WO2017005345A1 - Zellmodul, batteriemodul und elektrische batterie - Google Patents

Zellmodul, batteriemodul und elektrische batterie Download PDF

Info

Publication number
WO2017005345A1
WO2017005345A1 PCT/EP2016/001086 EP2016001086W WO2017005345A1 WO 2017005345 A1 WO2017005345 A1 WO 2017005345A1 EP 2016001086 W EP2016001086 W EP 2016001086W WO 2017005345 A1 WO2017005345 A1 WO 2017005345A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
individual cells
module
tempering
battery
Prior art date
Application number
PCT/EP2016/001086
Other languages
English (en)
French (fr)
Inventor
Norbert Wiesheu
Original Assignee
Daimler Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daimler Ag filed Critical Daimler Ag
Publication of WO2017005345A1 publication Critical patent/WO2017005345A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • H01M50/22Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
    • H01M50/227Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/617Types of temperature control for achieving uniformity or desired distribution of temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6553Terminals or leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/213Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for cells having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/509Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the type of connection, e.g. mixed connections
    • H01M50/51Connection only in series
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/509Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the type of connection, e.g. mixed connections
    • H01M50/512Connection only in parallel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/521Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the material
    • H01M50/522Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/521Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the material
    • H01M50/524Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/643Cylindrical cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/653Means for temperature control structurally associated with the cells characterised by electrically insulating or thermally conductive materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • H01M10/6555Rods or plates arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/66Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to a cell module for an electric battery according to the preamble of claim 1.
  • the invention further relates to a battery module with a plurality of such cell modules and an electric battery with at least one such
  • a device for powering a vehicle in particular a passenger car or a motorcycle, is described with a plurality of electrochemical storage cells. At least one of the in the
  • Memory cells each arranged electrodes is made of metal or is largely provided over the entire surface with a metal layer.
  • the metal electrode or the metal layer, in particular a metal foil, is electrically conductively connected via a connection element to a connection terminal provided outside the memory cell.
  • the Device is provided in particular for a temporary electromotive drive of a motor vehicle, to which it has a heat-conducting cooling plate, which is in thermal contact with substantially each of the terminals of the memory cells.
  • the cooling plate leads from the metal electrodes or metal layers of the
  • Electrodes supplied to the terminal via the terminal are Electrodes supplied to the terminal via the terminal
  • the invention is based on the object, a comparison with the prior art improved cell module, an improved over the prior art
  • the object is achieved according to the invention with the features specified in claim 1.
  • the object is achieved according to the invention with the features specified in claim 7.
  • the object is achieved with the in claim 9
  • a cell module for an electric battery comprises a plurality of individual cells, at least two cell pole connectors, by means of which the individual cells are electrically connected in parallel or in series with each other, and at least one tempering element for
  • the at least one tempering element is thermally conductively connected to a first cell pole connector, wherein each individual cell is electrically and thermally conductively connected to the first cell pole connector and wherein the at least one tempering element has two sections arranged at right angles to one another, wherein a first section has a
  • the cell module thus formed allows a modular design of the electric battery, whereby a repair and replacement of individual components of the electric battery over the prior art are simplified and less expensive.
  • the cell module enables an efficient and easy-to-install cooling of the individual cells, wherein each individual cell is thermally conductively connected to the temperature control element via the first cell pole connector and thus an indirect temperature control of the individual cells
  • the tempering is, for example, a cooling plate with a number of cooling channels, which are traversed by a cooling medium.
  • a plurality of cell modules can be coupled to a single tempering element, wherein the individual cells are not firmly connected to the tempering, so that disassembly and reassembly of one or more cell modules can be carried out in a very simple manner.
  • the arrangement of the tempering also allows space-saving dimensions of the cell module and thus also the electric battery.
  • the electric battery is, for example, as a traction battery in one
  • Fig. 1 shows schematically a perspective view of a cell module with a
  • FIG. 2 schematically shows a perspective view of the cell module according to FIG. 1 with a further cell pole connector
  • Fig. 3 shows schematically a perspective view of a battery module with four
  • Fig. 4 shows schematically two interconnected battery modules, each with four
  • FIG. 5 shows schematically two interconnected cell modules in a construction space with a further tempering in a perspective view
  • FIG. 6 is a schematic perspective view of a construction space with a plurality of battery modules.
  • FIG. 1 and FIG. 2 each schematically show an embodiment according to the invention of a cell module 1 for an electric battery 2 shown in FIG. 6 in a perspective view.
  • the cell module 1 comprises 43 individual cells 1.1, which are electrically connected to one another in parallel.
  • the cell module 1 comprises a number of individual cells 1.1 deviating from the number shown.
  • the individual cells 1.1 each comprise a cell housing 1.1.1 in which a cell interior, not shown, is arranged, for example in the form of electrochemically active foils.
  • the cell case 1.1.1 is formed circular cylindrical.
  • a lateral surface of the cell housing 1 .1.1 is z. B. of an electrically insulating material, such as plastic.
