WO2017005193A1 - 一种电眼调试方法及装置 - Google Patents

一种电眼调试方法及装置 Download PDF

Info

Publication number
WO2017005193A1
WO2017005193A1 PCT/CN2016/088901 CN2016088901W WO2017005193A1 WO 2017005193 A1 WO2017005193 A1 WO 2017005193A1 CN 2016088901 W CN2016088901 W CN 2016088901W WO 2017005193 A1 WO2017005193 A1 WO 2017005193A1
Authority
WO
WIPO (PCT)
Prior art keywords
eye
error
error value
ratio
value
Prior art date
Application number
PCT/CN2016/088901
Other languages
English (en)
French (fr)
Inventor
白林波
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2017005193A1 publication Critical patent/WO2017005193A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems

Definitions

  • This application relates to, but is not limited to, the field of coherent optical communication technology.
  • the data to be transmitted is pre-coded, and then combined into four high-speed electric signals of X I , X Q , Y I and Y Q , and then driven by the driver to be amplified and then sent.
  • Polarization Multiplexing Quadrature Phase Shift Keyin (PM-QPSK) modulator and modulated by densely modulated laser (Integrated Tunable Laser Assembly, ITLA)
  • An optical signal of a PM-QPSK modulation format is formed on a Dense Wavelength Division Multiplexing (DWDM) continuous wavelength light source, and finally the optical signal is received by the coherent receiver together with the local oscillator generated by the laser at the receiving end.
  • DWDM Dense Wavelength Division Multiplexing
  • the modulation quality of the electrical signal is a crucial link in the whole coherent optical communication process, so it is necessary to perform electrical eye debugging on the electrical signal.
  • the electric eye debugging method in the related art is as shown in FIG. 1 , and the electric signal driven by the driver is directly outputted to the digital signal serial analyzer, and the characteristics of the electric signal are directly observed by the naked eye, for example, the eye cross ratio. Then manually adjust the bias voltage of the driver to improve the modulation quality of the electrical signal.
  • the electric eye debugging method in the above related art is difficult to ensure that the electric signal exhibits an optimum characteristic, so that the quality of the output optical signal is greatly affected. Moreover, since the single-time electrical signal has a long stabilization time, the debugging time of the entire electric eye is long, and the error of the adjustment of the naked eye is large, resulting in a high probability of re-adjustment.
  • This paper provides an electric eye debugging method and device, compared with the manual electric eye debugging in the related art.
  • the method avoids the inevitable error introduced by the manual operation, not only ensures the accuracy of the electric eye debugging, but also improves the debugging efficiency of the electric eye.
  • An electric eye debugging method includes:
  • the electric eye debugging method further includes:
  • the number of successful determinations is incremented, and when the absolute value of the error value is greater than the error threshold, the number of successful determinations is cleared.
  • the initial value of the number of successful determinations is zero;
  • the bias voltage of the driver including:
  • the bias voltage of the driver is adjusted according to the error value.
  • the adjusting according to the error value, adjusting a bias voltage of the driver, including:
  • Offset is the adjustment step size
  • is the absolute value of the error value of the current eye diagram cross ratio and the preset cross ratio
  • Direct indicates the direction of adjustment, which is 1 or -1;
  • A is the preset adjustment step base.
  • the preset crossover ratio is 50%.
  • An electric eye debugging device includes:
  • the acquiring module is configured to: obtain an eye diagram cross ratio of the optical signal analyzed by the optical modulation analyzer, where the optical signal is obtained by driving the amplifier and the optical modulator to be modulated by the driver;
  • a calculation module configured to: calculate an error value of the eye cross ratio and the preset cross ratio obtained by the acquiring module;
  • the adjusting module is configured to: adjust the bias voltage of the driver according to the error value calculated by the calculating module, so that the eye-to-image ratio of the adjusted optical signal is compared with the preset cross ratio The error value is approximately zero.
  • the electric eye debugging device further includes:
  • the first determining module is configured to: determine whether an absolute value of the error value is greater than an error threshold
  • the counting module is configured to: when the first determining module determines that the absolute value of the error value is less than or equal to the error threshold, incrementing the number of successful determinations, and determining, by the first determining module, the When the absolute value of the error value is greater than the error threshold, the number of successful determinations is cleared, and the initial value of the number of successful determinations is zero;
  • the second judging module is configured to: determine whether the number of successful determinations obtained by the counting module is less than a threshold value of determining success times;
  • the adjusting module is configured to: when the second determining module determines that the number of successful determinations is less than the threshold of the number of successful determinations, adjust the bias voltage of the driver according to the error value.
  • the adjusting module is configured to: adjust a bias voltage of the driver according to formula one;
  • Offset is the adjustment step size
  • is the absolute value of the error value of the current eye diagram cross ratio and the preset cross ratio
  • Direct indicates the direction of adjustment, which is 1 or -1;
  • A is the preset adjustment step base.
  • the preset crossover ratio is 50%.
  • the method and device for debugging an electric eye analyzes an electric signal characteristic before modulation by using the modulated optical signal, and automatically calculates an eye cross ratio of the optical signal analyzed by the optical modulation analyzer, and calculates the cross of the eye image. Comparing the error value with the preset cross ratio, and adjusting the bias voltage of the driver according to the error value, so that the error ratio of the eye diagram cross ratio and the preset cross ratio of the adjusted optical signal is approximately 0;
  • the invention avoids the inevitable error introduced by the manual operation, not only ensures the accuracy of the electric eye debugging, but also improves the electric eye debugging efficiency.
  • FIG. 1 is a schematic diagram of the principle of an electric eye debugging method in the related art
  • FIG. 2 is a flowchart of a method for debugging an electric eye according to an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of an electric eye debugging system according to an embodiment of the present invention.
  • FIG. 4 is a flowchart of another method for debugging an electric eye according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of an electric eye debugging device according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of another electric eye debugging device according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of another electric eye debugging system according to an embodiment of the present invention.
  • FIG. 8 is a flowchart of still another method for debugging an electric eye according to an embodiment of the present invention.
  • FIG. 2 is a flowchart of a method for debugging an electric eye according to an embodiment of the present invention.
  • the electric eye debugging method provided in this embodiment may include the following steps, that is, S110-130:
