WO2017006726A1 - Cooling device - Google Patents

Cooling device Download PDF

Info

Publication number
WO2017006726A1
WO2017006726A1 PCT/JP2016/067839 JP2016067839W WO2017006726A1 WO 2017006726 A1 WO2017006726 A1 WO 2017006726A1 JP 2016067839 W JP2016067839 W JP 2016067839W WO 2017006726 A1 WO2017006726 A1 WO 2017006726A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling device
sealing film
less
mole
vanadium
Prior art date
Application number
PCT/JP2016/067839
Other languages
French (fr)
Japanese (ja)
Inventor
登 谷田
博 丸澤
廣瀬 左京
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2017527152A priority Critical patent/JPWO2017006726A1/en
Publication of WO2017006726A1 publication Critical patent/WO2017006726A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G31/00Compounds of vanadium
    • C01G31/02Oxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Definitions

  • the present invention relates to a cooling device.
  • the number of electronic components such as CPU (central processing unit), power amplifier, FET (field effect transistor), IC (integrated circuit), voltage regulator, etc., which become heat sources, has increased due to the recent improvement in performance of electronic devices.
  • the increase in energy generated overlaps with the problem of heat generation.
  • mobile devices such as smartphones and tablet terminals have a problem that the heat deteriorates the capacity of the battery and seriously affects the reliability of the electronic devices to be configured. Therefore, it is required to control the temperature inside the device to a higher degree.
  • Control of the heat generated from the heat source as described above is performed by a cooling fan, a heat pipe, a heat sink, a thermal sheet, a Peltier element, or the like, which is an existing heat management solution.
  • a cooling device in which a fan or a Peltier element is combined is described (see Patent Document 1).
  • the cooling device combining the heat sink and the fan or the Peltier element as described above has a relatively complicated structure and increases the size of the device, particularly for thin devices such as smartphones and tablet terminals. Hateful. Furthermore, since power is consumed, it is disadvantageous from the viewpoint of low power consumption (battery life).
  • the temperature is currently controlled only by means of heat dissipation through the housing, and the heat source and the housing are thermally coupled by a thermal sheet or the like to release heat.
  • Heat radiation through the housing as described above is limited because the surface area of the housing is limited. Therefore, the temperature of each heat source is measured, and when the temperature exceeds a predetermined temperature, the performance of the CPU or the like is limited (suppressing heat generation itself). That is, the temperature rise of the housing may hinder the performance of the CPU or the like.
  • heat dissipation through such a case in other words, heat dissipation by heat transfer to the entire device, heat is also transferred to the battery, which can lead to a decrease in battery capacity over time.
  • vanadium oxide specifically, vanadium dioxide
  • vanadium dioxide is a ceramic material that absorbs heat accompanying a crystal structure phase transition or a magnetic phase transition, by placing it near the heat source of an electronic device.
  • a cooling device that can be used with a power supply.
  • an object of the present invention is to provide a cooling device that can be used without a power source, can be miniaturized, and has excellent moisture resistance.
  • the present inventor has found that the deterioration of the endothermic characteristics in a high humidity environment is due to the fact that the ceramic material is oxidized and hydroxylated by exposure to moisture. . Therefore, the present inventor considers that it is effective to block the ceramic material from the outside air in order to improve moisture resistance, and provides a cooling device with high moisture resistance by sealing these with a laminate material. I found out that I can do it.
  • a cooling device comprising a first sealing film, a second sealing film, and a ceramic material that absorbs heat, wherein the first sealing film and the first sealing film Two cooling films are laminated, and a ceramic material that absorbs heat is filled and sealed between the laminated first sealing film and the second sealing film.
  • an electronic component comprising the cooling device.
  • an electronic apparatus comprising the cooling device or the electronic component.
  • a cooling device that can be used without a power source, can be reduced in size, and has excellent moisture resistance is provided. can do.
  • FIG. 1 is a diagram schematically showing one aspect of the cooling device of the present invention.
  • the cooling device 1 of the present invention comprises a first sealing film 2 and a second sealing film 4 and a ceramic material 6 that absorbs heat by latent heat.
  • the ceramic material is sealed while being sandwiched between the first sealing film and the second sealing film.
  • the ceramic material that absorbs heat by latent heat is sealed by the first sealing film and the second sealing film, contact between the ceramic material and moisture is suppressed, and a high-humidity environment Even under, the function can be maintained for a long time.
  • the cooling device of the present invention is not particularly limited, it has a sheet-like shape, and the thickness is preferably 100 ⁇ m or more and 10 mm or less, more preferably 1 mm or more and 8 mm or less, and further preferably 3 mm or more and 5 mm or less.
  • the first sealing film and the second sealing film may be a single layer film or a laminated film.
  • the first sealing film and the second sealing film seal the ceramic material by being in close contact with each other at the periphery.
  • the method for bringing both into close contact with each other is not particularly limited, and examples thereof include adhesion by welding, an adhesive, and the like, preferably welding, for example, laminating.
  • the thickness of the first sealing film and the second sealing film is not particularly limited as long as it does not substantially permeate moisture (water vapor), for example, 1 ⁇ m or more, preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more, For example, it may be 100 ⁇ m or more, 500 ⁇ m or more, or 1 mm or more.
  • the thickness is preferably 1 mm or less, more preferably 500 ⁇ m or less, still more preferably 100 ⁇ m or less, and even more preferably 50 ⁇ m or less.
  • the adhesion region between the first sealing film and the second sealing film for sealing the ceramic material is preferably at least 1 mm or more, more preferably at least 3 mm or more from the end of the region where the ceramic material is present, More preferably, it may be at least 5 mm or more. This close contact region may vary depending on the amount of ceramic material to be sealed, the material of the sealing film, and the like.
  • the material constituting the first sealing film and the second sealing film is preferably a resin that can be laminated.
  • the resin that can be laminated is not particularly limited, and may be, for example, polyolefin such as polyethylene, polypropylene, polyethylene terephthalate, and nylon.
  • Ceramic materials that absorb heat may have insufficient insulation, and may cause a short circuit if used near a heat source where current can flow or on a circuit board. Since the resin that can be laminated is insulative, it is advantageous in that a short circuit of the electric circuit due to the cooling device can be prevented.
  • the material constituting each layer is not particularly limited, and examples thereof include resins, rubbers, metals, alloys, and other inorganic materials (graphite, glass). May be.
  • each layer is not particularly limited, and may be, for example, 1 ⁇ m or more and 500 ⁇ m or less, preferably 5 ⁇ m or more and 300 ⁇ m or less, more preferably 10 ⁇ m or more and 200 ⁇ m or less.
  • the outermost layers of the first sealing film and the second sealing film can each be formed from an insulating material.
  • the outermost layer means a layer farthest from the ceramic material among the layers of the laminated film.
  • the insulating material is not particularly limited, and examples thereof include resins such as polyolefins such as polyethylene, polypropylene, polyethylene terephthalate, and nylon.
  • the thickness of the outermost layer made of an insulating material is not particularly limited, but may be, for example, 1 ⁇ m to 100 ⁇ m, preferably 5 ⁇ m to 50 ⁇ m, and more preferably 10 ⁇ m to 30 ⁇ m.
  • the innermost layers of the first sealing film and the second sealing film are in close contact with each other to seal the ceramic material.
  • the innermost layer means a layer closest to the ceramic material among layers of the laminated film (that is, a layer in contact with the ceramic material).
  • the method for bringing the innermost layers into close contact with each other is not particularly limited, and examples thereof include welding, adhesion with an adhesive, and the like, preferably welding, for example, laminating.
  • the material constituting the innermost layer of the sealing film is a resin that can be laminated, and is not particularly limited.
  • the material may be a polyolefin such as polyethylene, polypropylene, polyethylene terephthalate, and nylon.
  • the thickness of the innermost layer of the first sealing film and the second sealing film is not particularly limited, but may be, for example, 1 ⁇ m to 100 ⁇ m, preferably 5 ⁇ m to 50 ⁇ m, more preferably 10 ⁇ m to 30 ⁇ m.
  • the cooling device of the present invention may have at least one intermediate layer between the first sealing film and the second sealing film.
  • the intermediate layer may be a layer formed from a highly thermally conductive material.
