WO2017006620A1 - Talbot-lau interferometer - Google Patents

Talbot-lau interferometer Download PDF

Info

Publication number
WO2017006620A1
WO2017006620A1 PCT/JP2016/064038 JP2016064038W WO2017006620A1 WO 2017006620 A1 WO2017006620 A1 WO 2017006620A1 JP 2016064038 W JP2016064038 W JP 2016064038W WO 2017006620 A1 WO2017006620 A1 WO 2017006620A1
Authority
WO
WIPO (PCT)
Prior art keywords
grating
lattice
zeroth
talbot
axis
Prior art date
Application number
PCT/JP2016/064038
Other languages
French (fr)
Japanese (ja)
Inventor
一裕 二瓶
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2017527108A priority Critical patent/JP6638728B2/en
Publication of WO2017006620A1 publication Critical patent/WO2017006620A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/06Diaphragms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T7/00Details of radiation-measuring instruments

Definitions

  • the present invention relates to a Talbot-Lau interferometer.
  • X-ray phase imaging has attracted attention from the viewpoint of reducing the amount of exposure, and for example, X-ray imaging apparatuses using a Talbot-Lau interferometer have been widely implemented.
  • three X-ray metal gratings of a 0th grating, a first grating, and a second grating are used.
  • the zeroth grating is a normal grating used to make a single X-ray source a multi-light source, and X-rays emitted from the single X-ray source are converted into a plurality of X-rays (a plurality of X-rays). Radiation).
  • Patent Document 1 discloses a joint imaging apparatus using a Talbot-Lau interferometer.
  • the 0th grating, the first grating, and the second grating are held in the interferometer main body so as to be movable, so that the 0th grating and the first grating can be adjusted to be parallel to each other and at a predetermined distance.
  • the first grating and the second grating can be adjusted in parallel to each other and at a predetermined distance.
  • the Talbot-Lau interferometer is For example, vibration is received at a place where the Talbot-Lau interferometer is installed, or vibration is received from a subject.
  • the Talbot-Lau interferometer is subject to temperature changes at the location where the Talbot-Lau interferometer is installed.
  • the parallelism and distance between the zeroth and first gratings change, or the parallelism and distance between the first and second gratings change. End up. As a result, the subject may not be captured with a clear image.
  • the present invention has been made in view of the above-described circumstances, and an object thereof is to provide a Talbot-Lau interferometer that can obtain a clearer image of a subject even when subjected to vibration or temperature change. is there.
  • the Talbot-Lau interferometer according to the present invention includes a vibration applying member that applies vibration to the 0th, 1st and 2nd gratings and the 0th grating, and the 0th grating is movable in the first direction. And rotatable about a second axis extending in a second direction orthogonal to the first direction and about a third axis extending in a third direction orthogonal to each of the first and second directions, The first and second gratings are fixed to each other in a state of being parallel to each other at a predetermined distance, the vibration applying member vibrates the zeroth grating in the first direction, and the second Vibrate around the axis and around the third axis. Therefore, the Talbot-Lau interferometer according to the present invention can obtain a clearer image of the subject even when subjected to vibration or temperature change.
  • FIG. 1 is a perspective view of a Talbot-Lau interferometer in the embodiment.
  • FIG. 2 is a block diagram showing the configuration of the Talbot-Lau interferometer of FIG.
  • FIG. 3 is a schematic view of the main part of the Talbot-Lau interferometer of FIG.
  • FIG. 4 is a schematic diagram showing the positional relationship between the X-ray source and the zeroth, first, and second gratings used in the Talbot-Lau interferometer of FIG.
  • FIG. 5 is an enlarged view of a main part of the Talbot-Lau interferometer shown in FIG.
  • FIG. 5A is a side view and
  • FIG. 5B is a top view.
  • FIG. 6 is an enlarged bottom view of the zeroth lattice held by the holding frame.
  • FIG. 7 is an enlarged perspective view of the 0th lattice body included in the 0th lattice.
  • FIG. 8 is a perspective view of the zeroth grid held in the holding frame and the first and second grids stored in the storage member.
  • the first direction is the Z1-Z2 direction
  • the second direction orthogonal to the first direction is the X1-X2 direction
  • the third direction orthogonal to the first direction and the second direction is the Y1-Y2 direction.
  • the Talbot-Lau interferometer 1 in this embodiment includes an interferometer body 10, a 0th grating (G0 grating) 2 and a first grating (G1 grating) held by the interferometer body 10. ) 3 and the second lattice (G2 lattice) 4, a vibration applying member 5 (shown in FIGS. 5 and 6) for applying vibration to the 0th lattice 2, and a storage housing the first lattice 3 and the second lattice 4. And a member 6.
  • the interferometer main body 10 includes a support column 11, an X-ray source 12, an X-ray imaging unit (imaging unit) 13, an X-ray power supply unit 14 that supplies power to the X-ray source 12, and an X-ray imaging unit 13.
  • the X-ray radiation operation in the X-ray source 12 is controlled by controlling the power supply operation of the camera control unit 15 that controls the imaging operation, the processing unit 16 that controls the entire operation of the interferometer body 10, and the X-ray power supply unit 14. And an X-ray control unit 17 to be controlled.
  • the support column 11 includes a support column main body 110 extending in the Z1-Z2 direction (first direction), and an X-ray source holding unit disposed in order from the Z1 side to the Z2 side of the support column main unit 110. It includes a piece 111, a 0th grid holding unit 112, a 0th grid receiving unit 113, an imaging stage 114 and an imaging unit holding unit 115.
  • the X-ray source holding piece 111 protrudes from the support column main body 110 to the X1 side, and holds the X-ray source 12 at the protruding tip.
  • the 0th lattice receiving portion 113 is a plate-like member as shown in FIGS. 3 and 5, and can receive the 0th lattice 2 from the Z2 side. Note that the 0th lattice receiving portion 113 is formed so as not to hinder the progress of X-rays.
  • the imaging stage 114 is a plate-like member as shown in FIG. 3 and protrudes from the support column main body 110 to the X1 side, and the subject S is placed on the upper surface thereof.
  • the subject placement portion of the imaging placement base 114 on which the subject S is placed is configured not to prevent the progress of X-rays.
  • the imaging unit holding unit 115 is a plate-like member and protrudes from the support column main body 110 to the X1 side, and holds the X-ray imaging unit 13.
  • the 0th lattice holding unit 112 will be described later.
  • the X-ray imaging unit 13 includes an imaging unit main body 130 that captures an X-ray image diffracted by the second grating 3, and interference between a first interference pattern 221 and a second interference pattern 613 described later.
  • the detection part 131 which detects this is provided.
  • the imaging unit main body 130 is, for example, a flat panel detector (FPD) including a two-dimensional image sensor in which a thin film layer including a scintillator that absorbs X-ray energy and emits fluorescence is formed on a light receiving surface, or incident photons are photoelectrically detected.
  • FPD flat panel detector
  • the image is converted into electrons on the surface, the electrons are doubled by the microchannel plate, and the image intensifier unit that emits light by colliding the doubled electron group with the phosphor, and the output light of the image intensifier unit are imaged
  • the detection unit 131 is formed on substantially the entire circumference of the imaging unit main body 130.
  • the detection unit 131 detects an interference pattern generated by the interference between the X-rays that have passed through the first interference pattern 211 and the X-rays that have passed through the second interference pattern 613, and the imaging unit main body 130 is based on the interference result.
  • An X-ray image diffracted by the second grating 3 is picked up.
  • the processing unit 16 is a device that controls the overall operation of the Talbot-Lau interferometer 1 by controlling each unit of the Talbot-Lau interferometer 1 according to the function of each unit. As shown in FIG. 2, the image processing unit 161 and the system control unit 162 are functionally provided.
  • the system control unit 162 controls the X-ray emission operation in the X-ray source 12 via the X-ray power source unit 14 by transmitting and receiving control signals to and from the X-ray control unit 17, and the camera control unit 15
  • the imaging operation of the X-ray imaging unit 13 is controlled by transmitting and receiving control signals between the X-ray imaging unit 13 and the X-ray imaging unit 13.
  • X-rays are emitted toward the subject S, an image generated thereby is captured by the X-ray imaging unit 13, and an image signal is input to the processing unit 16 via the camera control unit 15.
  • the system control unit 162 includes a first power supply signal for operating a first piezoelectric element 51 of a vibration applying member 5 described later, a second power supply signal for operating a second piezoelectric element 52 of a vibration applying member 5 described later, and a vibration applying described later.
  • a third power supply signal that operates the third piezoelectric element 53 of the member 5 is output to each of the first piezoelectric element 51, the second piezoelectric element 52, and the third piezoelectric element 53.
  • the image processing unit 161 processes the image signal generated by the X-ray imaging unit 13 and generates an image of the subject S.
  • the 0th grid 2 includes a 0th grid body 21 and a 0th grid holding frame 22 that holds the 0th grid body 21.
  • the zeroth lattice main body 21 has a predetermined thickness (depth) H in the Z1-Z2 direction and extends linearly in the Y1-Y2 direction on a silicon material such as a silicon wafer.
  • a plurality of X-ray transmission parts 212 having the predetermined thickness H and extending in a line in the Y1-Y2 direction and embedded with metal. 211, and the plurality of X-ray absorption units 211 and the plurality of X-ray transmission units 212 are alternately arranged in parallel. For this reason, the plurality of X-ray absorbers 211 are respectively arranged at predetermined intervals in the X1-X2 direction orthogonal to the Y1-Y2 direction.
  • This interval (pitch) P is constant in this embodiment. That is, the plurality of X-ray absorbers 211 are arranged at equal intervals P in the X1-X2 direction.
  • the X-ray absorption unit 211 is plate-shaped or layered, and the plurality of X-ray transmission units 212 are plate-shaped or layered spaces sandwiched between the X-ray absorption units 211 adjacent to each other.
  • the plurality of X-ray absorption units 211 function to absorb X-rays, and the X-ray transmission units 212 function to transmit X-rays.
  • the width W in the X-ray absorber 211 is the length in the X-ray absorber 211 in the third direction, and the thickness H is the length of the X-ray absorber 211 in the first direction.
  • the 0th grid holding frame 22 is formed of a rectangular tube shape arranged on the entire outer periphery of the 0th grid body 21 in this embodiment, and includes a first interference pattern 221. ing.
  • the first interference pattern 221 includes a plurality of slits arranged at equal intervals along each of the X1-X2 direction and the Y1-Y2 direction. Each slit is formed by embedding metal at a predetermined depth in the thickness direction along the Z1-Z2 direction.
  • the 0th lattice 2 formed in this way is movable in the Z1-Z2 direction to the 0th lattice holding portion 112 of the support column 11, and in the X1-X2 direction (second direction). It is rotatably held around an extending X axis (second axis) 2a and around a Y axis (third axis) 2b extending in the Y1-Y2 direction (third direction).
  • the 0th lattice holding part 112 includes a columnar connecting shaft 112a and a substantially U-shaped holding frame 112b.
  • One end of the connecting shaft 112a is connected to the column main body 110, and the other end extends from the column main body 110 to the X1 side.
  • the holding frame 112b includes a rotating shaft 112c formed to face each other.
  • the holding frame 112b is connected to the connecting shaft 112a so as to be movable in the Z1-Z2 direction and rotatable about the connecting shaft 112a.
  • the 0th lattice 2 is rotatably inserted into the rotation shaft 112c of the holding frame 112b, whereby the 0th lattice 2 is movable in the Z1-Z2 direction and the X axis (second axis) 2a.
  • the Y-axis (third axis) 2b it is held by the 0th grid holding part 112 so as to be rotatable.
  • the vibration applying member 5 includes a first piezoelectric element 51, a second piezoelectric element 52, and a third piezoelectric element 53.
  • the first piezoelectric element 51, the second piezoelectric element 52, and the third piezoelectric element 53 have substantially the same configuration, and each of the piezoelectric elements 51 to 53 has mechanical energy that expands and contracts input electrical energy, that is, mechanical For example, the electric energy of the input is converted into a mechanical expansion / contraction motion by the piezoelectric effect.
  • Such piezoelectric elements 51 to 53 include, for example, a laminate and a pair of external electrodes.
  • the laminated body is formed by alternately laminating a plurality of thin film (layered) piezoelectric layers made of a piezoelectric material and a thin film (layered) internal electrode layer having conductivity.
  • Each of the plurality of internal electrode layers is configured to face the outside with a pair of outer peripheral side surfaces facing each other.
  • the pair of external electrodes are formed along the stacking direction on the pair of outer peripheral side surfaces of the stacked body, supply the electric energy to the stacked body, and are sequentially connected to the plurality of internal electrodes in turn.
  • piezoelectric material examples include lead zirconate titanate (PZT), crystal, lithium niobate (LiNbO 3 ), potassium tantalate niobate (K (Ta, Nb) O 3 ), and barium titanate (BaTiO 3 ).
  • PZT lead zirconate titanate
  • crystal lithium niobate
  • K (Ta, Nb) O 3 potassium tantalate niobate
  • BaTiO 3 barium titanate
  • Inorganic piezoelectric materials such as lithium tantalate (LiTaO 3 ) and strontium titanate (SrTiO 3 ).
  • the first piezoelectric element 51 is an element for vibrating the zeroth lattice 2 around the X axis 2a by expansion and contraction in the stacking direction (the axial direction of the first piezoelectric element 51), and the zeroth lattice holding frame 22 of the zeroth lattice 2.
  • the first piezoelectric element 51 is activated when it receives the first power supply signal.
  • the second piezoelectric element 52 is an element for vibrating the zeroth lattice 2 around the Y axis 2b by expansion and contraction in the stacking direction (the axial direction of the second piezoelectric element 52), and the zeroth lattice holding frame 22 of the zeroth lattice 2.
