WO2017006445A1 - Optical transceiver module and information device using same - Google Patents

Optical transceiver module and information device using same Download PDF

Info

Publication number
WO2017006445A1
WO2017006445A1 PCT/JP2015/069580 JP2015069580W WO2017006445A1 WO 2017006445 A1 WO2017006445 A1 WO 2017006445A1 JP 2015069580 W JP2015069580 W JP 2015069580W WO 2017006445 A1 WO2017006445 A1 WO 2017006445A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
optical waveguide
core
light emitting
cores
Prior art date
Application number
PCT/JP2015/069580
Other languages
French (fr)
Japanese (ja)
Inventor
一男 石山
康信 松岡
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2015/069580 priority Critical patent/WO2017006445A1/en
Priority to JP2017527020A priority patent/JP6471229B2/en
Publication of WO2017006445A1 publication Critical patent/WO2017006445A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements

Definitions

  • the present invention relates to an optical transmission / reception module that enables large-capacity signal processing between signal transmission / processing devices, and an information device using the same.
  • Interconnect technology can be divided into inter-device transmission, intra-device transmission (backplane), and inter-chip transmission according to the signal transmission distance.
  • Electric transmission has been used for both transmissions, but with the increase in required transmission speed, optical interconnect technology has begun to be introduced from transmission between devices with a long transmission distance.
  • transmission loss increases dramatically, making it difficult to increase the transmission distance.
  • the transmission speed and transmission distance have been increased by applying low dielectric constant substrates and additional circuits such as pre-emphasis and equalizer, but even with these technologies, transmission speed and transmission equivalent to backplane transmission have been achieved.
  • Each distance is said to be the limit of electric transmission of 10 Gbps (Non-patent Document 1).
  • the transmission capacity of the backplane that connects the internal routers of backbone routers and large-scale servers exceeds 1 Tbps in 2008, and is expected to increase 1.5 times a year in the future. After 2015, transmission technology exceeding 25 Gbps is required, and the bandwidth limit of the electric backplane becomes serious.
  • backplane opticalization technology optical backplane technology
  • the loss due to the reflection of light and the transmission loss are also very easy to control because the frequency dependence is very small. In this way, opticalization of high-frequency transmission lines has the potential for large-capacity transmission compared to conventional electrical transmission, and development related to optical interconnect technology (optical transceiver modules, optical fiber wiring) has become active. ing.
  • Optical transceiver modules for optical interconnects drive optical subassemblies, light emitting / receiving elements, optical connectors that enable optical coupling of light emitting / receiving elements and optical transmission media (optical fiber or optical waveguide), and light emitting / receiving elements It is composed of an electronic circuit and an electrical connector for electrically connecting the electronic circuit and the board in the apparatus.
  • the optical transmission / reception module is mounted after being electrically connected to the in-device board (herein, the in-device boat indicates an interface board in the transmission device and a switch board such as a switch LSI).
  • This optical subassembly includes a laser diode that emits an optical signal, a light emitting / receiving element of a photodiode that converts the optical signal into an electrical signal, and a laser driver electronic circuit that drives the laser diode to convert the optical signal into an electrical signal
  • a transimpedance electronic circuit for amplifying an electric signal from the photodiode is mounted on the electric wiring board.
  • the transmission capacity of the optical interconnect will also increase.
  • there are methods such as 1) increasing the transmission speed per channel, 2) using the wavelength multiplexing method, and 3) using the spatial multiplexing method.
  • a multi-core fiber is an optical fiber in which a plurality of cores exist in a common clad (that is, in one core).
  • the maximum cladding diameter is less than twice the diameter of conventional optical fiber. Therefore, in addition to the increase in transmission capacity due to spatial multiplexing, the space utilization efficiency is high and a large number of optical fibers are wired in a narrow space. Valid in the interconnect. In addition, it is highly flexible and is particularly effective in case of internal wiring.
  • the light emitting / receiving elements are arranged in accordance with the core arrangement (concentric circle) of the multi-core fiber.
  • the multi-core fiber and the light emitting / receiving element are optically coupled by a butt joint method (butting method) (Non-patent Document 3).
  • a grating coupler optically connected to the optical waveguide and the light emitting / receiving element is arranged in accordance with the core arrangement of the multicore fiber.
  • the optical coupling between the multi-core fiber and the grating coupler is taken by the butt joint method (Patent Document 1).
  • Patent Document 4 As another spatial multiplexing method, a conventional multicore connector in which optical fibers having a single core are two-dimensionally arranged (usually 12-core optical fibers are arranged in one stage, so the total number of optical fibers in the case of n stages is There is a method using a number of cores of 12 ⁇ n). In this case, the optical waveguide becomes multi-stage (laminated), and the distance between the optical waveguide and the light emitting / receiving element increases, so there is a problem that the optical coupling efficiency deteriorates.
  • Patent Document 4 and a system using a multi-core optical path conversion connector (Non-Patent Document 5) have been proposed.
  • the optical transceiver module for optical interconnects equipped with the two types of conventional multi-core fibers described in [Background Technology] has the following problems.
  • the end face of the multi-core fiber is in contact with the light emitting / receiving element face, so the multi-core fiber is perpendicular to the optical subassembly surface.
  • the optical subassembly is perpendicular to the board surface, so it becomes tall and the problem is that it cannot be mounted on the board in the device if the distance between the boards in the device is short. .
  • the multi-core fiber As a means to solve this problem, it is conceivable to bend the multi-core fiber and mount the optical subassembly surface horizontally on the board surface.
  • the multicore fiber has a higher bending loss than the conventional (single core) single mode fiber, it is difficult to reduce the height by bending the fiber.
  • the bending loss of a single mode fiber is 1 dB or less, and the bending loss of a multi-core fiber is 3.4 dB (Non-patent Document 6).
  • the multi-core fiber is butt-jointed with the grating coupler formed on the optical subassembly surface. Therefore, when this module is mounted on the internal board, the optical subassembly surface is the internal board surface. It becomes perpendicular to. As a result, it becomes tall and, like the first embodiment, it is necessary to bend the multi-core fiber in order to reduce the height.
  • the method of solving the problem of the optical transceiver module mounted with the above two multi-core fibers is to use an optical connection section in which the optical connector section mounted with the multi-core fiber and the optical waveguide section with the optical path conversion section are connected at the end face.
  • an optical connection section in which the optical connector section mounted with the multi-core fiber and the optical waveguide section with the optical path conversion section are connected at the end face.
  • FIG. 3A is an example of end face connection between a multi-core fiber and an optical waveguide (the light emitting / receiving element and the lens shown in FIGS. 3B, 3C, 3D, and 3E are omitted).
  • FIG. 3B is a cross-sectional view of the optical connection portion showing that the optical coupling efficiency between the optical waveguide core and the light emitting element in FIG.
  • FIG. 3C is a cross-sectional view of the optical connection portion showing that the optical waveguide core and the light emitting element of FIG.
  • the lens is designed so that the optical coupling efficiency between the lowermost optical waveguide and the light emitting element is increased.
  • the light beam diameter is larger than that of the region of the optical path changing portion of the uppermost optical waveguide, so that the optical coupling efficiency is lowered.
  • FIG. 3B the light beam diameter is larger than that of the region of the optical path changing portion of the uppermost optical waveguide, so that the optical coupling efficiency is lowered.
  • an object of the present invention is to provide an optical transceiver module having an optical connection part in which a multi-core fiber and an optical waveguide are connected to each other at an end face, in which the optical coupling efficiency of each channel is uniform and high, and the height can be reduced. It is in.
  • a method of using lenses having different curvatures and sizes for each optical waveguide can be considered, but it is difficult or expensive to form different lenses. Therefore, it is desirable to use the same lens for each optical waveguide.
  • the features of the present invention are: (1) A light emitting / receiving element that transmits or receives an optical signal, an electronic circuit that drives the light emitting / receiving element to convert the electric signal into an optical signal, and an amplifier that amplifies the electric signal converted from the optical signal A plurality of optical circuits with optical path converters, which are optically connected to an optical subassembly mounted on an electrical wiring substrate and a plurality of cores of a multi-core fiber that transmits optical signals to and from the light emitting / receiving element, respectively.
  • an optical connection portion having an optical waveguide made of a waveguide core
  • an optical connection portion comprising an optical waveguide made of an optical waveguide core with an optical path conversion portion having at least one size different from that of another optical path conversion portion
  • An optical transceiver module comprising an optical connector having a multi-core fiber that is optically connected at an end face, and an electrical connector that enables electrical connection between the electrical wiring board and the board in the apparatus.
  • at least one of the optical waveguide cores in the optical waveguide optically connected to the light emitting element is an optical waveguide core whose core width is increased in a taper direction from the multicore fiber to the optical path changing unit.
  • At least one of the optical waveguide cores in the optical waveguide to be connected has an optical waveguide core whose core width narrows in a tapered shape in the direction from the multi-core fiber to the optical path changing unit.
  • at least one of the optical waveguide cores in the optical waveguide optically connected to the light emitting element receives the optical waveguide core whose core width and thickness increase in a taper shape from the multi-core fiber to the optical path changing unit.
  • at least one of the optical waveguide cores in the optical waveguide optically connected to the element has an optical waveguide core whose core width and thickness are reduced in a taper shape from the multi-core fiber to the optical path conversion unit.
  • a substrate for electrical wiring having an optical through hole for transmitting light it is preferable to use a substrate for electrical wiring having an optical through hole for transmitting light, and to dispose or form a lens on the optical connection portion.
  • a substrate for electric wiring made of a material that transmits light with integrated lenses.
  • a light emitting / receiving element that transmits or receives an optical signal
  • an electronic circuit that drives the light emitting / receiving element to convert the electric signal into an optical signal, and amplifies the electric signal converted from the optical signal
  • an optical subassembly mounted on an electric wiring board and a plurality of cores of a multi-core fiber that transmits optical signals to and from the light emitting and receiving elements, respectively,
  • an optical connecting portion having an optical waveguide consisting of a plurality of optical waveguide cores, the optical connecting portion having an optical waveguide in which the cross-sectional area of at least one optical path changing portion is different from the cross-sectional area of the optical waveguide core at the end of the optical waveguide opposite to the optical path changing portion.
  • an optical connector comprising a multi-core fiber that is optically connected to the optical connection portion at the end face, and an optical connector that can electrically connect the electrical wiring board and the in-device board. Is in the communication module.
  • at least one of the optical waveguide cores in the optical waveguide optically connected to the light emitting element is an optical waveguide core whose core width is tapered in the direction from the multi-core fiber to the optical path changing unit. It is preferable that at least one of the optical waveguide cores in the optical waveguide to be connected has an optical waveguide core whose core width is tapered in a direction from the multi-core fiber to the optical path changing unit.
  • At least one of the optical waveguide cores in the optical waveguide optically connected to the light emitting element receives the optical waveguide core whose core width and thickness increase in a taper shape from the multi-core fiber to the optical path changing unit. It is preferable that at least one of the optical waveguide cores in the optical waveguide optically connected to the element has an optical waveguide core whose core width and thickness are reduced in a taper shape from the multicore fiber toward the optical path conversion unit. (10) In (7), at least one optical waveguide in which the cross-sectional area of the optical path conversion portion is larger than that of other optical waveguides, and the cross-sectional area of the optical waveguide core is large and uniform compared to other optical waveguides.
