WO2017004970A1 - 背光模组和显示装置 - Google Patents

背光模组和显示装置 Download PDF

Info

Publication number
WO2017004970A1
WO2017004970A1 PCT/CN2016/070098 CN2016070098W WO2017004970A1 WO 2017004970 A1 WO2017004970 A1 WO 2017004970A1 CN 2016070098 W CN2016070098 W CN 2016070098W WO 2017004970 A1 WO2017004970 A1 WO 2017004970A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
backlight module
light
reflective layer
disposed
Prior art date
Application number
PCT/CN2016/070098
Other languages
English (en)
French (fr)
Inventor
尹志
Original Assignee
京东方科技集团股份有限公司
高创(苏州)电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 高创(苏州)电子有限公司 filed Critical 京东方科技集团股份有限公司
Priority to EP16726474.6A priority Critical patent/EP3321565B1/en
Priority to US15/104,341 priority patent/US9983436B2/en
Publication of WO2017004970A1 publication Critical patent/WO2017004970A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S8/00Lighting devices intended for fixed installation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V19/00Fastening of light sources or lamp holders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V19/00Fastening of light sources or lamp holders
    • F21V19/001Fastening of light sources or lamp holders the light sources being semiconductors devices, e.g. LEDs
    • F21V19/0015Fastening arrangements intended to retain light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/04Optical design
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133605Direct backlight including specially adapted reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133608Direct backlight including particular frames or supporting means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2101/00Point-like light sources
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0096Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the lights guides being of the hollow type
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • G02F1/133607Direct backlight including a specially adapted diffusing, scattering or light controlling members the light controlling member including light directing or refracting elements, e.g. prisms or lenses
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133611Direct backlight including means for improving the brightness uniformity