  • the second piezoelectric element 52 is activated when receiving the second power feeding signal.
  • the third piezoelectric element 53 is an element for vibrating the zeroth lattice 2 in the Z1-Z2 direction by expansion and contraction in the stacking direction (the axial direction of the third piezoelectric element 53).
  • the third piezoelectric element 53 includes two elements.
  • the third piezoelectric element 53 is arranged between the 0th lattice holding frame 22 of the 0th lattice 2 and the 0th lattice receiving portion 113 of the support column 11 in the Y1 side of the 0th lattice holding frame 22 and in the X1-X2 direction.
  • the third piezoelectric element 53 operates when receiving the third power feeding signal.
  • the vibration imparting member 5 is not limited to a piezoelectric actuator using a piezoelectric material, and can be changed as appropriate.
  • an electrostatic actuator can be used, and can be changed as appropriate.
  • the vibration applying member 5 arranged in this way is covered with the upper cover 17a together with the 0th lattice 2 as shown in FIG.
  • the first grating 3 is a diffraction grating that generates a Talbot effect by X-rays emitted from the X-ray source 12.
  • the first grating 3 has a predetermined thickness (depth) in the Z1-Z2 direction, extends linearly in the Y1-Y2 direction, and is alternately arranged in parallel, like the zeroth grating body 21.
  • a plurality of X-ray absorbing portions and a plurality of X-ray transmitting portions are provided.
  • the first grating 3 is configured so as to satisfy the conditions for causing the Talbot effect, and is a grating sufficiently coarser than the wavelength of X-rays emitted from the X-ray source 12, for example, a grating constant (period of diffraction grating). Is a phase type diffraction grating having an X-ray wavelength of about 20 or more.
  • the first grating 3 may be an amplitude type diffraction grating.
  • the first grating 3 is arranged in parallel with a distance (first distance) L4 that is an integral multiple of the wavelength of the X-ray, as shown in FIG. Is done.
  • the second grating 4 is a transmission-type amplitude diffraction grating that is disposed at a position that is approximately the Talbot distance L2 away from the first grating 3 and that diffracts the X-rays diffracted by the first grating 3. Like the first grating 3, the second grating 4 also has a predetermined thickness (depth) in the Z1-Z2 direction, extends linearly in the X1-X2 direction, and is alternately arranged in parallel. A plurality of X-ray absorbing portions and a plurality of X-ray transmitting portions are provided.
  • the second grating 4 is arranged so as to satisfy the first grating 3 that is a phase type diffraction grating and the following expressions 1 and 2.
  • l ⁇ / (a / (L1 + L2 + L3))
  • Z1 (m + 1/2) ⁇ (d2 / ⁇ )
  • l is the coherence distance
  • is the wavelength of X-rays (usually the center wavelength)
  • a is the aperture diameter of the X-ray source 12 in a direction substantially perpendicular to the diffraction member of the diffraction grating.
  • L1 is the distance from the X-ray source 12 to the first diffraction grating 3
  • L2 is the distance (second distance) from the first diffraction grating 3 to the second diffraction grating 4
  • L3 is the first 2 is the distance from the diffraction grating 103 to the X-ray imaging unit 13
  • m is an integer
  • d is the period of the diffraction member (period of the diffraction grating, grating constant, distance between the centers of adjacent diffraction members, the pitch P).
  • the storage member 6 includes a frame portion 61, a temperature sensor 62, and a temperature adjustment member 63.
  • the frame portion 61 includes a side portion 611 and a peripheral edge portion 612, and the inside is sealed by these.
  • the side portion 611 is made of a material that can transmit X-rays, for example, glass.
  • the peripheral edge 612 includes a second interference pattern 613 for causing interference with the first interference pattern 221 of the 0th grating 2 as shown in FIG.
  • the second interference pattern 613 includes a plurality of slits arranged at equal intervals along the X1-X2 direction and the Y1-Y2 direction so as to correspond to the first interference pattern 221. Each slit is formed by embedding metal at a predetermined depth in the thickness direction along the Z1-Z2 direction.
  • the first lattice 3 and the second lattice 4 are fixedly arranged in a parallel state at a predetermined distance from each other and enclosed in the frame portion 61. As shown in FIG. 3, the first lattice 3 and the second lattice 4 enclosed in the frame portion 61 satisfy the above (Formula 1) and Formula (2) on the Z2 side of the imaging stage 114. Has been placed. The first grid 3 and the second grid arranged in this way are covered with a lower cover 17b as shown in FIG.
  • the temperature sensor 62 detects the temperature inside the storage member 6, and in this embodiment, is attached to the inner surface of the frame portion 61 as shown in FIG.
  • the temperature adjustment member 63 is an element that adjusts the temperature inside the storage member 6, and includes, for example, a Peltier element.
  • the temperature adjustment member 63 is attached to the inner surface of the frame portion 61, and adjusts to the set temperature range by raising or lowering the temperature inside the storage member 6 based on the temperature detected by the temperature sensor 62.
  • FIG. 9 is an explanatory diagram of the X-ray imaging unit in a state where the 0th grating and the first grating are parallel to each other with a first distance.
  • FIG. 10 is an explanatory diagram of the X-ray imaging unit in a state in which the 0th grating is rotated around the second axis from the parallel state with respect to the first grating.
  • FIG. 11 is an explanatory diagram of the X-ray imaging unit in a state in which the 0th grating is rotated around the third axis from the parallel state with respect to the first grating.
  • the subject S is placed between the 0th grid 2 and the first grid 3 by placing the subject S on the imaging stage 114.
  • the system control unit 162 of the processing unit 16 emits X-rays toward the subject S.
  • a control signal is output to the X-ray controller 17 for irradiation.
  • the X-ray control unit 17 causes the X-ray power supply unit 14 to supply power to the X-ray source 12, and the X-ray source 12 emits X-rays and irradiates the subject S with X-rays.
  • the system control unit 162 includes a first power supply signal that operates a first piezoelectric element 51 of a vibration applying member 5 described later, a second power supply signal that operates a second piezoelectric element 52 of the vibration applying member 5, and a first power supply signal of the vibration applying member 5.
  • a third power supply signal for operating the third piezoelectric element 53 is transmitted in a superimposed manner to the first piezoelectric element 51, the second piezoelectric element 52 and the third piezoelectric element 53.
  • the first piezoelectric element 51, the second piezoelectric element 52, and the third piezoelectric element 53 operate, and the zeroth lattice 2 vibrates in the Z1-Z2 direction, and around the X axis 2a and the Y axis 2b. Vibrate.
  • the irradiated X-rays pass through the first grating 3 through the zeroth grating 2 and the subject S, are diffracted by the first grating 3, and are talvo which is a self-image of the first grating 3 at a position separated by the Talbot distance.
  • An image T is formed.
  • the formed X-ray Talbot image T is diffracted by the second grating 4 to generate moire and form a moire fringe image.
  • the distance between the preset 0th lattice 2 and the first lattice 3 is shifted, or the 0th lattice 2 and the first lattice 3 are not parallel, or the preset first lattice 3 and the second lattice 3 If the distance from 4 is shifted, or the first grating 3 and the second grating 4 are not parallel, the image picked up by the X-ray imaging unit 13 becomes unclear.
  • Such a shift or inclination of the distance between the two lattices 2, 3, 4 adjacent to each other may occur, for example, when the Talbot-Lau interferometer as a whole is subjected to vibrations or temperature changes from the outside.
  • the first piezoelectric element 51, the second piezoelectric element 52, and the third piezoelectric element 53 cause the zeroth lattice 2 to vibrate in the Z1-Z2 direction, and around the X axis 2a and the Y axis 2b. Therefore, during the vibration, the 0th grating 2 comes to a position parallel to the first grating 3 with a first distance L4.
  • the vibration frequency of the 0th lattice 2 that vibrates around the X axis 2a by the first piezoelectric element 51 and the vibration frequency of the 0th lattice 2 that vibrates around the Y axis 2b by the second piezoelectric element 52 are mutually prime, that is, mutually By not having a common divisor other than 1, no miso motion (precession motion) or wrinkle motion occurs, and the 0th lattice 2 is parallel to the first lattice 3 during the vibration. The time will come.
  • the first lattice 3 and the second lattice 4 are sealed in the storage member 6 at a predetermined temperature, the first lattice 3 and the second lattice 4 are subjected to vibration and temperature changes from the outside. Are maintained in a parallel state at a second distance from each other. Accordingly, at a position where the 0th grating 2 is parallel to the first grating 3 by a first distance, the first grating 3 and the second grating 4 are parallel to each other by a second distance. .
  • the detection unit 131 detects an interference pattern caused by the interference between the X-rays that have passed through the first interference pattern 211 and the X-rays that have passed through the second interference pattern 613, and the detection result is used as the processing unit 16. Is output to the system control unit 162, and the system control unit 162 instructs the X-ray imaging unit 13 to instruct imaging via the camera control unit 15 when the interference pattern of the detection result of the detection unit 131 is equally spaced. Output a signal.
  • the X-ray imaging unit 13 captures the moiré fringe image 13a at the timing when the interference pattern is equally spaced by the control signal instructing the imaging. Therefore, at that time, the image 13a detected by the X-ray imaging unit 13 is a clear image as shown in FIG.
  • the X-ray imaging unit 13 outputs the image signal of the moire fringe image to the processing unit 16 via the camera control unit 15. This image signal is processed by the image processing unit 161 of the processing unit 16.
  • the second interference pattern 613 is formed on the storage member 6 that stores the first lattice 3 and the second lattice 4, and the first lattice 3 is indirectly second through the storage member 6.
  • the interference pattern 613 is provided, the present invention is not limited to this configuration and can be changed as appropriate.
  • the second interference pattern 613 is directly formed on one or both of the first grating 3 and the second grating 4, so that either one or both of the first grating 3 and the second grating 4 is formed.
  • the second interference pattern 613 may be provided.
  • X-rays are used, but visible light may be used instead of X-rays, and can be changed as appropriate.
  • a Talbot-Lau interferometer includes an interferometer body having an X-ray source that emits X-rays, and a zeroth array arranged in the first direction in order from the X-ray source and held by the interferometer body. Applying vibration to apply vibration to the zeroth lattice such that the lattice, the first lattice, the second lattice, and the zeroth lattice are in parallel with the first lattice with a predetermined first distance in vibration.
  • the zeroth lattice is movable in the first direction and extends in a second direction perpendicular to the first direction, and the zeroth lattice is between the first direction and the second direction.
  • the interferometer body is rotatably held around a third axis extending in a third direction orthogonal to each other, and the first grating and the second grating are parallel to each other with a predetermined second distance from each other.
  • the vibration applying members are fixed to each other, By vibrating the child in the first direction, to and vibrate in each of said second axis and said third axis.
  • the first grating and the second grating are fixed to each other in a state where they are parallel to each other at a second distance, and thus are subject to vibration and temperature change.
  • the first grating and the second grating can maintain a state of being parallel to each other with a second distance.
  • the vibration applying member moves the 0th lattice in the first direction even if the 0th lattice is subjected to vibration or temperature change and the distance between the 0th lattice and the first lattice changes or the parallel state is shifted.
  • the zeroth grid is spaced apart from the first grid by the first distance during the vibration by vibrating so as to rotate around the second axis and around the third axis. Sometimes it comes to the position of the parallel state. Therefore, the Talbot-Lau interferometer can obtain a clearer image of the subject by imaging the subject at that position.
  • a vibration frequency for vibrating the zeroth lattice about the second axis and a vibration frequency for vibrating the zeroth lattice about the third axis are mutually It is prime.
  • the zeroth lattice does not become parallel to the first lattice when a miso-motion (precession) or heel movement occurs. Therefore, as in the above configuration, the vibration frequency rotated about the second axis and the vibration frequency rotated about the third axis are not prime, that is, have no common divisor other than 1.
  • the Talbot-Lau interferometer can prevent mismovement (precession movement) or wrinkle movement.
  • the first grating and the second grating are sealed inside the housing member so that the temperature can be adjusted.
  • the first grating and the second grating are sealed in the housing member so that the temperature can be adjusted. Therefore, the Talbot-Lau interferometer is reliably in a state of being parallel to each other with a second distance. Maintained. Even if the first grid and the second grid are stored in the storage member, the subject is arranged between the 0th grid and the first grid, so that the imaging is not hindered.
  • the first grating further includes an imaging unit on the opposite side of the first grating across the second grating, and the zeroth grating is And a first interference pattern, wherein at least one of the first grating and the second grating interferes with the first interference pattern when the zeroth grating is parallel to the first grating with the first distance therebetween.
  • a second interference pattern wherein the imaging unit includes an imaging unit body and a detection unit that detects the interference, and the imaging unit body interferes with the first interference pattern based on a detection result of the detection unit. The subject is imaged at a timing at which the interference pattern with the second interference pattern is equally spaced.
  • the imaging unit main body captures an image of the subject based on the detection result of the detection unit, it is easy to make the 0th grating parallel to the first grating with a first distance.
  • the subject can be detected and the subject can be easily and reliably imaged in that state.
  • a Talbot-Lau interferometer can be provided.