  • the layer formed from the high thermal conductivity material By using the layer formed from the high thermal conductivity material, the release of heat through the sealing film can be promoted, and the cooling efficiency of the cooling device is improved.
  • the high thermal conductivity material is not particularly limited, and examples thereof include metals (for example, aluminum and copper), alloys (for example, stainless steel), graphite, and the like.
  • the thickness of the layer formed from the high thermal conductivity material is not particularly limited, but may be, for example, 3 ⁇ m to 200 ⁇ m, preferably 5 ⁇ m to 100 ⁇ m.
  • the thickness of the layer formed from the high thermal conductivity material is 3 ⁇ m or more, the release of heat through the sealing film can be further promoted.
  • the thickness of the layer formed from the high thermal conductivity material is 200 ⁇ m or less, the thickness of the cooling device can be reduced, which contributes to downsizing.
  • the cooling device of the present invention is such that the first sealing film and the second sealing film are the outermost layer formed from an insulating material and the outermost layer formed from a resin material, preferably a resin that can be laminated.
  • a resin material preferably a resin that can be laminated.
  • the ceramic material used in the present invention absorbs heat by latent heat. Ceramic material can absorb high heat temporarily by latent heat, and release the absorbed heat when the temperature is lowered to obtain a high cooling effect by leveling the heat over time. It becomes possible.
  • the ceramic material of the present invention is preferably based on vanadium oxide, typically vanadium dioxide.
  • the “main component” means a component contained in the ceramic material by 60% by mass or more, particularly 80% by mass or more, preferably 90% by mass or more, more preferably 95% by mass or more, and further preferably 98% by mass.
  • it means a component contained in, for example, 98.0 to 99.8% by mass or substantially 100%.
  • Impurities in the ceramic material are not particularly limited, but vanadium oxides other than the vanadium oxide described below, such as V 2 O 3 and V 2 O 5 , other ceramic materials such as glass, and Na, Al, Cr, Fe Ni, Mo, Sb, Ca, Si, and oxides thereof.
  • the vanadium oxide contains vanadium and M (wherein M is at least one selected from W, Ta, Mo and Nb), and the total amount of vanadium and M is 100 mol parts.
  • V may be vanadium oxide in which the molar part of M is 0 mol part or more and about 5 mol part or less. Note that M is not an essential component, and the content molar part of M may be 0.
  • the vanadium oxide has the formula: V 1-x M x O 2 (In the formula, M is W, Ta, Mo or Nb, and x is 0 or more and 0.05 or less.) Or one or more vanadium oxides represented by
  • the vanadium oxide has the formula: V 1-x W x O 2 (In the formula, x is 0 or more and 0.01 or less.) Or one or more vanadium oxides represented by
  • the vanadium oxide is a composite oxide containing A (where A is Li or Na) and vanadium, and the content of A when the vanadium is 100 mol parts is about
  • the composite oxide may be 50 to about 110 parts by mole, preferably about 70 to about 110 parts by mole, more preferably about 70 to about 98 parts by mole.
  • the vanadium oxide is a composite oxide containing A (where A is Li or Na), vanadium and a transition metal (for example, at least one selected from titanium, cobalt, iron and nickel). And
  • A is Li or Na
  • vanadium and a transition metal for example, at least one selected from titanium, cobalt, iron and nickel.
  • the molar ratio of vanadium to transition metal is in the range of 995: 5 to 850: 150;
  • a composite oxide characterized in that the molar ratio of A to the total of vanadium and transition metals is in the range of 100: 70 to 100: 110.
  • the vanadium oxide has the formula: A y V 1-z M a z O 2 (Wherein A is Li or Na, M a is a transition metal; y is 0.5 or more and 1.1 or less, preferably y is 0.7 or more and 1.1 or less. And z is 0 or more and 0.15 or less.) Or one or more vanadium oxides represented by
  • A is Li.
  • M a is at least one metal selected titanium, cobalt, iron and nickel.
  • y and z satisfy either of the following (a) or (b).
  • (A) 0.70 ⁇ y ⁇ 0.98 and z 0, or (b) 0.70 ⁇ y ⁇ 1.1 and 0.005 ⁇ z ⁇ 0.15
  • the vanadium oxide is Ti-doped vanadium oxide or vanadium oxide further doped with other atoms selected from the group consisting of W, Ta, Mo and Nb,
  • the other atom is W
  • the content mole part of the other atom is greater than 0 mole part and less than or equal to 5 mole part with respect to a total of 100 mole parts of vanadium, Ti, and other atoms
  • the other atom is Ta, Mo or Nb
  • the content mole part of the other atom is greater than 0 mole part and 15 mole parts or less with respect to 100 mole parts in total of vanadium, Ti and other atoms
  • the content mole part of titanium is not less than 2 mole parts and not more than 30 mole parts with respect to 100 mole parts in total of vanadium, Ti and other atoms.
  • the Ti-doped vanadium oxide may contain 5 to 10 mole parts of titanium with respect to 100 mole parts of Ti and other atoms in total.
  • Ti-doped vanadium dioxide means vanadium oxide showing a corresponding crystal structure by X-ray structural analysis (typically using a powder X-ray diffraction method).
  • vanadium dioxide doped with other atoms means vanadium dioxide doped with other atoms in addition to Ti, and means vanadium oxide showing a corresponding crystal structure by X-ray structural analysis. To do.
  • the vanadium oxide is Formula: V 1-xy Ti x M y O 2 [Wherein M is W, Ta, Mo or Nb; x is 0.02 or more and 0.30 or less, y is 0 or more, When M is W, y is 0.05 or less, When M is Ta, Mo or Nb, y is 0.15 or less. ] It is vanadium oxide represented by these. By using such vanadium oxide, the moisture resistance of the ceramic material is improved.
  • x may be 0.05 or more and 0.10 or less.
  • the temperature at which the vanadium oxide undergoes phase transition is appropriately selected depending on the object to be cooled, the purpose of cooling, and the like. For example, when the object to be cooled is a CPU, the phase is increased at 20 to 100 ° C., preferably 40 to 60 ° C. It is preferable to transfer.
  • the temperature at which the vanadium oxide undergoes phase transition that is, the temperature at which the vanadium oxide exhibits latent heat, can be adjusted by adding (doping) other atoms and adjusting the amount of the atoms added.
  • the vanadium oxide preferably has an initial latent heat of 35 J / g or more, more preferably 40 J / g or more, and still more preferably 43 J / g or more.
  • latent heat is the total amount of thermal energy required when the phase of a substance changes, and in this specification, solid-solid phase transitions such as electrical, magnetic, and structural phase transitions are used. This refers to the amount of heat generated and absorbed.
  • the vanadium oxide is preferably in the form of particles (powder).
  • the average particle diameter of the vanadium oxide (D50: particle diameter distribution on a volume basis, particle diameter at the point where the cumulative value is 50% in the cumulative curve with the total volume being 100%) is not particularly limited. It may be 0.1 to several hundred ⁇ m, specifically 0.1 to 900 ⁇ m, typically about 0.2 to 50 ⁇ m, and preferably 0.5 to 50 ⁇ m.
  • the average particle diameter can be measured using a laser diffraction / scattering soot particle diameter / particle size distribution measuring apparatus or an electronic scanning microscope.
  • the average particle diameter is preferably 0.2 ⁇ m or more from the viewpoint of ease of handling and moisture resistance, and is preferably 50 ⁇ m or less from the viewpoint of being able to be molded more densely.
  • the present invention also provides an electronic component having the cooling device of the present invention and an electronic apparatus having the cooling device or the electronic component.
  • the electronic component is not particularly limited, but for example, an integrated circuit (IC) such as a central processing unit (CPU), a power management IC (PMIC), a power amplifier (PA), a transceiver IC, and a voltage regulator (VR).
  • IC integrated circuit
  • CPU central processing unit
  • PMIC power management IC
  • PA power amplifier
  • VR voltage regulator
  • LEDs Light emitting diodes
  • LEDs incandescent bulbs
  • semiconductor lasers and other light emitting elements semiconductor lasers and other light emitting elements
  • FETs field effect transistors
  • heat source components such as lithium ion batteries, substrates, heat sinks, housings, etc. Examples include parts generally used in electronic equipment.
  • the electronic device is not particularly limited, and examples thereof include a mobile phone, a smartphone, a personal computer (PC), a tablet terminal, and a hard disk drive.
  • AL aluminum
  • ON nylon
  • CPP is modified polypropylene
  • EVA is an ethylene / vinyl acetate copolymer
  • ad is an acrylic adhesive.
  • the application amount of EVA is 5 g / m 2 .
  • a vanadium dioxide powder (5 g) is placed in the center of the laminate film (length 7 cm ⁇ width 7 cm), and another laminate film (length 7 cm ⁇ width 7 cm) is stacked thereon.
  • the films were laminated using a laminating apparatus (Fuji Impulse Co., Ltd.) to obtain cooling devices 1 to 4 in which vanadium dioxide powder was sealed between the laminated films as shown in FIG.
  • Test Example 1 The cooling devices 1 to 4 obtained above were exposed to an atmosphere of 85 ° C. and 85% RH, and the endothermic amount was measured after 1000 hours and 2000 hours. As a control, non-laminated vanadium oxide was also tested in the same manner. The results are shown in Table 2.
  • the cooling device of the present invention has high moisture resistance and can maintain its function even after a long time.
  • the cooling device of the present invention can be used, for example, as a cooling device for a small communication terminal in which a thermal countermeasure problem has become prominent.

