利となる。
 また、撮影装置10は、反射型光学式センサ14の検出範囲を球技用ボールの打ち出し位置とするので、センサの検出範囲が最低限の範囲で済み、撮影装置10のシステムを簡素化する上で有利となる。
As described above, the imaging apparatus 10 according to the embodiment performs imaging by the imaging unit 12 with reference to the timing at which the object moves out of the detection range after the object is detected within the detection range of the reflective optical sensor 14. Since the timing is controlled, it is possible to take a picture after detecting that the object has started to move, which is advantageous in reliably taking a picture of the movement of the object.
For example, it is possible to obtain a stable detection result as compared to the case where the start of movement of an object is detected by sound (such as a hitting sound). Further, it is advantageous in simplifying the system configuration as compared with the case where the start of movement of the object is detected from the movement of the impact tool.
Further, since photographing can be performed at an arbitrary time after the object starts moving, the photographing timing can be set according to the moving speed of the object, the installation position of the photographing unit 12, and the like. This is advantageous in improving the performance.
In addition, since the imaging device 10 performs imaging by the imaging unit 12 only when an object within the detection range is continuously detected for a predetermined time or more, when an object that is not an object to be captured enters the detection range. This is advantageous in preventing accidental shooting.
In addition, since the photographing apparatus 10 further includes a lamp 15 (notification unit) that notifies that an object has been continuously detected within a detection range for a predetermined time or more, when the operator I starts moving the object. Therefore, it is possible to accurately set the movement start timing of the object, which is advantageous in efficiently capturing an image of the object.
Further, in the photographing apparatus 10, if the reflective optical sensor 14 has a function of identifying the color of an object, it becomes easy to recognize a specific object such as a golf ball 20, for example. This is advantageous in improving recognition accuracy.
In the photographing apparatus 10, if the response speed of the reflective optical sensor 14 is set to 1 ms or less, it is possible to quickly take an image after the object has left the detection range, and even if the moving speed of the object is fast, it is ensured. This is advantageous for shooting.
In addition, the imaging device 10 is a ball game ball in which an object is launched by a hitting tool, and the detection range of the reflective optical sensor 14 includes the launch position of the ball game ball. This is advantageous in applying a photographing apparatus to a behavior calculation apparatus that calculates the behavior.
In addition, since the photographing apparatus 10 uses the detection range of the reflective optical sensor 14 as the launch position of the ball game ball, the detection range of the sensor suffices to simplify the system of the photographing apparatus 10. It will be advantageous.
 10……撮影装置、12……撮影部、12A……第1カメラ、12B……第2カメラ、14……反射型光学式センサ、1402……投光部、1404……受光部、1406……検出部、1408……検知部、15……ランプ、18……コンピュータ、182……撮影制御部、184……挙動算出部、20……ゴルフボール、22……ゴルフクラブ、24……ティー、FA,FB……撮影範囲、G……地面、I……操作者、LI……投影光、LR……反射光、M……マーク、P0……移動開始位置、T……目標移動方向。 DESCRIPTION OF SYMBOLS 10 ... Imaging device, 12 ... Imaging | photography part, 12A ... 1st camera, 12B ... 2nd camera, 14 ... Reflection type optical sensor, 1402 ... Light projection part, 1404 ... Light receiving part, 1406 ... ... detection unit, 1408 ... detection unit, 15 ... lamp, 18 ... computer, 182 ... shooting control unit, 184 ... behavior calculation unit, 20 ... golf ball, 22 ... golf club, 24 ... tee , FA, FB ... shooting range, G ... ground, I ... operator, LI ... projection light, LR ... reflected light, M ... mark, P0 ... movement start position, T ... target movement direction .

Claims (13)

