WO2016086740A1 - 基于Wi-Fi+ZigBee通信的高效节能LED照明系统 - Google Patents

基于Wi-Fi+ZigBee通信的高效节能LED照明系统 Download PDF

Info

Publication number
WO2016086740A1
WO2016086740A1 PCT/CN2015/093216 CN2015093216W WO2016086740A1 WO 2016086740 A1 WO2016086740 A1 WO 2016086740A1 CN 2015093216 W CN2015093216 W CN 2015093216W WO 2016086740 A1 WO2016086740 A1 WO 2016086740A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
control
zigbee
led lamp
constant current
Prior art date
Application number
PCT/CN2015/093216
Other languages
English (en)
French (fr)
Inventor
曹小兵
陆群
Original Assignee
深圳市裕富照明有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市裕富照明有限公司 filed Critical 深圳市裕富照明有限公司
Publication of WO2016086740A1 publication Critical patent/WO2016086740A1/zh

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/175Controlling the light source by remote control
    • H05B47/19Controlling the light source by remote control via wireless transmission
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/40Control techniques providing energy savings, e.g. smart controller or presence detection

Definitions

  • the invention relates to an LED control system, in particular to an energy-efficient LED illumination system based on Wi-Fi+ZigBee communication with convenient control.
  • An energy-efficient LED lighting system based on Wi-Fi+ZigBee communication for controlling the working state of LED lamps according to a control signal sent by a mobile terminal, including a wireless transmission module, an MCU control module, a lighting control switch module, a ZigBee module, and a constant voltage Constant current drive module;
  • the wireless transmission module is configured to transmit a control signal sent by the mobile terminal to the MCU control module; the control signal is used to control a switch, a illuminating color, a brightness, and a multi-scene setting of the corresponding LED luminaire, and the MCU control module Receiving the received control signal to the LED lamp through the constant voltage constant current driving module;
  • the constant voltage constant current driving module controls the LED lamp according to the received control signal; wherein, after receiving the control signal of the mobile terminal, the MCU module reads the control signal and parses the control signal, and then passes the control signal through the constant
  • the constant voltage driving module is sent to the LED lamp, so that the constant voltage constant current driving module drives and controls the switch, the illuminating color, the brightness and the multi-scene setting of the LED lamp;
  • the ZigBee module is configured to receive a control signal sent by the MCU control module, and transmit the received control signal to an ad hoc network of the LED lamp;
  • the illumination control switch module is configured to generate an output signal for controlling the color and brightness of the illumination of the LED lamp
  • the MCU control module is configured to control the constant voltage constant current drive module to be driven according to an output signal of the illumination control switch module The color and brightness of the LED lamp.
  • the constant voltage constant current driving module includes a constant voltage power driving module and a constant current driving module;
  • the constant voltage power supply driving module input terminal is connected to the mains and the output terminal is connected to the constant current driving module, and the constant current driving module is further connected to the MCU control module and the LED lamp; the constant voltage power supply driving module
  • the utility model is configured to convert the utility power into a direct current voltage and output the same to the constant current driving module, and the constant current driving module is configured to control the color and brightness of the illumination of the LED light fixture according to the received signal.
  • a music control module connected to the MCU control module is further included; the music control module is configured to play correspondingly set music according to the illuminating color and brightness of the LED luminaire.
  • a storage module connected to the MCU control module is further included, and the storage module is configured to store a buffer signal of the MCU control module.
  • the ZigBee module uses an unbalanced antenna to connect the unbalanced transformer to complete data transmission and reception.
  • the ZigBee module employs an internal bias resistor that is used to provide an operating current to the crystal.
  • the ZigBee module is configured to collect illumination information, dimming information, color grading information, and music control information of the LED luminaire according to a control signal received by the MCU control module.
  • the above-mentioned high-efficiency energy-saving LED lighting system based on Wi-Fi+ZigBee communication transmits a control signal sent by the mobile terminal to the MCU control module through the wireless transmission module, and then the MCU control module parses the control signal and sends it to the LED through the constant voltage constant current driving module. Lighting.
  • the constant voltage constant current driving module controls the color and brightness of the LED lamps.
  • the ZigBee module also transmits the control signal sent by the MCU control module to the self-organizing network of the LED lamp, thereby enabling intelligent remote control of the LED lamp.
  • the above-mentioned high-efficiency energy-saving LED lighting system based on Wi-Fi+ZigBee communication does not need to be re-wired, and the remote intelligent control of the LED lamp can be realized through the mobile terminal and the ZigBee module, so that the user can know the working state of the LED lamp and conduct control.
  • 1 is a block diagram of an energy efficient LED lighting system based on Wi-Fi+ZigBee communication
  • Figure 2 (a) is a partial circuit schematic diagram of the ZigBee module
  • Figure 2 (b) is a partial circuit schematic diagram of the ZigBee module
  • Figure 2 (c) is a partial circuit schematic of the ZigBee module.
  • FIG. 1 it is a block diagram of an energy efficient LED lighting system based on Wi-Fi+ZigBee communication.
  • An energy-efficient LED lighting system based on Wi-Fi+ZigBee communication which is used for controlling the working state of the LED lamp according to a control signal sent by the mobile terminal, including a wireless transmission module 101, an MCU control module 102, a lighting control switch module 103, and a ZigBee module. 104 and constant voltage constant current drive module (not shown).
  • the wireless transmission module 101 is configured to connect the MCU control module 102 and the mobile terminal; the MCU control module 102 is further connected to the illumination control switch module 103, the ZigBee module 104, and the constant voltage constant current.
  • a driving module (not shown); the constant voltage constant current driving module (not shown) is connected to the LED lamp.
  • the constant voltage constant current driving module controls the LED lamp according to the received control signal; wherein, after receiving the control signal of the mobile terminal, the MCU module 102 reads the control signal and parses the control signal, and then The control signal is sent to the LED lamp through the constant voltage constant current driving module (not shown), so that the constant voltage constant current driving module (not shown) drives and controls the switch, the color of the LED, the brightness and the multi-scene setting of the LED lamp. set.
