WO2017005112A1 - 一种多辆编组列车制动力分配方法及系统 - Google Patents

一种多辆编组列车制动力分配方法及系统 Download PDF

Info

Publication number
WO2017005112A1
WO2017005112A1 PCT/CN2016/087442 CN2016087442W WO2017005112A1 WO 2017005112 A1 WO2017005112 A1 WO 2017005112A1 CN 2016087442 W CN2016087442 W CN 2016087442W WO 2017005112 A1 WO2017005112 A1 WO 2017005112A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
axle
current vehicle
braking force
vehicle
Prior art date
Application number
PCT/CN2016/087442
Other languages
English (en)
French (fr)
Inventor
陈文光
尚敬
刘雄
陈超录
许峻峰
彭辉水
肖华
李伟
张宾
王龙
吉安辉
Original Assignee
中车株洲电力机车研究所有限公司
株洲中车时代电气股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中车株洲电力机车研究所有限公司, 株洲中车时代电气股份有限公司 filed Critical 中车株洲电力机车研究所有限公司
Priority to US15/580,686 priority Critical patent/US10717421B2/en
Publication of WO2017005112A1 publication Critical patent/WO2017005112A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/171Detecting parameters used in the regulation; Measuring values used in the regulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/1701Braking or traction control means specially adapted for particular types of vehicles
    • B60T8/1705Braking or traction control means specially adapted for particular types of vehicles for rail vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/176Brake regulation specially adapted to prevent excessive wheel slip during vehicle deceleration, e.g. ABS
    • B60T8/1766Proportioning of brake forces according to vehicle axle loads, e.g. front to rear of vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/18Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to vehicle weight or load, e.g. load distribution
    • B60T8/1893Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to vehicle weight or load, e.g. load distribution especially adapted for railway vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/26Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force characterised by producing differential braking between front and rear wheels
    • B60T8/30Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force characterised by producing differential braking between front and rear wheels responsive to load
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L15/00Indicators provided on the vehicle or train for signalling purposes
    • B61L15/0058On-board optimisation of vehicle or vehicle train operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L15/00Indicators provided on the vehicle or train for signalling purposes
    • B61L15/0072On-board train data handling

