WO2017004951A1 - 一种提高木质纤维素酶解糖化得率的方法 - Google Patents

一种提高木质纤维素酶解糖化得率的方法 Download PDF

Info

Publication number
WO2017004951A1
WO2017004951A1 PCT/CN2015/098575 CN2015098575W WO2017004951A1 WO 2017004951 A1 WO2017004951 A1 WO 2017004951A1 CN 2015098575 W CN2015098575 W CN 2015098575W WO 2017004951 A1 WO2017004951 A1 WO 2017004951A1
Authority
WO
WIPO (PCT)
Prior art keywords
lignocellulose
yield
improving
bromide
lignosulfonate
Prior art date
Application number
PCT/CN2015/098575
Other languages
English (en)
French (fr)
Inventor
邱学青
楼宏铭
林绪亮
杨东杰
周明松
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Publication of WO2017004951A1 publication Critical patent/WO2017004951A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/06Ethanol, i.e. non-beverage
    • C12P7/08Ethanol, i.e. non-beverage produced as by-product or from waste or cellulosic material substrate
    • C12P7/10Ethanol, i.e. non-beverage produced as by-product or from waste or cellulosic material substrate substrate containing cellulosic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/02Monosaccharides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/14Preparation of compounds containing saccharide radicals produced by the action of a carbohydrase (EC 3.2.x), e.g. by alpha-amylase, e.g. by cellulase, hemicellulase
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Definitions