  • a multi-core fiber having a core size larger than that of other multi-core fibers that are optically connected to the optical waveguide it is preferable to use a substrate for electrical wiring having an optical through hole for transmitting light, and to dispose or form a lens on the optical connecting portion.
  • a substrate for electrical wiring made of a material that transmits light with integrated lenses.
  • a light emitting / receiving element that transmits or receives an optical signal, an electronic circuit that drives the light emitting / receiving element to convert the electric signal into an optical signal, and amplifies the electric signal converted from the optical signal.
  • an optical subassembly mounted on an electric wiring board and a plurality of cores of a multi-core fiber that transmits optical signals to and from the light emitting and receiving elements, respectively,
  • An optical connecting portion having an optical waveguide consisting of a plurality of optical waveguide cores, wherein the optical connecting portion comprises an optical waveguide consisting of an optical waveguide core with an optical path changing portion having at least one size different from that of the other optical path changing portion, and the optical connection
  • An optical transmission / reception module comprising an optical connector having a multi-core fiber that is optically connected to the section and an end face, and an electrical connector that enables electrical connection between the electrical wiring board and the in-device board.
  • a light emitting / receiving element that transmits or receives an optical signal
  • an electronic circuit that drives the light emitting / receiving element to convert the electric signal into an optical signal, and amplifies the electric signal converted from the optical signal.
  • an optical subassembly mounted on an electric wiring board and a plurality of cores of a multi-core fiber that transmits optical signals to and from the light emitting and receiving elements, respectively,
  • an optical connection portion having an optical waveguide composed of a plurality of optical waveguide cores
  • the optical connection portion having an optical waveguide in which the cross-sectional area of at least one optical path conversion portion and the optical waveguide core cross-sectional area at the end of the optical waveguide opposite to the optical path conversion portion are different
  • an optical connector comprising a multi-core fiber that is optically connected to the optical connection portion at the end face, and an optical connector that enables electrical connection between the electrical wiring board and the in-device board. It is in an information device that mounts a receiving module on a board in the device or
  • the optical coupling efficiency of each channel can be made uniform and high in a low profile and large capacity optical transceiver module equipped with a multi-core fiber.
  • Sectional drawing of the 1st basic form of the optical transmission / reception module of this invention Sectional drawing of the 2nd basic form of the optical transmission / reception module of this invention. It is a figure explaining the subject of the optical connection structure which consists of the conventional optical waveguide and multicore fiber, and is a figure which shows an example of the end surface connection of a multicore fiber and an optical waveguide. It is a figure explaining the subject of the optical connection structure which consists of the conventional optical waveguide and multi-core fiber, and sectional drawing of the optical connection part which showed a mode that the optical coupling efficiency of an optical waveguide core and a light emitting element was bad.
  • the bird's-eye view of the 1st form of the optical connection part in the optical transmission / reception module of this invention (in the case of a light emitting element).
  • the figure which looked at the 1st form of the optical connection part in the optical transmission / reception module of this invention from the top (in the case of a light emitting element).
  • the bird's-eye view of the 1st form of the optical connection part in the optical transmission / reception module of this invention in the case of a light receiving element).
  • the figure which looked at the 1st form of the optical connection part in the optical transmission / reception module of this invention from the top (in the case of a light receiving element).
  • the bird's-eye view of the 2nd form of the optical connection part in the optical transmission / reception module of this invention (in the case of a light emitting element).
  • Sectional drawing of the 2nd form of the optical connection part in the optical transmission / reception module of this invention (in the case of a light emitting element).
  • the figure which looked at the 2nd form of the optical connection part in the optical transceiver module of this invention from the top (in the case of a light emitting element).
  • the bird's-eye view of the 2nd form of the optical connection part in the optical transmission / reception module of this invention (in the case of a light receiving element).
  • Sectional drawing of the 2nd form of the optical connection part in the optical transmission / reception module of this invention (in the case of a light receiving element).
  • the figure which looked at the 2nd form of the optical connection part in the optical transceiver module of this invention from the top (in the case of a light receiving element).
  • the bird's-eye view of the 3rd form of the optical connection part in the optical transmission / reception module of this invention (in the case of a light emitting / receiving element).
  • Sectional drawing of the 3rd form of the optical connection part in the optical transmission / reception module of this invention in the case of a light emission and a light receiving element.
  • the figure which looked at the 3rd form of the optical connection part in the optical transmission / reception module of this invention from the top in the case of a light emission and a light receiving element).
  • Explanatory drawing of the information apparatus carrying the photoelectric conversion module of this invention The mounting block diagram when the photoelectric conversion module is arranged close to the switch LSI.
  • the figure which shows the cross section of FIG. The block diagram (bird's-eye view) of an optical waveguide.
  • FIG. 1 A first embodiment of the optical transceiver module according to claim 1 will be described with reference to FIG. 1, FIG. 3, FIG. 4, FIG.
  • the light emitting / light receiving element array 1 and the electronic circuit array 2 are flip-chip mounted on the substrate 3 for electric wiring.
  • the electrical wiring substrate 3 has a through hole 43 for transmitting light.
  • materials for light emitting elements and light receiving elements which are optical elements, InP-based compound semiconductors, Si, Ge semiconductors, or the like can be applied. Si or SiGe can be used as the material for the electronic circuit.
  • a lens array 4 for condensing light is formed on a surface opposite to the surface of the electric wiring substrate 3 on which the light emitting / receiving element array 1 and the electronic circuit array 2 are mounted.
  • the lens array 4 may be, for example, a lens sheet or a lens integrated in an optical waveguide structure including the optical waveguide 6 with an optical path conversion unit and the clad unit 13.
  • the optical waveguide 6 has an individual optical path conversion unit in each optical waveguide.
  • a polymer material or the like can be applied as the material of the optical waveguide.
  • the end surface of the optical waveguide 6 opposite to the optical path changing section 46 (details of the optical waveguide 6 are described in FIGS. 12A and 12B) are multi-cores having one or more multi-core fibers 8.
  • the end face of the fiber optic connector 7 is connected so as to minimize optical coupling loss.
  • the number of cores of the multi-core fiber is 12, and the core arrangement is a square lattice.
  • the present invention can also be applied to multicore fibers having other numbers of cores and other arrangements.
  • the multi-core fiber optical connector 7 for example, a multi-core fiber mounted on an MT connector which is one of the conventional multi-core fiber connectors can be considered.
  • the multi-core fiber optical connector 7 is fixed to the electric wiring board 3 with an adhesive.
  • a method of fixing the receptacle of the optical connector to the electrical wiring board 3 so that the optical connector can be removed and fixing the multi-core fiber optical connector 7 to the receptacle of the optical connector with a guide pin and a leaf spring is also conceivable.
  • the structure of the optical waveguide 6 will be described.
  • the optical waveguide 6 includes an optical path conversion unit 46 and an optical waveguide core 47, and details are shown in FIGS. 12 (a) and 12 (b). 3, 4, and 5, only the optical waveguide is displayed to avoid complexity, and the optical path conversion unit 46 and the optical waveguide core 47, which are the components, are omitted.
  • FIGS. 4A and 4B are shown.
  • the core of the uppermost optical waveguide 19 a core whose core width increases in a taper shape from the multi-core fiber to the optical path changing unit 46 is used. Since the optical path conversion unit 46 is larger than the size of the light beam spot 20, high optical coupling efficiency can be realized.
  • the taper shape assumes that the core width is changed adiabatically so that light propagates while maintaining the excited state of the mode. This can reduce the propagation loss that occurs when the core width is suddenly changed.
  • FIG. 5A and FIG. As the core of the lowermost optical waveguide 19, a core whose core width is tapered in the direction from the multi-core fiber to the optical path changing unit 46 is used. Since the size of the light beam spot 20 emitted from the optical path changing unit 46 is small, when it reaches the lens, it enters the diameter thereof, so that high optical coupling efficiency can be realized.
  • An optical transmission / reception module of the present invention comprising: an optical wiring board 3; an optical waveguide 6 with an optical path conversion unit; an optical connection unit comprising a multicore fiber optical connector 7; a multicore fiber 8; It can be mounted on the board 11 in the apparatus.
  • tungsten, molybdenum alone having a low thermal expansion coefficient tungsten, molybdenum alone having a low thermal expansion coefficient
  • a composite material of tungsten, molybdenum and copper tungsten, molybdenum and copper
  • a composite material of aluminum silicon carbide tungsten, molybdenum and copper
  • FIG. 9 shows an example in which the optical transceiver module is applied to an information device.
  • the information apparatus includes a plurality of line cards 28, a switch card 35, a backplane optical fiber 30 and a backplane 29 that connect the cards.
  • the line card 28 includes a backplane connector 31, a power connector 32, the optical transmission / reception module 33, an electronic circuit 34, and an interface card 27.
  • the switch card 35 includes a backplane connector 31, a power connector 32, the optical transmission / reception module 33, and an electronic circuit 34.
  • FIGS. 6A and 6B A second embodiment having an optical waveguide structure different from that of the first embodiment will be described with reference to FIGS.
  • the optical waveguide structure for the light emitting element will be described.
  • the core of the uppermost optical waveguide 21 from the multi-core fiber to the optical path conversion unit 46
  • a core whose core width and thickness are increased in a tapered shape is used.
  • the optical path conversion unit 46 is omitted in FIG. 6 (details of the optical waveguide are described in FIG. 12).
  • the optical path conversion unit 46 Since the optical path conversion unit 46 is larger than the size of the light beam spot 20, high optical coupling efficiency can be realized.
  • the taper shape assumes that the core width and core thickness are changed adiabatically to reduce propagation loss.
  • the optical waveguide structure for the light receiving element will be described.
  • the optical path conversion from the multi-core fiber is performed as the core of the lowermost optical waveguide 21 A core whose core width and core thickness are tapered in the direction of the portion 46 is used (similar to FIG. 6, since the optical path changing portion 46 is omitted, see FIGS. 12A and 12B). Since the size of the light beam spot 20 emitted from the optical path changing unit 46 is small, when the light beam spot 20 reaches the lens, it enters the size, so that high optical coupling efficiency can be realized.
  • a third embodiment having an optical waveguide structure different from those of Examples 1 and 2 will be described with reference to FIG.
  • FIGS. 8 (a), (b), and (c) In order to solve the non-uniformity of the optical coupling efficiency between the channels of the light emitting and receiving elements, as shown in FIGS. 8 (a), (b), and (c), other optical A core having a larger cross-sectional area than the core of the waveguide 6 is used. Since the optical path changing unit 46 for the light emitting element is larger than the size of the light beam spot 20, high optical coupling efficiency can be realized. As in the first embodiment, in order to avoid the complexity of the drawing, the optical path conversion unit 46 is omitted in FIG. 8 (details of the optical waveguide are described in FIGS. 12A and 12B).
  • the light beam spot size when exiting from the optical path conversion unit 46 is larger than that from the other optical path conversion units 46.
  • the distance to the lens is short, the beam spread of light is small and a very high optical coupling efficiency can be realized.
  • the core 14 of the multi-core fiber with respect to the core of the uppermost optical waveguide 22 is made larger than the core 45 of the other multi-core fiber.
  • the electrical wiring board 3 is different from the optical transceiver module configuration shown in FIG. 1 (FIG. 2).
  • the light emitting / receiving element array 1 and the electronic circuit 2 are flip-chip mounted on the electric wiring board 3.
  • the electric wiring board 3 is made of a material that transmits light from the light emitting element. For example, when the wavelength of light is 1 ⁇ m or more, Si is used as the material for the electrical wiring substrate 3.
  • a lens 4 for condensing light is formed on a surface opposite to the surface of the electric wiring substrate 3 on which the light emitting / receiving element array 1 and the electronic circuit 2 are mounted. Other configurations are the same as those shown in FIG.
  • FIG. 11 shows a cross-sectional view of a connection configuration example of the switch LSI 37 and the optical transceiver module via the interposer 36.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

