WO2017006644A1 - Heat-exchange unit - Google Patents

Heat-exchange unit Download PDF

Info

Publication number
WO2017006644A1
WO2017006644A1 PCT/JP2016/065873 JP2016065873W WO2017006644A1 WO 2017006644 A1 WO2017006644 A1 WO 2017006644A1 JP 2016065873 W JP2016065873 W JP 2016065873W WO 2017006644 A1 WO2017006644 A1 WO 2017006644A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
heat exchange
blower
temperature
suction
Prior art date
Application number
PCT/JP2016/065873
Other languages
French (fr)
Japanese (ja)
Inventor
孝祐 東
和久 福谷
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to MYPI2017704755A priority Critical patent/MY185415A/en
Priority to CN201680035597.0A priority patent/CN107735614B/en
Publication of WO2017006644A1 publication Critical patent/WO2017006644A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C9/00Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
    • F17C9/02Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure with change of state, e.g. vaporisation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/06Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits having a single U-bend

Definitions

  • the present invention relates to a heat exchange unit.
  • Patent Document 1 discloses a low-temperature liquefied gas vaporization comprising: an evaporator that evaporates the intermediate medium by heat-exchanging the intermediate medium having a temperature lower than that of air; and a heating device that heats the low-temperature liquefied gas.
  • An apparatus heat exchange unit
  • the evaporator includes a blower that forms an airflow in the vertical direction, and a heat exchanger that heats the intermediate medium by exchanging heat between the intermediate medium and the airflow.
  • the heating device includes a blower that forms a vertical airflow, and a heat exchanger that heats the low-temperature liquefied gas by exchanging heat between the low-temperature liquefied gas and the airflow.
  • An object of the present invention is to provide a heat exchange unit capable of suppressing re-suction of low-temperature exhaust by a blower caused by wind.
  • the heat exchange unit includes at least one unit component and a control unit, and the at least one unit component is arranged in a plurality of heat exchanges arranged in one direction.
  • Each heat exchange device has a blower that forms an airflow that flows in the vertical direction, a heat exchanger that heats the low-temperature medium by exchanging heat between the low-temperature medium and airflow that is lower than the atmosphere, and
  • the control unit includes a re-suction determination unit that determines whether or not the low-temperature air that has flowed out of the heat exchanger out of the air flow is re-sucked by the blower, and a wind direction determination unit that determines a wind direction.
  • the re-suction determination unit determines that the re-suction has occurred, the most wind in the one direction with respect to the wind direction determined by the wind direction determination unit among the plurality of heat exchange devices.
  • the one-way leeward device located on the most leeward side in the one direction with respect to the rotational speed of the blower of the one-way windward device located on the side and the wind direction determined by the wind direction determining unit among the plurality of heat exchange devices.
  • the one-way inclination expressed based on the difference or ratio with the rotation speed of the blower is larger than the one-way inclination at the time of steady state where the re-suction determination unit does not determine that the re-suction has occurred, And an air volume control unit that performs one-way control for adjusting the rotational speed of each blower so that the rotational speed of the blower gradually increases as it goes from the one-way leeward device to the one-way windward device.
  • FIG. 2 is a cross-sectional view taken along line II-II in FIG.
  • FIG. 3 is a view corresponding to FIG. 2 schematically showing an air flow during control by the air volume control unit.
  • It is a figure which shows the example of the rotation speed of each air blower at the time of one-way control.
  • It is a figure which shows the example of the rotation speed of each fan at the time of one direction control and orthogonal direction control.
  • It is a flowchart which shows the control content of a control part.
  • This heat exchange unit is a device that heats a low-temperature medium by exchanging heat between a low-temperature medium (low-temperature liquefied gas, intermediate medium, etc.) that is lower in temperature than air (atmosphere) and air.
  • the heat exchange unit may be used for directly heating the low-temperature liquefied gas with air, or in a so-called intermediate medium type heat exchange unit (an apparatus for heating the low-temperature liquefied gas using an intermediate medium such as propane). It may be used to heat the intermediate medium.
  • the heat exchange unit includes a plurality of heat exchange devices 20 and a control unit 70.
  • illustration of the control part 70 is abbreviate
  • Each heat exchange device 20 has the same shape.
  • the plurality of heat exchange devices 20 are arranged in a matrix formed by a plurality of rows and a plurality of columns. Each row extends in one direction, and each column extends in an orthogonal direction orthogonal to the one direction. In the present embodiment, the plurality of heat exchange devices 20 are arranged such that six heat exchange devices 20 are arranged along each row, and two heat exchange devices 20 are arranged along each column.
  • a virtual plane that is orthogonal to the one direction and passes through the center of the heat exchange unit with respect to the one direction is referred to as “one-direction center plane P1”, and is a plane that is orthogonal to the orthogonal direction.
  • a virtual plane passing through the center of the heat exchange unit in the orthogonal direction is referred to as “orthogonal direction center plane P2”.
  • the three heat exchange devices 20 located in a predetermined region and arranged along one direction among the four regions defined by the one-direction center plane P1 and the orthogonal direction center plane P2 are collectively referred to as “first unit configuration”. Element 11 ".
  • the three heat exchange devices 20 that are adjacent to the first unit component 11 in the orthogonal direction and arranged in one direction are collectively referred to as a “second unit component 12”, and the first unit component 11 is in one direction.
  • the three heat exchange devices 20 that are adjacent to each other and arranged in one direction are collectively referred to as “third unit component 13”.
  • the three heat exchange devices 20 adjacent to the second unit component 12 in one direction and adjacent to the third unit component 13 in the orthogonal direction and arranged along the one direction are collectively referred to as a “fourth unit configuration. Element 14 ".
  • each heat exchange device 20 has a blower 30, a heat exchanger 40, and a support portion 50.
  • the blower 30 forms an airflow that flows downward (downward airflow).
  • the blower 30 includes a cylindrical blower chamber 32, a fan 34 disposed in the blower chamber 32, and a motor 36 that drives the fan 34.
  • the fan 34 is disposed in the blower chamber 32 so as to form a downward airflow that flows vertically downward when the motor 36 is driven.
  • the rotation speed of the motor 36 can be adjusted by an inverter.
  • the heat exchanger 40 evaporates at least a part of the low temperature medium by exchanging heat between the downdraft (air) formed by the blower 30 and the low temperature medium.
  • the heat exchanger 40 includes a heat exchange chamber 42 and a heat transfer tube 44 disposed in the heat exchange chamber 42.
  • the heat exchange chamber 42 is formed in a square cylinder shape.
  • the upper end of the heat exchange chamber 42 is connected to the lower end of the blower chamber 32 through a hollow connecting portion 38. For this reason, the airflow formed by the blower 30 passes through the inside of the heat exchange chamber 42 and goes downward of the heat exchange chamber 42.
  • a low-temperature medium (low-temperature liquefied gas or intermediate medium) flows.
  • the airflow contacts the heat transfer tube 44 in the heat exchange chamber 42 that is, when the airflow and the low temperature medium exchange heat, at least a part of the low temperature medium flowing in the heat transfer tube 44 evaporates.
  • the heat transfer tube 44 on one side (right side in FIG. 2) and the heat transfer tube 44 on the other side (left side in FIG. 2) of the heat exchange devices 20 adjacent to each other are formed so as to communicate with each other. .
  • the one side heat transfer tube 44 is folded in the heat exchange chamber 42.
  • the support unit 50 supports the heat exchanger 40 at a position spaced upward from the ground. Specifically, the support unit 50 supports the heat exchange chamber 42 in a posture in which the central axis of the heat exchange chamber 42 is parallel to the vertical direction. Note that the central axis of the blower chamber 32 is also in a posture parallel to the vertical direction.
  • a tread plate 60 is connected to the outer surface of the heat exchange chamber 42.
  • the tread plate 60 is formed in a net shape and is connected to the upper end of the outer surface of the heat exchange chamber 42.
  • the tread board 60 is set to a strength that allows a person to walk on the tread board 60.
  • the control unit 70 includes a re-suction determination unit 72, a wind direction determination unit 74, and an air volume control unit 76.
  • the re-suction determination unit 72 determines whether or not re-suction by the blower 30 of the low-temperature air that has flowed out of the heat exchanger 40 out of the airflow formed by the blower 30 occurs.
  • the re-intake determination unit 72 uses each air blower 30 from the temperature Tair in a region that is not affected by the outside air cooling by the low temperature air (a region away from the region in which the outside air cooling effect is generated by the low temperature air).
  • the temperature difference ⁇ T obtained by subtracting the average suction temperature Tav which is the average of the air suction temperatures
  • Te is set to a value that secures the processing amount of the low temperature medium (the amount of heating of the low temperature medium in each heat exchanger 40) to a certain level or more.
  • the temperature Tair is, for example, the temperature at a position 20 m to 30 m away from the main heat exchange unit, the air temperature around a control room installed at a position away from the main heat exchange unit, or heat from the ground.
  • the temperature at a height position that is twice or more the vertical dimension of the exchange device 20 is indicated.
  • the air suction temperature of each blower 30 is detected by a temperature sensor 80 provided in the blower chamber 32.
  • the temperature sensor 80 is preferably arranged so as to be located on an extension line of the rotation axis of the fan 34.
  • the wind direction determination unit 74 determines the direction of the wind blowing toward the heat exchange unit (the first unit component 11 to the fourth unit component 14). In this embodiment, the wind direction determination part 74 determines a wind direction based on 1st average suction temperature Tav1, 2nd average suction temperature Tav2, 3rd average suction temperature Tav3, and 4th average suction temperature Tav4.
  • the first average suction temperature Tav ⁇ b> 1 is an average of the air suction temperatures of the blowers 30 of the first unit component 11.
  • the second average suction temperature Tav ⁇ b> 2 is the average of the air suction temperatures of the blowers 30 of the second unit component 12.
  • the third average suction temperature Tav3 is an average of the air suction temperatures of the blowers 30 of the third unit component 13.
  • the fourth average suction temperature Tav4 is an average of the air suction temperatures of the blowers 30 of the fourth unit component 14.
  • the wind direction determination unit 74 starts from the unit component having the lowest temperature among the first average suction temperature Tav1 to the fourth average suction temperature Tav4 from the center O of the heat exchange unit (perpendicular to the unidirectional center plane P1). It is determined that it includes a component that is directed to the intersection with the direction center plane P2.
  • the reason why this determination is possible is as follows. That is, when the wind blows toward the heat exchange unit, it flows out from the heat exchanger 40 of the windward device located on the most upstream side among the plurality of heat exchange devices 20 and then flows sideways toward the windward.
  • the blower 30 of the windward device is particularly easy to suck the low-temperature air again.
  • the average suction temperature of the unit components including the upwind device is the lowest among the first average suction temperature Tav1 to the fourth average suction temperature Tav4. Therefore, it can be determined that the wind direction includes a component from the unit component including the upwind device toward the center O of the heat exchange unit.
  • the wind direction may be determined with an anemometer.
  • the control performed by the air volume control unit 76 includes one-way control, orthogonal direction control, orthogonal direction reverse control, and air volume increase control.
  • One-way control is a one-way control when the re-suction determination unit 72 determines that re-suction has occurred, and the one-way inclination A does not determine that re-suction has occurred.
  • the rotational speed of each blower 30 is adjusted so that the rotational speed of the blower 30 gradually increases as it becomes larger than the direction inclination A and goes from the one-way leeward device to the one-way windward device.
  • the one-way inclination A is a value obtained by subtracting the number of rotations of the blower 30 of the one-way leeward device from the number of rotations of the blower 30 of the one-way leeward device. It is a value divided by the distance between the rotation axes of each fan 34.
  • the one-way upwind device is the heat exchange device 20 that is located on the furthest upstream side in one direction with respect to the wind direction determined by the wind direction determination unit 74 among the plurality of heat exchange devices 20.
  • the one-way leeward device is the heat exchange device 20 that is located on the most leeward side in one direction with respect to the wind direction determined by the wind direction determination unit 74 among the plurality of heat exchange devices 20.
  • the air volume control unit 76 performs one-way control until the temperature difference ⁇ T becomes equal to or less than a specified value Te within a range where the one-way inclination A is less than or equal to a preset one-way maximum value Amax.
  • the one-way maximum value Amax is obtained by subtracting the minimum value of the rotation speed of the blower 30 of the one-way leeward device from the maximum value of the rotation speed of the blower 30 of the unidirectional leeward device. It is the value divided by the distance to the device.
  • the maximum value and the minimum value of the blower 30 depend on the rating of the blower 30 (variable range of the rotation speed of the motor 36).
  • FIG. 4 shows a case where wind is blowing to the heat exchange unit along one direction (from the right side to the left side of the heat exchange unit) and the re-suction determination unit 72 determines that re-suction has occurred.
  • 2 shows an example of a state after the air volume control unit 76 performs the one-way control.
  • the heat exchange device 20 located on the most windward side of the first unit component 11 and the heat exchange device 20 located on the most windward side of the second unit component 12 are respectively “one-way wind”. It corresponds to “upper device”.
  • the heat exchange device 20 located on the most leeward side of the third unit component 13 and the heat exchange device 20 located on the most leeward side of the fourth unit component 14 respectively correspond to “one-way leeward devices”.
  • the rotational speed of each blower 30 gradually increases from the leeward side toward the windward side.
  • the number shown in each air blower 30 in FIG. 4 is the rotation speed of the motor 36. Further, it is assumed that the rotation speeds of the motors 36 when the air volume control unit 76 is not performing the one-way control are all 100%, for example.
  • the air volume control unit 76 adjust the rotation speed of each blower 30 so that the average rotation speed of all the blowers 30 is 100%.
  • the orthogonal direction inclination B becomes larger than the normal direction orthogonal direction inclination B, and the orthogonal direction leeward device makes an orthogonal direction. It is control which adjusts the rotation speed of each air blower 30 so that the rotation speed of the air blower 30 becomes large gradually as it goes to an upwind apparatus.
  • the orthogonal inclination B is a value obtained by subtracting the rotational speed of the blower 30 of the orthogonal leeward device from the rotational speed of the blower 30 of the orthogonal leeward device as a distance between the orthogonal leeward device and the orthogonal leeward device. It is the value divided.
  • the orthogonal direction upwind device is the heat exchange device 20 that is located on the most upwind side in the orthogonal direction with respect to the wind direction determined by the wind direction determination unit 74 among the plurality of heat exchange devices 20.
  • the orthogonal direction leeward device is the heat exchange device 20 that is located on the most leeward side in the orthogonal direction with respect to the wind direction determined by the wind direction determination unit 74 among the plurality of heat exchange devices 20.
  • the air volume control unit 76 is orthogonal until the temperature difference ⁇ T is equal to or greater than a specified value Te within a range where the orthogonal direction inclination B is less than or equal to a preset orthogonal direction maximum value Bmax.
  • Rotation of each blower 30 so that the direction inclination B becomes larger than the normal direction orthogonal inclination B and the rotation speed of the blower 30 gradually increases from the orthogonal leeward device toward the orthogonal leeward device. Control to adjust the number.
  • the orthogonal maximum value Bmax is obtained by subtracting the minimum value of the rotational speed of the blower 30 of the orthogonal leeward device from the maximum rotational speed of the blower 30 of the orthogonal leeward device. It is the value divided by the distance to the device.
  • FIG. 5 shows a case where wind is blowing to the heat exchange unit along the orthogonal direction (from the front to the back of the heat exchange unit) and the re-suction determination unit 72 determines that re-suction has occurred.
  • 2 shows an example of a state after the air volume control unit 76 performs the orthogonal direction control.
  • each heat exchange device 20 of the second unit component 12 and each heat exchange device 20 of the fourth unit component 14 correspond to “orthogonal upwind devices”, respectively, and the first unit component 11
  • Each heat exchange device 20 and each heat exchange device 20 of the third unit component 13 correspond to an “orthogonal leeward device”. As shown in FIG.
  • FIG. 6 shows the flow rate control when it is determined that re-suction has occurred by the re-suction determination unit 72 because wind is blowing from the front right side of the heat exchange unit toward the left side of the back side.
  • FIG. 6 shows the flow rate control when it is determined that re-suction has occurred by the re-suction determination unit 72 because wind is blowing from the front right side of the heat exchange unit toward the left side of the back side.
  • An example of a state after the unit 76 performs one-way control and orthogonal direction control is shown.
  • the heat exchange device 20 located on the most windward side of the first unit component 11 and the heat exchange device 20 located on the most windward side of the second unit component 12 are respectively “one-way wind”. It corresponds to “upper device”.
  • the heat exchange device 20 located on the most leeward side of the third unit component 13 and the heat exchange device 20 located on the most leeward side of the fourth unit component 14 respectively correspond to “one-way leeward devices”. To do. Further, each heat exchange device 20 of the second unit component 12 and each heat exchange device 20 of the fourth unit component 14 correspond to “orthogonal upwind devices”, and each heat exchange of the first unit component 11. The heat exchange devices 20 of the device 20 and the third unit component 13 respectively correspond to “orthogonal leeward devices”. As shown in FIG.
  • the air volume control unit 76 when the air volume control unit 76 performs both the one-way control and the orthogonal direction control, the rotational speed of each blower 30 is increased from the leeward side to the windward side in both the one-way direction and the orthogonal direction. It grows gradually as you go.
  • the air volume control unit 76 is configured so that the rotational speed of each of the blowers 30 of the six heat exchange devices 20 arranged along one direction increases monotonically from the leeward side toward the windward side by 10%.
  • the rotation of each blower 30 is adjusted so that the rotation number of each blower 30 of the two heat exchange devices 20 arranged in the orthogonal direction is increased by 10% from the leeward side toward the windward side. The number is adjusted.
  • the one-way control is not limited to the control that adjusts the rotation speed of each blower 30 so as to monotonously increase from the leeward side toward the leeward side.
  • FIG. 6 it is assumed that the rotational speeds of the motors 36 when the air volume control unit 76 is not performing the one-direction control and the orthogonal direction control are all 100%, for example.
  • the orthogonal direction gradient B is the orthogonal value in the steady state.
  • the rotational speed of each blower 30 is adjusted so that the rotational speed of the blower 30 becomes gradually smaller as it becomes smaller than the direction inclination B and goes from the orthogonal leeward device toward the orthogonal leeward device.
  • the air volume control unit 76 performs the orthogonal direction gradient B as the orthogonal direction reverse control until the temperature difference ⁇ T is equal to or greater than the specified value Te within the range where the orthogonal direction gradient B is equal to or greater than the minimum value Bmin in the orthogonal direction.
  • the rotational speed of each blower 30 is adjusted so that the rotational speed of the blower 30 gradually decreases as it goes from the orthogonal leeward device to the orthogonal upwind device. Control.
  • the minimum value Bmin in the orthogonal direction is obtained by subtracting the maximum value of the rotational speed of the blower 30 of the orthogonal leeward device from the minimum value of the rotational speed of the blower 30 of the orthogonal leeward device. The value divided by the distance between.
  • the control unit 70 calculates a temperature difference ⁇ T obtained by subtracting the average suction temperature Tav from the temperature Tair (step S11). Next, the control unit 70 (re-suction determination unit 72) determines whether or not the temperature difference ⁇ T is larger than the specified value Te (step S12).
  • the control unit 70 determines that the temperature difference ⁇ T is less than the determination value Te2. Whether or not (step S13).
  • the determination value Te2 is a value that is smaller than the specified value Te, and is set to a value that sufficiently secures the processing amount of the low-temperature medium.
  • step S13 If the temperature difference ⁇ T is less than the determination value Te2 in step S13 (YES in step S13), that is, if the processing amount of the low-temperature medium is sufficiently secured, the control unit 70 sets the rotation speed of each blower 30. Lower (step S14), the process returns to step S11. Thereby, the power required for driving each blower 30 can be reduced while sufficiently securing the amount of processing of the low-temperature medium. On the other hand, if the temperature difference ⁇ T is greater than or equal to the determination value Te2 in step S13 (NO in step S13), the control unit 70 returns to step S11.
  • step S12 if the temperature difference ⁇ T is equal to or greater than the specified value Te (YES in step S12), that is, if it is determined by the re-inhalation determining unit 72 that the low-temperature air is re-inhaled by each blower 30.
  • the control unit 70 (wind direction determination unit 74) determines the wind direction based on the first average suction temperature Tav1 to the fourth average suction temperature Tav4 (step S15). Subsequently, the control unit 70 determines the positive / negative of the one-way inclination A and the positive / negative of the orthogonal direction inclination B based on the wind direction determined by the wind direction determination unit 74 in step S15 (step S16).
  • step S21 determines whether or not the temperature difference ⁇ T is equal to or less than a specified value Te.
  • Te a specified value
  • the control unit 70 returns to step S11.
  • the control unit 70 determines whether or not the unidirectional inclination A is the unidirectional maximum value Amax (step S22).
  • step S22 when the unidirectional inclination A is not the unidirectional maximum value Amax (NO in step S22), that is, when the unidirectional inclination A is less than the unidirectional maximum value Amax, the control unit 70 returns to step S17.
  • the control unit 70 performs orthogonal direction control. Specifically, it is as follows.
  • the control unit 70 first sets the current orthogonal direction inclination B as the first orthogonal direction inclination B1 (step S23). Next, the control unit 70 sets the current temperature difference ⁇ T as the second temperature difference ⁇ T2 (step S24). And the control part 70 enlarges orthogonal direction inclination B to an upwind side (step S25).