  1.  移動する物体を撮影する撮影部と、
     投光部と受光部とが一体となった検出部と、前記受光部で受光される光量に基づいて前記投光部の投光方向側の検出範囲内における前記物体の有無を検知する検知部と、を備える反射型光学式センサと、
     前記検出範囲内に前記物体が検知された後、前記検出範囲から前記物体が退去したことが検知された場合に、当該退去タイミングを基準として前記撮影部による撮影タイミングを制御する撮影制御部と、
     を備えることを特徴とする撮影装置。
    An imaging unit for imaging a moving object;
    A detection unit in which a light projecting unit and a light receiving unit are integrated, and a detection unit that detects the presence or absence of the object in a detection range on the light projecting direction side of the light projecting unit based on the amount of light received by the light receiving unit A reflective optical sensor comprising:
    A shooting control unit that controls shooting timing by the shooting unit with reference to the leaving timing when it is detected that the object has left the detection range after the object is detected within the detection range;
    An imaging apparatus comprising:
  2.  前記撮影制御部は、前記検出範囲内に前記物体が所定時間以上継続して検知された後に前記退去が検知された場合にのみ、前記撮影部による撮影を実施する、
     ことを特徴とする請求項1記載の撮影装置。
    The photographing control unit performs photographing by the photographing unit only when the retreat is detected after the object is continuously detected within the detection range for a predetermined time or more.
    The photographing apparatus according to claim 1, wherein:
  3.  前記検出範囲内に前記物体が所定時間以上継続して検知されたことを報知する報知部をさらに備える、
     ことを特徴とする請求項2記載の撮影装置。
    A notification unit for notifying that the object has been continuously detected for a predetermined time or more within the detection range;
    The photographing apparatus according to claim 2, wherein:
  4.  前記反射型光学式センサは、前記物体の色を識別する機能を有し、前記物体が所定の色であった場合にのみ前記検出範囲内に物体が有ると検知する、
     ことを特徴とする請求項1から3のいずれか1項記載の撮影装置。
    The reflective optical sensor has a function of identifying the color of the object, and detects that there is an object in the detection range only when the object has a predetermined color.
    The photographing apparatus according to any one of claims 1 to 3, wherein
  5.  前記反射型光学式センサの反応速度が1ms以下である、
     ことを特徴とする請求項1から4のいずれか1項記載の撮影装置。
    The reaction speed of the reflective optical sensor is 1 ms or less,
    The photographing apparatus according to claim 1, wherein the photographing apparatus is characterized in that:
  6.  前記物体は、打撃具により打ち出される球技用ボールであり、
     前記検出範囲は、前記球技用ボールの打ち出し位置を含み、
     前記撮影制御部は、前記打撃具による前記球技用ボールの打ち出し後の画像を複数撮影するよう前記撮影部を制御する、
     ことを特徴とする請求項1から5のいずれか1項記載の撮影装置。
    The object is a ball game ball launched by a hitting tool,
    The detection range includes a launch position of the ball game ball,
    The shooting control unit controls the shooting unit to shoot a plurality of images after the ball game ball is launched by the hitting tool;
    The photographing apparatus according to claim 1, wherein
  7.  請求項1から6のいずれか1項記載の撮影装置を用いた物体の挙動計測装置であって、
     前記撮影制御部は、前記撮影部の撮影範囲に前記物体が位置する間に複数の画像を撮影するように前記撮影タイミングを制御し、
     前記撮影部で撮影された複数の画像を用いて前記物体の移動方向、回転軸方向および移動速度のうちの少なくともいずれかを算出する挙動算出部を備えることを特徴とする物体の挙動計測装置。
    An object behavior measuring apparatus using the photographing apparatus according to any one of claims 1 to 6,
    The imaging control unit controls the imaging timing so as to capture a plurality of images while the object is located in the imaging range of the imaging unit;
    An object behavior measurement apparatus comprising: a behavior calculation unit that calculates at least one of a movement direction, a rotation axis direction, and a movement speed of the object using a plurality of images photographed by the photographing unit.
  8.  前記撮影部は、前記物体の目標移動方向に沿って複数設けられており、
     前記挙動算出部は、複数撮影された画像上の前記物体の中心位置をつなぐ線分と、地面と平行な線分とのなす角度を前記物体の上下方向の前記移動方向として算出する、
     ことを特徴とする請求項7記載の挙動計測装置。
    A plurality of the photographing units are provided along the target movement direction of the object,
    The behavior calculation unit calculates an angle formed by a line segment connecting the center positions of the object on a plurality of captured images and a line segment parallel to the ground as the moving direction in the vertical direction of the object.