Abstract

A cooling device of the present invention is configured by having a first sealing film, a second sealing film, and a ceramic material that absorbs heat. The cooling device is characterized in that: the first sealing film and the second sealing film are laminated to each other; and the ceramic material that absorbs heat is applied between the first sealing film and the second sealing film, and is sealed, said first sealing film and second sealing film having been laminated to each other.

Description

冷却デバイスCooling device
 本発明は、冷却デバイスに関する。 The present invention relates to a cooling device.
 近年の電子機器の性能向上を背景に、熱源となるCPU(中央処理装置)、パワーアンプ、FET(電界効果トランジスタ)、IC(集積回路)、ボルテージレギュレータなどの電子部品の数が増加し、投入されるエネルギーの増加も重なって、発熱の問題が顕著化している。特に、スマートフォンやタブレット型端末のようなモバイル機器では、この熱により、電池の容量が劣化したり、構成する電子機器の信頼性に深刻な影響を与えたりする問題がある。従って、機器の内部の温度を、より高度に制御することが求められている。 The number of electronic components such as CPU (central processing unit), power amplifier, FET (field effect transistor), IC (integrated circuit), voltage regulator, etc., which become heat sources, has increased due to the recent improvement in performance of electronic devices. The increase in energy generated overlaps with the problem of heat generation. In particular, mobile devices such as smartphones and tablet terminals have a problem that the heat deteriorates the capacity of the battery and seriously affects the reliability of the electronic devices to be configured. Therefore, it is required to control the temperature inside the device to a higher degree.
 上記のような熱源から生じた熱の制御は、既存の熱マネジメントソリューションである冷却ファン、ヒートパイプ、ヒートシンク、サーマルシート、ペルチェ素子などにより行われており、例えば、特許文献1には、ヒートシンクとファンまたはペルチェ素子を組み合わせた冷却装置が記載されている(特許文献1を参照)。 Control of the heat generated from the heat source as described above is performed by a cooling fan, a heat pipe, a heat sink, a thermal sheet, a Peltier element, or the like, which is an existing heat management solution. A cooling device in which a fan or a Peltier element is combined is described (see Patent Document 1).
 しかしながら、上記のようなヒートシンクとファンまたはペルチェ素子を組み合わせた冷却装置は、構造が比較的複雑であることに加え、機器が大きくなり、特にスマートフォンやタブレット型端末等の薄型の機器には使用しにくい。さらには、電力を消費するので、低消費電力(バッテリーの持ち時間)の観点からも不利である。 However, the cooling device combining the heat sink and the fan or the Peltier element as described above has a relatively complicated structure and increases the size of the device, particularly for thin devices such as smartphones and tablet terminals. Hateful. Furthermore, since power is consumed, it is disadvantageous from the viewpoint of low power consumption (battery life).
 従って、スマートフォンやタブレット型端末等の薄型の機器では、現状、温度の制御は、筺体を介する放熱による手段しかなく、熱源と筺体をサーマルシートなどで熱結合し熱を逃がしている。 Therefore, in thin devices such as smartphones and tablet terminals, the temperature is currently controlled only by means of heat dissipation through the housing, and the heat source and the housing are thermally coupled by a thermal sheet or the like to release heat.
特開2010-223497号公報JP 2010-223497 A
 上記のような筺体を介する放熱は、筺体の表面積が限られていることから限界がある。従って、各熱源の温度を測定し、温度が所定の温度以上になった場合に、CPUなどのパフォーマンスを制限する(発熱自体を抑制する)ことで対応している。即ち、筺体の温度上昇が、CPU等のパフォーマンスの妨げになっていることがある。当然、このような筐体を介した放熱、換言すれば機器全体への伝熱による放熱においては、バッテリーにも熱が伝わることになり、電池容量の経時的な低下に繋がっているともいえる。 放熱 Heat radiation through the housing as described above is limited because the surface area of the housing is limited. Therefore, the temperature of each heat source is measured, and when the temperature exceeds a predetermined temperature, the performance of the CPU or the like is limited (suppressing heat generation itself). That is, the temperature rise of the housing may hinder the performance of the CPU or the like. Naturally, in heat dissipation through such a case, in other words, heat dissipation by heat transfer to the entire device, heat is also transferred to the battery, which can lead to a decrease in battery capacity over time.
 そこで、本発明者は、結晶構造相転移や磁気相転移等に伴い熱を吸収するセラミック材料である酸化バナジウム(具体的には二酸化バナジウム)を、電子機器の熱源付近に配置することにより、無電源で使用可能な冷却デバイスとすることを検討した。 In view of this, the present inventor has arranged vanadium oxide (specifically, vanadium dioxide), which is a ceramic material that absorbs heat accompanying a crystal structure phase transition or a magnetic phase transition, by placing it near the heat source of an electronic device. We considered a cooling device that can be used with a power supply.
 しかしながら、本発明者の研究により、このようなセラミック材料、特に一般的な二酸化バナジウム(VO)は、初期においては良好な吸熱効果を示すが、高湿度環境下では、吸熱効果が次第に低下することが明らかになった。 However, according to the inventor's research, such a ceramic material, particularly general vanadium dioxide (VO 2 ), shows a good endothermic effect in the initial stage, but the endothermic effect gradually decreases in a high humidity environment. It became clear.
 従って、本発明の目的は、無電源で使用可能で、小型化が可能であり、耐湿性に優れた冷却デバイスを提供することにある。 Therefore, an object of the present invention is to provide a cooling device that can be used without a power source, can be miniaturized, and has excellent moisture resistance.
 本発明者は、上記課題について検討した結果、高湿度環境下での吸熱特性の劣化は、セラミック材料が水分に曝されることにより酸化、水酸化されることが一因であることを見出した。そこで、本発明者は、耐湿性を改善するために、セラミック材料を外気から遮断することが効果的であると考え、これらをラミネート材により封止することにより、耐湿性が高い冷却デバイスを提供できることを見出した。 As a result of studying the above problems, the present inventor has found that the deterioration of the endothermic characteristics in a high humidity environment is due to the fact that the ceramic material is oxidized and hydroxylated by exposure to moisture. . Therefore, the present inventor considers that it is effective to block the ceramic material from the outside air in order to improve moisture resistance, and provides a cooling device with high moisture resistance by sealing these with a laminate material. I found out that I can do it.
 本発明の第1の要旨によれば、第1封止フィルムと、第2封止フィルムと、熱を吸収するセラミック材料とを有して成る冷却デバイスであって、第1封止フィルムおよび第2封止フィルムが積層されており、熱を吸収するセラミック材料が、積層された第1封止フィルムおよび第2封止フィルムの間に充填され、封止されていることを特徴とする冷却デバイスが提供される。 According to a first aspect of the present invention, there is provided a cooling device comprising a first sealing film, a second sealing film, and a ceramic material that absorbs heat, wherein the first sealing film and the first sealing film Two cooling films are laminated, and a ceramic material that absorbs heat is filled and sealed between the laminated first sealing film and the second sealing film. Is provided.
 本発明の第2の要旨によれば、上記冷却デバイスを有して成る電子部品が提供される。 According to the second aspect of the present invention, there is provided an electronic component comprising the cooling device.
 本発明の第3の要旨によれば、上記冷却デバイスまたは上記電子部品を有して成る電子機器が提供される。 According to the third aspect of the present invention, there is provided an electronic apparatus comprising the cooling device or the electronic component.
 本発明によれば、熱を吸収するセラミック材料を用い、これを封止フィルムにより封止することによって、無電源で使用可能で、小型化が可能であり、耐湿性に優れた冷却デバイスを提供することができる。 According to the present invention, by using a ceramic material that absorbs heat and sealing it with a sealing film, a cooling device that can be used without a power source, can be reduced in size, and has excellent moisture resistance is provided. can do.
図1は、本発明の冷却デバイスの一態様を模式的に示す図である。FIG. 1 is a diagram schematically showing one aspect of the cooling device of the present invention.
 図1に模式的に示されるように、本発明の冷却デバイス1は、第1封止フィルム2および第2封止フィルム4と、潜熱により熱を吸収するセラミック材料6を有して成る。本発明の冷却デバイスにおいて、セラミック材料は、第1封止フィルムおよび第2封止フィルム間に挟まれた状態で封止されている。本発明の冷却デバイスは、潜熱により熱を吸収するセラミック材料が、第1封止フィルムおよび第2封止フィルムにより封止されているので、セラミック材料と水分との接触が抑制され、高湿度環境下においても、長期間その機能を維持することができる。 As schematically shown in FIG. 1, the cooling device 1 of the present invention comprises a first sealing film 2 and a second sealing film 4 and a ceramic material 6 that absorbs heat by latent heat. In the cooling device of the present invention, the ceramic material is sealed while being sandwiched between the first sealing film and the second sealing film. In the cooling device of the present invention, since the ceramic material that absorbs heat by latent heat is sealed by the first sealing film and the second sealing film, contact between the ceramic material and moisture is suppressed, and a high-humidity environment Even under, the function can be maintained for a long time.
