WO2017004911A1 - 应用于农业照明的无线智能控制方法及系统 - Google Patents

应用于农业照明的无线智能控制方法及系统 Download PDF

Info

Publication number
WO2017004911A1
WO2017004911A1 PCT/CN2015/092504 CN2015092504W WO2017004911A1 WO 2017004911 A1 WO2017004911 A1 WO 2017004911A1 CN 2015092504 W CN2015092504 W CN 2015092504W WO 2017004911 A1 WO2017004911 A1 WO 2017004911A1
Authority
WO
WIPO (PCT)
Prior art keywords
control
module
information
parameter
signal
Prior art date
Application number
PCT/CN2015/092504
Other languages
English (en)
French (fr)
Inventor
曹小兵
陆群
Original Assignee
深圳市裕富照明有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市裕富照明有限公司 filed Critical 深圳市裕富照明有限公司
Publication of WO2017004911A1 publication Critical patent/WO2017004911A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/40Network security protocols
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/40Control techniques providing energy savings, e.g. smart controller or presence detection

Definitions

  • the invention relates to the field of control systems, and in particular to a wireless intelligent control method and system applied to agricultural lighting.
  • luminaires Due to its high efficiency, energy saving and reliability, luminaires have gradually been recognized by the market and widely used in various fields.
  • the biggest feature and advantage of the luminaire is intelligent control. Although there are many traditional point-to-point or single control methods on the market, and most of the systems are controlled by a large number of wiring, it is impossible to realize the plant growth environment without changing the traditional wiring. The control changes, the use efficiency is reduced, the control operation lacks flexibility, and the multi-function control and management of illumination cannot be realized.
  • a wireless intelligent control method applied to agricultural lighting the method being applied to a control receiving end in a wireless intelligent control system for agricultural lighting, the method comprising the following steps:
  • the light environment parameters are illumination information, dimming information, color grading information, and scene setting control information.
  • the receiving the light environment parameter update instruction, and the parsing the update instruction into the control signal specifically includes:
  • the update dimming information, the toning information, and the scene setting control information parameter command are decoded and processed into corresponding illumination switch control signals, illumination color control signals, illumination brightness control signals, and temperature or humidity control signal outputs.
  • the transmitting the control signal to the luminaire self-organizing network formed by the ZigBee protocol, and controlling the luminaire to update the optical environment parameter specifically includes:
  • each network node in the composed luminaire network transmits the control signal to the luminaire;
  • the brightness control signal controls an amount of current flowing through the luminaire of each of the network nodes; and the temperature or humidity parameter is controlled according to the scene control signal.
  • the wireless intelligent control system applied to agricultural lighting further includes a control transmitting end;
  • the collecting the updated optical environment parameters and outputting specifically includes:
  • the amplified power signal is stored and processed for transmission to the control transmitter as a digital transmission signal.
  • the method is applied to a control sender in a wireless intelligent control system for agricultural lighting, the method comprising:
  • a wireless intelligent control system for agricultural lighting comprising: a control sender and a control receiver;
  • the control sending end specifically includes: a communication control module, configured to receive a light environment parameter update instruction, and parse the update command into a control signal;
  • a luminaire execution module configured to transmit the control signal to a luminaire self-organizing network formed by a ZigBee protocol, and control the luminaire to update the optical environment parameter;
  • An information sensing module configured to collect and output an updated optical environment parameter
  • the communication control module and the luminaire execution module are connected by a bus control, and the information sensing module and the luminaire execution module are connected by a bus control;
  • the light environment parameters are illumination information, dimming information, color grading information, and scene setting control information.
  • the communication control module includes:
  • a wireless transmission module configured to receive, by using a wireless network, updated lighting information, dimming information, color grading information, and scene setting control information parameter commands;
  • the MCU control module is configured to encode the updated illumination information, the dimming information, the toning information, and the scene setting control information parameter instruction into a corresponding illumination switch control signal, an illumination color control signal, a illumination brightness control signal, and a temperature or Humidity control signal output;
  • the wireless transmission module is connected to the MCU control module, and is configured to transmit the update instruction received by the wireless transmission module to the MCU control module for analysis.
  • the luminaire execution module comprises:
  • a ZigBee control module connected to the MCU control module, and receiving the control signal output by the MCU control module, configured to transmit the control signal by each network node in the luminaire network formed by the ZigBee wireless control protocol To the luminaire;
  • the illumination control switch module is connected to the MCU control module, and receives the illumination switch control signal output by the MCU control module, and is configured to control a switch working state of each of the network node lamps according to the illumination switch control signal;
  • a constant voltage constant current driving module connected to the MCU control module, and receiving the illuminating color control signal output by the MCU control module, configured to control red and blue of each network node luminaire according to the illuminating color control signal And combining, the green light combination ratio, and controlling the amount of current flowing through the lamps of each of the network nodes according to the illumination brightness control signal;
  • the scene setting module is connected to the MCU control module, and receives the scene control signal output by the MCU control module, and is configured to control the temperature or humidity parameter according to the scene control signal.
  • the information sensing module includes:
  • a signal acquisition module configured to collect the updated optical environment parameter, and convert the updated optical environment parameter into a power quantity signal for amplification
  • a signal processing module configured to store the amplified power signal, and process the digital transmission signal to the control sending end;
  • the signal acquisition module and the signal processing module are respectively connected to the constant voltage constant current driving module, and the constant voltage constant current driving module provides a stable current and voltage.
  • control sender includes:
  • a parameter sending module configured to send the optical environment parameter update instruction
  • a parameter receiving module configured to receive the digital transmission signal and parse the updated optical environment parameter
  • a parameter detecting module configured to compare the updated optical environment parameter with a parameter preset by the control sending end, if the parameters are the same, stop sending the optical environment parameter update instruction, and if the parameter is different, the optical environment parameter is updated. An instruction is sent to the control receiver.
  • the above wireless intelligent control method and system based on agricultural lighting transmits a control signal sent by the control transmitting end to the MCU control module through the wireless transmission module, and then the MCU control module analyzes the control signal and sends it to the luminaire through the constant voltage constant current driving module. .
  • the constant voltage constant current driving module controls the illuminating color and brightness of the luminaire.
  • the ZigBee control module also transmits the control signal sent by the MCU control module to the self-organizing network of the luminaire, thereby enabling intelligent remote control of the luminaire.
  • the system does not need to be re-routed, and the remote intelligent control of the luminaire can be realized through the mobile terminal and the ZigBee control module, so that the user can know the working state of the luminaire and control it.
  • Embodiment 1 is a flow chart of Embodiment 1 of a wireless intelligent control method applied to agricultural lighting according to the present invention
  • Embodiment 2 is a flowchart of Embodiment 2 of a wireless intelligent control method applied to agricultural lighting according to the present invention
  • Embodiment 3 is a flowchart of Embodiment 3 of a wireless intelligent control method applied to agricultural lighting according to the present invention
  • Embodiment 4 is a flowchart of Embodiment 4 of a wireless intelligent control method applied to agricultural lighting according to the present invention
  • FIG. 5 is a flowchart of Embodiment 5 of a wireless intelligent control method applied to agricultural lighting according to the present invention
  • FIG. 6 is a schematic structural diagram of Embodiment 1 of a control receiving end according to the present invention.
  • FIG. 7 is a schematic structural diagram of Embodiment 2 of a control receiving end according to the present invention.
  • Embodiment 8 is a schematic structural diagram of Embodiment 3 of a control receiving end according to the present invention.
  • FIG. 9 is a schematic structural diagram of Embodiment 4 of a control receiving end according to the present invention.
  • FIG. 10 is a schematic structural diagram of a wireless intelligent control system applied to agricultural lighting according to the present invention.
  • Embodiment 1 is a flowchart of Embodiment 1 of a wireless intelligent control method applied to agricultural lighting according to the present invention. As shown in FIG. 1, the method of the present embodiment is applied to a control receiving end of a wireless intelligent control system applied to agricultural lighting. Methods include:
  • Step S110 receiving a light environment parameter update instruction, and parsing the update command into a control signal.
  • the wireless intelligent control system applied to agricultural lighting regulates the growth and flowering cycle of plants to meet the market demand for mass production.