  • S110 Obtain an eye diagram cross ratio of the optical signal analyzed by the optical modulation analyzer, where the optical signal is obtained by driving the amplifier and the modulator to be modulated by the driver;
  • S130 Adjust the bias voltage of the driver according to the error value, so that the error ratio of the eye-to-image ratio of the adjusted optical signal to the preset crossover ratio is approximately zero.
  • the electric eye debugging method provided by the embodiment of the invention automatically calculates the eye cross ratio of the optical signal analyzed by the optical modulation analyzer, and calculates an error value of the eye cross ratio and the preset cross ratio, and according to the error value, Adjusting the bias voltage of the driver so that the error ratio of the eye-to-image ratio of the adjusted optical signal to the preset crossover ratio is approximately 0; this embodiment avoids the manual electric eye debugging method in the related art.
  • the inevitable error introduced by manual operation not only ensures the accuracy of electric eye debugging, but also improves the efficiency of electric eye debugging.
  • FIG. 3 a schematic structural diagram of an electric eye debugging system according to an embodiment of the present invention is shown.
  • the electric eye debugging system in this embodiment may include a driver 100, a light modulator 200, a light modulation analyzer 300, and a personal computer (PC) machine 400.
  • PC personal computer
  • the driver 100 has a high-speed electric signal outputted by a plurality of digital signal processing (DSP) as an input, and the driver 100 is configured to output each high-speed electric signal after amplification to the optical modulator 200.
  • the light modulator 200 is configured to: perform high-speed electrical signal to modulation of the optical signal
  • the optical modulation analyzer 300 is configured to: analyze the received optical signal and provide an eye-to-picture ratio of the optical signal to the PC 400
  • the PC is configured to: according to a software algorithm therein, and calculate an adjustment driver parameter according to an error value of the eye diagram cross ratio and the preset cross ratio, to adjust the driver to adjust the modulation quality of the optical signal.
  • FIG. 4 it is a flowchart of another method for debugging an electric eye according to an embodiment of the present invention.
  • the electric eye debugging method provided in this embodiment may further include the following steps, that is, S121-S124 before S130:
  • S121 determining whether the absolute value of the error value is greater than the error threshold; when it is determined that the absolute value of the error value is less than or equal to the error threshold, S122 is performed; when it is determined that the absolute value of the error value is greater than the error threshold, S123 is performed;
  • S124 Determine whether the number of successful determinations is less than the threshold number of success determinations. When it is determined that the number of successful determinations is less than the threshold for determining the number of successes, S130 is performed.
  • the step of adjusting the bias voltage of the driver according to the error value, that is, S130 may include:
  • S121 to S124 may be repeatedly executed.
  • the adjustment ends.
  • the electric eye debugging method provided in this embodiment not only ensures the adjustment precision but also knows the progress of the adjustment in time by setting the error threshold and the threshold of the number of success determinations.
  • the principle of adjusting the bias voltage of the driver according to the error value is to use the error value as an adjustment coefficient to quickly adjust the bias voltage of the driver to the preset bias. Set the voltage near, while avoiding repeated oscillations with a fixed adjustment step around the theoretical bias voltage.
  • the implementation of adjusting the bias voltage of the driver according to the error value may include: adjusting the bias voltage of the driver according to the formula 1;
  • Offset is the adjustment step size
  • is the absolute value of the error value of the current eye diagram cross ratio and the preset cross ratio
  • Direct indicates the direction of adjustment, which is 1 or -1;
  • A is the preset adjustment step base.
  • the driver indicates the current bias voltage by setting an unsigned sixteen digit.
  • the driver's bias voltage range is 0 to 2.5V
  • the set unsigned 16-bit range is 0 to 0xFFFF, that is, when the setting number is 0, the driver's bias voltage is 0V, when the setting number is 0xFFFF
  • the driver's bias voltage is 2.5V, which means that the unsigned sixteen digits are linear with the bias voltage.
  • Offset is the adjustment step size for adjusting the value set by the drive.
  • the current Direct value is related to the last Direct value. For example, when the difference between
  • was 20%, and the last Direct value was 1; thus, when the current
  • is 25%, since 25%-20% 5% is greater than 0, The current Direct value is -1, and when the current
  • is 15%, since 15%-20% -5% is less than 0, the current Direct value is 1.
  • A is the adjustment step base number related to the sensitivity of the driver.
  • the pre-search process can be used to obtain a suitable adjustment step base number to ensure a shorter debugging time.
  • the preset crossover ratio is 50%, but the embodiment of the present invention does not limit it, and different selections may be made according to different requirements.
  • FIG. 5 is a schematic structural diagram of an electric eye debugging device according to an embodiment of the present invention.
  • the electric eye debugging device provided in this embodiment may include:
  • the obtaining module 41 is configured to: acquire an eye diagram cross ratio of the optical signal analyzed by the optical modulation analyzer, where the optical signal is obtained by driving the amplifier and the optical modulator to be modulated by the driver;
  • the calculation module 42 is configured to: calculate an error value of the eye diagram cross ratio and the preset cross ratio obtained by the acquisition module 41;
  • the adjusting module 43 is configured to adjust the bias voltage of the driver according to the error value calculated by the calculating module 42 to approximate the error ratio of the eye diagram cross ratio of the adjusted optical signal to the preset cross ratio 0.
  • the electric eye debugging device provided by the embodiment of the invention automatically acquires the eye diagram cross ratio of the optical signal analyzed by the optical modulation analyzer through the acquiring module, and calculates the error value of the eye diagram cross ratio and the preset cross ratio by the calculation module, and the adjustment module Adjusting the bias voltage of the driver according to the error value, so that the error ratio of the eye-to-image ratio of the adjusted optical signal to the preset crossover ratio is approximately 0; this embodiment is compared with the manual electric eye debugging in the related art. Method, avoiding the inevitable errors introduced by manual operations, It not only ensures the accuracy of electric eye debugging, but also improves the efficiency of electric eye debugging.
  • FIG. 6 is a schematic structural diagram of another electric eye debugging device according to an embodiment of the present invention.
  • the electric eye debugging device provided in this embodiment may further include:
  • the first determining module 44 is configured to: determine whether an absolute value of the error value is greater than an error threshold;