  • the ZigBee module 104 is configured to receive a control signal sent by the MCU control module 102, and transmit the received control signal to an ad hoc network of the LED luminaire.
  • the illumination control switch module 103 is configured to generate an output signal for controlling the color and brightness of the illumination of the LED lamp, and the MCU control module 102 is configured to control the constant voltage constant current according to an output signal of the illumination control switch module 103.
  • a driving module (not shown) drives the illuminating color and brightness of the LED luminaire.
  • the wireless transmission module 101 employs Wi-Fi transmission.
  • the energy-efficient LED lighting system based on Wi-Fi+ZigBee communication adopts Wi-Fi transmission for transmitting the control signal output by the mobile terminal to the MCU control module 102.
  • the mobile terminal includes a mobile phone, a tablet computer, a notebook computer, an iPad, and the like.
  • the constant voltage constant current driving module (not shown) includes a constant voltage power driving module 106 and a constant current driving module 105.
  • the constant voltage power supply driving module 106 is connected to the mains and the output terminal is connected to the constant current driving module 105, and the constant current driving module 105 is further connected to the MCU control module 102 and the LED lamp;
  • the power supply driving module 106 is configured to convert the commercial power into a DC voltage and output the voltage to the constant current driving module 105.
  • the constant current driving module 105 is configured to control the color and brightness of the LED lighting according to the received signal.
  • Energy efficient LED lighting system based on Wi-Fi+ZigBee communication also includes LDO (low dropout) Regulator, low-dropout linear regulator) linear voltage regulator module 107, the LDO linear voltage regulator module 107 is connected to the constant current driving module 105 and the MCU control module 102, respectively, the LDO linear voltage regulator module 107 is used
  • the MCU control module 102, the constant current driving module 105, and the ZigBee module 104 are provided with thermal overload and current limiting protection.
  • the energy-efficient LED lighting system based on Wi-Fi+ZigBee communication further includes a music control module 108 connected to the MCU control module 102; the music control module 108 is configured to play corresponding settings according to the color and brightness of the LED lamps Music.
  • the energy efficient LED lighting system based on Wi-Fi+ZigBee communication further includes a storage module connected to the MCU control module 102, and the storage module is configured to store a buffer signal of the MCU control module 102.
  • the ZigBee module 104 uses an unbalanced antenna to connect the unbalanced transformer to complete data transmission and reception.
  • the ZigBee module 104 employs an internal bias resistor that is used to provide operating current to the crystal.
  • the ZigBee module 104 is configured to collect illumination information, dimming information, color grading information, and music control information of the LED illuminator according to the control signal received by the MCU control module 102.
  • the frequency hopping algorithm is a unique performance of ZigBee. It is realized by the self-organizing network between the lamps. WiFi has only the relay function, which enables long-distance transmission or wall penetration.
  • ZC ZigBee Coordinator
  • ZigBee Router which acts as a monitor or control, but it is also a router or repeater that transmits information by means of frequency hopping;
  • ZigBee Terminal equipment which only has monitoring or control functions, can send and receive data information with the router, and can not be used for routing or relaying.
  • ZigBee module 104 to LED luminaires, use ZigBee router (ZigBee Router, ZR) unique frequency hopping mode transmission, and then with the MCU control module 102, wireless transmission module 101, mobile terminal for data interaction, then passed to the router with relay function WiFi information, using Wi-Fi repeater To achieve long distance (to achieve 50-100 meters indoor coverage, 200-300 meters long outdoor transmission) transmission, effectively solve the signal attenuation caused by poor signal penetration or long-distance signal attenuation. Thereby the Wi-Fi signal is enhanced.
  • the illumination information, the dimming information, the gradation information and the music control information of the LED luminaire can be transmitted to the mobile terminal through the ad hoc network.
  • the ZigBee module 104 includes: a chip CPU Core, capacitor C19, capacitor C21, capacitor C52, capacitor C53, capacitor C48, capacitor C54, capacitor C55, capacitor C57, capacitor C58 and crystal XTAL-1.
  • Capacitor C48 is connected to the chip CPU at one end Core's loop-c end, the other end is grounded.
  • the VDD-vco of the chip CPU Core is terminated with a 3V power supply, and the capacitor C53 is connected to the 3V power supply at one end and grounded at the other end.
  • Chip CPU The VDD-CP of the Core is terminated with a 3V power supply, and the C52 is connected to the 3V power supply at one end and grounded at the other end.
  • Chip CPU The Core's VDD-PLL is terminated with a 3V power supply, and the capacitor C19 is connected to the 3V power supply at one end and grounded at the other end.
  • Chip CPU The VDD-A terminal and the VDD-BG terminal of the Core are connected to a 3V power supply.
  • One end of the capacitor C55, the capacitor C57 and the capacitor C58 are connected to the 3V power supply, and the other end is grounded.
  • the two sources of the crystal XTAL-1 are connected to the chip CPU Core's XTAL-P and XTAL-P.
  • the two ground terminals of the crystal XTAL-1 are grounded.
  • One end of the capacitor C21 is connected to the chip CPU
  • the XTAL-P end of the Core is grounded at the other end.
  • One end of the capacitor C54 is connected to the XTAL-N end of the chip CPU Core, and the other end is grounded.
  • the ZigBee module 104 further includes an antenna A1, a capacitor L1, an inductor L2, an inductor L3, an inductor L4, an inductor L5, a high frequency insertion interface RFIN-1, a capacitor C7, a capacitor C8, and a capacitor C38.
  • One end of the antenna A1 is connected to a common connection point of the inductor L1 and the capacitor C7, and the other end of the capacitor C7 is grounded.
  • the other end of the inductor L1 is connected to the capacitor C38, and one end of the inductor L2 is connected to a common connection point of the inductor L1 and the capacitor C38.
  • the other end of the inductor L2 is grounded.
  • One end of the high frequency insertion interface RFIN-1 is grounded, and the other end is connected to a common connection point of the capacitor C38 and the capacitor C43.
  • One end of the inductor L3 is connected to the common connection point of the capacitor C38 and the capacitor C43, and the other end is connected to the chip CPU. Core's RF-N end.