  • the light environment update instruction is sent by the control sender, which mainly involves adjusting the composition of the light quality required for each stage of cultivation plant species and variety growth, temperature, humidity, carbon dioxide concentration, nutrient solution and scene in the illumination environment.
  • the above parameters are updated to control the optical environment parameters set by the sender.
  • the update command is respectively parsed into the light switch state, the composition of the light quality, and the temperature or humidity control signal output through the MCU control module.
  • Step S130 transmitting the control signal to the self-organizing network of the luminaire formed by the ZigBee protocol, and controlling the luminaire to update the optical environment parameter.
  • the ZigBee protocol can form a network autonomously.
  • Each node of the self-organizing ZigBee network only communicates with its neighboring nodes, and the data packets sent from one node are multi-hop transmitted to the destination node according to the configuration of the relevant protocol.
  • the control signal is transmitted to the luminaire by each network node, so that the optical environment parameters formed by the luminaires on the ad hoc network are consistent with the control signals.
  • step S150 the updated optical environment parameters are collected and output.
  • the adjusted and updated optical environment parameters are collected and stored by the sensing technology, and the collected data is processed to control a signal that can be recognized by the transmitting end, and sent to the control transmitting end through the wireless network.
  • Embodiment 2 is a flowchart of Embodiment 2 of a wireless intelligent control method applied to agricultural lighting according to the present invention. As shown in FIG. 2, the method of this embodiment is applied to a control receiving end of a wireless intelligent control system applied to agricultural lighting. Methods include:
  • Step S210 Receive update dimming information, color grading information, and scene setting control information parameter commands through the wireless network.
  • the dimming information, the toning information, and the scene setting control information may be a composition of light quality required for each stage of growing plant species and varieties, temperature, humidity, carbon dioxide concentration, and nutrient solution in the light environment.
  • Scene information may be a composition of light quality required for each stage of growing plant species and varieties, temperature, humidity, carbon dioxide concentration, and nutrient solution in the light environment.
  • Step S230 the updated dimming information, the toning information, and the scene setting control information parameter command decoding code are processed into corresponding illumination switch control signals, illumination color control signals, illumination brightness control signals, and temperature or humidity control signal outputs.
  • the MCU control module decodes the control information such as the dimming information, the toning information, and the scene setting into a light switch control signal, an illumination color control signal, a light emission brightness control signal, and a temperature or humidity control signal output.
  • Embodiment 3 is a flowchart of Embodiment 3 of a wireless intelligent control method applied to agricultural lighting according to the present invention. As shown in FIG. 3, the method of this embodiment is applied to a control receiving end in a wireless intelligent control system for agricultural lighting, and the method includes :
  • Step S310 each network node in the luminaire network formed by the ZigBee wireless control protocol transmits a control signal to the luminaire.
  • the transmitted control signal may be a light switch control signal, an illumination color control signal, a light emission brightness control signal, and a temperature or humidity control signal.
  • the frequency hopping algorithm is a unique performance of ZigBee. It is realized by the self-organizing network between the lamps. WiFi has only the relay function, which enables long-distance transmission or wall penetration. Utilize ZigBee router (ZigBee Router, ZR) unique frequency hopping mode, after data interaction, is passed to the router with relay function WiFi information, using Wi-Fi repeater to achieve long distance (to achieve indoor coverage 50-100 meters, outdoor 200 -300 meters long-distance transmission) transmission, effectively solve the signal attenuation caused by poor signal penetration or long-distance signal attenuation. Thereby the Wi-Fi signal is enhanced. At the same time, the illumination information, the dimming information, the gradation information and the control information of the luminaire can be transmitted back to the control transmitting end through the ad hoc network.
  • the ZigBee control protocol may use an unbalanced antenna to connect the unbalanced transformer to complete data transmission and reception.
  • the ZigBee control protocol may employ an internal bias resistor that is used to provide an operating current to the crystal.
  • Step S330 controlling the switch working state of each network node light fixture according to the light switch control signal.
  • Step S350 controlling the ratio of red, blue and green light combined illumination of each network node luminaire according to the illuminating color control signal.
  • Step S370 controlling the amount of current flowing through the luminaire of each network node according to the illuminating brightness control signal.
  • Step S390 controlling signal, temperature or humidity parameters according to the scene.
  • Embodiment 4 is a flowchart of Embodiment 4 of a wireless intelligent control method applied to agricultural lighting according to the present invention. As shown in FIG. 4, the method of the present embodiment is applied to a control receiving end of a wireless intelligent control system applied to agricultural lighting. Methods include:
  • Step S410 collecting the updated optical environment parameter by using a sensor, and converting the updated optical environment parameter into a power quantity signal for amplification.
  • the senor converts the non-electricity signal into a power signal, and since the output electrical signal is very weak, the small signal needs to be amplified by the amplifier and then output.
  • Step S430 storing the amplified power signal, and processing is sent to the control transmitting end as a digital transmission signal.
  • an MCU Microcontroller
  • Unit Micro Control Unit
  • ASIC Application Specific Integrated Circuit
  • Embodiment 5 is a flowchart of Embodiment 5 of a wireless intelligent control method applied to agricultural lighting according to the present invention. As shown in FIG. 5, the method of this embodiment is applied to a control transmitting end in a wireless intelligent control system for agricultural lighting, and the method includes :
  • Step S510 sending a light environment parameter update instruction.
  • the light source parameter update instruction adapted to plant growth is transmitted by the control transmitting end through Wi-Fi.
  • Step S530 receiving the digital transmission signal and parsing it into the updated optical environment parameter.
  • control transmitting end receives the digital transmission signal sent by the information sensing module of the control receiving end, and parses the digital transmission signal into the optical environment parameter that has been updated at the control receiving end.
  • Step S550 comparing the updated optical environment parameter with a parameter preset by the control sending end
  • step S570 if the parameters are the same, the transmission of the optical environment parameter update command is stopped.
  • Step S590 if the parameters are different, send the optical environment parameter update command to the control receiving end.
  • control sender can be embedded based on Android or IOS.
  • the application module of the system can be applied to mobile phones, tablet computers, notebook computers, iPads, and the like.
  • the Wi-Fi communication and the ZigBee networking are used to transmit a light environment update command by the control sender, and the light environment is changed to the control receiver, and the growth and flowering cycles of the plant are adjusted to improve the agricultural illumination application. Meet the needs of mass production and other requirements.
  • the foregoing program may be stored in a computer readable storage medium, and when executed, the program includes The steps of the foregoing method embodiments, wherein the foregoing storage medium comprises: a medium that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.
  • FIG. 6 is a schematic structural diagram of Embodiment 1 of the control receiving end of the present invention.
  • the control receiving end 100 of the present embodiment may include: a communication control module 110, a luminaire execution module 130, and an information sensing module 150, and communication control.
  • the module 110 is connected to the luminaire execution module 130 via the bus 120
  • the information sensing module 150 is connected to the luminaire execution module 130 via the bus 120.
  • the communication control module 110 receives the optical environment parameter update command and parses the update command into a control signal.
  • the wireless intelligent control system applied to agricultural lighting regulates the growth and flowering cycle of plants to meet the market demand for mass production.
  • the light environment update instruction is sent by the control sender, which mainly involves adjusting the composition of the light quality required for each stage of cultivation plant species and variety growth, temperature, humidity, carbon dioxide concentration, nutrient solution and scene in the illumination environment.
  • the above parameters are updated to control the optical environment parameters set by the sender.
  • the MCU control module 113 parses the update command into a light switch state, a light quality component, and a temperature or humidity control signal output and a scene control signal transmission lamp execution module 130 for transmitting the control signal to the ZigBee.
  • the luminaire formed by the protocol is self-organizing the network and controls the luminaire to update the optical environment parameters.
  • the luminaire execution module 130 transmits the control signal to the luminaire self-organizing network formed by the ZigBee protocol, and controls the luminaire to update the optical environment parameters.
  • the ZigBee protocol can form a network autonomously.
  • Each node of the self-organizing ZigBee network only communicates with its neighboring nodes, and the data packets sent from one node are multi-hop transmitted to the destination node according to the configuration of the relevant protocol.
  • the control signal is transmitted to the luminaire by each network node, so that the optical environment parameters formed by the luminaires on the ad hoc network are consistent with the control signals.