  • each cell pole (not shown) is arranged, wherein on one end side of a positive pole and on the opposite end side a negative pole is arranged.
  • all plus poles and minus poles of the individual cells 1.1 are aligned in the same direction, so that the individual cells 1.1 can be interconnected electrically in parallel with one another by means of cell pole connectors 1.2, 1.3.
  • a first Zellpolverbinder 1.2 is shown, which is the minus poles of
  • the first Zellpolverbinder 1.2 is for this purpose of an electrically and heat conductive material, for. As metal, formed, wherein the single cells 1.1 are firmly connected to the first Zellpolverbinder 1.2.
  • the cell housing 1.1.1 of the individual cells 1.1 is firmly connected to a flat side of the first cell pole connector 1.2 by laser welding, laser soldering or other suitable joining methods.
  • a thermal conductivity of the individual cells 1.1 is established via the joints to the first cell pole connector 1.2.
  • the first Zellpolverbinder 1.2 further comprises an angled from the flat side in the direction of a longitudinal alignment of the individual cells 1.1 connecting element 1.2.1, which is preferably formed integrally with the flat side.
  • Connecting element 1.2.1 protrudes from an edge, in particular from an end-side edge of the flat side of the first cell pole connector 1.2.
  • Connecting element 1.2.1 is provided for the electrical connection of the cell module 1 with a further cell module 1, as shown by way of example in FIG.
  • FIG. 2 additionally shows a second cell pole connector 1.3 which connects the positive poles of the individual cells 1.1 in an electrically conductive manner.
  • the second Zellpolverbinder 1.3 is arranged in the present embodiment on a side facing away from the individual cells 1.1 flat side of a plate or trough-shaped support body 1.3.1, which consists of an electrically insulating material, for. B. an injection molded plastic body is formed.
  • the carrier body 1.3.1 has a number of recesses corresponding to a number of the individual cells 1.1, so that the positive poles of the
  • Single cells 1.1 electrically connected to the second Zellpolverbinder 1.3 are connectable.
  • the electrical connection of the positive poles to the second Zellpolverbinder .3 is done for example by means of bonding wires, in particular by means of aluminum or
  • FIG. 3 schematically shows a battery module 3, which comprises four of the cell modules 1 described above, in a perspective view.
  • the battery module 3 shown exemplifies a so-called base module
  • the cell modules 1 are arranged side by side in pairs, two each
  • Cell modules 1 form a cell module pair whose first cell connector poles 1.2 are arranged facing each other.
  • the cell modules 1 are electrically connected to one another in series so that the connecting element 1.2.1 of the first cell connector pole 1.2 of one of the cell modules 1 is connected to the second cell connector pole 1.2 of an adjacent cell connector
  • the connecting element 1.2.1 is designed angled at the free end and rests on the second Zellverbinderpol 1.2.
  • Temperierelement 4 provided, as shown by way of example in the present embodiment.
  • the tempering 4 comprises two sections 4.1, 4.2, which are each plate-shaped and arranged at right angles to each other. This is a first
  • Section 4.1 between the cell modules 1 of the cell module pairs and thus in particular in each case between the first cell connector poles 1.1 of the cell module pairs arranged.
  • the first section 4.1 is arranged with one flat side facing the first cell connector poles 4.1 of two cell modules 1 and runs perpendicular to one
  • a second section 4.2 of the tempering 4 is perpendicular to the first
  • Section 4.1 is arranged and thus runs parallel to the longitudinal direction of the
  • the second section 4.2 starting from the first section 4.1, respectively runs in the direction of the second cell pole connector 1.3 of the cell modules 1.
  • the tempering 4 is, for example, a cooling plate with a number of
  • the heat-conducting foil 5 consists for example of a soft and elastic plastic base material, for. As soft silicone, which with good thermal conductivity particles, eg. B.
  • Alumina is filled.
  • FIG. 4 shows an extension of the basic module described above, wherein two battery modules 3 each having four cell modules 1 are electrically connected to one another in series and thus have, for example, a nominal voltage of 29.2 volts.
  • the battery modules 3 are shown schematically in perspective view.
  • the battery modules 3 form a so-called double module, wherein the battery modules 3 are arranged side by side in a longitudinal orientation of the tempering 4.
  • the tempering element 4 is extended or lengthened in the longitudinal direction in accordance with a dimension of the double module relative to the exemplary embodiment shown in FIG.
  • the temperature control of the individual cells 1.1 can in this case be effected directly via the tempering element 4, which - as already described - is flowed through by a cooling liquid.
  • the temperature control element 4 can also serve as a heat buffer and be thermally conductively connected to a further tempering element 6 through which a cooling liquid flows.
  • the space B is for example in a vehicle, not shown
  • Embodiment only two cell modules 1 in the installation space B are shown for better illustration.
  • the tempering 4 serves as a heat buffer for storing the waste heat of the individual cells 1.1, wherein the heat stored in the tempering 4 is dissipated via the further tempering 6.
  • Temperierelement 6 serve as cooling channels, which are traversed by a cooling medium.
  • the cooling medium is a cooling fluid that is provided by an air conditioning circuit of the vehicle.
  • the cell modules 1 shown are each arranged with the first cell connector pole 1.2 a battery housing bottom (not shown) facing, in which case the tempering 4 is not arranged adjacent to the first Zellverbinderpolen 1.2. In this case, a temperature control can also be done via the battery case floor.
  • Figure 7 shows an arranged in a space B electric battery 2 with a plurality of electrically interconnected battery modules 3.
  • the electric battery 2 is in a battery housing 2.1 (only partially shown in the present embodiment).
  • the battery modules 3 are variably electrically connected in parallel and / or in series with one another.
  • the modular design of the electric battery 2 allows optimal use of the space B, with individual cell modules 1 and / or battery modules 3 are exchangeable in a simple manner.
  • the use of other cell types, e.g. B. frame flat cells in the installation space B possible.
  • the electric battery 2 comprises both round cells and flat frame cells as individual cells 1.1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Automation & Control Theory (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