  • the counting module 45 is configured to: when the first determining module 44 determines that the absolute value of the error value is less than or equal to the error threshold, increment the number of successful determinations, and the first determining module 44 determines that the absolute value of the error value is greater than the error. At the threshold value, the number of successful determinations is cleared, and the initial value of the number of successful determinations is zero;
  • the second determining module 46 is configured to: determine whether the number of successful determinations counted by the counting module 45 is less than a threshold value of the number of successful determinations;
  • the adjusting module 43 is configured to adjust the bias voltage of the driver according to the error value when the second determining module 46 determines that the number of successful determinations is less than the threshold of the number of successful determinations.
  • the electric eye debugging device provided in this embodiment not only ensures the adjustment precision but also knows the progress of the adjustment in time by setting the error threshold value and the threshold number of success determination times.
  • the adjusting module 43 is configured to: adjust the bias voltage of the driver according to the formula 1;
  • Offset is the adjustment step size
  • is the absolute value of the error value of the current eye diagram cross ratio and the preset cross ratio
  • Direct indicates the direction of adjustment, which is 1 or -1;
  • A is the preset adjustment step base.
  • Offset is the adjustment step size for adjusting the value set by the drive.
  • the current Direct value is related to the last Direct value. For example, when the difference between
  • was 20%, and the last Direct value was 1; thus, when the current
  • is 25%, since 25%-20% 5% is greater than 0, The current Direct value is -1, and when the current
  • is 15%, since 15%-20% -5% is less than 0, the current Direct value is 1.
  • the preset crossover ratio is 50%.
  • FIG. 7 is a schematic structural diagram of another electric eye debugging system according to an embodiment of the present invention.
  • the electric eye debugging system provided in this embodiment may include:
  • the driver 100 for example, is a MACOM driver, has a built-in three-stage broadband amplifier, has a sufficient adjustable range, and has four outputs, respectively, a 25G high-speed signal of X I , X Q , Y I , and Y Q ;
  • the optical modulator 200 for example, a PM-QPSK optical modulator, is configured to: modulate an electrical signal into an optical signal by an adjustable light source ITLA, and mainly perform bias control of four signals of X I , X Q , Y I , and Y Q , so that X I and X Q two-channel ⁇ /2 phase control, Y I and Y Q two-channel ⁇ /2 phase control;
  • the optical modulation analyzer 300 for example, a PS200 optical modulation analyzer, is configured to: analyze optical signal characteristics, and respectively obtain an eye diagram cross ratio of four optical signals;
  • the PC400 is configured to: adjust the bias voltage of the driver by analyzing the data obtained from the optical modulation analyzer, for example, by using a peripheral control system of the driver, the peripheral control system may be a microcontroller (Microcontroller Unit, referred to as It is: MCU) and Field-Programmable Gate Array (FPGA).
  • MCU Microcontroller Unit
  • FPGA Field-Programmable Gate Array
  • FIG. 8 is a flowchart of still another method for debugging an electric eye according to an embodiment of the present invention.
  • the electric eye debugging method provided in this embodiment may include the following steps, that is, S601 to S609:
  • S604 determining whether the absolute value of the error value is greater than the error threshold; when it is determined that the absolute value of the error value is less than or equal to the error threshold, S605 is performed; when it is determined that the absolute value of the error value is greater than the error threshold, S606 is performed;
  • S607 it is determined whether the number of determination success times is less than the threshold number of determination success times; when it is determined that the number of determination success times is less than the threshold number of determination success times, S608 is performed; when it is determined that the number of determination success times is greater than or equal to the number of determination success times threshold, S609 is performed;
  • S609 it is judged whether all the four outputs of the driver are completely debugged; when it is judged that all the debugging is not completed, S601 is executed to debug other output of the road; when it is judged that all the debugging is completed, the debugging is completed.
  • the X I channel signal is debugged, the error threshold is 0.5%, the threshold of success is 3, the preset crossover ratio is 50%, the initial value of the driver setting is 0x9FE5 (40933), and the preset adjustment step base A is 10000.
  • the previous Direct is 1, and the absolute value of the error value of the last eye-to-eye ratio and the preset cross ratio
  • the Y I signal is debugged, the error threshold is 0.5%, the threshold of success is 3, the preset crossover ratio is 50%, the initial setting of the driver is 0xC700 (50944), and the preset adjustment step base A is 25600.
  • the last Direct was -1, and the absolute value of the error value of the previous eye-to-eye ratio and the preset crossover ratio
  • the Y Q signal is debugged, the error threshold is 0.5%, the threshold of success is 3, the preset crossover ratio is 50%, the initial value of the driver is 0xFE00 (65024), and the preset adjustment step base A is 25600.
  • the previous Direct is 1, and the absolute value of the error value of the previous eye-to-edge ratio and the preset crossover ratio
  • the electric eye debugging method provided by the embodiment of the present invention can quickly adjust the eye diagram cross ratio of the optical signal to approach the preset cross ratio, and select an appropriate adjustment step and adjustment direction to ensure the electric eye.
  • the accuracy of debugging improves the efficiency of electric eye debugging.
  • all or part of the steps of the above embodiments may also be implemented by using an integrated circuit. These steps may be separately fabricated into individual integrated circuit modules, or multiple modules or steps may be fabricated into a single integrated circuit module. achieve.
  • the devices/function modules/functional units in the above embodiments may be implemented by a general-purpose computing device, which may be centralized on a single computing device or distributed over a network of multiple computing devices.
  • the device/function module/functional unit in the above embodiment When the device/function module/functional unit in the above embodiment is implemented in the form of a software function module and sold or used as a stand-alone product, it can be stored in a computer readable storage medium.
  • the above mentioned computer readable storage medium may be a read only memory, a magnetic disk or an optical disk or the like.
  • the modulated optical signal is analyzed for the characteristics of the electrical signal before the modulation, and the eye diagram cross ratio of the optical signal analyzed by the optical modulation analyzer is automatically obtained, and the error of the eye diagram cross ratio and the preset cross ratio is calculated. And adjusting the bias voltage of the driver according to the error value, so that the error ratio of the eye-to-image ratio of the adjusted optical signal to the preset crossover ratio is approximately 0; compared with the related art in the embodiment of the present invention
  • the artificial electric eye debugging method avoids the inevitable error introduced by the manual operation, not only ensures the accuracy of the electric eye debugging, but also improves the electric eye debugging efficiency.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Dc Digital Transmission (AREA)