  • the invention belongs to the technical field of lignocellolysis, in particular to a method for improving the yield of lignocellulose saccharification by compounding an anionic surfactant and a cationic surfactant as an enzymatic auxiliaries.
  • lignocellulose has the characteristics of abundant source, low price and strong regionality, in order to avoid competition with people, lignocellulose will become the most potential raw material for bioethanol production.
  • the production of bioethanol from lignocellulose generally includes processes such as pretreatment, enzymatic hydrolysis, fermentation, distillation, and the like.
  • the process faces many bottlenecks, such as high pretreatment cost, low enzymatic efficiency, and low utilization efficiency of cellulase, which leads to high total production cost of bioethanol, which restricts the industrial production of bioethanol.
  • nonionic surfactants such as polyoxyethylene ether and Tween can improve the enzymatic hydrolysis efficiency of lignocellulose, and cationic surfactants such as cetyltrimethylammonium bromide can not improve the enzymatic hydrolysis effect.
  • Anionic surfactants such as sodium lauryl sulfate inhibit the enzymatic hydrolysis of lignocellulose (Eriksson, T., J., Tjerneld, F. Mechanism of surfactant effect in enzymatic hydrolysis of lignocellulose. Enzyme and Microbial Technology, 2002, 31, 353-364).
  • nonionic surfactants are expensive and are not conducive to reducing the production cost of bioethanol.
  • the lignosulfonate is the main component of the lignocellulosic acid sulfite pretreatment liquid, it can also be obtained by the sulfonation reaction of the enzymatic residue generated in the bioethanol production process. Therefore, the use of a lignosulfonate-based pretreatment liquid and a cationic surfactant as an enzymatic solving agent can omit the conventional steps of separating the lignocellulosic substrate from the pretreatment liquid.
  • the pretreatment liquid for inhibiting the hydrolysis of lignocellulose is turned into a treasure, and is compounded with a cationic surfactant to improve the enzymatic saccharification yield of lignocellulose, and comprehensive utilization of biomass can reduce the production cost of cellulosic ethanol. It will help promote the industrialization of cellulosic ethanol.
  • the primary object of the present invention is to provide an anionic surfactant and a cationic surface active agent.
  • the compound is compounded as an enzymatic auxiliator to improve the yield of lignocellulose saccharification.
  • Another object of the present invention is to provide a method for improving the yield of lignocellulose saccharification by using a pulping and papermaking by-product lignosulfonate anionic surfactant and a cationic surfactant as an enzymatic auxiliaries. Resource utilization of lignosulfonates.
  • a further object of the present invention is to provide an acid sulfite pretreatment waste liquid of lignocellulose as an anionic surfactant and a cationic surfactant as an enzymatic auxiliary to improve the yield of lignocellulose saccharification.
  • Methods The process of separating the lignocellulosic substrate from the pretreatment liquid can be omitted, and the pretreatment liquid for inhibiting the hydrolysis of lignocellulose can be turned into waste, and the comprehensive utilization of lignocellulose resources can be realized.
  • the invention relates to a method for improving the yield of saccharification of lignocellulose, which is prepared by anionic surfactant and a cationic surfactant as an enzymatic auxiliary for lignocellulose hydrolysis.
  • the above method specifically includes the following steps:
  • the anionic surfactant may be an anionic surfactant commonly used in the art, such as sodium lauryl sulfate, sodium dodecyl sulfate, sodium dodecylbenzenesulfonate, and naphthalenesulfonate formaldehyde condensation. At least one of the waste liquids of the acid sulfite method of lignosulfonate and lignocellulose is pretreated.
  • the lignosulfonate is preferably at least one of sodium lignosulfonate, calcium lignosulfonate and magnesium lignosulfonate.
  • the lignosulfonate is preferably a pulping papermaking by-product lignosulfonate.
  • the anionic surfactant is preferably a pulping papermaking by-product lignosulfonate.
  • the anionic surfactant is more preferably an acid sulfite pretreatment waste liquid of lignocellulose.
  • the cationic surfactant may be a cationic surfactant commonly used in the art, such as phenyltrimethylammonium bromide, decamethyltrimethylammonium bromide, dodecyltrimethylammonium chloride, Dodecyltrimethylammonium bromide, tetradecyltrimethylammonium bromide, cetyldimethylethylammonium bromide, cetyltrimethylammonium chloride, cetyl Trimethylammonium bromide, octadecyltrimethylammonium bromide, dihexadecyldimethylammonium bromide, cetylpyridinium chloride, benzalkonium chloride, polyacrylamide, and polydimethyl At least one of diallyl ammonium chloride.
  • a cationic surfactant commonly used in the art, such as phenyltrimethylammonium bromide, decamethyltrimethylammonium bromide, dode
  • the mass ratio of lignocellulose, anionic surfactant and cationic surfactant used is 100: (0.05 to 100): (0.001 to 100).
  • the pH of the buffer solution is preferably 4.5 to 6.0, and the ionic strength is preferably 25 to 100 mmol/L.
  • the buffer solution is preferably at least one of an acetic acid-sodium acetate buffer, a citric acid-sodium citrate buffer, and a phosphate buffer.
  • the amount of the buffer solution used is preferably 5 to 50 times the mass of the lignocellulose.
  • the conditions of the heating reaction are preferably 40 to 60 ° C for 48 to 96 hours.
  • the amount of cellulase used is preferably from 3 to 30 FPU/g based on the glucan content in the lignocellulose.
  • the lignocellulose may be at least one of filter paper cellulose, microcrystalline cellulose, pine, eucalyptus, poplar, corn cob, corn stover, wheat straw, bagasse, and straw.
  • the present invention has the following advantages and beneficial effects:
  • the present invention utilizes an anionic surfactant in combination with a cationic surfactant as an enzymatic aid
  • the agent can improve the enzymatic saccharification yield of lignocellulose, wherein the pulp and papermaking by-product lignosulfonate can be used as an anionic surfactant, which is rich in source, low in price and renewable, and is a green environmental protection additive.
  • the invention utilizes the acid sulfite pretreatment waste liquid of lignocellulose to be compounded with the cationic surfactant, thereby obviously improving the enzymatic saccharification yield of lignocellulose, thereby eliminating the lignocellulosic substrate and the pre-treatment.
  • the separation process of the treatment liquid can also turn the pretreatment liquid for inhibiting the hydrolysis of lignocellulose into waste, and realize the comprehensive utilization of lignocellulose resources.
  • the method of the present invention by adding an anionic surfactant as low as 0.5 ⁇ (according to the lignocellulosic substrate) and a cationic surfactant of 0.01 ⁇ (according to the lignocellulosic substrate), the lignocellulosic fiber can be made
  • the saccharification yield of the pigment is increased by 44 to 115%.
  • the method of the present invention is advantageous for reducing the production cost of bioethanol.
  • 100 mass parts of the pretzel-treated corn cob is added to 1000 parts by mass of acetic acid-sodium acetate buffer solution having a pH of 4.8 and an ionic strength of 100 mmol/L, and 10 parts by mass of calcium lignosulfonate and 5 mass are added.
  • the polyacrylamide was further added with 3FPU/g of cellulase in terms of glucan content in lignocellulose, and reacted at a temperature of 50 ° C for 72 hours. After the completion of the reaction, the lignocellulosic hydrolyzate was obtained by solid-liquid separation, and the glucose content was measured by a biosensor analyzer. The statistical results are shown in Table 1.
  • Examples 1-8 of the method of the present invention and the addition of a single anionic surfactant or cationic surfactant and a blank comparative example of the cellulase saccharification yield are shown in Table 1.
  • Small molecule anionic surfactant inhibits the enzymatic hydrolysis of lignocellulose, and the polymeric anionic surfactant lignin sulfonate improves the enzymatic hydrolysis efficiency of lignocellulose.
  • the enzymatic hydrolysis of different lignocellulosic substrates by cationic surfactants The situation is different, and as can be seen from Table 1, the method of the invention can efficiently improve different lignocellulosic bottoms.
  • the enzymatic saccharification yield of the substance is 44 to 115% higher than that of the blank example.
  • Example 4 and Example 5 the acid sulfite pretreated lignocellulosic waste liquid and the cationic surfactant compounded the lignocellulose saccharification yield respectively compared with the blank example.
  • Increased by 48% and 61% that is, the waste liquid pretreated by the acid sulfite method can be directly used as an anionic surfactant, no need to separate the pretreatment liquid, adjust the pH and then add the cationic surfactant.
  • Enzymatic saccharification can be carried out, and the yield of enzymatic saccharification is significantly improved, which can greatly reduce the production cost of bioethanol.