Definitions

  • the invention relates to the technical field of a plurality of marshalling trains, in particular to a method and a system for distributing braking force of a plurality of marshalling trains.
  • the technical problem to be solved by the present application is to provide a method and system for distributing braking force of a plurality of grouped trains, which solves the influence of the axle load transfer in the prior art, and the axle weight of some of the moving shafts decreases, resulting in a decrease in train adhesion utilization. Unable to play the problem of its total braking power.
  • a method for distributing braking force of a plurality of marshalling trains characterized in that
  • the braking force of each of the current axles of the current vehicle is positively correlated according to the current axle weight of each of the axles.
  • the calculating the current axle weight of each axle of the current vehicle includes:
  • the acquiring parameter information of the current vehicle includes:
  • the calculating the axle weight transfer of each axle of the current vehicle according to the parameter information includes:
  • the braking force of each axle of the current vehicle is positively and positively allocated according to the current axle weight of each axle, including:
  • the braking force of each axle of the current vehicle is allocated according to the current axle weight ratio of each axle.
  • a multi-vehicle train brake force distribution system comprising:
  • a determining unit for determining a current vehicle of the target plurality of trains
  • a first calculating unit configured to calculate a current axle weight of each axle of the current vehicle
  • a first distribution unit configured to positively distribute the braking force of each axle of the current vehicle according to a current axle weight of each of the axles.
  • the first calculating unit comprises:
  • An obtaining unit configured to acquire parameter information of the current vehicle
  • a second calculating unit configured to calculate, according to the parameter information, an axle weight transfer of each axle of the current vehicle
  • a third calculating unit configured to calculate a current axle weight of each axle of the current vehicle according to the axle weight transfer of each axle of the current vehicle.
  • the parameter information acquired in the acquiring unit includes: the current vehicle mass, the current acceleration, the current resistance, the current braking force, and the current vehicle structural size.
  • the second calculating unit comprises:
  • a fourth calculating unit configured to calculate a front coupler force and a rear coupler force of the current vehicle and a gravity of the current vehicle according to the current vehicle mass, the current acceleration, the current resistance, and the current braking force;
  • a fifth calculating unit configured to calculate an axle weight transfer of each of the current axles of the current vehicle according to the front coupler force of the current vehicle, the rear coupler force, the gravity, and the mechanism size of the current vehicle.
  • the first allocating unit comprises:
  • a sixth calculating unit configured to calculate a current axle weight ratio of each of the axles
  • a second distribution unit configured to allocate a braking force of each axle of the current vehicle according to a current axle weight ratio of each axle.
  • the method for distributing braking force of a plurality of grouped trains first, determining a current vehicle of a plurality of target trains; and then calculating a current axle weight of each axle of the current vehicle; and finally, according to a current axle of each axle
  • the braking force of each axle of the current vehicle is distributed in a positively relevant manner.
  • the braking force of each axle is distributed by the axle weight compensation technology, so that the braking force exerted by the axle with a small axle weight is reduced according to the axle load.
  • the braking force exerted by the axle with the increased axle load is increased according to the axle load increase, so that the braking force of each axle is matched with the axle weight to optimize the adhesive utilization and ensure the total braking force is optimal. purpose.
  • FIG. 1 is a flow chart of an embodiment of a method for distributing braking force of a plurality of grouped trains according to the present application
  • FIG. 2 is a schematic view showing the overall force structure of the current vehicle of the present application.
  • FIG. 3 is a flow chart of another embodiment of a method for distributing braking force of a plurality of grouped trains according to the present application Figure
  • Figure 5 is a schematic view showing the current structure of the vehicle according to the present application.
  • FIG. 6 is a schematic view showing the structure of the current vehicle axle of the present application.
  • FIG. 7 is a schematic diagram of an embodiment of a multi-car train torque distribution system of the present application.
  • FIG. 1 a flow chart of an embodiment of a method for distributing braking force of a plurality of grouped trains according to the present application is shown, which may include the following steps:
  • Step S101 Determine the current vehicle of the target multiple trains.
  • a plurality of grouped trains are composed of a plurality of vehicles, wherein all or part of the vehicles have braking capability, and the braking force includes one or more of electric braking force, air braking force, and magnetic rail braking force.
  • Step S102 Acquire parameter information of the current vehicle.
  • Obtaining the parameter information of the current vehicle in the present application includes: acquiring the quality of the current vehicle, the current acceleration, the current resistance, the current braking force, and the structural size of the current vehicle.
  • the train speed can be obtained by the speed sensor on each moving shaft or the traction motor, and the train deceleration can be calculated by the controller to calculate the train speed differentially.
  • the mass of each vehicle can be obtained by the vehicle weighing system.
  • the braking force of each vehicle can be calculated by the brake control unit.
  • the vehicle resistance can be calculated from the train's resistance formula for the train speed and the mass of each vehicle, so these variables are all known.
  • Step S103 Calculate the axis reversal of each axle of the current vehicle according to the parameter information. shift.
  • the axle load transfer of each axle of the current vehicle is generally considered to consider that the vehicle is in a stationary state and the vehicle is in a braking state, and the axle load transfer of each axle of the current vehicle is calculated according to the situation of the respective vehicle in the stationary state and the braking state. .