  • step S27 if the temperature difference ⁇ T is less than the second temperature difference ⁇ T2 (YES in step S27), the control unit 70 determines whether or not the temperature difference ⁇ T is equal to or less than a specified value Te (step S28). As a result, if the temperature difference ⁇ T is equal to or less than the specified value Te (YES in step S28), the control unit 70 returns to step S11. On the other hand, when the temperature difference ⁇ T is larger than the specified value Te (NO in step S28), the control unit 70 determines whether or not the orthogonal direction gradient B is the orthogonal direction maximum value Bmax (step S29).
  • step S29 if the orthogonal direction inclination B is not the orthogonal direction maximum value Bmax (NO in step S29), that is, if the orthogonal direction inclination B is less than the orthogonal direction maximum value Bmax, the control unit 70 returns to step S24.
  • the control unit 70 performs air volume increase control. Specifically, the control unit 70 increases the rotation number at an equal ratio for each of the blowers 30 that can increase the rotation number (step S30), and returns to step S11.
  • step S27 when the temperature difference ⁇ T is equal to or larger than the second temperature difference ⁇ T2 (NO in step S27), that is, when the average suction temperature Tav is decreased through step S25, the control unit 70 is inclined in the orthogonal direction. It is determined whether or not B is the orthogonal direction maximum value Bmax (step S31).
  • the control unit 70 when the orthogonal direction inclination B is not the orthogonal direction maximum value Bmax (NO in step S31), the control unit 70 returns to step S24. On the other hand, when the orthogonal direction inclination B is the orthogonal direction maximum value Bmax (YES in step S31), the control unit 70 performs orthogonal direction reverse control. Specifically, it is as follows.
  • the control unit 70 first returns the current orthogonal direction inclination B to the first orthogonal direction inclination B1 (step S32). This is because the orthogonal direction inclination B is reduced earlier. Next, the control unit 70 sets the current temperature difference ⁇ T as the third temperature difference ⁇ T3 (step S33). And the control part 70 enlarges orthogonal direction inclination B to the leeward side (step S34).
  • step S36 determines whether or not the temperature difference ⁇ T is equal to or less than a specified value Te (step S37). As a result, if the temperature difference ⁇ T is equal to or less than the specified value Te (YES in step S37), the control unit 70 returns to step S11. On the other hand, when the temperature difference ⁇ T is larger than the specified value Te (NO in step S37), the control unit 70 determines whether or not the orthogonal direction inclination B is the orthogonal direction minimum value Bmin (step S38).
  • step S38 when the orthogonal direction inclination B is not the orthogonal direction minimum value Bmin (NO in step S38), that is, when the orthogonal direction inclination B is larger than the orthogonal direction minimum value Bmin, the control unit 70 returns to step S33.
  • step S38 when the orthogonal direction inclination B is the minimum value Bmin in the orthogonal direction (YES in step S38), the control unit 70 returns to step S30 and performs air volume increase control.
  • step S36 if the temperature difference ⁇ T is equal to or greater than the third temperature difference ⁇ T3 (NO in step S36), that is, if the average suction temperature Tav is decreased through step S34, the control unit 70 is inclined in the orthogonal direction. It is determined whether or not B is the minimum value Bmin in the orthogonal direction (step S39).
  • step S39 when the orthogonal inclination B is not the orthogonal minimum value Bmin (NO in step S39), the control unit 70 returns to step S33.
  • the control unit 70 returns the current orthogonal direction inclination B to the first orthogonal direction inclination B1 (step S40), and then the step.
  • orthogonal direction reverse control is performed.
  • the rotation speed of each blower 30 at this time is set to 100%, for example.
  • each heat exchange device 20 When the operation of this unit is started, a downward air flow is formed in each heat exchange device 20, and the low temperature medium is heated by this air flow coming into contact with the heat transfer tube 44. Then, as shown in FIG. 2, the airflow after the heat exchange in the heat exchanger 40 (cold air cooled by contacting the heat transfer tube 44) collides with the ground, and then the side (heat exchange unit). In a direction away from the head).
  • the blower 30 may suck the cold air again.
  • the average suction temperature Tav that is, the heating amount of the low-temperature medium decreases.
  • the air volume control unit 76 performs one-way control when it is determined by the re-suction determination unit 72 that re-suction has occurred. That is, the one-way inclination A is larger than the one-way inclination A in a steady state where it is not determined that the re-inhalation has occurred by the re-intake determination unit 72, and the one-way leeward device changes to the one-way upwind device.
  • the rotational speed of each blower 30 is adjusted so that the rotational speed of the blower 30 gradually increases as it goes. Then, since the flow rate of the airflow (cold air) passing through each heat exchanger 40 gradually increases from the one-way leeward device toward the one-way leeward device, as shown in FIG.
  • Part of the low-temperature air that has passed through 40 flows along the direction from the one-way upwind device to the one-way leeward device. That is, as a whole heat exchange unit, a flow in a direction in which the low-temperature air that has passed through the heat exchanger 40 of the unidirectional leeward device joins the low-temperature air that has passed through the heat exchanger 40 of the unidirectional leeward device is induced. Therefore, since the flow rate of the low-temperature air flowing toward the windward after flowing out from the heat exchanger 40 of the one-way upwind device decreases, the flow rate of the low-temperature air returned to the heat exchange unit side by the wind decreases. Therefore, the re-suction of the low-temperature air by each blower 30 (especially the blower 30 of the one-way upwind device) is suppressed, and thereby the suction temperature of the air by each blower 30 rises.
  • the air volume control unit 76 performs the orthogonal direction control in addition to the one direction control. For this reason, the re-suction of the low temperature air by each air blower 30 can be suppressed more reliably.
  • a flow in a direction in which a part of the low-temperature air flowing out from the heat exchanger 40 of the orthogonal windward device joins the low-temperature air flowing out of the heat exchanger 40 of the orthogonal windward device is induced. Therefore, re-suction of low temperature air by each blower 30 is suppressed.
  • the re-suction determination unit 72 is configured such that the temperature difference ⁇ T obtained by subtracting the average suction temperature Tav from the temperature Tair in the region that is not affected by the cooling of the outside air by the low-temperature air is greater than the specified value Te. It is determined that re-suction has occurred. For this reason, it is possible to determine whether or not re-suction has occurred stably, and it is possible to suppress the influence of changes in temperature caused by seasonal changes or the like on the determination of the re-suction determination unit 72. .
  • the air volume control unit 76 performs unidirectional control prior to the orthogonal direction control until the temperature difference ⁇ T becomes equal to or less than the specified value Te.
  • the rotation of each blower 30 is such that the one-way inclination A becomes larger than the one-way inclination A in a steady state and the rotation speed of the blower 30 gradually increases from the one-way leeward device toward the one-way upwind device. Control to adjust the number. Therefore, the temperature difference ⁇ T can be brought closer to the specified value Te more efficiently than when the orthogonal direction control is performed first when re-suction occurs.
  • the heat exchanger 40 of the heat exchange device 20 in which the low-temperature air that has flowed out of the heat exchanger 40 of the heat exchange device 20 located on the leeward side is located on the leeward side when the number of the heat exchange devices 20 is larger. Since the air flow toward the low-temperature air that has flowed out from the air is stably formed, it is more efficient to first increase the average suction temperature Tav by performing one-way control in one direction in which more heat exchange devices 20 are arranged. That is, the temperature difference ⁇ T can be brought close to the specified value Te.
  • the unidirectional inclination A increases, the formation of the air flow from the low temperature air flowing out from the heat exchanger 40 of the unidirectional downwind device toward the low temperature air flowing out of the heat exchanger 40 of the unidirectional downwind device becomes stable. As a result, the effect of increasing the average suction temperature Tav is enhanced. Therefore, by increasing the unidirectional gradient A before the orthogonal gradient B, the temperature difference ⁇ T approaches the specified value Te at an early stage.
  • FIG. 10 shows the first unit component 11 when the wind of 3 m / s is blown along one direction with respect to the first unit component 11 (three heat exchange devices 20 arranged along one direction). It is a graph which shows the relationship between the rotation speed ratio of each air blower 30, and 1st average suction temperature Tav1.
  • FIG. 11 shows the rotation speed ratio of each blower 30 of the first unit component 11 and the first average suction temperature Tav1 when a wind of 10 m / s is blown along one direction with respect to the first unit component 11. It is a graph which shows the relationship.
  • the rotational speed ratio is the blower 30 of the heat exchange device 20 located on the windward side with respect to the rotational speed of the blower 30 of the central heat exchange device 20 among the three heat exchange devices 20 included in the first unit component 11. Is the ratio of the number of revolutions.
  • the ratio of the rotational speed of the blower 30 of the central heat exchange device 20 to the blower 30 of the heat exchange device 20 located on the leeward side of the three heat exchange devices 20 included in the first unit component 11 is also as follows.
  • the rotation speed ratio is set. As shown in FIGS. 10 and 11, the first average suction temperature Tav1 increases as the rotational speed ratio becomes larger than 1.00, that is, as the unidirectional gradient A increases.
  • the air volume control unit 76 performs the orthogonal direction control when the temperature difference ⁇ T does not become the specified value Te or less even if the one-way control is performed until the one-way inclination A reaches the one-way maximum value Amax. .
  • the orthogonal direction control is performed after the unidirectional inclination A reaches the unidirectional maximum value Amax in the unidirectional control, the average suction temperature can be increased efficiently.
  • the air flow control unit 76 increases the orthogonal inclination B to be larger than the normal orthogonal inclination B until the temperature difference ⁇ T becomes equal to or less than the specified value Te, and is orthogonal to the orthogonal leeward device. Control which adjusts the rotation speed of each air blower 30 so that the rotation speed of the air blower 30 becomes large gradually as it goes to a directional upwind device is performed. Therefore, the average suction temperature is more reliably increased.
  • the air volume control unit 76 performs the orthogonal direction reverse control when the temperature difference ⁇ T does not become the specified value Te or less even if the orthogonal direction control is performed until the orthogonal direction gradient B reaches the orthogonal direction maximum value Bmax.
  • each blower 30 is configured such that the orthogonal direction inclination B becomes smaller than the normal direction orthogonal direction inclination B, and the rotational speed of the blower 30 gradually decreases from the orthogonal direction leeward apparatus toward the orthogonal direction upwind apparatus. Is adjusted. For this reason, average suction temperature Tav can be raised more reliably.
  • the average suction temperature Tav does not increase even if the inclination B in the orthogonal direction is increased (the temperature difference ⁇ T is a specified value).
  • the average suction temperature Tav may be increased by performing the reverse control in the orthogonal direction. Therefore, the rise probability of the average suction temperature Tav increases.
  • the air volume control unit 76 performs the reverse flow control in the orthogonal direction until the orthogonal direction gradient B reaches the minimum value Bmin in the orthogonal direction. Air volume increase control is performed to adjust the rotational speed of each blower 30 so that the total flow rate increases. For this reason, the fall of the heating amount of the low-temperature medium in each heat exchanger 20 in the state in which re-suction has arisen is suppressed.
  • the wind direction determination part 74 contains the component which goes to the center O of the said heat exchange unit from the unit component which has the lowest temperature in 1st average suction temperature Tav1 to 4th average suction temperature Tav4. Is determined. In this aspect, it is possible to determine the wind direction only by comparing the average suction temperatures of the unit components 11 to 14.
  • the re-suction determination unit 72 defines not the temperature difference ⁇ T obtained by subtracting the average suction temperature Tav from the temperature Tair but the temperature difference obtained by subtracting the highest temperature among the air suction temperatures of the blowers 30 from the temperature Tair. It may be determined that re-suction has occurred when the value Te falls below.
  • the re-suction determination unit 72 detects the wind direction with an anemometer, and detects the wind direction from the suction temperature of the blower 30 of the leeward device that is located leeward with respect to the wind direction indicated by the anemometer. When the value obtained by subtracting the suction temperature of the blower 30 is equal to or greater than the threshold value, it may be determined that re-suction has occurred.
  • the calculation of the one-way inclination A is not a value obtained by subtracting the rotation speed of the blower 30 of the leeward apparatus from the rotation speed of the blower 30 of the windward apparatus, but a blower of the leeward apparatus of the rotation speed of the blower 30 of the windward apparatus A ratio of 30 revolutions may be used.
  • the heat exchange unit includes an additional unit component arranged so as to be aligned with the first unit component 11 and the second unit component 12 along the orthogonal direction, and a third unit component along the orthogonal direction. It may further include other additional unit components arranged in line with the 13th and fourth unit components 14. In this way, since the number of the heat exchange devices 20 in both the one-direction and the orthogonal directions is three or more, the effect of increasing the average suction temperature Tav by the one-direction control and the orthogonal direction control can be obtained more reliably.
  • the heat exchange unit may be configured by only a single unit component. Further, the unit component may be constituted by two heat exchange devices 20.
  • the heat exchange unit of the above embodiment includes at least one unit component and a control unit, and the at least one unit component includes a plurality of heat exchange devices arranged so as to be aligned in one direction.
  • Each heat exchange device has a blower that forms an airflow that flows in the vertical direction, and a heat exchanger that heats the low-temperature medium by exchanging heat between the low-temperature medium having a temperature lower than the atmosphere and the airflow.
  • the re-inhalation determination part which determines whether the re-inhalation by the said air blower of the low-temperature air which flowed out of the said heat exchanger among the said air flows,
  • the wind direction determination part which determines a wind direction, When the re-suction determination unit determines that the re-suction has occurred, the most up-winding in the one direction with respect to the wind direction determined by the wind direction determination unit among the plurality of heat exchange devices.
  • the one-way inclination represented based on the difference or ratio with the rotational speed is greater than the one-way inclination at the time of steady state where the re-suction determination unit does not determine that the re-suction has occurred, and
  • An air volume control unit that perform
  • the one-way inclination becomes larger than the one-way inclination in the steady state, and the one-way leeward device makes a one-way upwind.
  • the rotational speed of each blower is adjusted so that the rotational speed of the blower gradually increases toward the apparatus. Then, since the flow rate of the airflow (cold air) passing through each heat exchanger gradually increases from the one-way leeward device to the one-way windward device, a part of the low-temperature air that has passed through each heat exchanger is It flows along the direction from the one-way leeward device to the one-way leeward device.
  • the at least one unit component includes a first unit component and a second unit component arranged so as to be aligned along an orthogonal direction orthogonal to the one direction
  • the air volume control unit includes: When the re-suction determination unit determines that the re-suction has occurred, the orthogonal position that is located on the most windward side in the orthogonal direction with respect to the wind direction determined by the wind direction determination unit among the plurality of heat exchange devices The rotational speed of the blower of the directional windward device and the rotational speed of the blower of the orthogonal leeward device that is located closest to the leeward side in the orthogonal direction with respect to the wind direction determined by the wind direction determination unit among the plurality of heat exchange devices An orthogonal inclination expressed based on the difference or ratio of the above becomes greater than the orthogonal inclination in the steady state, and the orthogonal direction from the orthogonal leeward device It is preferable to further carry out the orthogonal direction control for adjusting the rotational
  • the re-suction determination unit is configured such that a temperature difference obtained by subtracting an average suction temperature, which is an average of the air suction temperatures of each blower, from a temperature in a region not affected by the cooling of the outside air by the low-temperature air. It is preferable to determine that the re-suction has occurred when the value becomes larger.
  • the number of the heat exchange devices included in each unit component is set to be larger than the number of the unit components, and the re-suction determination unit causes the re-suction to occur in the air volume control unit.
  • the one-way inclination is larger than the one-way inclination in the steady state until the temperature difference becomes the specified value or less as the one-way control before the orthogonal direction control. It is preferable to perform control to adjust the rotational speed of each blower so that the rotational speed of the blower gradually increases from the one-way leeward device toward the one-way windward device.
  • the temperature difference can be brought closer to the specified value more efficiently than when the orthogonal direction control is performed first when re-suction occurs.
  • the number of heat exchange devices is larger, the low temperature air that has flowed out of the heat exchanger of the heat exchange device located on the leeward side flows out of the heat exchanger of the heat exchange device that is located on the leeward side.
  • the airflow toward is easily formed. Therefore, it is possible to increase the average suction temperature more efficiently, that is, to bring the temperature difference closer to the specified value, by performing the one-way control for one direction in which more heat exchange devices are arranged first.
  • the air flow control unit performs the orthogonal direction control when the temperature difference does not become the specified value or less even if the one-way control is performed until the one-way inclination reaches a preset one-way maximum value. It is preferable to carry out.
  • the average suction temperature can be increased efficiently.
  • the flow rate control unit as the orthogonal direction control, until the temperature difference becomes equal to or less than the specified value, the orthogonal direction inclination becomes larger than the orthogonal direction inclination during the steady state, And it is preferable to perform control which adjusts the rotation speed of each fan so that the rotation speed of the said fan may become large gradually as it goes to the said orthogonal direction windward apparatus from the said orthogonal direction leeward apparatus.
  • the air flow control unit the orthogonal direction
  • the rotation speed of each blower is set so that the inclination becomes smaller than the normal direction inclination at the time of the steady state, and the rotation speed of the blower gradually decreases from the orthogonal direction leeward device toward the orthogonal direction upwind device. It is preferable to perform the orthogonal direction reverse control to be adjusted.
  • the average suction temperature can be increased more reliably. Specifically, since the number of heat exchangers arranged in the orthogonal direction is smaller than that in one direction, the average suction temperature does not increase even if the inclination in the orthogonal direction is increased (the temperature difference does not approach the specified value). ) In some cases, the average suction temperature may be increased by performing the orthogonal direction reverse control. Therefore, the average suction temperature rises more reliably.
  • the air flow control unit flows out from each blower when the temperature difference does not become the specified value or less even if the orthogonal direction reverse control is performed until the orthogonal direction inclination becomes a preset orthogonal direction minimum value. It is preferable to perform air volume increase control that adjusts the rotational speed of each blower so that the total flow rate of the air flow increases.
  • the at least one unit component further includes a third unit component and a fourth unit component arranged so as to be aligned along the orthogonal direction, and the third unit component Are arranged to be adjacent to the first unit component in the one direction, and the fourth unit component is arranged to be adjacent to the second unit component in the one direction
  • the said wind direction determination part is 1st average suction temperature which is the average of the suction temperature of the air by each fan of a 1st unit component, and 2nd average suction which is the average of the suction temperature of the air by each fan of a 2nd unit component Temperature, third average suction temperature, which is the average of the air suction temperature by each blower of the third unit component, and empty by each blower of the fourth unit component It is judged that the wind containing the component which goes to the center of the said heat exchange unit is blowing from the place where the unit component which has the lowest average suction temperature in the 4th average suction temperature which is the average of the suction temperature of this is blowing May be.
  • each blower of the unit component (unit component including the windward device) located on the most windward side among the unit components is It is easy to re-inhale the low-temperature air returned to the heat exchange unit side by wind after flowing out from the heat exchanger toward the side. For this reason, when wind blows toward the heat exchange unit, the average suction temperature of the unit components including the windward device is the lowest. Therefore, it can determine with a wind direction including the component which goes to the center of the said heat exchange unit from the unit component containing an upwind apparatus.
  • the wind direction determination unit may determine the wind direction with an anemometer.
  • the at least one unit component further includes an additional unit component arranged so as to be aligned with the first unit component and the second unit component along the one direction.
  • the number of the heat exchange devices included in each unit component is preferably set larger than the number of the unit components.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Control Of Positive-Displacement Air Blowers (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

A heat-exchange unit that is provided with a unit component and with a control unit (70). The unit component has a plurality of heat-exchange devices (20), and each heat-exchange device (20) has a blower (20) and a heat exchanger (40). The control unit (70) is provided with: a re-intake determination unit (72) that determines whether re-intake of low-temperature air is occurring; a wind-direction determination unit (74) that determines wind direction; and a wind-volume control unit (76) that performs one-way control that, when the re-intake determination unit (72) has determined that re-intake is occurring, adjusts the rotational speed of each blower (30) such that a one-way slope that is based on the difference or ratio between the rotational speed of an upwind-device blower (30) and the rotational speed of a downwind-device blower (30) is larger than a steady-state one-way slope and such that the rotational speed of the blowers (30) progressively increases from the downwind device to the upwind device.