  • Capacitor C37 is grounded, and the other end is connected to the RF-N end of the chip CPU Core.
  • Capacitor C43 is connected to capacitor C38 at one end and chip CPU at the other end. Core's RF-P end. The two ends of the inductor L4 are respectively connected to the RF-P terminal and the XF-N terminal of the chip CPU Core.
  • Inductor L5 is connected to the chip CPU at one end The RF-P end of the Core and the other end are connected to a 3V power supply.
  • Capacitor C39 is grounded at one end and connected to a 3V power supply at the other end.
  • Capacitor C40 is grounded at one end and connected to a 3V power supply at the other end.
  • Capacitor C44 and capacitor C45 are grounded at one end and connected to a 3V power supply at the other end.
  • the ZigBee module 104 further includes a chip U3, a resistor R1, a capacitor C4, a capacitor C50, a capacitor C34, a crystal oscillator Y2, a resistor R5, a resistor R3, and a resistor R4.
  • One end of the resistor R3 is connected to the SPI/I2C terminal of the chip CPU Core, and the other end is connected to the 3.3V power supply.
  • One end of the resistor R4 is connected to the chip CPU The SPI/I2C end of the Core is grounded at the other end.
  • the two ends of the crystal oscillator Y2 are connected to the chip CPU Core's XTAL32-P and XTAL32-N.
  • the resistor R5 is connected in parallel with the crystal oscillator Y2.
  • Capacitor C50 is connected to the CPU The XTAL32-P end of the Core is grounded at the other end.
  • One end of the capacitor C34 is connected to the XTAL32-N end of the CPU Core, and the other end is grounded.
  • the model number of the chip U3 is 7904. Input the MPU of the A terminal of the chip U3 CLK signal, the power supply VCC is connected to the 3V power supply, the capacitor C4 is connected to the 3V power supply at one end, and the other end is grounded. One end of the resistor R1 is connected to the Y end of the chip U3, and the other end is connected to the XTAL32-P end of the CPU Core.
  • the above CPU is fully compliant with 802.15.14/ZigBee Technology RF system single chip. Suitable for a variety of ZigBee or ZigBee-like wireless network nodes, including tuners, routers, and end devices. It has the advantages of low power consumption, many network nodes and long transmission distance.
  • the hardware supports CSMA/CA. Features; digital RSSI/LQI support.
  • the CPU Core circuit uses an unbalanced antenna to connect the unbalanced transformer to complete the transmission and reception of data.
  • the entire structure satisfies the RF. Input/output matching resistor (50 ⁇ ) requirements.
  • the internal T/R switching circuit completes the exchange between the LNA and the PA.
  • CPU The Core uses an internal bias resistor that is primarily used to provide a suitable operating current for a 32MHz crystal.
  • a 32MHz crystal resonator circuit is formed by a 32MHz quartz resonator (XTAL1) and two capacitors (C50 and C34).
  • the kHz quartz resonator (XTAL2) and two capacitors (C43 and C38, C7) form a 32.768 kHz crystal oscillator circuit.
  • Voltage regulator for all requirements 1.8V
  • the voltage pin and internal power supply, C44 and C45 capacitors are decoupling capacitors used for power supply filtering to improve the stability of the chip operation.
  • the constant voltage power supply driving module 106 uses the chip L6562
  • the constant current driving module 105 uses the chip LM3414
  • the LDO linear voltage regulating module 107 uses the chip L120B.
  • This supporting power supply design scheme can make the LED lamp have high efficiency and energy saving. High reliability.
  • the Wi-Fi transmission uses the chip BCM43362, and the ZigBee module 104 uses the chip CC2538.
  • the ZigBee communication network LED lighting self-organizing network (can be set to any group, the lamp distance is 5 to 15 meters) or single lamp access and system networking, while real-time LED lighting information collection, transmission and timing switch, dimming, color adjustment Intelligent remote centralized control of music, multi-mode scenes, etc.
  • the SPD is developed in the mobile terminal based on the Android or IOS embedded software operating system.
  • the system includes BSP (Board Support) for WinCE system. Package) underlying software, APP (application) application layer software, MPEG (MP5) decoding software, MCU system logic processing software, bus (CAN, LIN, IE BUS) read / application management software, UI design, etc.
  • BSP Board Support
  • APP application
  • MPEG MP5 decoding software
  • MCU system logic processing software bus (CAN, LIN, IE BUS) read / application management software, UI design, etc.
  • the system software is embedded in front-end control devices such as user smartphones and tablet computers, and can control the LED receiving terminal through WiFi communication, which is easy to use, expands in functions, and is easy to upgrade.
  • the energy-efficient LED lighting system based on Wi-Fi+ZigBee communication works as follows:
  • the MCU control module 102 receives a control signal from the wireless transmission module 101 or an output signal of the illumination control switch module 103. Then, according to the control signal or the output signal of the illumination control switch module 103, the output signal of the control signal or the illumination control switch module 103 is output to the LED lamp through the constant voltage constant current drive module, so that the constant voltage constant current drive module controls the LED lamp Luminous color and brightness. That is, the user can control the working state of the LED lamp through the mobile terminal, and can also control the working state of the LED lamp through the lighting control switch module 103.
  • the ZigBee module 104 is used to receive the control signal sent by the MCU control module 102, and the control signal is transmitted to the ad hoc network of the LED lamp.
  • the illumination information, transmission and timing switch, dimming, color grading, music, multi-mode scene and other data of the LED luminaire are collected according to the control signal, and fed back to the mobile terminal, thereby realizing intelligent remote concentration of the LED luminaire Control.
  • the above-mentioned high-efficiency energy-saving LED lighting system based on Wi-Fi+ZigBee communication transmits a control signal sent by the mobile terminal to the MCU control module 102 through the wireless Wi-Fi transmission module 101, and then the MCU control module 102 analyzes the control signal and then passes the constant voltage constant.
  • the flow drive module sends to the LED luminaire.
  • the constant voltage constant current driving module controls the color and brightness of the LED lamps.
  • the ZigBee module 104 also transmits the control signal sent by the MCU control module 102 to the self-organizing network of the LED lamp, thereby realizing intelligent remote control of the LED lamp.
  • the above-mentioned high-efficiency energy-saving LED lighting system based on Wi-Fi+ZigBee communication does not need to be re-wired, and the remote intelligent control of the LED lamp can be realized through the mobile terminal and the ZigBee module 104, so that the user can know the working state of the LED lamp and conduct control.