  • Step S104 Calculate the current axle weight of each axle of the current vehicle according to the axle load transfer of each axle of the current vehicle.
  • Step S105 Using the axle weight compensation technology, the braking force of each axle of the current vehicle is distributed according to the current axle of each axle.
  • the axle load compensation method is used to optimize the braking force distribution method of each axle of the current vehicle according to the current axle weight of each axle.
  • the axle weight shift of the axle is large, the axle weight of the current axle is reduced.
  • the braking force allocated for the current axle is reduced.
  • the axle weight of the axle shifts to a small value, the axle weight of the current axle increases, and the braking force allocated for the current axle increases to prevent the axles from slipping.
  • Phenomenon the maximum exertion of the total braking force.
  • the braking force of each axle is distributed by using the axle weight compensation technology, so that the braking force exerted by the axle with a small axle weight is reduced according to the axle load reduction amount.
  • the braking force exerted by the axle with increased axle weight is increased according to the axle load increase, so that the braking force of each axle is matched with the axle weight to optimize the adhesive utilization and ensure the total braking force is optimal.
  • the transmission of the vertical force of the vehicle is achieved by a spring between the wheel set and the bogie and a spring between the bogie and the vehicle body; the horizontal force is transmitted through the axle box of the moving wheel and the central support.
  • the gravity of the current vehicle is calculated according to the mass of the current vehicle, and the axle weight of the four axles of the current vehicle is one quarter of the gravity.
  • the parameter is according to the parameter Calculating the axle load transfer of each axle of the current vehicle includes the following steps:
  • Step S301 Calculate the front coupler force and the rear coupler force of the current vehicle and the gravity of the current vehicle according to the current vehicle mass, the current acceleration, the current resistance, and the current braking force.
  • Step S302 Calculate the axle weight transfer of each axle of the current vehicle according to the front coupler force of the current vehicle, the rear coupler force, the gravity, and the mechanism size of the current vehicle.
  • Figure 4 is a schematic diagram of the force analysis of six marshalling subway trains. The meanings of the variables in the figure are as follows.
  • M1, M2, ..., M6 code of each vehicle; f 1 , f 2 , ..., f 6 : resistance of each vehicle; F 1 , F 2 , ..., F 6 : braking force of each vehicle; f 12 , f 23 , ..., f 56 : the coupler force between the vehicles; the weight of each vehicle is represented by m 1 , m 2 , ..., m 6 respectively ; the speed of the train is v and the acceleration is a.
  • the force of the coupler between the vehicles can be calculated.
  • the direction is uniformly defined as the front car backward according to FIG. 4.
  • the M1 car has a large air resistance as the head car, and its rear end hook force f 12
  • the actual direction is forward to the front car, so f 12 is negative.
  • Equations 1 to 5 the force of the front and rear couplers of the i-th vehicle of the plurality of marshalling trains in any grouping manner can be derived, as in Equations 6 and 7.
  • f (i-1)i (m 1 + m 2 +...+m i-1 )a-(F 1 +F 2 +...+F i-1 )-(f 1 +f 2 +...+f i -1 )
  • f i(i+1) (m 1 +m 2 +...+m i )a-(F 1 +F 2 +...+F i )-(f 1 +f 2 +...+f i ) (7)
  • the current axle weight of the four axles of the current vehicle is calculated according to the axle load transfer of the four axles of the current vehicle.
  • the force of the vehicle body and the bogie is as shown in FIG. 5 and FIG.
  • the torque equation at point B is:
  • Equations 10 and 11 it can be seen from Equations 10 and 11 that when f i(i-1) >f (i+1)i , the front bogie is deloaded and the rear bogie is loaded by the braking force and the coupler force.
  • Equation 10 Substituting Equation 10 into Equation 13 and Equation 14
  • the axle weight compensation technology is used to distribute the braking force of each axle of the current vehicle according to the current axle of each axle, including:
  • the braking force of each of the axles of the current vehicle is distributed according to the ratio of the current axle weight of each axle.
  • the present application further provides an embodiment of a braking force distribution system for a plurality of grouped trains, in this embodiment.
  • the system includes:
  • a determining unit 701 configured to determine a current vehicle of the target plurality of grouped trains
  • the obtaining unit 702 is configured to acquire parameter information of the current vehicle.
  • a first calculating unit 703 configured to calculate, according to the parameter information, an axle weight transfer of each axle of the current vehicle
  • a second calculating unit 704 configured to calculate a current axle weight of each axle of the current vehicle according to the axle load transfer of each axle of the current vehicle;
  • the distribution unit 705 is configured to utilize the axle weight compensation technology to distribute the braking force of each axle of the current vehicle according to the current axle of each axle.
  • the parameter information acquired in the acquiring unit includes: the current vehicle mass, the current acceleration, the current resistance, the current braking force, and the current vehicle structural size.
  • the first computing unit includes:
  • a third calculating unit configured to calculate a front coupler force and a rear coupler force of the current vehicle and a gravity of the current vehicle according to the current vehicle mass, the current acceleration, the current resistance, and the current braking force;
  • a fourth calculating unit configured to act according to the front coupler force and the rear coupler of the current vehicle
  • the force, gravity, and the size of the current vehicle's mechanism calculate the axle load transfer of each of the current axles of the current vehicle.
  • the present application can be implemented by means of software plus a necessary general hardware platform. Based on such understanding, the technical solution of the present application may be embodied in the form of a software product in essence or in the form of a software product, which may be stored in a storage medium such as a ROM/RAM or a disk. , an optical disk, etc., includes instructions for causing a computer device (which may be a personal computer, server, or network device, etc.) to perform the methods described in various embodiments of the present application or portions of the embodiments.
  • a computer device which may be a personal computer, server, or network device, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Regulating Braking Force (AREA)