  • the information sensing module 150 collects and updates the updated optical environment parameters.
  • the adjusted and updated optical environment parameters are collected and stored by the sensing technology, and the collected data is processed to control the signal recognizable by the transmitting end, and sent to the control transmitting end 200 through the wireless network.
  • FIG. 7 is a schematic structural diagram of Embodiment 2 of the control receiving end of the present invention.
  • the communication control module 110 of the present embodiment may include: a wireless transmission module 111, an MCU control module 113, and a storage module 114, and a wireless transmission module 111. Connected to the MCU control module 113, the update command received by the wireless transmission module 111 is transmitted to the MCU control module 113 for analysis.
  • the wireless transmission module 111 receives updated illumination information, dimming information, color grading information, and scene setting control information parameter commands through the wireless network.
  • the MCU control module 113 encodes the updated illumination information, the dimming information, the toning information, and the scene setting control information parameter instruction into corresponding illumination switch control signals, illumination color control signals, illumination brightness control signals, and temperature or humidity control. Signal output.
  • the MCU control module 113 is also coupled to the luminaire execution module 130 to transmit control signals to the luminaire execution module 130 to perform control signals.
  • the storage module 114 is connected to the MCU control module 113 for storing the buffer signal of the MCU control module 113.
  • FIG. 8 is a schematic structural diagram of Embodiment 3 of the control receiving end of the present invention.
  • the luminaire execution module 130 of the present embodiment may include: a ZigBee control module 131, a light control switch module 133, and a constant voltage constant current driving module 135.
  • the ZigBee control module 131 is connected to the MCU control module 113, receives the control signal output by the MCU control module 113, and transmits a control signal to the luminaire 138 through each network node in the luminaire network composed of the ZigBee wireless control protocol.
  • the ZigBee control module 131 may use an unbalanced antenna to connect the unbalanced transformer to complete data transmission and reception.
  • the ZigBee control module 131 can employ an internal bias resistor that is used to provide an operating current to the crystal.
  • the frequency hopping algorithm is a unique performance of ZigBee, which is realized by the self-organizing network between the lamps, and the WiFi has only the relay function, and realizes long-distance transmission or wall penetration.
  • the relay is used to realize long-distance transmission (to achieve 50-100 meters indoor coverage and 200-300 meters long outdoor transmission), which effectively solves the signal attenuation caused by poor signal penetration and long-distance signal attenuation. Thereby the Wi-Fi signal is enhanced.
  • the illumination information, the dimming information, the gradation information, and the control information of the luminaire 138 can be transmitted back to the control transmitting end 200 through the ad hoc network
  • the illumination control switch module 133 is connected to the MCU control module 113, receives the illumination switch control signal output by the MCU control module 113, and controls the switch operation state of each of the network node lamps according to the illumination switch control signal.
  • the constant voltage constant current driving module 135 is connected to the MCU control module 113, receives the illuminating color control signal output by the MCU control module 113, and controls the combined red, blue and green illuminating of each network node luminaire according to the illuminating color control signal. The ratio, meanwhile, controls the amount of current flowing through the luminaires of each of the network nodes in accordance with the illumination brightness control signal.
  • the constant voltage constant current driving module 135 may include: a constant voltage power driving module 134 and a constant current driving module 136.
  • the constant voltage power supply driving module 134 is connected to the mains, and the output terminal is connected to the constant current driving module 136.
  • the constant current driving module 136 is also connected to the MCU control module 113 and the luminaire 138, respectively.
  • the constant voltage power supply driving module 134 is configured to convert the commercial power into a DC voltage and output it to the constant current driving module 136.
  • the constant current driving module 136 is configured to control the color and brightness of the light emitted by the light fixture 138 according to the received signal.
  • the scene setting module 137 is connected to the MCU control module 113, receives the scene control signal output by the MCU control module 113, and controls the signal, temperature or humidity parameters according to the scene.
  • the LDO linear voltage regulator module 139 is connected to the constant current driving module 134 and the MCU control module 113, respectively.
  • the LDO linear voltage regulator module 139 is used to provide thermal overload and current limit protection for the MCU control module 113, the constant current drive module 136, and the ZigBee control module 131.
  • FIG. 9 is a schematic structural diagram of Embodiment 4 of the control receiving end of the present invention.
  • the information sensing module 150 of the present embodiment may include: a signal acquisition module 151 and a signal processing module 153, a signal acquisition module 151, and signal processing.
  • the modules 153 are respectively connected to the constant voltage constant current driving module 135, and the constant voltage constant current driving module 135 provides a stable current and voltage.
  • the signal acquisition module 151 collects the updated optical environment parameters, and converts the updated optical environment parameters into electrical energy signals for amplification.
  • the amplified power signal is stored by the signal processing module 153 and processed to be transmitted to the control transmitting terminal 200 as a digital transmission signal.
  • FIG. 10 is a schematic structural diagram of a wireless intelligent control system applied to agricultural lighting according to the present invention.
  • the control system 10 of the present embodiment may include: a control receiving end 100 and a control transmitting end 200.
  • the control receiving end 100 can adopt the structure shown in any of FIG. 6 to FIG. 9.
  • the control transmitting end 200 can include: a parameter sending module 210, a parameter receiving module 230, and a parameter detecting module 250.
  • the parameter sending module sends a light environment parameter update command to the control receiving end 100 through the wireless network.
  • the parameter receiving module 230 receives the digital transmission signal and parses it into the updated optical environment parameter.
  • the parameter detecting module 250 compares the updated optical environment parameter with the parameter preset by the control transmitting end, and if the parameters are the same, stops sending the optical environment parameter update command, and if the parameter is different, sends the optical environment parameter update command to the The receiving end 100 is controlled.
  • the updated optical environment parameter may be parameter information of the light switch state, the composition of the light quality, and the temperature or humidity after being adjusted by the control receiving end 100.
  • Control sender 200 can be embedded based on Android Or the application module of the IOS system can be applied to mobile phones, tablets, laptops, iPads, and the like.
  • the constant voltage power supply driving module 134 uses the chip L6562
  • the constant current driving module 136 uses the chip LM3414
  • the LDO linear voltage regulator module 139 uses the chip L120B. This supporting power supply design can make the lamp have high energy efficiency and high efficiency. reliability.
  • the Wi-Fi transmission uses the chip BCM43362, and the ZigBee control module 131 uses the chip CC2538.
  • the self-organizing network of the lamps can be set up (any group can be set, the lamp distance is 5 to 15 meters) or single lamp access and system networking, and real-time illumination information collection, transmission and timing switching, dimming, color grading, Intelligent remote centralized control such as multi-mode scenarios.
  • the SPD is developed in the mobile terminal based on the Android or IOS embedded software operating system.
  • the system includes BSP (Board Support) for WinCE system. Package) underlying software, APP (application) application layer software, MPEG (MP5) decoding software, MCU system logic processing software, bus (CAN, LIN, IE BUS) read / application management software, UI design, etc.
  • BSP Board Support
  • APP application
  • MPEG MP5 decoding software
  • MCU system logic processing software bus (CAN, LIN, IE BUS) read / application management software, UI design, etc.
  • the system software is embedded in front-end control devices such as user smartphones and tablet computers, and can control the receiving terminal through WiFi communication, which is easy to use, expands in functions, and is easy to upgrade.
  • the wireless intelligent control system applied to agricultural lighting works as follows:
  • the control signal from the wireless transmission module 111 is received by the MCU control module 113. Then, the illumination control switch module 133 is controlled to drive the working state of the luminaire on the ad hoc network node according to the control signal. And according to the control signal, the control signal signal is output to the lamp through the constant voltage constant current driving module 135, so that the constant voltage constant current driving module 135 controls the color and brightness of the light emitted by the lamp 138. That is, the user can control the working state of the luminaire 138 by controlling the transmitting end 200, and can also control the illuminating color and brightness of the luminaire 138 by controlling the transmitting end 200.
  • the ZigBee control module 131 is used to receive the control signal sent by the MCU control module 113 and transmit the control signal to the ad hoc network of the luminaire 138. While transmitting the control signal, the information sensing module 150 collects the illumination information of the luminaire, the transmission and timing switch, the dimming, the color grading, the multi-mode scene and other parameter information, and feeds back to the control transmitter 200, thereby realizing the intelligence of the luminaire. Remote centralized control.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