Definitions

  • the present invention belongs to the field of display technologies, and in particular, to a backlight module and a display device.
  • the backlight module in the liquid crystal display device mainly includes two types of side-in and direct-type, and generally uses an LED (Light Emitting Diode) as a light source of the backlight module.
  • the side-lit backlight module generally uses a light guide plate
  • the direct-lit backlight module generally uses a diffusion plate to make the light emitted by the light source form a uniform surface light source.
  • the direct-type backlight module using a diffuser plate has gradually replaced the side-entry backlight module using a relatively expensive light guide plate and is widely used in low-cost products.
  • LEDs are usually arranged on the backplane at regular intervals.
  • LEDs are mainly arranged in two ways: one way is to arrange a large number of low-power LEDs densely on the backplane, but because of the large number of LEDs (usually There are hundreds of them, which cause chromatic aberration and reliability problems; the other way is to arrange several to dozens of high-power LEDs with secondary optical lenses on the backplane, which can increase the exit angle of the LEDs.
  • embodiments of the present invention provide a backlight module and a display device, which are disposed between an anti-diffusion plate and a reflective layer by an inverted LED light source or other light source.
  • the overall thickness of the backlight module can be made smaller, and the light output of the backlight module is uniform, and the light is reduced. cost.
  • a backlight module includes a reflective layer and a diffusing plate disposed opposite to each other, and a light source is disposed between the reflective layer and the diffusing plate, and a light emitting surface of the light source faces the a reflective layer, the light emitted by the light source is reflected by the reflective layer, reaches the diffusing plate, and is diffused through the diffusing plate to be emitted.
  • a surface of the reflective layer facing the diffuser plate is provided with a fixing post, the height of the fixing post is smaller than a distance between the reflective layer and the diffusing plate;
  • the top end of the fixing post and the light emitting surface thereof face the fixing post, and the wires of the light source are integrated inside the fixing post.
  • the fixing post is a frustum-like structure whose cross-sectional area is gradually increased from the top end to the bottom end thereof, and the center of the light-emitting surface of the light source and the fixing post The centers of the tops coincide.
  • the fixing post is made of a transparent material.
  • the diffusing plate is disposed with a first light source compensating unit in a region at least corresponding to the light source on a side of the reflective layer and/or a side facing away from the reflective layer, the first light source
  • the compensation unit is configured to condense light toward a center of a region of the diffusion plate corresponding to the light source.
  • the first light source compensation unit is disposed in an orthographic projection area of the light source on the diffusion plate.
  • the first light source compensation unit comprises a curved surface structure, a diffusion mesh point, a microstructure, a V-shaped groove or an inverted V-shaped protrusion.
  • the diffusion dots are formed by printing or ink jetting.
  • the light source is disposed on a surface of the diffusion plate facing the side of the reflective layer, and a wire of the light source is integrated inside the diffusion plate.
  • a first light source compensation unit is disposed between the light source and the diffusion plate, and the first light source compensation unit is configured to compensate brightness of an orthographic projection area of the light source on the diffusion plate.
  • the first light source compensation unit includes at least one auxiliary light source, and a light emitting surface of the auxiliary light source is opposite to a light emitting surface of the light source.
  • a second light source compensation unit is disposed in a peripheral region of the light source, and the second light source compensation unit includes a curved surface structure and a diffusion mesh point.
  • the light-emitting surface of the light source is disposed in parallel or obliquely with respect to the diffusion plate.
  • a display device comprising the above-described backlight module.
  • the invention has the beneficial effects that the backlight module can be disposed between the diffusing plate and the reflective layer by inverting the LED light source or other light source, and the overall thickness of the backlight module can be made smaller under the condition that the light mixing distance is constant;
  • the backlight module is more uniform in light output, higher in light efficiency, and lower in cost.
  • the display device of the backlight module described above can obtain better backlight brightness and uniformity, thereby having a better display effect; and at the same time, since the backlight module is thinner, a thinner and lighter display device can be obtained.
  • Embodiment 1 is a cross-sectional view of a backlight module in Embodiment 1 of the present invention.
  • FIG. 2 is a schematic view of the optical path of the backlight module of FIG. 1.
  • Embodiment 3 is a cross-sectional view of a backlight module in Embodiment 2 of the present invention.
  • Embodiment 4 is a cross-sectional view of a backlight module in Embodiment 3 of the present invention.
  • Figure 5 is a cross-sectional view showing a backlight module in Embodiment 4 of the present invention.
  • Figure 6 is a cross-sectional view showing a backlight module in Embodiment 5 of the present invention.
  • Figure 7 is a cross-sectional view showing a backlight module in Embodiment 6 of the present invention.
  • Embodiments of the present invention provide a direct type backlight module suitable for a liquid crystal display device and a display device including the same.
  • the backlight module includes a reflective layer and a diffusing plate disposed opposite to each other, and a light source is disposed between the reflective layer and the diffusing plate, and the light source is emitted.
  • the surface faces the reflective layer, and the light emitted by the light source is reflected by the reflective layer, reaches the diffusing plate, and is diffused by the diffusing plate to be emitted.
  • the backlight module can effectively reduce the number of LEDs, and reduce the thickness of the backlight module under the condition of a certain mixing distance, and the cost is also lower.
  • a surface that is relatively above is defined as an upper surface of the layer structure, and a surface that is relatively lower is defined as a lower surface of the layer structure.
  • FIG. 1 is a cross-sectional view of the backlight module.
  • the backlight module includes a reflective layer 13 and a diffusing plate 11 disposed opposite to each other.
  • a light source 12 is disposed between the reflective layer 13 and the diffusing plate 11 .
  • the light emitting surface of the light source 12 faces the reflective layer 13 and is emitted by the light source 12 .
  • the light is reflected by the reflective layer 13 and reaches the lower surface of the diffusing plate 11 and diffused through the diffusing plate 11 to be emitted from the upper surface thereof.
  • the light source 12 may be an LED light source or other light sources.
  • the reflective layer 13 is provided with a fixing post 14, and the height of the fixing post 14 is smaller than the distance between the reflective layer 13 and the diffusing plate 11.
  • the light source 12 is disposed at the top end of the fixing post 14 and its light emitting surface faces the fixing post 14, and the wires of the light source 12 are integrated inside the fixing post 14.
  • the LED is fixed above the reflective layer 13 by the fixing post 14, the diffusing plate 11 is located above the LED, and the reflective layer 13 is located at the bottom end of the fixed post 14.
  • the fixing post 14 has a cross-sectional area from the top end thereof (i.e., the end near the lower surface of the diffusing plate 11) to the bottom end thereof (i.e., the end contacting the upper surface of the reflecting layer 13).
  • a large frustum-like structure, and the center of the light-emitting surface of the light source 12 coincides with the center of the top end of the fixed post 14.
  • the fixing post 14 functions to support and fix the light source 12.
  • the side of the fixing post 14 supporting and fixing the light source 12 is designed with a curved surface. To help the light spread.