Abstract

This Talbot-Lau interferometer comprises a zeroth grating, a first grating, a second grating, and a vibration applying member to apply vibration to the zeroth grating. The zeroth grating can move in a first direction and can rotate about a second axis extending in a second direction that is orthogonal to the first direction and about a third axis extending in a third direction that is orthogonal to both the first and the second directions. The first and second gratings are fixed to each other in a state in which the gratings are parallel to each other at a prescribed distance from each other. The vibration applying member vibrates the zeroth grating in the first direction and about each of the second axis and the third axis.

Description

タルボ・ロー干渉計Talbot-Lau interferometer
 本発明は、タルボ・ロー干渉計に関する。 The present invention relates to a Talbot-Lau interferometer.
 近年、被爆量の低減の観点から、X線位相イメージングが注目されており、例えばタルボ・ロー干渉計を用いたX線撮像装置が広く実施されている。タルボ・ロー干渉計を用いたX線撮像装置では、第0格子、第1格子および第2格子の3個のX線用金属格子が用いられている。この第0格子は、単一のX線源をマルチ光源とするために利用される通常の格子であり、前記単一のX線源から放射されたX線を複数のX線(複数のX線ビーム)に分けて放射する。これら第1および第2格子は、互いにタルボ距離だけ離間して配置される回折格子である。このようなタルボ・ロー干渉計を用いた装置として、例えば特許文献1に、タルボ・ロー干渉計を用いた関節撮影装置が開示されている。特許文献1では、第0格子、第1格子および第2格子は、干渉計本体に位置移動可能に保持され、これにより、第0格子と第1格子とが互いに平行且つ所定の距離に調整可能、且つ、第1格子と第2格子とが互いに平行且つ所定の距離に調整可能とされている。 In recent years, X-ray phase imaging has attracted attention from the viewpoint of reducing the amount of exposure, and for example, X-ray imaging apparatuses using a Talbot-Lau interferometer have been widely implemented. In an X-ray imaging apparatus using a Talbot-Lau interferometer, three X-ray metal gratings of a 0th grating, a first grating, and a second grating are used. The zeroth grating is a normal grating used to make a single X-ray source a multi-light source, and X-rays emitted from the single X-ray source are converted into a plurality of X-rays (a plurality of X-rays). Radiation). These first and second gratings are diffraction gratings that are spaced apart from each other by a Talbot distance. As an apparatus using such a Talbot-Lau interferometer, for example, Patent Document 1 discloses a joint imaging apparatus using a Talbot-Lau interferometer. In Patent Document 1, the 0th grating, the first grating, and the second grating are held in the interferometer main body so as to be movable, so that the 0th grating and the first grating can be adjusted to be parallel to each other and at a predetermined distance. In addition, the first grating and the second grating can be adjusted in parallel to each other and at a predetermined distance.
 しかしながら、第0格子と第1格子とが互いに平行且つ所定の距離に設定され、また、第1格子と第2格子とも互いに平行且つ所定の距離に設定されても、タルボ・ロー干渉計は、例えばタルボ・ロー干渉計が設置される場所で振動を受け、或いは被験者から振動を受ける。また、タルボ・ロー干渉計は、タルボ・ロー干渉計が設置される場所で温度変化を受ける。このような振動を受け、或いは温度変化を受けると、第0格子と第1格子との平行度や距離が変化し、或いは、第1格子と第2格子との平行度や距離が変化してしまう。その結果、被写体を鮮明な画像で撮像できない場合がある。 However, even if the 0th grating and the first grating are set parallel to each other and at a predetermined distance, and both the first grating and the second grating are set to be parallel to each other and at a predetermined distance, the Talbot-Lau interferometer is For example, vibration is received at a place where the Talbot-Lau interferometer is installed, or vibration is received from a subject. The Talbot-Lau interferometer is subject to temperature changes at the location where the Talbot-Lau interferometer is installed. When subjected to such vibrations or temperature changes, the parallelism and distance between the zeroth and first gratings change, or the parallelism and distance between the first and second gratings change. End up. As a result, the subject may not be captured with a clear image.
特開2013-085631号公報JP 2013-085631 A
 本発明は、上述の事情に鑑みて為された発明であり、その目的は、振動や温度変化を受けても被写体のより鮮明な画像を得ることができるタルボ・ロー干渉計を提供することである。 The present invention has been made in view of the above-described circumstances, and an object thereof is to provide a Talbot-Lau interferometer that can obtain a clearer image of a subject even when subjected to vibration or temperature change. is there.
 本発明にかかるタルボ・ロー干渉計は、第0、第1および第2格子および前記第0格子に振動を付与する振動付与部材を備え、前記第0格子は、前記第1方向に移動可能、且つ、前記第1方向に直交する第2方向に延びる第2軸回り、および、前記第1および第2方向それぞれに直交する第3方向に延びる第3軸回りにそれぞれ回動可能であり、前記第1および第2格子は、互いに所定距離を隔てて互いに平行になった状態で、互いに固定され、前記振動付与部材は、前記第0格子を前記第1方向に振動させ、且つ、前記第2軸回りと前記第3軸回りとのそれぞれに振動させる。したがって、本発明にかかるタルボ・ロー干渉計は、振動や温度変化を受けても被写体のより鮮明な画像を得ることができる。 The Talbot-Lau interferometer according to the present invention includes a vibration applying member that applies vibration to the 0th, 1st and 2nd gratings and the 0th grating, and the 0th grating is movable in the first direction. And rotatable about a second axis extending in a second direction orthogonal to the first direction and about a third axis extending in a third direction orthogonal to each of the first and second directions, The first and second gratings are fixed to each other in a state of being parallel to each other at a predetermined distance, the vibration applying member vibrates the zeroth grating in the first direction, and the second Vibrate around the axis and around the third axis. Therefore, the Talbot-Lau interferometer according to the present invention can obtain a clearer image of the subject even when subjected to vibration or temperature change.
 上記並びにその他の本発明の目的、特徴および利点は、以下の詳細な記載と添付図面から明らかになるであろう。 The above and other objects, features and advantages of the present invention will become apparent from the following detailed description and the accompanying drawings.
実施形態におけるタルボ・ロー干渉計の斜視図である。It is a perspective view of the Talbot low interferometer in an embodiment. 図1に示すタルボ・ロー干渉計の構成を示すブロック図である。It is a block diagram which shows the structure of the Talbot low interferometer shown in FIG. 図1に示すタルボ・ロー干渉計の要部の概略図である。It is the schematic of the principal part of the Talbot low interferometer shown in FIG. 図1に示すタルボ・ロー干渉計に用いられる、X線源と、第0格子、第1格子および第2格子の位置関係を示す概略図である。It is the schematic which shows the positional relationship of the X-ray source and 0th grating | lattice, 1st grating | lattice, and 2nd grating | lattice used for the Talbot low interferometer shown in FIG. 図1に示すタルボ・ロー干渉計の要部拡大図である。It is a principal part enlarged view of the Talbot low interferometer shown in FIG. 保持枠に保持された状態の第0格子の拡大した底面図である。It is the expanded bottom view of the 0th grating | lattice of the state hold | maintained at the holding frame. 第0格子が有する第0格子本体の拡大斜視図である。It is an expansion perspective view of the 0th lattice main part which the 0th lattice has. 保持枠に保持された状態の第0格子と、収納部材に収納された状態の第1格子および第2格子との斜視図である。It is a perspective view of the 0th grating | lattice of the state hold | maintained at the holding frame, and the 1st grating | lattice and the 2nd grating | lattice of the state accommodated in the storage member. 第0格子と第1格子とが第1距離を隔てて平行になった状態におけるX線撮像部の説明図である。It is explanatory drawing of the X-ray imaging part in the state which the 0th grating | lattice and the 1st grating | lattice became in parallel with the 1st distance. 第0格子が第1格子に対して平行状態から第2軸回りに回動した状態におけるX線撮像部の説明図である。It is explanatory drawing of the X-ray imaging part in the state which the 0th grating | lattice rotated around the 2nd axis | shaft from the parallel state with respect to the 1st grating | lattice. 第0格子が第1格子に対して平行状態から第3軸回りに回動した状態におけるX線撮像部の説明図である。It is explanatory drawing of the X-ray imaging part in the state which the 0th grating | lattice rotated to the periphery of the 3rd axis | shaft from the parallel state with respect to the 1st grating | lattice.
 以下、本発明にかかる実施の一形態を図面に基づいて説明する。なお、各図において同一の符号を付した構成は、同一の構成であることを示し、適宜、その説明を省略する。本明細書において、総称する場合には添え字を省略した参照符号で示し、個別の構成を指す場合には添え字を付した参照符号で示す。 Hereinafter, an embodiment according to the present invention will be described with reference to the drawings. In addition, the structure which attached | subjected the same code | symbol in each figure shows that it is the same structure, The description is abbreviate | omitted suitably. In this specification, when referring generically, it shows with the reference symbol which abbreviate | omitted the suffix, and when referring to an individual structure, it shows with the reference symbol which attached the suffix.
 図1は、実施形態におけるタルボ・ロー干渉計の斜視図である。図2は、図1のタルボ・ロー干渉計の構成を示すブロック図である。図3は、図1のタルボ・ロー干渉計の要部の概略図である。図4は、図1のタルボ・ロー干渉計に用いられる、X線源と、第0格子、第1格子および第2格子の位置関係を示す概略図である。図5は、図1に示すタルボ・ロー干渉計の要部拡大図である。図5Aは、側面図であり、図5Bは、上面図である。図6は、保持枠に保持された状態の第0格子の拡大した底面図である。図7は、第0格子が有する第0格子本体の拡大斜視図である。図8は、保持枠に保持された状態の第0格子と、収納部材に収納された状態の第1格子および第2格子との斜視図である。なお、第1方向をZ1-Z2方向とし、第1方向と直交する第2方向をX1-X2方向とし、第1方向および第2方向に直交する第3方向をY1-Y2方向として説明する。 FIG. 1 is a perspective view of a Talbot-Lau interferometer in the embodiment. FIG. 2 is a block diagram showing the configuration of the Talbot-Lau interferometer of FIG. FIG. 3 is a schematic view of the main part of the Talbot-Lau interferometer of FIG. FIG. 4 is a schematic diagram showing the positional relationship between the X-ray source and the zeroth, first, and second gratings used in the Talbot-Lau interferometer of FIG. FIG. 5 is an enlarged view of a main part of the Talbot-Lau interferometer shown in FIG. FIG. 5A is a side view and FIG. 5B is a top view. FIG. 6 is an enlarged bottom view of the zeroth lattice held by the holding frame. FIG. 7 is an enlarged perspective view of the 0th lattice body included in the 0th lattice. FIG. 8 is a perspective view of the zeroth grid held in the holding frame and the first and second grids stored in the storage member. In the following description, the first direction is the Z1-Z2 direction, the second direction orthogonal to the first direction is the X1-X2 direction, and the third direction orthogonal to the first direction and the second direction is the Y1-Y2 direction.
 この実施形態におけるタルボ・ロー干渉計1は、図1ないし図4に示すように干渉計本体10と、干渉計本体10に保持された第0格子(G0格子)2、第1格子(G1格子)3および第2格子(G2格子)4と、第0格子2に振動を付与する振動付与部材5(図5、図6に図示)と、第1格子3および第2格子4を収納した収納部材6とを備えている。 As shown in FIGS. 1 to 4, the Talbot-Lau interferometer 1 in this embodiment includes an interferometer body 10, a 0th grating (G0 grating) 2 and a first grating (G1 grating) held by the interferometer body 10. ) 3 and the second lattice (G2 lattice) 4, a vibration applying member 5 (shown in FIGS. 5 and 6) for applying vibration to the 0th lattice 2, and a storage housing the first lattice 3 and the second lattice 4. And a member 6.
 干渉計本体10は、支柱部11と、X線源12と、X線撮像部(撮像部)13と、X線源12に電源を供給するX線電源部14と、X線撮像部13の撮像動作を制御するカメラ制御部15と、干渉計本体10の全体動作を制御する処理部16と、X線電源部14の給電動作を制御することによってX線源12におけるX線の放射動作を制御するX線制御部17とを備えている。 The interferometer main body 10 includes a support column 11, an X-ray source 12, an X-ray imaging unit (imaging unit) 13, an X-ray power supply unit 14 that supplies power to the X-ray source 12, and an X-ray imaging unit 13. The X-ray radiation operation in the X-ray source 12 is controlled by controlling the power supply operation of the camera control unit 15 that controls the imaging operation, the processing unit 16 that controls the entire operation of the interferometer body 10, and the X-ray power supply unit 14. And an X-ray control unit 17 to be controlled.
 支柱部11は、図3に示すように、Z1-Z2方向(第1方向)に延された支柱部本体110と、支柱部本体110のZ1側からZ2側に順に配置されたX線源保持片111、第0格子保持部112、第0格子受け部113、撮影用載置台114および撮像部保持部115とを備えている。 As shown in FIG. 3, the support column 11 includes a support column main body 110 extending in the Z1-Z2 direction (first direction), and an X-ray source holding unit disposed in order from the Z1 side to the Z2 side of the support column main unit 110. It includes a piece 111, a 0th grid holding unit 112, a 0th grid receiving unit 113, an imaging stage 114 and an imaging unit holding unit 115.
 X線源保持片111は、支柱部本体110からX1側に突設されており、その突出先端部にX線源12を保持している。 The X-ray source holding piece 111 protrudes from the support column main body 110 to the X1 side, and holds the X-ray source 12 at the protruding tip.
 第0格子受け部113は、図3および図5に示すように板状の部材で、第0格子2をZ2側から受け得るようになっている。なお、第0格子受け部113は、X線の進行を妨げないように形成されている。 The 0th lattice receiving portion 113 is a plate-like member as shown in FIGS. 3 and 5, and can receive the 0th lattice 2 from the Z2 side. Note that the 0th lattice receiving portion 113 is formed so as not to hinder the progress of X-rays.
 撮影用載置台114は、図3に示すように板状の部材で、支柱部本体110からX1側に突設されており、その上面に、被写体Sが載置される。被写体Sが載置される撮影用載置台114の被写体載置部は、X線の進行を妨げないようになっている。 The imaging stage 114 is a plate-like member as shown in FIG. 3 and protrudes from the support column main body 110 to the X1 side, and the subject S is placed on the upper surface thereof. The subject placement portion of the imaging placement base 114 on which the subject S is placed is configured not to prevent the progress of X-rays.
 撮像部保持部115は、板状の部材で、支柱部本体110からX1側に突設されており、X線撮像部13を保持している。なお、第0格子保持部112については、後述する。 The imaging unit holding unit 115 is a plate-like member and protrudes from the support column main body 110 to the X1 side, and holds the X-ray imaging unit 13. The 0th lattice holding unit 112 will be described later.