Description

熱交換ユニットHeat exchange unit
 本発明は、熱交換ユニットに関するものである。 The present invention relates to a heat exchange unit.
 従来、空気よりも低温の低温媒体(液化天然ガス等)を空気(大気)で加熱することによって気化させる空温式の熱交換装置が知られている。例えば、特許文献1には、空気よりも低温の中間媒体と空気とを熱交換させることにより中間媒体を蒸発させる蒸発装置と、低温液化ガスを加熱する加温装置と、を備える低温液化ガス気化装置(熱交換ユニット)が開示されている。蒸発装置は、上下方向の気流を形成する送風機と、中間媒体と前記気流とを熱交換させることによって中間媒体を加熱する熱交換器と、を有している。同様に、加温装置は、上下方向の気流を形成する送風機と、低温液化ガスと前記気流とを熱交換させることによって低温液化ガスを加熱する熱交換器と、を有している。 Conventionally, an air temperature type heat exchange device is known in which a low-temperature medium (liquefied natural gas or the like) lower in temperature than air is vaporized by heating with air (atmosphere). For example, Patent Document 1 discloses a low-temperature liquefied gas vaporization comprising: an evaporator that evaporates the intermediate medium by heat-exchanging the intermediate medium having a temperature lower than that of air; and a heating device that heats the low-temperature liquefied gas. An apparatus (heat exchange unit) is disclosed. The evaporator includes a blower that forms an airflow in the vertical direction, and a heat exchanger that heats the intermediate medium by exchanging heat between the intermediate medium and the airflow. Similarly, the heating device includes a blower that forms a vertical airflow, and a heat exchanger that heats the low-temperature liquefied gas by exchanging heat between the low-temperature liquefied gas and the airflow.
 上記特許文献1に記載されるような熱交換ユニットでは、当該熱交換ユニットに向かって風が吹いているときに、熱交換器から流出した気流、すなわち、熱交換器で熱交換した後の低温空気を送風機が再度吸い込む場合がある。具体的に、通常、各送風機は一定の回転数で駆動されているため、前記低温空気は、各装置の側方(熱交換ユニットから離間する方向)に向かって流れるが、この低温空気の流れる向きと風向きとが逆であった場合、当該装置の側方に向かった低温空気が風により前記装置側に戻されることにより送風機がその低温空気を再度吸い込む場合がある。この場合、熱交換器で熱交換した後の気流(低温空気)の影響により温度が低くなった空気(熱交換器周辺の大気)が熱交換器に供給されるので、熱交換器において有効な熱交換(低温媒体の加熱)が行われなくなる。なお、風向きは刻一刻と変化するので、その風向きに応じて熱交換効率が低くなる熱交換器も変化する。 In the heat exchange unit as described in the above-mentioned Patent Document 1, when the wind is blowing toward the heat exchange unit, the airflow flowing out from the heat exchanger, that is, the low temperature after heat exchange in the heat exchanger The blower may draw air again. Specifically, since each blower is normally driven at a constant rotational speed, the low-temperature air flows toward the side of each device (in the direction away from the heat exchange unit). When the direction and the wind direction are opposite, the blower may suck the low-temperature air again by returning the low-temperature air directed to the side of the apparatus to the apparatus side by the wind. In this case, air (air around the heat exchanger) whose temperature has been lowered due to the influence of the airflow (low temperature air) after heat exchange in the heat exchanger is supplied to the heat exchanger. Heat exchange (heating of the low temperature medium) is not performed. In addition, since a wind direction changes every moment, the heat exchanger from which heat exchange efficiency becomes low also changes according to the wind direction.
特開2015-061982号公報Japanese Patent Laid-Open No. 2015-061982
 本発明の目的は、風に起因する送風機による低温排気の再吸込を抑制可能な熱交換ユニットを提供することである。 An object of the present invention is to provide a heat exchange unit capable of suppressing re-suction of low-temperature exhaust by a blower caused by wind.
 本発明の一局面に従う熱交換ユニットは、少なくとも1つのユニット構成要素と、制御部と、を備え、前記少なくとも1つのユニット構成要素は、一方向に沿って並ぶように配置された複数の熱交換装置を有し、各熱交換装置は、上下方向に流れる気流を形成する送風機と、大気よりも低温の低温媒体と前記気流とを熱交換させることによって前記低温媒体を加熱する熱交換器と、を有し、前記制御部は、前記気流のうち前記熱交換器から流出した低温空気の前記送風機による再吸込が生じているか否かを判定する再吸込判定部と、風向きを判定する風向き判定部と、前記再吸込判定部が前記再吸込が生じていると判定したときに、前記複数の熱交換装置のうち前記風向き判定部により判定された風向きに対して前記一方向について最も風上側に位置する一方向風上装置の送風機の回転数と前記複数の熱交換装置のうち前記風向き判定部により判定された風向きに対して前記一方向について最も風下側に位置する一方向風下装置の送風機の回転数との差又は比に基づいて表される一方向傾きが、前記再吸込判定部が前記再吸込が生じていると判定していない定常時の前記一方向傾きよりも大きくなり、かつ、前記一方向風下装置から前記一方向風上装置に向かうにしたがって次第に前記送風機の回転数が大きくなるように各送風機の回転数を調整する一方向制御を行う風量制御部と、を備える。 The heat exchange unit according to one aspect of the present invention includes at least one unit component and a control unit, and the at least one unit component is arranged in a plurality of heat exchanges arranged in one direction. Each heat exchange device has a blower that forms an airflow that flows in the vertical direction, a heat exchanger that heats the low-temperature medium by exchanging heat between the low-temperature medium and airflow that is lower than the atmosphere, and The control unit includes a re-suction determination unit that determines whether or not the low-temperature air that has flowed out of the heat exchanger out of the air flow is re-sucked by the blower, and a wind direction determination unit that determines a wind direction. And when the re-suction determination unit determines that the re-suction has occurred, the most wind in the one direction with respect to the wind direction determined by the wind direction determination unit among the plurality of heat exchange devices. Of the one-way leeward device located on the most leeward side in the one direction with respect to the rotational speed of the blower of the one-way windward device located on the side and the wind direction determined by the wind direction determining unit among the plurality of heat exchange devices. The one-way inclination expressed based on the difference or ratio with the rotation speed of the blower is larger than the one-way inclination at the time of steady state where the re-suction determination unit does not determine that the re-suction has occurred, And an air volume control unit that performs one-way control for adjusting the rotational speed of each blower so that the rotational speed of the blower gradually increases as it goes from the one-way leeward device to the one-way windward device.
本発明の一実施形態の熱交換ユニットの構成の概略を示す図である。It is a figure which shows the outline of a structure of the heat exchange unit of one Embodiment of this invention. 図1のII-II線での断面図である。FIG. 2 is a cross-sectional view taken along line II-II in FIG. 風量制御部による制御時の気流を模式的に示す図2相当図である。FIG. 3 is a view corresponding to FIG. 2 schematically showing an air flow during control by the air volume control unit. 一方向制御時の各送風機の回転数の例を示す図である。It is a figure which shows the example of the rotation speed of each air blower at the time of one-way control. 直交方向制御時の各送風機の回転数の例を示す図である。It is a figure which shows the example of the rotation speed of each air blower at the time of orthogonal direction control. 一方向制御及び直交方向制御時の各送風機の回転数の例を示す図である。It is a figure which shows the example of the rotation speed of each fan at the time of one direction control and orthogonal direction control. 制御部の制御内容を示すフローチャートである。It is a flowchart which shows the control content of a control part. 制御部の制御内容を示すフローチャートである。It is a flowchart which shows the control content of a control part. 制御部の制御内容を示すフローチャートである。It is a flowchart which shows the control content of a control part. 風速が3m/sの場合の各送風機の回転数比と第1平均吸込温度Tav1との関係を示すグラフである。It is a graph which shows the relationship between the rotation speed ratio of each air blower in case a wind speed is 3 m / s, and 1st average suction temperature Tav1. 風速が10m/sの場合の各送風機の回転数比と第1平均吸込温度Tav1との関係を示すグラフである。It is a graph which shows the relationship between the rotation speed ratio of each air blower in case a wind speed is 10 m / s, and 1st average suction temperature Tav1.
 本発明の一実施形態の熱交換ユニットについて、図1~図11を参照しながら説明する。本熱交換ユニットは、空気(大気)よりも低温の低温媒体(低温液化ガス、中間媒体等)と空気とを熱交換させることにより低温媒体を加熱する装置である。なお、本熱交換ユニットは、空気で直接低温液化ガスを加熱するために用いられてもよいし、いわゆる中間媒体式の熱交換ユニット(プロパン等の中間媒体により低温液化ガスを加熱する装置)において中間媒体を加熱するために用いられてもよい。 A heat exchange unit according to an embodiment of the present invention will be described with reference to FIGS. This heat exchange unit is a device that heats a low-temperature medium by exchanging heat between a low-temperature medium (low-temperature liquefied gas, intermediate medium, etc.) that is lower in temperature than air (atmosphere) and air. The heat exchange unit may be used for directly heating the low-temperature liquefied gas with air, or in a so-called intermediate medium type heat exchange unit (an apparatus for heating the low-temperature liquefied gas using an intermediate medium such as propane). It may be used to heat the intermediate medium.
 図1~図3に示されるように、本熱交換ユニットは、複数の熱交換装置20と、制御部70と、を備えている。なお、図1では、制御部70の図示は省略されている。各熱交換装置20は、互いに同じ形状を有している。 As shown in FIGS. 1 to 3, the heat exchange unit includes a plurality of heat exchange devices 20 and a control unit 70. In addition, illustration of the control part 70 is abbreviate | omitted in FIG. Each heat exchange device 20 has the same shape.
 複数の熱交換装置20は、複数の行と複数の列とにより形成される行列状に並ぶように配置されている。各行は、一方向に延びており、各列は、前記一方向と直交する直交方向に延びている。本実施形態では、複数の熱交換装置20は、各行に沿って6つの熱交換装置20が並び、かつ、各列に沿って2つの熱交換装置20が並ぶように配置されている。 The plurality of heat exchange devices 20 are arranged in a matrix formed by a plurality of rows and a plurality of columns. Each row extends in one direction, and each column extends in an orthogonal direction orthogonal to the one direction. In the present embodiment, the plurality of heat exchange devices 20 are arranged such that six heat exchange devices 20 are arranged along each row, and two heat exchange devices 20 are arranged along each column.
 以下、前記一方向と直交する平面であって前記一方向について当該熱交換ユニットの中央を通る仮想的な平面を「一方向中心面P1」といい、前記直交方向と直交する平面であって前記直交方向について当該熱交換ユニットの中央を通る仮想的な平面を「直交方向中心面P2」という。また、一方向中心面P1と直交方向中心面P2とにより区画される4つの領域のうち所定の領域に位置しかつ一方向に沿って並ぶ3つの熱交換装置20をまとめて「第1ユニット構成要素11」という。また、第1ユニット構成要素11と直交方向に隣接しかつ一方向に沿って並ぶ3つの熱交換装置20をまとめて「第2ユニット構成要素12」といい、第1ユニット構成要素11と一方向に隣接しかつ一方向に沿って並ぶ3つの熱交換装置20をまとめて「第3ユニット構成要素13」という。そして、第2ユニット構成要素12と一方向に隣接するとともに第3ユニット構成要素13と直交方向に隣接し、かつ、一方向に沿って並ぶ3つの熱交換装置20をまとめて「第4ユニット構成要素14」という。 Hereinafter, a virtual plane that is orthogonal to the one direction and passes through the center of the heat exchange unit with respect to the one direction is referred to as “one-direction center plane P1”, and is a plane that is orthogonal to the orthogonal direction. A virtual plane passing through the center of the heat exchange unit in the orthogonal direction is referred to as “orthogonal direction center plane P2”. Further, the three heat exchange devices 20 located in a predetermined region and arranged along one direction among the four regions defined by the one-direction center plane P1 and the orthogonal direction center plane P2 are collectively referred to as “first unit configuration”. Element 11 ". Further, the three heat exchange devices 20 that are adjacent to the first unit component 11 in the orthogonal direction and arranged in one direction are collectively referred to as a “second unit component 12”, and the first unit component 11 is in one direction. The three heat exchange devices 20 that are adjacent to each other and arranged in one direction are collectively referred to as “third unit component 13”. The three heat exchange devices 20 adjacent to the second unit component 12 in one direction and adjacent to the third unit component 13 in the orthogonal direction and arranged along the one direction are collectively referred to as a “fourth unit configuration. Element 14 ".
 図2に示されるように、各熱交換装置20は、送風機30と、熱交換器40と、支持部50と、を有している。 As shown in FIG. 2, each heat exchange device 20 has a blower 30, a heat exchanger 40, and a support portion 50.
 送風機30は、下向きに流れる気流(下降気流)を形成する。具体的に、送風機30は、円筒状の送風機室32と、送風機室32内に配置されたファン34と、ファン34を駆動するモータ36と、を有する。ファン34は、モータ36が駆動したときに鉛直下向きに流れる下降気流を形成する姿勢で送風機室32内に配置されている。モータ36の回転数は、インバータにより調整可能となっている。 The blower 30 forms an airflow that flows downward (downward airflow). Specifically, the blower 30 includes a cylindrical blower chamber 32, a fan 34 disposed in the blower chamber 32, and a motor 36 that drives the fan 34. The fan 34 is disposed in the blower chamber 32 so as to form a downward airflow that flows vertically downward when the motor 36 is driven. The rotation speed of the motor 36 can be adjusted by an inverter.
 熱交換器40は、送風機30により形成された下降気流(空気)と低温媒体とを熱交換させることによって低温媒体の少なくとも一部を蒸発させる。具体的に、熱交換器40は、熱交換室42と、熱交換室42内に配置された伝熱管44と、を有する。 The heat exchanger 40 evaporates at least a part of the low temperature medium by exchanging heat between the downdraft (air) formed by the blower 30 and the low temperature medium. Specifically, the heat exchanger 40 includes a heat exchange chamber 42 and a heat transfer tube 44 disposed in the heat exchange chamber 42.
 熱交換室42は、四角筒状に形成されている。熱交換室42の上端は、中空状の連結部38を介して送風機室32の下端に接続されている。このため、送風機30により形成された気流は、熱交換室42内を通って当該熱交換室42の下方に向かう。 The heat exchange chamber 42 is formed in a square cylinder shape. The upper end of the heat exchange chamber 42 is connected to the lower end of the blower chamber 32 through a hollow connecting portion 38. For this reason, the airflow formed by the blower 30 passes through the inside of the heat exchange chamber 42 and goes downward of the heat exchange chamber 42.
 伝熱管44内には、低温媒体(低温液化ガスや中間媒体)が流れる。熱交換室42内において伝熱管44に前記気流が接触することにより、つまり、前記気流と低温媒体とが熱交換することにより、伝熱管44内を流れる低温媒体の少なくとも一部が蒸発する。本実施形態では、互いに隣接する熱交換装置20の一方側(図2の右側)の伝熱管44と他方側(図2の左側)の伝熱管44とは、互いに連通するように形成されている。また、前記一方側の伝熱管44は、熱交換室42内で折り返されている。 In the heat transfer tube 44, a low-temperature medium (low-temperature liquefied gas or intermediate medium) flows. When the airflow contacts the heat transfer tube 44 in the heat exchange chamber 42, that is, when the airflow and the low temperature medium exchange heat, at least a part of the low temperature medium flowing in the heat transfer tube 44 evaporates. In the present embodiment, the heat transfer tube 44 on one side (right side in FIG. 2) and the heat transfer tube 44 on the other side (left side in FIG. 2) of the heat exchange devices 20 adjacent to each other are formed so as to communicate with each other. . The one side heat transfer tube 44 is folded in the heat exchange chamber 42.
 支持部50は、熱交換器40を地面から上方に離間した位置に支持する。具体的に、支持部50は、熱交換室42の中心軸が鉛直方向と平行となる姿勢で当該熱交換室42を支持している。なお、送風機室32の中心軸も、鉛直方向と平行な姿勢となる。 The support unit 50 supports the heat exchanger 40 at a position spaced upward from the ground. Specifically, the support unit 50 supports the heat exchange chamber 42 in a posture in which the central axis of the heat exchange chamber 42 is parallel to the vertical direction. Note that the central axis of the blower chamber 32 is also in a posture parallel to the vertical direction.
 本実施形態では、熱交換室42の外側面に、踏み板60が接続されている。踏み板60は、網状に形成されており、熱交換室42の外側面の上端に接続されている。この踏み板60は、当該踏み板60上を人が歩くことができる程度の強度に設定される。 In the present embodiment, a tread plate 60 is connected to the outer surface of the heat exchange chamber 42. The tread plate 60 is formed in a net shape and is connected to the upper end of the outer surface of the heat exchange chamber 42. The tread board 60 is set to a strength that allows a person to walk on the tread board 60.
 制御部70は、再吸込判定部72と、風向き判定部74と、風量制御部76と、を有する。 The control unit 70 includes a re-suction determination unit 72, a wind direction determination unit 74, and an air volume control unit 76.
 再吸込判定部72は、送風機30により形成された気流のうち熱交換器40から流出した低温空気の送風機30による再吸込が生じているか否かを判定する。本実施形態では、再吸込判定部72は、前記低温空気による外気の冷却の影響を受けない領域(前記低温空気による外気の冷却効果が生じる領域から離れた領域)の気温Tairから、各送風機30による空気の吸込温度の平均である平均吸込温度Tavを引いた温度差ΔTが、規定値Teよりも大きくなったときに再吸込が生じていると判定する。規定値Teは、低温媒体の処理量(各熱交換器40における低温媒体の加熱量)が一定以上に確保される値に設定される。 The re-suction determination unit 72 determines whether or not re-suction by the blower 30 of the low-temperature air that has flowed out of the heat exchanger 40 out of the airflow formed by the blower 30 occurs. In the present embodiment, the re-intake determination unit 72 uses each air blower 30 from the temperature Tair in a region that is not affected by the outside air cooling by the low temperature air (a region away from the region in which the outside air cooling effect is generated by the low temperature air). When the temperature difference ΔT obtained by subtracting the average suction temperature Tav, which is the average of the air suction temperatures, becomes greater than the specified value Te, it is determined that re-suction has occurred. The specified value Te is set to a value that secures the processing amount of the low temperature medium (the amount of heating of the low temperature medium in each heat exchanger 40) to a certain level or more.
 前記気温Tairは、例えば、本熱交換ユニットから側方に20m~30m離間した位置の気温、本熱交換ユニットから側方に離間した位置に設置される制御室周辺の気温、あるいは、地面から熱交換装置20の上下方向の寸法の2倍以上の高さ位置の気温を指す。各送風機30による空気の吸込温度は、送風機室32内に設けられた温度センサ80により検出される。温度センサ80は、ファン34の回転軸の延長線上に位置するように配置されることが好ましい。 The temperature Tair is, for example, the temperature at a position 20 m to 30 m away from the main heat exchange unit, the air temperature around a control room installed at a position away from the main heat exchange unit, or heat from the ground. The temperature at a height position that is twice or more the vertical dimension of the exchange device 20 is indicated. The air suction temperature of each blower 30 is detected by a temperature sensor 80 provided in the blower chamber 32. The temperature sensor 80 is preferably arranged so as to be located on an extension line of the rotation axis of the fan 34.
