WO2017004914A1 - 一种基于复合流的锅炉除灰器 - Google Patents

一种基于复合流的锅炉除灰器 Download PDF

Info

Publication number
WO2017004914A1
WO2017004914A1 PCT/CN2015/093813 CN2015093813W WO2017004914A1 WO 2017004914 A1 WO2017004914 A1 WO 2017004914A1 CN 2015093813 W CN2015093813 W CN 2015093813W WO 2017004914 A1 WO2017004914 A1 WO 2017004914A1
Authority
WO
WIPO (PCT)
Prior art keywords
jet
generator
air
flow
composite
Prior art date
Application number
PCT/CN2015/093813
Other languages
English (en)
French (fr)
Inventor
张荣初
孙卫国
闻小明
Original Assignee
南京常荣声学股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京常荣声学股份有限公司 filed Critical 南京常荣声学股份有限公司
Priority to US15/735,957 priority Critical patent/US10551063B2/en
Priority to BR112017028475-8A priority patent/BR112017028475B1/pt
Priority to RU2017144874A priority patent/RU2685598C1/ru
Publication of WO2017004914A1 publication Critical patent/WO2017004914A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J1/00Removing ash, clinker, or slag from combustion chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J3/00Removing solid residues from passages or chambers beyond the fire, e.g. from flues by soot blowers
    • F23J3/02Cleaning furnace tubes; Cleaning flues or chimneys
    • F23J3/023Cleaning furnace tubes; Cleaning flues or chimneys cleaning the fireside of watertubes in boilers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/48Devices for removing water, salt, or sludge from boilers; Arrangements of cleaning apparatus in boilers; Combinations thereof with boilers
    • F22B37/54De-sludging or blow-down devices
    • F22B37/545Valves specially adapted therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J3/00Removing solid residues from passages or chambers beyond the fire, e.g. from flues by soot blowers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J3/00Removing solid residues from passages or chambers beyond the fire, e.g. from flues by soot blowers
    • F23J3/02Cleaning furnace tubes; Cleaning flues or chimneys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28GCLEANING OF INTERNAL OR EXTERNAL SURFACES OF HEAT-EXCHANGE OR HEAT-TRANSFER CONDUITS, e.g. WATER TUBES OR BOILERS
    • F28G13/00Appliances or processes not covered by groups F28G1/00 - F28G11/00; Combinations of appliances or processes covered by groups F28G1/00 - F28G11/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28GCLEANING OF INTERNAL OR EXTERNAL SURFACES OF HEAT-EXCHANGE OR HEAT-TRANSFER CONDUITS, e.g. WATER TUBES OR BOILERS
    • F28G7/00Cleaning by vibration or pressure waves