Landscapes

  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

提供了一种提高木质纤维素酶解糖化得率的方法,所述方法包括添加低至0.5‰的阴离子表面活性剂和0.01‰的阳离子表面活性剂,糖化得率提高44~115%,所述阴离子表面活性剂选自制浆造纸副产物木质素磺酸盐和木质纤维素的酸性亚硫酸盐。

Description

一种提高木质纤维素酶解糖化得率的方法 技术领域
本发明属于木质纤维素酶解技术领域,特别涉及一种以阴离子表面活性剂和阳离子表面活性剂复配作为酶解助剂,提高木质纤维素酶解糖化得率的方法。
背景技术
石油资源日益枯竭,利用木质纤维素原料生产生物燃料和化学品的研究成为近年来的研究热点。由于木质纤维素具有来源丰富、价格低廉、区域性强等特点,为避免与人争粮,木质纤维素将成为生物乙醇生产最具潜力的原料。木质纤维素生产生物乙醇通常包括预处理、酶解、发酵、蒸馏等工艺。但目前该工艺面临着众多的瓶颈问题,如预处理成本高、酶解效率低、纤维素酶利用效率低等,导致了生物乙醇的总生产成本高,制约着生物乙醇的工业化生产。
目前针对如何提高木质纤维素酶解效率、降低生产成本等问题,国内外众多研究学者已展开了研究。研究发现,聚氧乙烯醚和吐温等非离子表面活性剂可以提高木质纤维素的酶解效率,十六烷基三甲基溴化胺等阳离子表面活性剂提高纤维素酶解的效果不明显,十二烷基硫酸钠等阴离子表面活性剂却抑制木质纤维素的酶解(Eriksson,T.,
Figure PCTCN2015098575-appb-000001
J.,Tjerneld,F.Mechanism of surfactant effect in enzymatic hydrolysis of lignocellulose.Enzyme and Microbial Technology,2002,31,353-364)。但是非离子表面活性剂价格昂贵,不利于降低生物乙醇的生产成本。
最近的研究发现,来自制浆造纸废液的木质素磺酸盐和来自SPORL法预处理松木的废液都可以有效提高木质纤维素的酶解糖化得率(Zhou H.F.,Lou H.M.,Yang D.J.et al.Lignosulfonate to enhance enzymatic saccharification of lignocelluloses:role of molecular weight and substrate lignin.Industrial& Engineering Chemistry Research,2013,52(25):8464-8470;Wang,Z.J.,Lan,T.Q.,Zhu,J.Y.Lignosulfonate and elevated pH can enhance enzymatic saccharification of lignocelluloses.Biotechnology for Biofuels,2013,6:9)。由于木质素磺酸盐是木质纤维素酸性亚硫酸盐法预处理液的主要成分,也可以由生物乙醇生产过程中产生的酶解残渣经过磺化反应后得到。因此,利用木质素磺酸盐为主的预处理液和阳离子表面活性剂复配作为酶解助剂,可以省去木质纤维素底物与预处理液分离的传统步骤。将抑制木质纤维素酶解的预处理液变废为宝,与阳离子表面活性剂复配,提高木质纤维素的酶解糖化得率,实现生物质的综合利用,可以降低纤维素乙醇的生产成本,有助于推动纤维素乙醇的工业化。
发明内容
为了克服木质纤维素酶解工艺现有技术所存在的酶解效率低、可发酵糖浓度低、生产成本高等缺点与不足,本发明的首要目的在于提供一种以阴离子表面活性剂和阳离子表面活性剂复配作为酶解助剂,提高木质纤维素酶解糖化得率的方法。
本发明另一目的在于提供一种以制浆造纸副产物木质素磺酸盐阴离子表面活性剂和阳离子表面活性剂复配作为酶解助剂,提高木质纤维素酶解糖化得率的方法,实现木质素磺酸盐的资源化利用。