In the present invention, optical coupling efficiency of channels can be made uniform and increased in a low-profile, high-capacity optical transceiver module in which a multi-core fiber is mounted, through use of an optical transceiver module configured from: an optical subassembly in which a light emitting/receiving element for sending or receiving an optical signal, an electronic circuit for driving the light emitting/receiving element in order to convert an electrical signal to an optical signal, and an electronic circuit for amplifying the electrical signal converted from the optical signal are mounted on an electrical wiring substrate; an optical connection part having an optical waveguide comprising a plurality of optical waveguide cores equipped with optical path conversion parts, the optical connection part for optically connecting the light emitting/receiving element and each of a plurality of cores of a multi-core fiber for transmitting an optical signal, there being provided in the optical connection part an optical waveguide comprising optical waveguide cores equipped with optical path conversion parts, the size of at least one of which differing from the size of the other optical path conversion parts; an optical connector provided with a multi-core fiber for optically connecting at an end surface with the optical connection part; and an electrical connector for enabling electrical connection of the electrical wiring substrate and an intra-device board.

Description

光送受信モジュールおよびこれを用いた情報装置Optical transceiver module and information device using the same
本発明は,信号伝送・処理装置間内における大容量信号処理を可能にする光送受信モジュールならびにそれを用いた情報装置に関する。 The present invention relates to an optical transmission / reception module that enables large-capacity signal processing between signal transmission / processing devices, and an information device using the same.
 インターコネクト技術は,信号を伝送する距離によって,装置間伝送,装置内伝送(バックプレーン),チップ間伝送に分けられる。いずれの伝送も電気伝送が用いられてきたが,要求される伝送速度が増すにつれて,伝送距離が長い装置間伝送から光インターコネクト技術が導入され始めてきた。電気信号伝送は速度が増加するにつれ伝送損失が飛躍的に大きくなるため,伝送距離を長くすることは困難になる。低誘電率基板の適用やプリエンファシスならびにイコライザーなどの付加回路によって,これまで伝送速度ならびに伝送距離の増加を図ってきたが,これらの技術を用いても,バックプレーン伝送に相当する伝送速度と伝送距離は,それぞれ,10Gbpsが電気伝送の限界と言われている(非特許文献1)。 Interconnect technology can be divided into inter-device transmission, intra-device transmission (backplane), and inter-chip transmission according to the signal transmission distance. Electric transmission has been used for both transmissions, but with the increase in required transmission speed, optical interconnect technology has begun to be introduced from transmission between devices with a long transmission distance. As electrical signal transmission increases in speed, transmission loss increases dramatically, making it difficult to increase the transmission distance. The transmission speed and transmission distance have been increased by applying low dielectric constant substrates and additional circuits such as pre-emphasis and equalizer, but even with these technologies, transmission speed and transmission equivalent to backplane transmission have been achieved. Each distance is said to be the limit of electric transmission of 10 Gbps (Non-patent Document 1).
 基幹ルータや大規模サーバの装置内ボード間を接続するバックプレーンの伝送容量は2008年に1Tbpsを超え,今後,1年に1.5倍のペースで増加することが予想されている。2015年以降には,25Gbpsを超える伝送技術が必要であり,電気バックプレーンの帯域制限が深刻になる。この電気バックプレーンの帯域ボトルネックを解消する手段として,すでに述べた通り,バックプレーンの光化技術(光バックプレーン技術)の導入が期待されている。光は電気と異なり,非干渉性であるため,伝送路間隔を狭ピッチ化しても,伝送路間相互作用が原因として生じるクロストークは発生しない。さらに,光の反射による損失や伝送損失に関しても,周波数依存性が非常に小さいため,制御が容易である。このように,高周波伝送路の光化は,従来の電気伝送に比べて,大容量伝送の可能性を秘めており,光インターコネクト技術(光送受信モジュール,光ファイバ配線)に関する開発が盛んになってきている。 The transmission capacity of the backplane that connects the internal routers of backbone routers and large-scale servers exceeds 1 Tbps in 2008, and is expected to increase 1.5 times a year in the future. After 2015, transmission technology exceeding 25 Gbps is required, and the bandwidth limit of the electric backplane becomes serious. As described above, the introduction of backplane opticalization technology (optical backplane technology) is expected as a means to eliminate this electrical backplane bandwidth bottleneck. Since light is incoherent unlike electricity, crosstalk caused by the interaction between transmission lines does not occur even if the transmission line interval is narrowed. Furthermore, the loss due to the reflection of light and the transmission loss are also very easy to control because the frequency dependence is very small. In this way, opticalization of high-frequency transmission lines has the potential for large-capacity transmission compared to conventional electrical transmission, and development related to optical interconnect technology (optical transceiver modules, optical fiber wiring) has become active. ing.
 光インターコネクト向け光送受信モジュールは,光サブアセンブリ,発・受光素子,発・受光素子と光伝送媒体(光ファイバまたは光導波路)を光学的に結合可能にする光コネクタ,発・受光素子を駆動する電子回路,電子回路と装置内ボードを電気的に接続する電気コネクタとから構成される。光送受信モジュールはこの装置内ボード(ここで,装置内ボートとは,伝送装置内におけるインターフェースボードとスイッチLSIなどのスイッチボードのことを示す)上に電気的に接続された後,搭載される。この光サブアセンブリは,光信号を発信するレーザダイオードと光信号を電気信号に変換するフォトダイオードの発・受光素子と,光信号を電気信号に変換するためにレーザダイオードを駆動するレーザドライバ電子回路とフォトダイオードからの電気信号を増幅するためのトランスインピーダンス電子回路が電気配線用基板に搭載されている。 Optical transceiver modules for optical interconnects drive optical subassemblies, light emitting / receiving elements, optical connectors that enable optical coupling of light emitting / receiving elements and optical transmission media (optical fiber or optical waveguide), and light emitting / receiving elements It is composed of an electronic circuit and an electrical connector for electrically connecting the electronic circuit and the board in the apparatus. The optical transmission / reception module is mounted after being electrically connected to the in-device board (herein, the in-device boat indicates an interface board in the transmission device and a switch board such as a switch LSI). This optical subassembly includes a laser diode that emits an optical signal, a light emitting / receiving element of a photodiode that converts the optical signal into an electrical signal, and a laser driver electronic circuit that drives the laser diode to convert the optical signal into an electrical signal A transimpedance electronic circuit for amplifying an electric signal from the photodiode is mounted on the electric wiring board.
 今後さらなる伝送容量の増大に伴い,光インターコネクトの伝送容量の増大も必須になると予想される。光インターコネクトの伝送容量を増大する手段として,1)チャンネル当たりの伝送速度を上げる,2)波長多重方式を用いる,3)空間多重方式を用いるなどの方法がある。 As the transmission capacity increases further in the future, it is expected that the transmission capacity of the optical interconnect will also increase. As means for increasing the transmission capacity of the optical interconnect, there are methods such as 1) increasing the transmission speed per channel, 2) using the wavelength multiplexing method, and 3) using the spatial multiplexing method.
 近年,3)の空間多重方式として,マルチコアファイバを用いる方式が提案されている(非特許文献2)。マルチコアファイバとは,共通のクラッド内に(すなわち,一芯に)複数のコアが存在する光ファイバである。そのクラッド径は,最大で,従来の光ファイバの径の2倍以下であるため,空間多重による伝送容量の増大に加えて,空間利用効率が高く,狭い空間に多数の光ファイバを配線する光インターコネクトにおいて有効である。また,柔軟性も高く,特に装置内配線の場合に有効である。 Recently, a method using a multi-core fiber has been proposed as a spatial multiplexing method of 3) (Non-patent Document 2). A multi-core fiber is an optical fiber in which a plurality of cores exist in a common clad (that is, in one core). The maximum cladding diameter is less than twice the diameter of conventional optical fiber. Therefore, in addition to the increase in transmission capacity due to spatial multiplexing, the space utilization efficiency is high and a large number of optical fibers are wired in a narrow space. Valid in the interconnect. In addition, it is highly flexible and is particularly effective in case of internal wiring.
 これまで報告されているマルチコアファイバを用いた光インターコネクト向け光送受信モジュールの形態として,以下の二種類の形態がある。 There are the following two types of optical transceiver modules for optical interconnects using multi-core fibers that have been reported so far.
 第一のモジュール形態では,マルチコアファイバのコア配置(同心円状)に合せて,発・受光素子を配置している。この場合,バットジョイント法(突きわせ法)により,マルチコアファイバと発・受光素子の光結合をとっている(非特許文献3)。第二のモジュール形態では,マルチコアファイバのコア配置に合せて,光導波路ならびに発・受光素子と光学的に接続しているグレーティングカプラーを配置している。この場合も,バットジョイント法により,マルチコアファイバとグレーティングカプラーとの光結合をとっている(特許文献1)。 In the first module configuration, the light emitting / receiving elements are arranged in accordance with the core arrangement (concentric circle) of the multi-core fiber. In this case, the multi-core fiber and the light emitting / receiving element are optically coupled by a butt joint method (butting method) (Non-patent Document 3). In the second module configuration, a grating coupler optically connected to the optical waveguide and the light emitting / receiving element is arranged in accordance with the core arrangement of the multicore fiber. Also in this case, the optical coupling between the multi-core fiber and the grating coupler is taken by the butt joint method (Patent Document 1).
 他の空間多重方式として,従来の単一コアを有する光ファイバが2次元に配列されている多芯コネクタ(一段には通常12芯の光ファイバが並ぶため,n段の場合の光ファイバの総芯数は12×n芯になる)を用いる方法がある。
この場合,光導波路が多段(積層)になり,光導波路と発・受光素子との距離が大きくなるため,光結合効率は悪くなる課題があり,それを解決する手段として,光ピン方式(非特許文献4)ならびに多芯光路変換コネクタを用いた方式(非特許文献5)が提案されている。
As another spatial multiplexing method, a conventional multicore connector in which optical fibers having a single core are two-dimensionally arranged (usually 12-core optical fibers are arranged in one stage, so the total number of optical fibers in the case of n stages is There is a method using a number of cores of 12 × n).
In this case, the optical waveguide becomes multi-stage (laminated), and the distance between the optical waveguide and the light emitting / receiving element increases, so there is a problem that the optical coupling efficiency deteriorates. Patent Document 4) and a system using a multi-core optical path conversion connector (Non-Patent Document 5) have been proposed.
特表2012-514786Special table 2012-514786
 [背景技術]で述べた従来型の二種類のマルチコアファイバを搭載した光インターコネクト向け光送受信モジュールには,次のような課題がある。第一の光送受信モジュール形態では,マルチコアファイバの端面が発・受光素子面に突き合わせた形態をとるため,マルチコアファイバは光サブアセンブリ面に垂直になる。このモジュールを装置内ボード上に搭載した場合,光サブアセンブリがボード面に対して垂直になるため,高背になり,装置内ボード間距離が短い場合,装置内ボード上に搭載できない問題が生じる。この問題を解決する手段として,マルチコアファイバを曲げて,光サブアセンブリ面をボード面に水平にして搭載することが考えられる。しかし,マルチコアファイバは従来の(シングルコア)シングルモードファイバに比べて曲げ損失が大きいため,ファイバを曲げることで低背化を行うことは困難である。因みに,曲げ半径5mmに対して,シングルモードファイバの曲げ損失は1dB以下,マルチコアファイバの曲げ損失は3.4dBである(非特許文献6)。 The optical transceiver module for optical interconnects equipped with the two types of conventional multi-core fibers described in [Background Technology] has the following problems. In the first optical transceiver module form, the end face of the multi-core fiber is in contact with the light emitting / receiving element face, so the multi-core fiber is perpendicular to the optical subassembly surface. When this module is mounted on the board in the device, the optical subassembly is perpendicular to the board surface, so it becomes tall and the problem is that it cannot be mounted on the board in the device if the distance between the boards in the device is short. . As a means to solve this problem, it is conceivable to bend the multi-core fiber and mount the optical subassembly surface horizontally on the board surface. However, since the multicore fiber has a higher bending loss than the conventional (single core) single mode fiber, it is difficult to reduce the height by bending the fiber. Incidentally, for a bending radius of 5 mm, the bending loss of a single mode fiber is 1 dB or less, and the bending loss of a multi-core fiber is 3.4 dB (Non-patent Document 6).
 第二の光送受信モジュール形態においても,第一の形態と同様の問題が生じる。この第二の形態では,マルチコアファイバは光サブアセンブリ面に形成されたグレーティングカプラーとバットジョイント結合しているため,本モジュールを装置内ボード上に搭載する場合,光サブアセンブリ面は装置内ボード面に対して垂直になる。その結果,高背になり,第一の形態と同様に,低背化のためにはマルチコアファイバを曲げる必要がある。 The same problem as in the first embodiment also occurs in the second optical transceiver module configuration. In this second form, the multi-core fiber is butt-jointed with the grating coupler formed on the optical subassembly surface. Therefore, when this module is mounted on the internal board, the optical subassembly surface is the internal board surface. It becomes perpendicular to. As a result, it becomes tall and, like the first embodiment, it is necessary to bend the multi-core fiber in order to reduce the height.