Definitions

  • the invention belongs to the technical field of boiler auxiliary machines, in particular to a boiler ash eliminator based on composite flow.
  • the sonic ash remover is used for ash removal. Because the sonic ash removal does not cause other adverse effects such as squibs and heat pipe damage, and has superior performance such as ash removal and no dead angle, it is getting more and more in the power industry. Certainly, but there are also deficiencies in the parameters of the soot blowing wave that cannot be adjusted according to the real-time operating conditions of the equipment, so that the ash removal effect cannot fully meet the requirements.
  • an upgraded version of the adjustable frequency high-acoustic sonic soot blower has been used.
  • the working principle is that the airflow is filtered to reach the sounding component, and the control system controls the reciprocating vibration of the sounding component through the electrical signal to Real-time changes to generate the required power parameters such as power and frequency of the ash-removed sound waves.
  • the control system controls the reciprocating vibration of the sounding component through the electrical signal to Real-time changes to generate the required power parameters such as power and frequency of the ash-removed sound waves.
  • it plays an active role in adjusting the operating parameters of the ash-sounding wave
  • the force of ash is insufficient. If the sound pressure level of sound waves is continuously increased, the force of ash removal will be improved. However, if the sound pressure level is too high, if it is above 160d
  • the Chinese patent application No. 201020532965.2 filed by the present applicant discloses a "high-acoustic and strong acoustic wave ash remover", which comprises an adjustable frequency high sound intensity pneumatic generator, an index ⁇ ⁇ ⁇ ⁇ ⁇ , a support, an auxiliary air source System and sonic soot blower control system; the bracket is arranged in the furnace, the index ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇
  • One end is connected with the index ⁇ ⁇ ⁇ ⁇ , , the other end is connected with the auxiliary air source system; the adjustable frequency high sound intensity pneumatic generator and the auxiliary air source system are connected with the acoustic ash eliminator control system.
  • the Chinese patent application No. 201420754785.7 filed by the present applicant discloses "a high sound intensity sonic soot blower for a rotary flue gas heat exchanger", the sonic soot blower comprising a set of adjustable frequency high sound intensity sound wave sounders, a group a soot blowing index horn, a control device and a gas source, a single adjustable frequency high sound intensity sound generator is connected with a corresponding soot blowing index horn, and a set of soot blowing index horns are respectively arranged around the rotary flue gas heat exchanger;
  • the adjustable frequency high sound intensity sound generators are connected with the control device; a group of soot blowing index horns are connected with the air source.
  • the object of the present invention is to provide a boiler ash eliminator based on composite flow in order to overcome the deficiencies of the prior art.
  • the invention has the advantages of combining the adjustable frequency sound stream and the air jet and implementing the intelligent control of the sound jet, not only for clearing Furnace or flue gas heat exchanger ash scale and the like have good effects, and have the advantages of reliable structure, process manufacturing and ease of assembly and use.
  • a composite flow-based boiler ash remover includes an adjustable frequency sound flow generator and a fixed bracket, and is characterized in that it further comprises a compressed air source, a three-ventilation source electronically controlled valve, an air jet generator, and a sound.
  • the compressed air source is connected to an inlet end of the three ventilation source electric control valve, and the outlet ends of the three ventilation source electric control valves are respectively
  • the adjustable frequency sound flow generator is connected to the air source inlet end of the air jet generator, and the sound flow outlet end of the adjustable frequency sound flow generator is connected to the inlet end of the sound jet composite propagation tube, and the sound jet composite propagation tube
  • the outlet end and the jet outlet end of the air jet generator are disposed opposite to the external heat exchange component through the fixing bracket;
  • the sound flow propagation port area of the outlet end of the sound jet composite propagating cylinder covers the jet outlet end of the air jet generator Jet jet injection port area;
  • the sound jet flow intelligent control system is respectively connected with the electric control device of the three ventilation source electric control valve and the gray scale measuring and controlling sensor, and the gray scale measuring and controlling transmission Distribution is provided on the exterior of the heat exchange member.
  • the working principle of the invention is that the slag ash deposition in the boiler furnace is formed by the accumulation and sintering of dust particles in the fuel combustion process, and the flow of the flue gas in the furnace cannot be balancedly affected by the different distribution positions of the heat exchange components in the furnace.
  • the sound particles of dust particles generated during the combustion of the fuel are all taken out of the furnace, causing some dust particles to accumulate on the outer wall of the heat exchange component to form ash, coke or slag.
  • the invention can not only convert the energy of the high-pressure airflow into the sound wave energy of the large displacement and high-speed vibration, but also can emit the energy of the sound wave.
  • the energy of the air jets synergistically acts to remove the gray scale on the heat exchange component; wherein: in the synergistic effect of the sound jet energy, the omnidirectional propagation of the sound wave energy can make the flue gas flow point in the furnace high speed and periodic
  • the turbulence can make the gray scale particles on the furnace wall and the heat exchange component decoagulate from the heated surface, and is in a suspended state, which is beneficial to be taken out of the furnace by the smoke flow; the directional propagation of the energy of the air jet can be exchanged
  • the bonding force of the gray scale on the hot component is weakened, the gap is increased, the growth speed is slowed down, and the volume of the slag block is reduced, so as to facilitate self-shedding and being carried out of the furnace by the flue gas stream.
  • the adjustable frequency sound generator and the air jet generator provided by the invention play a synergistic integration, complementary advantages, and strong ash removal, and are beneficial to the accumulation of the acoustic jet energy to cope with the accumulation of dust formed on the outer wall of the heat exchange component. , coking or slagging, greatly enhance the effect of removing ash, thereby greatly improving the thermal efficiency of boiler operation.
  • the gray scale measuring and controlling sensor provided by the invention can obtain the gray scale working condition parameter in the boiler operation, calculate the optimal matching parameter of the gray removing sound wave and the air jet in real time, and adjust the frequency matching sound through the acoustic jet intelligent control system.
  • the sound jet energy generated by the flow generator and the air jet generator is automatically regulated, and the self-adaptive ability is strong, and the effect of removing the gray scale is good.
  • the sound jet composite transfer cylinder proposed by the invention is arranged in the furnace, is installed perpendicularly to the surface of the heat exchange component, and the bell mouth covers the surface of the heat exchange component, and the upper side or the lower side or both sides of the heat exchange component can be installed.
  • the use of air preheater, GGH heat exchange parts is a self-characteristic of regular rotation, so that the composite wave of the acoustic jet regularly and uniformly acts on the heat exchange parts, ensuring that the effect of removing the ash scale is more direct. And obvious.
  • the composite ash-based boiler ash eliminator according to the present invention still uses the composite wave energy of the acoustic jet, and no other solid matter is added, so there is no pollution, no corrosion, no damage to the outer wall of the heat exchange component, and the structure is simple. It is easy to operate and maintain, has good effect and is suitable for a wide range of applications.