 X線撮像部13は、図9に示すように第2格子3によって回折されたX線の像を撮像する撮像部本体130と、後述の第1干渉パターン221と第2干渉パターン613との干渉を検出する検出部131を備えている。 As shown in FIG. 9, the X-ray imaging unit 13 includes an imaging unit main body 130 that captures an X-ray image diffracted by the second grating 3, and interference between a first interference pattern 221 and a second interference pattern 613 described later. The detection part 131 which detects this is provided.
 撮像部本体130は、例えば、X線のエネルギーを吸収して蛍光を発するシンチレータを含む薄膜層が受光面上に形成された二次元イメージセンサを備えるフラットパネルディテクタ(FPD)や、入射フォトンを光電面で電子に変換し、この電子をマイクロチャネルプレートで倍増し、この倍増された電子群を蛍光体に衝突させて発光させるイメージインテンシファイア部と、イメージインテンシファイア部の出力光を撮像する二次元イメージセンサとを備えるイメージインテンシファイアカメラなどである。 The imaging unit main body 130 is, for example, a flat panel detector (FPD) including a two-dimensional image sensor in which a thin film layer including a scintillator that absorbs X-ray energy and emits fluorescence is formed on a light receiving surface, or incident photons are photoelectrically detected. The image is converted into electrons on the surface, the electrons are doubled by the microchannel plate, and the image intensifier unit that emits light by colliding the doubled electron group with the phosphor, and the output light of the image intensifier unit are imaged An image intensifier camera equipped with a two-dimensional image sensor.
 検出部131は、撮像部本体130の外周の略全周に形成されている。この検出部131が第1干渉パターン211を通過したX線と第2干渉パターン613を通過したX線との干渉によって生じた干渉模様を検出し、撮像部本体130は、その干渉結果に基いて第2格子3によって回折されたX線の像を撮像するようになっている。 The detection unit 131 is formed on substantially the entire circumference of the imaging unit main body 130. The detection unit 131 detects an interference pattern generated by the interference between the X-rays that have passed through the first interference pattern 211 and the X-rays that have passed through the second interference pattern 613, and the imaging unit main body 130 is based on the interference result. An X-ray image diffracted by the second grating 3 is picked up.
 処理部16は、タルボ・ロー干渉計1の各部を当該各部の機能に応じて制御することによってタルボ・ロー干渉計1全体の動作を制御する装置であり、例えば、マイクロプロセッサおよびその周辺回路を備えて構成され、図2に示すように、機能的に、画像処理部161およびシステム制御部162を備えている。 The processing unit 16 is a device that controls the overall operation of the Talbot-Lau interferometer 1 by controlling each unit of the Talbot-Lau interferometer 1 according to the function of each unit. As shown in FIG. 2, the image processing unit 161 and the system control unit 162 are functionally provided.
 システム制御部162は、X線制御部17との間で制御信号を送受信することによってX線電源部14を介してX線源12におけるX線の放射動作を制御すると共に、カメラ制御部15との間で制御信号を送受信することによってX線撮像部13の撮像動作を制御する。システム制御部162の制御によって、X線が被写体Sに向けて照射され、これによって生じた像がX線撮像部13によって撮像され、画像信号がカメラ制御部15を介して処理部16に入力される。 The system control unit 162 controls the X-ray emission operation in the X-ray source 12 via the X-ray power source unit 14 by transmitting and receiving control signals to and from the X-ray control unit 17, and the camera control unit 15 The imaging operation of the X-ray imaging unit 13 is controlled by transmitting and receiving control signals between the X-ray imaging unit 13 and the X-ray imaging unit 13. Under the control of the system control unit 162, X-rays are emitted toward the subject S, an image generated thereby is captured by the X-ray imaging unit 13, and an image signal is input to the processing unit 16 via the camera control unit 15. The
 システム制御部162は、後述の振動付与部材5の第1圧電素子51を作動させる第1給電信号、後述の振動付与部材5の第2圧電素子52を作動させる第2給電信号および後述の振動付与部材5の第3圧電素子53を作動させる第3給電信号を、第1圧電素子51、第2圧電素子52および第3圧電素子53のそれぞれに出力する。 The system control unit 162 includes a first power supply signal for operating a first piezoelectric element 51 of a vibration applying member 5 described later, a second power supply signal for operating a second piezoelectric element 52 of a vibration applying member 5 described later, and a vibration applying described later. A third power supply signal that operates the third piezoelectric element 53 of the member 5 is output to each of the first piezoelectric element 51, the second piezoelectric element 52, and the third piezoelectric element 53.
 画像処理部161は、X線撮像部13によって生成された画像信号を処理し、被写体Sの画像を生成する。 The image processing unit 161 processes the image signal generated by the X-ray imaging unit 13 and generates an image of the subject S.
 次に、第0格子2について説明する。第0格子2は、図6に示すように第0格子本体21と、第0格子本体21を保持した第0格子保持枠22とを備えている。 Next, the 0th lattice 2 will be described. As shown in FIG. 6, the 0th grid 2 includes a 0th grid body 21 and a 0th grid holding frame 22 that holds the 0th grid body 21.
 第0格子本体21は、図7に示すように、例えばシリコンウェハ等のシリコン素材に、Z1-Z2方向に所定の厚さ(深さ)Hを有してY1-Y2方向に線状に延びるように形成された複数のX線透過部212と、前記所定の厚さHを有して前記Y1-Y2方向に線状に延び金属が埋設されることによって形成された複数のX線吸収部211とを備え、これら複数のX線吸収部211と複数のX線透過部212とは、交互に平行に配設されている。このため、複数のX線吸収部211は、前記Y1-Y2方向と直交するX1-X2方向に所定の間隔を空けてそれぞれ配設されている。この間隔(ピッチ)Pは、本実施形態では、一定とされている。すなわち、複数のX線吸収部211は、前記X1-X2方向に等間隔Pでそれぞれ配設されている。本実施形態では、X線吸収部211は、板状または層状であり、複数のX線透過部212は、互いに隣接するX線吸収部211に挟まれた板状または層状の空間である。 As shown in FIG. 7, the zeroth lattice main body 21 has a predetermined thickness (depth) H in the Z1-Z2 direction and extends linearly in the Y1-Y2 direction on a silicon material such as a silicon wafer. A plurality of X-ray transmission parts 212 having the predetermined thickness H and extending in a line in the Y1-Y2 direction and embedded with metal. 211, and the plurality of X-ray absorption units 211 and the plurality of X-ray transmission units 212 are alternately arranged in parallel. For this reason, the plurality of X-ray absorbers 211 are respectively arranged at predetermined intervals in the X1-X2 direction orthogonal to the Y1-Y2 direction. This interval (pitch) P is constant in this embodiment. That is, the plurality of X-ray absorbers 211 are arranged at equal intervals P in the X1-X2 direction. In the present embodiment, the X-ray absorption unit 211 is plate-shaped or layered, and the plurality of X-ray transmission units 212 are plate-shaped or layered spaces sandwiched between the X-ray absorption units 211 adjacent to each other.
 これら複数のX線吸収部211は、X線を吸収するように機能し、これらX線透過部212は、X線を透過するように機能する。X線吸収部211は、例えば仕様に応じて充分にX線を吸収することができるように、適宜な厚さHとされている。X線は、一般的に透過性が高いので、この結果、X線吸収部211における幅Wに対する厚さHの比(アスペクト比=厚さ/幅)は、例えば、5以上の高アスペクト比とされている。X線吸収部211における幅Wは、前記第3方向におけるX線吸収部211における長さであり、その厚さHは、第1方向におけるX線吸収部211の長さである。 The plurality of X-ray absorption units 211 function to absorb X-rays, and the X-ray transmission units 212 function to transmit X-rays. The X-ray absorption part 211 has an appropriate thickness H so that, for example, X-rays can be sufficiently absorbed according to specifications. Since X-rays are generally highly transmissive, the ratio of the thickness H to the width W (aspect ratio = thickness / width) in the X-ray absorber 211 is, for example, a high aspect ratio of 5 or more. Has been. The width W in the X-ray absorber 211 is the length in the X-ray absorber 211 in the third direction, and the thickness H is the length of the X-ray absorber 211 in the first direction.
 第0格子保持枠22は、図6に示すように、この実施形態では、第0格子本体21の外周の全周に配置された四角筒状を呈するものからなり、第1干渉パターン221を備えている。第1干渉パターン221は、X1-X2方向およびY1-Y2方向のそれぞれに沿って等間隔に配列された複数個のスリットを備えている。各スリットは、Z1-Z2方向に沿う厚さ方向に所定の深さで金属が埋設されて形成されている。 As shown in FIG. 6, the 0th grid holding frame 22 is formed of a rectangular tube shape arranged on the entire outer periphery of the 0th grid body 21 in this embodiment, and includes a first interference pattern 221. ing. The first interference pattern 221 includes a plurality of slits arranged at equal intervals along each of the X1-X2 direction and the Y1-Y2 direction. Each slit is formed by embedding metal at a predetermined depth in the thickness direction along the Z1-Z2 direction.
 このように形成された第0格子2は、図5に示すように支柱部11の第0格子保持部112に、Z1-Z2方向に移動可能、且つ、X1-X2方向(第2方向)に延びるX軸(第2軸)2a回り、およびY1-Y2方向(第3方向)に延びるY軸(第3軸)2b回りにそれぞれ回動可能に保持されている。 As shown in FIG. 5, the 0th lattice 2 formed in this way is movable in the Z1-Z2 direction to the 0th lattice holding portion 112 of the support column 11, and in the X1-X2 direction (second direction). It is rotatably held around an extending X axis (second axis) 2a and around a Y axis (third axis) 2b extending in the Y1-Y2 direction (third direction).
 より詳しくは、第0格子保持部112は、円柱状の連結軸112aと、略コの字状の保持枠112bとを備えている。連結軸112aは、一端が支柱部本体110に連結され、他端が支柱部本体110からX1側に延されている。 More specifically, the 0th lattice holding part 112 includes a columnar connecting shaft 112a and a substantially U-shaped holding frame 112b. One end of the connecting shaft 112a is connected to the column main body 110, and the other end extends from the column main body 110 to the X1 side.
 保持枠112bは、互いに対向するように形成された回動軸112cを備えている。そして、この保持枠112bは、連結軸112aに、Z1-Z2方向に移動可能に、且つ連結軸112a回りに回動自在に連結されている。 The holding frame 112b includes a rotating shaft 112c formed to face each other. The holding frame 112b is connected to the connecting shaft 112a so as to be movable in the Z1-Z2 direction and rotatable about the connecting shaft 112a.
 第0格子2は、保持枠112bの回動軸112cに回動自在に嵌挿され、これにより、第0格子2は、Z1-Z2方向に移動可能、且つ、X軸(第2軸)2a回りおよびY軸(第3軸)2b回りにそれぞれ回動可能に、第0格子保持部112に保持されている。 The 0th lattice 2 is rotatably inserted into the rotation shaft 112c of the holding frame 112b, whereby the 0th lattice 2 is movable in the Z1-Z2 direction and the X axis (second axis) 2a. Around the Y-axis (third axis) 2b, it is held by the 0th grid holding part 112 so as to be rotatable.
 次に、振動付与部材5について説明する。振動付与部材5は、この実施形態では、第1圧電素子51、第2圧電素子52および第3圧電素子53とを備えている。 Next, the vibration imparting member 5 will be described. In this embodiment, the vibration applying member 5 includes a first piezoelectric element 51, a second piezoelectric element 52, and a third piezoelectric element 53.
 これらの第1圧電素子51、第2圧電素子52および第3圧電素子53は、略同じ構成の素子で、各圧電素子51~53は、入力の電気エネルギーを、伸縮する機械エネルギー、すなわち、機械的な運動に変換する素子であり、例えば、入力の電気エネルギーを圧電効果によって機械的な伸縮運動に変換する。このような圧電素子51~53は、例えば積層体と、一対の外部電極とを備える。 The first piezoelectric element 51, the second piezoelectric element 52, and the third piezoelectric element 53 have substantially the same configuration, and each of the piezoelectric elements 51 to 53 has mechanical energy that expands and contracts input electrical energy, that is, mechanical For example, the electric energy of the input is converted into a mechanical expansion / contraction motion by the piezoelectric effect. Such piezoelectric elements 51 to 53 include, for example, a laminate and a pair of external electrodes.
 積層体は、圧電材料から成る薄膜状(層状)の圧電層と導電性を有する薄膜状(層状)の内部電極層とを交互に複数積層されたものである。複数の内部電極層は、その一部が互いに対向する一対の外周側面で外部に臨むようにそれぞれ構成されている。一対の外部電極は、積層体における前記一対の外周側面上に積層方向に沿って形成され、前記電気エネルギーを積層体に供給し、前記複数の内部電極と順次交互に接続されている。なお、圧電材料は、例えば、チタン酸ジルコン酸鉛(PZT)、水晶、ニオブ酸リチウム(LiNbO)、ニオブ酸タンタル酸カリウム(K(Ta,Nb)O)、チタン酸バリウム(BaTiO)、タンタル酸リチウム(LiTaO)およびチタン酸ストロンチウム(SrTiO)等の無機圧電材料である。 The laminated body is formed by alternately laminating a plurality of thin film (layered) piezoelectric layers made of a piezoelectric material and a thin film (layered) internal electrode layer having conductivity. Each of the plurality of internal electrode layers is configured to face the outside with a pair of outer peripheral side surfaces facing each other. The pair of external electrodes are formed along the stacking direction on the pair of outer peripheral side surfaces of the stacked body, supply the electric energy to the stacked body, and are sequentially connected to the plurality of internal electrodes in turn. Examples of the piezoelectric material include lead zirconate titanate (PZT), crystal, lithium niobate (LiNbO 3 ), potassium tantalate niobate (K (Ta, Nb) O 3 ), and barium titanate (BaTiO 3 ). Inorganic piezoelectric materials such as lithium tantalate (LiTaO 3 ) and strontium titanate (SrTiO 3 ).
 第1圧電素子51は、積層方向(第1圧電素子51の軸方向)の伸縮によって第0格子2をX軸2a回りに振動させるための素子で、第0格子2の第0格子保持枠22と支柱部11の第0格子受け部113との間における第0格子保持枠22のX1側且つY1側の端部に、第0格子保持枠22と第0格子受け部113とのそれぞれに当接するように配置されている。そして、この実施形態では、第1圧電素子51は、第1給電信号を受信すると作動するようになっている。 The first piezoelectric element 51 is an element for vibrating the zeroth lattice 2 around the X axis 2a by expansion and contraction in the stacking direction (the axial direction of the first piezoelectric element 51), and the zeroth lattice holding frame 22 of the zeroth lattice 2. On the X1 side and the Y1 side end of the 0th lattice holding frame 22 between the 0th lattice receiving portion 113 and the 0th lattice receiving portion 113 of the support column 11, respectively. It is arranged to touch. In this embodiment, the first piezoelectric element 51 is activated when it receives the first power supply signal.