Abstract

一种多辆编组列车制动力分配方法及系统,多辆编组列车制动力分配方法包括:确定目标多辆编组列车的当前车辆;计算当前车辆各个车轴的当前轴重;根据所述各个车轴的当前轴重正相关地分配所述当前车辆各个车轴的制动力。本申请中利用轴重补偿技术对所述各个车轴的的制动力进行分配,使得轴重小的车轴发挥的制动力根据轴重减载量减小,而轴重增大的车轴发挥的制动力根据轴重增载量加大,从而使得各车轴发挥的制动力与轴重相匹配,达到优化粘着利用,保证总制动力发挥最优的目的。

Description

一种多辆编组列车制动力分配方法及系统
本申请要求于2015年7月9日提交中国专利局、申请号为201510399919.7、发明名称为“一种多辆编组列车制动力分配方法及系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及多辆编组列车技术领域,特别是涉及一种多辆编组列车制动力分配方法及系统。
背景技术
随着技术的发展,人们对多辆编组列车制动力的分配方法越来越关注。
现有的多辆编组列车,因轴重转移的影响,其部分动轴的轴重下降,导致列车粘着利用下降而无法发挥其总制动力的问题。
因此,如何优化粘着利用,使多辆编组列车最大可能发挥总制动力是本领域技术人员目前需要解决的技术问题。
发明内容
本申请所要解决的技术问题是提供一种多辆编组列车制动力分配方法及系统,解决了现有技术中因轴重转移的影响,其部分动轴的轴重下降,导致列车粘着利用下降而无法发挥其总的制动力的问题。
其具体方案如下:
一种多辆编组列车制动力分配方法,其特征在于,
确定目标多辆编组列车的当前车辆;
计算所述当前车辆各个车轴的当前轴重;
根据所述各个车轴的当前轴重正相关地分配所述当前车辆各个车轴的制动力。
上述的方法,可选的,所述计算所述当前车辆各个车轴的当前轴重,包括:
获取所述当前车辆的参数信息;
根据所述参数信息计算所述当前车辆各个车轴的轴重转移;
根据所述当前车辆各个车轴的轴重转移计算当前车辆各个车轴的当前轴重。
上述的方法,可选的,所述获取当前车辆的参数信息,包括:
获取所述当前车辆的质量、当前加速度、当前阻力、当前制动力和当前车辆的结构尺寸。
上述的方法,可选的,所述根据参数信息计算当前车辆各个车轴的轴重转移包括:
根据所述当前车辆的质量、当前加速度、当前阻力和当前制动力计算所述当前车辆的前车钩作用力和后车钩作用力以及当前车辆的重力;
根据所述当前车辆的前车钩作用力、后车钩作用力、重力以及当前车辆的机构尺寸分别计算所述当前车辆各个车轴的轴重转移。
上述的方法,可选的,所述根据所述各个车轴的当前轴重正相关地分配所述当前车辆各个车轴的制动力,包括:
计算所述各个车轴的当前轴重比例;
根据所述各个车轴当前轴重比例分配所述当前车辆各个车轴的制动力。
一种多辆编组列车制动力分配系统,该系统包括:
确定单元,用于确定目标多辆编组列车的当前车辆;
第一计算单元,用于计算所述当前车辆各个车轴的当前轴重;
第一分配单元,用于根据所述各个车轴的当前轴重正相关地分配所述当前车辆各个车轴的制动力。
上述的系统,可选的,所述第一次计算单元包括:
获取单元,用于获取所述当前车辆的参数信息;
第二计算单元,用于根据所述参数信息计算所述当前车辆各个车轴的轴重转移;
第三计算单元,用于根据所述当前车辆各个车轴的轴重转移计算当前车辆各个车轴的当前轴重。
上述的系统,可选的,所述获取单元中获取的参数信息包括:当前车辆的质量、当前加速度、当前阻力、当前制动力和当前车辆的结构尺寸。
上述的系统,可选的,所述第二计算单元包括:
第四计算单元,用于根据所述当前车辆的质量、当前加速度、当前阻力和当前制动力计算所述当前车辆的前车钩作用力和后车钩作用力以及当前车辆的重力;
第五计算单元,用于根据所述当前车辆的前车钩作用力、后车钩作用力、重力以及当前车辆的机构尺寸分别计算所述当前车辆各个车轴的轴重转移。
上述的系统,可选的,所述第一分配单元包括:
第六计算单元,用于计算所述各个车轴的当前轴重比例;
第二分配单元,用于根据所述各个车轴当前轴重比例分配所述当前车辆各个车轴的制动力。
本申请一种多辆编组列车制动力分配方法中,首先,确定目标多辆编组列车的当前车辆;然后,计算所述当前车辆各个车轴的当前轴重;最后,根据所述各个车轴的当前轴重正相关地分配所述当前车辆各个车轴的制动力,本申请中利用轴重补偿技术对所述各个车轴的制动力进行分配,使得轴重小的车轴发挥的制动力根据轴重减载量减小,而轴重增大的车轴发挥的制动力根据轴重增载量加大,从而使得各车轴发挥的制动力与轴重相匹配,达到优化粘着利用,保证总制动力发挥最优的目的。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本申请的一种多辆编组列车制动力分配方法实施例的流程图;
图2是本申请当前车辆整体受力结构示意图;
图3是本申请的一种多辆编组列车制动力分配方法另一实施例的流程 图;
图4是本申请列车整体受力分析结构示意图;
图5是本申请当前车辆受力结构示意图;
图6是本申请当前车辆车轴受力结构示意图;
图7是本申请的一种多辆编组列车制动力分配系统实施例的示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
参考图1,示出了本申请一种多辆编组列车制动力分配方法实施例的流程图,可以包括以下步骤:
步骤S101:确定目标多辆编组列车的当前车辆。
多辆编组列车,由多节车辆组成,其中全部或者部分车辆具备制动能力,其制动力包括电制动力、空气制动力、磁轨制动力等中的一种或多种。
由于多辆编组列车一般具有多节车辆,每节车辆的受力情况不同,此时,在对车辆进行分析时,需要首先确定当前车辆,之后对所述当前车辆进行分析。
步骤S102:获取所述当前车辆的参数信息。
本申请中获取所述当前车辆的参数信息,包括:获取所述当前车辆的质量、当前加速度、当前阻力、当前制动力和当前车辆的结构尺寸。
本申请中,列车速度可以由各动轴或牵引电动机上的速度传感器得出,列车减速度可以由控制器对列车速度进行微分计算得出,各车辆的质量可以由车辆称重系统得出,各车辆的制动力可以由制动控制单元计算得出,各车辆阻力可以由列车的阻力公式对列车速度与各车辆的质量计算得出,所以这些变量均为已知量。
步骤S103:根据所述参数信息计算所述当前车辆各个车轴的轴重转 移。
本申请中计算所述当前车辆各个车轴的轴重转移一般考虑车辆处于静止状态和车辆处于制动状态两种情况,根据静止状态和制动状态各自车辆的情况计算当前车辆各个车轴的轴重转移。
步骤S104:根据所述当前车辆各个车轴的轴重转移计算当前车辆各个车轴的当前轴重。
步骤S105:利用轴重补偿技术,根据所述各个车轴的当前轴重分配所述当前车辆各个车轴的制动力。
本申请中,利用轴重补偿技术,根据各个车轴的当前轴重优化当前车辆各个车轴的制动力分配方法,当所述车轴的轴重转移大时,说明当前车轴的轴重变小,此时为当前车轴分配的制动力减小,相反,当所述车轴的轴重转移小时,说明当前车轴的轴重增大,此时为当前车轴分配的制动力增大,以防止各个车轴出现滑行的现象,最大发挥总制动力的作用。
本申请一种多辆编组列车制动力分配方法中,利用轴重补偿技术对所述各个车轴的的制动力进行分配,使得轴重小的车轴发挥的制动力根据轴重减载量减小,而轴重增大的车轴发挥的制动力根据轴重增载量加大,从而使得各车轴发挥的制动力与轴重相匹配,达到优化粘着利用,保证总制动力发挥最优的目的。