  • the fixing post 14 is made of a transparent material, which does not absorb light and does not reflect light, and can be regarded as non-existent in an ideal state to ensure normal light transmission.
  • the light source 12 and the fixed column 14 are usually arranged in pairs, and are expanded.
  • the diffuser 11 and the reflective layer 13 are evenly distributed.
  • a dead space area is formed directly above the light source 12, thereby affecting the light emitting surface of the backlight module.
  • the uniformity of the emitted light it is preferable that an area corresponding to the light source 12 (for example, an orthographic projection area of the light source 12 on the diffusion plate 11) on the upper surface of the diffusion plate 11 (i.e., the surface on the side away from the reflection layer 13 in Fig.
  • a first light source compensating unit is provided, and the first light source compensating unit is configured to converge light rays in other directions (for example, light rays from an optical film or the like) toward a center of a region of the diffusing plate 11 corresponding to the light source 12.
  • the first light source compensating unit is disposed on an upper surface of the diffusing plate 11 at least corresponding to the region of the light source 12, and the first light source compensating unit may adopt a V-shaped structure 111 including a V-shaped groove or an inverted V-shaped protrusion. As shown in FIG.
  • a V-shaped structure 111 (including a V-shaped groove or an inverted V-shaped protrusion) is added at a position corresponding to the light source 12 on the upper surface of the diffusion plate 11, thereby directing light rays in other directions toward the light source.
  • the center of the corresponding area of 12 is concentrated to eliminate the adverse effects of the dead zone of the light, so that the light-emitting surface of the backlight module emits light more uniformly.
  • a second light source compensation unit is further disposed in a peripheral region surrounding the light source 12 on the upper surface of the reflective layer 13 (i.e., the surface facing the diffusion plate 11 side).
  • the second light source compensation unit is a diffusion mesh point 131 disposed on the upper surface of the reflective layer 13. The utilization of the light emitted by the light source 12 can be further improved by the reflective layer 13 and the second light source compensation unit disposed thereon.
  • FIG. 2 there is shown a light path diagram of the backlight module of Fig. 1.
  • part of the light when light is emitted from the lower surface of the light source 12, part of the light is directly incident on the diffusion dot 131 on the reflective layer 13, and diffuse reflection occurs at the reflective interface formed on the surface of the diffusion dot 131, thereby being beaten.
  • the scattered light is incident on different directions; at the same time, another part of the light is irradiated onto the fixed column 14, and is reflected by the fixed column 14 onto the diffusion mesh point 131 on the reflective layer 13, and also diffuse reflection occurs at the reflective interface formed on the surface of the diffusion mesh point 131. , thus being broken up and shot in different directions.
  • These scattered light rays are irradiated to the lower surface of the diffusion plate 11 at a large incident angle and incident range, and then folded.
  • the radiation and the plurality of diffusions are emitted from the upper surface of the diffusion plate 11 to form light emitted from the light-emitting surface of the backlight module.
  • the V-shaped structure (V-shaped groove or inverted V-shaped protrusion) on the upper surface of the diffusion plate 11 can eliminate the adverse effect of the dead space of the light directly above the light source 12 on the light-emitting surface of the backlight module, and play the light on the light.
  • the compensation function is to obtain a more uniform light-emitting surface.
  • part of the light emitted from the light exiting surface of the light source 12 may also pass through the fixing post 14 and then be irradiated onto the diffusing dot 131.
  • the light source 12 may be disposed in parallel or obliquely with respect to the diffusion plate 11.
  • the light source 12 is an LED
  • the illumination angle of the LED is generally designed to be 120 degrees
  • the light-emitting surface of the LED is inclined with respect to the diffusion plate 11 to make the incident angle of the light larger and the brightness more uniform; and the light source 12 is opposite to the diffusion plate. 11 parallel settings make the light intensity higher and the brightness higher.
  • the light source 12 of the direct type backlight module is disposed upside down between the diffusion plate 11 and the reflective layer 13, so that the light source 12 emits light from its lower surface (i.e., emits light from the surface thereof toward the reflective layer 13).
  • the angle at which the light source 12 is inverted is not limited to 180 degrees as shown in Fig. 1 (when the light-emitting surface of the light source 12 is parallel to the plane of the diffusing plate 11 or the reflective layer 13).
  • the angle of the inversion of the light source 12 can be set according to the actual requirements of the backlight module.
  • the backlight module can be flexibly set according to the application of the backlight module or the type of the liquid crystal panel.
  • the light source is disposed between the diffusing plate and the reflective layer in an inverted manner, so that the overall thickness of the backlight module can be made smaller under the condition of a certain light mixing distance, and the backlight module can also be made.
  • the uniform light output of the light-emitting surface reduces the number of LEDs and reduces the cost.
  • the backlight module in this embodiment can also add other optical films as needed, which is not limited herein.
  • FIG. 3 is a cross-sectional view of the backlight module. As shown in FIG. 3, the position and structure of the first light source compensation unit disposed on the diffuser 11 in the backlight module of the present embodiment is different from that of the first embodiment.
  • a region corresponding to the light source 12 on the surface of the shot layer 13 is provided with a first light source compensation unit.
  • the first light source compensation unit of this embodiment is a diffusion mesh point 112.
  • a diffusion dot 131 is provided in the peripheral region surrounding the light source 12 on the upper surface of the reflective layer 13, similar to Embodiment 1.
  • the diffusion dot is formed by a printing method or an inkjet method, so as to eliminate the adverse effect of the dead space of the light source directly above the light source 12 on the light emitting surface of the backlight module, thereby making the light emitting surface of the backlight module uniform. sold out.
  • the other structures of the backlight module of the present embodiment are the same as those of the backlight module of the first embodiment.
  • the optical path diagram of the backlight module of the embodiment can refer to the optical path of the backlight module of the first embodiment. No longer detailed.
  • FIG. 4 is a cross-sectional view of the backlight module. As shown in FIG. 4, the position of the first light source compensation unit disposed on the diffuser 11 in the backlight module of the present embodiment is different from that of the first embodiment.
  • a region corresponding to the light source 12 on the lower surface of the diffusion plate 11 is provided with a first light source compensation unit.
  • the first light source compensating unit of the embodiment is a V-shaped structure 111 (including a V-shaped groove or an inverted V-shaped protrusion) disposed on a lower surface of the diffusing plate 11 at least corresponding to the region of the light source 12, for The directional light converges toward the center of the area corresponding to the light source 12, so as to eliminate the adverse effect of the dead space of the light on the light-emitting surface of the backlight module, so that the light-emitting surface of the backlight module is evenly emitted.
  • a diffusion dot 131 is provided in the peripheral region surrounding the light source 12 on the upper surface of the reflective layer 13 (i.e., the surface facing the side of the diffusion plate 11), similar to Embodiment 1.
  • the other structures of the backlight module of the present embodiment are the same as those of the backlight module of the first embodiment.
  • the optical path diagram of the backlight module of the embodiment can refer to the optical path of the backlight module of the first embodiment. No longer detailed.
  • FIG. 5 is a cross-sectional view of the backlight module.