本发明再一目的在于提供一种以木质纤维素的酸性亚硫酸盐法预处理废液作为阴离子表面活性剂和阳离子表面活性剂复配作为酶解助剂,提高木质纤维素酶解糖化得率的方法。既可以省去木质纤维素底物与预处理液分离的工艺,也可以将抑制木质纤维素酶解的预处理液变废为宝,实现木质纤维素资源的综合利用。
本发明的目的通过下述方案实现:
一种提高木质纤维素酶解糖化得率的方法,该方法以阴离子表面活性剂和阳离子表面活性剂复配作为酶解助剂进行木质纤维素酶解。
上述方法具体包括以下步骤:
将木质纤维素加入缓冲溶液中,再加入阴离子表面活性剂、阳离子表面活 性剂和纤维素酶,加热反应,得到木质纤维素的糖化水解液。
所述的阴离子表面活性剂可为本领域常用阴离子表面活性剂即可,如十二烷基硫酸钠、十二烷基磺酸钠、十二烷基苯磺酸钠、萘磺酸盐甲醛缩合物、木质素磺酸盐和木质纤维素的酸性亚硫酸盐法预处理废液中的至少一种。
所述的木质素磺酸盐优选为木质素磺酸钠、木质素磺酸钙和木质素磺酸镁中的至少一种。
所述的木质素磺酸盐优选为制浆造纸副产物木质素磺酸盐。
所述的阴离子表面活性剂优选为制浆造纸副产物木质素磺酸盐。
所述的阴离子表面活性剂更优选为木质纤维素的酸性亚硫酸盐法预处理废液。
所述的阳离子表面活性剂可为本领域常用阳离子表面活性剂即可,如苯基三甲基溴化铵、十烷基三甲基溴化铵、十二烷基三甲基氯化铵、十二烷基三甲基溴化铵、十四烷基三甲基溴化铵、十六烷基二甲基乙基溴化铵、十六烷基三甲基氯化铵、十六烷基三甲基溴化铵、十八烷基三甲基溴化铵、双十六烷基二甲基溴化铵、氯化十六烷吡啶、苯扎氯铵、聚丙烯酰胺和聚二甲基二烯丙基氯化铵中的至少一种。
所用木质纤维素、阴离子表面活性剂和阳离子表面活性剂的质量比为100:(0.05~100):(0.001~100)。
所述的缓冲溶液的pH优选为4.5~6.0,离子强度优选为25~100mmol/L。
所述的缓冲溶液优选为醋酸-醋酸钠缓冲液、柠檬酸-柠檬酸钠缓冲液和磷酸盐缓冲液中的至少一种。
所用缓冲溶液的量优选为木质纤维素质量的5~50倍。
所述加热反应的条件优选为40~60℃温度下反应48~96h。
所用纤维素酶的量以木质纤维素中的葡聚糖含量计优选为3~30FPU/g。
所述的木质纤维素可为滤纸纤维素、微晶纤维素、松木、桉木、杨木、玉米芯、玉米秸秆、麦秆、甘蔗渣和稻草中的至少一种。
本发明相对于现有技术,具有如下的优点及有益效果:
(1)本发明利用阴离子表面活性剂与阳离子表面活性剂复配作为酶解助 剂,提高木质纤维素的酶解糖化得率,其中制浆造纸副产物木质素磺酸盐可以作为阴离子表面活性剂,其来源丰富、价格低廉且可再生,是一种绿色环保的添加剂。
(2)本发明利用木质纤维素的酸性亚硫酸盐法预处理废液与阳离子表面活性剂复配,明显提高木质纤维素的酶解糖化得率,既可以省去木质纤维素底物与预处理液的分离工艺,也可以将抑制木质纤维素酶解的预处理液变废为宝,实现木质纤维素资源的综合利用。
(3)本发明所述的方法,添加低至0.5‰(占木质纤维素底物)的阴离子表面活性剂和0.01‰(占木质纤维素底物)的阳离子表面活性剂,就能使木质纤维素的糖化得率提高44~115%。
(4)本发明方法有利于降低生物乙醇的生产成本。
具体实施方式
下面结合实施例对本发明作进一步详细的描述,但本发明的实施方式不限于此。
下列实施例中所用试剂均可从市场购买得到。
实施例1
取100质量份PH101微晶纤维素,加入到5000质量份pH为4.5,离子强度为25mmol/L的醋酸-醋酸钠缓冲溶液中,加入0.05质量份木质素磺酸钠与0.001质量份苯基三甲基溴化铵,再加入5FPU/g以纤维素中的葡聚糖含量计的纤维素酶,在50℃温度下反应72h。反应结束后,固液分离获得纤维素水解液,通过生物传感分析仪测定葡萄糖含量,统计结果如表1所示。
实施例2
取100质量份稀酸法预处理过的桉木,加入到2500质量份pH为6.0,离子强度为100mmol/L的磷酸盐缓冲溶液中,加入10质量份十二烷基硫酸钠与1质量份十烷基三甲基溴化铵,再加入5FPU/g以木质纤维素中的葡聚糖含量计的纤维素酶,在40℃温度下反应72h。反应结束后,固液分离获得木质纤 维素水解液,通过生物传感分析仪测定葡萄糖含量,统计结果如表1所示。