Abstract

一种电眼调试方法及装置,其中,该电眼调试方法包括:获取经光调制分析仪分析得到的光信号的眼图交叉比,该光信号是电信号经驱动器驱动放大和光调制器调制得到;计算该眼图交叉比与预置交叉比的误差值;根据该误差值,对驱动器的偏置电压进行调整,以使调整后的光信号的眼图交叉比与所述预置交叉比的误差值近似为0。

Description

一种电眼调试方法及装置 技术领域
本申请涉及但不限于相干光通讯技术领域。
背景技术
目前,在主流相干光通信的相关技术中,主要是将待发送的数据预编码后,复合成XI、XQ、YI和YQ四通道高速电信号,然后经驱动器驱动放大后送入偏振复用正交相移键控(Polarization Multiplexing Quadrature Phase Shift Keyin,简称为:PM-QPSK)调制器,并通过调制到可调激光器(Integrated Tunable Laser Assembly,简称为:ITLA)发出的密集型光波复用(Dense Wavelength Division Multiplexing,简称为:DWDM)连续波长的光源上形成PM-QPSK调制格式的光信号,最后光信号在接收端和激光器产生的本振光一起由相干接收机接收。其中,电信号的调制质量是整个相干光通信过程中的一个至关重要的环节,所以,需要对电信号进行电眼调试。
相关技术中的电眼调试方法如图1所示,采用的是将经驱动器驱动放大后的电信号直接输出到数字信号串行分析仪,通过肉眼直接观察电信号特性,例如,眼图交叉比,再手动调整驱动器的偏置电压,以改善电信号的调制质量。
然而,上述相关技术中的电眼调试方式很难保证电信号表现出最优的特性,使得输出的光信号质量受到较大的影响。并且,由于单次电信号稳定时间较长,导致整个电眼调试时间较长,又由于肉眼调试误差较大,导致重调机率较高。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本文提供一种电眼调试方法及装置,相较于相关技术中的人工电眼调试 方法,避免了人工操作引入的不可避免的误差,既保证电眼调试的准确性,又提高电眼调试效率。
一种电眼调试方法,包括:
获取经光调制分析仪分析得到的光信号的眼图交叉比,所述光信号为一电信号经驱动器驱动放大和光调制器调制得到的;
计算所述眼图交叉比与预置交叉比的误差值;
根据所述误差值,对所述驱动器的偏置电压进行调整,以使调整后的光信号的眼图交叉比与所述预置交叉比的误差值近似为0。
可选地,所述电眼调试方法还包括:
判断所述误差值的绝对值是否大于误差阈值;
在所述误差值的绝对值小于或等于所述误差阈值时,对判定成功次数进行加一,在所述误差值的绝对值大于所述误差阈值时,对所述判定成功次数进行清零,所述判定成功次数的初始值为零;
判断所述判定成功次数是否小于判定成功次数阈值;
所述根据所述误差值,对所述驱动器的偏置电压进行调整,包括:
在所述判定成功次数小于所述判定成功次数阈值时,根据所述误差值,对所述驱动器的偏置电压进行调整。
可选地,所述根据所述误差值,对所述驱动器的偏置电压进行调整,包括:
根据公式一,对所述驱动器的偏置电压进行调整;
公式一为:offset=|Err-cur|×Direct×A;
其中,Offset为调整步长;
|Err-cur|为当前眼图交叉比与所述预置交叉比的误差值的绝对值;
Direct表示调整方向,为1或-1;
A为预设的调整步长基数。
可选地,所述预置交叉比为50%。
一种电眼调试装置,包括:
获取模块,设置为:获取经光调制分析仪分析得到的光信号的眼图交叉比,所述光信号为电信号经驱动器驱动放大和光调制器调制得到;
计算模块,设置为:计算所述获取模块获取的所述眼图交叉比与预置交叉比的误差值;
调整模块,设置为:根据所述计算模块计算得到的所述误差值,对所述驱动器的偏置电压进行调整,以使调整后的光信号的眼图交叉比与所述预置交叉比的误差值近似为0。
可选地,所述电眼调试装置还包括:
第一判断模块,设置为:判断所述误差值的绝对值是否大于误差阈值;
计数模块,设置为:在所述第一判断模块判断出所述误差值的绝对值小于或等于所述误差阈值时,对判定成功次数进行加一,在所述第一判断模块判断出所述误差值的绝对值大于所述误差阈值时,对所述判定成功次数进行清零,所述判定成功次数的初始值为零;
第二判断模块,设置为:判断所述计数模块计数得到的所述判定成功次数是否小于判定成功次数阈值;
所述调整模块,是设置为:在所述第二判断模块判断出所述判定成功次数小于所述判定成功次数阈值时,根据所述误差值,对所述驱动器的偏置电压进行调整。
可选地,所述调整模块,是设置为:根据公式一,对所述驱动器的偏置电压进行调整;
公式一为:offset=|Err-cur|×Direct×A;
其中,Offset为调整步长;
|Err-cur|为当前眼图交叉比与所述预置交叉比的误差值的绝对值;
Direct表示调整方向,为1或-1;
A为预设的调整步长基数。
可选地,所述预置交叉比为50%。
本发明实施例提供的电眼调试方法及装置,通过调制后的光信号分析调制前的电信号特性,通过自动获取经光调制分析仪分析得到的光信号的眼图交叉比,计算该眼图交叉比与预置交叉比的误差值,并根据该误差值,对驱动器的偏置电压进行调整,以使得调整后的光信号的眼图交叉比与预置交叉比的误差值近似为0;本发明实施例相较于相关技术中的人工电眼调试方法,避免了人工操作引入的不可避免的误差,既保证电眼调试的准确性,又提高电眼调试效率。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
图1为相关技术中的电眼调试方法的原理示意图;
图2为本发明实施例提供的一种电眼调试方法的流程图;
图3为本发明实施例提供的一种电眼调试系统的结构示意图;
图4为本发明实施例提供的另一种电眼调试方法的流程图;
图5为本发明实施例提供的一种电眼调试装置的结构示意图;
图6为本发明实施例提供的另一种电眼调试装置的结构示意图;
图7为本发明实施例提供的另一种电眼调试系统的结构示意图;
图8为本发明实施例提供的又一种电眼调试方法的流程图。
本发明的实施方式
下文中将结合附图对本发明的实施方式进行详细说明。需要说明的是,在不冲突的情况下,本文中的实施例及实施例中的特征可以相互任意组合。
在附图的流程图示出的步骤可以在诸根据一组计算机可执行指令的计算机系统中执行。并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
如图2所示,为本发明实施例提供的一种电眼调试方法的流程图。本实施例提供的电眼调试方法可以包括如下步骤,即S110~130:
S110:获取经光调制分析仪分析得到的光信号的眼图交叉比,该光信号是电信号经驱动器驱动放大和调制器调制得到的;
S120:计算该眼图交叉比与预置交叉比的误差值;
S130:根据该误差值,对驱动器的偏置电压进行调整,以使调整后的光信号的眼图交叉比与预置交叉比的误差值近似为0。
本发明实施例提供的电眼调试方法,通过自动获取经光调制分析仪分析得到的光信号的眼图交叉比,计算该眼图交叉比与预置交叉比的误差值,并根据该误差值,对驱动器的偏置电压进行调整,以使调整后的光信号的眼图交叉比与预置交叉比的误差值近似为0;本实施例相较于相关技术中的人工电眼调试方法,避免了人工操作引入的不可避免的误差,既保证电眼调试的准确性,又提高电眼调试效率。
在本发明的一个可选地实施例中,如图3所示,为本发明实施例提供的一种电眼调试系统的结构示意图。本实施例中的电眼调试系统可以包括:驱动器100、光调制器200、光调制分析仪300和个人计算机(Personal Computer,简称为:PC)机400。