  • the structure and position of the first light source compensating unit disposed on the diffusing plate 11 and the second light source compensating unit disposed on the reflective layer 13 in the backlight module of the present embodiment are different from those in the first embodiment.
  • the first light source compensation unit is disposed on the upper and lower surfaces of the diffusion plate 11.
  • the first light source compensating unit includes: a V-shaped structure 111 (including a V-shaped groove or an inverted V-shaped protrusion) disposed on an upper surface of the diffusing plate 11 at least corresponding to the region of the light source 12 for directing light in other directions The center of the region corresponding to the light source 12 is concentrated to eliminate the adverse effect of the dead zone of the light on the light exiting surface of the backlight module.
  • the first light source compensating unit further includes the microstructure 113 disposed on the lower surface of the diffusing plate 11.
  • the diffusion mesh dot 133 is provided on the upper surface of the reflective layer 13. Unlike the diffusion mesh dot 131 in the first embodiment, the diffusion mesh dot 133 may not be limited to the region corresponding to the light source 12 (ie, The peripheral region described above, but may further extend to other regions (as shown in FIG. 5, the diffusion dots 133 substantially fill all regions except the fixed post 14). By providing the microstructure 113 and the diffusion dot 133, the light distribution of the light-emitting surface of the entire backlight module can be made more uniform.
  • the other structures of the backlight module of the present embodiment are the same as those of the backlight module of the first embodiment.
  • the optical path diagram of the backlight module of the embodiment can refer to the optical path of the backlight module of the first embodiment. No longer detailed.
  • FIG. 6 is a cross-sectional view of the backlight module. As shown in FIG. 6, the position and structure of the first light source compensating unit disposed on the diffusing plate 11 in the backlight module of the present embodiment are different from the above embodiment.
  • the lower surface (the surface facing the reflective layer 13) of the diffusion plate 11 is provided with a first light source compensation unit.
  • the first light source compensating unit of the embodiment is a curved surface structure 114 disposed on the lower surface of the diffusing plate 11 at least corresponding to the region of the light source 12, and the curved surface structure 114 may further extend to other regions of the lower surface of the diffusing plate 11, To better guide the light reflected from the reflective layer 13, The adverse effect of the dead zone of the light on the light-emitting surface of the backlight module is eliminated, so that the light distribution of the entire light-emitting surface is more uniform.
  • a diffusion dot 131 is provided in the peripheral region surrounding the light source 12 on the upper surface of the reflective layer 13.
  • the other structures of the backlight module of the present embodiment are the same as those of the backlight module of the first embodiment.
  • the optical path diagram of the backlight module of the embodiment can refer to the optical path of the backlight module of the first embodiment. No longer detailed.
  • FIG. 7 is a cross-sectional view of the backlight module.
  • the position of the light source 12 in the backlight module of the present embodiment, the position and structure of the first light source compensation unit, and the position and structure of the second light source compensation unit disposed on the reflective layer 13 are different from the above.
  • the light source 12 of the backlight module is disposed on the lower surface of the diffusion plate 11 (ie, the surface facing the reflective layer 13 side), and the non-light-emitting surface (upper surface) thereof faces the diffusion plate 11 While the light exiting surface (lower surface) faces the reflective layer 13, the wires of the light source 12 are integrated inside the diffusing plate 11.
  • the light source 12 is fixed in diffusion by means of bonding or the like (for example, by the adhesive 15 ).
  • the lower surface of the plate 11, thereby fixing the light source 12 to the diffuser 11, further increases the light mixing distance.
  • the corresponding ray dead zone in the space formed between the light source 12 and the diffusion plate 11 may be A light source compensation unit is added to compensate for the lack of light.
  • a first light source compensation unit is disposed in a region between the light source 12 and the diffusion plate 11, and the first light source compensation unit is configured to compensate the brightness of the orthographic projection area of the light source 12 on the diffusion plate 11.
  • the first light source compensating unit comprises at least one auxiliary light source, wherein the auxiliary light source may be a plurality of low power LEDs 121 or a high power LED, and the light emitting surface of the auxiliary light source is opposite to the light emitting surface of the light source 12, that is, the auxiliary light source The light exiting surface faces the diffuser 11; at the same time, in the reflective layer
  • a second light source compensation unit is disposed in the peripheral region surrounding the light source 12 on the upper surface of the surface of the first surface (ie, the surface facing the diffusion plate 11).
  • the second light source compensation unit is a reflective curved surface structure 132. .
  • the newly added low-power LED 121 compensates for the adverse effect of the dead zone of the light on the light-emitting surface of the backlight module, and then cooperates with the design of the reflective curved surface 132 of the upper surface of the reflective layer 13 to maximize the mixing of the light.
  • the distance further optimizes the uniformity of light distribution on the light exit surface of the backlight module.
  • the other structures of the backlight module of the present embodiment are the same as those of the backlight module of the first embodiment.
  • the optical path diagram of the backlight module of the embodiment can refer to the optical path of the backlight module of the first embodiment. No longer detailed.
  • Embodiments 1 to 6 provide a direct type backlight module structure, which has the following advantages compared with the prior art:
  • the LED light source or other light source is disposed between the diffusing plate and the reflective layer in an inverted manner, and the overall thickness of the backlight module can be made smaller under the condition that the light mixing distance is constant;
  • the matching design of the light source inverted for example: making a V-shaped structure, a diffused dot, a partial curved structure or a microstructure on the diffusion plate, eliminating the adverse effect of the dead zone of the light on the backlight module, so that the entire light-emitting surface The light is more uniform;
  • the reflective layer is not limited to the existing white planar reflection sheet, and a diffusion mesh point and a partial curved surface structure may be disposed thereon, so that the light emitted from the light source is scattered and reflected to the diffusion plate, and then diffused by the diffusion plate to be emitted, thereby Effectively diverging the light to make the light out of the light surface more uniform; at the same time, since the light emitting surface of the light source faces the reflecting sheet, the light emitted by the light source can directly illuminate the reflecting sheet, thereby avoiding secondary conversion of light and improving light efficiency;
  • the ultra-high power LED can be introduced into the direct-type backlight module of the embodiment of the invention. Since the light-emitting surface of the extra-large power LED faces downward and the light source compensation unit cooperates with it, it can effectively avoid Light shadow problem;
  • the embodiment provides a display device including the backlight module of any of Embodiments 1 to 6.
  • the display device may be any product or component having a display function such as a liquid crystal panel, an electronic paper, a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator, and the like.
  • a display function such as a liquid crystal panel, an electronic paper, a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator, and the like.
  • the display device in this embodiment adopts the above-mentioned direct type backlight module architecture, can obtain better backlight brightness and uniformity, thereby having better display effect; and at the same time, since the backlight module is thinner, it can be obtained more Lightweight display device.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Planar Illumination Modules (AREA)