Abstract

基于Wi-Fi+ZigBee通信的高效节能LED照明系统通过无线Wi-Fi传输模块将移动终端发出的控制信号发送给MCU控制模块,再由MCU控制模块解析控制信号后通过恒压恒流驱动模块发送给LED灯具。从而恒压恒流驱动模块控制LED灯具的发光颜色及亮度。同时ZigBee模块还将MCU控制模块发送的控制信号传输给LED灯具的自组网络,从而能够实现LED灯具的智能远程管控。上述基于Wi-Fi+ZigBee通信的高效节能LED照明系统无需重新布线,且通过移动终端Wi-Fi及ZigBee模块能够实现LED灯具的远程智能管控,方便用户获知LED灯具的工作状态并进行管控。

Description

基于Wi-Fi+ZigBee通信的高效节能LED照明系统
【技术领域】
本发明涉及LED控制系统,特别是涉及一种管控便捷的基于Wi-Fi+ZigBee通信的高效节能LED照明系统。
【背景技术】
LED 灯具由于其高效、节能、可靠等优势,已经逐渐被市场所认可,在各种领域得到广泛应用。LED灯具最大的特点和优势是智能控制,虽然目前市场上有很多智能照明控制的产品,但是大部分系统都需要重新布线,无法在完全不改变传统布线的情况下,实现LED照明的远程管控,且不能实现LED照明的多功能控制和管理。
【发明内容】
基于此,有必要提供一种管控便捷的基于Wi-Fi+ZigBee通信的高效节能LED照明系统。
一种基于Wi-Fi+ZigBee通信的高效节能LED照明系统,用于根据移动终端发出的控制信号控制LED灯具工作状态,包括无线传输模块、MCU控制模块、照明控制开关模块、ZigBee模块及恒压恒流驱动模块;
所述无线传输模块用于连接所述MCU控制模块和所述移动终端;所述MCU控制模块还分别连接所述照明控制开关模块、所述ZigBee模块及所述恒压恒流驱动模块;所述恒压恒流驱动模块连接所述LED灯具;
所述无线传输模块用于将移动终端发出的控制信号传输给所述MCU控制模块;所述控制信号用于控制对应LED灯具的开关、发光颜色、亮度及多场景设定,所述MCU控制模块将接收的控制信号通过所述恒压恒流驱动模块发送给LED灯具;
所述恒压恒流驱动模块根据接收的控制信号控制LED灯具;其中,所述MCU模块接收移动终端的控制信号后,读取所述控制信号并解析控制信号,然后将控制信号通过所述恒压恒流驱动模块发送给LED灯具,从而所述恒压恒流驱动模块驱动控制LED灯具的开关、发光颜色、亮度及多场景设定;
所述ZigBee模块用于接收所述MCU控制模块发送的控制信号,并将接收的控制信号传输给LED灯具的自组网络;
所述照明控制开关模块用于发出控制所述LED灯具的发光颜色及亮度的输出信号,所述MCU控制模块用于根据所述照明控制开关模块的输出信号控制所述恒压恒流驱动模块驱动所述LED灯具的发光颜色及亮度。
在其中一个实施例中,所述恒压恒流驱动模块包括恒压电源驱动模块和恒流驱动模块;
所述恒压电源驱动模块输入端接市电、输出端接所述恒流驱动模块,所述恒流驱动模块还分别接所述MCU控制模块和所述LED灯具;所述恒压电源驱动模块用于将市电转换为直流电压后输出给所述恒流驱动模块,所述恒流驱动模块用于根据接收的信号控制所述LED灯具的发光颜色及亮度。
在其中一个实施例中,还包括LDO线性稳压模块,所述LDO线性稳压模块分别连接所述恒流驱动模块及所述MCU控制模块,所述LDO线性稳压模块用于为所述MCU控制模块、所述恒流驱动模块及所述ZigBee模块提供热过载及限流保护。
在其中一个实施例中,还包括与所述MCU控制模块连接的音乐控制模块;所述音乐控制模块用于根据所述LED灯具的发光颜色及亮度播放对应设置的音乐。
在其中一个实施例中,还包括与所述MCU控制模块连接的存储模块,所述存储模块用于存储所述MCU控制模块的缓存信号。
在其中一个实施例中,所述ZigBee模块采用非平衡天线连接非平衡变压器完成数据的发送与接收。
在其中一个实施例中,所述ZigBee模块采用内部偏置电阻,所述内部偏置电阻用于为晶振提供工作电流。
在其中一个实施例中,所述ZigBee模块用于根据所述MCU控制模块接收的控制信号采集LED灯具的照明信息、调光信息、调色信息、音乐控制信息。
在其中一个实施例中,所述无线传输模块采用Wi-Fi传输。
上述基于Wi-Fi+ZigBee通信的高效节能LED照明系统通过无线传输模块将移动终端发出的控制信号发送给MCU控制模块,再由MCU控制模块解析控制信号后通过恒压恒流驱动模块发送给LED灯具。从而恒压恒流驱动模块控制LED灯具的发光颜色及亮度。同时ZigBee模块还将MCU控制模块发送的控制信号传输给LED灯具的自组网络,从而能够实现LED灯具的智能远程管控。上述基于Wi-Fi+ZigBee通信的高效节能LED照明系统无需重新布线,且通过移动终端及ZigBee模块能够实现LED灯具的远程智能管控,方便用户获知LED灯具的工作状态并进行管控。
【附图说明】
图1为基于Wi-Fi+ZigBee通信的高效节能LED照明系统的模块图;
图2(a)为ZigBee模块的部分电路原理图;
图2(b)为ZigBee模块的部分电路原理图;
图2(c)为ZigBee模块的部分电路原理图。
【具体实施方式】
如图1所示,为基于Wi-Fi+ZigBee通信的高效节能LED照明系统的模块图。
一种基于Wi-Fi+ZigBee通信的高效节能LED照明系统,用于根据移动终端发出的控制信号控制LED灯具工作状态,包括无线传输模块101、MCU控制模块102、照明控制开关模块103、ZigBee模块104及恒压恒流驱动模块(图未示)。
所述无线传输模块101用于连接所述MCU控制模块102和所述移动终端;所述MCU控制模块102还分别连接所述照明控制开关模块103、所述ZigBee模块104及所述恒压恒流驱动模块(图未示);所述恒压恒流驱动模块(图未示)连接所述LED灯具。