本申请中,车辆垂直力的传递是通过轮对与转向架之间的弹簧和转向架与车体之间的弹簧实现的;水平力则是通过动轮的轴箱以及中央支承传递。
本申请中,假设车辆各车轴所发挥轮周制动力相等。
当所述目标列车处于静止状态时,根据所述当前车辆的质量计算所述当前车辆的重力,所述当前车辆四个车轴的轴重均为所述重力的四分之一。
如图2所示,当列车处于静止状态时,当前车辆的前车钩作用力和后车钩作用力均为0,此时,各轮对轴重Pi均匀分配,等于钢轨的反作用力Ni,为车辆重力Gi的1/4:
Figure PCTCN2016087442-appb-000001
当所述目标列车处于制动状态时,如图3所示,所述根据所述参数信 息计算所述当前车辆各个车轴的轴重转移包括以下步骤:
步骤S301:根据所述当前车辆的质量、当前加速度、当前阻力和当前制动力计算所述当前车辆的前车钩作用力和后车钩作用力以及当前车辆的重力。
步骤S302:根据所述当前车辆的前车钩作用力、后车钩作用力、重力以及当前车辆的机构尺寸分别计算所述当前车辆各个车轴的轴重转移。
多辆编组列车的编组形式多样化,其中六辆编组的情况较为常见,本申请以六辆编组的地铁列车作为样例进行阐述,其他编组形式可以通过类推得出。
图4为六辆编组地铁列车受力分析示意图,图中各变量的含义如下。
M1、M2、……、M6:各车辆的代号;f1、f2、……、f6:各车辆的阻力;F1、F2、……、F6:各车辆的制动力;f12、f23、……、f56:各车辆之间车钩力;各车辆的重量分别用m1、m2、……、m6表示;列车的速度为v,加速度为a。
根据牛顿第二定律及车辆受力分析可以得出式1~5中各车辆前后车钩的作用力。
f12=m1a-f1-F1                (1)
f23=m2a+f12-F2-f2             (2)
f34=m3a+f23-F3-f3             (3)
f45=m4a+f34-F4-f4             (4)
f56=m5a+f45-F5-f5             (5)
根据上式1~5可以计算出各车辆之间车钩的作用力,其方向按照图4统一定义为对前车向后,事实上M1车作为头车空气阻力很大,其后端车钩力f12实际方向为对前车向前,因此f12为负值。
根据式1~5可以推出任意编组形式的多辆编组列车中第i辆车辆前后车钩的作用力,如式6、式7。
f(i-1)i=(m1+m2+…+mi-1)a-(F1+F2+…+Fi-1)-(f1+f2+…+fi-1)
                                                    (6)
fi(i+1)=(m1+m2+…+mi)a-(F1+F2+…+Fi)-(f1+f2+…+fi)  (7)
本申请中,根据所述当前车辆四个车轴的轴重转移计算当前车辆四个车轴的当前轴重,在制动情况下,车体与转向架的受力情况如图5和图6所示,以车体为隔离体,B点的力矩方程式为:
Figure PCTCN2016087442-appb-000002
得:
Figure PCTCN2016087442-appb-000003
同理,由A点的力矩方程式可得:
Figure PCTCN2016087442-appb-000004
由式10和式11可知,当fi(i-1)>f(i+1)i时,在制动力及车钩力的作用下,前转向架减载、后转向架加载。
以前转向架为隔离体,D点的力矩方程式为:
Figure PCTCN2016087442-appb-000005
Figure PCTCN2016087442-appb-000006
同理,由C点的力矩方程式可得
Figure PCTCN2016087442-appb-000007
由式13、式14可知,在同一转向架内,前轮对加载,后轮对减载。
将式10代入式13、式14得
Figure PCTCN2016087442-appb-000008
Figure PCTCN2016087442-appb-000009
同理可得
Figure PCTCN2016087442-appb-000010
Figure PCTCN2016087442-appb-000011
本申请中,所述利用轴重补偿技术,根据所述各个车轴的当前轴重分配所述当前车辆各个车轴的制动力,包括:
按照所述各个车轴当前轴重的比例分配所述当前车辆各个车轴的制动力。
针对上述当车辆处于制动状态下时,所示当前车辆的四个车轴的轴重转移发生变化的情况,使得四个车轴的当前轴重也相应的发生变化,此时,可以按照四个车轴当前轴重的比例分配四个车轴的制动力:
Fi1:Fi2:Fi3:Fi4=N1:N2:N3:N4        (19)
将式15~18代入式19中,即可得到最终的优化粘着的制动力分配方案。
与上述本申请一种多辆编组列车制动力分配方法实施例所提供的方法相对应,参见图7,本申请还提供了一种多辆编组列车制动力分配系统实施例,在本实施例中,该系统包括:
确定单元701,用于确定目标多辆编组列车的当前车辆;
获取单元702,用于获取所述当前车辆的参数信息;
第一计算单元703,用于根据所述参数信息计算所述当前车辆各个车轴的轴重转移;
第二计算单元704,用于根据所述当前车辆各个车轴的轴重转移计算当前车辆各个车轴的当前轴重;
分配单元705,用于利用轴重补偿技术,根据所述各个车轴的当前轴重分配所述当前车辆各个车轴的制动力。
本申请中,所述获取单元中获取的参数信息包括:当前车辆的质量、当前加速度、当前阻力、当前制动力和当前车辆的结构尺寸。
所述第一计算单元包括:
第三计算单元,用于根据所述当前车辆的质量、当前加速度、当前阻力和当前制动力计算所述当前车辆的前车钩作用力和后车钩作用力以及当前车辆的重力;
第四计算单元,用于根据所述当前车辆的前车钩作用力、后车钩作用 力、重力以及当前车辆的机构尺寸分别计算所述当前车辆各个车轴的轴重转移。
需要说明的是,本说明书中的各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。对于装置类实施例而言,由于其与方法实施例基本相似,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。
最后,还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
为了描述的方便,描述以上装置时以功能分为各种单元分别描述。当然,在实施本申请时可以把各单元的功能在同一个或多个软件和/或硬件中实现。
通过以上的实施方式的描述可知,本领域的技术人员可以清楚地了解到本申请可借助软件加必需的通用硬件平台的方式来实现。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例或者实施例的某些部分所述的方法。
以上对本申请所提供的一种多辆编组列车制动力分配方法及系统进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同 时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (10)