  • Figure 1 is a schematic view showing the structure of an air jet generator proposed by the present invention.
  • FIG. 2 includes FIG. 2-1 and FIG. 2-2 are schematic structural diagrams of an adjustable frequency sound flow generator, wherein: FIG. 2-1 is a schematic structural diagram of an adjustable frequency single tone single frequency sound flow generator; FIG. 2-2 is a schematic diagram; Schematic diagram of the adjustable frequency dual-tone dual-frequency sound generator.
  • FIG. 3 is a view showing an outlet end of an exponentially elongated acoustic jet composite propagating cylinder according to Embodiment 1 of the present invention, and a nozzle at a jet outlet end of the air jet generator is disposed opposite to a heat exchange component of the air preheater through a fixing bracket; Schematic diagram of the layout structure.
  • Embodiment 4 is a schematic structural view of a gray scale measuring and controlling sensor according to Embodiment 1 of the present invention, which is disposed at a corresponding portion of a heat exchange component of an air preheater, to satisfy an orientation of the east, west, and north.
  • FIG. 5 is a schematic block diagram of a signal link of an acoustic jet intelligent control system according to the present invention.
  • the invention relates to a composite flow-based boiler ash remover, comprising an adjustable frequency sound flow generator (3), a fixed bracket (6), and a compressed air source (1) and a three-ventilation source electronically controlled valve (2) ), air jet generator (4), acoustic jet composite propagating cylinder (5), acoustic jet intelligent control system (7) and gray scale measuring and controlling sensor (8); wherein: said compressed air source (1) and three ventilation
  • the inlet end of the source electric control valve (2) is connected, and the outlet end of the three-ventilation source electric control valve (2) is respectively connected with the air source of the adjustable-frequency sound generator (3) and the air jet generator (4) End connection
  • the sound flow outlet end of the adjustable frequency sound generator (3) is connected to the inlet end of the sound jet composite propagation tube (5), the outlet end of the sound jet composite propagation tube (5) and the air
  • the jet outlet end of the jet generator (4) is disposed opposite to the external heat exchange component (9) through a fixing bracket (6); the sound flow propagation port area at the outlet
  • the air jet generator (4) is an adjustable air nozzle, and the outlet end thereof is a conical air jet nozzle with an air outlet, the number of the air outlet holes is 4-12, and the aperture of the air outlet hole is ⁇ 3-6 mm;
  • the air source generator (4) has a gas source working pressure of 0.1-0.5 MPa.
  • the adjustable frequency sound generator (3) is an adjustable frequency single-tone single-frequency sound generator comprising at least an airflow inlet, a single moving coil assembly, a single magnet and an airflow outlet or at least an airflow inlet, a double moving coil assembly, An adjustable frequency dual-tone dual-frequency sound generator consisting of a dual magnet and an air outlet.
  • the sound stream emitted by the adjustable frequency sound generator (3) and the jet stream emitted by the air jet generator (4) A sound jet composite wave that is concentrated in the same direction.
  • the sound jet composite propagating cylinder (5) has an exponentially elongated shape, and the bell mouth at the outlet end is rectangular, trapezoidal, circular or lotus.
  • the signal link of the acoustic jet intelligent control system (7) includes at least a gray scale measuring and controlling sensor (8), a gray scale measuring and controlling signal CPU processor, an acoustic jet balance controller, and a three-ventilating source electronically controlled valve (2)
  • the signal is composed and connected in sequence; wherein: the gray scale measuring and controlling sensor (8) collects the parameter signal of the gray scale removal amount of the external heat exchange component (9) in real time, first sends the gray scale measurement and control signal to the CPU processor, and then sends the sound.
  • the jet balance controller modulates the feedback signal of the matching control of the composite flow, and then the feedback signal controls the adjustable frequency sound generator (3) and the air jet generator respectively through the three ventilation source electronically controlled valves (2) 4)
  • the flow rate of the compressed air source (1) to coordinately control the matching control of the composite flow according to the detection of the gray scale removal amount parameter signal of the external heat exchange component (9).
  • the gray scale measuring and controlling sensor (8) is a thermocouple type heat exchange component that simulates gray scale.
  • the fixing brackets (6) are respectively disposed on the lower side and the upper side of the outer heat exchange component (9); the jet flow composite propagating cylinder (5) and the jet outlet end of the air jet generator (4) are fixed by The brackets (6) are respectively disposed opposite to the upper and lower sides of the outer heat exchange member (9).
  • the utility model relates to a boiler ash eliminator based on composite flow, which is widely applicable to heat exchange components of a boiler system such as an air preheater, a GGH and a tail flue, and the following is applied to an air preheater as an example to further illustrate the present invention. Specific embodiments of the invention.
  • Embodiment 1 takes a composite flow-based boiler ash remover proposed by the present invention on an air preheater in a 300 MW thermal power unit as an example.
  • the design of the first embodiment is identical to the above technical solution of the present invention.
  • the specific implementation manner is as follows:
  • an air jet generator (4) is provided in Embodiment 1, and the air jet generator (4) is an adjustable air nozzle, and an outlet end thereof is a conical air jet nozzle with an air outlet.
  • the number of vent holes is six, the diameter of the vent hole is ⁇ 3 mm, and the air source working pressure of the air jet generator (4) is 0.2 MPa.
  • the embodiment 1 is provided with an adjustable frequency sound generator (3), and the adjustable frequency sound generator (3) comprises at least an airflow inlet, a single moving coil assembly, a single magnet, and an airflow outlet.
  • the sonic energy of the single-tone single-frequency sound generator and the airflow energy of the air jet generator (4) are fully applicable to the normal bookkeeping and ash removal of the air preheater in the thermal power unit.
  • two acoustic jet composite propagating cylinders (5) having an exponentially elongated shape are provided, and the bell mouths at the outlet end thereof are respectively mounted on the outer heat exchange parts through the fixing brackets (6) (9).
  • four nozzles at the jet outlet end of the air jet generator (4) are provided on the fixing bracket (6), and the nozzle mounting position at the jet outlet end and the heat exchange part of the air preheater (9) The opposite direction is covered by the sound flow propagation area at the exit end of the acoustic jet composite propagating cylinder (5).
  • gray scale measuring and controlling sensors (8) are disposed, and the distribution is arranged in the corresponding part of the heat exchange component (9) of the air preheater, so as to satisfy the orientation setting of the east, west, north and south.
  • the gray scale measuring and controlling sensor (8) is a thermocouple type heat exchange component for simulating gray scale, and the real-time heat exchange working condition parameter is transmitted to the acoustic jet intelligent control system (7) through the gray scale measuring and controlling sensor (8).
  • the acoustic flow intelligent control system (7) is disposed in Embodiment 1, and the signal link of the acoustic flow intelligent control system (7) includes at least a gray scale measurement and control sensor (8) and a gray scale measurement and control signal CPU.
  • the sound jet balance controller and the signal source of the three-ventilation source electronically controlled valve (2) are connected in sequence, wherein: the gray scale measuring and controlling sensor (8) collects the heat exchange component (9) of the air preheater in real time.
  • the parameter signal of the gray scale removal amount is firstly sent by the CPU processor of the gray scale measurement and control signal, and the post-send acoustic stream balance controller is modulated into the feedback signal of the matching control of the composite stream, and then the feedback signal is passed through the three ventilation source.