一种应用于农业照明的无线智能控制方法,所述方法应用于应用于农业照明的无线智能控制系统中的控制接收端,所述方法包括如下步骤:接收光环境参数更新指令,将所述更新指令解析为控制信号;将所述控制信号,传输至通过ZigBee协议形成的灯具自组网络,对灯具进行控制,用以更新光环境参数;采集所述更新后的光环境参数并输出;其中,光环境参数为光照信息、调光信息、调色信息及场景设定控制信息。在本实施例中,通过Wi-Fi通信和ZigBee组网,由控制发送端发送光环境更新指令,对控制接收端进行光环境改变,针对植物的生长和开花周期进行调控,改善农业光照应用,满足批量生产等需求。

Description

应用于农业照明的无线智能控制方法及系统
【技术领域】
本发明涉及控制系统领域,特别是涉及一种应用于农业照明的无线智能控制方法及系统。
【背景技术】
灯具由于其高效、节能、可靠等优势,已经逐渐被市场所认可,在各种领域得到广泛应用。灯具最大的特点和优势是智能控制,虽然目前市场上有很多为传统点对点或单一控制方式,并且大部分系统都通过大量布线进行控制,无法在不改变传统布线的情况下,实现对植物生长环境的控制改变,降低使用效率,管控操作缺乏灵活性,不能实现光照的多功能控制和管理。
【发明内容】
基于此,有必要针对实现远程控制光照的问题,提供一种应用于农业照明的无线智能控制方法及系统,提高了管控的便捷性。
一种应用于农业照明的无线智能控制方法,所述方法应用于农业照明的无线智能控制系统中的控制接收端,所述方法包括如下步骤:
接收光环境参数更新指令,将所述更新指令解析为控制信号;
将所述控制信号,传输至通过ZigBee协议形成的灯具自组网络,对灯具进行控制,用以更新光环境参数;
采集所述更新后的光环境参数并输出;
其中,光环境参数为光照信息、调光信息、调色信息及场景设定控制信息。
在其中一个实施例中,所述接收光环境参数更新指令,将所述更新指令解析为控制信号具体包括:
通过无线网络接收更新调光信息、调色信息及场景设定控制信息参数指令;
将所述更新调光信息、调色信息及场景设定控制信息参数指令解码处理为对应的光照开关控制信号、发光颜色控制信号、发光亮度控制信号及温度或湿度控制信号输出。
在其中一个实施例中,所述将所述控制信号,传输至通过ZigBee协议组成的灯具自组网络,对灯具进行控制,用以更新光环境参数具体包括:
通过所述ZigBee无线控制协议,组成的灯具网络中的每一网络节点传输所述控制信号至所述灯具;
根据所述光照开关控制信号控制所述每一网络节点灯具的开关工作状态;根据所述发光颜色控制信号控制所述每一网络节点灯具的红、蓝、绿光组合发光比例;根据所述发光亮度控制信号控制流经所述每一网络节点灯具的电流量;根据所述场景控制信号控制所述、温度或湿度参数。
在其中一个实施例中,所述应用于农业照明的无线智能控制系统还包括控制发送端;
所述采集更新后的光环境参数并输出具体包括:
通过传感器收集所述更新后的光环境参数,并将所述更新后的光环境参数变换成电量信号,进行放大;
存储所述放大的电量信号,并处理为数字传输信号发送至所述控制发送端。
在其中一个实施例中,所述方法应用于所述应用于农业照明的无线智能控制系统中的控制发送端,所述方法包括:
发送所述光环境参数更新指令;
接收所述数字传输信号,并解析为所述更新后的光环境参数;
将所述更新后的光环境参数与控制发送端预设定的参数对比;若参数相同,则停止发送所述光环境参数更新指令;若参数不同,将光环境参数更新指令发送至所述控制接收端。
一种应用于农业照明的无线智能控制系统,所述系统包括:控制发送端和控制接收端;
所述控制发送端具体包括:通讯控制模块,用于接收光环境参数更新指令,将所述更新指令解析为控制信号;
灯具执行模块,用于将所述控制信号,传输至通过ZigBee协议形成的灯具自组网络,对灯具进行控制,用以更新光环境参数;
信息传感模块,用于采集更新后的光环境参数并输出;
所述通讯控制模块与所述灯具执行模块通过总线控制连接,所述信息传感模块与所述灯具执行模块通过总线控制连接;
其中,光环境参数为光照信息、调光信息、调色信息及场景设定控制信息。
在其中一个实施例中,所述通讯控制模块包括:
无线传输模块,用于通过无线网络接收更新光照信息、调光信息、调色信息及场景设定控制信息参数指令;
MCU控制模块,用于将所述更新光照信息、调光信息、调色信息及场景设定控制信息参数指令编码处理为对应的光照开关控制信号、发光颜色控制信号、发光亮度控制信号及温度或湿度控制信号输出;
所述无线传输模块与所述MCU控制模块连接,用于将所述无线传输模块接收的所述更新指令传输至所述MCU控制模块进行解析。
在其中一个实施例中,所述灯具执行模块包括:
ZigBee控制模块,与所述MCU控制模块连接,接收由MCU控制模块输出的所述控制信号,用于通过所述ZigBee无线控制协议,组成的灯具网络中的每一网络节点,传输所述控制信号至所述灯具;
光照控制开关模块,与所述MCU控制模块连接,接收由MCU控制模块输出的所述光照开关控制信号,用于根据所述光照开关控制信号控制所述每一网络节点灯具的开关工作状态;
恒压恒流驱动模块,与所述MCU控制模块连接,接收由MCU控制模块输出的所述发光颜色控制信号,用于根据所述发光颜色控制信号控制所述每一网络节点灯具的红、蓝、绿光组合发光比例,根据所述发光亮度控制信号控制流经所述每一网络节点灯具的电流量;
场景设置模块,与所述MCU控制模块连接,接收由MCU控制模块输出的所述场景控制信号,用于根据所述场景控制信号控制所述温度或湿度参数。
在其中一个实施例中,所述信息传感模块包括:
信号采集模块,用于收集所述更新后的光环境参数,并将所述更新后的光环境参数变换成电量信号,进行放大;
信号处理模块,用于存储所述放大的电量信号,并处理为数字传输信号发送至所述控制发送端;
所述信号采集模块和所述信号处理模块分别与所述恒压恒流驱动模块连接,由所述所述恒压恒流驱动模块提供稳定的电流与电压。
在其中一个实施例中,所述控制发送端包括:
参数发送模块,用于发送所述光环境参数更新指令;
参数接收模块,用于接收所述数字传输信号,并解析为所述更新后的光环境参数;
参数检测模块,用于将所述更新后的光环境参数与控制发送端预设定的参数对比,若参数相同,则停止发送所述光环境参数更新指令,若参数不同,将光环境参数更新指令发送至所述控制接收端。
上述基于应用于农业照明的无线智能控制方法及系统通过无线传输模块将控制发送端发出的控制信号发送给MCU控制模块,再由MCU控制模块解析控制信号后通过恒压恒流驱动模块发送给灯具。从而恒压恒流驱动模块控制灯具的发光颜色及亮度。同时ZigBee控制模块还将MCU控制模块发送的控制信号传输给灯具的自组网络,从而能够实现灯具的智能远程管控。该系统无需重新布线,且通过移动终端及ZigBee控制模块能够实现灯具的远程智能管控,方便用户获知灯具的工作状态并进行管控。
【附图说明】
图1为本发明提供的应用于农业照明的无线智能控制方法实施例一的流程图;
图2为本发明提供的应用于农业照明的无线智能控制方法实施例二的流程图;
图3为本发明提供的应用于农业照明的无线智能控制方法实施例三的流程图;
图4为本发明提供的应用于农业照明的无线智能控制方法实施例四的流程图;
图5为本发明提供的应用于农业照明的无线智能控制方法实施例五的流程图;
图6为本发明提供的控制接收端实施例一的结构示意图;
图7为本发明提供的控制接收端实施例二的结构示意图;