实施例3
取100质量份稀酸法预处理过的松木,加入到2500质量份pH为5.0,离子强度为50mmol/L的醋酸-醋酸钠缓冲溶液中,加入100质量份十二烷基苯磺酸钠与100质量份十二烷基三甲基氯化铵,再加入10FPU/g以木质纤维素中的葡聚糖含量计的纤维素酶,在50℃温度下反应72h。反应结束后,固液分离获得木质纤维素水解液,通过生物传感分析仪测定葡萄糖含量,统计结果如表1所示。
实施例4
取100质量份酸性亚硫酸钠预处理过的松木,加入到5000质量份pH为5.0,离子强度为50mmol/L的醋酸-醋酸钠缓冲溶液中,加入100质量份松木的酸性亚硫酸钠预处理液与5质量份十六烷基三甲基氯化铵,再加入20FPU/g以木质纤维素中的葡聚糖含量计的纤维素酶,在60℃温度下反应48h。反应结束后,固液分离获得木质纤维素水解液,通过生物传感分析仪测定葡萄糖含量,统计结果如表1所示。
实施例5
取100质量份酸性亚硫酸钠预处理过的杨木,加入到500质量份pH为4.8,离子强度为25mmol/L的柠檬酸-柠檬酸钠缓冲溶液中,加入50质量份杨木的酸性亚硫酸钠预处理液与25质量份十六烷基三甲基溴化铵,再加入10FPU/g以木质纤维素中的葡聚糖含量计的纤维素酶,在50℃温度下反应72h。反应结束后,固液分离获得木质纤维素水解液,通过生物传感分析仪测定葡萄糖含量,统计结果如表1所示。
实施例6
取100质量份蒸汽爆破预处理过的玉米秸秆,加入到5000质量份pH为 5.5,离子强度为50mmol/L的柠檬酸-柠檬酸钠缓冲溶液中,加入10质量份木质素磺酸钙与1质量份聚丙烯酰胺,再加入5FPU/g以木质纤维素中的葡聚糖含量计的纤维素酶,在50℃温度下反应96h。反应结束后,固液分离获得木质纤维素水解液,通过生物传感分析仪测定葡萄糖含量,统计结果如表1所示。
实施例7
取100质量份稀酸法预处理过的玉米芯,加入到1000质量份pH为4.8,离子强度为100mmol/L的醋酸-醋酸钠缓冲溶液中,加入10质量份木质素磺酸钙与5质量份聚丙烯酰胺,再加入3FPU/g以木质纤维素中的葡聚糖含量计的纤维素酶,在50℃温度下反应72h。反应结束后,固液分离获得木质纤维素水解液,通过生物传感分析仪测定葡萄糖含量,统计结果如表1所示。
实施例8
取100质量份稀酸法预处理过的麦秆,加入到1000质量份pH为5.0,离子强度为50mmol/L的柠檬酸-柠檬酸钠缓冲溶液中,加入10质量份萘磺酸盐甲醛缩合物与1质量份聚二甲基二烯丙基氯化铵,再加入30FPU/g以木质纤维素中的葡聚糖含量计的纤维素酶,在50℃温度下反应96h。反应结束后,固液分离获得木质纤维素水解液,通过生物传感分析仪测定葡萄糖含量,统计结果如表1所示。
以上实施例同时做了对应的空白对比例、单独添加等量阴离子表面活性剂或等量阳离子表面活性剂的对比例,与采用本发明方法的实施例进行木质纤维素酶解糖化得率的比较。
采用本发明方法的实施例1~8及加入单一的阴离子表面活性剂或阳离子表面活性剂和空白对比例的质纤维素酶解糖化得率如表1所示。小分子阴离子表面活性剂抑制木质纤维素的酶解、高分子阴离子表面活性剂木质素磺酸盐提高木质纤维素的酶解效率不够明显,阳离子表面活性剂对不同木质纤维素底物的酶解情况不同,而由表1可见,本发明方法可以高效提高不同木质纤维素底 物的酶解糖化得率,与空白例相比,提高的酶解糖化得率为44~115%。
特别的是实施例4和实施例5中,与空白例相比,酸性亚硫酸盐法预处理的木质纤维素废液和阳离子表面活性剂复配能使木质纤维素的酶解糖化得率分别提高达48%和61%,即木质纤维素通过酸性亚硫酸盐法预处理后的废液可直接作为阴离子表面活性剂,不需要脱毒分离预处理液,调节pH后加入阳离子表面活性剂,就可以进行酶解糖化,酶解糖化得率提高显著,可以大大降低生物乙醇的生产成本。
表1 各实施例和对比例木质纤维素酶解糖化得率的比较
Figure PCTCN2015098575-appb-000002
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