  • the control valve (2) respectively controls the flow rate of the compressed air source (1) of the adjustable frequency sound generator (3) and the air jet generator (4) to realize the heat exchange component (9) according to the air preheater
  • the detection of the grayscale removal parameter signal cooperates to coordinate the matching control of the composite flow.
  • Embodiment 2 is an example of a composite flow-based boiler ash remover proposed by the present invention on an air preheater in a 600 MW thermal power unit.
  • the design of the second embodiment is identical to the above technical solution of the present invention.
  • the specific implementation manner is as follows:
  • an air jet generator (4) is disposed in Embodiment 2, and the air jet generator (4) is an adjustable air nozzle, and an outlet end thereof is a conical air jet nozzle with an air outlet.
  • the number of vent holes is eight, the diameter of the vent hole is ⁇ 4 mm, and the air source working pressure of the air jet generator (4) is 0.3 MPa.
  • the embodiment 2 is provided with an adjustable frequency sound generator (3), and the adjustable frequency sound generator (3) comprises at least an airflow inlet, a double moving coil assembly, a double magnet and an airflow outlet.
  • the dual-tone dual-frequency sound generator is a low-frequency sound wave formed by reflecting high-frequency sound waves generated by compressed air flowing through a high-pitched high-frequency whistle and a bass low-frequency sound wave generating cover. Line coupling is superimposed to produce a two-tone dual-band frequency sound wave whose sound flow energy greatly exceeds that of a single-tone single-frequency sound stream generator.
  • the sound flow energy of the dual-tone dual-frequency sound generator and the airflow energy of the air jet generator (4) are fully applicable to the abnormal thick ash removal of the air preheater in the thermal power unit.
  • two acoustic jet composite propagating cylinders (5) having an exponentially elongated shape are disposed, and the bell mouths at the outlet end thereof are respectively mounted on the outer heat exchange parts through the fixing brackets (6) (9).
  • the fixing brackets (6) On the upper side and the lower side, at the same time, six nozzles at the jet outlet end of the air jet generator (4) are provided on the fixing bracket (6), and the nozzle mounting position at the jet outlet end and the heat exchange part of the air preheater (9) The opposite direction is covered by the sound flow propagation area at the exit end of the acoustic jet composite propagating cylinder (5).
  • gray scale measuring and controlling sensors (8) are disposed, and the distribution is arranged in the corresponding part of the heat exchange component (9) of the air preheater, so as to satisfy the orientation setting of the east, west, north and south.
  • the gray scale measuring and controlling sensor (8) is a thermocouple type heat exchange component for simulating gray scale, and the real-time heat exchange working condition parameter is transmitted to the acoustic jet intelligent control system (7) through the gray scale measuring and controlling sensor (8).
  • an acoustic jet intelligent control system (7) is provided, and the signal link of the acoustic jet intelligent control system (7) includes at least a gray scale measurement and control sensor (8) and a gray scale measurement and control signal CPU.
  • the sound jet balance controller and the signal source of the three-ventilation source electronically controlled valve (2) are connected in sequence, wherein: the gray scale measuring and controlling sensor (8) collects the heat exchange component (9) of the air preheater in real time.
  • the parameter signal of the gray scale removal amount is firstly sent by the CPU processor of the gray scale measurement and control signal, and the post-send acoustic stream balance controller is modulated into the feedback signal of the matching control of the composite stream, and then the feedback signal is passed through the three ventilation source.
  • the control valve (2) respectively controls the flow rate of the compressed air source (1) of the adjustable frequency sound generator (3) and the air jet generator (4) to realize the heat exchange component (9) according to the air preheater
  • the detection of the grayscale removal parameter signal cooperates to coordinate the matching control of the composite flow.
  • Embodiment 3 is an example of a composite flow-based boiler ash remover proposed by the present invention on an air preheater in a 1000 MW thermal power unit.
  • the design of the embodiment 3 is exactly the same as the above technical solution of the present invention.
  • the specific embodiment is:
  • an air jet generator (4) is provided in Embodiment 3, and the air jet generator (4) is an adjustable air nozzle, and an outlet end thereof is a conical air jet nozzle with an air outlet,
  • the number of vent holes is 12, the diameter of the vent hole is ⁇ 5 mm, and the air source working pressure of the air jet generator (4) is 0.4 MPa.
  • an adjustable frequency sound generator (3) is provided, and the adjustable frequency sound is generated.
  • the generator (3) includes at least an adjustable frequency dual-tone dual-frequency sound generator composed of a gas flow inlet, a double moving coil assembly, a dual magnet, and an air flow outlet.
  • the dual-tone dual-frequency sound generator couples superimposed high-frequency sound waves generated by compressed air flowing through a high-pitched high-frequency whistle and a low-frequency sound wave formed by reflection of a low-frequency sound wave generating cover to generate a double-tone double Band-like frequency sound waves, the sound current energy greatly exceeds the single-tone single-frequency sound stream generator.
  • the sound flow energy of the dual-tone dual-frequency sound generator and the airflow energy of the air jet generator (4) are fully applicable to the abnormal thick ash removal of the air preheater in the thermal power unit.
  • two acoustic jet composite propagating cylinders (5) having an exponentially elongated shape are disposed, and the bell mouths at the outlet end thereof are respectively mounted on the outer heat exchange parts through the fixing brackets (6) (9).
  • 10 nozzles at the jet outlet end of the air jet generator (4) are provided on the fixing bracket (6), and the nozzle mounting position at the jet outlet end and the heat exchange part of the air preheater (9) The opposite direction is covered by the sound flow propagation area at the exit end of the acoustic jet composite propagating cylinder (5).
  • gray scale measuring and controlling sensors (8) are disposed, and the distribution is arranged in the corresponding part of the heat exchange component (9) of the air preheater, so as to satisfy the orientation setting of the east, west, north and south.
  • the gray scale measuring and controlling sensor (8) is a thermocouple type heat exchange component for simulating gray scale, and the real-time heat exchange working condition parameter is transmitted to the acoustic jet intelligent control system (7) through the gray scale measuring and controlling sensor (8).
  • an acoustic jet intelligent control system (7) is provided, and the signal link of the acoustic jet intelligent control system (7) includes at least a gray scale measuring and controlling sensor (8) and a gray scale measuring and controlling signal CPU.
  • the sound jet balance controller and the signal source of the three-ventilation source electronically controlled valve (2) are connected in sequence, wherein: the gray scale measuring and controlling sensor (8) collects the heat exchange component (9) of the air preheater in real time.
  • the parameter signal of the gray scale removal amount is firstly sent by the CPU processor of the gray scale measurement and control signal, and the post-send acoustic stream balance controller is modulated into the feedback signal of the matching control of the composite stream, and then the feedback signal is passed through the three ventilation source.
  • the control valve (2) respectively controls the flow rate of the compressed air source (1) of the adjustable frequency sound generator (3) and the air jet generator (4) to realize the heat exchange component (9) according to the air preheater
  • the detection of the grayscale removal parameter signal cooperates to coordinate the matching control of the composite flow.
  • the invention has been verified by trial and error and has achieved satisfactory trial results.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Air Supply (AREA)
  • Incineration Of Waste (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)