 本発明の冷却デバイスは、特に限定されないが、シート状の形状を有し、その厚みは、好ましくは100μm以上10mm以下、より好ましくは1mm以上8mm以下、さらに好ましくは3mm以上5mm以下であり得る。 Although the cooling device of the present invention is not particularly limited, it has a sheet-like shape, and the thickness is preferably 100 μm or more and 10 mm or less, more preferably 1 mm or more and 8 mm or less, and further preferably 3 mm or more and 5 mm or less.
 第1封止フィルムおよび第2封止フィルムは、単層フィルムであっても、積層フィルムであってもよい。 The first sealing film and the second sealing film may be a single layer film or a laminated film.
 第1封止フィルムおよび第2封止フィルムは、その周縁部において互いに密着することにより、セラミック材料を封止する。両者を密着させる方法は、特に限定されず、溶着、接着剤等による接着が挙げられ、好ましくは溶着、例えばラミネート加工が挙げられる。 The first sealing film and the second sealing film seal the ceramic material by being in close contact with each other at the periphery. The method for bringing both into close contact with each other is not particularly limited, and examples thereof include adhesion by welding, an adhesive, and the like, preferably welding, for example, laminating.
 第1封止フィルムおよび第2封止フィルムの厚みは、水分(水蒸気)を実質的に透過させない厚みであれば特に限定されず、例えば、1μm以上、好ましくは5μm以上、より好ましくは10μm以上、例えば100μm以上、500μm以上、または1mm以上であってもよい。一方、小型化、薄型化の観点からは、厚みは、好ましくは1mm以下、より好ましくは500μm以下、さらに好ましくは100μm以下、さらにより好ましくは50μm以下であり得る。 The thickness of the first sealing film and the second sealing film is not particularly limited as long as it does not substantially permeate moisture (water vapor), for example, 1 μm or more, preferably 5 μm or more, more preferably 10 μm or more, For example, it may be 100 μm or more, 500 μm or more, or 1 mm or more. On the other hand, from the viewpoint of size reduction and thickness reduction, the thickness is preferably 1 mm or less, more preferably 500 μm or less, still more preferably 100 μm or less, and even more preferably 50 μm or less.
 セラミック材料を封止するための第1封止フィルムと第2封止フィルムとの密着領域は、セラミック材料が存在する領域の端から、好ましくは少なくとも1mm以上まで、より好ましくは少なくとも3mm以上まで、さらに好ましくは少なくとも5mm以上までであり得る。この密着領域は、封入するセラミック材料の量、封止フィルムの材質等によって変化し得る。 The adhesion region between the first sealing film and the second sealing film for sealing the ceramic material is preferably at least 1 mm or more, more preferably at least 3 mm or more from the end of the region where the ceramic material is present, More preferably, it may be at least 5 mm or more. This close contact region may vary depending on the amount of ceramic material to be sealed, the material of the sealing film, and the like.
 第1封止フィルムおよび第2封止フィルムが、単層フィルムである場合、第1封止フィルムおよび第2封止フィルムを構成する材料は、好ましくは、ラミネート加工が可能な樹脂である。 When the first sealing film and the second sealing film are single layer films, the material constituting the first sealing film and the second sealing film is preferably a resin that can be laminated.
 ラミネート加工が可能な樹脂は、特に限定されないが、例えば、ポリエチレン、ポリプロピレン、ポリエチレンテレフタラート、ナイロン等のポリオレフィンであり得る。 The resin that can be laminated is not particularly limited, and may be, for example, polyolefin such as polyethylene, polypropylene, polyethylene terephthalate, and nylon.
 熱を吸収するセラミック材料は、絶縁性が不十分な場合があり、電流が流れ得る熱源付近や、回路基板上に用いた場合、回路をショートさせる可能性がある。ラミネート加工が可能な樹脂は絶縁性であるので、冷却デバイスによる電気回路のショートを防止することができる点でも有利である。 ∙ Ceramic materials that absorb heat may have insufficient insulation, and may cause a short circuit if used near a heat source where current can flow or on a circuit board. Since the resin that can be laminated is insulative, it is advantageous in that a short circuit of the electric circuit due to the cooling device can be prevented.
 第1封止フィルムおよび第2封止フィルムが積層フィルムである場合、各層を構成する材料は特に限定されず、例えば、樹脂、ゴム、金属、合金、その他無機材料(グラファイト、ガラス)などであってもよい。 When the first sealing film and the second sealing film are laminated films, the material constituting each layer is not particularly limited, and examples thereof include resins, rubbers, metals, alloys, and other inorganic materials (graphite, glass). May be.
 各層の厚みは、特に限定されず、例えば、1μm以上500μm以下、好ましくは5μm以上300μm以下、より好ましくは10μm以上200μm以下であり得る。 The thickness of each layer is not particularly limited, and may be, for example, 1 μm or more and 500 μm or less, preferably 5 μm or more and 300 μm or less, more preferably 10 μm or more and 200 μm or less.
 一の態様において、第1封止フィルムおよび第2封止フィルムの最外層は、それぞれ、絶縁材料から形成され得る。ここに、最外層とは、積層フィルムの層のうち、セラミック材料から最も遠い層を意味する。このように最外層を絶縁材料の層とすることにより、冷却デバイスによる電気回路のショートを防止することができる。 In one embodiment, the outermost layers of the first sealing film and the second sealing film can each be formed from an insulating material. Here, the outermost layer means a layer farthest from the ceramic material among the layers of the laminated film. Thus, by making the outermost layer a layer of an insulating material, it is possible to prevent a short circuit of the electric circuit due to the cooling device.
 絶縁材料としては、特に限定されないが、樹脂、例えばポリエチレン、ポリプロピレン、ポリエチレンテレフタラート、ナイロン等のポリオレフィンが挙げられる。 The insulating material is not particularly limited, and examples thereof include resins such as polyolefins such as polyethylene, polypropylene, polyethylene terephthalate, and nylon.
 絶縁材料から構成された最外層の厚みは、特に限定されないが、例えば1μm以上100μm以下、好ましくは5μm以上50μm以下、より好ましくは10μm以上30μm以下であり得る。 The thickness of the outermost layer made of an insulating material is not particularly limited, but may be, for example, 1 μm to 100 μm, preferably 5 μm to 50 μm, and more preferably 10 μm to 30 μm.
 第1封止フィルムおよび第2封止フィルムの最内層は、互いに密着することにより、セラミック材料を封止する。ここに、最内層とは、積層フィルムの層のうち、セラミック材料に最も近い層(即ち、セラミック材料に接する層)を意味する。 The innermost layers of the first sealing film and the second sealing film are in close contact with each other to seal the ceramic material. Here, the innermost layer means a layer closest to the ceramic material among layers of the laminated film (that is, a layer in contact with the ceramic material).
 両者の最内層を密着させる方法は、特に限定されず、溶着、接着剤等による接着が挙げられ、好ましくは溶着、例えばラミネート加工が挙げられる。 The method for bringing the innermost layers into close contact with each other is not particularly limited, and examples thereof include welding, adhesion with an adhesive, and the like, preferably welding, for example, laminating.
 一の態様において、封止フィルムの最内層を構成する材料は、ラミネート加工が可能な樹脂であり、特に限定されないが、例えば、ポリエチレン、ポリプロピレン、ポリエチレンテレフタラート、ナイロン等のポリオレフィンであり得る。 In one embodiment, the material constituting the innermost layer of the sealing film is a resin that can be laminated, and is not particularly limited. For example, the material may be a polyolefin such as polyethylene, polypropylene, polyethylene terephthalate, and nylon.
 第1封止フィルムおよび第2封止フィルムの最内層の厚みは、特に限定されないが、例えば1μm以上100μm以下、好ましくは5μm以上50μm以下、より好ましくは10μm以上30μm以下であり得る。 The thickness of the innermost layer of the first sealing film and the second sealing film is not particularly limited, but may be, for example, 1 μm to 100 μm, preferably 5 μm to 50 μm, more preferably 10 μm to 30 μm.
 本発明の冷却デバイスは、第1封止フィルムおよび第2封止フィルムの間に、少なくとも1つの中間層を有していてもよい。 The cooling device of the present invention may have at least one intermediate layer between the first sealing film and the second sealing film.
 一の態様において、上記中間層は、高熱伝導性材料から形成された層であり得る。高熱伝導性材料から形成された層を用いることにより、封止フィルムを介する熱の放出を促進することができ、冷却デバイスの冷却効率が向上する。 In one aspect, the intermediate layer may be a layer formed from a highly thermally conductive material. By using the layer formed from the high thermal conductivity material, the release of heat through the sealing film can be promoted, and the cooling efficiency of the cooling device is improved.