 風向き判定部74は、本熱交換ユニット(第1ユニット構成要素11~第4ユニット構成要素14)に向かって吹く風の向きを判定する。本実施形態では、風向き判定部74は、第1平均吸込温度Tav1、第2平均吸込温度Tav2、第3平均吸込温度Tav3及び第4平均吸込温度Tav4に基づいて風向きを判定する。第1平均吸込温度Tav1は、第1ユニット構成要素11の各送風機30による空気の吸込温度の平均である。第2平均吸込温度Tav2は、第2ユニット構成要素12の各送風機30による空気の吸込温度の平均である。第3平均吸込温度Tav3は、第3ユニット構成要素13の各送風機30による空気の吸込温度の平均である。第4平均吸込温度Tav4は、第4ユニット構成要素14の各送風機30による空気の吸込温度の平均である。具体的に、風向き判定部74は、第1平均吸込温度Tav1から第4平均吸込温度Tav4の中で最も低い温度を有するユニット構成要素から当該熱交換ユニットの中心O(一方向中心面P1と直交方向中心面P2との交点)に向かう成分を含むと判定する。この判定が可能な理由は、以下のとおりである。すなわち、熱交換ユニットに向かって風が吹いた場合、複数の熱交換装置20のうち最も風上側に位置する風上装置の熱交換器40から流出した後に風上に向かって側方に流れた低温空気は、風により当該熱交換ユニット側に戻されるので、特に風上装置の送風機30がその低温空気の再度吸い込みやすい。このため、熱交換ユニットに向かって風が吹いた場合、前記風上装置を含むユニット構成要素の平均吸込温度が、第1平均吸込温度Tav1から第4平均吸込温度Tav4の中で最も低くなる。したがって、風向きは、前記風上装置を含むユニット構成要素から当該熱交換ユニットの中心Oに向かう成分を含むと判定することができる。なお、風向きは、風向計で判定してもよい。 The wind direction determination unit 74 determines the direction of the wind blowing toward the heat exchange unit (the first unit component 11 to the fourth unit component 14). In this embodiment, the wind direction determination part 74 determines a wind direction based on 1st average suction temperature Tav1, 2nd average suction temperature Tav2, 3rd average suction temperature Tav3, and 4th average suction temperature Tav4. The first average suction temperature Tav <b> 1 is an average of the air suction temperatures of the blowers 30 of the first unit component 11. The second average suction temperature Tav <b> 2 is the average of the air suction temperatures of the blowers 30 of the second unit component 12. The third average suction temperature Tav3 is an average of the air suction temperatures of the blowers 30 of the third unit component 13. The fourth average suction temperature Tav4 is an average of the air suction temperatures of the blowers 30 of the fourth unit component 14. Specifically, the wind direction determination unit 74 starts from the unit component having the lowest temperature among the first average suction temperature Tav1 to the fourth average suction temperature Tav4 from the center O of the heat exchange unit (perpendicular to the unidirectional center plane P1). It is determined that it includes a component that is directed to the intersection with the direction center plane P2. The reason why this determination is possible is as follows. That is, when the wind blows toward the heat exchange unit, it flows out from the heat exchanger 40 of the windward device located on the most upstream side among the plurality of heat exchange devices 20 and then flows sideways toward the windward. Since the low-temperature air is returned to the heat exchange unit by the wind, the blower 30 of the windward device is particularly easy to suck the low-temperature air again. For this reason, when wind blows toward the heat exchange unit, the average suction temperature of the unit components including the upwind device is the lowest among the first average suction temperature Tav1 to the fourth average suction temperature Tav4. Therefore, it can be determined that the wind direction includes a component from the unit component including the upwind device toward the center O of the heat exchange unit. The wind direction may be determined with an anemometer.
 風量制御部76が行う制御には、一方向制御と、直交方向制御と、直交方向逆制御と、風量増大制御と、が含まれる。 The control performed by the air volume control unit 76 includes one-way control, orthogonal direction control, orthogonal direction reverse control, and air volume increase control.
 一方向制御は、再吸込判定部72が再吸込が生じていると判定したときに、一方向傾きAが、再吸込判定部72が再吸込が生じていると判定していない定常時の一方向傾きAよりも大きくなり、かつ、一方向風下装置から一方向風上装置に向かうにしたがって次第に送風機30の回転数が大きくなるように、各送風機30の回転数を調整する制御である。一方向傾きAは、一方向風上装置の送風機30の回転数から一方向風下装置の送風機30の回転数を引いた値を、一方向風上装置と一方向風下装置との間の距離(各ファン34の回転軸間距離)で除した値である。ただし、一方向傾きAとして、一方向風上装置の送風機30の回転数から一方向風下装置の送風機30の回転数を引いた回転数差が用いられてもよい。一方向風上装置は、複数の熱交換装置20のうち風向き判定部74により判定された風向きに対して一方向について最も風上側に位置する熱交換装置20である。一方向風下装置は、複数の熱交換装置20のうち風向き判定部74により判定された風向きに対して一方向について最も風下側に位置する熱交換装置20である。 One-way control is a one-way control when the re-suction determination unit 72 determines that re-suction has occurred, and the one-way inclination A does not determine that re-suction has occurred. In this control, the rotational speed of each blower 30 is adjusted so that the rotational speed of the blower 30 gradually increases as it becomes larger than the direction inclination A and goes from the one-way leeward device to the one-way windward device. The one-way inclination A is a value obtained by subtracting the number of rotations of the blower 30 of the one-way leeward device from the number of rotations of the blower 30 of the one-way leeward device. It is a value divided by the distance between the rotation axes of each fan 34. However, as the unidirectional inclination A, a rotational speed difference obtained by subtracting the rotational speed of the blower 30 of the unidirectional leeward device from the rotational speed of the blower 30 of the unidirectional leeward device may be used. The one-way upwind device is the heat exchange device 20 that is located on the furthest upstream side in one direction with respect to the wind direction determined by the wind direction determination unit 74 among the plurality of heat exchange devices 20. The one-way leeward device is the heat exchange device 20 that is located on the most leeward side in one direction with respect to the wind direction determined by the wind direction determination unit 74 among the plurality of heat exchange devices 20.
 本実施形態では、風量制御部76は、一方向制御として、一方向傾きAが予め設定された一方向最大値Amax以下の範囲内において、前記温度差ΔTが規定値Te以下となるまで、一方向傾きAが前記定常時の一方向傾きAよりも大きくなり、かつ、一方向風下装置から一方向風上装置に向かうにしたがって次第に送風機30の回転数が大きくなるように、各送風機30の回転数を調整する制御を行う。一方向最大値Amaxは、一方向風上装置の送風機30の回転数の最大値から一方向風下装置の送風機30の回転数の最小値を引いた値を、一方向風上装置と一方向風下装置との間の距離で除した値である。送風機30の最大値及び最小値は、当該送風機30の定格(モータ36の回転数の可変範囲)に依存する。 In the present embodiment, the air volume control unit 76 performs one-way control until the temperature difference ΔT becomes equal to or less than a specified value Te within a range where the one-way inclination A is less than or equal to a preset one-way maximum value Amax. Rotation of each fan 30 so that the direction inclination A becomes larger than the one-way inclination A in the steady state and the rotation speed of the blower 30 gradually increases from the one-way leeward device toward the one-way upwind device. Control to adjust the number. The one-way maximum value Amax is obtained by subtracting the minimum value of the rotation speed of the blower 30 of the one-way leeward device from the maximum value of the rotation speed of the blower 30 of the unidirectional leeward device. It is the value divided by the distance to the device. The maximum value and the minimum value of the blower 30 depend on the rating of the blower 30 (variable range of the rotation speed of the motor 36).
 ここで、図4を参照しながら、一方向制御の内容を説明する。図4は、一方向に沿って(熱交換ユニットの右側から左側に向かって)熱交換ユニットに対して風が吹いており、再吸込判定部72により再吸込が生じていると判定された場合において、風量制御部76が一方向制御を行った後の状態の一例を示している。図4の例では、第1ユニット構成要素11のうち最も風上側に位置する熱交換装置20及び第2ユニット構成要素12のうち最も風上側に位置する熱交換装置20が、それぞれ「一方向風上装置」に相当する。そして、第3ユニット構成要素13のうち最も風下側に位置する熱交換装置20及び第4ユニット構成要素14のうち最も風下側に位置する熱交換装置20が、それぞれ「一方向風下装置」に相当する。図4に示されるように、風量制御部76が一方向制御を行うことにより、各送風機30の回転数は、風下側から風上側に向かうにしたがって次第に大きくなる。なお、図4において各送風機30内に示されている数字は、モータ36の回転数である。また、風量制御部76が一方向制御を行っていないときの各モータ36の回転数は、例えば全て100%であったとする。 Here, the contents of the one-way control will be described with reference to FIG. FIG. 4 shows a case where wind is blowing to the heat exchange unit along one direction (from the right side to the left side of the heat exchange unit) and the re-suction determination unit 72 determines that re-suction has occurred. 2 shows an example of a state after the air volume control unit 76 performs the one-way control. In the example of FIG. 4, the heat exchange device 20 located on the most windward side of the first unit component 11 and the heat exchange device 20 located on the most windward side of the second unit component 12 are respectively “one-way wind”. It corresponds to “upper device”. The heat exchange device 20 located on the most leeward side of the third unit component 13 and the heat exchange device 20 located on the most leeward side of the fourth unit component 14 respectively correspond to “one-way leeward devices”. To do. As shown in FIG. 4, when the air volume control unit 76 performs one-way control, the rotational speed of each blower 30 gradually increases from the leeward side toward the windward side. In addition, the number shown in each air blower 30 in FIG. 4 is the rotation speed of the motor 36. Further, it is assumed that the rotation speeds of the motors 36 when the air volume control unit 76 is not performing the one-way control are all 100%, for example.
 風量制御部76は、すべての送風機30の回転数の平均が100%となるように各送風機30の回転数を調整することが好ましい。 It is preferable that the air volume control unit 76 adjust the rotation speed of each blower 30 so that the average rotation speed of all the blowers 30 is 100%.
 直交方向制御は、再吸込判定部72が再吸込が生じていると判定したときに、直交方向傾きBが前記定常時の直交方向傾きBよりも大きくなり、かつ、直交方向風下装置から直交方向風上装置に向かうにしたがって次第に送風機30の回転数が大きくなるように、各送風機30の回転数を調整する制御である。直交方向傾きBは、直交方向風上装置の送風機30の回転数から直交方向風下装置の送風機30の回転数を引いた値を、直交方向風上装置と直交方向風下装置との間の距離で除した値である。ただし、直交方向傾きBとして、直交方向風上装置の送風機30の回転数から直交方向風下装置の送風機30の回転数を引いた回転数差が用いられてもよい。直交方向風上装置は、複数の熱交換装置20のうち風向き判定部74により判定された風向きに対して直交方向について最も風上側に位置する熱交換装置20である。直交方向風下装置は、複数の熱交換装置20のうち風向き判定部74により判定された風向きに対して直交方向について最も風下側に位置する熱交換装置20である。 In the orthogonal direction control, when the re-suction determination unit 72 determines that re-suction has occurred, the orthogonal direction inclination B becomes larger than the normal direction orthogonal direction inclination B, and the orthogonal direction leeward device makes an orthogonal direction. It is control which adjusts the rotation speed of each air blower 30 so that the rotation speed of the air blower 30 becomes large gradually as it goes to an upwind apparatus. The orthogonal inclination B is a value obtained by subtracting the rotational speed of the blower 30 of the orthogonal leeward device from the rotational speed of the blower 30 of the orthogonal leeward device as a distance between the orthogonal leeward device and the orthogonal leeward device. It is the value divided. However, as the orthogonal direction inclination B, a rotational speed difference obtained by subtracting the rotational speed of the blower 30 of the orthogonal leeward device from the rotational number of the blower 30 of the orthogonal leeward device may be used. The orthogonal direction upwind device is the heat exchange device 20 that is located on the most upwind side in the orthogonal direction with respect to the wind direction determined by the wind direction determination unit 74 among the plurality of heat exchange devices 20. The orthogonal direction leeward device is the heat exchange device 20 that is located on the most leeward side in the orthogonal direction with respect to the wind direction determined by the wind direction determination unit 74 among the plurality of heat exchange devices 20.
 本実施形態では、風量制御部76は、直交方向制御として、直交方向傾きBが予め設定された直交方向最大値Bmax以下の範囲内において、前記温度差ΔTが規定値Te以上となるまで、直交方向傾きBが前記定常時の直交方向傾きBよりも大きくなり、かつ、直交方向風下装置から直交方向風上装置に向かうにしたがって次第に送風機30の回転数が大きくなるように、各送風機30の回転数を調整する制御を行う。直交方向最大値Bmaxは、直交方向風上装置の送風機30の回転数の最大値から直交方向風下装置の送風機30の回転数の最小値を引いた値を、直交方向風上装置と直交方向風下装置との間の距離で除した値である。 In the present embodiment, as the orthogonal direction control, the air volume control unit 76 is orthogonal until the temperature difference ΔT is equal to or greater than a specified value Te within a range where the orthogonal direction inclination B is less than or equal to a preset orthogonal direction maximum value Bmax. Rotation of each blower 30 so that the direction inclination B becomes larger than the normal direction orthogonal inclination B and the rotation speed of the blower 30 gradually increases from the orthogonal leeward device toward the orthogonal leeward device. Control to adjust the number. The orthogonal maximum value Bmax is obtained by subtracting the minimum value of the rotational speed of the blower 30 of the orthogonal leeward device from the maximum rotational speed of the blower 30 of the orthogonal leeward device. It is the value divided by the distance to the device.
 ここで、図5を参照しながら、直交方向制御の内容を説明する。図5は、直交方向に沿って(熱交換ユニットの正面から背面に向かって)熱交換ユニットに対して風が吹いており、再吸込判定部72により再吸込が生じていると判定された場合において、風量制御部76が直交方向制御を行った後の状態の一例を示している。図5の例では、第2ユニット構成要素12の各熱交換装置20及び第4ユニット構成要素14の各熱交換装置20がそれぞれ「直交方向風上装置」に相当し、第1ユニット構成要素11の各熱交換装置20及び第3ユニット構成要素13の各熱交換装置20がそれぞれ「直交方向風下装置」に相当する。図5に示されるように、風量制御部76が直交方向制御を行うことにより、各送風機30の回転数は、風下側から風上側に向かうにしたがって次第に大きくなる。なお、図5においても、風量制御部76が直交方向制御を行っていないときの各モータ36の回転数は、例えば全て100%であったとする。 Here, the content of the orthogonal direction control will be described with reference to FIG. FIG. 5 shows a case where wind is blowing to the heat exchange unit along the orthogonal direction (from the front to the back of the heat exchange unit) and the re-suction determination unit 72 determines that re-suction has occurred. 2 shows an example of a state after the air volume control unit 76 performs the orthogonal direction control. In the example of FIG. 5, each heat exchange device 20 of the second unit component 12 and each heat exchange device 20 of the fourth unit component 14 correspond to “orthogonal upwind devices”, respectively, and the first unit component 11 Each heat exchange device 20 and each heat exchange device 20 of the third unit component 13 correspond to an “orthogonal leeward device”. As shown in FIG. 5, when the air volume control unit 76 performs the orthogonal direction control, the rotation speed of each blower 30 gradually increases from the leeward side toward the windward side. Also in FIG. 5, it is assumed that the rotation speeds of the motors 36 when the air volume control unit 76 is not performing the orthogonal direction control are all 100%, for example.
 続いて、図6を参照しながら、風が一方向と平行な成分及び直交方向と平行な成分の双方を含んでいる場合における風量制御部76の制御について説明する。図6は、熱交換ユニットの正面右側から背面左側に向かって当該熱交換ユニットに対して風が吹いており、再吸込判定部72により再吸込が生じていると判定された場合において、風量制御部76が一方向制御及び直交方向制御を行った後の状態の一例を示している。図6の例では、第1ユニット構成要素11のうち最も風上側に位置する熱交換装置20及び第2ユニット構成要素12のうち最も風上側に位置する熱交換装置20が、それぞれ「一方向風上装置」に相当する。そして、第3ユニット構成要素13のうち最も風下側に位置する熱交換装置20及び第4ユニット構成要素14のうち最も風下側に位置する熱交換装置20が、それぞれ「一方向風下装置」に相当する。また、第2ユニット構成要素12の各熱交換装置20及び第4ユニット構成要素14の各熱交換装置20がそれぞれ「直交方向風上装置」に相当し、第1ユニット構成要素11の各熱交換装置20及び第3ユニット構成要素13の各熱交換装置20がそれぞれ「直交方向風下装置」に相当する。図6に示されるように、風量制御部76が一方向制御及び直交方向制御の双方を行うことにより、各送風機30の回転数は、一方向及び直交方向の双方について、風下側から風上側に向かうにしたがって次第に大きくなる。この例では、風量制御部76は、一方向に沿って並ぶ6つの熱交換装置20の各送風機30の回転数が、風下側から風上側に向かって10%ずつ単調に増加するように各送風機30の回転数を調整し、かつ、直交方向に沿って並ぶ2つの熱交換装置20の各送風機30の回転数が、風下側から風上側に向かって10%増加するように各送風機30の回転数を調整している。ただし、一方向制御は、風下側から風上側に向かって単調に増加するように各送風機30の回転数を調整する制御に限られない。なお、図6においても、風量制御部76が一方向制御及び直交方向制御を行っていないときの各モータ36の回転数は、例えば全て100%であったとする。 Subsequently, the control of the air volume control unit 76 in the case where the wind includes both a component parallel to one direction and a component parallel to the orthogonal direction will be described with reference to FIG. FIG. 6 shows the flow rate control when it is determined that re-suction has occurred by the re-suction determination unit 72 because wind is blowing from the front right side of the heat exchange unit toward the left side of the back side. An example of a state after the unit 76 performs one-way control and orthogonal direction control is shown. In the example of FIG. 6, the heat exchange device 20 located on the most windward side of the first unit component 11 and the heat exchange device 20 located on the most windward side of the second unit component 12 are respectively “one-way wind”. It corresponds to “upper device”. The heat exchange device 20 located on the most leeward side of the third unit component 13 and the heat exchange device 20 located on the most leeward side of the fourth unit component 14 respectively correspond to “one-way leeward devices”. To do. Further, each heat exchange device 20 of the second unit component 12 and each heat exchange device 20 of the fourth unit component 14 correspond to “orthogonal upwind devices”, and each heat exchange of the first unit component 11. The heat exchange devices 20 of the device 20 and the third unit component 13 respectively correspond to “orthogonal leeward devices”. As shown in FIG. 6, when the air volume control unit 76 performs both the one-way control and the orthogonal direction control, the rotational speed of each blower 30 is increased from the leeward side to the windward side in both the one-way direction and the orthogonal direction. It grows gradually as you go. In this example, the air volume control unit 76 is configured so that the rotational speed of each of the blowers 30 of the six heat exchange devices 20 arranged along one direction increases monotonically from the leeward side toward the windward side by 10%. The rotation of each blower 30 is adjusted so that the rotation number of each blower 30 of the two heat exchange devices 20 arranged in the orthogonal direction is increased by 10% from the leeward side toward the windward side. The number is adjusted. However, the one-way control is not limited to the control that adjusts the rotation speed of each blower 30 so as to monotonously increase from the leeward side toward the leeward side. In FIG. 6 also, it is assumed that the rotational speeds of the motors 36 when the air volume control unit 76 is not performing the one-direction control and the orthogonal direction control are all 100%, for example.
 直交方向逆制御は、直交方向傾きBが直交方向最大値Bmaxになるまで直交方向制御を行っても前記温度差ΔTが規定値Te以上にならない場合に、直交方向傾きBが前記定常時の直交方向傾きBよりも小さくなり、かつ、直交方向風下装置から直交方向風上装置に向かうにしたがって次第に送風機30の回転数が小さくなるように各送風機30の回転数を調整する制御である。 In the orthogonal direction reverse control, when the temperature difference ΔT does not become the specified value Te or more even if the orthogonal direction control is performed until the orthogonal direction gradient B reaches the orthogonal direction maximum value Bmax, the orthogonal direction gradient B is the orthogonal value in the steady state. In this control, the rotational speed of each blower 30 is adjusted so that the rotational speed of the blower 30 becomes gradually smaller as it becomes smaller than the direction inclination B and goes from the orthogonal leeward device toward the orthogonal leeward device.