Abstract

一种基于复合流的锅炉除灰器,包括可调频声流发生器(3)、固定支架(6)、压缩空气源(1)、三通气源电控阀(2)、空气射流发生器(4)、声射流复合传播筒(5)、声射流智能控制系统(7)和灰垢测控传感器(8)。压缩空气源(1)与三通气源电控阀(2)的进口端连接,三通气源电控阀(2)的出口端分别与可调频声流发生器(3)和空气射流发生器(4)的气源进口端连接,可调频声流发生器(3)的声流出口端与声射流复合传播筒(5)的进口端连接,声射流复合传播筒(5)的出口端和空气射流发生器(4)的射流出口端均通过固定支架(6)与外部的换热部件(9)相向设置。声射流复合传播筒(5)的出口端的声流传播口面积覆盖空气射流发生器(4)的射流出口端的射流喷射口面积,声射流智能控制系统(7)分别与三通气源电控阀(2)的电控装置和灰垢测控传感器(8)连接,灰垢测控传感器(8)设置在外部的换热部件(9)上。该锅炉除灰器具有将可调频声流和空气射流复合并实施声射流智能控制的优点,对清除炉膛或烟气换热器灰垢等均具有很好的效果。

Description

一种基于复合流的锅炉除灰器 技术领域
本发明属于锅炉辅机技术领域,特别是涉及一种基于复合流的锅炉除灰器。
背景技术
在锅炉等运行设备中应用声波除灰器除灰,因声波除灰不会产生其它诸如爆管、热管损伤等不利的影响,且具有除灰没有死角等优越性能,越来越得到电力行业的肯定,但也存在吹灰声波参数不能根据设备实时运行工况进行调控而导致除灰效果不能完全满足要求的不足。
为了克服现有技术的不足,目前已有升级版的可调频高声强声波吹灰器,其工作原理是气流经过滤后到达发声组件,由控制系统通过电信号来控制发声组件往复振动,以实时改变产生所需的除灰声波的功率、频率等工况参数。虽然在除灰声波的工况参数可调方面发挥了积极的作用,但是还存在仅用单一的高声强声波来去除锅炉热管的积灰、结焦和结渣等,因声波柔软而使其除灰的作用力显得不足,如果继续提高声波的声压级,其除灰的作用力也会有所提高,但声压级过高如达到160dB以上时,将会对设备的运行工况的安全性产生不利的影响。
本申请人提出的中国专利申请201020532965.2公开了“一种高声强声波除灰器”,该声波吹灰器包括可调频高声强气动发生器,指数蜿延声波导筒、支架、辅助气源系统和声波吹灰器控制系统;支架设置在炉膛内,指数蜿延声波导筒安装在支架上且指数蜿延声波导筒的喇叭口覆盖在换热元件表面;可调频高声强气动发生器的一端与指数蜿延声波导筒连接,另一端与辅助气源系统连接;可调频高声强气动发生器与辅助气源系统均与声波除灰器控制系统连接。虽然它具有声功率大,声波的除灰传播方式好,有利于提高除灰效果,但还存在明显不足:一是无法定量分析吹灰参数和实时调控;二是无法使运行状态达到最优和优化吹灰效果。
本申请人提出的中国专利申请201420754785.7公开了“一种回转式烟气换热器的高声强声波吹灰器”,该声波吹灰器包括一组可调频高声强声波发声器、一组吹灰指数号筒、控制装置和气源,单个可调频高声强声波发声器与对应的吹灰指数号筒连接,一组吹灰指数号筒分别设置在回转式烟气换热器的周围;一组 可调频高声强声波发声器均与控制装置连接;一组吹灰指数号筒均与气源连接。虽然它可根据回转式烟气换热器的不同运行工况,实时自动调整,自适应强,有利于提高除灰效果,但还存在明显不足:一是因声波柔软而使其除灰的作用力不强;二是因声波除灰的手段单一,除灰解堵功能较弱,不能完全满足除灰效果的要求。
综上所述,如何克服现有技术的不足已成为锅炉辅机技术领域中亟待解决的重点难题之一。
发明内容
本发明的目的是为克服现有技术存在的不足而提供一种基于复合流的锅炉除灰器,本发明具有将可调频声流和空气射流复合并实施声射流智能控制的优点,不仅对清除炉膛或烟气换热器灰垢等均具有很好的效果,而且具有结构可靠、工艺制造和装配使用简便的优点。
根据本发明提出的一种基于复合流的锅炉除灰器,包括可调频声流发生器、固定支架,其特征在于还包括压缩空气源、三通气源电控阀、空气射流发生器、声射流复合传播筒、声射流智能控制系统和灰垢测控传感器;其中:所述压缩空气源与三通气源电控阀的进口端连接,所述三通气源电控阀的出口端分别与可调频声流发生器和空气射流发生器的气源进口端连接,所述可调频声流发生器的声流出口端与声射流复合传播筒的进口端连接,所述声射流复合传播筒的出口端和所述空气射流发生器的射流出口端均通过固定支架与外部的换热部件相向设置;所述声射流复合传播筒的出口端的声流传播口面积覆盖空气射流发生器的射流出口端的射流喷射口面积;所述声射流智能控制系统分别与三通气源电控阀的电控装置和灰垢测控传感器连接,所述灰垢测控传感器分布设置在外部的换热部件上。
本发明的工作原理是:锅炉炉膛结渣积灰是燃料燃烧过程中的粉尘颗粒积聚烧结而形成的,因受炉膛内换热部件分布位置不同的影响,炉膛内烟气流动并不能均衡地把燃料燃烧过程中产生的粉尘颗粒声波全部带出炉膛,造成部分粉尘颗粒积淀在换热部件的外壁形成积灰、结焦或结渣等。本发明不仅能够将高压气流的能量转换成大位移、高速度振动的声波流能量,而且能够在发射声波流能量的 同时汇聚空气射流的能量协同作用于清除换热部件上的灰垢;其中:在声射流能量的协同作用中,声波流能量的全方位传播可使炉膛内的烟气流质点高速而周期性的震荡,可使炉壁和换热部件上的灰垢微粒脱离受热面的凝聚,处于悬浮状态,有利于被烟气流带出炉外;空气射流的能量的定向性传播可使已经於积在换热部件上的灰垢结合力变弱、间隙增大、生长速度变慢、渣块体积减小,以利于自行脱落,被烟气流带出炉外。
本发明与现有技术相比其显著优点在于:
第一,本发明设置的可调频声流发生器和空气射流发生器发挥了协同整合、优势互补、强力除灰的作用,有利于声射流能量集聚对付积淀在换热部件外壁上形成的积灰、结焦或结渣等,大大地增强了清除灰垢的效果,从而大幅度地提高了锅炉运行的热效率。
第二,本发明设置的灰垢测控传感器可得到锅炉运行中的灰垢工况参数,实时计算出除灰声波与空气射流两者的最优匹配参数,通过声射流智能控制系统对可调频声流发生器和空气射流发生器发出的声射流能量实施自动调控,自适应能力强,清除灰垢的效果佳。
第三,本发明提出的声射流复合传送筒设置在炉膛内,与换热部件表面成垂直安装,喇叭口覆盖在换热部件表面,可安装换热部件的上侧或下侧或两侧,利用空气预热器、GGH的换热部件是在有规律的旋转这一自身特点,使声射流的复合波有规律地直接均匀地作用在换热部件上,确保清除灰垢的效果更加效果直接和明显。
第四,本发明提出的基于复合流的锅炉除灰器仍然是利用声射流的复合波能量,没有外加其它固体物质,因此无污染、无腐蚀,对换热部件外壁无损害,且结构简单,运行及维护方便,使用效果好,适用范围广泛。
附图说明
图1为本发明提出的空气射流发生器的结构示意图。
图2包括图2-1和图2-2均为可调频声流发生器的结构示意图,其中:图2-1为可调频单音单频声流发生器的结构示意图;图2-2为可调频双音双频声流发生器的结构示意图。
图3为本发明实施例1中所述的指数蜿延形状的声射流复合传播筒的出口端、空气射流发生器的射流出口端的喷嘴通过固定支架与空气预热器的换热部件相向设置的布局结构示意图。
图4为本发明实施例1中所述的灰垢测控传感器以满足东西南北中的方位,设置在空气预热器的换热部件的相应部位的结构示意图。
图5为本发明提出的声射流智能控制系统的信号链路方框示意图。
具体实施方式
下面结合附图和实施例对本发明的具体实施方式作进一步的详细描述。
本发明提出的一种基于复合流的锅炉除灰器,包括可调频声流发生器(3)、固定支架(6),还包括压缩空气源(1)、三通气源电控阀(2)、空气射流发生器(4)、声射流复合传播筒(5)、声射流智能控制系统(7)和灰垢测控传感器(8);其中:所述压缩空气源(1)与三通气源电控阀(2)的进口端连接,所述三通气源电控阀(2)的出口端分别与可调频声流发生器(3)和空气射流发生器(4)的气源进口端连接,所述可调频声流发生器(3)的声流出口端与声射流复合传播筒(5)的进口端连接,所述声射流复合传播筒(5)的出口端和所述空气射流发生器(4)的射流出口端均通过固定支架(6)与外部的换热部件(9)相向设置;所述声射流复合传播筒(5)的出口端的声流传播口面积覆盖空气射流发生器(4)的射流出口端的射流喷射口面积;所述声射流智能控制系统(7)分别与三通气源电控阀(2)的电控装置和灰垢测控传感器(8)连接,所述灰垢测控传感器(8)分布设置在外部的换热部件(9)上。
本发明提出的一种基于复合流的锅炉除灰器的进一步优选方案是:
所述空气射流发生器(4)为可调式空气喷管,其出口端为带出气孔的圆锥形空气射流喷嘴,其出气孔的数量为4-12个、出气孔的孔径为Φ3-6mm;所述空气射流发生器(4)的气源工作压力为0.1-0.5MPa。
所述可调频声流发生器(3)为至少包括气流入口、单动圈组件、单磁体和气流出口组成的可调频单音单频声流发生器或者至少包括气流入口、双动圈组件、双磁体和气流出口组成的可调频双音双频声流发生器。