  1. 一种提高木质纤维素酶解糖化得率的方法,其特征在于该方法以阴离子表面活性剂和阳离子表面活性剂复配作为酶解助剂进行木质纤维素酶解。
  2. 根据权利要求1所述的提高木质纤维素酶解糖化得率的方法,其特征在于具体包括以下步骤:
    将木质纤维素加入缓冲溶液中,再加入阴离子表面活性剂、阳离子表面活性剂和纤维素酶,加热反应,得到木质纤维素的糖化水解液。
  3. 根据权利要求1所述的提高木质纤维素酶解糖化得率的方法,其特征在于:所述的阴离子表面活性剂为十二烷基硫酸钠、十二烷基磺酸钠、十二烷基苯磺酸钠、萘磺酸盐甲醛缩合物、木质素磺酸盐和木质纤维素的酸性亚硫酸盐法预处理废液中的至少一种。
  4. 根据权利要求1所述的提高木质纤维素酶解糖化得率的方法,其特征在于:所述的阴离子表面活性剂为制浆造纸副产物木质素磺酸盐。
  5. 根据权利要求3所述的提高木质纤维素酶解糖化得率的方法,其特征在于:所述的木质素磺酸盐为木质素磺酸钠、木质素磺酸钙和木质素磺酸镁中的至少一种。
  6. 根据权利要求1所述的提高木质纤维素酶解糖化得率的方法,其特征在于:所述的阴离子表面活性剂为木质纤维素的酸性亚硫酸盐法预处理废液。
  7. 根据权利要求1所述的提高木质纤维素酶解糖化得率的方法,其特征在于:所述的阳离子表面活性剂为苯基三甲基溴化铵、十烷基三甲基溴化铵、十二烷基三甲基氯化铵、十二烷基三甲基溴化铵、十四烷基三甲基溴化铵、十六烷基二甲基乙基溴化铵、十六烷基三甲基氯化铵、十六烷基三甲基溴化铵、十八烷基三甲基溴化铵、双十六烷基二甲基溴化铵、氯化十六烷吡啶、苯扎氯铵、聚丙烯酰胺和聚二甲基二烯丙基氯化铵中的至少一种。
  8. 根据权利要求1所述的提高木质纤维素酶解糖化得率的方法,其特征在于:所用木质纤维素、阴离子表面活性剂和阳离子表面活性剂的质量比为100:(0.05~100):(0.001~100)。
  9. 根据权利要求1所述的提高木质纤维素酶解糖化得率的方法,其特征在于:所述的缓冲溶液的pH为4.5~6.0,离子强度为25~100mmol/L;所用纤维素酶的量以木质纤维素中的葡聚糖含量计为3~30FPU/g;所述加热反应的条件为40~60℃温度下反应48~96h。
  10. 根据权利要求1所述的提高木质纤维素酶解糖化得率的方法,其特征在于:所述的木质纤维素为滤纸纤维素、微晶纤维素、松木、桉木、杨木、玉米芯、玉米秸秆、麦秆、甘蔗渣和稻草中的至少一种。
PCT/CN2015/098575 2015-07-08 2015-12-24 一种提高木质纤维素酶解糖化得率的方法 WO2017004951A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510401529.9 2015-07-08
CN201510401529.9A CN105039456B (zh) 2015-07-08 2015-07-08 一种提高木质纤维素酶解糖化得率的方法