 上記高熱伝導性材料としては、特に限定されないが、金属(例えば、アルミニウム、銅)、合金(例えば、ステンレス)、グラファイト等が挙げられる。 The high thermal conductivity material is not particularly limited, and examples thereof include metals (for example, aluminum and copper), alloys (for example, stainless steel), graphite, and the like.
 高熱伝導性材料から形成された層の厚みは、特に限定されないが、例えば3μm以上200μm以下、好ましくは5μm以上100μm以下であり得る。高熱伝導性材料から形成された層の厚みを3μm以上とすることにより、封止フィルムを介する熱の放出をより促進することができる。一方、高熱伝導性材料から形成された層の厚みを200μm以下とすることにより、冷却デバイスの厚みを小さくすることができ、小型化に寄与する。 The thickness of the layer formed from the high thermal conductivity material is not particularly limited, but may be, for example, 3 μm to 200 μm, preferably 5 μm to 100 μm. By setting the thickness of the layer formed from the high thermal conductivity material to 3 μm or more, the release of heat through the sealing film can be further promoted. On the other hand, when the thickness of the layer formed from the high thermal conductivity material is 200 μm or less, the thickness of the cooling device can be reduced, which contributes to downsizing.
 好ましい態様において、本発明の冷却デバイスは、第1封止フィルムおよび第2封止フィルムが、絶縁材料から形成された最外層と、樹脂材料、好ましくはラミネート加工が可能な樹脂から形成された最内層と、最外層と最内層の間に位置する高熱伝導性材料から形成された層とを有する。 In a preferred embodiment, the cooling device of the present invention is such that the first sealing film and the second sealing film are the outermost layer formed from an insulating material and the outermost layer formed from a resin material, preferably a resin that can be laminated. An inner layer and a layer formed from a high thermal conductivity material located between the outermost layer and the innermost layer.
 本発明に用いられるセラミック材料は、潜熱により熱を吸収する。セラミック材料は、過剰な熱を潜熱により一時的に吸収し、温度が低下した際に吸収した熱を放出することにより、時間的な熱の平準化をすることで、高い冷却効果を得ることが可能になる。 The ceramic material used in the present invention absorbs heat by latent heat. Ceramic material can absorb high heat temporarily by latent heat, and release the absorbed heat when the temperature is lowered to obtain a high cooling effect by leveling the heat over time. It becomes possible.
 本発明のセラミック材料は、好ましくは、酸化バナジウム、典型的には二酸化バナジウムを主成分とする。 The ceramic material of the present invention is preferably based on vanadium oxide, typically vanadium dioxide.
 上記「主成分」とは、セラミック材料中に60質量%以上含まれる成分を意味し、特に80質量%以上、好ましくは90質量%以上、より好ましくは95質量%以上、さらに好ましくは98質量%以上、例えば98.0~99.8質量%あるいは実質的に100%含まれる成分を意味する。 The “main component” means a component contained in the ceramic material by 60% by mass or more, particularly 80% by mass or more, preferably 90% by mass or more, more preferably 95% by mass or more, and further preferably 98% by mass. For example, it means a component contained in, for example, 98.0 to 99.8% by mass or substantially 100%.
 セラミック材料中の不純物としては、特に限定されないが、下記する酸化バナジウム以外の酸化バナジウム、例えばV、V等、他のセラミック材料、例えばガラス、ならびにNa、Al、Cr、Fe、Ni、Mo、Sb、Ca、Siおよびこれらの酸化物等が挙げられる。 Impurities in the ceramic material are not particularly limited, but vanadium oxides other than the vanadium oxide described below, such as V 2 O 3 and V 2 O 5 , other ceramic materials such as glass, and Na, Al, Cr, Fe Ni, Mo, Sb, Ca, Si, and oxides thereof.
 一の態様において、上記酸化バナジウムは、バナジウムおよびM(ここに、Mは、W、Ta、MoおよびNbから選ばれる少なくとも一種である)を含み、バナジウムとMの合計を100モル部としたときのMの含有モル部が0モル部以上約5モル部以下である酸化バナジウムであってもよい。なお、Mは必須成分ではなく、Mの含有モル部は0であってもよい。 In one embodiment, the vanadium oxide contains vanadium and M (wherein M is at least one selected from W, Ta, Mo and Nb), and the total amount of vanadium and M is 100 mol parts. V may be vanadium oxide in which the molar part of M is 0 mol part or more and about 5 mol part or less. Note that M is not an essential component, and the content molar part of M may be 0.
 別の態様において、上記酸化バナジウムは、式:
   V1-x
(式中、Mは、W、Ta、MoまたはNbであり、xは、0以上0.05以下である。)
で表される1種またはそれ以上の酸化バナジウムであってもよい。
In another embodiment, the vanadium oxide has the formula:
V 1-x M x O 2
(In the formula, M is W, Ta, Mo or Nb, and x is 0 or more and 0.05 or less.)
Or one or more vanadium oxides represented by
 好ましい態様において、上記酸化バナジウムは、式:
   V1-x
(式中、xは、0以上0.01以下である。)
で表される1種またはそれ以上の酸化バナジウムであってもよい。
In a preferred embodiment, the vanadium oxide has the formula:
V 1-x W x O 2
(In the formula, x is 0 or more and 0.01 or less.)
Or one or more vanadium oxides represented by
 一の態様において、上記酸化バナジウムは、A(ここに、AはLiまたはNaである)およびバナジウムを含む複合酸化物であって、バナジウムを100モル部としたときのAの含有モル部が約50モル部以上約110モル部以下、好ましくは約70モル部以上約110モル部以下、より好ましくは約70モル部以上約98モル部以下である複合酸化物であってもよい。 In one embodiment, the vanadium oxide is a composite oxide containing A (where A is Li or Na) and vanadium, and the content of A when the vanadium is 100 mol parts is about The composite oxide may be 50 to about 110 parts by mole, preferably about 70 to about 110 parts by mole, more preferably about 70 to about 98 parts by mole.
 さらに、上記酸化バナジウムは、A(ここに、AはLiまたはNaである)、バナジウムおよび遷移金属(例えば、チタン、コバルト、鉄およびニッケルから選択される少なくとも1種)を含む複合酸化物であって、
 バナジウムと遷移金属のモル比が、995:5~850:150の範囲にあり、
 バナジウムおよび遷移金属の合計とAのモル比が、100:70~100:110の範囲にある
ことを特徴とする複合酸化物であってもよい。
Further, the vanadium oxide is a composite oxide containing A (where A is Li or Na), vanadium and a transition metal (for example, at least one selected from titanium, cobalt, iron and nickel). And
The molar ratio of vanadium to transition metal is in the range of 995: 5 to 850: 150;
A composite oxide characterized in that the molar ratio of A to the total of vanadium and transition metals is in the range of 100: 70 to 100: 110.
 別の態様において、上記酸化バナジウムは、式:
   A1-z
(式中、AはLiまたはNaであり、Mは、遷移金属であり;yは、0.5以上1.1以下であり、好ましくはyは、0.7以上、1.1以下であり、zは、0以上0.15以下である。)
で表される1種またはそれ以上の酸化バナジウムであってもよい。
In another embodiment, the vanadium oxide has the formula:
A y V 1-z M a z O 2
(Wherein A is Li or Na, M a is a transition metal; y is 0.5 or more and 1.1 or less, preferably y is 0.7 or more and 1.1 or less. And z is 0 or more and 0.15 or less.)
Or one or more vanadium oxides represented by
 上記式中、好ましくは、AはLiである。また、好ましくは、Mは、チタン、コバルト、鉄およびニッケルから選択される少なくとも1種の金属である。 In the above formula, preferably, A is Li. Also preferably, M a is at least one metal selected titanium, cobalt, iron and nickel.
 好ましい態様において、上記式中、yおよびzは、下記(a)または(b)のいずれかを満たす。
 (a)0.70≦y≦0.98、かつ、z=0、または
 (b)0.70≦y≦1.1、かつ、0.005≦z≦0.15
In a preferred embodiment, in the above formula, y and z satisfy either of the following (a) or (b).
(A) 0.70 ≦ y ≦ 0.98 and z = 0, or (b) 0.70 ≦ y ≦ 1.1 and 0.005 ≦ z ≦ 0.15
 一の態様において、上記酸化バナジウムは、Tiがドープされた酸化バナジウムまたはさらにW、Ta、MoおよびNbからなる群から選択される他の原子がドープされた酸化バナジウムであって、
 他の原子がWである場合、バナジウム、Tiおよび他の原子の合計100モル部に対して、他の原子の含有モル部が、0モル部より大きく5モル部以下であり、
 他の原子がTa、MoまたはNbである場合、バナジウム、Tiおよび他の原子の合計100モル部に対して、他の原子の含有モル部が、0モル部より大きく15モル部以下であり、
 バナジウム、Tiおよび他の原子の合計100モル部に対して、チタンの含有モル部は、2モル部以上30モル部以下である。このような酸化バナジウムを用いることにより、セラミック材料の耐湿性が向上する。
In one embodiment, the vanadium oxide is Ti-doped vanadium oxide or vanadium oxide further doped with other atoms selected from the group consisting of W, Ta, Mo and Nb,
When the other atom is W, the content mole part of the other atom is greater than 0 mole part and less than or equal to 5 mole part with respect to a total of 100 mole parts of vanadium, Ti, and other atoms,
When the other atom is Ta, Mo or Nb, the content mole part of the other atom is greater than 0 mole part and 15 mole parts or less with respect to 100 mole parts in total of vanadium, Ti and other atoms,
The content mole part of titanium is not less than 2 mole parts and not more than 30 mole parts with respect to 100 mole parts in total of vanadium, Ti and other atoms. By using such vanadium oxide, the moisture resistance of the ceramic material is improved.
 好ましい態様において、上記のTiがドープされた酸化バナジウムは、Tiおよび他の原子の合計100モル部に対して、チタンの含有モル部が、5モル部以上10モル部以下であり得る。 In a preferred embodiment, the Ti-doped vanadium oxide may contain 5 to 10 mole parts of titanium with respect to 100 mole parts of Ti and other atoms in total.