所述可调频声流发生器(3)发出的声流和空气射流发生器(4)发出的射流汇 聚为同方向的声射流复合波。
所述声射流复合传播筒(5)为指数蜿延形状,其出口端的喇叭口为矩形、梯形、圆形或莲花形。
所述声射流智能控制系统(7)的信号链路包括至少由灰垢测控传感器(8)、灰垢测控信号CPU处理器、声射流平衡控制器以及三通气源电控阀(2)的信号组成并依次信号连接;其中:由灰垢测控传感器(8)实时采集外部的换热部件(9)的灰垢清除量的参数信号,先送灰垢测控信号CPU处理器处理,后送声射流平衡控制器调制为所述复合流的匹配控制的反馈信号,再由该反馈信号通过三通气源电控阀(2)分别控制可调频声流发生器(3)和空气射流发生器(4)的压缩空气源(1)的流量大小,以实现根据外部的换热部件(9)的灰垢清除量参数信号的检测来协同调控所述复合流的匹配控制。
所述灰垢测控传感器(8)为热电偶式的模拟灰垢的换热部件。
所述固定支架(6)分别设置在外部的换热部件(9)的下侧和上侧;所述声射流复合传播筒(5)和空气射流发生器(4)的射流出口端均通过固定支架(6)分别相向设置在外部的换热部件(9)的上侧和下侧。
本发明提出的一种基于复合流的锅炉除灰器,广泛适用于空气预热器、GGH、尾部烟道等锅炉系统的换热部件,下面以应用于空气预热器为例来进一步说明本发明的具体实施方式。
实施例1,以300MW火电机组中空气预热器上使用本发明提出的一种基于复合流的锅炉除灰器为例。实施例1的设计方案与本发明上述的技术方案完全相同,具体实施方式为:
如图1所示,实施例1中设置有空气射流发生器(4),该空气射流发生器(4)为可调式空气喷管,其出口端为带出气孔的圆锥形空气射流喷嘴,其出气孔的数量为6个、出气孔的孔径为Φ3mm;所述空气射流发生器(4)的气源工作压力为0.2MPa。
如图2-1所示,实施例1中设置有可调频声流发生器(3),该可调频声流发生器(3)至少包括气流入口、单动圈组件、单磁体和气流出口组成的可调频单音单频声流发生器。这种单音单频声流发生器的声波能量协同空气射流发生器(4)的气流能量完全适用于火电机组中空气预热器的常态簿积除灰。
如图3所示,实施例1中设置有两个指数蜿延形状的声射流复合传播筒(5),其出口端的喇叭口分别通过固定支架(6)相向安装在外部的换热部件(9)的上侧和下侧,同时在固定支架(6)上还设置有空气射流发生器(4)的射流出口端的喷嘴4个,其射流出口端的喷嘴安装位置与空气预热器的换热部件(9)相向设置、被声射流复合传播筒(5)的出口端的声流传播面积所覆盖。
如图4所示,实施例1中设置有5个灰垢测控传感器(8),分布设置在空气预热器的换热部件(9)的相应部位,以满足东西南北中的方位设置为佳;所述灰垢测控传感器(8)为热电偶式的模拟灰垢的换热部件,通过灰垢测控传感器(8)向声射流智能控制系统(7)传送实时换热工况参数。
如图5所示,实施例1中设置有声射流智能控制系统(7),该声射流智能控制系统(7)的信号链路包括至少由灰垢测控传感器(8)、灰垢测控信号CPU处理器、声射流平衡控制器以及三通气源电控阀(2)的信号组成并依次信号连接;其中:由灰垢测控传感器(8)实时采集空气预热器的换热部件(9)的灰垢清除量的参数信号,先送灰垢测控信号CPU处理器处理,后送声射流平衡控制器调制为所述复合流的匹配控制的反馈信号,再由该反馈信号通过三通气源电控阀(2)分别控制可调频声流发生器(3)和空气射流发生器(4)的压缩空气源(1)的流量大小,以实现根据空气预热器的换热部件(9)的灰垢清除量参数信号的检测来协同调控所述复合流的匹配控制。
实施例2,以600MW火电机组中空气预热器上使用本发明提出的一种基于复合流的锅炉除灰器为例。实施例2的设计方案与本发明上述的技术方案完全相同,具体实施方式为:
如图1所示,实施例2中设置有空气射流发生器(4),该空气射流发生器(4)为可调式空气喷管,其出口端为带出气孔的圆锥形空气射流喷嘴,其出气孔的数量为8个、出气孔的孔径为Φ4mm;所述空气射流发生器(4)的气源工作压力为0.3MPa。
如图2-2所示,实施例2中设置有可调频声流发生器(3),该可调频声流发生器(3)至少包括气流入口、双动圈组件、双磁体和气流出口组成的可调频双音双频声流发生器。这种双音双频声流发生器是将压缩空气流经一个高音高频发声哨产生的高音高频声波和一个低音低频声波发生罩反射形成的低音低频声波进 行耦合叠加,以产生双音双频带状频率声波,其声流能量大大超过单音单频声流发生器。这种双音双频声流发生器的声流能量协同空气射流发生器(4)的气流能量完全适用于火电机组中空气预热器的非常态厚积除灰。
如图3所示,实施例2中设置有两个指数蜿延形状的声射流复合传播筒(5),其出口端的喇叭口分别通过固定支架(6)相向安装在外部的换热部件(9)的上侧和下侧,同时在固定支架(6)上还设置有空气射流发生器(4)的射流出口端的喷嘴6个,其射流出口端的喷嘴安装位置与空气预热器的换热部件(9)相向设置、被声射流复合传播筒(5)的出口端的声流传播面积所覆盖。
如图4所示,实施例2中设置有5个灰垢测控传感器(8),分布设置在空气预热器的换热部件(9)的相应部位,以满足东西南北中的方位设置为佳;所述灰垢测控传感器(8)为热电偶式的模拟灰垢的换热部件,通过灰垢测控传感器(8)向声射流智能控制系统(7)传送实时换热工况参数。
如图5所示,实施例2中设置有声射流智能控制系统(7),该声射流智能控制系统(7)的信号链路包括至少由灰垢测控传感器(8)、灰垢测控信号CPU处理器、声射流平衡控制器以及三通气源电控阀(2)的信号组成并依次信号连接;其中:由灰垢测控传感器(8)实时采集空气预热器的换热部件(9)的灰垢清除量的参数信号,先送灰垢测控信号CPU处理器处理,后送声射流平衡控制器调制为所述复合流的匹配控制的反馈信号,再由该反馈信号通过三通气源电控阀(2)分别控制可调频声流发生器(3)和空气射流发生器(4)的压缩空气源(1)的流量大小,以实现根据空气预热器的换热部件(9)的灰垢清除量参数信号的检测来协同调控所述复合流的匹配控制。
实施例3,以1000MW火电机组中空气预热器上使用本发明提出的一种基于复合流的锅炉除灰器为例。实施例3的设计方案与本发明上述的技术方案完全相同,具体实施方式为:
如图1所示,实施例3中设置有空气射流发生器(4),该空气射流发生器(4)为可调式空气喷管,其出口端为带出气孔的圆锥形空气射流喷嘴,其出气孔的数量为12个、出气孔的孔径为Φ5mm;所述空气射流发生器(4)的气源工作压力为0.4MPa。
如图2-2所示,实施例3中设置有可调频声流发生器(3),该可调频声流发 生器(3)至少包括气流入口、双动圈组件、双磁体和气流出口组成的可调频双音双频声流发生器。这种双音双频声流发生器是将压缩空气流经一个高音高频发声哨产生的高音高频声波和一个低音低频声波发生罩反射形成的低音低频声波进行耦合叠加,以产生双音双频带状频率声波,声流能量大大超过单音单频声流发生器。这种双音双频声流发生器的声流能量协同空气射流发生器(4)的气流能量完全适用于火电机组中空气预热器的非常态厚积除灰。
如图3所示,实施例3中设置有两个指数蜿延形状的声射流复合传播筒(5),其出口端的喇叭口分别通过固定支架(6)相向安装在外部的换热部件(9)的上侧和下侧,同时在固定支架(6)上还设置有空气射流发生器(4)的射流出口端的喷嘴10个,其射流出口端的喷嘴安装位置与空气预热器的换热部件(9)相向设置、被声射流复合传播筒(5)的出口端的声流传播面积所覆盖。
如图4所示,实施例3中设置有5个灰垢测控传感器(8),分布设置在空气预热器的换热部件(9)的相应部位,以满足东西南北中的方位设置为佳;所述灰垢测控传感器(8)为热电偶式的模拟灰垢的换热部件,通过灰垢测控传感器(8)向声射流智能控制系统(7)传送实时换热工况参数。
如图5所示,实施例3中设置有声射流智能控制系统(7),该声射流智能控制系统(7)的信号链路包括至少由灰垢测控传感器(8)、灰垢测控信号CPU处理器、声射流平衡控制器以及三通气源电控阀(2)的信号组成并依次信号连接;其中:由灰垢测控传感器(8)实时采集空气预热器的换热部件(9)的灰垢清除量的参数信号,先送灰垢测控信号CPU处理器处理,后送声射流平衡控制器调制为所述复合流的匹配控制的反馈信号,再由该反馈信号通过三通气源电控阀(2)分别控制可调频声流发生器(3)和空气射流发生器(4)的压缩空气源(1)的流量大小,以实现根据空气预热器的换热部件(9)的灰垢清除量参数信号的检测来协同调控所述复合流的匹配控制。
本发明的具体实施方式中凡未涉到的说明属于本领域的公知技术,可参考公知技术加以实施。
本发明经反复试验验证,取得了满意的试用效果。
以上具体实施方式及实施例是对本发明提出的一种基于复合流的锅炉除灰器技术思想的具体支持,不能以此限定本发明的保护范围,凡是按照本发明提出的技术思想,在本技术方案基础上所做的任何等同变化或等效的改动,均仍 属于本发明技术方案保护的范围。