 以上の2つのマルチコアファイバを搭載した光送受信モジュール形態の課題を解決する方法は,マルチコアファイバを搭載した光コネクタ部と光路変換部付き光導波路部を端面で接続した光接続部を用いることである。しかし、一芯当たりの伝送容量を大きくするため,出来る限り多くのコアを有するマルチコアファイバを用いる場合,上記多芯光ファイバの場合と同様,下段と上段の光導波路で光結合効率に差が生じる。このことを,図3を用いて説明する。図3(a)はマルチコアファイバと光導波路の端面接続の一例である(図3(b),(c),(d),(e)で示している発・受光素子とレンズは省略)。図3(b)は,図3(a)の光導波路コアと発光素子の光結合効率が悪い様子を示した光接続部の断面図である。図3(c)は,図3(a)の光導波路コアと発光素子の光結合効率が良い様子を示した光接続部の断面図である。この例では,最下段の光導波路と発光素子との光結合効率が高くなるようにレンズを設計している。この結果,図3(b)に示す通り,光ビーム径が最上段の光導波路の光路変換部の領域と比べて大きくなるため,光結合効率は低くなる。さらに,図3(d)は,図3(a)の光導波路コアと受光素子の光結合効率が良い様子を示した光接続部の断面図である。また図3(e)は,図3(a)の光導波路コアと受光素子の光結合効率が悪い様子を示した光接続部の断面図である。最下段の光導波路と受光素子との距離が大きいため,レンズ径に比べて光ビームのスポット径が大きくなり,これらの間の光結合効率が低くなる。そこで,本発明の目的は,各チャンネルの光結合効率が均一で高く,低背化が可能な,マルチコアファイバと光導波路が端面で接続している光接続部を有する光送受信モジュールを提供することにある。また,本課題を解決する手段として,各光導波路に対して,曲率ならびに大きさが異なるレンズを用いる方法も考えられるが,異なるレンズを形成することは困難またはコスト高になる。従って,各光導波路に対して同じレンズを用いることが望まれる。 The method of solving the problem of the optical transceiver module mounted with the above two multi-core fibers is to use an optical connection section in which the optical connector section mounted with the multi-core fiber and the optical waveguide section with the optical path conversion section are connected at the end face. . However, when using a multi-core fiber having as many cores as possible in order to increase the transmission capacity per core, there is a difference in optical coupling efficiency between the lower and upper optical waveguides as in the case of the multi-core optical fiber. . This will be described with reference to FIG. FIG. 3A is an example of end face connection between a multi-core fiber and an optical waveguide (the light emitting / receiving element and the lens shown in FIGS. 3B, 3C, 3D, and 3E are omitted). FIG. 3B is a cross-sectional view of the optical connection portion showing that the optical coupling efficiency between the optical waveguide core and the light emitting element in FIG. FIG. 3C is a cross-sectional view of the optical connection portion showing that the optical waveguide core and the light emitting element of FIG. In this example, the lens is designed so that the optical coupling efficiency between the lowermost optical waveguide and the light emitting element is increased. As a result, as shown in FIG. 3B, the light beam diameter is larger than that of the region of the optical path changing portion of the uppermost optical waveguide, so that the optical coupling efficiency is lowered. Further, FIG. 3D is a cross-sectional view of the optical connection portion showing a state in which the optical coupling efficiency between the optical waveguide core and the light receiving element in FIG. FIG. 3E is a cross-sectional view of the optical connection portion showing that the optical coupling efficiency between the optical waveguide core and the light receiving element in FIG. Since the distance between the lowermost optical waveguide and the light receiving element is large, the spot diameter of the light beam is larger than the lens diameter, and the optical coupling efficiency between them is lowered. Accordingly, an object of the present invention is to provide an optical transceiver module having an optical connection part in which a multi-core fiber and an optical waveguide are connected to each other at an end face, in which the optical coupling efficiency of each channel is uniform and high, and the height can be reduced. It is in. As a means for solving this problem, a method of using lenses having different curvatures and sizes for each optical waveguide can be considered, but it is difficult or expensive to form different lenses. Therefore, it is desirable to use the same lens for each optical waveguide.
 上記目的を達成するために,本発明の特徴は, 
(1)光信号を発信または受信する発・受光素子と,電気信号を光信号に変換するために発・受光素子を駆動する電子回路と,光信号から変換された電気信号を増幅するための電子回路とが,電気配線用基板に搭載された光サブアセンブリと,前記発・受光素子と光信号を伝送するマルチコアファイバの複数のコアと光学的にそれぞれ接続する,光路変換部付き複数の光導波路コアからなる光導波路を有する光接続部において,少なくとも一つの大きさが他の光路変換部と異なる光路変換部付き光導波路コアからなる光導波路を具備する光接続部と,当該光接続部と端面で光接続するマルチコアファイバを具備した光コネクタと,前記電気配線用基板と装置内ボードを電気的に接続可能とする電気コネクタから構成される光送受信モジュールにある。
(2)(1)において、発光素子と光接続する光導波路における光導波路コアの少なくとも一つがマルチコアファイバから光路変換部の方向にコア幅がテーパ状に広くなる光導波路コアを,受光素子と光接続する光導波路における光導波路コアの少なくとも一つがマルチコアファイバから光路変換部の方向にコア幅がテーパ状に狭くなる光導波路コアを有することが望ましい。
(3)(1)において、発光素子と光接続する光導波路における光導波路コアの少なくとも一つがマルチコアファイバから光路変換部の方向にコア幅と厚さがテーパ状に大きくなる光導波路コアを,受光素子と光接続する光導波路における光導波路コアの少なくとも一つがマルチコアファイバから光路変換部の方向にコア幅と厚さがテーパ状に小さくなる光導波路コアを有することが望ましい。
(4)(1)において、少なくとも一つの,他の光導波路と比べて光路変換部の断面積が大きく,かつ他の光導波路と比べて光導波路コアの断面積が大きくかつ均一である光導波路を有する光接続部と,当該光導波路と光学的に接続するその他のマルチコアファイバのコアサイズより大きいコアサイズのマルチコアファイバを有することが好ましい。
(5)(1)において、光を透過させるための光スルーホールを有する電気配線用基板を用い,前記光接続部上にレンズを配置または形成することが好ましい。
(6)(1)において、レンズを集積した光を透過する材料でできた電気配線用基板を用いることが好ましい。
また、(7)光信号を発信または受信する発・受光素子と,電気信号を光信号に変換するために発・受光素子を駆動する電子回路と,光信号から変換された電気信号を増幅するための電子回路とが,電気配線用基板に搭載された光サブアセンブリと,前記発・受光素子と光信号を伝送するマルチコアファイバの複数のコアと光学的にそれぞれ接続する,光路変換部付き複数の光導波路コアからなる光導波路を有する光接続部において,少なくとも一つの光路変換部の断面積と光路変換部と反対側の光導波路端の光導波路コア断面積が異なる光導波路を有する光接続部と,当該光接続部と端面で光接続するマルチコアファイバを具備した光コネクタと,前記電気配線用基板と装置内ボードを電気的に接続可能とする電気コネクタから構成される光送受信モジュールにある。
(8)(7)において、発光素子と光接続する光導波路における光導波路コアの少なくとも一つがマルチコアファイバから光路変換部の方向にコア幅がテーパ状に広くなる光導波路コアを,受光素子と光接続する光導波路における光導波路コアの少なくとも一つがマルチコアファイバから光路変換部の方向にコア幅がテーパ状に狭くなる光導波路コアを有することが好ましい。
(9)(7)において、発光素子と光接続する光導波路における光導波路コアの少なくとも一つがマルチコアファイバから光路変換部の方向にコア幅と厚さがテーパ状に大きくなる光導波路コアを,受光素子と光接続する光導波路における光導波路コアの少なくとも一つがマルチコアファイバから光路変換部の方向にコア幅と厚さがテーパ状に小さくなる光導波路コアを有することが好ましい。
(10)(7)において、少なくとも一つの,他の光導波路と比べて光路変換部の断面積が大きく,かつ他の光導波路と比べて光導波路コアの断面積が大きくかつ均一である光導波路を有する光接続部と,当該光導波路と光学的に接続するその他のマルチコアファイバのコアサイズより大きいコアサイズのマルチコアファイバを有することが好ましい。
(11)(7)において、光を透過させるための光スルーホールを有する電気配線用基板を用い,前記光接続部上にレンズを配置または形成することが好ましい。
(12)(7)において、レンズを集積した光を透過する材料でできた電気配線用基板を用いることが好ましい。
また、(13)光信号を発信または受信する発・受光素子と,電気信号を光信号に変換するために発・受光素子を駆動する電子回路と,光信号から変換された電気信号を増幅するための電子回路とが,電気配線用基板に搭載された光サブアセンブリと,前記発・受光素子と光信号を伝送するマルチコアファイバの複数のコアと光学的にそれぞれ接続する,光路変換部付き複数の光導波路コアからなる光導波路を有する光接続部において,少なくとも一つの大きさが他の光路変換部と異なる光路変換部付き光導波路コアからなる光導波路を具備する光接続部と,当該光接続部と端面で光接続するマルチコアファイバを具備した光コネクタと,前記電気配線用基板と装置内ボードを電気的に接続可能とする電気コネクタから構成される光送受信モジュールを装置内ボード上または装置筺体面に搭載する情報装置にある。
また、(14)光信号を発信または受信する発・受光素子と,電気信号を光信号に変換するために発・受光素子を駆動する電子回路と,光信号から変換された電気信号を増幅するための電子回路とが,電気配線用基板に搭載された光サブアセンブリと,前記発・受光素子と光信号を伝送するマルチコアファイバの複数のコアと光学的にそれぞれ接続する,光路変換部付き複数の光導波路コアからなる光導波路を有する光接続部において,少なくとも一つの光路変換部の断面積と光路変換部と反対側の光導波路端の光導波路コア断面積が異なる光導波路を有する光接続部と,当該光接続部と端面で光接続するマルチコアファイバを具備した光コネクタと,前記電気配線用基板と装置内ボードを電気的に接続可能とする電気コネクタから構成される光送受信モジュールを装置内ボード上または装置筺体面に搭載する情報装置にある。
In order to achieve the above object, the features of the present invention are:
(1) A light emitting / receiving element that transmits or receives an optical signal, an electronic circuit that drives the light emitting / receiving element to convert the electric signal into an optical signal, and an amplifier that amplifies the electric signal converted from the optical signal A plurality of optical circuits with optical path converters, which are optically connected to an optical subassembly mounted on an electrical wiring substrate and a plurality of cores of a multi-core fiber that transmits optical signals to and from the light emitting / receiving element, respectively. In an optical connection portion having an optical waveguide made of a waveguide core, an optical connection portion comprising an optical waveguide made of an optical waveguide core with an optical path conversion portion having at least one size different from that of another optical path conversion portion, and the optical connection portion An optical transceiver module comprising an optical connector having a multi-core fiber that is optically connected at an end face, and an electrical connector that enables electrical connection between the electrical wiring board and the board in the apparatus. .
(2) In (1), at least one of the optical waveguide cores in the optical waveguide optically connected to the light emitting element is an optical waveguide core whose core width is increased in a taper direction from the multicore fiber to the optical path changing unit. It is desirable that at least one of the optical waveguide cores in the optical waveguide to be connected has an optical waveguide core whose core width narrows in a tapered shape in the direction from the multi-core fiber to the optical path changing unit.
(3) In (1), at least one of the optical waveguide cores in the optical waveguide optically connected to the light emitting element receives the optical waveguide core whose core width and thickness increase in a taper shape from the multi-core fiber to the optical path changing unit. It is desirable that at least one of the optical waveguide cores in the optical waveguide optically connected to the element has an optical waveguide core whose core width and thickness are reduced in a taper shape from the multi-core fiber to the optical path conversion unit.
(4) In (1), at least one optical waveguide in which the cross-sectional area of the optical path conversion portion is larger than that of other optical waveguides, and the cross-sectional area of the optical waveguide core is large and uniform compared to other optical waveguides. It is preferable to have a multi-core fiber having a core size larger than that of other multi-core fibers that are optically connected to the optical waveguide.
(5) In (1), it is preferable to use a substrate for electrical wiring having an optical through hole for transmitting light, and to dispose or form a lens on the optical connection portion.
(6) In (1), it is preferable to use a substrate for electric wiring made of a material that transmits light with integrated lenses.
Also, (7) a light emitting / receiving element that transmits or receives an optical signal, an electronic circuit that drives the light emitting / receiving element to convert the electric signal into an optical signal, and amplifies the electric signal converted from the optical signal And an optical subassembly mounted on an electric wiring board and a plurality of cores of a multi-core fiber that transmits optical signals to and from the light emitting and receiving elements, respectively, In an optical connecting portion having an optical waveguide consisting of a plurality of optical waveguide cores, the optical connecting portion having an optical waveguide in which the cross-sectional area of at least one optical path changing portion is different from the cross-sectional area of the optical waveguide core at the end of the optical waveguide opposite to the optical path changing portion. And an optical connector comprising a multi-core fiber that is optically connected to the optical connection portion at the end face, and an optical connector that can electrically connect the electrical wiring board and the in-device board. Is in the communication module.
(8) In (7), at least one of the optical waveguide cores in the optical waveguide optically connected to the light emitting element is an optical waveguide core whose core width is tapered in the direction from the multi-core fiber to the optical path changing unit. It is preferable that at least one of the optical waveguide cores in the optical waveguide to be connected has an optical waveguide core whose core width is tapered in a direction from the multi-core fiber to the optical path changing unit.
(9) In (7), at least one of the optical waveguide cores in the optical waveguide optically connected to the light emitting element receives the optical waveguide core whose core width and thickness increase in a taper shape from the multi-core fiber to the optical path changing unit. It is preferable that at least one of the optical waveguide cores in the optical waveguide optically connected to the element has an optical waveguide core whose core width and thickness are reduced in a taper shape from the multicore fiber toward the optical path conversion unit.
(10) In (7), at least one optical waveguide in which the cross-sectional area of the optical path conversion portion is larger than that of other optical waveguides, and the cross-sectional area of the optical waveguide core is large and uniform compared to other optical waveguides. It is preferable to have a multi-core fiber having a core size larger than that of other multi-core fibers that are optically connected to the optical waveguide.
(11) In (7), it is preferable to use a substrate for electrical wiring having an optical through hole for transmitting light, and to dispose or form a lens on the optical connecting portion.
(12) In (7), it is preferable to use a substrate for electrical wiring made of a material that transmits light with integrated lenses.