 本発明において、「Tiがドープされた二酸化バナジウム」とは、X線構造解析(典型的には、粉末X線回折法を用いる)により対応する結晶構造を示す酸化バナジウムを意味する。本明細書において、「さらに他の原子がドープされた二酸化バナジウム」とは、Tiに加え他の原子がドープされた二酸化バナジウムであり、X線構造解析により対応する結晶構造を示す酸化バナジウムを意味する。 In the present invention, “Ti-doped vanadium dioxide” means vanadium oxide showing a corresponding crystal structure by X-ray structural analysis (typically using a powder X-ray diffraction method). In this specification, “vanadium dioxide doped with other atoms” means vanadium dioxide doped with other atoms in addition to Ti, and means vanadium oxide showing a corresponding crystal structure by X-ray structural analysis. To do.
 別の態様において、上記酸化バナジウムは、
 式:V1-x-yTi
[式中、Mは、W、Ta、MoまたはNbであり、
 xは0.02以上0.30以下であり、
 yは0以上であって、
 MがWである場合、yは0.05以下であり、
 MがTa、MoまたはNbである場合、yは0.15以下である。]
で表される酸化バナジウムである。このような酸化バナジウムを用いることにより、セラミック材料の耐湿性が向上する。
In another embodiment, the vanadium oxide is
Formula: V 1-xy Ti x M y O 2
[Wherein M is W, Ta, Mo or Nb;
x is 0.02 or more and 0.30 or less,
y is 0 or more,
When M is W, y is 0.05 or less,
When M is Ta, Mo or Nb, y is 0.15 or less. ]
It is vanadium oxide represented by these. By using such vanadium oxide, the moisture resistance of the ceramic material is improved.
 好ましくは、上記式中、xは、0.05以上0.10以下であり得る。 Preferably, in the above formula, x may be 0.05 or more and 0.10 or less.
 上記酸化バナジウムが相転移する温度は、冷却対象物、冷却目的などに応じて適宜選択され、例えば冷却対象物がCPUである場合、昇温時20~100℃、好ましくは40~60℃で相転移することが好ましい。上記酸化バナジウムが相転移する温度、即ち、上記酸化バナジウムが潜熱を示す温度は、他の原子を添加(ドープ)し、その原子の添加量を調節することにより調整することができる。 The temperature at which the vanadium oxide undergoes phase transition is appropriately selected depending on the object to be cooled, the purpose of cooling, and the like. For example, when the object to be cooled is a CPU, the phase is increased at 20 to 100 ° C., preferably 40 to 60 ° C. It is preferable to transfer. The temperature at which the vanadium oxide undergoes phase transition, that is, the temperature at which the vanadium oxide exhibits latent heat, can be adjusted by adding (doping) other atoms and adjusting the amount of the atoms added.
 上記酸化バナジウムは、好ましくは35J/g以上、より好ましくは40J/g以上、さらに好ましくは43J/g以上の初期潜熱量を有する。より大きな潜熱量を有することにより、より小さな体積で大きな冷却効果を発揮できるので、小型化の点で有利である。ここに、「潜熱」とは、物質の相が変化するときに必要とされる熱エネルギーの総量であり、本明細書においては、固体-固体の相転移、例えば電気・磁気・構造相転移に伴う吸発熱量の事をいう。 The vanadium oxide preferably has an initial latent heat of 35 J / g or more, more preferably 40 J / g or more, and still more preferably 43 J / g or more. By having a larger amount of latent heat, a large cooling effect can be exhibited with a smaller volume, which is advantageous in terms of downsizing. Here, “latent heat” is the total amount of thermal energy required when the phase of a substance changes, and in this specification, solid-solid phase transitions such as electrical, magnetic, and structural phase transitions are used. This refers to the amount of heat generated and absorbed.
 上記酸化バナジウムは、粒子(粉末)状であることが好ましい。上記酸化バナジウムの平均粒径(D50:体積基準で粒度分布を求め、全体積を100%とした累積曲線において、累積値が50%となる点の粒径)は、特に限定されないが、例えば、0.1~数百μm、具体的には0.1~900μm、代表的には約0.2~50μmであり、好ましくは、0.5~50μmであり得る。かかる平均粒径は、レーザー回折・散乱式 粒子径・粒度分布測定装置または電子走査顕微鏡を用いて測定することができる。平均粒径は、取り扱いの容易性および耐湿性の観点から、0.2μm以上であることが好ましく、より緻密に成形できるという観点から、50μm以下であることが好ましい。 The vanadium oxide is preferably in the form of particles (powder). The average particle diameter of the vanadium oxide (D50: particle diameter distribution on a volume basis, particle diameter at the point where the cumulative value is 50% in the cumulative curve with the total volume being 100%) is not particularly limited. It may be 0.1 to several hundred μm, specifically 0.1 to 900 μm, typically about 0.2 to 50 μm, and preferably 0.5 to 50 μm. The average particle diameter can be measured using a laser diffraction / scattering soot particle diameter / particle size distribution measuring apparatus or an electronic scanning microscope. The average particle diameter is preferably 0.2 μm or more from the viewpoint of ease of handling and moisture resistance, and is preferably 50 μm or less from the viewpoint of being able to be molded more densely.
 また、本発明は、本発明の冷却デバイスを有して成る電子部品、ならびに冷却デバイスまたは電子部品を有して成る電子機器をも提供する。 The present invention also provides an electronic component having the cooling device of the present invention and an electronic apparatus having the cooling device or the electronic component.
 電子部品としては、特に限定するものではないが、例えば、中央処理装置(CPU)、パワーマネージメントIC(PMIC)、パワーアンプ(PA)、トランシーバーIC、ボルテージレギュレータ(VR)などの集積回路(IC)、発光ダイオード(LED)、白熱電球、半導体レーザーなどの発光素子、電界効果トランジスタ(FET)などの熱源となり得る部品、および、その他の部品、例えば、リチウムイオンバッテリー、基板、ヒートシンク、筐体等の電子機器に一般的に用いられる部品が挙げられる。 The electronic component is not particularly limited, but for example, an integrated circuit (IC) such as a central processing unit (CPU), a power management IC (PMIC), a power amplifier (PA), a transceiver IC, and a voltage regulator (VR). , Light emitting diodes (LEDs), incandescent bulbs, semiconductor lasers and other light emitting elements, field effect transistors (FETs) and other heat source components, and other components such as lithium ion batteries, substrates, heat sinks, housings, etc. Examples include parts generally used in electronic equipment.
 電子機器としては、特に限定するものではないが、例えば、携帯電話、スマートフォン、パーソナルコンピュータ(PC)、タブレット型端末、ハードディスクドライブ等が挙げられる。 The electronic device is not particularly limited, and examples thereof include a mobile phone, a smartphone, a personal computer (PC), a tablet terminal, and a hard disk drive.
 以上、本発明について説明したが、本発明は上記の態様に限定されるものではなく、種々の改変を行うことができる。 As mentioned above, although this invention was demonstrated, this invention is not limited to said aspect, A various modification | change can be performed.
 実施例
 ラミネートフィルム(封止フィルム)として、下記の4つを準備した。
Example The following four were prepared as a laminate film (sealing film).
Figure JPOXMLDOC01-appb-T000001
 上記の表中、ALはアルミニウム、ONはナイロン、CPPは変性ポリプロピレン、EVAはエチレン・酢酸ビニル共重合体、adはアクリル系接着剤である。尚、EVAの塗布量は5g/mである。
Figure JPOXMLDOC01-appb-T000001
In the above table, AL is aluminum, ON is nylon, CPP is modified polypropylene, EVA is an ethylene / vinyl acetate copolymer, and ad is an acrylic adhesive. The application amount of EVA is 5 g / m 2 .
 上記のラミネートフィルム1~4のそれぞれについて、ラミネートフィルム(縦7cm×横7cm)の中央部に、二酸化バナジウム粉末(5g)を置き、その上から別のラミネートフィルム(縦7cm×横7cm)を重ね合わせ、ラミネート装置(富士インパルス社製)を用いてフィルムを貼り合わせ、図1に示すようにラミネートフィルム間に二酸化バナジウム粉末が封入された冷却デバイス1~4を得た。 For each of the laminate films 1 to 4, a vanadium dioxide powder (5 g) is placed in the center of the laminate film (length 7 cm × width 7 cm), and another laminate film (length 7 cm × width 7 cm) is stacked thereon. The films were laminated using a laminating apparatus (Fuji Impulse Co., Ltd.) to obtain cooling devices 1 to 4 in which vanadium dioxide powder was sealed between the laminated films as shown in FIG.
 試験例
 上記で得られた冷却デバイス1~4を、85℃85%RHの雰囲気に曝し、1000時間後および2000時間後に吸熱量を測定した。また、対照として、ラミネートしていない酸化バナジウムについても、同様に試験した。結果を表2に示す。
Test Example The cooling devices 1 to 4 obtained above were exposed to an atmosphere of 85 ° C. and 85% RH, and the endothermic amount was measured after 1000 hours and 2000 hours. As a control, non-laminated vanadium oxide was also tested in the same manner. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 上記の結果から、本発明の冷却デバイスは、高い耐湿性を有し、長時間経過後も機能を維持できることが確認された。 From the above results, it was confirmed that the cooling device of the present invention has high moisture resistance and can maintain its function even after a long time.
 本発明の冷却デバイスは、例えば、熱対策問題が顕著化している小型通信端末の冷却デバイスとして利用することができる。 The cooling device of the present invention can be used, for example, as a cooling device for a small communication terminal in which a thermal countermeasure problem has become prominent.
 1…冷却デバイス
 2…第1封止フィルム
 4…第2封止フィルム
 6…セラミック材料
DESCRIPTION OF SYMBOLS 1 ... Cooling device 2 ... 1st sealing film 4 ... 2nd sealing film 6 ... Ceramic material