 本実施形態では、風量制御部76は、直交方向逆制御として、直交方向傾きBが直交方向最小値Bmin以上の範囲内において、前記温度差ΔTが規定値Te以上となるまで、直交方向傾きBが前記定常時の直交方向傾きBよりも小さくなり、かつ、直交方向風下装置から直交方向風上装置に向かうにしたがって次第に送風機30の回転数が小さくなるように、各送風機30の回転数を調整する制御を行う。直交方向最小値Bminは、直交方向風上装置の送風機30の回転数の最小値から直交方向風下装置の送風機30の回転数の最大値を引いた値を直交方向風上装置と直交方向風下装置との間の距離で除した値である。 In the present embodiment, the air volume control unit 76 performs the orthogonal direction gradient B as the orthogonal direction reverse control until the temperature difference ΔT is equal to or greater than the specified value Te within the range where the orthogonal direction gradient B is equal to or greater than the minimum value Bmin in the orthogonal direction. The rotational speed of each blower 30 is adjusted so that the rotational speed of the blower 30 gradually decreases as it goes from the orthogonal leeward device to the orthogonal upwind device. Control. The minimum value Bmin in the orthogonal direction is obtained by subtracting the maximum value of the rotational speed of the blower 30 of the orthogonal leeward device from the minimum value of the rotational speed of the blower 30 of the orthogonal leeward device. The value divided by the distance between.
 風量増大制御は、直交方向傾きBが直交方向最小値Bminになるまで直交方向逆制御を行っても前記温度差ΔTが規定値Te以上とならない場合に、各送風機30から流出する気流の総流量が増えるように各送風機30の回転数を上げる制御である。 In the air volume increase control, even if the orthogonal direction reverse control is performed until the orthogonal gradient B becomes the orthogonal minimum value Bmin, the total flow rate of the airflow flowing out from each blower 30 when the temperature difference ΔT does not become the specified value Te or more. It is control which raises the rotation speed of each air blower 30 so that may increase.
 以下、制御部70の具体的な制御内容について、図7~図9を参照しながら説明する。 Hereinafter, specific control contents of the control unit 70 will be described with reference to FIGS.
 熱交換ユニットの運転が開始されると、まず、制御部70は、前記気温Tairから平均吸込温度Tavを引いた温度差ΔTを算出する(ステップS11)。次に、制御部70(再吸込判定部72)は、その温度差ΔTが規定値Teよりも大きいか否かを判定する(ステップS12)。 When the operation of the heat exchange unit is started, first, the control unit 70 calculates a temperature difference ΔT obtained by subtracting the average suction temperature Tav from the temperature Tair (step S11). Next, the control unit 70 (re-suction determination unit 72) determines whether or not the temperature difference ΔT is larger than the specified value Te (step S12).
 この結果、温度差ΔTが規定値Te未満であれば(ステップS12でNO)、すなわち、低温媒体の処理量が一定以上確保されていれば、制御部70は、温度差ΔTが判定値Te2未満か否かを判定する(ステップS13)。判定値Te2は、規定値Teよりも小さな値であって、低温媒体の処理量が十分に確保される値に設定される。 As a result, if the temperature difference ΔT is less than the specified value Te (NO in step S12), that is, if the processing amount of the low-temperature medium is ensured more than a certain level, the control unit 70 determines that the temperature difference ΔT is less than the determination value Te2. Whether or not (step S13). The determination value Te2 is a value that is smaller than the specified value Te, and is set to a value that sufficiently secures the processing amount of the low-temperature medium.
 ステップS13において、温度差ΔTが判定値Te2未満であれば(ステップS13でYES)、すなわち、低温媒体の処理量が十分に確保されていれば、制御部70は、各送風機30の回転数を下げ(ステップS14)、ステップS11に戻る。これにより、低温媒体の処理量を十分に確保しつつ各送風機30の駆動に必要な動力を低減することができる。一方、ステップS13において、温度差ΔTが判定値Te2以上であれば(ステップS13でNO)、制御部70は、ステップS11に戻る。 If the temperature difference ΔT is less than the determination value Te2 in step S13 (YES in step S13), that is, if the processing amount of the low-temperature medium is sufficiently secured, the control unit 70 sets the rotation speed of each blower 30. Lower (step S14), the process returns to step S11. Thereby, the power required for driving each blower 30 can be reduced while sufficiently securing the amount of processing of the low-temperature medium. On the other hand, if the temperature difference ΔT is greater than or equal to the determination value Te2 in step S13 (NO in step S13), the control unit 70 returns to step S11.
 そして、ステップS12において、温度差ΔTが規定値Te以上であれば(ステップS12でYES)、すなわち、再吸込判定部72によって各送風機30による低温空気の再吸込が生じていると判定されれば、制御部70(風向き判定部74)は、第1平均吸込温度Tav1~第4平均吸込温度Tav4に基づいて風向きを判定する(ステップS15)。続いて、制御部70は、ステップS15において風向き判定部74が判定した風向きに基づいて、一方向傾きAの正負及び直交方向傾きBの正負を決定する(ステップS16)。 In step S12, if the temperature difference ΔT is equal to or greater than the specified value Te (YES in step S12), that is, if it is determined by the re-inhalation determining unit 72 that the low-temperature air is re-inhaled by each blower 30. The control unit 70 (wind direction determination unit 74) determines the wind direction based on the first average suction temperature Tav1 to the fourth average suction temperature Tav4 (step S15). Subsequently, the control unit 70 determines the positive / negative of the one-way inclination A and the positive / negative of the orthogonal direction inclination B based on the wind direction determined by the wind direction determination unit 74 in step S15 (step S16).
 次に、制御部70(風量制御部76)は、一方向制御を行う。具体的に、制御部70は、まず、現在の温度差ΔTを第1温度差ΔT1とする(ステップS17)。そして、制御部70は、一方向傾きAを風上側に大きくする(ステップS18)。その後、制御部70は、再び温度差ΔT(=前記気温Tair-現在の平均吸込温度Tav)を算出し(ステップS19)、その温度差ΔTが第1温度差ΔT1未満か否か、すなわち、ステップS18を経ることによって平均吸込温度Tavが上昇したか否か、を判定する(ステップS20)。 Next, the control unit 70 (air volume control unit 76) performs one-way control. Specifically, the control unit 70 first sets the current temperature difference ΔT as the first temperature difference ΔT1 (step S17). Then, the control unit 70 increases the unidirectional inclination A to the windward side (step S18). Thereafter, the control unit 70 calculates again the temperature difference ΔT (= the temperature Tair−the current average suction temperature Tav) (step S19), and whether or not the temperature difference ΔT is less than the first temperature difference ΔT1, that is, step It is determined whether or not the average suction temperature Tav has increased through S18 (step S20).
 この結果、温度差ΔTが第1温度差ΔT1未満であれば(ステップS20でYES)、制御部70は、温度差ΔTが規定値Te以下か否かを判定する(ステップS21)。この結果、温度差ΔTが規定値Te以下であれば(ステップS21でYES)、制御部70は、ステップS11に戻る。一方、温度差ΔTが規定値Teよりも大きい場合(ステップS21でNO)、制御部70は、一方向傾きAが一方向最大値Amaxか否かを判定する(ステップS22)。 As a result, if the temperature difference ΔT is less than the first temperature difference ΔT1 (YES in step S20), the control unit 70 determines whether or not the temperature difference ΔT is equal to or less than a specified value Te (step S21). As a result, if the temperature difference ΔT is equal to or less than the specified value Te (YES in step S21), the control unit 70 returns to step S11. On the other hand, when the temperature difference ΔT is larger than the specified value Te (NO in step S21), the control unit 70 determines whether or not the unidirectional inclination A is the unidirectional maximum value Amax (step S22).
 この結果、一方向傾きAが一方向最大値Amaxではない場合(ステップS22でNO)、つまり、一方向傾きAが一方向最大値Amax未満の場合、制御部70は、ステップS17に戻る。 As a result, when the unidirectional inclination A is not the unidirectional maximum value Amax (NO in step S22), that is, when the unidirectional inclination A is less than the unidirectional maximum value Amax, the control unit 70 returns to step S17.
 一方、一方向傾きAが一方向最大値Amaxである場合(ステップS22でYES)、あるいは、ステップS20において、温度差ΔTが第1温度差ΔT1以上の場合(ステップS20でNO)、すなわち、ステップS18を経ることによって平均吸込温度Tavが低下した場合、制御部70は、直交方向制御を行う。具体的には、次のとおりである。 On the other hand, if the one-way inclination A is the one-way maximum value Amax (YES in step S22), or if the temperature difference ΔT is greater than or equal to the first temperature difference ΔT1 in step S20 (NO in step S20), that is, step When the average suction temperature Tav is decreased through S18, the control unit 70 performs orthogonal direction control. Specifically, it is as follows.
 制御部70は、まず、現在の直交方向傾きBを第1直交方向傾きB1とする(ステップS23)。次に、制御部70は、現在の温度差ΔTを第2温度差ΔT2とする(ステップS24)。そして、制御部70は、直交方向傾きBを風上側に大きくする(ステップS25)。 The control unit 70 first sets the current orthogonal direction inclination B as the first orthogonal direction inclination B1 (step S23). Next, the control unit 70 sets the current temperature difference ΔT as the second temperature difference ΔT2 (step S24). And the control part 70 enlarges orthogonal direction inclination B to an upwind side (step S25).
 その後、制御部70は、再び温度差ΔT(=前記気温Tair-現在の平均吸込温度Tav)を算出し(ステップS26)、その温度差ΔTが第2温度差ΔT2未満か否か、すなわち、ステップS25を経ることによって平均吸込温度Tavが上昇したか否か、を判定する(ステップS27)。 Thereafter, the controller 70 again calculates the temperature difference ΔT (= the temperature Tair−the current average suction temperature Tav) (step S26), and determines whether or not the temperature difference ΔT is less than the second temperature difference ΔT2, ie, step It is determined whether or not the average suction temperature Tav has increased through S25 (step S27).
 この結果、温度差ΔTが第2温度差ΔT2未満であれば(ステップS27でYES)、制御部70は、温度差ΔTが規定値Te以下か否かを判定する(ステップS28)。この結果、温度差ΔTが規定値Te以下であれば(ステップS28でYES)、制御部70は、ステップS11に戻る。一方、温度差ΔTが規定値Teよりも大きい場合(ステップS28でNO)、制御部70は、直交方向傾きBが直交方向最大値Bmaxか否かを判定する(ステップS29)。 As a result, if the temperature difference ΔT is less than the second temperature difference ΔT2 (YES in step S27), the control unit 70 determines whether or not the temperature difference ΔT is equal to or less than a specified value Te (step S28). As a result, if the temperature difference ΔT is equal to or less than the specified value Te (YES in step S28), the control unit 70 returns to step S11. On the other hand, when the temperature difference ΔT is larger than the specified value Te (NO in step S28), the control unit 70 determines whether or not the orthogonal direction gradient B is the orthogonal direction maximum value Bmax (step S29).
 この結果、直交方向傾きBが直交方向最大値Bmaxではない場合(ステップS29でNO)、つまり、直交方向傾きBが直交方向最大値Bmax未満の場合、制御部70は、ステップS24に戻る。 As a result, if the orthogonal direction inclination B is not the orthogonal direction maximum value Bmax (NO in step S29), that is, if the orthogonal direction inclination B is less than the orthogonal direction maximum value Bmax, the control unit 70 returns to step S24.
 一方、直交方向傾きBが直交方向最大値Bmaxである場合(ステップS29でYES)、制御部70は、風量増大制御を行う。具体的には、制御部70は、各送風機30のうち回転数を上げることが可能なものについて、均等な割合で回転数を上げ(ステップS30)、ステップS11に戻る。 On the other hand, when the orthogonal direction inclination B is the orthogonal direction maximum value Bmax (YES in step S29), the control unit 70 performs air volume increase control. Specifically, the control unit 70 increases the rotation number at an equal ratio for each of the blowers 30 that can increase the rotation number (step S30), and returns to step S11.
 また、ステップS27において、温度差ΔTが第2温度差ΔT2以上の場合(ステップS27でNO)、すなわち、ステップS25を経ることによって平均吸込温度Tavが低下した場合、制御部70は、直交方向傾きBが直交方向最大値Bmaxであるか否かを判定する(ステップS31)。 In step S27, when the temperature difference ΔT is equal to or larger than the second temperature difference ΔT2 (NO in step S27), that is, when the average suction temperature Tav is decreased through step S25, the control unit 70 is inclined in the orthogonal direction. It is determined whether or not B is the orthogonal direction maximum value Bmax (step S31).
 この結果、直交方向傾きBが直交方向最大値Bmaxではない場合(ステップS31でNO)、制御部70は、ステップS24に戻る。一方、直交方向傾きBが直交方向最大値Bmaxである場合(ステップS31でYES)、制御部70は、直交方向逆制御を行う。具体的には、次のとおりである。 As a result, when the orthogonal direction inclination B is not the orthogonal direction maximum value Bmax (NO in step S31), the control unit 70 returns to step S24. On the other hand, when the orthogonal direction inclination B is the orthogonal direction maximum value Bmax (YES in step S31), the control unit 70 performs orthogonal direction reverse control. Specifically, it is as follows.
 制御部70は、まず、現在の直交方向傾きBを第1直交方向傾きB1に戻す(ステップS32)。これは、より早期に直交方向傾きBを小さくするためである。次に、制御部70は、現在の温度差ΔTを第3温度差ΔT3とする(ステップS33)。そして、制御部70は、直交方向傾きBを風下側に大きくする(ステップS34)。 The control unit 70 first returns the current orthogonal direction inclination B to the first orthogonal direction inclination B1 (step S32). This is because the orthogonal direction inclination B is reduced earlier. Next, the control unit 70 sets the current temperature difference ΔT as the third temperature difference ΔT3 (step S33). And the control part 70 enlarges orthogonal direction inclination B to the leeward side (step S34).
 その後、制御部70は、再び温度差ΔT(=前記気温Tair-現在の平均吸込温度Tav)を算出し(ステップS35)、その温度差ΔTが第3温度差ΔT3未満か否か、すなわち、ステップS34を経ることによって平均吸込温度Tavが上昇したか否か、を判定する(ステップS36)。 Thereafter, the control unit 70 again calculates the temperature difference ΔT (= the temperature Tair−the current average suction temperature Tav) (step S35), and whether or not the temperature difference ΔT is less than the third temperature difference ΔT3, that is, step It is determined whether or not the average suction temperature Tav has increased through S34 (step S36).
 この結果、温度差ΔTが第3温度差ΔT3未満であれば(ステップS36でYES)、制御部70は、温度差ΔTが規定値Te以下か否かを判定する(ステップS37)。この結果、温度差ΔTが規定値Te以下であれば(ステップS37でYES)、制御部70は、ステップS11に戻る。一方、温度差ΔTが規定値Teよりも大きい場合(ステップS37でNO)、制御部70は、直交方向傾きBが直交方向最小値Bminか否かを判定する(ステップS38)。 As a result, if the temperature difference ΔT is less than the third temperature difference ΔT3 (YES in step S36), the controller 70 determines whether or not the temperature difference ΔT is equal to or less than a specified value Te (step S37). As a result, if the temperature difference ΔT is equal to or less than the specified value Te (YES in step S37), the control unit 70 returns to step S11. On the other hand, when the temperature difference ΔT is larger than the specified value Te (NO in step S37), the control unit 70 determines whether or not the orthogonal direction inclination B is the orthogonal direction minimum value Bmin (step S38).
 この結果、直交方向傾きBが直交方向最小値Bminではない場合(ステップS38でNO)、つまり、直交方向傾きBが直交方向最小値Bminよりも大きい場合、制御部70は、ステップS33に戻る。 As a result, when the orthogonal direction inclination B is not the orthogonal direction minimum value Bmin (NO in step S38), that is, when the orthogonal direction inclination B is larger than the orthogonal direction minimum value Bmin, the control unit 70 returns to step S33.
 一方、直交方向傾きBが直交方向最小値Bminである場合(ステップS38でYES)、制御部70は、ステップS30に戻り、風量増大制御を行う。 On the other hand, when the orthogonal direction inclination B is the minimum value Bmin in the orthogonal direction (YES in step S38), the control unit 70 returns to step S30 and performs air volume increase control.
 また、ステップS36において、温度差ΔTが第3温度差ΔT3以上の場合(ステップS36でNO)、すなわち、ステップS34を経ることによって平均吸込温度Tavが低下した場合、制御部70は、直交方向傾きBが直交方向最小値Bminであるか否かを判定する(ステップS39)。 In step S36, if the temperature difference ΔT is equal to or greater than the third temperature difference ΔT3 (NO in step S36), that is, if the average suction temperature Tav is decreased through step S34, the control unit 70 is inclined in the orthogonal direction. It is determined whether or not B is the minimum value Bmin in the orthogonal direction (step S39).
 この結果、直交方向傾きBが直交方向最小値Bminではない場合(ステップS39でNO)、制御部70は、ステップS33に戻る。一方、直交方向傾きBが直交方向最小値Bminである場合(ステップS39でYES)、制御部70は、現在の直交方向傾きBを第1直交方向傾きB1に戻した後(ステップS40)、ステップS30に戻り、直交方向逆制御を行う。 As a result, when the orthogonal inclination B is not the orthogonal minimum value Bmin (NO in step S39), the control unit 70 returns to step S33. On the other hand, when the orthogonal direction inclination B is the orthogonal direction minimum value Bmin (YES in step S39), the control unit 70 returns the current orthogonal direction inclination B to the first orthogonal direction inclination B1 (step S40), and then the step. Returning to S30, orthogonal direction reverse control is performed.
 次に、本熱交換ユニットの動作を説明する。 Next, the operation of this heat exchange unit will be described.
 まず、熱交換ユニット本ユニットの運転が開始される。このときの各送風機30の回転数は、例えば100%に設定される。 First, the operation of the heat exchange unit main unit is started. The rotation speed of each blower 30 at this time is set to 100%, for example.
 本ユニットの運転が開始されると、それぞれの熱交換装置20において下向きの気流が形成され、この気流が伝熱管44と接触することにより低温媒体が加熱される。そして、図2に示されるように、熱交換器40において熱交換した後の気流(伝熱管44に接触することより冷却された低温空気)は、地面に衝突したのち、側方(熱交換ユニットから離間する方向)に向かって流れる。 When the operation of this unit is started, a downward air flow is formed in each heat exchange device 20, and the low temperature medium is heated by this air flow coming into contact with the heat transfer tube 44. Then, as shown in FIG. 2, the airflow after the heat exchange in the heat exchanger 40 (cold air cooled by contacting the heat transfer tube 44) collides with the ground, and then the side (heat exchange unit). In a direction away from the head).
 ここで、本熱交換ユニットに向かって風が吹くと、熱交換器40を通過した気流のうち風上に向かって側方に流れた低温空気が風により当該熱交換ユニット側に戻されることによって送風機30がその低温空気を再度吸い込む場合がある。この場合、平均吸込温度Tav、すなわち、低温媒体の加熱量が低下する。 Here, when the wind blows toward the heat exchange unit, the low-temperature air that flows to the windward side of the airflow that has passed through the heat exchanger 40 is returned to the heat exchange unit by the wind. The blower 30 may suck the cold air again. In this case, the average suction temperature Tav, that is, the heating amount of the low-temperature medium decreases.