Further, (13) a light emitting / receiving element that transmits or receives an optical signal, an electronic circuit that drives the light emitting / receiving element to convert the electric signal into an optical signal, and amplifies the electric signal converted from the optical signal. And an optical subassembly mounted on an electric wiring board and a plurality of cores of a multi-core fiber that transmits optical signals to and from the light emitting and receiving elements, respectively, An optical connecting portion having an optical waveguide consisting of a plurality of optical waveguide cores, wherein the optical connecting portion comprises an optical waveguide consisting of an optical waveguide core with an optical path changing portion having at least one size different from that of the other optical path changing portion, and the optical connection An optical transmission / reception module comprising an optical connector having a multi-core fiber that is optically connected to the section and an end face, and an electrical connector that enables electrical connection between the electrical wiring board and the in-device board. On the device board or on the device housing.
Also, (14) a light emitting / receiving element that transmits or receives an optical signal, an electronic circuit that drives the light emitting / receiving element to convert the electric signal into an optical signal, and amplifies the electric signal converted from the optical signal. And an optical subassembly mounted on an electric wiring board and a plurality of cores of a multi-core fiber that transmits optical signals to and from the light emitting and receiving elements, respectively, In an optical connection portion having an optical waveguide composed of a plurality of optical waveguide cores, the optical connection portion having an optical waveguide in which the cross-sectional area of at least one optical path conversion portion and the optical waveguide core cross-sectional area at the end of the optical waveguide opposite to the optical path conversion portion are different And an optical connector comprising a multi-core fiber that is optically connected to the optical connection portion at the end face, and an optical connector that enables electrical connection between the electrical wiring board and the in-device board. It is in an information device that mounts a receiving module on a board in the device or on the surface of the device housing.
 本発明を用いることにより,マルチコアファイバを搭載した低背で大容量の光送受信モジュールにおいて,各チャンネルの光結合効率を均一かつ高くすることができる。 By using the present invention, the optical coupling efficiency of each channel can be made uniform and high in a low profile and large capacity optical transceiver module equipped with a multi-core fiber.
本発明の光送受信モジュールの第1基本形態の断面図。Sectional drawing of the 1st basic form of the optical transmission / reception module of this invention. 本発明の光送受信モジュールの第2基本形態の断面図。Sectional drawing of the 2nd basic form of the optical transmission / reception module of this invention. 従来の光導波路とマルチコアファイバからなる光接続構造の課題を説明する図であり、マルチコアファイバと光導波路の端面接続の一例を示す図。It is a figure explaining the subject of the optical connection structure which consists of the conventional optical waveguide and multicore fiber, and is a figure which shows an example of the end surface connection of a multicore fiber and an optical waveguide. 従来の光導波路とマルチコアファイバからなる光接続構造の課題を説明する図であり、光導波路コアと発光素子の光結合効率が悪い様子を示した光接続部の断面図。It is a figure explaining the subject of the optical connection structure which consists of the conventional optical waveguide and multi-core fiber, and sectional drawing of the optical connection part which showed a mode that the optical coupling efficiency of an optical waveguide core and a light emitting element was bad. 従来の光導波路とマルチコアファイバからなる光接続構造の課題を説明する図であり、光導波路コアと発光素子の光結合効率が良い様子を示した光接続部の説明図。It is a figure explaining the subject of the optical connection structure which consists of the conventional optical waveguide and multi-core fiber, and explanatory drawing of the optical connection part which showed a mode that the optical coupling efficiency of an optical waveguide core and a light emitting element was good. 従来の光導波路とマルチコアファイバからなる光接続構造の課題を説明する図であり、光導波路コアと受光素子の光結合効率が良い様子を示した光接続部の断面図。It is a figure explaining the subject of the optical connection structure which consists of the conventional optical waveguide and multi-core fiber, and sectional drawing of the optical connection part which showed a mode that the optical coupling efficiency of an optical waveguide core and a light receiving element was good. 従来の光導波路とマルチコアファイバからなる光接続構造の課題を説明する図であり、光導波路コアと受光素子の光結合効率が悪い様子を示した光接続部の断面図。It is a figure explaining the subject of the optical connection structure which consists of the conventional optical waveguide and multi-core fiber, and sectional drawing of the optical connection part which showed a mode that the optical coupling efficiency of an optical waveguide core and a light receiving element was bad. 本発明の光送受信モジュールにおける光接続部の第1形態の鳥瞰図(発光素子の場合)。The bird's-eye view of the 1st form of the optical connection part in the optical transmission / reception module of this invention (in the case of a light emitting element). 本発明の光送受信モジュールにおける光接続部の第1形態を上から見た図(発光素子の場合)。The figure which looked at the 1st form of the optical connection part in the optical transmission / reception module of this invention from the top (in the case of a light emitting element). 本発明の光送受信モジュールにおける光接続部の第1形態の鳥瞰図(受光素子の場合)。The bird's-eye view of the 1st form of the optical connection part in the optical transmission / reception module of this invention (in the case of a light receiving element). 本発明の光送受信モジュールにおける光接続部の第1形態を上から見た図(受光素子の場合)。The figure which looked at the 1st form of the optical connection part in the optical transmission / reception module of this invention from the top (in the case of a light receiving element). 本発明の光送受信モジュールにおける光接続部の第2形態の鳥瞰図 (発光素子の場合)。The bird's-eye view of the 2nd form of the optical connection part in the optical transmission / reception module of this invention (in the case of a light emitting element). 本発明の光送受信モジュールにおける光接続部の第2形態の断面図(発光素子の場合)。Sectional drawing of the 2nd form of the optical connection part in the optical transmission / reception module of this invention (in the case of a light emitting element). 本発明の光送受信モジュールにおける光接続部の第2形態を上から見た図(発光素子の場合)。The figure which looked at the 2nd form of the optical connection part in the optical transceiver module of this invention from the top (in the case of a light emitting element). 本発明の光送受信モジュールにおける光接続部の第2形態の鳥瞰図 (受光素子の場合)。The bird's-eye view of the 2nd form of the optical connection part in the optical transmission / reception module of this invention (in the case of a light receiving element). 本発明の光送受信モジュールにおける光接続部の第2形態の断面図(受光素子の場合)。Sectional drawing of the 2nd form of the optical connection part in the optical transmission / reception module of this invention (in the case of a light receiving element). 本発明の光送受信モジュールにおける光接続部の第2形態を上から見た図(受光素子の場合)。The figure which looked at the 2nd form of the optical connection part in the optical transceiver module of this invention from the top (in the case of a light receiving element). 本発明の光送受信モジュールにおける光接続部の第3形態の鳥瞰図 (発・受光素子の場合)。The bird's-eye view of the 3rd form of the optical connection part in the optical transmission / reception module of this invention (in the case of a light emitting / receiving element). 本発明の光送受信モジュールにおける光接続部の第3形態の断面図(発・受光素子の場合)。Sectional drawing of the 3rd form of the optical connection part in the optical transmission / reception module of this invention (in the case of a light emission and a light receiving element). 本発明の光送受信モジュールにおける光接続部の第3形態を上から見た図(発・受光素子の場合)。The figure which looked at the 3rd form of the optical connection part in the optical transmission / reception module of this invention from the top (in the case of a light emission and a light receiving element). 本発明の光電気変換モジュールを搭載した情報装置の説明図。Explanatory drawing of the information apparatus carrying the photoelectric conversion module of this invention. スイッチLSIに近接して光電気変換モジュールを配置した場合の実装構成図。The mounting block diagram when the photoelectric conversion module is arranged close to the switch LSI. 図8の断面を示す図。The figure which shows the cross section of FIG. 光導波路の構成図(鳥瞰図)。The block diagram (bird's-eye view) of an optical waveguide. 光導波路の構成図(断面図)。The block diagram (sectional drawing) of an optical waveguide.
 以下に,図面を用いて,本発明の実施形態を詳細に述べる。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 請求項1記載の光送受信モジュールの一つ目の実施例について,図1,図3,図4,図5,図12を用いて説明する。 A first embodiment of the optical transceiver module according to claim 1 will be described with reference to FIG. 1, FIG. 3, FIG. 4, FIG.
 発・受光素子アレイ1と電子回路アレイ2(発光素子駆動回路または電気信号増幅回路)を,電気配線用基板3にフリップチップ搭載する。電気配線用基板3は,光を透過させるためのスルーホール43を有する。光素子である発光素子と受光素子の材料として,InP系化合物半導体またはSi,Ge半導体などが適用できる。電子回路の材料としては,SiまたはSiGeなどが適用できる。発・受光素子アレイ1と電子回路アレイ2を搭載した電気配線用基板3の面と反対側の面に光を集光するためのレンズアレイ4を形成する。レンズアレイ4は,例えばレンズシートでも,または光路変換部付き光導波路6とクラッド部13からなる光導波路構造に集積されたレンズでも良い。光導波路6は,各光導波路に個別の光路変換部を有する。ここで,光導波路の材料として,ポリマー材料などが適用できる。光導波路6の光路変換部46(光導波路6の詳細は図12(a),(b)に記載している)と反対側の端面は,マルチコアファイバ8を一芯または二芯以上具備したマルチコアファイバ光コネクタ7の端面と光学的結合損失が最小になるように接続されている。ここでマルチコアファイバのコア数は12,コア配列は正方格子とした。しかし,本発明は,他のコア数,他の配列のマルチコアファイバにも適用できる。マルチコアファイバ光コネクタ7は,例えば,従来の多芯ファイバコネクタの一つであるMTコネクタにマルチコアファイバを実装したものが考えられる。マルチコアファイバ光コネクタ7は,電気配線用基板3に接着剤で固定する。または,取り外しができるように,光コネクタのレセプタクルを電気配線用基板3に接着固定し,その光コネクタのレセプタクルにマルチコアファイバ光コネクタ7をガイドピンと板ばねなどで固定する方法も考えられる。 The light emitting / light receiving element array 1 and the electronic circuit array 2 (light emitting element driving circuit or electric signal amplifier circuit) are flip-chip mounted on the substrate 3 for electric wiring. The electrical wiring substrate 3 has a through hole 43 for transmitting light. As materials for light emitting elements and light receiving elements, which are optical elements, InP-based compound semiconductors, Si, Ge semiconductors, or the like can be applied. Si or SiGe can be used as the material for the electronic circuit. A lens array 4 for condensing light is formed on a surface opposite to the surface of the electric wiring substrate 3 on which the light emitting / receiving element array 1 and the electronic circuit array 2 are mounted. The lens array 4 may be, for example, a lens sheet or a lens integrated in an optical waveguide structure including the optical waveguide 6 with an optical path conversion unit and the clad unit 13. The optical waveguide 6 has an individual optical path conversion unit in each optical waveguide. Here, a polymer material or the like can be applied as the material of the optical waveguide. The end surface of the optical waveguide 6 opposite to the optical path changing section 46 (details of the optical waveguide 6 are described in FIGS. 12A and 12B) are multi-cores having one or more multi-core fibers 8. The end face of the fiber optic connector 7 is connected so as to minimize optical coupling loss. Here, the number of cores of the multi-core fiber is 12, and the core arrangement is a square lattice. However, the present invention can also be applied to multicore fibers having other numbers of cores and other arrangements. As the multi-core fiber optical connector 7, for example, a multi-core fiber mounted on an MT connector which is one of the conventional multi-core fiber connectors can be considered. The multi-core fiber optical connector 7 is fixed to the electric wiring board 3 with an adhesive. Alternatively, a method of fixing the receptacle of the optical connector to the electrical wiring board 3 so that the optical connector can be removed and fixing the multi-core fiber optical connector 7 to the receptacle of the optical connector with a guide pin and a leaf spring is also conceivable.
 光導波路6の構造について説明する。光導波路6は光路変換部46と光導波路コア47からなり,図12(a),(b)に詳細を記載している。以下,図3,4、5では,煩雑さを避けるため,光導波路のみを表示し,その構成部である光路変換部46と光導波路コア47は省略する。 The structure of the optical waveguide 6 will be described. The optical waveguide 6 includes an optical path conversion unit 46 and an optical waveguide core 47, and details are shown in FIGS. 12 (a) and 12 (b). 3, 4, and 5, only the optical waveguide is displayed to avoid complexity, and the optical path conversion unit 46 and the optical waveguide core 47, which are the components, are omitted.