其中,驱动器100有多路数字信号处理(Digital Signal Processing,简称为:DSP)输出的高速电信号作为输入,该驱动器100设置为:将每路放大之后的高速电信号输出到光调制器200上,该光调制器200设置为:执行高速电信号到光信号的调制,而光调制分析仪300设置为:对接收的光信号进行分析,并提供该光信号的眼图交叉比给PC机400,该PC机设置为:根据其内的软件算法,以及根据眼图交叉比与预置交叉比的误差值,计算调节驱动器的参数,以对驱动器进行调整,从而调节光信号的调制质量。
可选地,如图4所示,为本发明实施例提供的另一种电眼调试方法的流程图。在图2所示实施例的基础上,本实施例提供的电眼调试方法,在S130之前还可以包括如下步骤,即S121~S124:
S121,判断误差值的绝对值是否大于误差阈值;在判断出误差值的绝对值小于或等于误差阈值时,执行S122;在判断出误差值的绝对值大于误差阈值时,执行S123;
S122,对判定成功次数进行加一;
S123,对判定成功次数进行清零;其中,该判定成功次数的初始值为零;
S124,判断判定成功次数是否小于判定成功次数阈值;在判断出判定成功次数小于判定成功次数阈值时,执行S130。
相应地,本实施例中根据误差值,对所述驱动器的偏置电压进行调整的步骤,即S130可以包括:
S130,根据误差值,对驱动器的偏置电压进行调整,以使调整后的光信号的眼图交叉比与预置交叉比的误差值近似为0。
在本实施例中,执行S130后可重复执行S121~S124,当S124中判断出判定成功次数大于或等于判定成功次数阈值时,调整结束。
本实施例提供的电眼调试方法,通过设置误差阈值及判定成功次数阈值,既保证调整精度,也能及时了解调整的进度。
在本发明的实施例和可选实施例中,根据误差值,对驱动器的偏置电压进行调整的原理是将误差值作为调节系数,以很快的将驱动器的偏置电压调整到预置偏置电压附近,同时,避免利用固定调整步长在理论偏置电压附近的反复震荡。
在本发明的一个可选地实施例中,根据误差值,对驱动器的偏置电压进行调整的实现方式可以包括:根据公式一,对驱动器的偏置电压进行调整;
公式一为:offset=|Err-cur|×Direct×A;
其中,Offset为调整步长;
|Err-cur|为当前眼图交叉比与预置交叉比的误差值的绝对值;
Direct表示调整方向,为1或-1;
A为预设的调整步长基数。
在实际应用中,驱动器通过设置无符号十六位数表示当前的偏置电压。例如,驱动器的偏置电压范围为0~2.5V,而设置的无符号十六位数范围为0~0xFFFF,即当设置数为0时,驱动器的偏置电压为0V,当设置数为0xFFFF时,驱动器的偏置电压为2.5V,即无符号十六位数与偏置电压成线性关系。
其中,Offset是对驱动器设置的值进行调整的调整步长。
当前的Direct值与上一次的Direct值有关。例如,当|Err-cur|与|Err-last|的差值(|Err-cur|-|Err-last|)大于0时,当前的调整方向与上一次的调整方向相反,而当|Err-cur|与|Err-last|的差值小于0时,当前的调整方向与上一次的调整方向相同,|Err-last|为上一次的眼图交叉比与预置交叉比的误差值的绝对值。
例如,上一次的|Err-last|为20%,上一次的Direct值为1;这样,在当前的|Err-cur|为25%时,由于25%-20%=5%大于0,所以,当前的Direct值为-1,而在当前的|Err-cur|为15%时,由于15%-20%=-5%小于0,则当前的Direct值为1。
A是与驱动器灵敏度有关的调整步长基数,在预设时,可通过预搜索过程,得到合适的调整步长基数,保证较短的调试时间。
在本发明的一个可选地实施例中,预置交叉比为50%,但本发明实施例不对其进行限定,可根据需求的不同进行不同的选择。
如图5所示,为本发明实施例提供的一种电眼调试装置的结构示意图。本实施例提供的电眼调试装置可以包括:
获取模块41,设置为:获取经光调制分析仪分析得到的光信号的眼图交叉比,该光信号为电信号经驱动器驱动放大和光调制器调制得到;
计算模块42,设置为:计算获取模块41获取的眼图交叉比与预置交叉比的误差值;
调整模块43,设置为:根据计算模块42计算得到的误差值,对驱动器的偏置电压进行调整,以使调整后的光信号的眼图交叉比与所述预置交叉比的误差值近似为0。
本发明实施例提供的电眼调试装置,通过获取模块自动获取经光调制分析仪分析得到的光信号的眼图交叉比,由计算模块计算眼图交叉比与预置交叉比的误差值,调整模块根据误差值,对驱动器的偏置电压进行调整,以使调整后的光信号的眼图交叉比与预置交叉比的误差值近似为0;本实施例相较于相关技术中的人工电眼调试方法,避免了人工操作引入的不可避免的误差, 既保证电眼调试的准确性,又提高电眼调试效率。
可选地,如图6所示,为本发明实施例提供的另一种电眼调试装置的结构示意图。在图5所示装置的结构基础上,本实施例提供的电眼调试装置还可以包括:
第一判断模块44,设置为:判断所述误差值的绝对值是否大于误差阈值;
计数模块45,设置为:在第一判断模块44判断出误差值的绝对值小于或等于误差阈值时,对判定成功次数进行加一,在第一判断模块44判断出误差值的绝对值大于误差阈值时,对判定成功次数进行清零,该判定成功次数的初值为零;
第二判断模块46,设置为:判断计数模块45计数得到的判定成功次数是否小于判定成功次数阈值;
所述调整模块43,是设置为:在第二判断模块46判断出判定成功次数小于所述判定成功次数阈值时,根据误差值,对所述驱动器的偏置电压进行调整。
本实施例提供的电眼调试装置,通过设置误差阈值及判定成功次数阈值,既保证调整精度,也能及时了解调整的进度。
在本发明的一个可选地实施例中,调整模块43,是设置为:根据公式一,对驱动器的偏置电压进行调整;
公式一为:offset=|Err-cur|×Direct×A;
其中,Offset为调整步长;
|Err-cur|为当前眼图交叉比与预置交叉比的误差值的绝对值;
Direct表示调整方向,为1或-1;
A为预设的调整步长基数。
其中,Offset是对驱动器设置的值进行调整的调整步长。
当前的Direct值与上一次的Direct值有关。例如,当|Err-cur|与|Err-last|的差值(|Err-cur|-|Err-last|)大于0时,当前的调整方向与上一次的调整方向相反,而当|Err-cur|与|Err-last|的差值小于0时,当前的调整方向与上一次 的调整方向相同,|Err-last|为上一次的眼图交叉比与预置交叉比的误差值的绝对值。
例如,上一次的|Err-last|为20%,上一次的Direct值为1;这样,在当前的|Err-cur|为25%时,由于25%-20%=5%大于0,所以,当前的Direct值为-1,而在当前的|Err-cur|为15%时,由于15%-20%=-5%小于0,则当前的Direct值为1。
在本发明的一个可选地实施例中,预置交叉比为50%。
下面通过一可选地实施例,对本发明实施例提供的电眼调试方法进行详细的介绍。
参见图7所示,为本发明实施例提供的另一种电眼调试系统的结构示意图。本实施例提供的电眼调试系统可以包括:
驱动器100,例如为MACOM驱动器,内置三级宽带放大器,以有充足的可调节范围,且具有四路输出,分别为XI、XQ、YI和YQ的25G高速信号;
光调制器200,例如为PM-QPSK光调制器,设置为:通过可调光源ITLA将电信号调制为光信号,主要完成XI、XQ、YI和YQ四路信号的偏置控制,使得XI和XQ两通道π/2相位控制,YI和YQ两通道π/2相位控制;