Publications (1)

Publication Number Publication Date
WO2017004951A1 true WO2017004951A1 (zh) 2017-01-12

Family

ID=54446425

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/098575 WO2017004951A1 (zh) 2015-07-08 2015-12-24 一种提高木质纤维素酶解糖化得率的方法

Country Status (2)

Country Link
CN (1) CN105039456B (zh)
WO (1) WO2017004951A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112522347A (zh) * 2020-12-24 2021-03-19 浙江华康药业股份有限公司 一种提升高固酶解体系下纤维素酶解糖化效率的方法
CN112626151A (zh) * 2021-01-21 2021-04-09 山东大学 一种提高木质纤维素降解的方法及应用
CN113215209A (zh) * 2021-06-11 2021-08-06 南京林业大学 一种促进木质纤维素酶水解的方法
CN113481255A (zh) * 2021-06-17 2021-10-08 南京师范大学 含纤维素原料的酶解方法
CN115678945A (zh) * 2022-10-27 2023-02-03 西湖大学 硫酸-三氯化铝共催化剂在促进木质纤维素酶解糖化方面的应用
CN115787343A (zh) * 2022-12-07 2023-03-14 中国科学院青岛生物能源与过程研究所 采用木质纤维生物质联产纤维糖、纸浆纤维及木质素复合肥的方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105039456B (zh) * 2015-07-08 2019-10-18 华南理工大学 一种提高木质纤维素酶解糖化得率的方法
CN106834381A (zh) * 2017-02-14 2017-06-13 榆林学院 一种利用污泥蛋白为酶解助剂促进木质纤维素酶解糖化的方法
CN107217047B (zh) * 2017-05-24 2020-05-22 华南理工大学 一种回收溶液中纤维素酶的方法
CN107177645B (zh) * 2017-05-24 2020-11-24 华南理工大学 利用两性表面活性剂促进木质纤维素酶解及降温回收纤维素酶的方法
CN108893976B (zh) * 2018-07-29 2020-09-25 青岛大学 提高还原过程中银颗粒在棉织物上附着量和均匀性的方法
CN111100888B (zh) * 2018-10-26 2022-06-07 中国石油化工股份有限公司 一种促进木质纤维素酶解糖化的方法
CN111676257A (zh) * 2020-06-16 2020-09-18 天津科技大学 一种提高阔叶木纤维素高浓酶水解产可发酵糖效率的方法
CN111778293B (zh) * 2020-06-28 2024-04-12 龚春晓 一种以木质纤维素为原料制备纤维素水解液的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103243139A (zh) * 2013-05-21 2013-08-14 河南工业大学 一种高效降解木质纤维素原料的方法
CN105039456A (zh) * 2015-07-08 2015-11-11 华南理工大学 一种提高木质纤维素酶解糖化得率的方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PE18399A1 (es) * 1996-07-08 1999-03-13 Procter & Gamble Composicion detergente para lavado a mano que contiene una combinacion de surfactantes
CN101603065A (zh) * 2009-05-26 2009-12-16 三峡大学 一种利用纤维素复合酶系生产葡萄糖和纤维二糖的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103243139A (zh) * 2013-05-21 2013-08-14 河南工业大学 一种高效降解木质纤维素原料的方法
CN105039456A (zh) * 2015-07-08 2015-11-11 华南理工大学 一种提高木质纤维素酶解糖化得率的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WANG, Z.J. ET AL.: "Lignosulfonate and elevated pH can enhance enzymatic saccharification of lignocelluloses", BIOTECHNOLOGY FOR BIOFUELS, vol. 6, no. 9, 28 January 2013 (2013-01-28), XP021140218, ISSN: 1754-6834 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112522347A (zh) * 2020-12-24 2021-03-19 浙江华康药业股份有限公司 一种提升高固酶解体系下纤维素酶解糖化效率的方法
CN112626151A (zh) * 2021-01-21 2021-04-09 山东大学 一种提高木质纤维素降解的方法及应用
CN113215209A (zh) * 2021-06-11 2021-08-06 南京林业大学 一种促进木质纤维素酶水解的方法
CN113215209B (zh) * 2021-06-11 2023-11-03 南京林业大学 一种促进木质纤维素酶水解的方法
CN113481255A (zh) * 2021-06-17 2021-10-08 南京师范大学 含纤维素原料的酶解方法
CN113481255B (zh) * 2021-06-17 2023-08-15 南京师范大学 含纤维素原料的酶解方法
CN115678945A (zh) * 2022-10-27 2023-02-03 西湖大学 硫酸-三氯化铝共催化剂在促进木质纤维素酶解糖化方面的应用
CN115787343A (zh) * 2022-12-07 2023-03-14 中国科学院青岛生物能源与过程研究所 采用木质纤维生物质联产纤维糖、纸浆纤维及木质素复合肥的方法