所述无线传输模块101用于将移动终端发出的控制信号传输给所述MCU控制模块102;所述控制信号用于控制对应的LED灯具的开关、发光颜色、亮度及多场景设定,所述MCU控制模块102将接收的控制信号通过所述恒压恒流驱动模块(图未示)发送给LED灯具。
所述恒压恒流驱动模块(图未示)根据接收的控制信号控制LED灯具;其中,所述MCU模块102接收移动终端的控制信号后,读取所述控制信号并解析控制信号,然后将控制信号通过所述恒压恒流驱动模块(图未示)发送给LED灯具,从而所述恒压恒流驱动模块(图未示)驱动控制LED灯具的开关、发光颜色、亮度及多场景设定。
所述ZigBee模块104用于接收所述MCU控制模块102发送的控制信号,并将接收的控制信号传输给LED灯具的自组网络。
所述照明控制开关模块103用于发出控制所述LED灯具的发光颜色及亮度的输出信号,所述MCU控制模块102用于根据所述照明控制开关模块103的输出信号控制所述恒压恒流驱动模块(图未示)驱动所述LED灯具的发光颜色及亮度。
无线传输模块101采用Wi-Fi传输。
基于Wi-Fi+ZigBee通信的高效节能LED照明系统采用Wi-Fi传输,用于向MCU控制模块102发送移动终端输出的控制信号。其中,移动终端包括手机、平板电脑、笔记本电脑、iPad等。
恒压恒流驱动模块(图未示)包括恒压电源驱动模块106和恒流驱动模块105。
所述恒压电源驱动模块106输入端接市电、输出端接所述恒流驱动模块105,所述恒流驱动模块105还分别接所述MCU控制模块102和所述LED灯具;所述恒压电源驱动模块106用于将市电转换为直流电压后输出给所述恒流驱动模块105,所述恒流驱动模块105用于根据接收的信号控制所述LED灯具的发光颜色及亮度。
基于Wi-Fi+ZigBee通信的高效节能LED照明系统还包括LDO(low dropout regulator,低压差线性稳压器)线性稳压模块107,所述LDO线性稳压模块107分别连接所述恒流驱动模块105及所述MCU控制模块102,所述LDO线性稳压模块107用于为所述MCU控制模块102、所述恒流驱动模块105及所述ZigBee模块104提供热过载及限流保护。
基于Wi-Fi+ZigBee通信的高效节能LED照明系统还包括与所述MCU控制模块102连接的音乐控制模块108;所述音乐控制模块108用于根据所述LED灯具的发光颜色及亮度播放对应设置的音乐。
基于Wi-Fi+ZigBee通信的高效节能LED照明系统还包括与所述MCU控制模块102连接的存储模块,所述存储模块用于存储所述MCU控制模块102的缓存信号。
ZigBee模块104采用非平衡天线连接非平衡变压器完成数据的发送与接收。
ZigBee模块104采用内部偏置电阻,所述内部偏置电阻用于为晶振提供工作电流。
ZigBee模块104用于根据所述MCU控制模块102接收的控制信号采集LED灯具的照明信息、调光信息、调色信息、音乐控制信息。
跳频算法是ZigBee独特的性能,是灯具间自组网实现的,WiFi只有中继功能的,实现长距离的传输或穿墙用。
基于ZigBee定义了三种设备类型:1) ZigBee协调器(ZigBee Coordinator,ZC),用于初始化网络信息,每个网络只有一个ZC;
2) ZigBee路由器(ZigBee Router,ZR),它起监视或控制作用,但它也是用跳频方式传递信息的路由器或中继器;
3)ZigBee终端设备(ZigBee End Device,ZED),它只有监视或控制功能,可以与路由器进行收发数据信息,不能做路由或中继之用.
在LED灯具中增加ZigBee模块104、利用ZigBee路由器(ZigBee Router,ZR)独特的跳频方式传递,然后同MCU控制模块102、无线传输模块101、移动终端进行数据交互后在传递给具备中继功能的WiFi信息的路由器,利用Wi-Fi的中继器来实现长距离(实现覆盖室内50-100米,室外200-300米的长距离传输)传输,有效解决信号穿墙性差而引起信号的衰减或长距离的信号衰减。从而使得Wi-Fi信号增强。同时,能够将LED灯具的照明信息、调光信息、调色信息及音乐控制信息通过自组网络传输给移动终端。
如图2(a)-(c)所示,为ZigBee模块的电路原理图。
如图2(a)所示,ZigBee模块104包括:芯片CPU Core、电容C19,电容C21、电容C52、电容C53、电容C48、电容C54、电容C55、电容C57、电容C58及晶振XTAL-1。电容C48一端接芯片CPU Core的loop-c端,另一端接地。芯片CPU Core的VDD-vco端接3V电源,电容C53一端接3V电源,另一端接地。芯片CPU Core的VDD-CP端接3V电源,电容C52一端接3V电源,另一端接地。芯片CPU Core的VDD-PLL端接3V电源,电容C19一端接3V电源,另一端接地。芯片CPU Core的VDD-A端及VDD-BG端均接3V电源,电容C55、电容C57及电容C58的一端均接3V电源,另一端均接地。晶振XTAL-1的两源极分别接芯片CPU Core的XTAL-P端及XTAL-P端。晶振XTAL-1的两接地端接地。电容C21的一端接芯片CPU Core的XTAL-P端,另一端接地。电容C54的一端接芯片CPU Core的XTAL-N端,另一端接地。
如图2(b)所示,ZigBee模块104还包括天线A1、电容L1,电感L2、、电感L3、电感L4、电感L5、高频插入接口RFIN-1、电容C7、电容C8、电容C38、电容C37、电容C39、电容C40、电容C43、电容C44及电容C45。