Claims (8)

  1. 一种基于复合流的锅炉除灰器,包括可调频声流发生器(3)、固定支架(6),其特征在于还包括压缩空气源(1)、三通气源电控阀(2)、空气射流发生器(4)、声射流复合传播筒(5)、声射流智能控制系统(7)和灰垢测控传感器(8);其中:所述压缩空气源(1)与三通气源电控阀(2)的进口端连接,所述三通气源电控阀(2)的出口端分别与可调频声流发生器(3)和空气射流发生器(4)的气源进口端连接,所述可调频声流发生器(3)的声流出口端与声射流复合传播筒(5)的进口端连接,所述声射流复合传播筒(5)的出口端和所述空气射流发生器(4)的射流出口端均通过固定支架(6)与外部的换热部件(9)相向设置;所述声射流复合传播筒(5)的出口端的声流传播口面积覆盖空气射流发生器(4)的射流出口端的射流喷射口面积;所述声射流智能控制系统(7)分别与三通气源电控阀(2)的电控装置和灰垢测控传感器(8)连接,所述灰垢测控传感器(8)分布设置在外部的换热部件(9)上。
  2. 根据权利要求1所述的一种基于复合流的锅炉除灰器,其特征在于所述空气射流发生器(4)为可调式空气喷管,其出口端为带出气孔的圆锥形空气射流喷嘴,其出气孔的数量为4-12个、出气孔的孔径为Φ3-6mm;所述空气射流发生器(4)的气源工作压力为0.1-0.5MPa。
  3. 根据权利要求1所述的一种基于复合流的锅炉除灰器,其特征在于所述可调频声流发生器(3)为至少包括气流入口、单动圈组件、单磁体和气流出口组成的可调频单音单频声流发生器或者至少包括气流入口、双动圈组件、双磁体和气流出口组成的可调频双音双频声流发生器。
  4. 根据权利要求1或3所述的一种基于复合流的锅炉除灰器,其特征在于所述可调频声流发生器(3)发出的声流和空气射流发生器(4)发出的射流汇聚为相同方向的声射流复合流。
  5. 根据权利要求1所述的一种基于复合流的锅炉除灰器,其特征在于所述声射流复合传播筒(5)为指数蜿延形状,其出口端的喇叭口为矩形、梯形、圆形或莲花形。
  6. 根据权利要求1所述的一种基于复合流的锅炉除灰器,其特征在于所述声射流智能控制系统(7)的信号链路包括至少由灰垢测控传感器(8)、灰垢测控信号CPU处理器、声射流平衡控制器以及三通气源电控阀(2)的信号组成并依次信号连接;其中:由灰垢测控传感器(8)实时采集外部的换热部件(9)的灰垢清除量的参数信号,先送灰垢测控信号CPU处理器处理,后送声射流平衡控制器调制为所述复合流的匹配控制的反馈信号,再由该反馈信号通过三通气源电控阀(2)分别控制可调频声流发生器(3)和空气射流发生器(4)的压缩空气源(1)的流量大小,以实现根据外部的换热部件(9)的灰垢清除量参数信号的检测来协同调控所述复合流的匹配控制。
  7. 根据权利要求1或6所述的一种基于复合流的锅炉除灰器,其特征在于所述灰垢测控传 感器(8)为热电偶式的模拟灰垢的换热部件。
  8. 根据权利要求1所述的一种基于复合流的锅炉除灰器,其特征在于所述固定支架(6)分别设置在外部的换热部件(9)的下侧和上侧;所述声射流复合传播筒(5)和空气射流发生器(4)的射流出口端均通过固定支架(6)分别相向设置在外部的换热部件(9)的上侧和下侧。
PCT/CN2015/093813 2015-07-08 2015-11-04 一种基于复合流的锅炉除灰器 WO2017004914A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/735,957 US10551063B2 (en) 2015-07-08 2015-11-04 Boiler ash remover based on combined flow
BR112017028475-8A BR112017028475B1 (pt) 2015-07-08 2015-11-04 Removedor de cinza de caldeira com base em fluxo combinado
RU2017144874A RU2685598C1 (ru) 2015-07-08 2015-11-04 Устройство для удаления золы из котла на основе объединенного потока

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510398497.1 2015-07-08
CN201510398497.1A CN105020725B (zh) 2015-07-08 2015-07-08 一种基于复合流的锅炉除灰器

Publications (1)

Publication Number Publication Date
WO2017004914A1 true WO2017004914A1 (zh) 2017-01-12

Family

ID=54410894

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/093813 WO2017004914A1 (zh) 2015-07-08 2015-11-04 一种基于复合流的锅炉除灰器

Country Status (5)