图8为本发明提供的控制接收端实施例三的结构示意图;
图9为本发明提供的控制接收端实施例四的结构示意图;
图10为本发明提供的应用于农业照明的无线智能控制系统的结构示意图。
【具体实施方式】
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
除非上下文另有特定清楚的描述,本发明中的元件和组件,数量既可以单个的形式存在,也可以多个的形式存在,本发明并不对此进行限定。本发明中的步骤虽然用标号进行了排列,但并不用于限定步骤的先后次序,除非明确说明了步骤的次序或者某步骤的执行需要其他步骤作为基础,否则步骤的相对次序是可以调整的。可以理解,本文中所使用的术语“和/或”涉及且涵盖相关联的所列项目中的一者或一者以上的任何和所有可能的组合。
图1为本发明应用于农业照明的无线智能控制方法实施例一的流程图,如图1所示,本实施例的方法应用于应用于农业照明的无线智能控制系统中的控制接收端,该方法包括:
步骤S110,接收光环境参数更新指令,将更新指令解析为控制信号。
本实施例中,应用于农业照明的无线智能控制系统,对植物的生长和开花周期进行调控,满足批量生产的市场需求。其中,由控制发送端发送光环境更新指令,主要涉及对栽培植物种类和品种生长各阶段所需光质的组成,光照环境中的温度、湿度、二氧化碳浓度和营养液及场景等参数,进行调节,将上述参数更新为控制发送端设置的光环境参数。然后,通过MCU控制模块将更新指令分别解析为光照开关状态、光质的组成及温度或湿度控制信号输出。
步骤S130,将控制信号,传输至通过ZigBee协议形成的灯具自组网络,对灯具进行控制,用以更新光环境参数。
本实施例中,ZigBee协议可以自主组成网络,自组织ZigBee网络每个节点只和其邻近节点通信,从一个节点发出的数据包将根据相关协议的配置多跳传递到目的节点。控制信号由每一网络节点传递至灯具,使自组网络上的灯具形成的光环境参数与控制信号一致。
步骤S150,采集更新后的光环境参数并输出。
本实施例中,通过传感技术对已调节更新的光环境参数进行采集并存储,将采集数据处理为控制发送端能识别的信号,通过无线网络发送给控制发送端。
图2为本发明应用于农业照明的无线智能控制方法实施例二的流程图,如图2所示,本实施例的方法应用于应用于农业照明的无线智能控制系统中的控制接收端,该方法包括:
步骤S210,通过无线网络接收更新调光信息、调色信息及场景设定控制信息参数指令。
本实施例中,调光信息、调色信息及场景设定控制信息可以为对栽培植物种类和品种生长各阶段所需光质的组成,光照环境中的温度、湿度、二氧化碳浓度和营养液及场景信息。
步骤S230,将更新调光信息、调色信息及场景设定控制信息参数指令解码码处理为对应的光照开关控制信号、发光颜色控制信号、发光亮度控制信号及、温度或湿度控制信号输出。
本实施例中,通过MCU控制模块对调光信息、调色信息及场景设定等控制信息解码为光照开关控制信号、发光颜色控制信号、发光亮度控制信号及、温度或湿度控制信号输出。
图3为本发明应用于农业照明的无线智能控制方法实施例三的流程图,如图3所示,本实施例的方法应用于农业照明的无线智能控制系统中的控制接收端,该方法包括:
步骤S310,通过ZigBee无线控制协议,组成的灯具网络中的每一网络节点传输控制信号至灯具。
本实施例中,传输的控制信号可以为光照开关控制信号、发光颜色控制信号、发光亮度控制信号及、温度或湿度控制信号。跳频算法是ZigBee独特的性能,是灯具间自组网实现的,WiFi只有中继功能的,实现长距离的传输或穿墙用。利用ZigBee路由器(ZigBee Router,ZR)独特的跳频方式,进行数据交互后在传递给具备中继功能的WiFi信息的路由器,利用Wi-Fi的中继器来实现长距离(实现覆盖室内50-100米,室外200-300米的长距离传输)传输,有效解决信号穿墙性差而引起信号的衰减或长距离的信号衰减。从而使得Wi-Fi信号增强。同时,能够将灯具的光照信息、调光信息、调色信息及控制信息等通过自组网络回传给控制发送端。
进一步的,在一个实施例中,ZigBee控制协议可以采用非平衡天线连接非平衡变压器完成数据的发送与接收。
在另一实施例中,ZigBee控制协议可以采用内部偏置电阻,所述内部偏置电阻用于为晶振提供工作电流。
步骤S330,根据光照开关控制信号控制每一网络节点灯具的开关工作状态。
步骤S350,根据发光颜色控制信号控制每一网络节点灯具的红、蓝、绿光组合发光比例。
步骤S370,根据发光亮度控制信号控制流经每一网络节点灯具的电流量。
步骤S390,根据场景控制信号控制、温度或湿度参数。
图4为本发明应用于农业照明的无线智能控制方法实施例四的流程图,如图4所示,本实施例的方法应用于应用于农业照明的无线智能控制系统中的控制接收端,该方法包括:
步骤S410,通过传感器收集所述更新后的光环境参数,并将更新后的光环境参数变换成电量信号,进行放大。
本实施例中,传感器将非电量信号变换成电量信号,由于输出的电信号十分微弱,需要将小信号通过放大器进行放大,再输出。
步骤S430,存储放大的电量信号,并处理为数字传输信号发送至控制发送端。
本实施例中,可以采用MCU(Microcontroller Unit;微控制单元)或ASIC(Application Specific Integrated Circuit;特定用途集成电路)对电量信号存储并处理为数字传输信号,通过无线网络发送至控制发送端。
图5为本发明应用于农业照明的无线智能控制方法实施例五的流程图,如图5所示,本实施例的方法应用于农业照明的无线智能控制系统中的控制发送端,该方法包括:
步骤S510,发送光环境参数更新指令。
本实施例中,由控制发送端通过Wi-Fi发送适应于植物生长的光环境参数更新指令。
步骤S530,接收数字传输信号,并解析为更新后的光环境参数。
本实施例中,控制发送端接收由控制接收端的信息传感模块发送的数字传输信号,并将该数字传输信号解析为已于控制接收端更新的光环境参数。
步骤S550,将更新后的光环境参数与控制发送端预设定的参数对比;
本实施例中,通过控制发送端检测接收的更新光环境参数,是否与发出更新指令的参数一致,判断远程控制是否结束。
步骤S570,若参数相同,则停止发送光环境参数更新指令。
步骤S590,若参数不同,将光环境参数更新指令发送至控制接收端。
本实施例中,控制发送端可以为嵌入基于Android 或IOS 系统的应用模块,可以应用于手机、平板电脑、笔记本电脑、iPad等。
在本实施例中,通过Wi-Fi通信和ZigBee组网,由控制发送端发送光环境更新指令,对控制接收端进行光环境改变,针对植物的生长和开花周期进行调控,改善农业光照应用,满足批量生产等需求。
本领域普通技术人员可以理解:实现上述方法实施例的步骤或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤,而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
图6为本发明控制接收端实施例一的结构示意图,如图6所示,本实施例的控制接收端100可以包括:通讯控制模块110,灯具执行模块130和信息传感模块150,通讯控制模块110与灯具执行模块130通过总线120控制连接,信息传感模块150与灯具执行模块130通过总线120连接。
通讯控制模块110接收光环境参数更新指令,将更新指令解析为控制信号。