 本実施形態では、再吸込判定部72により再吸込が生じていると判定されたときに、風量制御部76は、一方向制御を行う。すなわち、一方向傾きAが、再吸込判定部72により再吸込が生じていると判定されていない定常時の一方向傾きAよりも大きくなり、かつ、一方向風下装置から一方向風上装置に向かうにしたがって次第に送風機30の回転数が大きくなるように各送風機30の回転数が調整される。そうすると、各熱交換器40を通過する気流(低温空気)の流量が、一方向風下装置から一方向風上装置に向かうにしたがって次第に大きくなるので、図3に示されるように、各熱交換器40を通過した低温空気の一部は、一方向風上装置から一方向風下装置に向かう方向に沿って流れる。つまり、熱交換ユニット全体として、一方向風上装置の熱交換器40を通過した低温空気が一方向風下装置の熱交換器40を通過した低温空気に合流する向きの流れが誘起される。よって、一方向風上装置の熱交換器40から流出した後に風上に向かって流れる低温空気の流量が減少するので、風により本熱交換ユニット側に戻される低温空気の流量が減少する。したがって、各送風機30(特に一方向風上装置の送風機30)による低温空気の再吸込が抑制され、これにより各送風機30による空気の吸込温度が上昇する。 In the present embodiment, the air volume control unit 76 performs one-way control when it is determined by the re-suction determination unit 72 that re-suction has occurred. That is, the one-way inclination A is larger than the one-way inclination A in a steady state where it is not determined that the re-inhalation has occurred by the re-intake determination unit 72, and the one-way leeward device changes to the one-way upwind device. The rotational speed of each blower 30 is adjusted so that the rotational speed of the blower 30 gradually increases as it goes. Then, since the flow rate of the airflow (cold air) passing through each heat exchanger 40 gradually increases from the one-way leeward device toward the one-way leeward device, as shown in FIG. Part of the low-temperature air that has passed through 40 flows along the direction from the one-way upwind device to the one-way leeward device. That is, as a whole heat exchange unit, a flow in a direction in which the low-temperature air that has passed through the heat exchanger 40 of the unidirectional leeward device joins the low-temperature air that has passed through the heat exchanger 40 of the unidirectional leeward device is induced. Therefore, since the flow rate of the low-temperature air flowing toward the windward after flowing out from the heat exchanger 40 of the one-way upwind device decreases, the flow rate of the low-temperature air returned to the heat exchange unit side by the wind decreases. Therefore, the re-suction of the low-temperature air by each blower 30 (especially the blower 30 of the one-way upwind device) is suppressed, and thereby the suction temperature of the air by each blower 30 rises.
 また、本実施形態では、風量制御部76は、一方向制御に加え、直交方向制御をも行う。このため、より確実に各送風機30による低温空気の再吸込を抑制することができる。具体的に、直交方向についても、直交方向風上装置の熱交換器40から流出した低温空気の一部が直交方向風下装置の熱交換器40から流出した低温空気に合流する向きの流れが誘起されるので、各送風機30による低温空気の再吸込が抑制される。 In the present embodiment, the air volume control unit 76 performs the orthogonal direction control in addition to the one direction control. For this reason, the re-suction of the low temperature air by each air blower 30 can be suppressed more reliably. Specifically, also in the orthogonal direction, a flow in a direction in which a part of the low-temperature air flowing out from the heat exchanger 40 of the orthogonal windward device joins the low-temperature air flowing out of the heat exchanger 40 of the orthogonal windward device is induced. Therefore, re-suction of low temperature air by each blower 30 is suppressed.
 また、本実施形態では、再吸込判定部72は、低温空気による外気の冷却の影響を受けない領域の気温Tairから平均吸込温度Tavを引いた温度差ΔTが規定値Teよりも大きくなったときに再吸込が生じていると判定する。このため、安定的に再吸込が生じたか否かの判定を行うことができ、かつ、季節の変化等に起因する気温の変化が再吸込判定部72の判定に与える影響を抑制することができる。具体的に、特定の送風機の吸込温度ではなく平均吸込温度Tavを再吸込が生じているか否かの判定基準とすることにより、当該特定の送風機の吸込温度が局所的に高くなっている場合などに起因する誤判定を抑制することができ、また、温度差ΔTを判定基準とすることにより、特定の温度を判定基準とした場合の外気温の変動に起因する誤判定を抑制することができる。 Further, in the present embodiment, the re-suction determination unit 72 is configured such that the temperature difference ΔT obtained by subtracting the average suction temperature Tav from the temperature Tair in the region that is not affected by the cooling of the outside air by the low-temperature air is greater than the specified value Te. It is determined that re-suction has occurred. For this reason, it is possible to determine whether or not re-suction has occurred stably, and it is possible to suppress the influence of changes in temperature caused by seasonal changes or the like on the determination of the re-suction determination unit 72. . Specifically, when the suction temperature of the specific blower is locally high by using the average suction temperature Tav instead of the suction temperature of the specific blower as a criterion for determining whether or not re-suction has occurred Incorrect determination due to the temperature difference ΔT can be suppressed, and by using the temperature difference ΔT as the determination criterion, erroneous determination due to fluctuations in the outside air temperature when a specific temperature is used as the determination criterion can be suppressed. .
 さらに、風量制御部76は、再吸込判定部72が再吸込が生じていると判定したときに、直交方向制御よりも先に、一方向制御として、温度差ΔTが規定値Te以下となるまで、一方向傾きAが定常時の一方向傾きAよりも大きくなり、かつ、一方向風下装置から一方向風上装置に向かうにしたがって次第に送風機30の回転数が大きくなるように各送風機30の回転数を調整する制御を行う。このため、再吸込が生じている場合に先に直交方向制御を行う場合に比べ、温度差ΔTをより効率的に規定値Teに近づけることができる。具体的に、熱交換装置20の並び数が多い方が、風上側に位置する熱交換装置20の熱交換器40から流出した低温空気が風下側に位置する熱交換装置20の熱交換器40から流出した低温空気へ向かう気流が安定的に形成されるため、熱交換装置20がより多く並ぶ一方向についての一方向制御を先に行う方が、より効率的に平均吸込温度Tavを上昇させること、すなわち、温度差ΔTを規定値Teに近づけることができる。 Further, when the re-suction determination unit 72 determines that re-suction has occurred, the air volume control unit 76 performs unidirectional control prior to the orthogonal direction control until the temperature difference ΔT becomes equal to or less than the specified value Te. The rotation of each blower 30 is such that the one-way inclination A becomes larger than the one-way inclination A in a steady state and the rotation speed of the blower 30 gradually increases from the one-way leeward device toward the one-way upwind device. Control to adjust the number. Therefore, the temperature difference ΔT can be brought closer to the specified value Te more efficiently than when the orthogonal direction control is performed first when re-suction occurs. Specifically, the heat exchanger 40 of the heat exchange device 20 in which the low-temperature air that has flowed out of the heat exchanger 40 of the heat exchange device 20 located on the leeward side is located on the leeward side when the number of the heat exchange devices 20 is larger. Since the air flow toward the low-temperature air that has flowed out from the air is stably formed, it is more efficient to first increase the average suction temperature Tav by performing one-way control in one direction in which more heat exchange devices 20 are arranged. That is, the temperature difference ΔT can be brought close to the specified value Te.
 また、一方向傾きAが大きくなるにしたがって、一方向風上装置の熱交換器40から流出した低温空気が一方向風下装置の熱交換器40から流出した低温空気へ向かう気流の形成が安定し、これにより平均吸込温度Tavの上昇効果が高まるので、直交方向傾きBよりも先に一方向傾きAを大きくすることにより、早期に温度差ΔTが規定値Teに近づく。 Further, as the unidirectional inclination A increases, the formation of the air flow from the low temperature air flowing out from the heat exchanger 40 of the unidirectional downwind device toward the low temperature air flowing out of the heat exchanger 40 of the unidirectional downwind device becomes stable. As a result, the effect of increasing the average suction temperature Tav is enhanced. Therefore, by increasing the unidirectional gradient A before the orthogonal gradient B, the temperature difference ΔT approaches the specified value Te at an early stage.
 この点につき、図10及び図11を参照しながら説明する。図10は、第1ユニット構成要素11(一方向に沿って並ぶ3つの熱交換装置20)に対して一方向に沿って風速3m/sの風が吹いた場合の第1ユニット構成要素11の各送風機30の回転数比と第1平均吸込温度Tav1との関係を示すグラフである。図11は、第1ユニット構成要素11に対して一方向に沿って風速10m/sの風が吹いた場合の第1ユニット構成要素11の各送風機30の回転数比と第1平均吸込温度Tav1との関係を示すグラフである。前記回転数比は、第1ユニット構成要素11に含まれる3つ熱交換装置20のうちの中央の熱交換装置20の送風機30の回転数に対する、風上側に位置する熱交換装置20の送風機30の回転数の比である。また、第1ユニット構成要素11に含まれる3つ熱交換装置20のうちの風下側に位置する熱交換装置20の送風機30に対する、中央の熱交換装置20の送風機30の回転数の比も、前記回転数比に設定されている。図10及び図11に示されるように、回転数比が1.00よりも大きくなるほど、つまり、一方向傾きAが大きくなるほど、第1平均吸込温度Tav1が上昇している。 This point will be described with reference to FIG. 10 and FIG. FIG. 10 shows the first unit component 11 when the wind of 3 m / s is blown along one direction with respect to the first unit component 11 (three heat exchange devices 20 arranged along one direction). It is a graph which shows the relationship between the rotation speed ratio of each air blower 30, and 1st average suction temperature Tav1. FIG. 11 shows the rotation speed ratio of each blower 30 of the first unit component 11 and the first average suction temperature Tav1 when a wind of 10 m / s is blown along one direction with respect to the first unit component 11. It is a graph which shows the relationship. The rotational speed ratio is the blower 30 of the heat exchange device 20 located on the windward side with respect to the rotational speed of the blower 30 of the central heat exchange device 20 among the three heat exchange devices 20 included in the first unit component 11. Is the ratio of the number of revolutions. The ratio of the rotational speed of the blower 30 of the central heat exchange device 20 to the blower 30 of the heat exchange device 20 located on the leeward side of the three heat exchange devices 20 included in the first unit component 11 is also as follows. The rotation speed ratio is set. As shown in FIGS. 10 and 11, the first average suction temperature Tav1 increases as the rotational speed ratio becomes larger than 1.00, that is, as the unidirectional gradient A increases.
 また、本実施形態では、風量制御部76は、一方向傾きAが一方向最大値Amaxになるまで一方向制御を行っても温度差ΔTが規定値Te以下にならない場合に直交方向制御を行う。この態様では、一方向制御において一方向傾きAが一方向最大値Amaxになった後に直交方向制御が行われるので、効率的に平均吸込温度を上昇させることができる。 Further, in the present embodiment, the air volume control unit 76 performs the orthogonal direction control when the temperature difference ΔT does not become the specified value Te or less even if the one-way control is performed until the one-way inclination A reaches the one-way maximum value Amax. . In this aspect, since the orthogonal direction control is performed after the unidirectional inclination A reaches the unidirectional maximum value Amax in the unidirectional control, the average suction temperature can be increased efficiently.
 また、風量制御部76は、直交方向制御として、温度差ΔTが規定値Te以下となるまで、直交方向傾きBが定常時の直交方向傾きBよりも大きくなり、かつ、直交方向風下装置から直交方向風上装置に向かうにしたがって次第に送風機30の回転数が大きくなるように各送風機30の回転数を調整する制御を行う。よって、より確実に平均吸込温度が上昇する。 Further, as the orthogonal direction control, the air flow control unit 76 increases the orthogonal inclination B to be larger than the normal orthogonal inclination B until the temperature difference ΔT becomes equal to or less than the specified value Te, and is orthogonal to the orthogonal leeward device. Control which adjusts the rotation speed of each air blower 30 so that the rotation speed of the air blower 30 becomes large gradually as it goes to a directional upwind device is performed. Therefore, the average suction temperature is more reliably increased.
 さらに、風量制御部76は、直交方向傾きBが直交方向最大値Bmaxになるまで直交方向制御を行っても温度差ΔTが規定値Te以下にならない場合に、直交方向逆制御を行う。これにより、直交方向傾きBが定常時の直交方向傾きBよりも小さくなり、かつ、直交方向風下装置から直交方向風上装置に向かうにしたがって次第に送風機30の回転数が小さくなるように各送風機30の回転数が調整される。このため、平均吸込温度Tavをより確実に上昇させることができる。具体的に、直交方向への熱交換装置20の並び数は、一方向へのそれよりも小さいので、直交方向傾きBを大きくしても平均吸込温度Tavが上昇しない(温度差ΔTが規定値Teに近づかない)場合があるが、その場合に直交方向逆制御を行うことにより、平均吸込温度Tavが上昇する可能性がある。よって、平均吸込温度Tavの上昇確率が高まる。 Furthermore, the air volume control unit 76 performs the orthogonal direction reverse control when the temperature difference ΔT does not become the specified value Te or less even if the orthogonal direction control is performed until the orthogonal direction gradient B reaches the orthogonal direction maximum value Bmax. Thereby, each blower 30 is configured such that the orthogonal direction inclination B becomes smaller than the normal direction orthogonal direction inclination B, and the rotational speed of the blower 30 gradually decreases from the orthogonal direction leeward apparatus toward the orthogonal direction upwind apparatus. Is adjusted. For this reason, average suction temperature Tav can be raised more reliably. Specifically, since the number of the heat exchangers 20 arranged in the orthogonal direction is smaller than that in one direction, the average suction temperature Tav does not increase even if the inclination B in the orthogonal direction is increased (the temperature difference ΔT is a specified value). In this case, the average suction temperature Tav may be increased by performing the reverse control in the orthogonal direction. Therefore, the rise probability of the average suction temperature Tav increases.
 さらに、風量制御部76は、直交方向傾きBが直交方向最小値Bminになるまで直交方向逆制御を行っても温度差ΔTが規定値Te以下とならない場合に、各送風機30から流出する気流の総流量が増えるように各送風機30の回転数を調整する風量増大制御を行う。このため、再吸込が生じている状態における各熱交換器20での低温媒体の加熱量の低下が抑制される。 Further, the air volume control unit 76 performs the reverse flow control in the orthogonal direction until the orthogonal direction gradient B reaches the minimum value Bmin in the orthogonal direction. Air volume increase control is performed to adjust the rotational speed of each blower 30 so that the total flow rate increases. For this reason, the fall of the heating amount of the low-temperature medium in each heat exchanger 20 in the state in which re-suction has arisen is suppressed.
 また、本実施形態では、風向き判定部74は、第1平均吸込温度Tav1から第4平均吸込温度Tav4の中で最も低い温度を有するユニット構成要素から当該熱交換ユニットの中心Oに向かう成分を含むと判定する。この態様では、各ユニット構成要素11~14の平均吸込温度を比較するだけで風向きを判定することができる。 Moreover, in this embodiment, the wind direction determination part 74 contains the component which goes to the center O of the said heat exchange unit from the unit component which has the lowest temperature in 1st average suction temperature Tav1 to 4th average suction temperature Tav4. Is determined. In this aspect, it is possible to determine the wind direction only by comparing the average suction temperatures of the unit components 11 to 14.
 なお、今回開示された実施形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施形態の説明ではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。 In addition, it should be thought that embodiment disclosed this time is an illustration and restrictive at no points. The scope of the present invention is shown not by the above description of the embodiments but by the scope of claims for patent, and further includes all modifications within the meaning and scope equivalent to the scope of claims for patent.
 例えば、再吸込判定部72は、前記気温Tairから平均吸込温度Tavを引いた温度差ΔTではなく、前記気温Tairから各送風機30による空気の吸込温度のうち最も高い温度を引いた温度差が規定値Teを下回ったときに再吸込が生じていると判定してもよい。 For example, the re-suction determination unit 72 defines not the temperature difference ΔT obtained by subtracting the average suction temperature Tav from the temperature Tair but the temperature difference obtained by subtracting the highest temperature among the air suction temperatures of the blowers 30 from the temperature Tair. It may be determined that re-suction has occurred when the value Te falls below.
 あるいは、再吸込判定部72は、風向計により風向きが検知され、かつ、その風向計が示す風向きに対して風下に位置する風下装置の送風機30の吸込温度から風上に位置する風上装置の送風機30の吸込温度を引いた値が閾値以上となったときに、再吸込が生じていると判定してもよい。 Alternatively, the re-suction determination unit 72 detects the wind direction with an anemometer, and detects the wind direction from the suction temperature of the blower 30 of the leeward device that is located leeward with respect to the wind direction indicated by the anemometer. When the value obtained by subtracting the suction temperature of the blower 30 is equal to or greater than the threshold value, it may be determined that re-suction has occurred.
 また、一方向傾きAの算出には、風上装置の送風機30の回転数から風下装置の送風機30の回転数を引いた値ではなく、風上装置の送風機30の回転数の風下装置の送風機30の回転数に対する比が用いられてもよい。このことは、直交方向傾きBについても同様である。 In addition, the calculation of the one-way inclination A is not a value obtained by subtracting the rotation speed of the blower 30 of the leeward apparatus from the rotation speed of the blower 30 of the windward apparatus, but a blower of the leeward apparatus of the rotation speed of the blower 30 of the windward apparatus A ratio of 30 revolutions may be used. The same applies to the orthogonal direction inclination B.
 また、熱交換ユニットは、前記直交方向に沿って第1ユニット構成要素11及び第2ユニット構成要素12と並ぶように配置された追加ユニット構成要素と、前記直交方向に沿って第3ユニット構成要素13及び第4ユニット構成要素14と並ぶように配置された他の追加ユニット構成要素と、さらに含んでもよい。このようにすれば、一方向及び直交方向の双方における熱交換装置20の並び数がともに3以上となるので、一方向制御及び直交方向制御による平均吸込温度Tavの上昇効果がより確実に得られる。ただし、熱交換ユニットは、単一のユニット構成要素のみにより構成されてもよい。また、ユニット構成要素は、2つの熱交換装置20により構成されてもよい。 Further, the heat exchange unit includes an additional unit component arranged so as to be aligned with the first unit component 11 and the second unit component 12 along the orthogonal direction, and a third unit component along the orthogonal direction. It may further include other additional unit components arranged in line with the 13th and fourth unit components 14. In this way, since the number of the heat exchange devices 20 in both the one-direction and the orthogonal directions is three or more, the effect of increasing the average suction temperature Tav by the one-direction control and the orthogonal direction control can be obtained more reliably. . However, the heat exchange unit may be configured by only a single unit component. Further, the unit component may be constituted by two heat exchange devices 20.
 ここで、上記実施形態について概説する。 Here, the above embodiment will be outlined.