光调制分析仪300,例如为PS200光调制分析仪,设置为:分析光信号特性,分别得到四路光信号的眼图交叉比;
PC400,设置为:通过对从光调制分析仪得到的数据进行分析,对驱动器的偏置电压进行调整,例如,借助驱动器的外围控制系统,该外围控制系统可以为微控制器(Microcontroller Unit,简称为:MCU)和可编程控制门阵列(Field-Programmable Gate Array,简称为:FPGA)。
如图8所示,为本发明实施例提供的又一种电眼调试方法的流程图。本实施例提供的电眼调试方法可以包括如下步骤,即S601~S609:
S601,打开驱动器XI、XQ、YI和YQ中的一路输出;
S602,获取经光调制分析仪分析得到的光信号的眼图交叉比;
S603,计算眼图交叉比与预置交叉比的误差值;
S604,判断误差值的绝对值是否大于误差阈值;在判断出误差值的绝对值小于或等于误差阈值时,执行S605;在判断出误差值的绝对值大于误差阈值时,执行S606;
S605,对判定成功次数进行加一;
S606,对判定成功次数进行清零;其中,该判定成功次数的初始值为零;
S607,判断判定成功次数是否小于判定成功次数阈值;在判断出判定成功次数小于判定成功次数阈值时,执行S608;在判断出判定成功次数大于或等于判定成功次数阈值时,执行S609;
S608,根据公式一对驱动器的偏置电压进行调整;在执行S608后,重新开始执行S602;
S609,判断驱动器的四路输出是否全部调试完成;在判断出未全部调试完成,执行S601进行其他路输出的调试;在判断出全部调试完成,调试结束。
以下通过一应用实例对本发明实施例题提供的电眼调试方法进行详述说明。
应用实例一
对XI路信号进行调试,误差阈值为0.5%,判定成功次数阈值为3,预置交叉比为50%,驱动器设置初值为0x9FE5(40933),预设的调整步长基数A为10000,上一次的Direct为1,上一次的眼图交叉比与预置交叉比的误差值的绝对值|Err-last|为20%。
S11:获取当前光信号的眼图交叉比75%;
S12:计算该眼图交叉比与预置交叉比的误差值,
Err-cur=75%-50%=25%;
S13:|Err-cur|=25%>0.5%,判定成功次数进行清零;
S14:判定成功次数0小于判定成功次数阈值3,对驱动器的偏置电压进行调整
S15:|Err-cur|-|Err-last|=25%-20%=5%,由于5%>0,故当前的调整方向与上一次的调整方向相反,即Direct为-1;
S16:计算调整步长:offset=|Err-cur|×Direct×A
=25%×(-1)×10000=-2500;
S17:根据调整步长对驱动器进行调整;
重复执行上述步骤,直至判定成功次数大于或等于判定成功次数阈值3。
其中,在实际应用中,offset值的变化过程及眼图交叉比的变化过程例如如下表一所示:
交叉比 75% 60% 53% 51.5% 50.6 50.4 50.1 49.95
Offset -2500 -1000 -300 -150 -60 -40 -10 -5
表一
应用实例二
对YI路信号进行调试,误差阈值为0.5%,判定成功次数阈值为3,预置交叉比为50%,驱动器设置初值为0xC700(50944),预设的调整步长基数A为25600,上一次的Direct为-1,上一次的眼图交叉比与预置交叉比的误差值的绝对值|Err-last|为40%。
S21:获取当前光信号的眼图交叉比20%;
S22:计算该眼图交叉比与预置交叉比的误差值,
Err-cur=20%-50%=-30%;
S23:|Err-cur|=30%>0.5%,判定成功次数进行清零;
S24:判定成功次数0小于判定成功次数阈值3,对驱动器的偏置电压进行调整
S25:|Err-cur|-|Err-last|=30%-40%=-10%,由于-10%<0,故当前的调整方向与上一次的调整方向相同,即Direct仍然为-1;
S26:计算调整步长:offset=|Err-cur|×Direct×A
=30%×(-1)×25600=-7680;
S27:根据调整步长对驱动器进行调整;
重复执行上述步骤,直至判定成功次数大于等于判定成功次数阈值3。
其中,在实际应用中,offset值的变化过程及眼图交叉比的变化过程例如如下表二所示:
交叉比 90% 20% 17% 48% 49% 49.7 49.9 49.98
Offset -10240 -7680 +8448 +512 +256 +76 +25 +5
表二
应用实例三
对YQ路信号进行调试,误差阈值为0.5%,判定成功次数阈值为3,预置交叉比为50%,驱动器设置初值为0xFE00(65024),预设的调整步长基数A为25600,上一次的Direct为1,上一次的眼图交叉比与预置交叉比的误差值的绝对值|Err-last|为45%。
S31:获取当前光信号的眼图交叉比90%;
S32:计算该眼图交叉比与预置交叉比的误差值,
Err-cur=90%-50%=40%;
S33:|Err-cur|=40%>0.5%,判定成功次数进行清零;
S34:判定成功次数0小于判定成功次数阈值3,对驱动器的偏置电压进行调整
S35:|Err-cur|-|Err-last|=40%-45%=-5%,由于-5%<0,故当前的调整方向与上一次的调整方向相同,即Direct仍然为1;
S36:计算调整步长:offset=|Err-cur|×Direct×A
=40%×1×25600=10240;
S37:根据调整步长对驱动器进行调整;
重复执行上述步骤,直至判定成功次数大于等于判定成功次数阈值3。
其中,在实际应用中,offset值的变化过程及眼图交叉比的变化过程例如如下表三所示:
交叉比 90% 20% 30% 35% 41% 47% 49% 49.6% 49.7 49.8
Offset 10240 7680 5120 3840 2304 968 256 102 76 50
表三
通过上述三个应用实例可知,本发明实施例提供的电眼调试方法可以使光信号的眼图交叉比快速地调整到接近预置交叉比,并选择合适的调整步长和调整方向,既保证电眼调试的准确性,又提高电眼调试效率。
本领域普通技术人员可以理解上述实施例的全部或部分步骤可以使用计算机程序流程来实现,所述计算机程序可以存储于一计算机可读存储介质中,所述计算机程序在相应的硬件平台上(根据系统、设备、装置、器件等)执行,在执行时,包括方法实施例的步骤之一或其组合。
可选地,上述实施例的全部或部分步骤也可以使用集成电路来实现,这些步骤可以被分别制作成一个个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。
上述实施例中的装置/功能模块/功能单元可以采用通用的计算装置来实现,它们可以集中在单个的计算装置上,也可以分布在多个计算装置所组成的网络上。
上述实施例中的装置/功能模块/功能单元以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。上述提到的计算机可读取存储介质可以是只读存储器,磁盘或光盘等。
工业实用性
本发明实施例通过调制后的光信号分析调制前的电信号特性,通过自动获取经光调制分析仪分析得到的光信号的眼图交叉比,计算该眼图交叉比与预置交叉比的误差值,并根据该误差值,对驱动器的偏置电压进行调整,以使得调整后的光信号的眼图交叉比与预置交叉比的误差值近似为0;本发明实施例相较于相关技术中的人工电眼调试方法,避免了人工操作引入的不可避免的误差,既保证电眼调试的准确性,又提高电眼调试效率。