天线A1的一端接电感L1与电容C7的公共连接点,电容C7的另一端接地。电感L1的另一端接电容C38,电感L2的一端接电感L1与电容C38的公共连接点。电感L2的另一端接地。高频插入接口RFIN-1的一端接地,另一端接电容C38与电容C43的公共连接点。电感L3一端接电容C38与电容C43的公共连接点,另一端接芯片CPU Core的RF-N端。电容C37的一端接地,另一端接芯片CPU Core的RF-N端。电容C43一端接电容C38另一端接芯片CPU Core的RF-P端。电感L4两端分别接芯片CPU Core的RF-P端及XF-N端。电感L5一端接芯片CPU Core的RF-P端,另一端接3V电源。电容C39一端接地,另一端接3V电源。电容C40一端接地,另一端接3V电源。电容C44及电容C45一端接地,另一端均接3V电源。
如图2(c)所示,ZigBee模块104还包括芯片U3、电阻R1、电容C4、电容C50、电容C34、晶振Y2、电阻R5、电阻R3及电阻R4。
电阻R3一端接芯片CPU Core的SPI/I2C端,另一端接3.3V电源。电阻R4一端接芯片CPU Core的SPI/I2C端,另一端接地。晶振Y2的两端分别接芯片CPU Core的XTAL32-P端及XTAL32-N端。电阻R5与晶振Y2并联。电容C50一端接CPU Core的XTAL32-P端,另一端接地。电容C34一端接CPU Core的XTAL32-N端,另一端接地。
芯片U3的型号为7904。芯片U3的A端输入MPU CLK信号,电源VCC端接3V电源,电容C4一端接3V电源,另一端接地。电阻R1一端接芯片U3的Y端,另一端接CPU Core的XTAL32-P端。
上述CPU是完全符合802.15.14/ZigBee 技术的射频系统单芯片。适用于各种ZigBee或类似ZigBee的无线网络节点,包括调谐器、路由器和终端设备。其具低耗电、网络节点多、传输距离远等优势,硬件支持CSMA/CA 功能;数字化的RSSI/LQI 支持。
CPU Core电路原理:
CPU Core电路才用非平衡天线,连接非平衡变压器的装置来完成数据的发送接收,整个结构满足RF 输入/输出匹配电阻(50Ω)的要求。内部T/R交换电路完成LNA和PA之间的交换。CPU Core采用内部偏置电阻,此电阻主要用来为32MHz的晶振提供一个合适的工作电流。用1个32MHz的石英谐振器(XTAL1)和2个电容(C50和C34)构成一个32MHz的晶振电路。用1个32.768 kHz的石英谐振器(XTAL2)和2个电容(C43和C38、C7)构成一个32.768 kHz 的晶振电路。电压调节器为所有要求1.8V 电压的引脚和内部电源供电,C44 和 C45电容是去耦合电容,用来电源滤波,以提高芯片工作的稳定性。
基于上述所有实施例,恒压电源驱动模块106采用芯片L6562、恒流驱动模块105采用芯片LM3414、LDO线性稳压模块107采用芯片L120B,这种配套电源设计方案能够使得LED灯具具有高效节能性和高可靠性。
基于上述所有实施例,Wi-Fi传输采用芯片BCM43362,ZigBee模块104采用芯片CC2538。通过ZigBee通信网络,实现LED灯具自组网(可设任意组,灯距5~15米)或单灯访问和系统联网,同时进行实时LED照明信息采集、传输和定时开关、调光、调色、音乐、多模式场景等智能远程集中管控。
在移动终端中采用SPD开发基于Android或IOS嵌入式软件操作系统。该系统包括WinCE系统的BSP(Board Support Package)底层软件、APP(Application)应用层软件、MPEG(MP5)解码软件、MCU系统逻辑处理软件、总线(CAN,LIN,IE BUS)读取/应用管理软件、UI设计等。
该系统软件嵌入用户智能手机、平板电脑等前端控制设备,通过WiFi通信可管控LED接收终端工作,使用简便、功能可扩、软件易升级。
基于上述所有实施例,基于Wi-Fi+ZigBee通信的高效节能LED照明系统的工作原理如下:
MCU控制模块102接收来自无线传输模块101的控制信号或是照明控制开关模块103的输出信号。然后根据控制信号或照明控制开关模块103的输出信号,通过恒压恒流驱动模块将控制信号或照明控制开关模块103的输出信号输出给LED灯具,从而所述恒压恒流驱动模块控制LED灯具的发光颜色及亮度。即用户可通过移动终端控制LED灯具的工作状态,也可以通过照明控制开关模块103控制LED灯具的工作状态。同时,采用ZigBee模块104接收MCU控制模块102发送的控制信号,并将控制信号传输给LED灯具的自组网络。在传输控制信号的同时,根据控制信号采集LED灯具的照明信息、传输和定时开关、调光、调色、音乐、多模式场景等数据,并反馈给移动终端,从而实现LED灯具的智能远程集中管控。
上述基于Wi-Fi+ZigBee通信的高效节能LED照明系统通过无线Wi-Fi传输模块101将移动终端发出的控制信号发送给MCU控制模块102,再由MCU控制模块102解析控制信号后通过恒压恒流驱动模块发送给LED灯具。从而所述恒压恒流驱动模块控制LED灯具的发光颜色及亮度。同时ZigBee模块104还将MCU控制模块102发送的控制信号传输给LED灯具的自组网络,从而实现LED灯具的智能远程管控。上述基于Wi-Fi+ZigBee通信的高效节能LED照明系统无需重新布线,且通过移动终端及ZigBee模块104能够实现LED灯具的远程智能管控,方便用户获知LED灯具的工作状态并进行管控。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (9)