Also Published As

Publication number Publication date
CN105039456A (zh) 2015-11-11
CN105039456B (zh) 2019-10-18

Similar Documents

Publication Publication Date Title
WO2017004951A1 (zh) 一种提高木质纤维素酶解糖化得率的方法
Xu et al. Enhancing cellulose accessibility of corn stover by deep eutectic solvent pretreatment for butanol fermentation
Rabelo et al. Ethanol production from enzymatic hydrolysis of sugarcane bagasse pretreated with lime and alkaline hydrogen peroxide
Ingram et al. Comparison of different pretreatment methods for lignocellulosic materials. Part I: Conversion of rye straw to valuable products
Mesa et al. An approach to optimization of enzymatic hydrolysis from sugarcane bagasse based on organosolv pretreatment
Yu et al. Bioethanol production using the sodium hydroxide pretreated sweet sorghum bagasse without washing
US8232082B2 (en) Process for the fermentative production of ethanol from solid lignocellulosic material comprising a step of treating a solid lignocellulosic material with alkaline solution in order to remove the lignin
CN107760739A (zh) 一种新型双氢键低共熔溶剂及结合碳酸钠预处理水稻秸秆的方法
Arumugam et al. Contemporary pretreatment strategies for bioethanol production from corncobs: a comprehensive review
Boonsawang et al. Ethanol production from palm pressed fiber by prehydrolysis prior to simultaneous saccharification and fermentation (SSF)
Montiel et al. Enhanced bioethanol production from blue agave bagasse in a combined extrusion–saccharification process
CN102690423B (zh) 以农作物秸秆生产乙醇的残留物为原料生产木质素磺酸钠的方法
WO2018072472A1 (zh) 一种降低木质纤维素碱法预处理液中副产物抑制效应的方法及基于此方法制备纤维素乙醇
CN106086106A (zh) 一种多氢键供体低共熔溶剂预处理玉米秸秆及其循环利用方法
CN109852639A (zh) 一种采用新型低共熔溶剂预处理秸秆发酵丁醇的方法
Zhao et al. Semi-hydrolysate of paper pulp without pretreatment enables a consolidated fermentation system with in situ product recovery for the production of butanol
Liu et al. Production of bioethanol from Napier grass via simultaneous saccharification and co-fermentation in a modified bioreactor
Gao et al. Ethanol production from high solids loading of alkali-pretreated sugarcane bagasse with an SSF process
US10030236B2 (en) Process for the production of an enzymatic cocktail using liquid residues from a process for the biochemical conversion of lignocellulosic materials
Liao et al. Production of monosaccharides from poplar by a two-step hydrogen peroxide-acetic acid and sodium hydroxide pretreatment
Sebastian et al. Miscanthus sp.–Perennial lignocellulosic biomass as feedstock for greener fumaric acid bioproduction
KR101055623B1 (ko) 리그노셀룰로스성 바이오매스의 생물학적 전처리 및 당화방법 및 이를 포함하는 바이오에탄올의 제조방법
WO2018133619A1 (zh) 一种农林生物质原料浓醪水解产糖的方法
DK2791328T3 (en) PROCEDURE FOR PRODUCING AN ENZYM COCKTAIL USING THE STANDARD REMAINS OF A PROCEDURE FOR BIOCHEMICAL CONVERSION OF LIGNOCELLULOSIC MATERIALS
Suttikul et al. Comparison of SHF and SSF processes for ethanol production from alkali-acid pretreated sugarcane trash

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15897599

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 11.05.2018)

122 Ep: pct application non-entry in european phase

Ref document number: 15897599

Country of ref document: EP

Kind code of ref document: A1