 第2圧電素子52は、積層方向(第2圧電素子52の軸方向)の伸縮によって第0格子2をY軸2b回りに振動させるための素子で、第0格子2の第0格子保持枠22と支柱部11の第0格子受け部113との間における第0格子保持枠22のX1側且つY2側の端部に、第0格子保持枠22と第0格子受け部113とのそれぞれに当接するように配置されている。そして、この実施形態では、第2圧電素子52は、第2給電信号を受信すると作動するようになっている。 The second piezoelectric element 52 is an element for vibrating the zeroth lattice 2 around the Y axis 2b by expansion and contraction in the stacking direction (the axial direction of the second piezoelectric element 52), and the zeroth lattice holding frame 22 of the zeroth lattice 2. On the X1 side and the Y2 side end of the 0th lattice holding frame 22 between the 0th lattice receiving portion 113 and the 0th lattice receiving portion 113 of the support column 11, respectively. It is arranged to touch. In this embodiment, the second piezoelectric element 52 is activated when receiving the second power feeding signal.
 第3圧電素子53は、積層方向(第3圧電素子53の軸方向)の伸縮によって第0格子2をZ1-Z2方向に振動させるための素子で、この実施形態では、2個からなる。そして、第3圧電素子53は、第0格子2の第0格子保持枠22と支柱部11の第0格子受け部113との間における第0格子保持枠22のY1側且つX1-X2方向の中央部と、上記間における第0格子保持枠22のY2側且つX1-X2方向の中央部とにそれぞれ、第0格子保持枠22と第0格子受け部113とのそれぞれに当接するように配置されている。そして、この実施形態では、第3圧電素子53は、第3給電信号を受信すると作動するようになっている。なお、振動付与部材5は、圧電材料を用いた圧電方式のアクチュエータの形態のものに限らず、適宜変更でき、例えば静電方式のアクチュエータの形態のものでもよく、適宜変更できる。 The third piezoelectric element 53 is an element for vibrating the zeroth lattice 2 in the Z1-Z2 direction by expansion and contraction in the stacking direction (the axial direction of the third piezoelectric element 53). In this embodiment, the third piezoelectric element 53 includes two elements. The third piezoelectric element 53 is arranged between the 0th lattice holding frame 22 of the 0th lattice 2 and the 0th lattice receiving portion 113 of the support column 11 in the Y1 side of the 0th lattice holding frame 22 and in the X1-X2 direction. Arranged so as to abut each of the 0th grid holding frame 22 and the 0th grid receiving part 113 at the center and the Y2 side of the 0th grid holding frame 22 and the center in the X1-X2 direction between the above. Has been. In this embodiment, the third piezoelectric element 53 operates when receiving the third power feeding signal. The vibration imparting member 5 is not limited to a piezoelectric actuator using a piezoelectric material, and can be changed as appropriate. For example, an electrostatic actuator can be used, and can be changed as appropriate.
 このように配置された振動付与部材5は、図1に示すように第0格子2と共に、上部カバー17aで覆われている。 The vibration applying member 5 arranged in this way is covered with the upper cover 17a together with the 0th lattice 2 as shown in FIG.
 次に、第1格子3について説明する。第1格子3は、X線源12から放射されたX線によってタルボ効果を生じる回折格子である。第1格子3は、図示しないが、第0格子本体21と同様に、Z1-Z2方向に所定の厚さ(深さ)を有してY1-Y2方向に線状に延び交互に平行に配設される複数のX線吸収部と複数のX線透過部とを備えている。この第1格子3は、タルボ効果を生じる条件を満たすように構成されており、X線源12から放射されたX線の波長よりも充分に粗い格子、例えば、格子定数(回折格子の周期)がX線の波長の約20以上である位相型回折格子である。なお、第1格子3は、振幅型回折格子であってもよい。 Next, the first lattice 3 will be described. The first grating 3 is a diffraction grating that generates a Talbot effect by X-rays emitted from the X-ray source 12. Although not shown, the first grating 3 has a predetermined thickness (depth) in the Z1-Z2 direction, extends linearly in the Y1-Y2 direction, and is alternately arranged in parallel, like the zeroth grating body 21. A plurality of X-ray absorbing portions and a plurality of X-ray transmitting portions are provided. The first grating 3 is configured so as to satisfy the conditions for causing the Talbot effect, and is a grating sufficiently coarser than the wavelength of X-rays emitted from the X-ray source 12, for example, a grating constant (period of diffraction grating). Is a phase type diffraction grating having an X-ray wavelength of about 20 or more. The first grating 3 may be an amplitude type diffraction grating.
 この第1格子3は、振動を受けない設定温度のもとで、図4に示すように第0格子2とX線の波長の整数倍の距離(第1距離)L4を隔てて平行に配置される。 As shown in FIG. 4, the first grating 3 is arranged in parallel with a distance (first distance) L4 that is an integral multiple of the wavelength of the X-ray, as shown in FIG. Is done.
 次に、第2格子4について説明する。第2格子4は、第1格子3から略タルボ距離L2離れた位置に配置され、第1格子3によって回折されたX線を回折する透過型の振幅型回折格子である。この第2格子4も、第1格子3と同様に、図示しないが、Z1-Z2方向に所定の厚さ(深さ)を有してX1-X2方向に線状に延び交互に平行に配設される複数のX線吸収部と複数のX線透過部とを備えている。 Next, the second lattice 4 will be described. The second grating 4 is a transmission-type amplitude diffraction grating that is disposed at a position that is approximately the Talbot distance L2 away from the first grating 3 and that diffracts the X-rays diffracted by the first grating 3. Like the first grating 3, the second grating 4 also has a predetermined thickness (depth) in the Z1-Z2 direction, extends linearly in the X1-X2 direction, and is alternately arranged in parallel. A plurality of X-ray absorbing portions and a plurality of X-ray transmitting portions are provided.
 この第2格子4は、位相型回折格子である第1格子3と次の式1および式2を満たすように配置されている。
l=λ/(a/(L1+L2+L3))   ・・・(式1)
Z1=(m+1/2)×(d2/λ)   ・・・(式2)
ここで、lは、可干渉距離であり、λは、X線の波長(通常は中心波長)であり、aは、回折格子の回折部材にほぼ直交する方向におけるX線源12の開口径であり、L1は、X線源12から第1回折格子3までの距離であり、L2は、第1回折格子3から第2回折格子4までの距離(第2距離)であり、L3は、第2回折格子103からX線撮像部13までの距離であり、mは、整数であり、dは、回折部材の周期(回折格子の周期、格子定数、隣接する回折部材の中心間距離、前記ピッチP)である。
The second grating 4 is arranged so as to satisfy the first grating 3 that is a phase type diffraction grating and the following expressions 1 and 2.
l = λ / (a / (L1 + L2 + L3)) (Formula 1)
Z1 = (m + 1/2) × (d2 / λ) (Formula 2)
Here, l is the coherence distance, λ is the wavelength of X-rays (usually the center wavelength), and a is the aperture diameter of the X-ray source 12 in a direction substantially perpendicular to the diffraction member of the diffraction grating. Yes, L1 is the distance from the X-ray source 12 to the first diffraction grating 3, L2 is the distance (second distance) from the first diffraction grating 3 to the second diffraction grating 4, and L3 is the first 2 is the distance from the diffraction grating 103 to the X-ray imaging unit 13, m is an integer, d is the period of the diffraction member (period of the diffraction grating, grating constant, distance between the centers of adjacent diffraction members, the pitch P).
 次に、収納部材6について説明する。収納部材6は、図4に示すように枠部61と、温度センサ62と、温度調整部材63とを備えている。 Next, the storage member 6 will be described. As illustrated in FIG. 4, the storage member 6 includes a frame portion 61, a temperature sensor 62, and a temperature adjustment member 63.
 枠部61は、側部611と、周縁部612とを備え、これらによって内部を密封状態にしている。側部611は、X線を透過可能な材料、例えばガラスから構成されている。 The frame portion 61 includes a side portion 611 and a peripheral edge portion 612, and the inside is sealed by these. The side portion 611 is made of a material that can transmit X-rays, for example, glass.
 周縁部612は、図8に示すように、第0格子2の第1干渉パターン221と干渉させるための第2干渉パターン613を備えている。第2干渉パターン613は、第1干渉パターン221と対応するように、X1-X2方向およびY1-Y2方向それぞれに沿って等間隔に配列された複数個のスリットからなる。各スリットは、Z1-Z2方向に沿う厚さ方向に所定の深さで金属が埋設されて形成されている。 The peripheral edge 612 includes a second interference pattern 613 for causing interference with the first interference pattern 221 of the 0th grating 2 as shown in FIG. The second interference pattern 613 includes a plurality of slits arranged at equal intervals along the X1-X2 direction and the Y1-Y2 direction so as to correspond to the first interference pattern 221. Each slit is formed by embedding metal at a predetermined depth in the thickness direction along the Z1-Z2 direction.
 そして、枠部61の内部に、第1格子3と第2格子4とが、互いに所定距離を隔てて平行状態で固定的に配置されて封入されている。枠部61内に封入された第1格子3と第2格子4とは、図3に示すように撮影用載置台114のZ2側に、上記(式1)および式(2)を満たすように配置されている。このように配置された第1格子3と第2格子は、図1に示すように下部カバー17bで覆われている。 The first lattice 3 and the second lattice 4 are fixedly arranged in a parallel state at a predetermined distance from each other and enclosed in the frame portion 61. As shown in FIG. 3, the first lattice 3 and the second lattice 4 enclosed in the frame portion 61 satisfy the above (Formula 1) and Formula (2) on the Z2 side of the imaging stage 114. Has been placed. The first grid 3 and the second grid arranged in this way are covered with a lower cover 17b as shown in FIG.
 温度センサ62は、収納部材6の内部の温度を検出するもので、この実施形態では、図4に示すように枠部61の内面に取り付けられている。 The temperature sensor 62 detects the temperature inside the storage member 6, and in this embodiment, is attached to the inner surface of the frame portion 61 as shown in FIG.
 温度調整部材63は、収納部材6の内部の温度を調整する素子で、例えばペルチェ素子を備えて構成される。温度調整部材63は、枠部61の内面に取り付けられており、温度センサ62の検出温度に基づき、収納部材6の内部の温度を上げまたは下げることで、設定温度範囲に調整する。 The temperature adjustment member 63 is an element that adjusts the temperature inside the storage member 6, and includes, for example, a Peltier element. The temperature adjustment member 63 is attached to the inner surface of the frame portion 61, and adjusts to the set temperature range by raising or lowering the temperature inside the storage member 6 based on the temperature detected by the temperature sensor 62.
 次に、本実施形態のタルボ・ロー干渉計の動作について説明する。図9は、第0格子と第1格子とが第1距離を隔てて平行になった状態におけるX線撮像部の説明図である。図10は、第0格子が第1格子に対して平行状態から第2軸回りに回動した状態におけるX線撮像部の説明図である。図11は、第0格子が第1格子に対して平行状態から第3軸回りに回動した状態におけるX線撮像部の説明図である。 Next, the operation of the Talbot-Lau interferometer of this embodiment will be described. FIG. 9 is an explanatory diagram of the X-ray imaging unit in a state where the 0th grating and the first grating are parallel to each other with a first distance. FIG. 10 is an explanatory diagram of the X-ray imaging unit in a state in which the 0th grating is rotated around the second axis from the parallel state with respect to the first grating. FIG. 11 is an explanatory diagram of the X-ray imaging unit in a state in which the 0th grating is rotated around the third axis from the parallel state with respect to the first grating.
 被写体Sが撮影用載置台114に載置されることによって、被写体Sが第0格子2と第1格子3との間に配置される。 The subject S is placed between the 0th grid 2 and the first grid 3 by placing the subject S on the imaging stage 114.
 この状態で、タルボ・ロー干渉計1のユーザ(オペレータ)によって図略の操作部から被写体Sの撮像が指示されると、処理部16のシステム制御部162は、被写体Sに向けてX線を照射すべくX線制御部17に制御信号を出力する。この制御信号によってX線制御部17は、X線電源部14にX線源12へ給電させ、X線源12は、X線を放射して被写体Sに向けてX線を照射する。 In this state, when the user (operator) of the Talbot-Lau interferometer 1 instructs the subject S to capture an image from the operation unit (not shown), the system control unit 162 of the processing unit 16 emits X-rays toward the subject S. A control signal is output to the X-ray controller 17 for irradiation. With this control signal, the X-ray control unit 17 causes the X-ray power supply unit 14 to supply power to the X-ray source 12, and the X-ray source 12 emits X-rays and irradiates the subject S with X-rays.
 システム制御部162は、後述の振動付与部材5の第1圧電素子51を作動させる第1給電信号、振動付与部材5の第2圧電素子52を作動させる第2給電信号および振動付与部材5の第3圧電素子53を作動させる第3給電信号を、第1圧電素子51、第2圧電素子52および第3圧電素子53に重畳的に送信する。これにより、第1圧電素子51、第2圧電素子52および第3圧電素子53が作動し、第0格子2は、Z1-Z2方向に振動し、また、X軸2a回りおよびY軸2b回りに振動する。 The system control unit 162 includes a first power supply signal that operates a first piezoelectric element 51 of a vibration applying member 5 described later, a second power supply signal that operates a second piezoelectric element 52 of the vibration applying member 5, and a first power supply signal of the vibration applying member 5. A third power supply signal for operating the third piezoelectric element 53 is transmitted in a superimposed manner to the first piezoelectric element 51, the second piezoelectric element 52 and the third piezoelectric element 53. As a result, the first piezoelectric element 51, the second piezoelectric element 52, and the third piezoelectric element 53 operate, and the zeroth lattice 2 vibrates in the Z1-Z2 direction, and around the X axis 2a and the Y axis 2b. Vibrate.
 照射されたX線は、第0格子2および被写体Sを介して第1格子3を通過し、第1格子3によって回折され、タルボ距離だけ離れた位置に第1格子3の自己像であるタルボ像Tが形成される。 The irradiated X-rays pass through the first grating 3 through the zeroth grating 2 and the subject S, are diffracted by the first grating 3, and are talvo which is a self-image of the first grating 3 at a position separated by the Talbot distance. An image T is formed.
 この形成されたX線のタルボ像Tは、第2格子4によって回折され、モアレを生じてモアレ縞の像が形成される。 The formed X-ray Talbot image T is diffracted by the second grating 4 to generate moire and form a moire fringe image.
 その際、予め設定した第0格子2と第1格子3との距離がずれ、または第0格子2と第1格子3とが平行でなくなり、或いは、予め設定した第1格子3と第2格子4との距離がずれ、または第1格子3と第2格子4との平行でなくなると、X線撮像部13によって撮像される像が不鮮明になってしまう。 At that time, the distance between the preset 0th lattice 2 and the first lattice 3 is shifted, or the 0th lattice 2 and the first lattice 3 are not parallel, or the preset first lattice 3 and the second lattice 3 If the distance from 4 is shifted, or the first grating 3 and the second grating 4 are not parallel, the image picked up by the X-ray imaging unit 13 becomes unclear.
 例えば、図10に示すように第0格子2がX軸2a回りに回動して第1格子3に対して傾いて平行でなくなると、X線撮像部13によって撮像される像13aが不鮮明になってしまう。また、例えば図11に示すように第0格子2がY軸2b回りに回動して第1格子3に対して傾いて平行でなくなると、X線撮像部13によって撮像される像13aが不鮮明になってしまう。さらに、図示しないが、第0格子2がZ1-Z2方向に移動して第1格子3に対する距離がずれると、同様に、X線撮像部13によって撮像される像13aが不鮮明になってしまう。 For example, as shown in FIG. 10, when the 0-th grating 2 rotates around the X axis 2 a and is inclined and not parallel to the first grating 3, the image 13 a captured by the X-ray imaging unit 13 becomes unclear. turn into. Further, for example, as shown in FIG. 11, when the 0th grating 2 rotates around the Y axis 2b and is not parallel to the first grating 3, the image 13a imaged by the X-ray imaging unit 13 is unclear. Become. Further, although not shown, when the 0-th grating 2 moves in the Z1-Z2 direction and the distance to the first grating 3 is shifted, the image 13a picked up by the X-ray imaging unit 13 is also unclear.