  1. 一种基于Wi-Fi+ZigBee通信的高效节能LED照明系统,用于根据移动终端发出的控制信号控制LED灯具工作状态,其特征在于,包括无线传输模块、MCU控制模块、照明控制开关模块、ZigBee模块及恒压恒流驱动模块;
    所述无线传输模块用于连接所述MCU控制模块和所述移动终端;所述MCU控制模块还分别连接所述照明控制开关模块、所述ZigBee模块及所述恒压恒流驱动模块;所述恒压恒流驱动模块连接所述LED灯具;
    所述无线传输模块用于将移动终端发出的控制信号传输给所述MCU控制模块;所述控制信号用于控制对应LED灯具的开关、发光颜色、亮度及多场景设定,所述MCU控制模块将接收的控制信号通过所述恒压恒流驱动模块发送给LED灯具;
    所述恒压恒流驱动模块根据接收的控制信号控制LED灯具;其中,所述MCU模块接收移动终端的控制信号后,读取所述控制信号并解析控制信号,然后将控制信号通过所述恒压恒流驱动模块发送给LED灯具,从而所述恒压恒流驱动模块驱动控制LED灯具的开关、发光颜色、亮度及多场景设定;
    所述ZigBee模块用于接收所述MCU控制模块发送的控制信号,并将接收的控制信号传输给LED灯具的自组网络;
    所述照明控制开关模块用于发出控制所述LED灯具的发光颜色及亮度的输出信号,所述MCU控制模块用于根据所述照明控制开关的输出信号控制所述恒压恒流驱动模块驱动所述LED灯具的开关、发光颜色、亮度及多场景设定。
  2. 根据权利要求1所述的基于Wi-Fi+ZigBee通信的高效节能LED照明系统,其特征在于,所述恒压恒流驱动模块包括恒压电源驱动模块和恒流驱动模块;
    所述恒压电源驱动模块输入端接市电、输出端接所述恒流驱动模块,所述恒流驱动模块还分别接所述MCU控制模块和所述LED灯具;所述恒压电源驱动模块用于将市电转换为直流电压后输出给所述恒流驱动模块,所述恒流驱动模块用于根据接收的信号控制所述LED灯具的发光颜色及亮度。
  3. 根据权利要求2所述的基于Wi-Fi+ZigBee通信的高效节能LED照明系统,其特征在于,还包括LDO线性稳压模块,所述LDO线性稳压模块分别连接所述恒流驱动模块及所述MCU控制模块,所述LDO线性稳压模块用于为所述MCU控制模块、所述恒流驱动模块及所述ZigBee模块提供热过载及限流保护。
  4. 根据权利要求1所述的基于Wi-Fi+ZigBee通信的高效节能LED照明系统,其特征在于,还包括与所述MCU控制模块连接的音乐控制模块;所述音乐控制模块用于根据所述LED灯具的发光颜色及亮度播放对应音乐的动态体现。
  5. 根据权利要求1所述的基于Wi-Fi+ZigBee通信的高效节能LED照明系统,其特征在于,还包括与所述MCU控制模块连接的存储模块,所述存储模块用于存储所述MCU控制模块的缓存信号。
  6. 根据权利要求1所述的基于Wi-Fi+ZigBee通信的高效节能LED照明系统,其特征在于,所述ZigBee模块采用非平衡天线连接非平衡变压器完成数据的发送与接收。
  7. 根据权利要求1所述的基于Wi-Fi+ZigBee通信的高效节能LED照明系统,其特征在于,所述ZigBee模块采用内部偏置电阻,所述内部偏置电阻用于为晶振提供工作电流。
  8. 根据权利要求1所述的基于Wi-Fi+ZigBee通信的高效节能LED照明系统,其特征在于,所述ZigBee模块用于根据所述MCU控制模块接收的控制信号采集LED灯具的照明信息、调光信息、调色信息、音乐控制信息。
  9. 根据权利要求1所述的基于Wi-Fi+ZigBee通信的高效节能LED照明系统,其特征在于,所述无线传输模块采用Wi-Fi传输。
PCT/CN2015/093216 2014-12-03 2015-10-29 基于Wi-Fi+ZigBee通信的高效节能LED照明系统 WO2016086740A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410727910.X 2014-12-03
CN201410727910.XA CN105722284A (zh) 2014-12-03 2014-12-03 基于WI-FI+ZigBee通信的高效节能LED照明系统