Die Erfindung betrifft ein Zellmodul (1) für eine elektrische Batterie (2) mit - einer Mehrzahl von Einzelzellen (1.1), - mindestens zwei Zellpolverbindern (1.2, 1.3), mittels der die Einzelzellen (1.1) elektrisch parallel oder seriell miteinander verschaltet sind, und - wenigstens ein Temperierelement (4) zum Temperieren der Einzelzellen (1.1). Erfindungsgemäß ist vorgesehen, dass das wenigstens eine Temperierelement (4) mit einem ersten Zellpolverbinder (1.2) thermisch leitend verbunden ist, wobei - jede Einzelzelle (1.1) elektrisch und thermisch leitend mit dem ersten Zellpolverbinder (1.2) verbunden ist und - das wenigstens eine Temperierelement (4) zwei rechtwinklig zueinander angeordnete Abschnitte (4.1, 4.2) aufweist, wobei ein erster Abschnitt (4.1) parallel zu einer Flachseite des ersten Zellpolverbinders (1.2) und senkrecht zu einer Längsausrichtung der Einzelzellen (1.1) angeordnet ist, und wobei ein zweiter Abschnitt (4.2) parallel zur Längsausrichtung der Einzelzellen (1.1) angeordnet ist. Des Weiteren betrifft die Erfindung ein Batteriemodul (3), umfassend eine Mehrzahl elektrisch seriell miteinander verschalteter Zellmodule (1) sowie eine elektrische Batterie (2), umfassend wenigstens ein solches Batteriemodul (3).