本实施例中,应用于农业照明的无线智能控制系统,对植物的生长和开花周期进行调控,满足批量生产的市场需求。其中,由控制发送端发送光环境更新指令,主要涉及对栽培植物种类和品种生长各阶段所需光质的组成,光照环境中的温度、湿度、二氧化碳浓度和营养液及场景等参数,进行调节,将上述参数更新为控制发送端设置的光环境参数。然后,通过MCU控制模块113将更新指令分别解析为光照开关状态、光质的组成及、温度或湿度控制信号输出及场景的控制信号传输灯具执行模块130,用于将控制信号,传输至通过ZigBee协议形成的灯具自组网络,对灯具进行控制,用以更新光环境参数。
灯具执行模块130将控制信号,传输至通过ZigBee协议形成的灯具自组网络,对灯具进行控制,用以更新光环境参数。
本实施例中,ZigBee协议可以自主组成网络,自组织ZigBee网络每个节点只和其邻近节点通信,从一个节点发出的数据包将根据相关协议的配置多跳传递到目的节点。控制信号由每一网络节点传递至灯具,使自组网络上的灯具形成的光环境参数与控制信号一致。
信息传感模块150,采集更新后的光环境参数并输出。
本实施例中,通过传感技术对已调节更新的光环境参数进行采集并存储,将采集数据处理为控制发送端能识别的信号,通过无线网络发送给控制发送端200。
图7为本发明控制接收端实施例二的结构示意图,如图7所示,本实施例的通讯控制模块110可以包括:无线传输模块111、MCU控制模块113和存储模块114,无线传输模块111与所述MCU控制模块113连接,将无线传输模块111接收的更新指令传输至所述MCU控制模块113进行解析。
无线传输模块111通过无线网络接收更新光照信息、调光信息、调色信息及场景设定控制信息参数指令。MCU控制模块113将所述更新光照信息、调光信息、调色信息及场景设定控制信息参数指令编码处理为对应的光照开关控制信号、发光颜色控制信号、发光亮度控制信号及温度或湿度控制信号输出。MCU控制模块113还与灯具执行模块130连接,将控制信号传输至灯具执行模块130执行控制信号。存储模块114与MCU控制模块113连接,用于存储MCU控制模块113的缓存信号。
图8为本发明控制接收端实施例三的结构示意图,如图8所示,本实施例的灯具执行模块130可以包括:ZigBee控制模块131、光照控制开关模块133、恒压恒流驱动模块135、场景设置模块137、灯具138和LDO线性稳压模块139。
ZigBee控制模块131与所述MCU控制模块113连接,接收由MCU控制模块113输出的控制信号,通过ZigBee无线控制协议组成的灯具网络中的每一网络节点,传输控制信号至所述灯具138。
进一步的,在一个实施例中,ZigBee控制模块131可以采用非平衡天线连接非平衡变压器完成数据的发送与接收。
在另一实施例中,ZigBee控制模块131可以采用内部偏置电阻,所述内部偏置电阻用于为晶振提供工作电流。
在本实施例中,跳频算法是ZigBee独特的性能,是灯具间自组网实现的,WiFi只有中继功能的,实现长距离的传输或穿墙用。在灯具执行模块130中增加131、利用ZigBee路由器(ZigBee Router,ZR)独特的跳频方式传递,然后同MCU控制模块113、无线传输模块111、控制发送端200进行数据交互后在传递给具备中继功能的WiFi信息的路由器,利用Wi-Fi的中继器来实现长距离(实现覆盖室内50-100米,室外200-300米的长距离传输)传输,有效解决信号穿墙性差而引起信号的衰减或长距离的信号衰减。从而使得Wi-Fi信号增强。同时,能够将灯具138的光照信息、调光信息、调色信息及控制信息等通过自组网络回传给控制发送端200。
光照控制开关模块133与MCU控制模块113连接,接收由MCU控制模块113输出的光照开关控制信号,并根据光照开关控制信号控制所述每一网络节点灯具的开关工作状态。
恒压恒流驱动模块135与MCU控制模块113连接,接收由MCU控制模块113输出的发光颜色控制信号,并根据发光颜色控制信号控制所述每一网络节点灯具的红、蓝、绿光组合发光比例,同时,根据发光亮度控制信号控制流经所述每一网络节点灯具的电流量。其中,恒压恒流驱动模块135可以包括:恒压电源驱动模块134和恒流驱动模块136。恒压电源驱动模块134输入端接市电、输出端接所述恒流驱动模块136,恒流驱动模块136还分别连接MCU控制模块113和灯具138。恒压电源驱动模块134用于将市电转换为直流电压后输出给恒流驱动模块136,恒流驱动模块136用于根据接收的信号控制灯具138的发光颜色及亮度。
场景设置模块137与MCU控制模块113连接,接收由MCU控制模块113输出的场景控制信号,并根据场景控制信号控制、温度或湿度参数。
LDO线性稳压模块139分别连接恒流驱动模块134及MCU控制模块113, LDO线性稳压模块139用于为MCU控制模块113、恒流驱动模块136及ZigBee控制模块131提供热过载及限流保护。
图9为本发明控制接收端实施例四的结构示意图,如图9所示,本实施例的信息传感模块150可以包括:信号采集模块151和信号处理模块153,信号采集模块151和信号处理模块153分别与恒压恒流驱动模块135连接,由恒压恒流驱动模块135提供稳定的电流与电压。
信号采集模块151收集更新后的光环境参数,并将更新后的光环境参数变换成电量信号,进行放大。经过信号处理模块153存储放大的电量信号,并处理为数字传输信号发送至控制发送端200。
图10为本发明应用于农业照明的无线智能控制系统的结构示意图,如图10所示,本实施例的控制系统10可以包括:控制接收端100和控制发送端200。控制接收端100可以采用图6~图9任一所示的结构,控制发送端200可以包括:参数发送模块210、参数接收模块230和参数检测模块250。
参数发送模块通过无线网络向控制接收端100发送光环境参数更新指令。参数接收模块230接收数字传输信号,并解析为更新后的光环境参数。参数检测模块250将更新后的光环境参数与控制发送端预设定的参数对比,若参数相同,则停止发送所述光环境参数更新指令,若参数不同,将光环境参数更新指令发送至所述控制接收端100。
本实施例中,更新后的光环境参数可以为经过控制接收端100调节后的光照开关状态、光质的组成及、温度或湿度等参数信息。控制发送端200可以为嵌入基于Android 或IOS 系统的应用模块,可以应用于手机、平板电脑、笔记本电脑、iPad等。
基于上述所有实施例,恒压电源驱动模块134采用芯片L6562、恒流驱动模块136采用芯片LM3414、LDO线性稳压模块139采用芯片L120B,这种配套电源设计方案能够使得灯具具有高效节能性和高可靠性。
基于上述所有实施例,Wi-Fi传输采用芯片BCM43362,ZigBee控制模块131采用芯片CC2538。通过ZigBee通信网络,实现灯具自组网(可设任意组,灯距5~15米)或单灯访问和系统联网,同时进行实时光照信息采集、传输和定时开关、调光、调色、、多模式场景等智能远程集中管控。
在移动终端中采用SPD开发基于Android或IOS嵌入式软件操作系统。该系统包括WinCE系统的BSP(Board Support Package)底层软件、APP(Application)应用层软件、MPEG(MP5)解码软件、MCU系统逻辑处理软件、总线(CAN,LIN,IE BUS)读取/应用管理软件、UI设计等。