Claims (8)

  1. 一种电眼调试方法,包括:
    获取经光调制分析仪分析得到的光信号的眼图交叉比,所述光信号为电信号经驱动器驱动放大和光调制器调制得到的;
    计算所述眼图交叉比与预置交叉比的误差值;
    根据所述误差值,对所述驱动器的偏置电压进行调整,以使调整后的光信号的眼图交叉比与所述预置交叉比的误差值近似为0。
  2. 根据权利要求1所述的电眼调试方法,还包括:
    判断所述误差值的绝对值是否大于误差阈值;
    在所述误差值的绝对值小于或等于所述误差阈值时,对判定成功次数进行加一,在所述误差值的绝对值大于所述误差阈值时,对所述判定成功次数进行清零,所述判定成功次数的初始值为零;
    判断所述判定成功次数是否小于判定成功次数阈值;
    所述根据所述误差值,对所述驱动器的偏置电压进行调整,包括:
    在所述判定成功次数小于所述判定成功次数阈值时,根据所述误差值,对所述驱动器的偏置电压进行调整。
  3. 根据权利要求1所述的电眼调试方法,其中,所述根据所述误差值,对所述驱动器的偏置电压进行调整,包括:
    根据公式一,对所述驱动器的偏置电压进行调整;
    公式一为:offset=|Err-cur|×Direct×A;
    其中,Offset为调整步长;
    |Err-cur|为当前眼图交叉比与所述预置交叉比的误差值的绝对值;
    Direct表示调整方向,为1或-1;
    A为预设的调整步长基数。
  4. 根据权利要求1-3中任一所述的电眼调试方法,其中,所述预置交叉比为50%。
  5. 一种电眼调试装置,包括:
    获取模块,设置为:获取经光调制分析仪分析得到的光信号的眼图交叉比,所述光信号为电信号经驱动器驱动放大和光调制器调制得到;
    计算模块,设置为:计算所述获取模块获取的所述眼图交叉比与预置交叉比的误差值;
    调整模块,设置为:根据所述计算模块计算得到的所述误差值,对所述驱动器的偏置电压进行调整,以使调整后的光信号的眼图交叉比与所述预置交叉比的误差值近似为0。
  6. 根据权利要求5所述的电眼调试装置,还包括:
    第一判断模块,设置为:判断所述误差值的绝对值是否大于误差阈值;
    计数模块,设置为:在所述第一判断模块判断出所述误差值的绝对值小于或等于所述误差阈值时,对判定成功次数进行加一,在所述第一判断模块判断出所述误差值的绝对值大于所述误差阈值时,对所述判定成功次数进行清零,所述判定成功次数的初始值为零;
    第二判断模块,设置为:判断所述计数模块计数得到的所述判定成功次数是否小于判定成功次数阈值;
    所述调整模块,是设置为:在所述第二判断模块判断出所述判定成功次数小于所述判定成功次数阈值时,根据所述误差值,对所述驱动器的偏置电压进行调整。
  7. 根据权利要求5所述的电眼调试装置,其中,所述调整模块,是设置为:根据公式一,对所述驱动器的偏置电压进行调整;
    公式一为:offset=|Err-cur|×Direct×A;
    其中,Offset为调整步长;
    |Err-cur|为当前眼图交叉比与所述预置交叉比的误差值的绝对值;
    Direct表示调整方向,为1或-1;
    A为预设的调整步长基数。
  8. 根据权利要求5-7任一所述的电眼调试装置,其中,所述预置交叉比为50%。
PCT/CN2016/088901 2015-07-08 2016-07-06 一种电眼调试方法及装置 WO2017005193A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510396762.2A CN106330295B (zh) 2015-07-08 2015-07-08 一种电眼调试方法及装置
CN201510396762.2 2015-07-08