Description

Zellmodul, Batteriemodul und elektrische Batterie
Die Erfindung betrifft ein Zellmodul für eine elektrische Batterie gemäß dem Oberbegriff des Anspruchs 1. Die Erfindung betrifft weiterhin ein Batteriemodul mit einer Mehrzahl solcher Zellmodule und eine elektrische Batterie mit mindestens einem solchen
Batteriemodul.
In der US 2009/0111009 A1 ist eine Vorrichtung zur Energieversorgung eines Fahrzeugs, insbesondere eines Personenkraftwagens oder eines Motorrads, mit einer Mehrzahl von elektrochemischen Speicherzellen beschrieben. Mindestens eine der in den
Speicherzellen jeweils angeordneten Elektroden besteht aus Metall oder ist weitgehend ganzflächig mit einer Metallschicht versehen. Die Metallelektrode oder die Metallschicht, insbesondere eine Metallfolie, ist über ein Anschlusselement mit einer außerhalb der Speicherzelle vorgesehenen Anschlussklemme elektrisch leitend verbunden. Die
Vorrichtung ist dabei insbesondere für einen temporären elektromotorischen Antrieb eines Kraftfahrzeugs vorgesehen, wozu diese eine Wärme leitende Kühlplatte aufweist, die in thermischem Kontakt mit weitgehend jeder der Anschlussklemmen der Speicherzellen steht. Die Kühlplatte führt die von den Metallelektroden oder Metallschichten der
Elektroden an die Anschlussklemme über das Anschlusselement zugeführte
Wärmeenergie ab.
Der Erfindung liegt die Aufgabe zu Grunde, ein gegenüber dem Stand der Technik verbessertes Zellmodul, ein gegenüber dem Stand der Technik verbessertes
Batteriemodul sowie eine gegenüber dem Stand der Technik verbesserte elektrische Batterie anzugeben.
Hinsichtlich des Zellmoduls wird die Aufgabe erfindungsgemäß mit den in Anspruch 1 angegebenen Merkmalen gelöst. Hinsichtlich des Batteriemoduls wird die Aufgabe erfindungsgemäß mit den in Anspruch 7 angegebenen Merkmalen gelöst. Hinsichtlich der elektrischen Batterie wird die Aufgabe erfindungsgemäß mit den in Anspruch 9
angegebenen Merkmalen gelöst.
Vorteilhafte Ausgestaltungen der Erfindung sind Gegenstand der Unteransprüche.
Ein Zellmodul für eine elektrische Batterie umfasst eine Mehrzahl von Einzelzellen, mindestens zwei Zellpolverbinder, mittels der die Einzelzellen elektrisch parallel oder seriell miteinander verschaltet sind, und wenigstens ein Temperierelement zum
Temperieren der Einzelzellen. Erfindungsgemäß ist vorgesehen, dass das wenigstens eine Temperierelement mit einem ersten Zellpolverbinder thermisch leitend verbunden ist, wobei jede Einzelzelle mit dem ersten Zellpolverbinder elektrisch und thermisch leitend verbunden ist und wobei das wenigstens eine Temperierelement zwei rechtwinklig zueinander angeordnete Abschnitte aufweist, wobei ein erster Abschnitt eine
Kontaktfläche für den ersten Zellpolverbinder bildet und parallel zu einer Flachseite des ersten Zellpolverbinders und senkrecht zu einer Längsausrichtung der Einzelzellen angeordnet ist, und wobei ein zweiter Abschnitt parallel zur Längsausrichtung der
Einzelzellen angeordnet ist.
Das derart ausgebildete Zellmodul ermöglicht eine modulartige Bauweise der elektrischen Batterie, wodurch eine Reparatur und Austausch einzelner Komponenten der elektrischen Batterie gegenüber dem Stand der Technik vereinfacht und kostengünstiger sind.
Weiterhin ermöglich das Zellmodul eine effiziente und montagefreundliche Kühlung der Einzelzellen, wobei jede Einzelzelle über den ersten Zellpolverbinder thermisch leitend mit dem Temperierelement verbunden ist und damit eine indirekte Temperierung der
Einzelzellen möglich ist. Das Temperierelement ist beispielsweise eine Kühlplatte mit einer Anzahl von Kühlkanälen, die von einem Kühlmedium durchströmbar sind.
Dabei können mehrere Zellmodule mit einem einzigen Temperierelement gekoppelt werden, wobei die Einzelzellen nicht fest mit dem Temperierelement verbunden sind, so dass eine Demontage und Remontage eines oder mehrerer Zellmodule auf sehr einfache Art und Weise durchführbar sind. Die Anordnung des Temperierelements ermöglicht zudem bauraumsparende Abmessungen des Zellmoduls und somit auch der elektrischen Batterie. Die elektrische Batterie ist beispielsweise als Traktionsbatterie in einem
Fahrzeug vorgesehen.
Ausführungsbeispiele der Erfindung werden im Folgenden anhand von Zeichnungen näher erläutert. Dabei zeigen:
Fig. 1 schematisch eine perspektivische Ansicht eines Zellmoduls mit einem
Zellpolverbinder in einer erfindungsgemäßen Ausführungsform,
Fig. 2 schematisch eine perspektivische Ansicht des Zellmoduls gemäß Figur 1 mit einem weiteren Zellpolverbinder,
Fig. 3 schematisch eine perspektivische Ansicht eines Batteriemoduls mit vier
Zellmodulen und einem Temperierelement,
Fig. 4 schematisch zwei miteinander verbundene Batteriemodule mit jeweils vier
Zellmodulen in perspektivischer Ansicht,
Fig. 5 schematisch zwei miteinander verbundene Zellmodule in einem Bauraum mit einem weiteren Temperierelement in einer perspektivischen Ansicht und
Fig. 6 schematisch eine perspektivische Ansicht eines Bauraums mit einer Mehrzahl von Batteriemodulen.