Claims (18)

  1.  第1封止フィルムと、第2封止フィルムと、熱を吸収するセラミック材料とを有して成る冷却デバイスであって、第1封止フィルムおよび第2封止フィルムが積層されており、熱を吸収するセラミック材料が、積層された第1封止フィルムおよび第2封止フィルムの間に充填され、封止されていることを特徴とする冷却デバイス。 A cooling device comprising a first sealing film, a second sealing film, and a ceramic material that absorbs heat, wherein the first sealing film and the second sealing film are laminated, A cooling material, wherein a ceramic material that absorbs water is filled and sealed between the laminated first sealing film and second sealing film.
  2.  第1封止フィルムおよび第2封止フィルムの少なくとも一方が、積層フィルムであることを特徴とする、請求項1に記載の冷却デバイス。 The cooling device according to claim 1, wherein at least one of the first sealing film and the second sealing film is a laminated film.
  3.  第1封止フィルムおよび第2封止フィルムの最外層が、絶縁材料から形成されていることを特徴とする、請求項2に記載の冷却デバイス。 The cooling device according to claim 2, wherein the outermost layers of the first sealing film and the second sealing film are made of an insulating material.
  4.  第1封止フィルムおよび第2封止フィルムの最内層が、樹脂材料から形成されていることを特徴とする、請求項2または3に記載の冷却デバイス。 The cooling device according to claim 2 or 3, wherein innermost layers of the first sealing film and the second sealing film are formed of a resin material.
  5.  第1封止フィルムおよび第2封止フィルムの少なくとも一方が、高熱伝導性材料から形成された層を有することを特徴とする、請求項2~4のいずれか1項に記載の冷却デバイス。 The cooling device according to any one of claims 2 to 4, wherein at least one of the first sealing film and the second sealing film has a layer formed of a high thermal conductivity material.
  6.  高熱伝導性材料が、金属またはグラファイトであることを特徴とする、請求項5に記載の冷却デバイス。 The cooling device according to claim 5, wherein the high thermal conductivity material is metal or graphite.
  7.  第1封止フィルムおよび第2封止フィルムが、絶縁材料から形成された最外層と、樹脂材料から形成された最内層と、最外層と最内層の間に位置する高熱伝導性材料から形成された層とを有することを特徴とする、請求項2~6のいずれか1項に記載の冷却デバイス。 The first sealing film and the second sealing film are formed of an outermost layer formed of an insulating material, an innermost layer formed of a resin material, and a high heat conductive material positioned between the outermost layer and the innermost layer. The cooling device according to any one of claims 2 to 6, wherein the cooling device has a layer.
  8.  セラミック材料が、酸化バナジウムであることを特徴とする、請求項1~7のいずれか1項に記載の冷却デバイス。 The cooling device according to any one of claims 1 to 7, wherein the ceramic material is vanadium oxide.
  9.  酸化バナジウムが、VおよびM(ここに、Mは、W、Ta、MoおよびNbから選ばれる少なくとも一種である)を含む酸化物であって、VとMの合計を100モル部としたときのMの含有モル部が約0モル部以上約5モル部以下であることを特徴とする、請求項8に記載の冷却デバイス。 Vanadium oxide is an oxide containing V and M (where M is at least one selected from W, Ta, Mo and Nb), and the total of V and M is 100 mol parts The cooling device according to claim 8, wherein the molar part of M is about 0 to about 5 parts by mole.
  10.  酸化バナジウムが、式:
       V1-x
    (式中、Mは、W、Ta、MoまたはNbであり、xは、0以上0.05以下である)
    で表される酸化物であることを特徴とする、請求項8に記載の冷却デバイス。
    Vanadium oxide has the formula:
    V 1-x M x O 2
    (In the formula, M is W, Ta, Mo or Nb, and x is 0 or more and 0.05 or less)
    The cooling device according to claim 8, wherein the cooling device is an oxide represented by:
  11.  酸化バナジウムが、A(ここに、AはLiまたはNaである)およびVを含む酸化物であって、Vを100モル部としたときのAの含有モル部が約50モル部以上約100モル部以下であることを特徴とする、請求項8に記載の冷却デバイス。 Vanadium oxide is an oxide containing A (here, A is Li or Na) and V, and the content of A when V is 100 mol parts is about 50 mol parts or more and about 100 mols The cooling device according to claim 8, wherein the cooling device is equal to or less than a part.
  12.  酸化バナジウムが、式:
       AVO
    (式中、Aは、LiまたはNaであり、yは、0.5以上1.0以下である)
    で表される酸化物であることを特徴とする、請求項8に記載の冷却デバイス。
    Vanadium oxide has the formula:
    A y VO 2
    (In the formula, A is Li or Na, and y is 0.5 or more and 1.0 or less)
    The cooling device according to claim 8, wherein the cooling device is an oxide represented by:
  13.  酸化バナジウムが、Tiがドープされた酸化バナジウムまたはさらにW、Ta、MoおよびNbからなる群から選択される他の原子がドープされた酸化バナジウムであって、
     他の原子がWである場合、バナジウム、Tiおよび他の原子の合計100モル部に対して、他の原子の含有モル部が、0モル部より大きく5モル部以下であり、
     他の原子がTa、MoまたはNbである場合、バナジウム、Tiおよび他の原子の合計100モル部に対して、他の原子の含有モル部が、0モル部より大きく15モル部以下であり、
     バナジウム、Tiおよび他の原子の合計100モル部に対して、チタンの含有モル部は、2モル部以上30モル部以下であることを特徴とする、請求項8に記載の冷却デバイス。
    The vanadium oxide is Ti-doped vanadium oxide or further vanadium oxide doped with other atoms selected from the group consisting of W, Ta, Mo and Nb,
    When the other atom is W, the content mole part of the other atom is greater than 0 mole part and less than or equal to 5 mole part with respect to a total of 100 mole parts of vanadium, Ti, and other atoms,
    When the other atom is Ta, Mo or Nb, the content mole part of the other atom is greater than 0 mole part and 15 mole parts or less with respect to 100 mole parts in total of vanadium, Ti and other atoms,
    9. The cooling device according to claim 8, wherein the content mole part of titanium is not less than 2 mole parts and not more than 30 mole parts with respect to a total of 100 mole parts of vanadium, Ti, and other atoms.
  14.  バナジウム、Tiおよび他の原子の合計100モル部に対して、チタンの含有モル部が、5モル部以上10モル部以下であることを特徴とする、請求項13に記載の冷却デバイス。 The cooling device according to claim 13, wherein a content mole part of titanium is not less than 5 mole parts and not more than 10 mole parts with respect to a total of 100 mole parts of vanadium, Ti, and other atoms.
  15.  酸化バナジウムが、式:
       V1-x-yTi
    [式中、Mは、W、Ta、MoまたはNbであり、
     xは0.02以上0.3以下であり、
     yは0以上であって、
     MがWである場合、yは0.05以下であり、
     MがTa、MoまたはNbである場合、yは0.15以下である。]
    で表される酸化バナジウムであることを特徴とする、請求項8に記載の冷却デバイス。
    Vanadium oxide has the formula:
    V 1-x-y Ti x M y O 2
    [Wherein M is W, Ta, Mo or Nb;
    x is 0.02 or more and 0.3 or less,
    y is 0 or more,
    When M is W, y is 0.05 or less,
    When M is Ta, Mo or Nb, y is 0.15 or less. ]
    The cooling device according to claim 8, wherein the cooling device is vanadium oxide represented by the formula:
  16.  xが0.05以上0.1以下であることを特徴とする、請求項15に記載の冷却デバイス。 X is 0.05 or more and 0.1 or less, The cooling device of Claim 15 characterized by the above-mentioned.
  17.  請求項1~16のいずれか1項に記載の冷却デバイスを有して成る電子部品。 An electronic component comprising the cooling device according to any one of claims 1 to 16.
  18.  請求項1~16のいずれか1項に記載の冷却デバイスまたは請求項17に記載の電子部品を有して成る電子機器。 An electronic apparatus comprising the cooling device according to any one of claims 1 to 16 or the electronic component according to claim 17.
PCT/JP2016/067839 2015-07-07 2016-06-15 Cooling device WO2017006726A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017527152A JPWO2017006726A1 (en) 2015-07-07 2016-06-15 Cooling device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-135982 2015-07-07
JP2015135982 2015-07-07