Abstract

一种背光模组和一种显示装置。该背光模组包括相对设置的反射层(13)和扩散板(11),所述反射层(13)和所述扩散板(11)之间设置有光源(12),所述光源(12)的出光面朝向所述反射层(13),所述光源(12)发出的光经所述反射层(13)反射后到达所述扩散板(11)并经所述扩散板(11)扩散后射出。该背光模组将LED光源(12)或其他光源(12)倒置地设置在扩散板(11)和反射层(13)之间,在混光距离一定的条件下,可以使背光模组整体厚度更小,并且使得背光模组的出光均匀,同时也降低了成本。

Description

背光模组和显示装置 技术领域
本发明属于显示技术领域,具体涉及一种背光模组和一种显示装置。
背景技术
目前,液晶显示装置中的背光模组主要包括侧入式与直下式两种类型,一般采用LED(Light Emitting Diode)作为背光模组的光源。其中,侧入式背光模组一般采用导光板,而直下式背光模组一般采用扩散板,以使光源发出的光形成均匀的面光源。为了降低成本,采用扩散板的直下式背光模组逐渐替代了采用价格较为昂贵的导光板的侧入式背光模组而大量应用于低成本产品中。
在直下式背光模组中,通常将LED以一定间隔排布在背板上。为了降低成本并获得出光更均匀的出光面,LED主要采用以下两种方式排布:一种方式是,将大量的小功率LED密集排布在背板上,但是,因LED数量太多(通常有数百颗),导致色差以及可靠性问题;另一种方式是,将数颗至数十颗大功率LED搭配二次光学透镜排布在背板上,该方式可以增加LED的出光角,减少LED的数量,但是,由于大功率LED的芯片体积较大且发射的光的强度较大,导致严重的灯影问题,并且即使通过二次光学透镜对光线进行转换也很难得以改善,此外,发射的光的强度较大意味着需要较长的混光距离,使得整个背光模组的厚度较大。
发明内容
针对现有技术中存在的上述不足,本发明的实施例提供一种背光模组和一种显示装置,其将LED光源或其他光源倒置地设置在扩散板和反射层之间,在混光距离一定的条件下,可以使背光模组整体厚度更小,并且使得背光模组的出光均匀,同时降低了 成本。
根据本发明的实施例,提供了一种背光模组,其包括相对设置的反射层和扩散板,所述反射层和所述扩散板之间设置有光源,所述光源的出光面朝向所述反射层,所述光源发出的光经所述反射层反射后到达所述扩散板并经所述扩散板扩散后射出。
优选的是,所述反射层朝向所述扩散板一侧的表面上设置有固定柱,所述固定柱的高度小于所述反射层与所述扩散板之间的距离;所述光源设置于所述固定柱的顶端且其出光面朝向所述固定柱,所述光源的导线集成在所述固定柱内部。
优选的是,在所述固定柱的轴线方向上,所述固定柱为从其顶端到其底端截面积渐大的锥台状结构,且所述光源的出光面的中心与所述固定柱顶端的中心重合。
优选的是,所述固定柱采用透明材料制成。
优选的是,所述扩散板朝向所述反射层一侧和/或背离所述反射层一侧的表面上至少对应着所述光源的区域内设置有第一光源补偿单元,所述第一光源补偿单元用于将光线向所述扩散板上的与所述光源对应的区域的中心汇聚。
优选的是,所述第一光源补偿单元设置于所述光源在所述扩散板上的正投影区域内。
优选的是,所述第一光源补偿单元包括曲面结构、扩散网点、微结构、V形凹槽或倒V形凸起。
优选的是,所述扩散网点采用印刷方式或喷墨方式形成。
优选的是,所述光源设置在所述扩散板朝向所述反射层一侧的表面上,所述光源的导线集成在所述扩散板内部。
优选的是,在所述光源与所述扩散板之间设置有第一光源补偿单元,所述第一光源补偿单元用于补偿所述光源在所述扩散板上的正投影区域的亮度。
优选的是,所述第一光源补偿单元包括至少一个辅助光源,所述辅助光源的出光面与所述光源的出光面相背。
优选的是,在所述反射层朝向所述扩散板一侧的表面上的至 少围绕着所述光源的周边区域内设置有第二光源补偿单元,所述第二光源补偿单元包括曲面结构、扩散网点。
优选的是,所述光源的出光面相对所述扩散板平行设置或倾斜设置。
根据本发明的实施例,还提供了一种显示装置,包括上述的背光模组。
本发明的有益效果是:该背光模组通过将LED光源或其他光源倒置地设置在扩散板和反射层之间,在混光距离一定的条件下,可以使背光模组整体厚度更小;并且使得背光模组的出光更均匀、光效率更高,成本更低。
采用上述的背光模组的显示装置,能获得更优的背光亮度和均匀度,从而具有更好的显示效果;同时,由于背光模组更薄,因此可以获得更轻薄的显示装置。
附图说明
图1为本发明实施例1中背光模组的剖视图。
图2为图1中背光模组的光路示意图。
图3为本发明实施例2中背光模组的剖视图。
图4为本发明实施例3中背光模组的剖视图。
图5为本发明实施例4中背光模组的剖视图。
图6为本发明实施例5中背光模组的剖视图。
图7为本发明实施例6中背光模组的剖视图。
具体实施方式
为使本领域技术人员更好地理解本发明的技术方案,下面结合附图和具体实施方式对本发明的背光模组和显示装置作进一步详细描述。
本发明实施例提供一种适用于液晶显示装置的直下式背光模组和包括该背光模组的显示装置。所述背光模组包括相对设置的反射层和扩散板,反射层和扩散板之间设置有光源,光源的出光 面朝向反射层,光源发出的光经反射层反射后到达扩散板并经扩散板扩散后射出。该背光模组可有效减少LED的数量,并在混光距离一定的条件下减薄背光模组的厚度,成本也更低。
在附图中,针对某一层结构,处于相对上方的表面被定义为该层结构的上表面,处于相对下方的表面被定义为该层结构的下表面。
[实施例1]
本实施例提供一种背光模组,图1为该背光模组的剖视图。如图1所示,该背光模组包括相对设置的反射层13和扩散板11,反射层13和扩散板11之间设置有光源12,光源12的出光面朝向反射层13,光源12发出的光经反射层13反射后到达扩散板11的下表面并经扩散板11扩散后从其上表面射出。这里,光源12可以为LED光源,也可以为其他光源。
如图1所示,反射层13上设置有固定柱14,固定柱14的高度小于反射层13与扩散板11之间的距离。光源12设置于固定柱14的顶端且其出光面朝向固定柱14,光源12的导线集成在固定柱14内部。以LED光源为例,LED通过固定柱14固定在反射层13的上方,扩散板11位于LED的上方,反射层13位于固定柱14的底端。
此外,在固定柱14的轴线方向上,固定柱14为从其顶端(即靠近扩散板11的下表面的一端)到其底端(即与反射层13的上表面接触的一端)截面积渐大的锥台状结构,且光源12的出光面的中心与固定柱14顶端的中心重合。这里,固定柱14起到支撑和固定光源12的作用,当然,也可以采用其他的能起到支撑和固定作用的类似结构;同时,支撑及固定光源12的固定柱14的侧面采用曲面设计,以有助于光线扩散。
优选的是,固定柱14采用透明材料制成,其不吸光且不反射光,在理想状态下可视为不存在,保证光线的正常传播。
在背光模组中,光源12与固定柱14通常成对设置,并在扩 散板11与反射层13之间均匀分布。
在本实施例中,由于光源12的正上方无光线直接照射(但仍可能存在少量的被反射过来的光线),导致在光源12的正上方形成光线死角区域,从而影响背光模组的出光面发出的光的均匀性。因此,优选在扩散板11的上表面(即,图1中远离反射层13一侧的表面)上的与光源12相对应的区域(例如,光源12在扩散板11上的正投影区域)处设置第一光源补偿单元,第一光源补偿单元用于将其他方向的光线(例如,来自光学膜片等的光线)向扩散板11的与光源12对应的区域的中心汇聚。这里,第一光源补偿单元设置于扩散板11的上表面上至少对应于光源12的区域内,第一光源补偿单元可采用V形结构111,其包括V形凹槽或倒V形凸起。如图1所示,在扩散板11的上表面上的与光源12对应的位置处增加V形结构111(包括V形凹槽或倒V形凸起),从而将其他方向的光线向与光源12对应的区域的中心汇聚,以消除光线死角区域的不利影响,使得背光模组的出光面较均匀地出光。
如图1所示,进一步优选的是,在反射层13的上表面(即,朝向扩散板11一侧的表面)上的围绕着光源12的周边区域内还设置有第二光源补偿单元。在本实施例中,第二光源补偿单元为设置在反射层13的上表面的扩散网点131。通过反射层13及其上设置的第二光源补偿单元可进一步提升对光源12发出的光线的利用率。
接下来参见图2,其示出了图1中的背光模组的光路图。如图2所示,当光线从光源12的下表面射出时,部分光线直接照射到反射层13上的扩散网点131上,在扩散网点131的表面形成的反射界面处发生漫反射,从而被打散并射向不同方向;同时,另一部分光线照射到固定柱14上,经固定柱14反射至反射层13上的扩散网点131上,同样在扩散网点131的表面形成的反射界面处发生漫反射,从而被打散并射向不同方向。这些分散的光线以较大的入射角和入射范围,照射至扩散板11的下表面,再经过折 射及多次扩散,从扩散板11的上表面射出,从而形成从背光模组的出光面发出的光。而通过扩散板11上表面的V形结构(V形凹槽或倒V形凸起),可消除位于光源12正上方的光线死角区域对背光模组的出光面的不利影响,起到对光线的补偿作用,从而获得出光更均匀的出光面。这里,应当理解的是,在固定柱14由透明或半透明材料制成的情况下,从光源12的出光面射出的部分光也可以穿过固定柱14之后照射到扩散网点131上。