 このような互いに隣接する2つ格子2、3、4の互いの距離のずれまたは傾きは、例えばタルボ・ロー干渉計の全体が外部から振動や温度変化を受けると生じるおそれがある。 Such a shift or inclination of the distance between the two lattices 2, 3, 4 adjacent to each other may occur, for example, when the Talbot-Lau interferometer as a whole is subjected to vibrations or temperature changes from the outside.
 しかし、この実施形態では、第1圧電素子51、第2圧電素子52および第3圧電素子53によって第0格子2が、Z1-Z2方向に振動し、また、X軸2a回りおよびY軸2b回りに振動しているため、その振動中に、第0格子2が第1格子3に対して第1距離L4だけ隔てて平行となる位置にくる。また、第1圧電素子51によりX軸2a回りに振動させる第0格子2の振動周波数と第2圧電素子52によりY軸2b回りに振動させる第0格子2の振動周波数とが互いに素、即ち互いに1以外の公約数を持たないようにすることで、ミソスリ運動(歳差運動)または櫓の運動を起こすことがなく、その振動中に、第0格子2が第1格子3に対して平行となるときがくる。 However, in this embodiment, the first piezoelectric element 51, the second piezoelectric element 52, and the third piezoelectric element 53 cause the zeroth lattice 2 to vibrate in the Z1-Z2 direction, and around the X axis 2a and the Y axis 2b. Therefore, during the vibration, the 0th grating 2 comes to a position parallel to the first grating 3 with a first distance L4. In addition, the vibration frequency of the 0th lattice 2 that vibrates around the X axis 2a by the first piezoelectric element 51 and the vibration frequency of the 0th lattice 2 that vibrates around the Y axis 2b by the second piezoelectric element 52 are mutually prime, that is, mutually By not having a common divisor other than 1, no miso motion (precession motion) or wrinkle motion occurs, and the 0th lattice 2 is parallel to the first lattice 3 during the vibration. The time will come.
 第1格子3と第2格子4とは、収納部材6に互いに固定状態で所定温度で封入されているため、第1格子3と第2格子4とは、外部から振動や温度変化を受けても、互いに第2距離を隔てて平行状態に維持される。したがって、第0格子2が第1格子3に対して第1距離だけ隔てて平行となった位置では、第1格子3と第2格子4とが互いに第2距離だけ隔てて平行となっている。 Since the first lattice 3 and the second lattice 4 are sealed in the storage member 6 at a predetermined temperature, the first lattice 3 and the second lattice 4 are subjected to vibration and temperature changes from the outside. Are maintained in a parallel state at a second distance from each other. Accordingly, at a position where the 0th grating 2 is parallel to the first grating 3 by a first distance, the first grating 3 and the second grating 4 are parallel to each other by a second distance. .
 第0格子2が、振動に際して第1格子3に対して設定距離だけ隔てて平行となった位置にくると、第0格子2の第1干渉パターン221と収納部材6の第2干渉パターン613との干渉模様が等間隔になる。本実施形態では、検出部131は、第1干渉パターン211を通過したX線と第2干渉パターン613を通過したX線との干渉によって生じた干渉模様を検出し、この検出結果を処理部16のシステム制御部162へ出力し、システム制御部162は、この検出部131の検出結果の干渉模様が等間隔になると、カメラ制御部15を介してX線撮像部13へ、撮像を指示する制御信号を出力する。 When the 0th grating 2 comes to a position parallel to the first grating 3 by a set distance during vibration, the first interference pattern 221 of the 0th grating 2 and the second interference pattern 613 of the storage member 6 The interference pattern is equally spaced. In the present embodiment, the detection unit 131 detects an interference pattern caused by the interference between the X-rays that have passed through the first interference pattern 211 and the X-rays that have passed through the second interference pattern 613, and the detection result is used as the processing unit 16. Is output to the system control unit 162, and the system control unit 162 instructs the X-ray imaging unit 13 to instruct imaging via the camera control unit 15 when the interference pattern of the detection result of the detection unit 131 is equally spaced. Output a signal.
 この撮像を指示する制御信号により、X線撮像部13は、その干渉模様が等間隔になったタイミングでモアレ縞の像13aを撮像する。よって、その際に、X線撮像部13で検出される像13aは、図9に示すように鮮明な画像になっている。 The X-ray imaging unit 13 captures the moiré fringe image 13a at the timing when the interference pattern is equally spaced by the control signal instructing the imaging. Therefore, at that time, the image 13a detected by the X-ray imaging unit 13 is a clear image as shown in FIG.
 そして、X線撮像部13は、モアレ縞の像の画像信号をカメラ制御部15を介して処理部16へ出力する。この画像信号は、処理部16の画像処理部161によって処理される。 Then, the X-ray imaging unit 13 outputs the image signal of the moire fringe image to the processing unit 16 via the camera control unit 15. This image signal is processed by the image processing unit 161 of the processing unit 16.
 なお、上記実施形態では、第2干渉パターン613は、第1格子3と第2格子4とを収納した収納部材6に形成され、第1格子3が収納部材6を介して間接的に第2干渉パターン613を備えたものとされたが、この形態のものに限らず、適宜変更できる。例えば第1格子3と第2格子4との何れか一方または両方に、直接的に第2干渉パターン613が形成されることにより、第1格子3と第2格子4との何れか一方または両方に第2干渉パターン613を備えたものとしてもよい。 In the above embodiment, the second interference pattern 613 is formed on the storage member 6 that stores the first lattice 3 and the second lattice 4, and the first lattice 3 is indirectly second through the storage member 6. Although the interference pattern 613 is provided, the present invention is not limited to this configuration and can be changed as appropriate. For example, the second interference pattern 613 is directly formed on one or both of the first grating 3 and the second grating 4, so that either one or both of the first grating 3 and the second grating 4 is formed. The second interference pattern 613 may be provided.
 また、上記実施形態では、X線を用いたが、X線に代えて可視光を用いてもよく、適宜変更できる。 In the above embodiment, X-rays are used, but visible light may be used instead of X-rays, and can be changed as appropriate.
 本明細書は、上記のように様々な態様の技術を開示しているが、そのうち主な技術を以下に纏める。 This specification discloses various modes of technology as described above, and the main technologies are summarized below.
 一態様に係るタルボ・ロー干渉計は、X線を放射するX線源を有する干渉計本体と、前記X線源から順に第1方向に沿って配置され前記干渉計本体に保持された第0格子、第1格子および第2格子と、前記第0格子が振動に際して前記第1格子と所定の第1距離を隔てて平行になる位置にくるように前記第0格子に振動を付与する振動付与部材とを備え、前記第0格子は、前記第1方向に移動可能、且つ、前記第1方向に直交する第2方向に延びる第2軸回り、および、前記第1方向と第2方向とのそれぞれに直交する第3方向に延びる第3軸回りにそれぞれ回動可能に前記干渉計本体に保持され、前記第1格子と第2格子とは、互いに所定の第2距離を隔てて互いに平行になった状態で、互いに固定され、前記振動付与部材は、前記第0格子を前記第1方向に振動させ、且つ前記第2軸回りと前記第3軸回りとのそれぞれに振動させる。 A Talbot-Lau interferometer according to an aspect includes an interferometer body having an X-ray source that emits X-rays, and a zeroth array arranged in the first direction in order from the X-ray source and held by the interferometer body. Applying vibration to apply vibration to the zeroth lattice such that the lattice, the first lattice, the second lattice, and the zeroth lattice are in parallel with the first lattice with a predetermined first distance in vibration. The zeroth lattice is movable in the first direction and extends in a second direction perpendicular to the first direction, and the zeroth lattice is between the first direction and the second direction. The interferometer body is rotatably held around a third axis extending in a third direction orthogonal to each other, and the first grating and the second grating are parallel to each other with a predetermined second distance from each other. In this state, the vibration applying members are fixed to each other, By vibrating the child in the first direction, to and vibrate in each of said second axis and said third axis.
 このようなタルボ・ロー干渉計は、第1格子と第2格子とが、互いに第2距離を隔てて互いに平行になった状態で、互いに一体に固定されているため、振動や温度変化を受けても、第1格子と第2格子とは、互いに第2距離を隔てて互いに平行になった状態を維持できる。 In such a Talbot-Lau interferometer, the first grating and the second grating are fixed to each other in a state where they are parallel to each other at a second distance, and thus are subject to vibration and temperature change. However, the first grating and the second grating can maintain a state of being parallel to each other with a second distance.
 第0格子が振動や温度変化を受けて第0格子が第1格子との距離が変化し、或いは、平行状態がずれても、振動付与部材が、第0格子を、前記第1方向に移動させるように振動させ、且つ、第2軸回りと第3軸回りとのそれぞれに回動するように振動させることによって、その振動中に、第0格子が第1格子と第1距離を隔てて平行になった状態の位置にくるときがある。したがって、上記タルボ・ロー干渉計は、その位置で、被写体を撮像すれば被写体のより鮮明な画像を得ることができる。 The vibration applying member moves the 0th lattice in the first direction even if the 0th lattice is subjected to vibration or temperature change and the distance between the 0th lattice and the first lattice changes or the parallel state is shifted. And the zeroth grid is spaced apart from the first grid by the first distance during the vibration by vibrating so as to rotate around the second axis and around the third axis. Sometimes it comes to the position of the parallel state. Therefore, the Talbot-Lau interferometer can obtain a clearer image of the subject by imaging the subject at that position.
 他の一態様では、上述のタルボ・ロー干渉計において、前記第2軸回りに前記第0格子を振動させる振動周波数と前記第3軸回りに前記第0格子を振動させる振動周波数とは、互いに素である。 In another aspect, in the above-described Talbot-Lau interferometer, a vibration frequency for vibrating the zeroth lattice about the second axis and a vibration frequency for vibrating the zeroth lattice about the third axis are mutually It is prime.
 ミソスリ運動(歳差運動)または櫓の運動を起こすと第0格子が第1格子と平行にならない。そこで、上記構成のように、第2軸回りに回動させる振動周波数と第3軸回りに回動させる振動周波数とが互いに素、即ち互いに1以外の公約数を持たないようにすることで、上記タルボ・ロー干渉計は、ミソスリ運動(歳差運動)または櫓の運動を起こすことを防止できる。 と The zeroth lattice does not become parallel to the first lattice when a miso-motion (precession) or heel movement occurs. Therefore, as in the above configuration, the vibration frequency rotated about the second axis and the vibration frequency rotated about the third axis are not prime, that is, have no common divisor other than 1. The Talbot-Lau interferometer can prevent mismovement (precession movement) or wrinkle movement.
 他の一態様では、これら上述のタルボ・ロー干渉計において、前記第1格子と第2格子とは、収納部材の内部に温度調整可能に封入されている。 In another aspect, in the above-described Talbot-Lau interferometer, the first grating and the second grating are sealed inside the housing member so that the temperature can be adjusted.
 このようなタルボ・ロー干渉計は、第1格子と第2格子とが、収納部材の内部に温度調整可能に封入されているため、互いに第2距離を隔てて互いに平行になった状態に確実に維持される。第1格子と第2格子とが収納部材に収納されても、被写体は、第0格子と第1格子との間に配置されるため、撮像に支障をきたすようなことがない。 In such a Talbot-Lau interferometer, the first grating and the second grating are sealed in the housing member so that the temperature can be adjusted. Therefore, the Talbot-Lau interferometer is reliably in a state of being parallel to each other with a second distance. Maintained. Even if the first grid and the second grid are stored in the storage member, the subject is arranged between the 0th grid and the first grid, so that the imaging is not hindered.
 他の一態様では、これら上述のタルボ・ロー干渉計において、前記第1方向における、前記第2格子を挟んで前記第1格子と反対側に、撮像部を、更に備え、前記第0格子は、第1干渉パターンを備え、前記第1格子と第2格子との少なくとも一方は、前記第0格子が前記第1格子と前記第1距離を隔てて平行になると前記第1干渉パターンと干渉する第2干渉パターンを備え、前記撮像部は、撮像部本体と、前記干渉を検出する検出部を備え、前記撮像部本体は、前記検出部の検出結果に基いて、前記第1干渉パターンと干渉する第2干渉パターンとの干渉模様が等間隔になったタイミングで被写体を撮像する。 In another aspect, in the above-described Talbot-Lau interferometer, the first grating further includes an imaging unit on the opposite side of the first grating across the second grating, and the zeroth grating is And a first interference pattern, wherein at least one of the first grating and the second grating interferes with the first interference pattern when the zeroth grating is parallel to the first grating with the first distance therebetween. A second interference pattern, wherein the imaging unit includes an imaging unit body and a detection unit that detects the interference, and the imaging unit body interferes with the first interference pattern based on a detection result of the detection unit. The subject is imaged at a timing at which the interference pattern with the second interference pattern is equally spaced.
 このようなタルボ・ロー干渉計は、検出部の検出結果に基いて撮像部本体が被写体を撮像するため、第0格子が第1格子と第1距離を隔てて平行になった状態を容易に検出でき、その状態で容易に確実に被写体を撮像できる。 In such a Talbot-Lau interferometer, since the imaging unit main body captures an image of the subject based on the detection result of the detection unit, it is easy to make the 0th grating parallel to the first grating with a first distance. The subject can be detected and the subject can be easily and reliably imaged in that state.
 この出願は、2015年7月3日に出願された日本国特許出願特願2015-134258を基礎とするものであり、その内容は、本願に含まれるものである。 This application is based on Japanese Patent Application No. 2015-134258 filed on July 3, 2015, the contents of which are included in the present application.
 本発明を表現するために、上述において図面を参照しながら実施形態を通して本発明を適切且つ十分に説明したが、当業者であれば上述の実施形態を変更および/または改良することは容易に為し得ることであると認識すべきである。したがって、当業者が実施する変更形態または改良形態が、請求の範囲に記載された請求項の権利範囲を離脱するレベルのものでない限り、当該変更形態または当該改良形態は、当該請求項の権利範囲に包括されると解釈される。 In order to express the present invention, the present invention has been properly and fully described through the embodiments with reference to the drawings. However, those skilled in the art can easily change and / or improve the above-described embodiments. It should be recognized that this is possible. Therefore, unless the modifications or improvements implemented by those skilled in the art are at a level that departs from the scope of the claims recited in the claims, the modifications or improvements are not covered by the claims. To be construed as inclusive.
 本発明によれば、タルボ・ロー干渉計が提供できる。 According to the present invention, a Talbot-Lau interferometer can be provided.