  1. 一种多辆编组列车制动力分配方法,其特征在于,
    确定目标多辆编组列车的当前车辆;
    计算所述当前车辆各个车轴的当前轴重;
    根据所述各个车轴的当前轴重正相关地分配所述当前车辆各个车轴的制动力。
  2. 根据权利要求1所述的方法,其特征在于,所述计算所述当前车辆各个车轴的当前轴重,包括:
    获取所述当前车辆的参数信息;
    根据所述参数信息计算所述当前车辆各个车轴的轴重转移;
    根据所述当前车辆各个车轴的轴重转移计算当前车辆各个车轴的当前轴重。
  3. 根据权利要求2所述的方法,其特征在于,所述获取当前车辆的参数信息,包括:
    获取所述当前车辆的质量、当前加速度、当前阻力、当前制动力和当前车辆的结构尺寸。
  4. 根据权利要求3所述的方法,其特征在于,所述根据参数信息计算当前车辆各个车轴的轴重转移包括:
    根据所述当前车辆的质量、当前加速度、当前阻力和当前制动力计算所述当前车辆的前车钩作用力和后车钩作用力以及当前车辆的重力;
    根据所述当前车辆的前车钩作用力、后车钩作用力、重力以及当前车辆的机构尺寸分别计算所述当前车辆各个车轴的轴重转移。
  5. 根据权利要求1所述的方法,其特征在于,所述根据所述各个车轴的当前轴重正相关地分配所述当前车辆各个车轴的制动力,包括:
    计算所述各个车轴的当前轴重比例;
    根据所述各个车轴当前轴重比例分配所述当前车辆各个车轴的制动力。
  6. 一种多辆编组列车制动力分配系统,其特征在于,该系统包括:
    确定单元,用于确定目标多辆编组列车的当前车辆;
    第一计算单元,用于计算所述当前车辆各个车轴的当前轴重;
    第一分配单元,用于根据所述各个车轴的当前轴重正相关地分配所述当前车辆各个车轴的制动力。
  7. 根据权利要求6所述的系统,其特征在于,所述第一次计算单元包括:
    获取单元,用于获取所述当前车辆的参数信息;
    第二计算单元,用于根据所述参数信息计算所述当前车辆各个车轴的轴重转移;
    第三计算单元,用于根据所述当前车辆各个车轴的轴重转移计算当前车辆各个车轴的当前轴重。
  8. 根据权利要求7所述的系统,其特征在于,所述获取单元中获取的参数信息包括:当前车辆的质量、当前加速度、当前阻力、当前制动力和当前车辆的结构尺寸。
  9. 根据权利要求8所述的系统,其特征在于,所述第二计算单元包括:
    第四计算单元,用于根据所述当前车辆的质量、当前加速度、当前阻力和当前制动力计算所述当前车辆的前车钩作用力和后车钩作用力以及当前车辆的重力;
    第五计算单元,用于根据所述当前车辆的前车钩作用力、后车钩作用力、重力以及当前车辆的机构尺寸分别计算所述当前车辆各个车轴的轴重转移。
  10. 根据权利要求9所述的系统,其特征在于,所述第一分配单元包括:
    第六计算单元,用于计算所述各个车轴的当前轴重比例;
    第二分配单元,用于根据所述各个车轴当前轴重比例分配所述当前车辆各个车轴的制动力。
PCT/CN2016/087442 2015-07-09 2016-06-28 一种多辆编组列车制动力分配方法及系统 WO2017005112A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/580,686 US10717421B2 (en) 2015-07-09 2016-06-28 Braking force distribution method and system of multiple train units