在本实施例中,光源12可相对扩散板11平行设置或倾斜设置。在光源12为LED的情况下,由于LED的发光角度通常设计为120度,因此LED的出光面相对扩散板11倾斜设置可使光线的入射角度更大、亮度更均匀;而光源12相对扩散板11平行设置可使光强更高、亮度更高。图1中,该直下式背光模组的光源12倒置地设置在扩散板11与反射层13之间,故光源12从其下表面出光(即从其朝向反射层13的表面出光)。光源12倒置的角度不局限于图1所示的180度(此时光源12的出光面与扩散板11或反射层13所在平面平行)。在实际应用中,光源12倒置的角度可依据背光模组的实际需求进行设置,例如可根据背光模组的应用场合或适用的液晶面板的类型进行灵活设置,这里不作限定。
本实施例所述背光模组中,光源倒置地设置在扩散板和反射层之间,从而可以在混光距离一定的条件下,使背光模组整体厚度更小,还能使背光模组的出光面的均匀出光,同时减少了LED的数量,降低了成本。
容易理解的是,本实施例中的背光模组也可以根据需要增加其他的光学膜片,这里不做限定。
[实施例2]
本实施例提供一种背光模组,图3为该背光模组的剖视图。如图3所示,本实施例的背光模组中设置于扩散板11上的第一光源补偿单元的位置和结构不同于实施例1。
具体地,在本实施例中,在扩散板11的下表面(即,朝向反 射层13一侧的表面)上的与光源12对应的区域设置有第一光源补偿单元。本实施例的第一光源补偿单元为扩散网点112。
同时,在反射层13的上表面上的围绕着光源12的周边区域内还设置有扩散网点131,与实施例1类似。
在本实施例中,优选地,扩散网点采用印刷方式或喷墨方式形成,以便消除光源12正上方的光线死角区域对背光模组的出光面的不利影响,从而使背光模组的出光面均匀出光。
本实施例的背光模组的其他结构与实施例1的背光模组中的对应结构相同;同时,本实施例的背光模组的光路图可参考实施例1的背光模组的光路图,这里不再详述。
[实施例3]
本实施例提供一种背光模组,图4为该背光模组的剖视图。如图4所示,本实施例的背光模组中设置于扩散板11上的第一光源补偿单元的位置不同于实施例1。
具体地,在本实施例中,扩散板11的下表面(即,朝向反射层13一侧的表面)上与光源12对应的区域设置有第一光源补偿单元。本实施例的第一光源补偿单元为设置于扩散板11的下表面上的至少对应着光源12的区域的V形结构111(包括V形凹槽或倒V形凸起),用于将其他方向的光线向与光源12对应的区域的中心汇聚,以消除光线死角区域对背光模组的出光面的不利影响,从而使背光模组的出光面均匀出光。
同时,在反射层13的上表面(即,朝向扩散板11一侧的表面)上的围绕着光源12的周边区域内还设置有扩散网点131,与实施例1类似。
本实施例的背光模组的其他结构与实施例1的背光模组中的对应结构相同;同时,本实施例的背光模组的光路图可参考实施例1的背光模组的光路图,这里不再详述。
[实施例4]
本实施例提供一种背光模组,图5为该背光模组的剖视图。如图5所示,本实施例的背光模组中设置于扩散板11上的第一光源补偿单元和设置于反射层13上的第二光源补偿单元的结构和位置不同于实施例1。
具体地,在本实施例中,扩散板11的上下表面上均设置有第一光源补偿单元。第一光源补偿单元包括:设置于扩散板11的上表面上至少对应着光源12的区域的V形结构111(包括V形凹槽或倒V形凸起),用于将其他方向的光线向与光源12相对应的区域的中心汇聚,以消除光线死角区域对背光模组的出光面的不利影响;同时,第一光源补偿单元还包括设置于扩散板11的下表面上的微结构113。
此外,在本实施例中,在反射层13的上表面设置有扩散网点133,与实施例1中的扩散网点131不同的是,扩散网点133可以不限于设置在对应着光源12的区域(即,上述周边区域),而是可以进一步延伸至其他区域(如图5所示,扩散网点133基本布满除固定柱14之外的所有区域)。通过设置微结构113和扩散网点133,可使得整个背光模组的出光面的光线分布更加均匀。
本实施例的背光模组的其他结构与实施例1的背光模组中的对应结构相同;同时,本实施例的背光模组的光路图可参考实施例1的背光模组的光路图,这里不再详述。
[实施例5]
本实施例提供一种背光模组,图6为该背光模组的剖视图。如图6所示,本实施例的背光模组中设置于扩散板11上的第一光源补偿单元的位置和结构不同于上述实施例。
具体地,在本实施例中,扩散板11的下表面(朝向反射层13的表面)上设置有第一光源补偿单元。本实施例的第一光源补偿单元为设置于扩散板11的下表面上至少对应着光源12的区域的曲面结构114,该曲面结构114还可以进一步延伸至扩散板11的下表面的其他区域,以更好地引导从反射层13反射过来的光线, 消除光线死角区域对背光模组的出光面的不利影响,从而使整个出光面的光线分布更均匀。
同时,与实施例1类似,在反射层13的上表面上的围绕着光源12的周边区域内还设置有扩散网点131。
本实施例的背光模组的其他结构与实施例1的背光模组中的对应结构相同;同时,本实施例的背光模组的光路图可参考实施例1的背光模组的光路图,这里不再详述。
[实施例6]
本实施例提供一种背光模组,图7为该背光模组的剖视图。如图7所示,本实施例的背光模组中光源12的设置位置、第一光源补偿单元的位置和结构、以及设置于反射层13上的第二光源补偿单元的位置和结构不同于上述各实施例。
具体地,在本实施例中,背光模组的光源12设置在扩散板11的下表面(即,朝向反射层13一侧的表面)上,且其非出光面(上表面)朝向扩散板11,而其出光面(下表面)朝向反射层13,光源12的导线集成在扩散板11内部。如图7所示,不同于现有技术中将光源固定在背板上的常规设置方式,本实施例的背光模组中,光源12通过粘贴等方式(例如通过粘结胶15)固定在扩散板11的下表面,从而将光源12固定在扩散板11上,进一步增加了混光距离。
当光源12固定在扩散板11上时,可以通过在光源12与扩散板11之间(即,光源12的非出光面与扩散板11的下表面之间)形成的空间中的相应光线死角区域内增加光源补偿单元来弥补光线不足。本实施例的背光模组中,在光源12与扩散板11之间区域内设置有第一光源补偿单元,第一光源补偿单元用于补偿光源12在扩散板11上的正投影区域的亮度。优选的是,第一光源补偿单元包括至少一个辅助光源,其中,辅助光源可以为多个小功率LED 121或为一个大功率LED,辅助光源的出光面与光源12的出光面相背,即辅助光源的出光面朝向扩散板11;同时,在反射层 13的上表面(即,朝向扩散板11一侧的表面)上的围绕着光源12的周边区域内还设置有第二光源补偿单元,本实施例中,第二光源补偿单元为反射曲面结构132。
本实施例中,通过新增的小功率LED 121来弥补光线死角区域对背光模组的出光面的不利影响,再配合反射层13上表面的反射曲面结构132的设计,可最大程度增加混光距离,进一步优化背光模组的出光面的光线分布的均匀度。
本实施例的背光模组的其他结构与实施例1的背光模组中的对应结构相同;同时,本实施例的背光模组的光路图可参考实施例1的背光模组的光路图,这里不再详述。
综上所述,实施例1至实施例6提供了一种直下式背光模组结构,与现有技术相比,其具有如下优点:
1)将LED光源或其他光源倒置地设置在扩散板和反射层之间,在混光距离一定的条件下,可以使背光模组整体厚度更小;
2)辅以因光源倒置所作的配合设计,例如:在扩散板上制作V形结构、扩散网点、局部曲面结构或微结构,消除了光线死角区域对背光模组的不利影响,使整个出光面的出光更加均匀;
3)反射层不局限于现有的白色平面反射片,并且其上可以设置扩散网点、局部曲面结构,使得光源射出的光被打散、反射至扩散板,再经扩散板扩散后射出,从而有效发散光线,使出光面的出光更均匀;同时,由于光源的出光面朝向反射片,光源射出的光线可以直接照射反射片,避免了光的二次转换,提高了光效率;
4)在此基础上,可将特大功率LED引入到本发明实施例所述直下式背光模组中,由于特大功率LED的出光面朝下,且具有光源补偿单元与之配合,因此能有效避免灯影问题;
5)减少了LED的数量(与大功率LED搭配二次光学透镜排布在背板的现有技术相比大约减少30%),降低了整体成本。
[实施例7]
本实施例提供一种显示装置,包括实施例1至实施例6任一种的背光模组。
该显示装置可以为:液晶面板、电子纸、手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。
本实施例中的显示装置,采用上述的直下式背光模组架构,能获得更优的背光亮度和均匀度,从而具有更好的显示效果;同时,由于背光模组更薄,因此可以获得更轻薄的显示装置。
可以理解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示例性实施方式,然而本发明并不局限于此。对于本领域内的普通技术人员而言,在不脱离本发明的精神和实质的情况下,可以作出各种变型和改进,这些变型和改进也视为本发明的保护范围。