 まず初めに,発光素子アレイに対する光導波路構造について説明する。本実施例では,図3(b),(c)ですでに説明した通り,発光素子のチャネル間の光結合効率の不均一性を解決するため, 図4(a),(b)に示す通り, 最上段の光導波路19のコアとして,マルチコアファイバから光路変換部46の方向にコア幅がテーパ状に広くなるコアを用いる。光路変換部46は,光ビームスポット20のサイズより大きいため,高い光結合効率を実現できる。テーパ形状は,光がモードの励起状態を維持しながら伝搬するように,コア幅を断熱的に変化させたものとする。これによって,急激にコア幅を変化させた際に生じる伝搬損失を低減することができる。 First, the optical waveguide structure for the light emitting element array will be described. In this embodiment, as already described with reference to FIGS. 3B and 3C, in order to solve the non-uniformity of the optical coupling efficiency between the channels of the light emitting element, FIGS. 4A and 4B are shown. As the core of the uppermost optical waveguide 19, a core whose core width increases in a taper shape from the multi-core fiber to the optical path changing unit 46 is used. Since the optical path conversion unit 46 is larger than the size of the light beam spot 20, high optical coupling efficiency can be realized. The taper shape assumes that the core width is changed adiabatically so that light propagates while maintaining the excited state of the mode. This can reduce the propagation loss that occurs when the core width is suddenly changed.
 次に受光素子に対する光導波路構造について説明する。本実施例では,図3(d),(e)ですでに説明した通り,受光素子のチャネル間の光結合効率の不均一性を解決するため, 図5(a),(b)に示す通り, 最下段の光導波路19のコアとして,マルチコアファイバから光路変換部46の方向にコア幅がテーパ状に狭くなるコアを用いる。光路変換部46から出射される光ビームスポット20のサイズは小さくなるため,レンズに到達した際,その径内に入るため,高い光結合効率を実現できる。 
 図1に記載した電気コネクタ9は一次元配列型のインライン型コネクタまたは二次元配列型の電気コネクタを用いることができ,電気配線用基板3に電気的に接続されている。この電気コネクタ9を装置内ボード11上に搭載された電気コネクト用ソケット10に接続することで,放熱器12と,光サブアセンブリ5(光サブアセンブリ5は発・受光素子1,電子回路2,電気配線用基板3から構成される)と,光路変換部付き光導波路6とマルチコアファイバ光コネクタ7とマルチコアファイバ8から構成される光接続部と,電気コネクタ9からなる本発明の光送受信モジュールを装置内ボード11上に搭載できる。放熱器12の材料として,熱伝導性がよく,熱膨張率の小さいタングステン,モリブデンの単体と,タングステン,モリブデンと銅との複合材料及びアルミシリコンカーバイト,窒化アルミニウムセラミックスの複合材料などが適用できる。
Next, the optical waveguide structure for the light receiving element will be described. In this embodiment, as already described with reference to FIGS. 3D and 3E, in order to solve the non-uniformity of the optical coupling efficiency between the channels of the light receiving element, FIG. 5A and FIG. As the core of the lowermost optical waveguide 19, a core whose core width is tapered in the direction from the multi-core fiber to the optical path changing unit 46 is used. Since the size of the light beam spot 20 emitted from the optical path changing unit 46 is small, when it reaches the lens, it enters the diameter thereof, so that high optical coupling efficiency can be realized.
The electrical connector 9 shown in FIG. 1 can use a one-dimensional array type in-line connector or a two-dimensional array type electrical connector, and is electrically connected to the electrical wiring board 3. By connecting the electrical connector 9 to the electrical connection socket 10 mounted on the board 11 in the apparatus, the radiator 12 and the optical subassembly 5 (the optical subassembly 5 is a light emitting / receiving element 1, an electronic circuit 2, An optical transmission / reception module of the present invention comprising: an optical wiring board 3; an optical waveguide 6 with an optical path conversion unit; an optical connection unit comprising a multicore fiber optical connector 7; a multicore fiber 8; It can be mounted on the board 11 in the apparatus. As a material for the radiator 12, tungsten, molybdenum alone having a low thermal expansion coefficient, a composite material of tungsten, molybdenum and copper, a composite material of aluminum silicon carbide, and aluminum nitride ceramics can be applied. .
 図9に光送受信モジュールを情報装置に適用した場合の例を示す。本情報装置は,複数のラインカード28とスイッチカード35とそれらカード間を接続するバックプレーン光ファイバ30,バックプレーン29から構成される。ラインカード28には,バックプレーンコネクタ31,電源コネクタ32,上記の光送受信モジュール33,電子回路34,インターフェースカード27が搭載されている。スイッチカード35には,バックプレーンコネクタ31,電源コネクタ32,上記の光送受信モジュール33,電子回路34が搭載されている。 FIG. 9 shows an example in which the optical transceiver module is applied to an information device. The information apparatus includes a plurality of line cards 28, a switch card 35, a backplane optical fiber 30 and a backplane 29 that connect the cards. The line card 28 includes a backplane connector 31, a power connector 32, the optical transmission / reception module 33, an electronic circuit 34, and an interface card 27. The switch card 35 includes a backplane connector 31, a power connector 32, the optical transmission / reception module 33, and an electronic circuit 34.
 実施例1とは異なる光導波路構造を有する第2の形態について,図6と図7を用いて説明する。まず初めに,発光素子に対する光導波路構造について説明する。発光素子のチャネル間の光結合効率の不均一性を解決するため, 図6(a),(b)に示す通り, 最上段光導波路21のコアとして,マルチコアファイバから光路変換部46の方向にコア幅とコア厚がテーパ状に大きくなるコアを用いる。実施例1と同様,図の煩雑さを避けるため,図6では光路変換部46は省略している(光導波路の詳細は図12に記載している)。光路変換部46は,光ビームスポット20のサイズより大きいため,高い光結合効率を実現できる。テーパ形状は,伝搬損失を低減するため,コア幅とコア厚を断熱的に変化させたものとする。次に受光素子に対する光導波路構造について説明する。受光素子のチャネル間の光結合効率の不均一性を解決するため, 図7(a),(b),(c)に示す通り, 最下段の光導波路21のコアとして,マルチコアファイバから光路変換部46の方向にコア幅とコア厚がテーパ状に狭くなるコアを用いる(図6と同様,光路変換部46を省略しているので,図12(a),(b)を参照)。光路変換部46から出射される光ビームスポット20のサイズは小さくなるため,レンズに到達した際,そのサイズ内に入るため,高い光結合効率を実現できる。  A second embodiment having an optical waveguide structure different from that of the first embodiment will be described with reference to FIGS. First, the optical waveguide structure for the light emitting element will be described. In order to solve the non-uniformity of the optical coupling efficiency between the channels of the light emitting element, as shown in FIGS. 6A and 6B, as the core of the uppermost optical waveguide 21, from the multi-core fiber to the optical path conversion unit 46 A core whose core width and thickness are increased in a tapered shape is used. As in the first embodiment, in order to avoid the complexity of the drawing, the optical path conversion unit 46 is omitted in FIG. 6 (details of the optical waveguide are described in FIG. 12). Since the optical path conversion unit 46 is larger than the size of the light beam spot 20, high optical coupling efficiency can be realized. The taper shape assumes that the core width and core thickness are changed adiabatically to reduce propagation loss. Next, the optical waveguide structure for the light receiving element will be described. In order to solve the non-uniformity of the optical coupling efficiency between the channels of the light receiving element, as shown in FIGS. 7 (a), (b) and (c), the optical path conversion from the multi-core fiber is performed as the core of the lowermost optical waveguide 21 A core whose core width and core thickness are tapered in the direction of the portion 46 is used (similar to FIG. 6, since the optical path changing portion 46 is omitted, see FIGS. 12A and 12B). Since the size of the light beam spot 20 emitted from the optical path changing unit 46 is small, when the light beam spot 20 reaches the lens, it enters the size, so that high optical coupling efficiency can be realized.
 本実施例1,2とは異なる光導波路構造を有する第3の形態について,図8を用いて説明する。発・受光素子のチャネル間の光結合効率の不均一性を解決するため, 図8(a),(b),(c)に示す通り, 最上段の光導波路22のコアとして,他の光導波路6のコアに比べて,断面積が大きくなるコアを用いる。発光素子に対する光路変換部46は,光ビームスポット20のサイズより大きいため,高い光結合効率を実現できる。実施例1と同様,図の煩雑さを避けるため,図8では光路変換部46は省略している(光導波路の詳細は図12(a),(b)に記載している)。 A third embodiment having an optical waveguide structure different from those of Examples 1 and 2 will be described with reference to FIG. In order to solve the non-uniformity of the optical coupling efficiency between the channels of the light emitting and receiving elements, as shown in FIGS. 8 (a), (b), and (c), other optical A core having a larger cross-sectional area than the core of the waveguide 6 is used. Since the optical path changing unit 46 for the light emitting element is larger than the size of the light beam spot 20, high optical coupling efficiency can be realized. As in the first embodiment, in order to avoid the complexity of the drawing, the optical path conversion unit 46 is omitted in FIG. 8 (details of the optical waveguide are described in FIGS. 12A and 12B).
 受光素子に対しては, 光路変換部46から出射する際の光ビームスポットサイズは,他の光路変換部46からのものより大きくなる。しかし,レンズまでの距離が短いため,光のビーム広がりが小さく, 高い光結合効率を実現できる。この場合, 最上段の光導波路22のコアに対するマルチコアファイバのコア14は,他のマルチコアファイバのコア45より大きくする。 For the light receiving element, the light beam spot size when exiting from the optical path conversion unit 46 is larger than that from the other optical path conversion units 46. However, since the distance to the lens is short, the beam spread of light is small and a very high optical coupling efficiency can be realized. In this case, the core 14 of the multi-core fiber with respect to the core of the uppermost optical waveguide 22 is made larger than the core 45 of the other multi-core fiber.
 本実施例では,図1記載の光送受信モジュール構成の中で,電気配線用基板3が異なる(図2)。 発・受光素子アレイ1と電子回路2(発光素子駆動回路または電気信号増幅回路)を,電気配線用基板3にフリップチップ搭載する。電気配線用基板3は,発光素子からの光を透過させる材料からできている。例えば,光の波長が1μm以上の場合,電気配線用基板3の材料としてSiが用いられる。発・受光素子アレイ1と電子回路2を搭載した電気配線用基板3の面と反対側の面に光を集光するためのレンズ4を形成する。その他の構成は,図1記載のものと同じである。 In this embodiment, the electrical wiring board 3 is different from the optical transceiver module configuration shown in FIG. 1 (FIG. 2). The light emitting / receiving element array 1 and the electronic circuit 2 (light emitting element driving circuit or electric signal amplifier circuit) are flip-chip mounted on the electric wiring board 3. The electric wiring board 3 is made of a material that transmits light from the light emitting element. For example, when the wavelength of light is 1 μm or more, Si is used as the material for the electrical wiring substrate 3. A lens 4 for condensing light is formed on a surface opposite to the surface of the electric wiring substrate 3 on which the light emitting / receiving element array 1 and the electronic circuit 2 are mounted. Other configurations are the same as those shown in FIG.
 本実施例では,本発明の光送受信モジュールを,装置内ボード上のスイッチLSI37に近接して配置する場合の例について,図10を用いて説明する。装置内ボード上に,インターポーザ36の裏面にスイッチLSI37を,表面に光送受信モジュールを実装している。インターポーザ36を用いることで,高密度の電気配線が可能になるため,多くの光送受信モジュールをスイッチLSI37に近接させて配置することが可能になる。ここでインターポーザ36の材料としてSiなどが適用される。図11は,インターポーザ36を介したスイッチLSI37と光送受信モジュールの接続構成例の断面図を示している。 In this embodiment, an example in which the optical transmission / reception module of the present invention is arranged close to the switch LSI 37 on the in-device board will be described with reference to FIG. On the board in the apparatus, a switch LSI 37 is mounted on the back surface of the interposer 36, and an optical transmission / reception module is mounted on the front surface. By using the interposer 36, high-density electrical wiring is possible, so that many optical transmission / reception modules can be arranged close to the switch LSI 37. Here, Si or the like is applied as a material for the interposer 36. FIG. 11 shows a cross-sectional view of a connection configuration example of the switch LSI 37 and the optical transceiver module via the interposer 36.
1  発・受光素子アレイ、2  電子回路アレイ、3  電気配線用基板、
4  レンズアレイ、5  光サブアセンブリ、6  光導波路、7  マルチコアファイバ光コネクタ、8  マルチコアファイバ、9  電気コネクタ、
10 電気コネクタ用ソケット、11 装置内ボード、12 放熱器、13 光路変換部付き光導波路のクラッド部、14 マルチコアファイバのコア部、15 マルチコアファイバのクラッド部、16 光導波路基板、17 発光素子アレイ、18 光ビーム、19 光導波路のコア部、20 光ビームスポット、21 光導波路のコア部、22 光導波路のコア部、23 バックプレーンコネクタ、24 電源コネクタ、25 光送受信モジュール、26 電子回路、27 インターフェースカード、28 ラインカード、29 バックプレーン、30 バックプレーン光ファイバ、31 バックプレーンコネクタ、32 電源コネクタ、33 光送受信モジュール、34 電子回路、35 スイッチカード、36 インターポーザ、37 スイッチLSI、38 電子部品、39 ヒートシンク、40 半田バンプ、41 ビア配線、42 放熱用ビア配線、43 スルーホール、44 受光素子アレイ、45 マルチコアファイバのコア、46 光路変換部、47 光導波路コア。
1 Emitting / receiving element array, 2 Electronic circuit array, 3 Electric wiring board,
4 lens array, 5 optical subassembly, 6 optical waveguide, 7 multi-core fiber optical connector, 8 multi-core fiber, 9 electrical connector,
DESCRIPTION OF SYMBOLS 10 Socket for electrical connectors, 11 Board in apparatus, 12 Heat radiator, 13 Clad part of optical waveguide with optical path changing part, 14 Core part of multi-core fiber, 15 Clad part of multi-core fiber, 16 Optical waveguide board, 17 Light emitting element array, 18 optical beam, 19 optical waveguide core, 20 optical beam spot, 21 optical waveguide core, 22 optical waveguide core, 23 backplane connector, 24 power connector, 25 optical transceiver module, 26 electronic circuit, 27 interface Card, 28 line card, 29 backplane, 30 backplane optical fiber, 31 backplane connector, 32 power connector, 33 optical transceiver module, 34 electronic circuit, 35 switch card, 36 interposer, 37 switch LSI, 38 electronic component, 39 Hi Sink, 40 solder bumps, 41 via wiring, 42 for heat radiation via wires, 43 through hole, 44 light-receiving element array, 45 multicore fiber having a core, 46 an optical path changing unit, 47 optical waveguide core.