Einander entsprechende Teile sind in allen Figuren mit den gleichen Bezugszeichen versehen.
Figur 1 und Figur 2 zeigen jeweils schematisch eine erfindungsgemäße Ausführungsform eines Zellmoduls 1 für eine in Figur 6 dargestellte elektrische Batterie 2 in einer perspektivischen Ansicht.
Im vorliegenden Ausführungsbeispiel umfasst das Zellmodul 1 43 Einzelzellen 1.1 , die elektrisch parallel miteinander verschaltet sind. Alternativ umfasst das Zellmodul 1 eine von der gezeigten Anzahl abweichende Anzahl von Einzelzellen 1.1 auf.
Die Einzelzellen 1.1 umfassen dabei jeweils ein Zellgehäuse 1.1.1 , in dem ein nicht dargestelltes Zelleninneres, beispielsweise in Form von elektrochemisch aktiven Folien, angeordnet ist. Das Zellgehäuse 1.1.1 ist hierzu kreiszylindrisch ausgebildet. Eine Mantelfläche des Zellgehäuses 1 .1.1 ist z. B. aus einem elektrisch isolierenden Material, beispielsweise Kunststoff, gebildet. An den Stirnseiten einer Einzelzelle 1.1 ist jeweils ein Zellpol (nicht dargestellt) angeordnet, wobei an einer Stirnseite ein Pluspol und an der gegenüberliegenden Stirnseite ein Minuspol angeordnet ist. Im vorliegenden Ausführungsbeispiel sind jeweils alle Pluspole und Minuspole der Einzelzellen 1.1 in die gleiche Richtung ausgerichtet, so dass die Einzelzellen 1.1 mittels Zellpolverbindern 1.2, 1.3 elektrisch parallel miteinander verschaltbar sind.
In Figur 1 ist ein erster Zellpolverbinder 1.2 gezeigt, welcher die Minuspole der
Einzelzellen 1.1 elektrisch leitend miteinander verbindet. Der erste Zellpolverbinder 1.2 ist dazu aus einem elektrisch und Wärme leitenden Material, z. B. Metall, gebildet, wobei die Einzelzellen 1.1 fest mit dem ersten Zellpolverbinder 1.2 verbunden sind. Beispielsweise wird das Zellgehäuse 1.1.1 der Einzelzellen 1.1 mittels Laserschweißen, Laserlöten oder anderer geeigneter Fügeverfahren mit einer Flachseite des ersten Zellpolverbinders 1.2 fest verbunden. Damit ist eine thermische Leitfähigkeit der Einzelzellen 1.1 über die · Fügestellen an den ersten Zellpolverbinder 1.2 hergestellt.
Der erste Zellpolverbinder 1.2 umfasst weiterhin einen von der Flachseite in Richtung einer Längsausrichtung der Einzelzellen 1.1 abgewinkeltes Verbindungselement 1.2.1 , welches vorzugsweise einteilig mit der Flachseite ausgebildet ist. Das
Verbindungselement 1.2.1 ragt dabei von einem Rand, insbesondere von einem stirnseitigen Rand der Flachseite des ersten Zellpolverbinders 1.2 ab. Das
Verbindungselement 1.2.1 ist zur elektrischen Verbindung des Zellmoduls 1 mit einem weiteren Zellmodul 1 vorgesehen, wie es beispielhaft in Figur 3 gezeigt ist.
In Figur 2 ist zusätzlich ein zweiter Zellpolverbinder 1.3 gezeigt, welcher die Pluspole der Einzelzellen 1.1 elektrisch leitend miteinander verbindet. Der zweite Zellpolverbinder 1.3 ist im vorliegenden Ausführungsbeispiel auf einer den Einzelzellen 1.1 abgewandten Flachseite eines platten- oder wannenförmigen Trägerkörpers 1.3.1 angeordnet, welcher aus einem elektrisch isolierenden Material, z. B. einem Spritzgusskörper aus Kunststoff, gebildet ist. Der Trägerkörper 1.3.1 weist eine mit einer Anzahl der Einzelzellen 1.1 korrespondierende Anzahl von Aussparungen auf, so dass die Pluspole der
Einzelzellen 1.1 elektrisch leitend mit dem zweiten Zellpolverbinder 1.3 verbindbar sind. Die elektrische Verbindung der Pluspole mit dem zweiten Zellpolverbinder .3 erfolgt beispielsweise mittels Bonddrähten, insbesondere mittels Aluminium- oder
Kupferbonddrähten. Am Trägerkörper 1.3.1 sind die Einzelzellen 1.1 , insbesondere die Zellgehäuse 1.1.1 stoffschlüssig mittels einer Vergussmasse fixiert. Figur 3 zeigt schematisch ein Batteriemodul 3, welches vier der zuvor beschriebenen Zellmodule 1 umfasst, in einer perspektivischen Ansicht.
Das gezeigte Batteriemodul 3 stellt beispielhaft ein sogenanntes Basismodul zur
Anordnung in der elektrischen Batterie 2 mit einer Nominalspannung von 14,6 Volt dar.
Die Zellmodule 1 sind paarweise nebeneinander angeordnet, wobei jeweils zwei
Zellmodule 1 ein Zellmodulpaar bilden, deren erste Zellverbinderpole 1.2 einander zugewandt angeordnet sind. Die Zellmodule 1 sind elektrisch seriell miteinander verschaltet, so dass das Verbindungselement 1.2.1 des ersten Zellverbinderpoles 1.2 eines der Zellmodule 1 mit dem zweiten Zellverbinderpol 1.2 eines benachbarten
Zellmoduls 1 elektrisch leitend verbunden ist. Dazu ist das Verbindungselement 1.2.1 am freien Ende abgewinkelt ausgeführt und liegt auf dem zweiten Zellverbinderpol 1.2 auf.
Zur Temperierung der Einzelzellen 1.1 der Zellmodule 1 im Batteriemodul 3 ist ein
Temperierelement 4 vorgesehen, wie es beispielhaft im vorliegenden Ausführungsbeispiel dargestellt ist.
Das Temperierelement 4 umfasst zwei Abschnitte 4.1 , 4.2, die jeweils plattenförmig ausgebildet und zueinander rechtwinklig angeordnet sind. Dabei ist ein erster
Abschnitt 4.1 zwischen den Zellmodulen 1 der Zellmodulpaare und somit insbesondere jeweils zwischen den ersten Zellverbinderpolen 1.1 der Zellmodulpaare angeordnet. D. h.: Der erste Abschnitt 4.1 ist mit jeweils einer Flachseite den ersten Zellverbinderpolen 4.1 zweier Zellmodule 1 zugewandt angeordnet und verläuft senkrecht zu einer