    The behavior measuring apparatus according to claim 7.
  9.  前記物体は、直径が既知のボールであり、
     前記挙動算出部は、複数撮影された画像間の前記ボールの直径の比率に基づいて、複数の前記撮影部の撮影方向と直交する方向の前記移動方向を算出する、
     ことを特徴とする請求項8記載の挙動計測装置。
    The object is a ball of known diameter;
    The behavior calculating unit calculates the moving direction in a direction orthogonal to the shooting direction of the plurality of shooting units based on a ratio of the diameters of the balls between a plurality of shot images.
    The behavior measuring apparatus according to claim 8.
  10.  前記挙動算出部は、複数の画像上の距離と実空間上の距離との比率に基づいて複数の画像が撮影された間の前記物体の移動距離を算出し、前記複数の画像が撮影される間の経過時間で前記移動距離を除して前記移動速度を更に算出する、
     ことを特徴とする請求項7から9のいずれか1項記載の挙動計測装置。
    The behavior calculation unit calculates a moving distance of the object while a plurality of images are captured based on a ratio between a distance on the plurality of images and a distance on a real space, and the plurality of images are captured. Further calculating the moving speed by dividing the moving distance by the elapsed time between,
    The behavior measuring apparatus according to any one of claims 7 to 9, wherein
  11.  前記移動体は、全方位から視認可能な図柄を有し、
     前記挙動算出部は、複数撮影された画像間における前記図柄の位置および向きの差分から前記回転軸方向を算出する、
     ことを特徴とする請求項7から10のいずれか1項記載の挙動計測装置。
    The mobile body has a design that is visible from all directions,
    The behavior calculating unit calculates the rotation axis direction from a difference in position and orientation of the symbol between a plurality of captured images;
    The behavior measuring apparatus according to any one of claims 7 to 10, wherein
  12.  移動する物体を撮影する撮影装置を制御する撮影制御方法であって、
     投光部から投光した光を受光部で受光し、前記受光部で受光される光量に基づいて前記投光部の投光方向側の検出範囲内における前記物体の有無を検知する検知工程と、
     前記検出範囲内に前記物体が検知された後、前記検出範囲から前記物体が退去したことが検知された場合に、当該退去タイミングを基準として前記撮影装置による撮影タイミングを制御する撮影制御工程と、
     を含んだことを特徴とする撮影制御方法。
    An imaging control method for controlling an imaging device for imaging a moving object,
    A detection step of receiving the light projected from the light projecting unit by the light receiving unit, and detecting the presence or absence of the object within a detection range on the light projecting direction side of the light projecting unit based on the amount of light received by the light receiving unit; ,
    An imaging control step of controlling imaging timing by the imaging device with reference to the exit timing when it is detected that the object has exited from the detection range after the object is detected within the detection range;
    An imaging control method comprising:
  13.  請求項12に記載の撮影制御方法を用いた物体の挙動計測方法であって、
     前記撮影制御工程では、前記撮影装置の撮影範囲に前記物体が位置する間に複数の画像を撮影するように前記撮影タイミングを制御し、
     前記撮影装置で撮影された複数の画像を用いて前記物体の移動方向、回転軸方向および移動速度のうちの少なくともいずれかを算出する挙動算出工程をさらに含むことを特徴とする物体の挙動計測方法。
    An object behavior measurement method using the imaging control method according to claim 12,
    In the photographing control step, the photographing timing is controlled so as to photograph a plurality of images while the object is located in the photographing range of the photographing device,
    An object behavior measurement method, further comprising a behavior calculation step of calculating at least one of a movement direction, a rotation axis direction, and a movement speed of the object using a plurality of images photographed by the photographing device. .
PCT/JP2016/069650 2015-07-07 2016-07-01 Imaging device, object behavior measurement device, imaging control method, and object behavior measurement method WO2017006860A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020177037424A KR102104846B1 (en) 2015-07-07 2016-07-01 Imaging device, measuring device behavior, shooting control method and measuring object behavior
KR1020207009398A KR102277827B1 (en) 2015-07-07 2016-07-01 Imaging device, object behavior measurement device, imaging control method, and object behavior measurement method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-136048 2015-07-07
JP2015136048A JP6829372B2 (en) 2015-07-07 2015-07-07 Shooting device and shooting control method