Country Link
US (1) US10551063B2 (zh)
CN (1) CN105020725B (zh)
BR (1) BR112017028475B1 (zh)
RU (1) RU2685598C1 (zh)
WO (1) WO2017004914A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107324430A (zh) * 2017-08-01 2017-11-07 南京常荣声学股份有限公司 一种基于多效声波作用实现废水零排放的方法与装置
CN111780145B (zh) * 2020-07-17 2022-04-05 北京中电永昌科技有限公司 内置分布式全立体连续微流高能声波高效节能清灰系统
CN114399946A (zh) * 2022-01-24 2022-04-26 天津商业大学 一种焚烧炉受热面结焦过程的冷态模拟方法与装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1979001019A1 (en) * 1978-05-02 1979-11-29 Kockums Automation A method in sonic cleaning
US20020070073A1 (en) * 2000-01-14 2002-06-13 Teruaki Matsumoto Acoustic soot blower, and method for operating the same
CN2513070Y (zh) * 2002-01-08 2002-09-25 北京东方昊宇科技有限公司 一种可变频工业吹灰器
CN2844697Y (zh) * 2005-07-05 2006-12-06 刘殿东 一种双音双频声波吹灰器
CN201652386U (zh) * 2010-05-13 2010-11-24 科晋尔(北京)环保科技有限公司 一种声波吹灰系统
JP2012226010A (ja) * 2011-04-15 2012-11-15 Babcock Hitachi Kk 音波発生装置およびそれを使用した音波式付着物除去・抑制装置、音波式スートブロワ装置、熱交換装置、排ガス処理装置、産業機器ならびに音波発生装置の運用方法、熱交換装置の運用方法
CN102954479A (zh) * 2012-11-20 2013-03-06 乌鲁木齐奥科技术开发有限公司 水泥余热锅炉专用声波清灰器
CN204201911U (zh) * 2014-08-14 2015-03-11 浙江润洁环境科技有限公司 一种超声波吹灰系统

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5344601B2 (zh) * 1972-09-25 1978-11-30
JP2000107692A (ja) * 1998-10-05 2000-04-18 Tohoku Electric Power Co Inc 音波発生装置および燃焼炉の灰除去装置
FI118756B (fi) * 2004-04-02 2008-03-14 Nirafon Oy Menetelmä kaasupainepulssien tuottamiseksi hiukkaskasautumien puhdistuslaitteistossa ja hiukkaskasautumien puhdistuslaitteisto
CA2651711C (en) * 2006-05-10 2015-11-24 Force Technology Method, device and system for enhancing combustion of solid objects
US8015932B2 (en) * 2007-09-24 2011-09-13 General Electric Company Method and apparatus for operating a fuel flexible furnace to reduce pollutants in emissions
RU2353858C1 (ru) * 2007-10-03 2009-04-27 Олег Савельевич Кочетов Золоуловитель
CN201764516U (zh) 2010-09-17 2011-03-16 张荣初 一种高声强声波除灰器
US20140011146A1 (en) * 2011-12-12 2014-01-09 Robert James Monson Acoustic ash removal
CN102913930A (zh) * 2012-10-30 2013-02-06 陕西启源科技发展有限责任公司 一种组合吹灰系统
US9927231B2 (en) * 2014-07-25 2018-03-27 Integrated Test & Measurement (ITM), LLC System and methods for detecting, monitoring, and removing deposits on boiler heat exchanger surfaces using vibrational analysis
CN204301098U (zh) * 2014-12-05 2015-04-29 中电投河南电力有限公司技术信息中心 一种回转式烟气换热器的高声强声波吹灰器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1979001019A1 (en) * 1978-05-02 1979-11-29 Kockums Automation A method in sonic cleaning
US20020070073A1 (en) * 2000-01-14 2002-06-13 Teruaki Matsumoto Acoustic soot blower, and method for operating the same
CN2513070Y (zh) * 2002-01-08 2002-09-25 北京东方昊宇科技有限公司 一种可变频工业吹灰器
CN2844697Y (zh) * 2005-07-05 2006-12-06 刘殿东 一种双音双频声波吹灰器
CN201652386U (zh) * 2010-05-13 2010-11-24 科晋尔(北京)环保科技有限公司 一种声波吹灰系统
JP2012226010A (ja) * 2011-04-15 2012-11-15 Babcock Hitachi Kk 音波発生装置およびそれを使用した音波式付着物除去・抑制装置、音波式スートブロワ装置、熱交換装置、排ガス処理装置、産業機器ならびに音波発生装置の運用方法、熱交換装置の運用方法
CN102954479A (zh) * 2012-11-20 2013-03-06 乌鲁木齐奥科技术开发有限公司 水泥余热锅炉专用声波清灰器
CN204201911U (zh) * 2014-08-14 2015-03-11 浙江润洁环境科技有限公司 一种超声波吹灰系统

Also Published As

Publication number Publication date
RU2685598C1 (ru) 2019-04-22
BR112017028475B1 (pt) 2022-02-08
CN105020725B (zh) 2016-06-08
BR112017028475A2 (zh) 2018-08-28
CN105020725A (zh) 2015-11-04
US20180187886A1 (en) 2018-07-05
US10551063B2 (en) 2020-02-04

Similar Documents

Publication Publication Date Title
WO2017004914A1 (zh) 一种基于复合流的锅炉除灰器
CN206434968U (zh) 一种带清灰装置的布袋除尘器
CN2786450Y (zh) 耦合体声波吹灰器
CN105276593B (zh) 一种气声复合场均布的大空间除垢装置及其除垢方法
CN205481049U (zh) 一种动静环式低频大功率声波吹灰器
CN215982628U (zh) 声激波耦合吹灰系统
CN103234210B (zh) 一种清灰装置
CN207514941U (zh) 一种气流切割飞碟式声波吹灰装置
CN106196110A (zh) 一种可调频声波发生装置
CN208526120U (zh) 一种声波辅助无机陶瓷膜再生的装置及结构
CN208186392U (zh) 回转式空预器用声波清灰装置
CN102162646B (zh) 一种用于声波吹灰器的导流板
CN218721586U (zh) 一种有效防止堵灰的换热装置
CN113399371A (zh) 一种管网脉冲吹灰器及具有该管网吹灰器的scr脱硝反应器
CN203336616U (zh) 一种空气脉冲激波吹灰系统
CN206320768U (zh) 一种多路声波吹灰系统
CN2055066U (zh) 次声波和低频声波发生器
CN113623671B (zh) 声激波耦合吹灰系统
CN219433864U (zh) 火力发电系统及其换热装置
CN220152763U (zh) 一种改善空气预热器堵塞的吹灰装置
CN205669813U (zh) 利用低频声波场清除锅炉积灰的声波吹灰器
CN213630470U (zh) 一种矩阵式声波清灰装置
CN221301345U (zh) 一种双声源的声波清灰装置
CN217178546U (zh) 一种锅炉受热面声能除灰器
CN203980308U (zh) 一种安全式可靠炉膛吹灰器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15897570

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2017144874

Country of ref document: RU

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017028475

Country of ref document: BR

122 Ep: pct application non-entry in european phase

Ref document number: 15897570

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112017028475

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20171228