Längsausrichtung der Einzelzellen 1.1.
Ein zweiter Abschnitt 4.2 des Temperierelements 4 ist rechtwinklig zum ersten
Abschnitt 4.1 angeordnet und verläuft somit parallel zur Längsausrichtung der
Einzelzellen 1.1. Im vorliegenden Ausführungsbeispiel verläuft der zweite Abschnitt 4.2 ausgehend vom ersten Abschnitt 4.1 jeweils in Richtung der zweiten Zellpolverbinder 1.3 der Zellmodule 1.
Das Temperierelement 4 ist beispielsweise eine Kühlplatte mit einer Anzahl von
Kühlkanälen, durch die ein Kühlmedium, z. B. eine Kühlflüssigkeit, strömt. Da jeweils alle Einzelzellen 1.1 eines Zellmoduls 1 elektrisch leitend und Wärme leitend mit dem ersten Zellpolverbinder 1.2 verbunden sind und die ersten Zellpolverbinder 1.2 jeweils mit dem Temperierelement 4 thermisch gekoppelt sind, kann eine Abwärme der Einzelzellen 1.1 im Betrieb des Zellmoduls 1 effektiv abgeführt werden. Alternativ oder zusätzlich kann das Temperierelement 4 auch zum Erwärmen der Einzelzellen 1.1 dienen. Des Weiteren ist zur Vermeidung eines Kurzschlusses zwischen dem ersten Abschnitt 4.1 und den ersten Zellverbinderpolen 1.2 sowie zwischen dem zweiten Abschnitt 4.2 und den
Einzelzellen 1.1 jeweils eine elektrisch isolierende Wärmeleitfolie 5 angeordnet. Die Wärmeleitfolie 5 besteht beispielsweise aus einem weichen und elastischen Kunststoff- Grundmaterial, z. B. Soft-Silikon, welches mit gut wärmeleitfähigen Partikeln, z. B.
Aluminiumoxid, gefüllt ist.
Bei dem gezeigten Aufbau des Batteriemoduls 3 ist es möglich, einzelne Zellmodule 1 zu demontieren, z. B. im Reparaturfall. Ein Demontageaufwand wird durch die gezeigte Ausbildung und Anordnung des Temperierelements 4 gegenüber dem Stand der Technik erheblich vereinfacht.
Figur 4 zeigt eine Erweiterung des zuvor beschriebenen Basismoduls, wobei zwei Batteriemodule 3 mit jeweils vier Zellmodulen 1 elektrisch seriell miteinander verschaltet sind und somit beispielsweise eine Nominalspannung von 29,2 Volt aufweisen. Die Batteriemodule 3 sind schematisch in perspektivischer Ansicht gezeigt.
Die Batteriemodule 3 bilden ein sogenanntes Doppelmodul, wobei die Batteriemodule 3 in eine Längsausrichtung des Temperierelements 4 nebeneinander angeordnet sind. Das Temperierelement 4 ist hierbei entsprechend einer Abmessung des Doppelmoduls gegenüber dem in Figur 3 gezeigten Ausführungsbeispiel in Längsrichtung erweitert bzw. verlängert.
Die Temperierung der Einzelzellen 1.1 kann hierbei direkt über das Temperierelement 4 erfolgen, welches - wie bereits beschrieben - von einer Kühlflüssigkeit durchströmt wird. Alternativ kann das Temperierelement 4 auch als Wärmepuffer dienen und mit einem weiteren, von einer Kühlflüssigkeit durchströmten Temperierelement 6 thermisch leitend verbunden werden.
Dazu zeigt Figur 5 beispielhaft zwei miteinander verbundene Zellmodule 1 in einem Bauraum B mit einem weiteren Temperierelement 6 in einer schematischen,
perspektivischen Ansicht.
Der Bauraum B ist beispielsweise in einem nicht näher dargestellten Fahrzeug
angeordnet und dient der Aufnahme der elektrischen Batterie 2, welche ein oder mehrere elektrisch miteinander verschaltete Batteriemodule 3 umfasst. Im vorliegenden
Ausführungsbeispiel sind zur besseren Veranschaulichung nur zwei Zellmodule 1 im Bauraum B gezeigt.
Das Temperierelement 4 dient hierbei als Wärmepuffer zur Speicherung der Abwärme der Einzelzellen 1.1 , wobei die im Temperierelement 4 gespeicherte Wärme über das weitere Temperierelement 6 abgeführt wird. Die gezeigten Hohlprofile im weiteren
Temperierelement 6 dienen dabei als Kühlkanäle, welche von einem Kühlmedium durchströmt werden. Beispielsweise ist das Kühlmedium eine Kühlflüssigkeit, die von einem Klimakreislauf des Fahrzeugs bereitgestellt wird.
Des Weiteren sind die gezeigten Zellmodule 1 jeweils mit dem ersten Zellverbinderpol 1.2 einem Batteriegehäuseboden (nicht dargestellt) zugewandt angeordnet, wobei hier das Temperierelement 4 nicht an den ersten Zellverbinderpolen 1.2 anliegend angeordnet ist. Hierbei kann eine Temperierung zusätzlich über den Batteriegehäuseboden erfolgen.
Figur 7 zeigt eine in einem Bauraum B angeordnete elektrische Batterie 2 mit einer Mehrzahl von elektrisch miteinander verschalteten Batteriemodulen 3. Die elektrische Batterie 2 ist in einem Batteriegehäuse 2.1 (im vorliegenden Ausführungsbeispiel nur teilweise dargestellt) angeordnet. Die Batteriemodule 3 sind variabel elektrisch parallel und/oder seriell miteinander verschaltet.
Der modulartige Aufbau der elektrischen Batterie 2 ermöglicht eine optimale Nutzung des Bauraums B, wobei einzelne Zellmodule 1 und/oder Batteriemodule 3 auf einfache Art und Weise austauschbar sind. Zusätzlich ist die Verwendung anderer Zellformen, z. B. Rahmenflachzellen im Bauraum B, möglich. Beispielsweise umfasst die elektrische Batterie 2 sowohl Rundzellen als auch Rahmenflachzellen als Einzelzellen 1.1.