Publications (1)

Publication Number Publication Date
WO2017006860A1 true WO2017006860A1 (en) 2017-01-12

Family

ID=57685799

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/069650 WO2017006860A1 (en) 2015-07-07 2016-07-01 Imaging device, object behavior measurement device, imaging control method, and object behavior measurement method

Country Status (3)

Country Link
JP (1) JP6829372B2 (en)
KR (2) KR102277827B1 (en)
WO (1) WO2017006860A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7005737B1 (en) * 2020-12-28 2022-01-24 楽天グループ株式会社 Golf swing analysis system, golf swing analysis method and program

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04126576U (en) * 1991-05-09 1992-11-18 信明 山本 Commercial golf practice equipment
JPH0515628A (en) * 1991-07-12 1993-01-26 Kawasaki Net:Kk Video device for golf swing
JPH07227448A (en) * 1994-02-18 1995-08-29 Kawasaki Corp Kk Device and method for detecting cupping-in for golf ball at-putter device and cup device for the cupping-in detecting device
JPH11288026A (en) * 1998-03-31 1999-10-19 Okaya Electric Ind Co Ltd Photographing system for golf swing form
JP2001264016A (en) * 2000-03-15 2001-09-26 Sumitomo Rubber Ind Ltd Motion-measuring instrument for ball
JP2014121460A (en) * 2012-12-21 2014-07-03 Bridgestone Sports Co Ltd Device, system, and method for determining golf club lie angle adjustment method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002535102A (en) * 1999-01-29 2002-10-22 オーソペディック・システムズ・インク Golf ball flight monitor system
JP2006130289A (en) 2004-10-08 2006-05-25 Kasco Corp Impact monitoring system
KR20090021407A (en) * 2007-08-27 2009-03-04 마이크로 인스펙션 주식회사 Apparatus for measuring motion of golf ball and control method thereof
KR101187345B1 (en) * 2009-04-16 2012-10-02 이율삼 Analysis system for golf ball trajectory

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04126576U (en) * 1991-05-09 1992-11-18 信明 山本 Commercial golf practice equipment
JPH0515628A (en) * 1991-07-12 1993-01-26 Kawasaki Net:Kk Video device for golf swing
JPH07227448A (en) * 1994-02-18 1995-08-29 Kawasaki Corp Kk Device and method for detecting cupping-in for golf ball at-putter device and cup device for the cupping-in detecting device
JPH11288026A (en) * 1998-03-31 1999-10-19 Okaya Electric Ind Co Ltd Photographing system for golf swing form
JP2001264016A (en) * 2000-03-15 2001-09-26 Sumitomo Rubber Ind Ltd Motion-measuring instrument for ball
JP2014121460A (en) * 2012-12-21 2014-07-03 Bridgestone Sports Co Ltd Device, system, and method for determining golf club lie angle adjustment method

Also Published As

Publication number Publication date
KR102277827B1 (en) 2021-07-15
JP2017022440A (en) 2017-01-26
KR20180014759A (en) 2018-02-09
KR20200037453A (en) 2020-04-08
JP6829372B2 (en) 2021-02-10
KR102104846B1 (en) 2020-04-27

Similar Documents

Publication Publication Date Title
US20070105637A1 (en) Golf ball performance evaluation system
CN108226562B (en) Apparatus and method for measuring flight data of flying object and recording medium
US20060061571A1 (en) Image display control method
KR20170133730A (en) Camera sensing device for obtaining three-dimensional information of object and virtual golf simulation apparatus using the same
KR20090021407A (en) Apparatus for measuring motion of golf ball and control method thereof
JP2015009008A (en) Golf swing analysis system
TWI492096B (en) 3d image interactive system and position-bias compensation method of the same
TWI458532B (en) System and method for detecting a shot direction of a light gun
JP6039902B2 (en) Golf club measuring device
WO2017006860A1 (en) Imaging device, object behavior measurement device, imaging control method, and object behavior measurement method
KR102527207B1 (en) Shooting device and object behavior calculation device
KR102106274B1 (en) Method for measuring behavior of moving body and behavior measuring device
JP2004226134A (en) Ball trajectory measuring instrument
JP7061304B2 (en) Golf shot shooting device, golf shot analysis system and ball spin measuring device
WO2015146401A1 (en) Program and game system
KR101905848B1 (en) Measuring device and measuring method for golf club and golf ball and computer readable recording medium having program the same
KR101763294B1 (en) Shooting Control System and Method Using Thereof
JP7208484B2 (en) GOLF BALL, GOLF BALL BEHAVIOR MEASURING DEVICE, AND METHOD OF APPLYING DESIGN TO GOLF BALL
JP2016086952A (en) Behavior measuring method and behavior measuring device for mobile object
WO2016068227A1 (en) Method for measuring behavior of moving body and behavior measuring device
WO2020215302A1 (en) Gimbal control method and mobile platform
US20240123314A1 (en) Golf ball trajectory monitor
CN111656778A (en) Image acquisition device, image acquisition method and acquisition chip
KR101944705B1 (en) Device and Method for measuring flight data of flying objects using high speed video camera and computer readable recording medium having program the same
US20240100407A1 (en) Hybrid golf system, control method of mobile terminal used to the same and method for locating golf ball at ball position on field using user&#39;s mobile terminal in hybrid golf system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16821329

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177037424

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16821329

Country of ref document: EP

Kind code of ref document: A1