Publications (1)

Publication Number Publication Date
WO2017005193A1 true WO2017005193A1 (zh) 2017-01-12

Family

ID=57684738

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/088901 WO2017005193A1 (zh) 2015-07-08 2016-07-06 一种电眼调试方法及装置

Country Status (2)

Country Link
CN (1) CN106330295B (zh)
WO (1) WO2017005193A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113922890A (zh) * 2021-09-16 2022-01-11 烽火通信科技股份有限公司 预加重参数调整方法、装置、设备及可读存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080212979A1 (en) * 2006-12-26 2008-09-04 Morihiko Ota Optical transmitter and optical transmission control method
CN101478346A (zh) * 2009-01-21 2009-07-08 宁波春天通信工业有限公司 一种光载波抑制归零码调制器的自动控制方法
CN103475407A (zh) * 2013-08-27 2013-12-25 青岛海信宽带多媒体技术有限公司 基于eml的光模块下行信道的调试方法和系统
CN103916193A (zh) * 2014-03-19 2014-07-09 绍兴中科通信设备有限公司 一种调制器双臂可独立调制的光收发模块
CN203813792U (zh) * 2014-03-19 2014-09-03 绍兴中科通信设备有限公司 一种调制器双臂可独立调制的光收发模块

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101383659B (zh) * 2008-10-13 2012-05-09 中兴通讯股份有限公司 一种对通信系统的参数进行自动调试的装置和方法
CN102143105B (zh) * 2011-01-28 2015-03-25 中兴通讯股份有限公司 一种提高眼图交叉点稳定性的控制装置及方法
CN202856735U (zh) * 2012-09-25 2013-04-03 青岛海信宽带多媒体技术有限公司 Sfp光网络单元调试系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080212979A1 (en) * 2006-12-26 2008-09-04 Morihiko Ota Optical transmitter and optical transmission control method
CN101478346A (zh) * 2009-01-21 2009-07-08 宁波春天通信工业有限公司 一种光载波抑制归零码调制器的自动控制方法
CN103475407A (zh) * 2013-08-27 2013-12-25 青岛海信宽带多媒体技术有限公司 基于eml的光模块下行信道的调试方法和系统
CN103916193A (zh) * 2014-03-19 2014-07-09 绍兴中科通信设备有限公司 一种调制器双臂可独立调制的光收发模块
CN203813792U (zh) * 2014-03-19 2014-09-03 绍兴中科通信设备有限公司 一种调制器双臂可独立调制的光收发模块

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113922890A (zh) * 2021-09-16 2022-01-11 烽火通信科技股份有限公司 预加重参数调整方法、装置、设备及可读存储介质
CN113922890B (zh) * 2021-09-16 2023-09-29 烽火通信科技股份有限公司 预加重参数调整方法、装置、设备及可读存储介质

Also Published As

Publication number Publication date
CN106330295B (zh) 2019-10-22
CN106330295A (zh) 2017-01-11

Similar Documents

Publication Publication Date Title
US10348412B1 (en) Method and system for optical vector analysis based on double-sideband modulation
US20190326998A1 (en) Method and apparatus for transmitter iq skew and insertion loss detection for coherent optical systems
US9705592B1 (en) In-service skew monitoring in a nested Mach-Zehnder modulator structure using pilot signals and balanced phase detection
CN103412594B (zh) 电光调制器工作点控制装置及控制方法
US8081884B2 (en) Rate adjustable differential phase shift key (DPSK) modulation
CN106253973B (zh) 一种长距离少模光纤特性测量方法及装置
US10225022B2 (en) Electro-optic sensor system
US20210384986A1 (en) Fiber amplifier and gain adjustment method for fiber amplifier
US7991299B2 (en) Optical transmitter with driving voltage control and method
CN107533245B (zh) 无抖动偏置控制
WO2018040383A1 (zh) 一种并联mzi电光调制器工作点电压的调试方法及调试装置
WO2017005193A1 (zh) 一种电眼调试方法及装置
US20170244491A1 (en) Optical transmitter
JP2017153068A (ja) 光送信器
CN112217563B (zh) 一种光信号的处理方法、系统、电子设备及存储介质
US10693565B2 (en) Compensating for entanglement loss in communication lines
WO2016202122A1 (zh) 一种调节调制器输出光信号功率平衡的装置及方法
US20150132014A1 (en) Qpsk signal conjugate relationship identification method and apparatus, and dispersion compensation method and system
CN214040590U (zh) 一种保偏光纤器件的性能指标测量装置
JP2005509137A (ja) 多機能光学性能モニタ
CN108667520A (zh) 光发射机调制器的偏置控制装置及方法、光发射机
JP6016496B2 (ja) 光送信機
CN1700626A (zh) 多波长色度色散(cd)和偏振模式色散(pmd)补偿器
US20230129122A1 (en) Removing a translation error between a programmed strength and an applied strength of quantum gates
US20220368512A1 (en) Self-calibrating device and method for in-phase and quadrature time skew and conjugation in a coherent transmitter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16820844

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16820844

Country of ref document: EP

Kind code of ref document: A1