Claims

Patentansprüche
1. Zellmodul (1) für eine elektrische Batterie (2) mit
- einer Mehrzahl von Einzelzellen (1.1),
- mindestens zwei Zellpolverbindern (1.2, 1.3), mittels der die Einzelzellen (1.1) elektrisch parallel oder seriell miteinander verschaltet sind, und
- wenigstens einem Temperierelement (4) zum Temperieren der Einzelzellen (1.1), dadurch gekennzeichnet, dass das wenigstens eine Temperierelement (4) mit einem ersten Zellpolverbinder (1.2) thermisch leitend verbunden ist, wobei
- jede Einzelzelle (1.1) elektrisch und thermisch leitend mit dem ersten
Zellpolverbinder (1.2) verbunden ist und
- das wenigstens eine Temperierelement (4) zwei rechtwinklig zueinander angeordnete Abschnitte (4.1 , 4.2) aufweist, wobei ein erster Abschnitt (4.1) parallel zu einer Flachseite des ersten Zellpolverbinders (1.2) und senkrecht zu einer Längsausrichtung der Einzelzellen (1.1) angeordnet ist, und wobei ein zweiter Abschnitt (4.2) parallel zur Längsausrichtung der Einzelzellen (1.1) angeordnet ist.
2. Zellmodul (1) nach Anspruch 1 ,
dadurch gekennzeichnet, dass zwischen dem ersten Zellpolverbinder (1.2) und dem wenigstens einen Temperierelement (4) eine elektrisch isolierende
Wärmeleitfolie (5) angeordnet ist.
3. Zellmodul (1) nach Anspruch 1 oder 2,
dadurch gekennzeichnet, dass die Einzelzellen (1.1) elektrisch parallel miteinander verschaltet sind, wobei der erste Zellpolverbinder (1.2) die Minuspole der
Einzelzellen (1.1) elektrisch miteinander verbindet.
4. Zellmodul (1) nach Anspruch 3,
dadurch gekennzeichnet, dass ein zweiter Zellpolverbinder (1.3) angeordnet ist, welcher die Pluspole der Einzelzellen (1.1) elektrisch miteinander verbindet.
5. Zellmodul (1) nach Anspruch 4,
dadurch gekennzeichnet, dass der zweite Zellpolverbinder (1.3) einen
Trägerkörper (1.3.1) aus einem elektrisch isolierenden Material umfasst, in welchem die Einzelzellen (1.1) stoffschlüssig fixiert sind.
6. Zellmodul (1) nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass die Einzelzellen (1.1) jeweils einen kreiszylindrischen Querschnitt aufweisen.
7. Batteriemodul (3), umfassend eine Mehrzahl elektrisch seriell miteinander
verschalteter Zellmodule (1) nach einem der vorhergehenden Ansprüche, wobei
- alle Zellmodule (1) thermisch mit einem gemeinsamen Temperierelement (4) gekoppelt sind und
- an sich gegenüberliegenden Flachseiten des ersten Abschnitts (4.1) des
Temperierelements (4) jeweils mehrere Zellmodule (1) nebeneinander angeordnet sind, wobei zwei sich jeweils gegenüberliegende Zellmodule (1) ein Zellmodulpaar bilden und jeweils mit ihren ersten Zellpolverbindern (1.2) mit der zugehörigen Flachseite des ersten Abschnitts (4.1) thermisch gekoppelt sind.
8. Batteriemodul (3) nach Anspruch 7,
gekennzeichnet durch vier Zellmodule (1), die elektrisch seriell miteinander verschaltet sind.
9. Elektrische Batterie (2), umfassend mindestens ein Batteriemodul (3) nach
Anspruch 7 oder 8.
10. Elektrische Batterie (2) nach Anspruch 9,
gekennzeichnet durch ein weiteres Temperierelement (6), welches mit dem
Temperierelement (4) des mindestens einen Batteriemoduls (3) thermisch gekoppelt ist, wobei das weitere Temperierelement (6) parallel zur Längsausrichtung der Einzelzellen (1.1) und senkrecht zur Flachseite des ersten Zellpolverbinders (1.2) der jeweiligen Zellmodule (1) ausgerichtet ist.
PCT/EP2016/001086 2015-07-09 2016-06-25 Zellmodul, batteriemodul und elektrische batterie WO2017005345A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015008985.4 2015-07-09
DE102015008985.4A DE102015008985A1 (de) 2015-07-09 2015-07-09 Zellmodul, Batteriemodul und elektrische Batterie