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510399919.7A CN105015524B (zh) 2015-07-09 2015-07-09 一种多辆编组列车制动力分配方法及系统
CN201510399919.7 2015-07-09

Publications (1)

Publication Number Publication Date
WO2017005112A1 true WO2017005112A1 (zh) 2017-01-12

Family

ID=54405937

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/087442 WO2017005112A1 (zh) 2015-07-09 2016-06-28 一种多辆编组列车制动力分配方法及系统

Country Status (3)

Country Link
US (1) US10717421B2 (zh)
CN (1) CN105015524B (zh)
WO (1) WO2017005112A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019123198A1 (en) * 2017-12-18 2019-06-27 Faively Transport Italia S.P.A. Service and emergency braking control system for at least one railway vehicle
EP3628529A4 (en) * 2017-11-21 2020-04-29 CRRC Tangshan Co., Ltd. METHOD FOR BRAKE CONTROL OF A TRAIN SECTION, TRAIN SECTION AND TRAIN

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105015524B (zh) 2015-07-09 2017-11-10 中车株洲电力机车研究所有限公司 一种多辆编组列车制动力分配方法及系统
CN107351826B (zh) * 2017-07-28 2020-03-17 湖南工业大学 一种高速列车制动力分配优化控制方法及其系统
US11370465B2 (en) * 2019-06-12 2022-06-28 Transportation IP Holdings, LLP Methods and systems for dynamic weight management
CN110641500B (zh) * 2019-11-06 2023-09-05 中车株洲电力机车有限公司 列车轮轴重调整方法、牵引力与制动力分配方法、系统
CN111891097B (zh) * 2020-07-15 2021-05-28 中车青岛四方车辆研究所有限公司 等磨耗方式制动力分配方法
CN111994056B (zh) * 2020-08-10 2022-01-07 中车唐山机车车辆有限公司 一种城轨列车的制动力分配方法,装置及系统
CN112249094B (zh) * 2020-10-20 2022-06-14 新誉庞巴迪信号系统有限公司 基于无人驾驶的多编组类型列车混跑的车载控制方法及系统
CN112406822B (zh) * 2020-10-20 2022-04-22 湖南工业大学 一种考虑黏着与舒适度的高速列车制动力优化分配方法
CN112249043B (zh) * 2020-10-29 2022-06-10 株洲中车时代电气股份有限公司 一种列车动力分配方法及装置
CN112765801B (zh) * 2021-01-11 2022-10-25 中车唐山机车车辆有限公司 轨道列车动态轴重计算方法、装置及终端设备
CN112721886B (zh) * 2021-01-11 2022-03-01 中车唐山机车车辆有限公司 列车制动力分配方法、装置及终端设备
CN114394071A (zh) * 2021-12-30 2022-04-26 国能铁路装备有限责任公司 铁路列车、用于电制动系统的空重车调整装置及方法
DE102022210317A1 (de) * 2022-09-29 2024-04-04 Siemens Mobility GmbH Sollkraftbestimmungsverfahren

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4692867A (en) * 1984-02-13 1987-09-08 Westinghouse Brake And Signal Co., Ltd. Brake control system
US5823638A (en) * 1996-05-03 1998-10-20 Westinghouse Air Brake Company Microprocessor controlled electro-pneumatic brake system in a multi-platform railroad freight car
CN101389513A (zh) * 2006-02-23 2009-03-18 西门子公司 用于制动有轨车辆的方法
EP2261095A2 (en) * 2009-06-11 2010-12-15 Dako-CZ, a.s. Braking device for multiple wagon vehicles, such as railway trains, kinked characteristic valve and method
CN102348572A (zh) * 2009-03-14 2012-02-08 通用电气公司 铁路列车中单独分布式动力机车的油门和制动动作的控制
CN105015524A (zh) * 2015-07-09 2015-11-04 南车株洲电力机车研究所有限公司 一种多辆编组列车制动力分配方法及系统

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19904216A1 (de) * 1998-07-17 2000-01-20 Continental Teves Ag & Co Ohg Verfahren und Vorrichtung zum Bestimmen und Erkennen der Kippgefahr eines Fahrzeuges
US9733625B2 (en) * 2006-03-20 2017-08-15 General Electric Company Trip optimization system and method for a train
DE10261547A1 (de) * 2002-12-23 2004-07-08 Wabco Gmbh & Co. Ohg Verfahren zur Zuspannenergieregelung einer Fahrzeugkombination
DE10261513B4 (de) * 2002-12-23 2013-02-07 Wabco Gmbh Verfahren zur Zuspannenergieregelung einer Fahrzeugkombination
US9950722B2 (en) * 2003-01-06 2018-04-24 General Electric Company System and method for vehicle control
DE102004022892A1 (de) * 2004-05-10 2005-12-08 Adam Opel Ag Verfahren zum Ausgleichen einer dynamischen Achslastverlagerung
DE102004035579A1 (de) * 2004-07-22 2006-02-16 Daimlerchrysler Ag Verfahren und Vorrichtung zur Kippstabilisierung eines Fahrzeugs
US9828010B2 (en) * 2006-03-20 2017-11-28 General Electric Company System, method and computer software code for determining a mission plan for a powered system using signal aspect information
US9689681B2 (en) * 2014-08-12 2017-06-27 General Electric Company System and method for vehicle operation
US9379775B2 (en) * 2009-03-17 2016-06-28 General Electric Company Data communication system and method
US9637147B2 (en) * 2009-03-17 2017-05-02 General Electronic Company Data communication system and method
US9102309B2 (en) * 2006-08-25 2015-08-11 Railpower, Llc System and method for detecting wheel slip and skid in a locomotive
US7778747B2 (en) * 2006-08-31 2010-08-17 National Railway Equipment Co. Adhesion control system for off-highway vehicle
US9037323B2 (en) * 2006-12-01 2015-05-19 General Electric Company Method and apparatus for limiting in-train forces of a railroad train
US8229607B2 (en) * 2006-12-01 2012-07-24 General Electric Company System and method for determining a mismatch between a model for a powered system and the actual behavior of the powered system
DE102008022026A1 (de) * 2008-05-02 2009-11-05 Wabco Gmbh EBS-System für Deichselanhänger
DE102009020428A1 (de) 2008-11-19 2010-05-20 Eureka Navigation Solutions Ag Vorrichtung und Verfahren für ein Schienenfahrzeug
US7954436B2 (en) * 2009-01-14 2011-06-07 General Electric Company Assembly and method for vehicle suspension
US20110082606A1 (en) * 2009-10-07 2011-04-07 General Electric Company Vehicle suspension control system and method
US8424888B2 (en) * 2010-08-26 2013-04-23 General Electric Company Systems and methods for weight transfer in a vehicle
US8448962B2 (en) * 2010-08-26 2013-05-28 General Electric Company Systems and methods providing variable spring stiffness for weight management in a rail vehicle
US8313111B2 (en) * 2010-08-26 2012-11-20 General Electric Company Systems and methods for weight transfer in a vehicle
US10144440B2 (en) * 2010-11-17 2018-12-04 General Electric Company Methods and systems for data communications
US9513630B2 (en) * 2010-11-17 2016-12-06 General Electric Company Methods and systems for data communications
US8942869B2 (en) * 2012-09-14 2015-01-27 General Electric Company Method and apparatus for positioning a rail vehicle or rail vehicle consist
DE102012024981A1 (de) * 2012-12-20 2014-06-26 Wabco Gmbh Verfahren zur Bremsregelung einer Fahrzeugkombination und Brems-Steuereinrichtung für ein Zugfahrzeug
US8838302B2 (en) * 2012-12-28 2014-09-16 General Electric Company System and method for asynchronously controlling a vehicle system
US9045123B1 (en) * 2014-02-21 2015-06-02 General Electric Company Brake setting system and method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4692867A (en) * 1984-02-13 1987-09-08 Westinghouse Brake And Signal Co., Ltd. Brake control system
US5823638A (en) * 1996-05-03 1998-10-20 Westinghouse Air Brake Company Microprocessor controlled electro-pneumatic brake system in a multi-platform railroad freight car
CN101389513A (zh) * 2006-02-23 2009-03-18 西门子公司 用于制动有轨车辆的方法
CN102348572A (zh) * 2009-03-14 2012-02-08 通用电气公司 铁路列车中单独分布式动力机车的油门和制动动作的控制
EP2261095A2 (en) * 2009-06-11 2010-12-15 Dako-CZ, a.s. Braking device for multiple wagon vehicles, such as railway trains, kinked characteristic valve and method
CN105015524A (zh) * 2015-07-09 2015-11-04 南车株洲电力机车研究所有限公司 一种多辆编组列车制动力分配方法及系统