该系统软件嵌入用户智能手机、平板电脑等前端控制设备,通过WiFi通信可管控接收终端工作,使用简便、功能可扩、软件易升级。
基于上述所有实施例,应用于农业照明的无线智能控制系统的工作原理如下:
由MCU控制模块113接收来自无线传输模块111的控制信号。然后,根据控制信号控制光照控制开关模块133驱动自组网络节点上灯具的工作状态。并根据控制信号,通过恒压恒流驱动模块135将控制信号信号输出给灯具,从而恒压恒流驱动模块135控制灯具138的发光颜色及亮度。即用户可通过控制发送端200控制灯具138的工作状态,也可以通过可通过控制发送端200控制灯具138的发光颜色及亮度。同时,采用ZigBee控制模块131接收MCU控制模块113发送的控制信号,并将控制信号传输给灯具138的自组网络。在传输控制信号的同时,通过信息传感模块150采集灯具的光照信息、传输和定时开关、调光、调色及多模式场景等参数信息,并反馈给控制发送端200,从而实现灯具的智能远程集中管控。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种应用于农业照明的无线智能控制方法,其特征在于,所述方法应用于应用于农业照明的无线智能控制系统中的控制接收端,所述方法包括如下步骤:
    接收光环境参数更新指令,将所述更新指令解析为控制信号;
    将所述控制信号,传输至通过ZigBee协议形成的灯具自组网络,对灯具进行控制,用以更新光环境参数;
    采集所述更新后的光环境参数并输出;
    其中,光环境参数为光照信息、调光信息、调色信息及场景设定控制信息。
  2. 根据权利要求1所述的应用于农业照明的无线智能控制方法,其特征在于,所述接收光环境参数更新指令,将所述更新指令解析为控制信号具体包括:
    通过无线网络接收更新调光信息、调色信息及场景设定控制信息参数指令;
    将所述更新调光信息、调色信息及场景设定控制信息参数指令解码处理为对应的光照开关控制信号、发光颜色控制信号、发光亮度控制信号及温度或湿度控制信号输出。
  3. 根据权利要求2所述的应用于农业照明的无线智能控制方法,其特征在于,所述将所述控制信号,传输至通过ZigBee协议组成的灯具自组网络,对灯具进行控制,用以更新光环境参数具体包括:
    通过所述ZigBee无线控制协议,组成的灯具网络中的每一网络节点传输所述控制信号至所述灯具;
    根据所述光照开关控制信号控制所述每一网络节点灯具的开关工作状态;根据所述发光颜色控制信号控制所述每一网络节点灯具的红、蓝、绿光组合发光比例;根据所述发光亮度控制信号控制流经所述每一网络节点灯具的电流量;根据所述场景控制信号控制所述、温度或湿度参数。
  4. 根据权利要求1所述的应用于农业照明的无线智能控制方法,其特征在于,所述应用于农业照明的无线智能控制系统还包括控制发送端;
    所述采集更新后的光环境参数并输出具体包括:
    通过传感器收集所述更新后的光环境参数,并将所述更新后的光环境参数变换成电量信号,进行放大;
    存储所述放大的电量信号,并处理为数字传输信号发送至所述控制发送端。
  5. 根据权利要求4所述的应用于农业照明的无线智能控制方法,其特征在于,所述方法应用于所述应用于农业照明的无线智能控制系统中的控制发送端,所述方法包括:
    发送所述光环境参数更新指令;
    接收所述数字传输信号,并解析为所述更新后的光环境参数;
    将所述更新后的光环境参数与控制发送端预设定的参数对比;若参数相同,则停止发送所述光环境参数更新指令;若参数不同,将光环境参数更新指令发送至所述控制接收端。
  6. 一种应用于农业照明的无线智能控制系统,其特征在于,所述系统包括:控制发送端和控制接收端;
    所述控制发送端具体包括:通讯控制模块,用于接收光环境参数更新指令,将所述更新指令解析为控制信号;
    灯具执行模块,用于将所述控制信号,传输至通过ZigBee协议形成的灯具自组网络,对灯具进行控制,用以更新光环境参数;
    信息传感模块,用于采集更新后的光环境参数并输出;
    所述通讯控制模块与所述灯具执行模块通过总线控制连接,所述信息传感模块与所述灯具执行模块通过总线控制连接;
    其中,光环境参数为光照信息、调光信息、调色信息及场景设定控制信息。
  7. 根据权利要求6所述的应用于农业照明的无线智能控制系统,其特征在于,所述通讯控制模块包括:
    无线传输模块,用于通过无线网络接收更新光照信息、调光信息、调色信息及场景设定控制信息参数指令;
    MCU控制模块,用于将所述更新光照信息、调光信息、调色信息及场景设定控制信息参数指令编码处理为对应的光照开关控制信号、发光颜色控制信号、发光亮度控制信号及温度或湿度控制信号输出;
    所述无线传输模块与所述MCU控制模块连接,用于将所述无线传输模块接收的所述更新指令传输至所述MCU控制模块进行解析。
  8. 根据权利要求7所述的应用于农业照明的无线智能控制系统,其特征在于,所述灯具执行模块包括:
    ZigBee控制模块,与所述MCU控制模块连接,接收由MCU控制模块输出的所述控制信号,用于通过所述ZigBee无线控制协议,组成的灯具网络中的每一网络节点,传输所述控制信号至所述灯具;
    光照控制开关模块,与所述MCU控制模块连接,接收由MCU控制模块输出的所述光照开关控制信号,用于根据所述光照开关控制信号控制所述每一网络节点灯具的开关工作状态;
    恒压恒流驱动模块,与所述MCU控制模块连接,接收由MCU控制模块输出的所述发光颜色控制信号,用于根据所述发光颜色控制信号控制所述每一网络节点灯具的红、蓝、绿光组合发光比例,根据所述发光亮度控制信号控制流经所述每一网络节点灯具的电流量;
    场景设置模块,与所述MCU控制模块连接,接收由MCU控制模块输出的所述场景控制信号,用于根据所述场景控制信号控制所述温度或湿度参数。
  9. 根据权利要求1所述的应用于农业照明的无线智能控制系统,其特征在于,所述信息传感模块包括:
    信号采集模块,用于收集所述更新后的光环境参数,并将所述更新后的光环境参数变换成电量信号,进行放大;
    信号处理模块,用于存储所述放大的电量信号,并处理为数字传输信号发送至所述控制发送端;
    所述信号采集模块和所述信号处理模块分别与所述恒压恒流驱动模块连接,由所述所述恒压恒流驱动模块提供稳定的电流与电压。
  10. 根据权利要求1所述的应用于农业照明的无线智能控制系统,其特征在于,所述控制发送端包括:
    参数发送模块,用于发送所述光环境参数更新指令;
    参数接收模块,用于接收所述数字传输信号,并解析为所述更新后的光环境参数;
    参数检测模块,用于将所述更新后的光环境参数与控制发送端预设定的参数对比,若参数相同,则停止发送所述光环境参数更新指令,若参数不同,将光环境参数更新指令发送至所述控制接收端。
PCT/CN2015/092504 2015-07-09 2015-10-22 应用于农业照明的无线智能控制方法及系统 WO2017004911A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510400614.3A CN106332405A (zh) 2015-07-09 2015-07-09 应用于农业照明的无线智能控制方法及系统
CN201510400614.3 2015-07-09