Publications (1)

Publication Number Publication Date
WO2017005345A1 true WO2017005345A1 (de) 2017-01-12

Family

ID=55235057

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2016/001086 WO2017005345A1 (de) 2015-07-09 2016-06-25 Zellmodul, batteriemodul und elektrische batterie

Country Status (2)

Country Link
DE (1) DE102015008985A1 (de)
WO (1) WO2017005345A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110770946A (zh) * 2018-03-30 2020-02-07 株式会社Lg化学 易于组装的包括汇流条框架的电池模块

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016208053B4 (de) 2016-05-10 2023-12-21 Bayerische Motoren Werke Aktiengesellschaft Fahrzeug mit einem Hochvoltspeicher
DE102016120839A1 (de) * 2016-11-02 2018-05-03 E-Seven Systems Technology Management Ltd Batterie mit einem Wärmeabfuhrelement
WO2018041860A1 (de) * 2016-08-30 2018-03-08 E-Seven Systems Technology Management Ltd Verbindungsplatte für eine batterie und batterie
KR102043969B1 (ko) * 2017-04-18 2019-11-12 주식회사 엘지화학 배터리 모듈
CN109728225A (zh) * 2019-01-08 2019-05-07 深圳新恒业动力科技有限公司 一种电池模组及其均温控温方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090111009A1 (en) 2007-10-27 2009-04-30 Bayerische Motoren Werke Aktiengesellschaft Apparatus for Supplying Power to a Motor Vehicle
EP2685543A1 (de) * 2012-07-10 2014-01-15 Lite-On Clean Energy Technology Corp. Batterievorrichtung

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090111009A1 (en) 2007-10-27 2009-04-30 Bayerische Motoren Werke Aktiengesellschaft Apparatus for Supplying Power to a Motor Vehicle
EP2685543A1 (de) * 2012-07-10 2014-01-15 Lite-On Clean Energy Technology Corp. Batterievorrichtung

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110770946A (zh) * 2018-03-30 2020-02-07 株式会社Lg化学 易于组装的包括汇流条框架的电池模块
US11545727B2 (en) 2018-03-30 2023-01-03 Lg Energy Solution, Ltd. Easier to assemble battery module including bus bar frame

Also Published As

Publication number Publication date
DE102015008985A1 (de) 2016-02-18

Similar Documents

Publication Publication Date Title
WO2017005345A1 (de) Zellmodul, batteriemodul und elektrische batterie
EP2377184B1 (de) Vorrichtung zur spannungsversorgung eines kraftfahrzeugs mit optimierter wärmeabführung
EP2789029B1 (de) Batterie und zellblock für eine batterie
EP2550697B1 (de) Batterie mit einer mehrzahl von einzelzellen
DE102009035465A1 (de) Batterie, insbesondere Fahrzeugbatterie
DE102008034867A1 (de) Batterie, insbesondere Fahrzeugbatterie
DE102008059967A1 (de) Batterie und Verfahren zur Herstellung einer Batterie mit einer in einem Batteriegehäuse angeordneten Wärmeleitplatte
EP2854211A1 (de) Heiz- und Kühlvorrichtung für eine Batterie
DE102008059947A1 (de) Batterie mit einer in einem Batteriegehäuse angeordneten Wärmeleitplatte und daran direkt montierten elektronischen Bauelementen zum Temperieren der Batterie
EP2543091A1 (de) Batterie für einen kraftwagen
WO2009103464A1 (de) Batterie mit einer in einem batteriegehäuse angeordneten wärmeleitplatte
DE102008034873A1 (de) Batterie, insbesondere Fahrzeugbatterie
WO2009006998A1 (de) Elektrochemische energiespeichereinheit
DE102008034875A1 (de) Batterie, insbesondere Fahrzeugbatterie
DE102008034880A1 (de) Batterie mit einer in einem Batteriegehäuse angeordneten Wärmeleitplatte zum Temperieren der Batterie
EP2715833A1 (de) Energiespeichermodul aus mehreren prismatischen speicherzellen
DE102017214303A1 (de) Anordnung zur elektrischen Kontaktierung von Zellmodulen einer Batterie, Batterie mit einer derartigen Anordnung sowie Fahrzeug
WO2012062396A1 (de) Batterie mit einem zellverbund
EP2697846B1 (de) Speichereinheit zum speichern elektrischer energie
EP2735039B1 (de) Zellkontaktieranordnung für einen energiespeicher
DE102008050437A1 (de) Skalierbare Kraftfahrzeugbatterie
DE102008034878B4 (de) Batterie mit einer Wärmeleitplatte zum Temperieren der Batterie
DE102013015208B3 (de) Batterieanordnung für ein Kraftfahrzeug
WO2015074735A1 (de) Batterie mit einer mehrzahl von batteriezellen wobei die pole mittels verbindungselemente verbunden sind
DE102011007307A1 (de) Speichereinheit zum Speichern elektrischer Energie mit einem Kühlelement

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16732226

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16732226

Country of ref document: EP

Kind code of ref document: A1