 上記実施形態の熱交換ユニットは、少なくとも1つのユニット構成要素と、制御部と、を備え、前記少なくとも1つのユニット構成要素は、一方向に沿って並ぶように配置された複数の熱交換装置を有し、各熱交換装置は、上下方向に流れる気流を形成する送風機と、大気よりも低温の低温媒体と前記気流とを熱交換させることによって前記低温媒体を加熱する熱交換器と、を有し、前記制御部は、前記気流のうち前記熱交換器から流出した低温空気の前記送風機による再吸込が生じているか否かを判定する再吸込判定部と、風向きを判定する風向き判定部と、前記再吸込判定部が前記再吸込が生じていると判定したときに、前記複数の熱交換装置のうち前記風向き判定部により判定された風向きに対して前記一方向について最も風上側に位置する一方向風上装置の送風機の回転数と前記複数の熱交換装置のうち前記風向き判定部により判定された風向きに対して前記一方向について最も風下側に位置する一方向風下装置の送風機の回転数との差又は比に基づいて表される一方向傾きが、前記再吸込判定部が前記再吸込が生じていると判定していない定常時の前記一方向傾きよりも大きくなり、かつ、前記一方向風下装置から前記一方向風上装置に向かうにしたがって次第に前記送風機の回転数が大きくなるように各送風機の回転数を調整する一方向制御を行う風量制御部と、を備える。 The heat exchange unit of the above embodiment includes at least one unit component and a control unit, and the at least one unit component includes a plurality of heat exchange devices arranged so as to be aligned in one direction. Each heat exchange device has a blower that forms an airflow that flows in the vertical direction, and a heat exchanger that heats the low-temperature medium by exchanging heat between the low-temperature medium having a temperature lower than the atmosphere and the airflow. And the said control part, The re-inhalation determination part which determines whether the re-inhalation by the said air blower of the low-temperature air which flowed out of the said heat exchanger among the said air flows, The wind direction determination part which determines a wind direction, When the re-suction determination unit determines that the re-suction has occurred, the most up-winding in the one direction with respect to the wind direction determined by the wind direction determination unit among the plurality of heat exchange devices The rotational speed of the blower of the one-way upwind device to be installed and the blower of the one-way leeward device located closest to the leeward direction with respect to the wind direction determined by the wind direction determination unit among the plurality of heat exchange devices The one-way inclination represented based on the difference or ratio with the rotational speed is greater than the one-way inclination at the time of steady state where the re-suction determination unit does not determine that the re-suction has occurred, and An air volume control unit that performs one-way control to adjust the rotation speed of each blower so that the rotation speed of the blower gradually increases from the one-way leeward device toward the one-way windward device.
 本熱交換ユニットでは、再吸込判定部により再吸込が生じていると判定されたときに、一方向傾きが定常時の一方向傾きよりも大きくなり、かつ、一方向風下装置から一方向風上装置に向かうにしたがって次第に送風機の回転数が大きくなるように各送風機の回転数が調整される。そうすると、各熱交換器を通過する気流(低温空気)の流量が、一方向風下装置から一方向風上装置に向かうにしたがって次第に大きくなるので、各熱交換器を通過した低温空気の一部は、一方向風上装置から一方向風下装置に向かう方向に沿って流れる。つまり、熱交換ユニット全体として、一方向風上装置の熱交換器を通過した低温空気が一方向風下装置の熱交換器を通過した低温空気に合流する向きの流れが誘起される。よって、一方向風上装置の熱交換器から流出した後に風上に向かって流れる低温空気の流量が減少するので、風により本熱交換ユニット側に戻される低温空気の流量が減少する。したがって、各送風機(特に一方向風上装置の送風機)による低温空気の再吸込が抑制され、これにより各送風機による空気の吸込温度が上昇する。 In this heat exchange unit, when it is determined that re-suction has occurred by the re-suction determination unit, the one-way inclination becomes larger than the one-way inclination in the steady state, and the one-way leeward device makes a one-way upwind. The rotational speed of each blower is adjusted so that the rotational speed of the blower gradually increases toward the apparatus. Then, since the flow rate of the airflow (cold air) passing through each heat exchanger gradually increases from the one-way leeward device to the one-way windward device, a part of the low-temperature air that has passed through each heat exchanger is It flows along the direction from the one-way leeward device to the one-way leeward device. That is, as a whole heat exchange unit, a flow is induced in such a direction that the low-temperature air that has passed through the heat exchanger of the unidirectional leeward device joins the low-temperature air that has passed through the heat exchanger of the unidirectional leeward device. Therefore, since the flow rate of the low-temperature air flowing toward the windward after flowing out of the heat exchanger of the one-way upwind device decreases, the flow rate of the low-temperature air returned to the heat exchange unit side by the wind decreases. Therefore, the re-suction of the low temperature air by each blower (especially the blower of the one-way upwind device) is suppressed, and thereby the suction temperature of the air by each blower increases.
 この場合において、前記少なくとも1つのユニット構成要素は、前記一方向と直交する直交方向に沿って並ぶように配置された第1ユニット構成要素及び第2ユニット構成要素を含み、前記風量制御部は、前記再吸込判定部が前記再吸込が生じていると判定したときに、前記複数の熱交換装置のうち前記風向き判定部により判定された風向きに対して前記直交方向について最も風上側に位置する直交方向風上装置の送風機の回転数と前記複数の熱交換装置のうち前記風向き判定部により判定された風向きに対して前記直交方向について最も風下側に位置する直交方向風下装置の送風機の回転数との差又は比に基づいて表される直交方向傾きが、前記定常時の前記直交方向傾きよりも大きくなり、かつ、前記直交方向風下装置から前記直交方向風上装置に向かうにしたがって次第に前記送風機の回転数が大きくなるように各送風機の回転数を調整する直交方向制御をさらに行うことが好ましい。 In this case, the at least one unit component includes a first unit component and a second unit component arranged so as to be aligned along an orthogonal direction orthogonal to the one direction, and the air volume control unit includes: When the re-suction determination unit determines that the re-suction has occurred, the orthogonal position that is located on the most windward side in the orthogonal direction with respect to the wind direction determined by the wind direction determination unit among the plurality of heat exchange devices The rotational speed of the blower of the directional windward device and the rotational speed of the blower of the orthogonal leeward device that is located closest to the leeward side in the orthogonal direction with respect to the wind direction determined by the wind direction determination unit among the plurality of heat exchange devices An orthogonal inclination expressed based on the difference or ratio of the above becomes greater than the orthogonal inclination in the steady state, and the orthogonal direction from the orthogonal leeward device It is preferable to further carry out the orthogonal direction control for adjusting the rotational speeds of the blowers gradually as the rotational speed of the blower is increased toward the windward unit.
 このようにすれば、低温媒体の加熱量の増大と、各送風機による低温空気の再吸込の抑制と、を両立することができる。具体的に、第1ユニット構成要素及び第2ユニット構成要素の各熱交換器において低温媒体が加熱されるので、低温媒体の加熱量が増大し、しかも、直交方向についても、直交方向風上装置の熱交換器から流出した低温空気の一部が直交方向風下装置の熱交換器から流出した低温空気に合流する向きの流れが誘起されるので、各送風機による低温空気の再吸込が抑制される。 In this way, it is possible to achieve both an increase in the amount of heating of the low-temperature medium and suppression of re-suction of low-temperature air by each blower. Specifically, since the low-temperature medium is heated in each heat exchanger of the first unit component and the second unit component, the amount of heating of the low-temperature medium increases, and also in the orthogonal direction, the orthogonal upwind device As a part of the low-temperature air that flows out from the heat exchanger in the cross direction is combined with the low-temperature air that flows out from the heat exchanger of the orthogonal leeward device, re-suction of the low-temperature air by each blower is suppressed .
 さらにこの場合において、前記再吸込判定部は、前記低温空気による外気の冷却の影響を受けない領域の気温から各送風機による空気の吸込温度の平均である平均吸込温度を引いた温度差が規定値よりも大きくなったときに前記再吸込が生じていると判定することが好ましい。 Further, in this case, the re-suction determination unit is configured such that a temperature difference obtained by subtracting an average suction temperature, which is an average of the air suction temperatures of each blower, from a temperature in a region not affected by the cooling of the outside air by the low-temperature air. It is preferable to determine that the re-suction has occurred when the value becomes larger.
 このようにすれば、安定的に再吸込が生じたか否かの判定を行うことができ、かつ、季節の変化等に起因する気温の変化が再吸込判定部の判定に与える影響を抑制することができる。具体的に、特定の送風機の吸込温度ではなく前記平均吸込温度を再吸込が生じているか否かの判定基準とすることにより、当該特定の送風機の吸込温度が局所的に高くなっている場合などに起因する誤判定を抑制することができ、また、前記温度差を判定基準とすることにより、特定の温度を判定基準とした場合の外気温の変動に起因する誤判定を抑制することができる。 In this way, it is possible to determine whether or not re-suction has occurred stably, and to suppress the influence of changes in temperature caused by seasonal changes and the like on the determination of the re-suction determination unit Can do. Specifically, when the suction temperature of the specific blower is locally high by using the average suction temperature instead of the suction temperature of the specific blower as a criterion for determining whether or not re-suction has occurred, etc. It is possible to suppress misjudgment caused by the temperature difference, and by using the temperature difference as a judgment criterion, it is possible to suppress erroneous judgment caused by fluctuations in the outside air temperature when a specific temperature is used as the judgment standard. .
 加えて、各ユニット構成要素に含まれる前記熱交換装置の数は、前記ユニット構成要素の数よりも大きく設定されており、前記風量制御部は、前記再吸込判定部が前記再吸込が生じていると判定したときに、前記直交方向制御よりも先に、前記一方向制御として、前記温度差が前記規定値以下となるまで、前記一方向傾きが前記定常時の前記一方向傾きよりも大きくなり、かつ、前記一方向風下装置から前記一方向風上装置に向かうにしたがって次第に前記送風機の回転数が大きくなるように各送風機の回転数を調整する制御を行うことが好ましい。 In addition, the number of the heat exchange devices included in each unit component is set to be larger than the number of the unit components, and the re-suction determination unit causes the re-suction to occur in the air volume control unit. The one-way inclination is larger than the one-way inclination in the steady state until the temperature difference becomes the specified value or less as the one-way control before the orthogonal direction control. It is preferable to perform control to adjust the rotational speed of each blower so that the rotational speed of the blower gradually increases from the one-way leeward device toward the one-way windward device.
 このようにすれば、再吸込が生じている場合に先に直交方向制御を行う場合に比べ、前記温度差をより効率的に規定値に近づけることができる。具体的に、熱交換装置の並び数が多い方が、風上側に位置する熱交換装置の熱交換器から流出した低温空気が風下側に位置する熱交換装置の熱交換器から流出した低温空気へ向かう気流が形成されやすくなる。よって、熱交換装置がより多く並ぶ一方向についての一方向制御を先に行う方が、より効率的に平均吸込温度を上昇させること、すなわち、前記温度差を規定値に近づけることができる。 In this way, the temperature difference can be brought closer to the specified value more efficiently than when the orthogonal direction control is performed first when re-suction occurs. Specifically, when the number of heat exchange devices is larger, the low temperature air that has flowed out of the heat exchanger of the heat exchange device located on the leeward side flows out of the heat exchanger of the heat exchange device that is located on the leeward side. The airflow toward is easily formed. Therefore, it is possible to increase the average suction temperature more efficiently, that is, to bring the temperature difference closer to the specified value, by performing the one-way control for one direction in which more heat exchange devices are arranged first.
 この場合において、前記風量制御部は、前記一方向傾きが予め設定された一方向最大値になるまで前記一方向制御を行っても前記温度差が前記規定値以下にならない場合に前記直交方向制御を行うことが好ましい。 In this case, the air flow control unit performs the orthogonal direction control when the temperature difference does not become the specified value or less even if the one-way control is performed until the one-way inclination reaches a preset one-way maximum value. It is preferable to carry out.
 このようにすれば、一方向制御において一方向傾きが一方向最大値になったときに直交方向制御が行われるので、効率的に平均吸込温度を上昇させることができる。 In this way, since the orthogonal direction control is performed when the unidirectional inclination reaches the maximum value in one direction in the unidirectional control, the average suction temperature can be increased efficiently.
 また、前記熱交換ユニットにおいて、前記風量制御部は、前記直交方向制御として、前記温度差が前記規定値以下となるまで、前記直交方向傾きが前記定常時の前記直交方向傾きよりも大きくなり、かつ、前記直交方向風下装置から前記直交方向風上装置に向かうにしたがって次第に前記送風機の回転数が大きくなるように各送風機の回転数を調整する制御を行うことが好ましい。 Further, in the heat exchange unit, the flow rate control unit, as the orthogonal direction control, until the temperature difference becomes equal to or less than the specified value, the orthogonal direction inclination becomes larger than the orthogonal direction inclination during the steady state, And it is preferable to perform control which adjusts the rotation speed of each fan so that the rotation speed of the said fan may become large gradually as it goes to the said orthogonal direction windward apparatus from the said orthogonal direction leeward apparatus.
 このようにすれば、より確実に平均吸込温度が上昇する。 This will increase the average suction temperature more reliably.
 この場合において、前記風量制御部は、前記直交方向傾きが予め設定された直交方向最大値になるまで前記直交方向制御を行っても前記温度差が前記規定値以下にならない場合に、前記直交方向傾きが前記定常時の前記直交方向傾きよりも小さくなり、かつ、前記直交方向風下装置から前記直交方向風上装置に向かうにしたがって次第に前記送風機の回転数が小さくなるように各送風機の回転数を調整する直交方向逆制御を行うことが好ましい。 In this case, when the temperature difference does not become equal to or less than the specified value even if the orthogonality control is performed until the inclination in the orthogonal direction reaches a preset orthogonal direction maximum value, the air flow control unit, the orthogonal direction The rotation speed of each blower is set so that the inclination becomes smaller than the normal direction inclination at the time of the steady state, and the rotation speed of the blower gradually decreases from the orthogonal direction leeward device toward the orthogonal direction upwind device. It is preferable to perform the orthogonal direction reverse control to be adjusted.
 このようにすれば、平均吸込温度をより確実に上昇させることができる。具体的に、直交方向への熱交換装置の並び数は、一方向へのそれよりも小さいので、直交方向傾きを大きくしても平均吸込温度が上昇しない(前記温度差が規定値に近づかない)場合があるが、その場合に直交方向逆制御を行うことにより、平均吸込温度が上昇する可能性がある。よって、平均吸込温度がより確実に上昇する。 In this way, the average suction temperature can be increased more reliably. Specifically, since the number of heat exchangers arranged in the orthogonal direction is smaller than that in one direction, the average suction temperature does not increase even if the inclination in the orthogonal direction is increased (the temperature difference does not approach the specified value). ) In some cases, the average suction temperature may be increased by performing the orthogonal direction reverse control. Therefore, the average suction temperature rises more reliably.
 さらに、前記風量制御部は、前記直交方向傾きが予め設定された直交方向最小値になるまで前記直交方向逆制御を行っても前記温度差が前記規定値以下とならない場合に、各送風機から流出する気流の総流量が増えるように各送風機の回転数を調整する風量増大制御を行うことが好ましい。 Further, the air flow control unit flows out from each blower when the temperature difference does not become the specified value or less even if the orthogonal direction reverse control is performed until the orthogonal direction inclination becomes a preset orthogonal direction minimum value. It is preferable to perform air volume increase control that adjusts the rotational speed of each blower so that the total flow rate of the air flow increases.
 このようにすれば、再吸込が生じている状態における各熱交換器での低温媒体の加熱量の低下が抑制される。 In this way, a decrease in the heating amount of the low-temperature medium in each heat exchanger in a state where re-suction occurs is suppressed.
 また、前記熱交換ユニットにおいて、前記少なくとも1つのユニット構成要素は、前記直交方向に沿って並ぶように配置された第3ユニット構成要素及び第4ユニット構成要素をさらに含み、前記第3ユニット構成要素は、前記一方向に前記第1ユニット構成要素に隣接するように配置されており、前記第4ユニット構成要素は、前記一方向に前記第2ユニット構成要素に隣接するように配置されており、前記風向き判定部は、第1ユニット構成要素の各送風機による空気の吸込温度の平均である第1平均吸込温度、第2ユニット構成要素の各送風機による空気の吸込温度の平均である第2平均吸込温度、第3ユニット構成要素の各送風機による空気の吸込温度の平均である第3平均吸込温度及び第4ユニット構成要素の各送風機による空気の吸込温度の平均である第4平均吸込温度の中で最も低い平均吸込温度を有するユニット構成要素が配置されている場所から当該熱交換ユニットの中心に向かう成分を含む風が吹いていると判定してもよい。 In the heat exchange unit, the at least one unit component further includes a third unit component and a fourth unit component arranged so as to be aligned along the orthogonal direction, and the third unit component Are arranged to be adjacent to the first unit component in the one direction, and the fourth unit component is arranged to be adjacent to the second unit component in the one direction, The said wind direction determination part is 1st average suction temperature which is the average of the suction temperature of the air by each fan of a 1st unit component, and 2nd average suction which is the average of the suction temperature of the air by each fan of a 2nd unit component Temperature, third average suction temperature, which is the average of the air suction temperature by each blower of the third unit component, and empty by each blower of the fourth unit component It is judged that the wind containing the component which goes to the center of the said heat exchange unit is blowing from the place where the unit component which has the lowest average suction temperature in the 4th average suction temperature which is the average of the suction temperature of this is blowing May be.
 このようにすれば、各ユニット構成要素の平均吸込温度を比較するだけで風向きを判定することができる。具体的に、熱交換ユニットに向かって風が吹いた場合、各ユニット構成要素のうち最も風上側に位置するユニット構成要素(風上装置を含むユニット構成要素)の各送風機は、風上装置の熱交換器から側方に向かって流出した後に風により当該熱交換ユニット側に戻された低温空気の再吸込を行いやすい。このため、熱交換ユニットに向かって風が吹いた場合、風上装置を含むユニット構成要素の平均吸込温度が最も低くなる。したがって、風向きは、風上装置を含むユニット構成要素から当該熱交換ユニットの中心に向かう成分を含むと判定することができる。 In this way, it is possible to determine the wind direction only by comparing the average suction temperature of each unit component. Specifically, when the wind blows toward the heat exchange unit, each blower of the unit component (unit component including the windward device) located on the most windward side among the unit components is It is easy to re-inhale the low-temperature air returned to the heat exchange unit side by wind after flowing out from the heat exchanger toward the side. For this reason, when wind blows toward the heat exchange unit, the average suction temperature of the unit components including the windward device is the lowest. Therefore, it can determine with a wind direction including the component which goes to the center of the said heat exchange unit from the unit component containing an upwind apparatus.
 あるいは、前記風向き判定部は、風向計により風向きを判定してもよい。 Alternatively, the wind direction determination unit may determine the wind direction with an anemometer.
 また、前記熱交換ユニットにおいて、前記少なくとも1つのユニット構成要素は、前記一方向に沿って前記第1ユニット構成要素及び前記第2ユニット構成要素と並ぶように配置された追加ユニット構成要素をさらに含み、各ユニット構成要素に含まれる前記熱交換装置の数は、前記ユニット構成要素の数よりも大きく設定されていることが好ましい。 In the heat exchange unit, the at least one unit component further includes an additional unit component arranged so as to be aligned with the first unit component and the second unit component along the one direction. The number of the heat exchange devices included in each unit component is preferably set larger than the number of the unit components.
 このようにすれば、一方向及び直交方向の双方における熱交換装置の並び数がともに3以上となるので、一方向制御及び直交方向制御による前記平均吸込温度の上昇効果がより確実に得られる。
 