Claims (14)

  1.  光信号を発信または受信する発・受光素子と,電気信号を光信号に変換するために発・受光素子を駆動する電子回路と,光信号から変換された電気信号を増幅するための電子回路とが,電気配線用基板に搭載された光サブアセンブリと,前記発・受光素子と光信号を伝送するマルチコアファイバの複数のコアと光学的にそれぞれ接続する,光路変換部付き複数の光導波路コアからなる光導波路を有する光接続部において,少なくとも一つの大きさが他の光路変換部と異なる光路変換部付き光導波路コアからなる光導波路を具備する光接続部と,当該光接続部と端面で光接続するマルチコアファイバを具備した光コネクタと,前記電気配線用基板と装置内ボードを電気的に接続可能とする電気コネクタから構成されることを特徴とする光送受信モジュール。 A light emitting / receiving element for transmitting or receiving an optical signal; an electronic circuit for driving the light emitting / receiving element to convert the electric signal into an optical signal; and an electronic circuit for amplifying the electric signal converted from the optical signal; Are optical subassemblies mounted on a substrate for electrical wiring, and a plurality of optical waveguide cores with optical path converters that are optically connected to the light emitting / receiving elements and a plurality of cores of a multicore fiber that transmits optical signals, respectively. An optical connection portion having an optical waveguide composed of an optical waveguide core with an optical path conversion portion having at least one size different from that of another optical path conversion portion, and an optical connection portion at the end face with the optical connection portion. An optical transmission / reception module comprising: an optical connector having a multi-core fiber to be connected; and an electrical connector capable of electrically connecting the electrical wiring board and the in-device board. Rule.
  2.  発光素子と光接続する光導波路における光導波路コアの少なくとも一つがマルチコアファイバから光路変換部の方向にコア幅がテーパ状に広くなる光導波路コアを,受光素子と光接続する光導波路における光導波路コアの少なくとも一つがマルチコアファイバから光路変換部の方向にコア幅がテーパ状に狭くなる光導波路コアを有することを特徴とする請求項1記載の光送受信モジュール。 At least one of the optical waveguide cores in the optical waveguide that is optically connected to the light emitting element is an optical waveguide core in which the core width is tapered in the direction from the multicore fiber to the optical path changing portion, and the optical waveguide core in the optical waveguide that is optically connected to the light receiving element. 2. The optical transceiver module according to claim 1, wherein at least one of the optical waveguide cores has an optical waveguide core whose core width is tapered in a direction from the multi-core fiber toward the optical path changing unit.
  3.  発光素子と光接続する光導波路における光導波路コアの少なくとも一つがマルチコアファイバから光路変換部の方向にコア幅と厚さがテーパ状に大きくなる光導波路コアを,受光素子と光接続する光導波路における光導波路コアの少なくとも一つがマルチコアファイバから光路変換部の方向にコア幅と厚さがテーパ状に小さくなる光導波路コアを有することを特徴とする請求項1記載の光送受信モジュール。 At least one of the optical waveguide cores in the optical waveguide optically connected to the light emitting element has an optical waveguide core whose core width and thickness increase in a taper direction from the multicore fiber to the optical path changing portion. 2. The optical transceiver module according to claim 1, wherein at least one of the optical waveguide cores has an optical waveguide core whose core width and thickness become tapered in the direction from the multi-core fiber to the optical path changing unit.
  4.  少なくとも一つの,他の光導波路と比べて光路変換部の断面積が大きく,かつ他の光導波路と比べて光導波路コアの断面積が大きくかつ均一である光導波路を有する光接続部と,当該光導波路と光学的に接続するその他のマルチコアファイバのコアサイズより大きいコアサイズのマルチコアファイバを有することを特徴とする請求項1記載の光送受信モジュール。 At least one optical connecting portion having an optical waveguide having a cross-sectional area larger than that of the other optical waveguide and having a uniform cross-sectional area of the optical waveguide core compared to the other optical waveguides, and The optical transceiver module according to claim 1, further comprising a multi-core fiber having a core size larger than that of other multi-core fibers optically connected to the optical waveguide.
  5.  光を透過させるための光スルーホールを有する電気配線用基板を用い,前記光接続部上にレンズを配置または形成することを特徴とする請求項1記載の光送受信モジュール。 2. The optical transceiver module according to claim 1, wherein a lens is disposed or formed on the optical connection portion using a substrate for electrical wiring having an optical through hole for transmitting light.
  6.  レンズを集積した光を透過する材料でできた電気配線用基板を用いることを特徴とする請求項1記載の光送受信モジュール。 2. The optical transceiver module according to claim 1, wherein a substrate for electric wiring made of a material that transmits light with integrated lenses is used.
  7.  光信号を発信または受信する発・受光素子と,電気信号を光信号に変換するために発・受光素子を駆動する電子回路と,光信号から変換された電気信号を増幅するための電子回路とが,電気配線用基板に搭載された光サブアセンブリと,前記発・受光素子と光信号を伝送するマルチコアファイバの複数のコアと光学的にそれぞれ接続する,光路変換部付き複数の光導波路コアからなる光導波路を有する光接続部において,少なくとも一つの光路変換部の断面積と光路変換部と反対側の光導波路端の光導波路コア断面積が異なる光導波路を有する光接続部と,当該光接続部と端面で光接続するマルチコアファイバを具備した光コネクタと,前記電気配線用基板と装置内ボードを電気的に接続可能とする電気コネクタから構成されることを特徴とする光送受信モジュール。 A light emitting / receiving element for transmitting or receiving an optical signal; an electronic circuit for driving the light emitting / receiving element to convert the electric signal into an optical signal; and an electronic circuit for amplifying the electric signal converted from the optical signal; Are optical subassemblies mounted on a substrate for electrical wiring, and a plurality of optical waveguide cores with optical path converters that are optically connected to the light emitting / receiving elements and a plurality of cores of a multicore fiber that transmits optical signals, respectively. An optical connection section having an optical waveguide, wherein the cross-sectional area of at least one optical path conversion section and the optical waveguide core cross-sectional area at the end of the optical waveguide opposite to the optical path conversion section are different from each other. An optical connector comprising a multi-core fiber that is optically connected to the section and the end face, and an electrical connector that enables electrical connection between the electrical wiring board and the board in the apparatus. Optical transceiver module.
  8.  発光素子と光接続する光導波路における光導波路コアの少なくとも一つがマルチコアファイバから光路変換部の方向にコア幅がテーパ状に広くなる光導波路コアを,受光素子と光接続する光導波路における光導波路コアの少なくとも一つがマルチコアファイバから光路変換部の方向にコア幅がテーパ状に狭くなる光導波路コアを有することを特徴とする請求項7記載の光送受信モジュール。 At least one of the optical waveguide cores in the optical waveguide that is optically connected to the light emitting element is an optical waveguide core in which the core width is tapered in the direction from the multicore fiber to the optical path changing portion, and the optical waveguide core in the optical waveguide that is optically connected to the light receiving element. 8. The optical transmission / reception module according to claim 7, wherein at least one of the optical waveguide cores has an optical waveguide core whose core width narrows in a tapered shape from the multi-core fiber toward the optical path changing unit.
  9.  発光素子と光接続する光導波路における光導波路コアの少なくとも一つがマルチコアファイバから光路変換部の方向にコア幅と厚さがテーパ状に大きくなる光導波路コアを,受光素子と光接続する光導波路における光導波路コアの少なくとも一つがマルチコアファイバから光路変換部の方向にコア幅と厚さがテーパ状に小さくなる光導波路コアを有することを特徴とする請求項7記載の光送受信モジュール。 At least one of the optical waveguide cores in the optical waveguide optically connected to the light emitting element has an optical waveguide core whose core width and thickness increase in a taper direction from the multicore fiber to the optical path changing portion. 8. The optical transceiver module according to claim 7, wherein at least one of the optical waveguide cores has an optical waveguide core whose core width and thickness are reduced in a taper shape from the multi-core fiber toward the optical path changing unit.
  10.  少なくとも一つの,他の光導波路と比べて光路変換部の断面積が大きく,かつ他の光導波路と比べて光導波路コアの断面積が大きくかつ均一である光導波路を有する光接続部と,当該光導波路と光学的に接続するその他のマルチコアファイバのコアサイズより大きいコアサイズのマルチコアファイバを有することを特徴とする請求項7記載の光送受信モジュール。 At least one optical connecting portion having an optical waveguide having a cross-sectional area larger than that of the other optical waveguide and having a uniform cross-sectional area of the optical waveguide core compared to the other optical waveguides, and 8. The optical transceiver module according to claim 7, further comprising a multi-core fiber having a larger core size than that of other multi-core fibers optically connected to the optical waveguide.
  11.  光を透過させるための光スルーホールを有する電気配線用基板を用い,前記光接続部上にレンズを配置または形成することを特徴とする請求項7記載の光送受信モジュール。 8. The optical transceiver module according to claim 7, wherein a lens is disposed or formed on the optical connection portion using an electric wiring substrate having an optical through hole for transmitting light.
  12.  レンズを集積した光を透過する材料でできた電気配線用基板を用いることを特徴とする請求項7記載の光送受信モジュール。 8. The optical transmission / reception module according to claim 7, wherein a substrate for electric wiring made of a material transmitting light with integrated lenses is used.
  13.  光信号を発信または受信する発・受光素子と,電気信号を光信号に変換するために発・受光素子を駆動する電子回路と,光信号から変換された電気信号を増幅するための電子回路とが,電気配線用基板に搭載された光サブアセンブリと,前記発・受光素子と光信号を伝送するマルチコアファイバの複数のコアと光学的にそれぞれ接続する,光路変換部付き複数の光導波路コアからなる光導波路を有する光接続部において,少なくとも一つの大きさが他の光路変換部と異なる光路変換部付き光導波路コアからなる光導波路を具備する光接続部と,当該光接続部と端面で光接続するマルチコアファイバを具備した光コネクタと,前記電気配線用基板と装置内ボードを電気的に接続可能とする電気コネクタから構成される光送受信モジュールを装置内ボード上または装置筺体面に搭載することを特徴とする情報装置。 A light emitting / receiving element for transmitting or receiving an optical signal; an electronic circuit for driving the light emitting / receiving element to convert the electric signal into an optical signal; and an electronic circuit for amplifying the electric signal converted from the optical signal; Are optical subassemblies mounted on a substrate for electrical wiring, and a plurality of optical waveguide cores with optical path converters that are optically connected to the light emitting / receiving elements and a plurality of cores of a multicore fiber that transmits optical signals, respectively. An optical connection portion having an optical waveguide composed of an optical waveguide core with an optical path conversion portion having at least one size different from that of another optical path conversion portion, and an optical connection portion at the end face with the optical connection portion. An optical transmission / reception module comprising an optical connector having a multi-core fiber to be connected and an electrical connector capable of electrically connecting the electrical wiring board and the board in the apparatus is provided in the apparatus. An information device mounted on a card or on the surface of a device housing.
  14.  光信号を発信または受信する発・受光素子と,電気信号を光信号に変換するために発・受光素子を駆動する電子回路と,光信号から変換された電気信号を増幅するための電子回路とが,電気配線用基板に搭載された光サブアセンブリと,前記発・受光素子と光信号を伝送するマルチコアファイバの複数のコアと光学的にそれぞれ接続する,光路変換部付き複数の光導波路コアからなる光導波路を有する光接続部において,少なくとも一つの光路変換部の断面積と光路変換部と反対側の光導波路端の光導波路コア断面積が異なる光導波路を有する光接続部と,当該光接続部と端面で光接続するマルチコアファイバを具備した光コネクタと,前記電気配線用基板と装置内ボードを電気的に接続可能とする電気コネクタから構成される光送受信モジュールを装置内ボード上または装置筺体面に搭載することを特徴とする情報装置。 A light emitting / receiving element for transmitting or receiving an optical signal; an electronic circuit for driving the light emitting / receiving element to convert the electric signal into an optical signal; and an electronic circuit for amplifying the electric signal converted from the optical signal; Are optical subassemblies mounted on a substrate for electrical wiring, and a plurality of optical waveguide cores with optical path converters that are optically connected to the light emitting / receiving elements and a plurality of cores of a multicore fiber that transmits optical signals, respectively. An optical connection section having an optical waveguide, wherein the cross-sectional area of at least one optical path conversion section and the optical waveguide core cross-sectional area at the end of the optical waveguide opposite to the optical path conversion section are different from each other. An optical transmission / reception module comprising an optical connector having a multi-core fiber that is optically connected to the section and an end face, and an electrical connector that enables electrical connection between the electrical wiring board and the in-device board. The information device is characterized in that the device is mounted on the board in the device or on the surface of the device housing.
PCT/JP2015/069580 2015-07-08 2015-07-08 Optical transceiver module and information device using same WO2017006445A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2015/069580 WO2017006445A1 (en) 2015-07-08 2015-07-08 Optical transceiver module and information device using same
JP2017527020A JP6471229B2 (en) 2015-07-08 2015-07-08 Optical transceiver module and information device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/069580 WO2017006445A1 (en) 2015-07-08 2015-07-08 Optical transceiver module and information device using same