Claims (4)

  1.  X線を放射するX線源を有する干渉計本体と、前記X線源から順に第1方向に沿って配置され前記干渉計本体に保持された第0格子、第1格子および第2格子と、前記第0格子が振動に際して前記第1格子と所定の第1距離を隔てて平行になる位置にくるように前記第0格子に振動を付与する振動付与部材とを備え、
     前記第0格子は、前記第1方向に移動可能、且つ、前記第1方向に直交する第2方向に延びる第2軸回り、および、前記第1方向と第2方向とのそれぞれに直交する第3方向に延びる第3軸回りにそれぞれ回動可能に前記干渉計本体に保持され、
     前記第1格子と第2格子とは、互いに所定の第2距離を隔てて互いに平行になった状態で、互いに固定され、
     前記振動付与部材は、前記第0格子を前記第1方向に振動させ、且つ前記第2軸回りと前記第3軸回りとのそれぞれに振動させる、
     タルボ・ロー干渉計。
    An interferometer body having an X-ray source that emits X-rays, and a zeroth grating, a first grating, and a second grating that are arranged in the first direction in order from the X-ray source and are held by the interferometer body; A vibration imparting member that imparts vibration to the zeroth lattice so that the zeroth lattice is in a position parallel to the first lattice at a predetermined first distance upon vibration,
    The zeroth grating is movable in the first direction and extends around a second axis extending in a second direction orthogonal to the first direction and is orthogonal to each of the first direction and the second direction. Held in the interferometer body so as to be rotatable around a third axis extending in three directions,
    The first grating and the second grating are fixed to each other in a state of being parallel to each other at a predetermined second distance;
    The vibration applying member vibrates the zeroth lattice in the first direction and vibrates around the second axis and around the third axis.
    Talbot-Lau interferometer.
  2.  前記第2軸回りに前記第0格子を振動させる振動周波数と前記第3軸回りに前記第0格子を振動させる振動周波数とは、互いに素である、
     請求項1記載のタルボ・ロー干渉計。
    The vibration frequency for vibrating the zeroth lattice around the second axis and the vibration frequency for vibrating the zeroth lattice around the third axis are relatively prime.
    The Talbot-Lau interferometer according to claim 1.
  3.  前記第1格子と第2格子とは、収納部材の内部に温度調整可能に封入されている、
     請求項1または請求項2に記載のタルボ・ロー干渉計。
    The first grid and the second grid are sealed inside the storage member so as to be temperature-adjustable.
    The Talbot-Lau interferometer according to claim 1 or 2.
  4.  前記第1方向における、前記第2格子を挟んで前記第1格子と反対側に、撮像部を、更に備え、
     前記第0格子は、第1干渉パターンを備え、
     前記第1格子と第2格子との少なくとも一方は、前記第0格子が前記第1格子と前記第1距離を隔てて平行になると前記第1干渉パターンと干渉する第2干渉パターンを備え、
     前記撮像部は、撮像部本体と、前記干渉を検出する検出部を備え、
     前記撮像部本体は、前記検出部の検出結果に基いて、前記第1干渉パターンと干渉する第2干渉パターンとの干渉模様が等間隔になったタイミングで被写体を撮像する、
     請求項1ないし請求項3のいずれか1項に記載のタルボ・ロー干渉計。
    An imaging unit is further provided on the opposite side of the first grating across the second grating in the first direction,
    The zeroth grating comprises a first interference pattern;
    At least one of the first grating and the second grating includes a second interference pattern that interferes with the first interference pattern when the zeroth grating is parallel to the first grating with the first distance between them,
    The imaging unit includes an imaging unit body and a detection unit that detects the interference,
    The imaging unit main body captures an image of a subject at a timing at which the interference pattern between the first interference pattern and the second interference pattern interferes with each other based on the detection result of the detection unit.
    The Talbot-Lau interferometer according to any one of claims 1 to 3.
PCT/JP2016/064038 2015-07-03 2016-05-11 Talbot-lau interferometer WO2017006620A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017527108A JP6638728B2 (en) 2015-07-03 2016-05-11 Talbot-Lau interferometer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015134258 2015-07-03
JP2015-134258 2015-07-03