Claims (14)

  1. 一种背光模组,包括相对设置的反射层和扩散板,其中,所述反射层和所述扩散板之间设置有光源,所述光源的出光面朝向所述反射层,所述光源发出的光经所述反射层反射后到达所述扩散板并经所述扩散板扩散后射出。
  2. 根据权利要求1所述的背光模组,其中,所述反射层朝向所述扩散板一侧的表面上设置有固定柱,所述固定柱的高度小于所述反射层与所述扩散板之间的距离;所述光源设置于所述固定柱的顶端且其出光面朝向所述固定柱,所述光源的导线集成在所述固定柱内部。
  3. 根据权利要求2所述的背光模组,其中,在所述固定柱的轴线方向上,所述固定柱为从其顶端到其底端截面积渐大的锥台状结构,且所述光源的出光面的中心与所述固定柱顶端的中心重合。
  4. 根据权利要求2所述的背光模组,其中,所述固定柱采用透明材料制成。
  5. 根据权利要求2所述的背光模组,其中,所述扩散板朝向所述反射层一侧和/或背离所述反射层一侧的表面上至少对应着所述光源的区域内设置有第一光源补偿单元,所述第一光源补偿单元用于将光线向所述扩散板上的与所述光源对应的区域的中心汇聚。
  6. 根据权利要求5所述的背光模组,其中,所述第一光源补偿单元设置于所述光源在所述扩散板上的正投影区域内。
  7. 根据权利要求5所述的背光模组,其中,所述第一光源补偿单元包括曲面结构、扩散网点、微结构、V形凹槽或倒V形凸起。
  8. 根据权利要求7所述的背光模组,其中,所述扩散网点采用印刷方式或喷墨方式形成。
  9. 根据权利要求1所述的背光模组,其中,所述光源设置在所述扩散板朝向所述反射层一侧的表面上,所述光源的导线集成在所述扩散板内部。
  10. 根据权利要求9所述的背光模组,其中,在所述光源与所述扩散板之间设置有第一光源补偿单元,所述第一光源补偿单元用于补偿所述光源在所述扩散板上的正投影区域的亮度。
  11. 根据权利要求10所述的背光模组,其中,所述第一光源补偿单元包括至少一个辅助光源,所述辅助光源的出光面与所述光源的出光面相背。
  12. 根据权利要求1-11任一项所述的背光模组,其中,在所述反射层朝向所述扩散板一侧的表面上的至少围绕着所述光源的周边区域内设置有第二光源补偿单元,所述第二光源补偿单元包括曲面结构、扩散网点。
  13. 根据权利要求1-11任一项所述的背光模组,其中,所述光源的出光面相对所述扩散板平行设置或倾斜设置。
  14. 一种显示装置,包括权利要求1-13任一项所述的背光模组。
PCT/CN2016/070098 2015-07-06 2016-01-05 背光模组和显示装置 WO2017004970A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP16726474.6A EP3321565B1 (en) 2015-07-06 2016-01-05 Backlight module and display device
US15/104,341 US9983436B2 (en) 2015-07-06 2016-01-05 Backlight module and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510389189.2 2015-07-06
CN201510389189.2A CN105156941A (zh) 2015-07-06 2015-07-06 背光模组和显示装置

Publications (1)

Publication Number Publication Date
WO2017004970A1 true WO2017004970A1 (zh) 2017-01-12

Family

ID=54797906

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/070098 WO2017004970A1 (zh) 2015-07-06 2016-01-05 背光模组和显示装置

Country Status (4)

Country Link
US (1) US9983436B2 (zh)
EP (1) EP3321565B1 (zh)
CN (1) CN105156941A (zh)
WO (1) WO2017004970A1 (zh)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2484713A (en) 2010-10-21 2012-04-25 Optovate Ltd Illumination apparatus
CN105156941A (zh) 2015-07-06 2015-12-16 高创(苏州)电子有限公司 背光模组和显示装置
CN108533981A (zh) * 2017-03-02 2018-09-14 展晶科技(深圳)有限公司 发光元件
GB201718307D0 (en) 2017-11-05 2017-12-20 Optovate Ltd Display apparatus
CN108073000A (zh) * 2017-12-28 2018-05-25 重庆市中光电显示技术有限公司 背光模组和液晶显示器
GB201800574D0 (en) 2018-01-14 2018-02-28 Optovate Ltd Illumination apparatus
CN110162199A (zh) * 2018-02-13 2019-08-23 宸美(厦门)光电有限公司 触控面板及其制作方法
GB201803767D0 (en) * 2018-03-09 2018-04-25 Optovate Ltd Illumination apparatus
GB201807747D0 (en) 2018-05-13 2018-06-27 Optovate Ltd Colour micro-LED display apparatus
US11054698B2 (en) * 2018-05-31 2021-07-06 Wuhan China Star Optoelectronics Technology Co., Ltd. Backlight module and display device
CN111913320A (zh) * 2019-05-09 2020-11-10 北京易美新创科技有限公司 一种背光模组以及显示装置
TW202102883A (zh) 2019-07-02 2021-01-16 美商瑞爾D斯帕克有限責任公司 定向顯示設備
CN112578589A (zh) * 2019-09-27 2021-03-30 海信视像科技股份有限公司 一种显示装置和背光模组
CN114729730A (zh) 2019-10-03 2022-07-08 瑞尔D斯帕克有限责任公司 包括无源光学纳米结构的照明设备
KR20220077913A (ko) 2019-10-03 2022-06-09 리얼디 스파크, 엘엘씨 수동형 광학 나노구조를 포함하는 조명 장치
KR20210083508A (ko) * 2019-12-27 2021-07-07 삼성전자주식회사 디스플레이 장치
CN115136065A (zh) 2020-02-20 2022-09-30 瑞尔D斯帕克有限责任公司 照明和显示设备
CN112346169A (zh) * 2020-11-26 2021-02-09 苏州东岩电子科技有限公司 一种新型直下式背光模组及其led发光器件
CN112582385A (zh) * 2020-12-10 2021-03-30 高创(苏州)电子有限公司 一种蓝光led封装结构、背光模组及显示装置
CN113362714A (zh) * 2021-06-16 2021-09-07 武汉华星光电技术有限公司 一种灯板