Publications (1)

Publication Number Publication Date
WO2017006445A1 true WO2017006445A1 (en) 2017-01-12

Family

ID=57684979

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/069580 WO2017006445A1 (en) 2015-07-08 2015-07-08 Optical transceiver module and information device using same

Country Status (2)

Country Link
JP (1) JP6471229B2 (en)
WO (1) WO2017006445A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001108853A (en) * 1999-10-12 2001-04-20 Toppan Printing Co Ltd Optical wiring layer, opto-electric wiring board, and packaging substrate
US20020012501A1 (en) * 1998-12-04 2002-01-31 Radiant Photonics, Inc. Optical waveguide coupler for interconnection of electro-optical devices
EP1496378A1 (en) * 2003-07-10 2005-01-12 C.S.E.M. Centre Suisse D'electronique Et De Microtechnique Sa Optical coupling device
JP2009260227A (en) * 2008-02-25 2009-11-05 Panasonic Electric Works Co Ltd Photoelectric conversion device
JP2010191365A (en) * 2009-02-20 2010-09-02 Hitachi Ltd Optical interconnection mounting circuit
JP2011221195A (en) * 2010-04-07 2011-11-04 Sumitomo Bakelite Co Ltd Optical waveguide structure and electronic device
JP2011237573A (en) * 2010-05-10 2011-11-24 Sumitomo Electric Ind Ltd Optical component for optical fiber coupling, optical module, manufacturing method of optical component for optical fiber coupling and manufacturing method of optical module
JP2012037818A (en) * 2010-08-11 2012-02-23 Hitachi Ltd Photoelectric composite wiring module and manufacturing method thereof
WO2013179522A1 (en) * 2012-05-31 2013-12-05 日本メクトロン株式会社 Method for producing opto-electric hybrid flexible printed wiring board, and opto-electric hybrid flexible printed wiring board
WO2015132849A1 (en) * 2014-03-03 2015-09-11 株式会社日立製作所 Photoelectric conversion module and information device using same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020012501A1 (en) * 1998-12-04 2002-01-31 Radiant Photonics, Inc. Optical waveguide coupler for interconnection of electro-optical devices
JP2001108853A (en) * 1999-10-12 2001-04-20 Toppan Printing Co Ltd Optical wiring layer, opto-electric wiring board, and packaging substrate
EP1496378A1 (en) * 2003-07-10 2005-01-12 C.S.E.M. Centre Suisse D'electronique Et De Microtechnique Sa Optical coupling device
JP2009260227A (en) * 2008-02-25 2009-11-05 Panasonic Electric Works Co Ltd Photoelectric conversion device
JP2010191365A (en) * 2009-02-20 2010-09-02 Hitachi Ltd Optical interconnection mounting circuit
JP2011221195A (en) * 2010-04-07 2011-11-04 Sumitomo Bakelite Co Ltd Optical waveguide structure and electronic device
JP2011237573A (en) * 2010-05-10 2011-11-24 Sumitomo Electric Ind Ltd Optical component for optical fiber coupling, optical module, manufacturing method of optical component for optical fiber coupling and manufacturing method of optical module
JP2012037818A (en) * 2010-08-11 2012-02-23 Hitachi Ltd Photoelectric composite wiring module and manufacturing method thereof
WO2013179522A1 (en) * 2012-05-31 2013-12-05 日本メクトロン株式会社 Method for producing opto-electric hybrid flexible printed wiring board, and opto-electric hybrid flexible printed wiring board
WO2015132849A1 (en) * 2014-03-03 2015-09-11 株式会社日立製作所 Photoelectric conversion module and information device using same

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
TATSUHIKO WATANABE ET AL.: "Fan-in/Fan-out device using laminated polimer waveguide for 19-core uncoupled multi-core fiber", 2013 NEN IEICE COMMUNICATIONS SOCIETY CONFERENCE KOEN RONBUNSHU 2, 3 September 2013 (2013-09-03), pages 252 *
WATANABE,T. ET AL.: "Laminated polymer waveguide fan-out device for uncoupled multi-core fibers", OPTICS EXPRESS, vol. 20, no. 24, 19 November 2012 (2012-11-19), pages 26317 - 26325 *
YASUNOBU MATSUOKA ET AL.: "High- Density (480-Gbit/s/cm^2) Optical Printed Circuit Board with an Efficient Optical Interface", THE TRANSACTIONS OF THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS. C, ELECTRONICS, vol. J93-C, no. 11, 1 November 2010 (2010-11-01), pages 521 - 523 *
YASUNOBU MATSUOKA ET AL.: "Optical printed circuit board with an efficient optical interface for 480-Gbps/cm2 (20 Gbps x 12 ch x 2 layers) high-density opticall interconnections, Optical Fiber Communication (OFC), collocated National Fiber Optic Engineers Conference", 2010 CONFERENCE ON (OFC/NFOEC), 21 March 2010 (2010-03-21) *

Also Published As

Publication number Publication date
JPWO2017006445A1 (en) 2018-03-08
JP6471229B2 (en) 2019-02-13

Similar Documents

Publication Publication Date Title
US20210392419A1 (en) Assembly of network switch asic with optical transceivers
JP6294838B2 (en) Chip assembly configuration with densely packed optical interconnects
TWI452371B (en) A mid-plane mounted optical communications system and method for providing high-density mid-plane mounting of parallel optical communications modules
JP5568044B2 (en) Optical interconnect module and opto-electric hybrid board
TWI376038B (en)
WO2010098171A1 (en) Optical waveguide and optical waveguide module
JP2006091241A (en) Optoelectronic composite wiring component and electronic equipment using the same
US20150098675A1 (en) Photoelectric Conversion Module and Transmission Apparatus Using the Same
WO2013046415A1 (en) Optical module
US8936399B2 (en) Receptacle-type bi-directional optical module and electronic apparatus thereof
JP2010191365A (en) Optical interconnection mounting circuit
KR20070085080A (en) System and method for the fabrication of an electro-optical module
US7876984B2 (en) Planar optical waveguide array module and method of fabricating the same
JP2004177963A (en) Optically connectable circuit board with optical component mounted thereon
JP2011053269A (en) Photoelectric composite wiring module and method for producing the same
KR20150024431A (en) Optical assembly with diffractive optical element
US6879423B2 (en) Printed circuit board assembly with multi-channel block-type optical devices packaged therein
US6786651B2 (en) Optical interconnect structure, system and transceiver including the structure, and method of forming the same
JP2005173043A (en) Multichannel optical module
WO2015132849A1 (en) Photoelectric conversion module and information device using same
US6789957B1 (en) High-density optoelectronic transceiver assembly for optical communication data links
US11561352B2 (en) High density optical I/O inside a data center switch using multi-core fibers
JP2012013726A (en) Optical interconnection module, and optical and electrical circuit board using the same
TWI498619B (en) Bidirectional optical sub-assembly
JP2012141471A (en) Optical interconnection module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15897708

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017527020

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15897708

Country of ref document: EP

Kind code of ref document: A1