Publications (1)

Publication Number Publication Date
WO2017006620A1 true WO2017006620A1 (en) 2017-01-12

Family

ID=57685109

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/064038 WO2017006620A1 (en) 2015-07-03 2016-05-11 Talbot-lau interferometer

Country Status (2)

Country Link
JP (1) JP6638728B2 (en)
WO (1) WO2017006620A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10929839B2 (en) 2015-12-31 2021-02-23 Mastercard International Incorporated Digital wallet with installments and combo-card

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010146503A1 (en) * 2009-06-16 2010-12-23 Koninklijke Philips Electronics N. V. Correction method for differential phase contrast imaging
WO2011070488A1 (en) * 2009-12-10 2011-06-16 Koninklijke Philips Electronics N.V. Phase contrast imaging
WO2013148010A1 (en) * 2012-03-30 2013-10-03 Carestream Health, Inc. Hybrid pci system for medical radiographic imaging
JP2014506352A (en) * 2010-12-13 2014-03-13 パウル・シェラー・インスティトゥート Method and system for image integration using constrained optimization for phase contrast imaging with a grating device
WO2014100063A1 (en) * 2012-12-21 2014-06-26 Carestream Health, Inc. Medical radiographic grating based differential phase contrast imaging

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010146503A1 (en) * 2009-06-16 2010-12-23 Koninklijke Philips Electronics N. V. Correction method for differential phase contrast imaging
WO2011070488A1 (en) * 2009-12-10 2011-06-16 Koninklijke Philips Electronics N.V. Phase contrast imaging
JP2014506352A (en) * 2010-12-13 2014-03-13 パウル・シェラー・インスティトゥート Method and system for image integration using constrained optimization for phase contrast imaging with a grating device
WO2013148010A1 (en) * 2012-03-30 2013-10-03 Carestream Health, Inc. Hybrid pci system for medical radiographic imaging
WO2014100063A1 (en) * 2012-12-21 2014-06-26 Carestream Health, Inc. Medical radiographic grating based differential phase contrast imaging

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10929839B2 (en) 2015-12-31 2021-02-23 Mastercard International Incorporated Digital wallet with installments and combo-card

Also Published As

Publication number Publication date
JPWO2017006620A1 (en) 2018-04-19
JP6638728B2 (en) 2020-01-29

Similar Documents

Publication Publication Date Title
WO2011033798A1 (en) X-ray imaging device, x-ray image system, and x-ray image generation method
US20150071402A1 (en) X-ray imaging system
JP2010051945A (en) Resonance frequency-adjustable apparatus for collecting piezoelectric vibration energy
JP6478538B2 (en) Radiation imaging apparatus and radiation imaging system
JP5675265B2 (en) Vibrating device and imaging device using the same
JP2009240378A (en) X-ray imaging apparatus and method of manufacturing slit member used for the same
WO2017006620A1 (en) Talbot-lau interferometer
KR20070088626A (en) Platform transport systems
JP2010094017A (en) Ultrasonic motor, and carrying apparatus with the same
JP2011045655A (en) X-ray radiographic equipment
JP2013158242A (en) Slip-stick piezoelectric actuator
US20160126864A1 (en) Vibration drive device in which separation between members by external force is suppressed, lens barrel, image pickup apparatus, and stage device
JP6365299B2 (en) Diffraction grating, diffraction grating manufacturing method, grating unit, and X-ray imaging apparatus
JP5202538B2 (en) Vibration type actuator
JP2018151414A (en) Image blur correction apparatus and optical device
JP6644950B2 (en) Variable focused X-ray scattering device
JP2008048220A (en) Image blurring corrector
US11258376B2 (en) Vibration wave motor, drive control system, optical apparatus, and electronic apparatus
US10324308B2 (en) Image stabilization apparatus, lens apparatus having image stabilization apparatus, and image pickup apparatus having image stabilization apparatus
JP2018128579A (en) Method of manufacturing diffraction grating
JP7254631B2 (en) Oscillatory wave motors, drive control systems and optical equipment
WO2017212789A1 (en) Radiation image pickup device and radiation image pickup system
JP2016013009A (en) Driving method of vibrator, and electronic apparatus
JP2018186698A (en) Vibration-type driving device, method for controlling vibration-type driving device, program, robot, pan head of imaging device, and image forming apparatus
JP2012065840A (en) X-ray radiography apparatus and x-ray image system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16821091

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017527108

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16821091

Country of ref document: EP

Kind code of ref document: A1