Publications (1)

Publication Number Publication Date
WO2017004911A1 true WO2017004911A1 (zh) 2017-01-12

Family

ID=57684780

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/092504 WO2017004911A1 (zh) 2015-07-09 2015-10-22 应用于农业照明的无线智能控制方法及系统

Country Status (2)

Country Link
CN (1) CN106332405A (zh)
WO (1) WO2017004911A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110326270A (zh) * 2017-02-23 2019-10-11 欧司朗股份有限公司 多跳通信网络的节点,相关照明系统,更新照明模块的软件的方法和计算机程序产品

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101730341A (zh) * 2009-09-22 2010-06-09 深圳市蓝可迪科技有限公司 一种电力线载波通信led光源智能驱动装置
CN102000378A (zh) * 2010-09-10 2011-04-06 李隆 基于三网、物联网的音乐色光物理因子身心保健系统
CN103442025A (zh) * 2013-07-03 2013-12-11 华清科盛(北京)信息技术有限公司 基于照明节点的无线网络云平台系统
CN104429688A (zh) * 2014-10-27 2015-03-25 深圳市雅瑞安光电有限公司 一种以led植物助长灯为背景的智能控制室内种植场系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102762013A (zh) * 2012-05-10 2012-10-31 上海交通大学 温室led光源的智能控制系统
CN102802315A (zh) * 2012-08-17 2012-11-28 徐州格利尔数码科技有限公司 一种无线智能led路灯控制系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101730341A (zh) * 2009-09-22 2010-06-09 深圳市蓝可迪科技有限公司 一种电力线载波通信led光源智能驱动装置
CN102000378A (zh) * 2010-09-10 2011-04-06 李隆 基于三网、物联网的音乐色光物理因子身心保健系统
CN103442025A (zh) * 2013-07-03 2013-12-11 华清科盛(北京)信息技术有限公司 基于照明节点的无线网络云平台系统
CN104429688A (zh) * 2014-10-27 2015-03-25 深圳市雅瑞安光电有限公司 一种以led植物助长灯为背景的智能控制室内种植场系统

Also Published As

Publication number Publication date
CN106332405A (zh) 2017-01-11

Similar Documents

Publication Publication Date Title
EP2959751A1 (en) Led lighting apparatus, control system, and configuration method
US11012534B2 (en) Node for a multi-hop communication network, related lighting system, method of updating the software of lighting modules and computer-program product
WO2017069466A1 (en) Communication apparatus, display apparatus and method of controlling the same
WO2015053516A1 (ko) 클라우드 랜 환경에서 rrh의 전원을 제어하는 방법
WO2015143776A1 (zh) 一种多模省电的多媒体传输方法及其系统
WO2016086740A1 (zh) 基于Wi-Fi+ZigBee通信的高效节能LED照明系统
WO2021085939A1 (en) Electronic device supporting proximity communication service and method for obtaining information of short-range communication device using the same
CN104837265A (zh) 一种家居照明智能监控系统
US20240153721A1 (en) Illumination system and method for maintaining a common illumination value on a release command sent from a keypad
WO2020077651A1 (zh) 一种基于蓝牙自组网控制的智能无线控制灯具
CN103973779A (zh) 一种基于无线网络的大型灯光终端控制系统及其监测方法
WO2017057951A1 (ko) 가시광통신 기기 등록 및 가시광통신 신호와 무선통신 신호의 결합 장치 및 방법
WO2017004911A1 (zh) 应用于农业照明的无线智能控制方法及系统
WO2012174758A1 (zh) 一对多2.4g无线电脑外设通讯装置及其传输方式
WO2022119033A1 (ko) 다양한 센서와 선택적으로 연결될 수 있는 초저전력 무선 센서 모듈
CN210958874U (zh) 蓝牙mesh模组智能灯控制系统
WO2014112714A1 (ko) 근거리 무선 통신 접속 장치, 근거리 무선 통신 접속 장치를 발견하기 위한 휴대형 단말기 및 근거리 무선 통신 시스템
WO2020011056A1 (zh) 智能控制装置及其实现方法、智能电视
WO2016140423A1 (ko) 파워 세이브 모드로 동작하는 nan 장치 간의 데이터 통신 방법 및 데이터 통신을 수행하는 파워 세이브 모드로 운용되는 nan 장치
WO2022022420A1 (zh) 一种配网方法及系统
WO2017088116A1 (zh) 基于 S-link 的智能家居的控制方法及系统
CN215345143U (zh) 一种基于物联网芯片的全彩圣诞灯控制装置
AU2019100624A4 (en) Light-Emitting Diode (LED) Voice Controller and LED Lamp
CN110213865B (zh) 一种多变量dali恒照度传感器及其使用方法
WO2016143973A1 (ko) 블루투스 le(low energy) 기술을 이용하여 디바이스를 활성화 시키기 위한 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15897567

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15897567

Country of ref document: EP

Kind code of ref document: A1