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1892342A (zh) * 2005-07-09 2007-01-10 群康科技(深圳)有限公司 背光模组
CN201028402Y (zh) * 2007-01-12 2008-02-27 瑞仪光电股份有限公司 面光源的光均匀元件
CN101169539A (zh) * 2006-10-25 2008-04-30 群康科技(深圳)有限公司 直下式背光模组及液晶显示装置
US20140286052A1 (en) * 2011-10-20 2014-09-25 Rambus Delaware Llc Modular light-emitting panel assembly
CN104296008A (zh) * 2014-10-10 2015-01-21 京东方科技集团股份有限公司 背光模组及显示装置
CN105156941A (zh) * 2015-07-06 2015-12-16 高创(苏州)电子有限公司 背光模组和显示装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100665005B1 (ko) * 2004-12-30 2007-01-09 삼성전기주식회사 발광다이오드를 이용한 백라이트 장치
US7481563B2 (en) * 2006-09-21 2009-01-27 3M Innovative Properties Company LED backlight
WO2008044170A2 (en) * 2006-10-10 2008-04-17 Koninklijke Philips Electronics N.V. Thin illumination device, display device and luminary device
JP4381439B2 (ja) * 2007-09-18 2009-12-09 株式会社沖データ Ledバックライト装置及び液晶表示装置
CN201547597U (zh) * 2009-10-30 2010-08-11 康佳集团股份有限公司 一种led超薄背光模组
CN202209593U (zh) * 2011-09-08 2012-05-02 深圳市华星光电技术有限公司 一种led背光模组及液晶显示装置
CN102588828A (zh) * 2012-01-05 2012-07-18 冠捷显示科技(厦门)有限公司 拼板式背光模组
CN102661538B (zh) * 2012-04-16 2014-10-01 深圳市华星光电技术有限公司 一种直下式背光模组以及液晶显示装置
KR20140011104A (ko) * 2012-07-17 2014-01-28 삼성디스플레이 주식회사 백라이트 유닛 및 이를 포함하는 액정 표시 장치
CN202927639U (zh) * 2012-11-05 2013-05-08 深圳Tcl新技术有限公司 直下式背光模组和液晶显示装置
CN102980104B (zh) * 2012-11-30 2016-03-30 京东方科技集团股份有限公司 背光模组及使用该背光模组的显示装置
CN103090272B (zh) * 2013-01-25 2015-08-12 京东方科技集团股份有限公司 一种直下式背光模组及显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1892342A (zh) * 2005-07-09 2007-01-10 群康科技(深圳)有限公司 背光模组
CN101169539A (zh) * 2006-10-25 2008-04-30 群康科技(深圳)有限公司 直下式背光模组及液晶显示装置
CN201028402Y (zh) * 2007-01-12 2008-02-27 瑞仪光电股份有限公司 面光源的光均匀元件
US20140286052A1 (en) * 2011-10-20 2014-09-25 Rambus Delaware Llc Modular light-emitting panel assembly
CN104296008A (zh) * 2014-10-10 2015-01-21 京东方科技集团股份有限公司 背光模组及显示装置
CN105156941A (zh) * 2015-07-06 2015-12-16 高创(苏州)电子有限公司 背光模组和显示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3321565A4 *

Also Published As

Publication number Publication date
EP3321565A1 (en) 2018-05-16
EP3321565B1 (en) 2020-03-04
EP3321565A4 (en) 2019-01-16
US20170219883A1 (en) 2017-08-03
US9983436B2 (en) 2018-05-29
CN105156941A (zh) 2015-12-16

Similar Documents

Publication Publication Date Title
WO2017004970A1 (zh) 背光模组和显示装置
JP5449274B2 (ja) 照明装置、および表示装置
US20170227817A1 (en) Backlight unit, backlight module, backlight module and display device
US20060077692A1 (en) Backlight unit and liquid crystal display apparatus employing the same
US9329323B2 (en) Light source and backlight module having the same
JP2006229228A (ja) マルチチップ発光ダイオードユニット、それを採用したバックライトユニット及び液晶表示装置
JP2012216762A (ja) 発光装置、照明装置、および表示装置
JP3187635U (ja) 薄型直下型ledバックライトモジュール
US10914982B2 (en) Backlight module and display device
US20140029242A1 (en) Backlight Unit And Display Device
US20140146568A1 (en) Light source module and display module
KR20140148272A (ko) 발광다이오드 팩키지 및 이를 포함한 액정표시장치
JP2013247038A (ja) 照明装置および表示装置
US10095063B2 (en) Direct type backlight module and display device
TW201543118A (zh) 背光模組與顯示裝置
US7766516B2 (en) Diffusion plate of backlight structure and display device using the same
TW202037986A (zh) 光源組件、背光模組及顯示裝置
US11262483B2 (en) Light source lens, illumination unit, and display unit
WO2016183909A1 (zh) 背光模组及液晶显示装置
WO2013189116A1 (zh) 直下式的背光模块及包括其的液晶显示器
US9086592B2 (en) Direct illumination type backlight module, bottom reflector and liquid crystal display
CN106773294B (zh) 背光模组及显示装置
WO2012133118A1 (ja) 照明装置および表示装置
US10802332B2 (en) Low cost backlight module and display device
TW201433866A (zh) 背光模組

Legal Events

Date Code Title Description
REEP Request for entry into the european phase

Ref document number: 2016726474

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15104341

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16726474

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016726474

Country of ref document: EP