Publications (1)

Publication Number Publication Date
WO2016086740A1 true WO2016086740A1 (zh) 2016-06-09

Family

ID=56090981

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/093216 WO2016086740A1 (zh) 2014-12-03 2015-10-29 基于Wi-Fi+ZigBee通信的高效节能LED照明系统

Country Status (2)

Country Link
CN (1) CN105722284A (zh)
WO (1) WO2016086740A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108924862A (zh) * 2018-06-26 2018-11-30 杭州紫谷通信技术有限公司 面向工业干扰环境下的ZigBee性能改进系统及其改进方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10039174B2 (en) 2014-08-11 2018-07-31 RAB Lighting Inc. Systems and methods for acknowledging broadcast messages in a wireless lighting control network
US10531545B2 (en) 2014-08-11 2020-01-07 RAB Lighting Inc. Commissioning a configurable user control device for a lighting control system
US10085328B2 (en) 2014-08-11 2018-09-25 RAB Lighting Inc. Wireless lighting control systems and methods
CN106025497B (zh) * 2016-07-14 2019-08-06 浙江生辉照明有限公司 Fm天线、nfc天线、多功能天线和照明设备
CN106900107B (zh) * 2017-02-28 2019-03-15 吴富明 一种基于无线网络的智能照明装置及其控制方法
US10743394B2 (en) 2018-07-23 2020-08-11 RAB Lighting Inc. Two-layer lighting control network systems and methods
CN109308036A (zh) * 2018-09-25 2019-02-05 广州先越宝仑电子科技有限公司 一种智能台灯远程开关控制系统及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102811524A (zh) * 2011-05-31 2012-12-05 海洋王照明科技股份有限公司 一种led灯具及其控制电路
EP2651190A2 (en) * 2012-04-12 2013-10-16 LG Electronics, Inc. Lighting system, lighting apparatus, and lighting control method
CN103369790A (zh) * 2013-06-20 2013-10-23 浙江生辉照明有限公司 一种led照明装置及照明控制系统
CN103634984A (zh) * 2013-10-17 2014-03-12 路圣思科技有限公司 一种智能室内无线全彩 led 灯系统
CN204362352U (zh) * 2014-12-03 2015-05-27 深圳市裕富照明有限公司 基于WI-FI+ZigBee通信的高效节能LED照明系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014040118A1 (en) * 2012-09-06 2014-03-20 Lifi Labs Inc Controllable lighting devices

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102811524A (zh) * 2011-05-31 2012-12-05 海洋王照明科技股份有限公司 一种led灯具及其控制电路
EP2651190A2 (en) * 2012-04-12 2013-10-16 LG Electronics, Inc. Lighting system, lighting apparatus, and lighting control method
CN103369790A (zh) * 2013-06-20 2013-10-23 浙江生辉照明有限公司 一种led照明装置及照明控制系统
CN103634984A (zh) * 2013-10-17 2014-03-12 路圣思科技有限公司 一种智能室内无线全彩 led 灯系统
CN204362352U (zh) * 2014-12-03 2015-05-27 深圳市裕富照明有限公司 基于WI-FI+ZigBee通信的高效节能LED照明系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108924862A (zh) * 2018-06-26 2018-11-30 杭州紫谷通信技术有限公司 面向工业干扰环境下的ZigBee性能改进系统及其改进方法
CN108924862B (zh) * 2018-06-26 2023-04-14 杭州紫谷通信技术有限公司 面向工业干扰环境下的WiFi性能改进系统及其改进方法

Also Published As

Publication number Publication date
CN105722284A (zh) 2016-06-29

Similar Documents

Publication Publication Date Title
WO2016086740A1 (zh) 基于Wi-Fi+ZigBee通信的高效节能LED照明系统
CN203368836U (zh) Led照明装置及照明控制系统
CN103369790A (zh) 一种led照明装置及照明控制系统
CN103974512A (zh) 一种基于照明装置的无线音乐调光方法及其系统
CN201766739U (zh) 基于ZigBee与ARM技术的智能家居LED照明系统
CN204256397U (zh) 智能电器控制系统
AU2015101782A4 (en) A Wireless Controller for LED Christmas Lamp String and the LED Lamp String Thereof
CN105101557A (zh) 一种远程无线控制的多功能路灯
CN204437893U (zh) 一种具有摄像功能的led工矿灯
WO2016054848A1 (zh) 边沿信号计数装置及led驱动器
CN203859907U (zh) 一种基于照明装置的无线音乐调光系统
Kuo et al. System architecture directions for a software-defined lighting infrastructure
CN210183618U (zh) 一种基于电力载波技术的通信网关和照明系统
CN203014810U (zh) 一种电力猫
CN204362352U (zh) 基于WI-FI+ZigBee通信的高效节能LED照明系统
KR20150074435A (ko) Led 조명의 원격제어 및 모니터링 시스템
AU2019100624A4 (en) Light-Emitting Diode (LED) Voice Controller and LED Lamp
CN204316828U (zh) 一种智能灯控制装置
CN209250636U (zh) 基于电力线以太网的电源以太网网络融合适配装置
CN111315064A (zh) 一种led照明装置及照明控制系统
CN209002002U (zh) 一种带有Zigbee模块的交换机
CN205265975U (zh) 一种无线传感照明节电控制电路板
CN203206523U (zh) 基于远程控制的云照明led灯
WO2017143770A1 (zh) DALI和WiFi一体化无线LED灯具
CN207504965U (zh) 一种智能演播室中控控制电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15864747

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15864747

Country of ref document: EP

Kind code of ref document: A1