In this way, since the number of heat exchange devices arranged in both the one direction and the orthogonal direction is 3 or more, the effect of increasing the average suction temperature by the one direction control and the orthogonal direction control can be obtained more reliably.

Claims (12)

  1.  熱交換ユニットであって、
     少なくとも1つのユニット構成要素と、
     制御部と、を備え、
     前記少なくとも1つのユニット構成要素は、一方向に沿って並ぶように配置された複数の熱交換装置を有し、
     各熱交換装置は、
     上下方向に流れる気流を形成する送風機と、
     大気よりも低温の低温媒体と前記気流とを熱交換させることによって前記低温媒体を加熱する熱交換器と、を有し、
     前記制御部は、
     前記気流のうち前記熱交換器から流出した低温空気の前記送風機による再吸込が生じているか否かを判定する再吸込判定部と、
     風向きを判定する風向き判定部と、
     前記再吸込判定部が前記再吸込が生じていると判定したときに、前記複数の熱交換装置のうち前記風向き判定部により判定された風向きに対して前記一方向について最も風上側に位置する一方向風上装置の送風機の回転数と前記複数の熱交換装置のうち前記風向き判定部により判定された風向きに対して前記一方向について最も風下側に位置する一方向風下装置の送風機の回転数との差又は比に基づいて表される一方向傾きが、前記再吸込判定部が前記再吸込が生じていると判定していない定常時の前記一方向傾きよりも大きくなり、かつ、前記一方向風下装置から前記一方向風上装置に向かうにしたがって次第に前記送風機の回転数が大きくなるように各送風機の回転数を調整する一方向制御を行う風量制御部と、を備える、熱交換ユニット。
    A heat exchange unit,
    At least one unit component;
    A control unit,
    The at least one unit component has a plurality of heat exchange devices arranged in a line along one direction,
    Each heat exchange device
    A blower that forms an airflow flowing in the vertical direction;
    A heat exchanger that heats the low-temperature medium by exchanging heat between the low-temperature medium lower than the atmosphere and the airflow;
    The controller is
    A re-suction determination unit that determines whether or not re-suction by the blower of low-temperature air that has flowed out of the heat exchanger out of the air flow occurs;
    A wind direction determination unit for determining the wind direction;
    When the re-suction determination unit determines that the re-suction has occurred, one of the plurality of heat exchange devices that is located on the most windward side in the one direction with respect to the wind direction determined by the wind direction determination unit The rotational speed of the blower of the directional leeward device and the rotational speed of the blower of the unidirectional leeward device that is located on the most leeward side in the one direction with respect to the wind direction determined by the wind direction determination unit among the plurality of heat exchange devices The one-way inclination expressed based on the difference or ratio is larger than the one-way inclination in a steady state where the re-suction determination unit does not determine that the re-suction has occurred, and the one-way An air volume control unit that performs one-way control to adjust the rotation speed of each blower so that the rotation speed of the blower gradually increases from the leeward device toward the one-way upwind device. .
  2.  請求項1に記載の熱交換ユニットにおいて、
     前記少なくとも1つのユニット構成要素は、前記一方向と直交する直交方向に沿って並ぶように配置された第1ユニット構成要素及び第2ユニット構成要素を含み、
     前記風量制御部は、前記再吸込判定部が前記再吸込が生じていると判定したときに、前記複数の熱交換装置のうち前記風向き判定部により判定された風向きに対して前記直交方向について最も風上側に位置する直交方向風上装置の送風機の回転数と前記複数の熱交換装置のうち前記風向き判定部により判定された風向きに対して前記直交方向について最も風下側に位置する直交方向風下装置の送風機の回転数との差又は比に基づいて表される直交方向傾きが、前記定常時の前記直交方向傾きよりも大きくなり、かつ、前記直交方向風下装置から前記直交方向風上装置に向かうにしたがって次第に前記送風機の回転数が大きくなるように各送風機の回転数を調整する直交方向制御をさらに行う、熱交換ユニット。
    The heat exchange unit according to claim 1,
    The at least one unit component includes a first unit component and a second unit component arranged so as to be aligned along an orthogonal direction orthogonal to the one direction,
    When the re-suction determination unit determines that the re-suction has occurred, the air volume control unit is most in the orthogonal direction with respect to the wind direction determined by the wind direction determination unit among the plurality of heat exchange devices. An orthogonal leeward device positioned closest to the leeward side in the orthogonal direction with respect to the rotational speed of the blower of the orthogonal leeward device located on the windward side and the wind direction determined by the wind direction determining unit among the plurality of heat exchange devices. The inclination in the orthogonal direction expressed based on the difference or ratio with the rotational speed of the blower is larger than the inclination in the orthogonal direction at the time of steady state, and is directed from the orthogonal direction leeward device to the orthogonal direction upwind device. The heat exchange unit further performs orthogonal direction control that adjusts the rotational speed of each blower so that the rotational speed of the blower gradually increases according to.
  3.  請求項2に記載の熱交換ユニットにおいて、
     前記再吸込判定部は、前記低温空気による外気の冷却の影響を受けない領域の気温から各送風機による空気の吸込温度の平均である平均吸込温度を引いた温度差が規定値よりも大きくなったときに前記再吸込が生じていると判定する、熱交換ユニット。
    The heat exchange unit according to claim 2,
    In the re-suction determination unit, the temperature difference obtained by subtracting the average suction temperature, which is the average of the air suction temperatures of each blower, from the air temperature in the region that is not affected by the cooling of the outside air by the low-temperature air is larger than the specified value. A heat exchange unit that determines that the re-suction sometimes occurs.
  4.  請求項3に記載の熱交換ユニットにおいて、
     各ユニット構成要素に含まれる前記熱交換装置の数は、前記ユニット構成要素の数よりも大きく設定されており、
     前記風量制御部は、前記再吸込判定部が前記再吸込が生じていると判定したときに、前記直交方向制御よりも先に、前記一方向制御として、前記温度差が前記規定値以下となるまで、前記一方向傾きが前記定常時の前記一方向傾きよりも大きくなり、かつ、前記一方向風下装置から前記一方向風上装置に向かうにしたがって次第に前記送風機の回転数が大きくなるように各送風機の回転数を調整する制御を行う、熱交換ユニット。
    The heat exchange unit according to claim 3,
    The number of the heat exchange devices included in each unit component is set larger than the number of the unit components,
    When the re-suction determination unit determines that the re-suction has occurred, the air volume control unit has the temperature difference equal to or less than the specified value as the one-way control prior to the orthogonal direction control. Until the one-way inclination is larger than the one-way inclination in the steady state, and the rotation speed of the blower gradually increases from the one-way leeward device toward the one-way upwind device. A heat exchange unit that performs control to adjust the rotational speed of the blower.
  5.  請求項4に記載の熱交換ユニットにおいて、
     前記風量制御部は、前記一方向傾きが予め設定された一方向最大値になるまで前記一方向制御を行っても前記温度差が前記規定値以下にならない場合に前記直交方向制御を行う、熱交換ユニット。
    The heat exchange unit according to claim 4,
    The air flow control unit performs the orthogonal direction control when the temperature difference does not become the specified value or less even if the one-way control is performed until the one-way inclination reaches a preset one-way maximum value. Replacement unit.
  6.  請求項5に記載の熱交換ユニットにおいて、
     前記風量制御部は、前記直交方向制御として、前記温度差が前記規定値以下となるまで、前記直交方向傾きが前記定常時の前記直交方向傾きよりも大きくなり、かつ、前記直交方向風下装置から前記直交方向風上装置に向かうにしたがって次第に前記送風機の回転数が大きくなるように各送風機の回転数を調整する制御を行う、熱交換ユニット。
    The heat exchange unit according to claim 5,
    The air volume control unit, as the orthogonal direction control, until the temperature difference becomes equal to or less than the specified value, the orthogonal direction inclination becomes larger than the orthogonal direction inclination in the steady state, and from the orthogonal direction leeward device. A heat exchange unit that performs control to adjust the rotational speed of each blower so that the rotational speed of the blower gradually increases toward the orthogonal upwind device.
  7.  請求項6に記載の熱交換ユニットにおいて、
     前記風量制御部は、前記直交方向傾きが予め設定された直交方向最大値になるまで前記直交方向制御を行っても前記温度差が前記規定値以下にならない場合に、前記直交方向傾きが前記定常時の前記直交方向傾きよりも小さくなり、かつ、前記直交方向風下装置から前記直交方向風上装置に向かうにしたがって次第に前記送風機の回転数が小さくなるように各送風機の回転数を調整する直交方向逆制御を行う、熱交換ユニット。
    The heat exchange unit according to claim 6,
    The air volume control unit determines that the orthogonal direction inclination is the predetermined value when the temperature difference does not become the specified value or less even if the orthogonal direction control is performed until the orthogonal direction inclination reaches a preset orthogonal direction maximum value. An orthogonal direction in which the rotational speed of each blower is adjusted so that the rotational speed of the blower gradually decreases as it goes from the normal direction leeward device to the orthogonal direction upwind device. A heat exchange unit that performs reverse control.
  8.  請求項7に記載の熱交換ユニットにおいて、
     前記風量制御部は、前記直交方向傾きが予め設定された直交方向最小値になるまで前記直交方向逆制御を行っても前記温度差が前記規定値以下とならない場合に、各送風機から流出する気流の総流量が増えるように各送風機の回転数を調整する風量増大制御を行う、熱交換ユニット。
    The heat exchange unit according to claim 7,
    If the temperature difference does not fall below the specified value even if the orthogonal direction reverse control is performed until the orthogonal direction inclination reaches a preset orthogonal direction minimum value, the air flow control unit flows out of each blower A heat exchange unit that performs air volume increase control for adjusting the rotational speed of each blower so that the total flow rate of the fan increases.
  9.  請求項2ないし8のいずれかに記載の熱交換ユニットにおいて、
     前記少なくとも1つのユニット構成要素は、前記直交方向に沿って並ぶように配置された第3ユニット構成要素及び第4ユニット構成要素をさらに含み、
     前記第3ユニット構成要素は、前記一方向に前記第1ユニット構成要素に隣接するように配置されており、
     前記第4ユニット構成要素は、前記一方向に前記第2ユニット構成要素に隣接するように配置されており、
     前記風向き判定部は、第1ユニット構成要素の各送風機による空気の吸込温度の平均である第1平均吸込温度、第2ユニット構成要素の各送風機による空気の吸込温度の平均である第2平均吸込温度、第3ユニット構成要素の各送風機による空気の吸込温度の平均である第3平均吸込温度及び第4ユニット構成要素の各送風機による空気の吸込温度の平均である第4平均吸込温度の中で最も低い平均吸込温度を有するユニット構成要素が配置されている場所から当該熱交換ユニットの中心に向かう成分を含む風が吹いていると判定する、熱交換ユニット。
    The heat exchange unit according to any one of claims 2 to 8,
    The at least one unit component further includes a third unit component and a fourth unit component arranged so as to be aligned along the orthogonal direction,
    The third unit component is disposed adjacent to the first unit component in the one direction,
    The fourth unit component is disposed adjacent to the second unit component in the one direction;
    The said wind direction determination part is 1st average suction temperature which is the average of the suction temperature of the air by each fan of a 1st unit component, and 2nd average suction which is the average of the suction temperature of the air by each fan of a 2nd unit component Among the temperature, the third average suction temperature that is the average of the air suction temperature by each fan of the third unit component, and the fourth average suction temperature that is the average of the air suction temperature of each fan of the fourth unit component The heat exchange unit which determines that the wind containing the component which goes to the center of the said heat exchange unit is blowing from the place where the unit component which has the lowest average suction temperature is arrange | positioned.
  10.  請求項1に記載の熱交換ユニットにおいて、
     前記風向き判定部は、風向計により風向きを判定する、熱交換ユニット。
    The heat exchange unit according to claim 1,
    The said wind direction determination part is a heat exchange unit which determines a wind direction with an anemometer.
  11.  請求項2に記載の熱交換ユニットにおいて、
     前記少なくとも1つのユニット構成要素は、前記一方向に沿って前記第1ユニット構成要素及び前記第2ユニット構成要素と並ぶように配置された追加ユニット構成要素をさらに含み、
     各ユニット構成要素に含まれる前記熱交換装置の数は、前記ユニット構成要素の数よりも大きく設定されている、熱交換ユニット。
    The heat exchange unit according to claim 2,
    The at least one unit component further includes an additional unit component arranged to line up with the first unit component and the second unit component along the one direction;
    The heat exchange unit, wherein the number of the heat exchange devices included in each unit component is set larger than the number of the unit components.
  12.  請求項1に記載の熱交換ユニットにおいて、
     前記再吸込判定部は、前記低温空気による外気の冷却の影響を受けない領域の気温から各送風機による空気の吸込温度の平均である平均吸込温度を引いた温度差が規定値よりも大きくなったときに前記再吸込が生じていると判定する、熱交換ユニット。
    The heat exchange unit according to claim 1,
    In the re-suction determination unit, the temperature difference obtained by subtracting the average suction temperature, which is the average of the air suction temperatures of each blower, from the air temperature in the region that is not affected by the cooling of the outside air by the low-temperature air is larger than the specified value. A heat exchange unit that determines that the re-suction sometimes occurs.
PCT/JP2016/065873 2015-07-09 2016-05-30 Heat-exchange unit WO2017006644A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
MYPI2017704755A MY185415A (en) 2015-07-09 2016-05-30 Heat-exchange unit
CN201680035597.0A CN107735614B (en) 2015-07-09 2016-05-30 Heat-exchanging component

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-137748 2015-07-09
JP2015137748A JP6557530B2 (en) 2015-07-09 2015-07-09 Heat exchange unit

Publications (1)

Publication Number Publication Date
WO2017006644A1 true WO2017006644A1 (en) 2017-01-12

Family

ID=57685542

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/065873 WO2017006644A1 (en) 2015-07-09 2016-05-30 Heat-exchange unit

Country Status (4)

Country Link
JP (1) JP6557530B2 (en)
CN (1) CN107735614B (en)
MY (1) MY185415A (en)
WO (1) WO2017006644A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6877248B2 (en) * 2017-06-06 2021-05-26 川崎重工業株式会社 Outgassing system
RU2736122C1 (en) * 2017-11-14 2020-11-11 ДжГК Корпорейшн Natural gas liquefaction device and method of designing a natural gas liquefaction device
JP6799726B1 (en) * 2019-03-20 2020-12-16 日揮グローバル株式会社 Heat exchanger group design method and processing plant

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0220595A (en) * 1988-07-08 1990-01-24 Kagura Seisakusho:Kk Liquefied gas evaporator
JPH08219686A (en) * 1995-02-10 1996-08-30 Toshiba Corp Air-cooled type cooling tower
JP2008513729A (en) * 2004-09-17 2008-05-01 エスピーエックス・クーリング・テクノロジーズ・インコーポレーテッド Heating tower apparatus having direction adjuster and heating method
WO2015025698A1 (en) * 2013-08-23 2015-02-26 株式会社神戸製鋼所 Gasification device for low-temperature liquefied gas

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63156991A (en) * 1986-12-22 1988-06-30 Japan Le-Wa Kk Natural draft introducing device and heat exchanger equipped with said device
CN2328970Y (en) * 1997-11-03 1999-07-14 建准电机工业股份有限公司 Radiator
JP3724937B2 (en) * 1997-12-26 2005-12-07 東京瓦斯株式会社 Air fin type vaporizer for liquefied gas
CN201050848Y (en) * 2007-04-27 2008-04-23 陈永胜 Multiple host machine air-conditioning system cooling tower

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0220595A (en) * 1988-07-08 1990-01-24 Kagura Seisakusho:Kk Liquefied gas evaporator
JPH08219686A (en) * 1995-02-10 1996-08-30 Toshiba Corp Air-cooled type cooling tower
JP2008513729A (en) * 2004-09-17 2008-05-01 エスピーエックス・クーリング・テクノロジーズ・インコーポレーテッド Heating tower apparatus having direction adjuster and heating method
WO2015025698A1 (en) * 2013-08-23 2015-02-26 株式会社神戸製鋼所 Gasification device for low-temperature liquefied gas

Also Published As

Publication number Publication date
JP6557530B2 (en) 2019-08-07
CN107735614A (en) 2018-02-23
MY185415A (en) 2021-05-19
CN107735614B (en) 2019-07-12
JP2017020554A (en) 2017-01-26

Similar Documents

Publication Publication Date Title
WO2017006644A1 (en) Heat-exchange unit
CN102791110B (en) The cooling system of electronic equipment
US9693485B2 (en) Cooling system for electronic device storing apparatus and cooling system for electronic device storing building
JP5538503B2 (en) Outdoor unit and refrigeration cycle apparatus
JP6022810B2 (en) Low temperature liquefied gas vaporizer and low temperature liquefied gas vaporization method
CN206176545U (en) Heat exchanger and air conditioner
JP5962645B2 (en) Heat exchanger
JP5465193B2 (en) Air conditioner unit and air conditioner
WO2021144909A1 (en) Air-conditioning device
CN103528276B (en) A kind of heat exchanger
TWI731588B (en) air conditioner
JP6056633B2 (en) Cooler
JP2023001536A (en) Battery cooling device
CN204943718U (en) Heat-exchange system
JP4475151B2 (en) Air conditioner
JP2005201573A (en) Outdoor unit for air conditioner and air conditioner comprising the same
JP6885857B2 (en) Air conditioner
CN202927969U (en) Indoor unit of air conditioner and air conditioner adopting indoor unit
JP2019086177A (en) Thermosiphon type temperature control apparatus
CN208567081U (en) Cabinet air-conditioner and air conditioner
CN202532683U (en) Small-caliber finned tube type heat exchanger for air conditioner
JP6640500B2 (en) Air conditioner outdoor unit
KR102048348B1 (en) An air conditioner
WO2015136646A1 (en) Air-conditioning device
WO2020217919A1 (en) Device temperature adjustment apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16821115

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16821115

Country of ref document: EP

Kind code of ref document: A1