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3628529A4 (en) * 2017-11-21 2020-04-29 CRRC Tangshan Co., Ltd. METHOD FOR BRAKE CONTROL OF A TRAIN SECTION, TRAIN SECTION AND TRAIN
US11511712B2 (en) 2017-11-21 2022-11-29 Crrc Tangshan Co., Ltd. Train compartment brake control method, train compartment, and train
WO2019123198A1 (en) * 2017-12-18 2019-06-27 Faively Transport Italia S.P.A. Service and emergency braking control system for at least one railway vehicle
US11780414B2 (en) 2017-12-18 2023-10-10 Faiveley Transport Italia S.P.A Vehicle braking control system

Also Published As

Publication number Publication date
CN105015524A (zh) 2015-11-04
US20180186351A1 (en) 2018-07-05
CN105015524B (zh) 2017-11-10
US10717421B2 (en) 2020-07-21

Similar Documents

Publication Publication Date Title
WO2017005112A1 (zh) 一种多辆编组列车制动力分配方法及系统
WO2017005111A1 (zh) 一种动力分散型列车牵引力分配方法及系统
Cole et al. Modelling, simulation and applications of longitudinal train dynamics
Wang et al. Electric train energy consumption modeling
CN104943691B (zh) 用于车辆控制的电子驱动扭矩感测车辆状态估计方法
US9981649B2 (en) System and method for controlling a brake system in a vehicle
CN107351826B (zh) 一种高速列车制动力分配优化控制方法及其系统
CN107679265B (zh) 一种列车紧急制动建模及模型辨识方法
Wang et al. Longitudinal train dynamics model for a rail transit simulation system
WO2023001289A1 (zh) 车辆滚动阻力获取方法、获取模块及存储介质
CN105235689A (zh) 一种缓解轨道列车启动冲动的方法
CN107415704A (zh) 复合制动方法、装置和自适应巡航控制器
Tran et al. High-speed trains subject to abrupt braking
Heydrich et al. Integrated braking control for electric vehicles with in-wheel propulsion and fully decoupled brake-by-wire system
CN105398473A (zh) 一种计算列车受力的设备和方法
CN113044016B (zh) 一种基于融合控制的制动控制方法及系统
Sun et al. An integrated control strategy for the composite braking system of an electric vehicle with independently driven axles
JP6914426B2 (ja) 分散型センサシステムによる減速度制御を伴う制動の実行のための、軌道車両の制動に関連する実際値を求める方法および装置
CN114996982A (zh) 一种基于云计算的列车轨道模型的实时仿真系统及方法
CN102689595A (zh) 一种纯电动城市客车制动能量回收系统控制方法
Wei et al. Braking force control strategy for electric vehicles with load variation and wheel slip considerations
Lee et al. Wheel slide protection control using a command map and Smith predictor for the pneumatic brake system of a railway vehicle
CN108238025A (zh) 一种分布式驱动电动汽车路面附着系数估计系统
CN104842983A (zh) 基于多智能体的高铁制动方法和系统
Peng et al. Numerical simulation of material wear of an automotive brake device based on finite element simulation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16820763

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16820763

Country of ref document: EP

Kind code of ref document: A1