Publications (1)

Publication Number Publication Date
WO2017006726A1 true WO2017006726A1 (en) 2017-01-12

Family

ID=57685310

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/067839 WO2017006726A1 (en) 2015-07-07 2016-06-15 Cooling device

Country Status (2)

Country Link
JP (1) JPWO2017006726A1 (en)
WO (1) WO2017006726A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111306405A (en) * 2020-02-24 2020-06-19 四川航天系统工程研究所 Disposable initiative heat preservation subassembly based on chemical heat source

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010163510A (en) * 2009-01-14 2010-07-29 Institute Of Physical & Chemical Research Heat storage material
JP2013084710A (en) * 2011-10-07 2013-05-09 Nikon Corp Heat storage body, electronic apparatus, and manufacturing method of electronic apparatus
JP2014049536A (en) * 2012-08-30 2014-03-17 Murata Mfg Co Ltd Electronic apparatus
WO2014155898A1 (en) * 2013-03-25 2014-10-02 パナソニック株式会社 Insulating sheet and manufacturing method for same
JP2014198645A (en) * 2013-03-29 2014-10-23 積水化学工業株式会社 Production method of composite vanadium oxide particle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010163510A (en) * 2009-01-14 2010-07-29 Institute Of Physical & Chemical Research Heat storage material
JP2013084710A (en) * 2011-10-07 2013-05-09 Nikon Corp Heat storage body, electronic apparatus, and manufacturing method of electronic apparatus
JP2014049536A (en) * 2012-08-30 2014-03-17 Murata Mfg Co Ltd Electronic apparatus
WO2014155898A1 (en) * 2013-03-25 2014-10-02 パナソニック株式会社 Insulating sheet and manufacturing method for same
JP2014198645A (en) * 2013-03-29 2014-10-23 積水化学工業株式会社 Production method of composite vanadium oxide particle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111306405A (en) * 2020-02-24 2020-06-19 四川航天系统工程研究所 Disposable initiative heat preservation subassembly based on chemical heat source
CN111306405B (en) * 2020-02-24 2021-08-20 四川航天系统工程研究所 Disposable initiative heat preservation subassembly based on chemical heat source

Also Published As

Publication number Publication date
JPWO2017006726A1 (en) 2018-04-12

Similar Documents

Publication Publication Date Title
US9442542B2 (en) Graphene heat dissipators in portable electronic devices
JP2009252553A (en) Battery pack module
JP2009140714A (en) Battery pack module
US20140204535A1 (en) Heat discharging sheet and display device including the same
WO2016194700A1 (en) Cooling device
JP2009283148A (en) Battery pack module
JP2017123212A (en) Battery pack and electronic equipment
WO2015033691A1 (en) Cooling device
WO2017006726A1 (en) Cooling device
US9868672B2 (en) Ceramic material
WO2015033690A1 (en) Cooling device
JP6589975B2 (en) Vanadium dioxide
WO2016006338A1 (en) Composite and cooling device
JP6460109B2 (en) Ceramic material
JP2017065984A (en) Ceramic particle
US20140030575A1 (en) Thermal Reservoir Using Phase-Change Material For Portable Applications
WO2016114296A1 (en) Vanadium dioxide
KR20140094294A (en) Heat discharging sheet of electrically insulative
JP6414636B2 (en) Cooling device
WO2015033689A1 (en) Cooling device
JP6772878B2 (en) Thermal management method
WO2015033687A1 (en) Cooling device
JP2009129841A (en) Battery pack
WO2016006337A1 (en) Sintered compact containing vanadium oxide
JP6424972B2 (en) Magnetic composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16821196

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017527152

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16821196

Country of ref document: EP

Kind code of ref document: A1