WO2017002694A1 - Continuous particle manufacturing device - Google Patents

Continuous particle manufacturing device Download PDF

Info

Publication number
WO2017002694A1
WO2017002694A1 PCT/JP2016/068607 JP2016068607W WO2017002694A1 WO 2017002694 A1 WO2017002694 A1 WO 2017002694A1 JP 2016068607 W JP2016068607 W JP 2016068607W WO 2017002694 A1 WO2017002694 A1 WO 2017002694A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
particle
processing container
airflow
processing
Prior art date
Application number
PCT/JP2016/068607
Other languages
French (fr)
Japanese (ja)
Inventor
公二 久澄
長谷川 浩司
長門 琢也
小林 誠
Original Assignee
株式会社パウレック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015131036A external-priority patent/JP6526502B2/en
Application filed by 株式会社パウレック filed Critical 株式会社パウレック
Priority to CN201680023548.5A priority Critical patent/CN107530664B/en
Priority to KR1020177026743A priority patent/KR102503372B1/en
Priority to EP16817802.8A priority patent/EP3318319B1/en
Priority to US15/572,933 priority patent/US10661238B2/en
Priority to PCT/JP2016/068607 priority patent/WO2017002694A1/en
Priority to CA2991105A priority patent/CA2991105C/en
Publication of WO2017002694A1 publication Critical patent/WO2017002694A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • B01J2/16Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic by suspending the powder material in a gas, e.g. in fluidised beds or as a falling curtain
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C5/00Apparatus in which the axial direction of the vortex is reversed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B4/00Separating solids from solids by subjecting their mixture to gas currents
    • B07B4/02Separating solids from solids by subjecting their mixture to gas currents while the mixtures fall

Definitions

  • the present invention relates to a continuous particle production apparatus for continuously producing granulated particles or coated particles in various production fields such as pharmaceuticals, chemicals, foods, agricultural chemicals, feeds, cosmetics, and fine chemicals.
  • a so-called spray granulation type production device in which a raw material liquid in which raw material powder is dispersed or dissolved is sprayed from a spray nozzle in a processing vessel and dried.
  • an ejector having an introduction pipe and a blow pipe for blowing hot air into the introduction pipe is provided below the nozzle for spraying the raw material liquid. Then, with this ejector, the fine particles or small diameter granules in the flow chamber are guided to the vicinity of the nozzle and coated with spray droplets sprayed from the nozzle, and the kinetic energy of the fine particles or small diameter granules in the vicinity of the nozzle is increased. The adhesion between each other is prevented.
  • the particles coated in the flow chamber are sent from the discharge port to the classification mechanism, and the fine particles or small-sized granules that have not reached the predetermined particle size / weight are blown up by the air supplied to the classification mechanism and returned to the flow chamber. It is.
  • a means for introducing an air flow downward or obliquely downward along the inner surface of the conical portion is provided near the upper end of the conical portion of the spray drying unit, and the drying adhered to the inner surface of the conical portion.
  • the dry powder after completion of the process is blown off by the air flow introduced from the air flow introduction means and forcibly transferred to the lower fluid granulation section, and also prevents the dry powder from adhering to and depositing on the inner surface of the cone section.
  • a cyclone is interposed in the exhaust line, and fine powder mixed in the exhaust is recovered by the cyclone and returned to the fluidized bed granulation unit.
  • a plurality of sets of jet nozzles for blowing high-pressure gas to the fluidized bed of powder in the granulation chamber are provided to suppress aggregation of particles.
  • a plurality of nozzles for ejecting fluid are provided on the wall surface of the granulation chamber.
  • the liquid ejected from each nozzle can be switched to gas, liquid, or steam.
  • Japanese Patent No. 4658652 Japanese Patent Laid-Open No. 2002-45675 Japanese Patent No. 3894686 Japanese Patent No. 3907605
  • the adhesion of the particles to the inner wall surface of the processing container often becomes a problem.
  • these particles are wetted by spraying the raw material liquid, the binder liquid or the film liquid, the adhesion to the inner wall surface of the processing container is further increased.
  • the particles adhere to the inner wall of the processing container not only the yield of the granulated or coated product decreases, but the particles adhering to the inner wall of the processing container fall into the processing container and fall into the processing container. It causes the quality to deteriorate.
  • Patent Documents 1 and 3 do not consider the problem of particle adhesion to the inner wall surface of the processing container.
  • the dry powder adhering to the inner surface of the conical portion of the spray drying unit is blown off by the air flow introduced from the air flow introducing means to prevent the adhering / depositing of the dry powder on the inner surface of the conical portion.
  • Patent Document 4 the powder adhering to the wall surface of the granulation chamber can be removed by ejecting gas from the nozzle.
  • the adhesion of particles having high adhesion properties is eliminated only by ejecting the gas. Is difficult.
  • An object of the present invention is to provide a configuration capable of effectively removing particles adhering to the inner surface of a processing container in an apparatus for continuously producing granulated or coated particles, thereby collecting powder products. To improve the rate and quality.
  • the present invention provides a processing container, a processing gas introduction unit that introduces a processing gas into the processing container, a raw material liquid that includes a raw material powder, and a binder provided in the processing container.
  • the particles or particles of the raw material powder that are continuously or intermittently charged into the processing vessel are suspended and flowed by the processing gas and are brought into contact with the processing liquid sprayed from the spray nozzle for granulation or
  • a continuous particle manufacturing apparatus that performs a coating process and discharges the processed particles after the granulation or coating process is completed, the particles are taken out from the processing container.
  • a sorting unit that sorts the particles taken out by the particle take-out unit into processed and unfinished particles, and discharge that continuously or intermittently discharges the processed particles sorted by the sorting unit.
  • a particle return unit that returns the unfinished particles that have been sorted by the sorting unit to the inside of the processing container, and the particle returning unit includes the unfinished particles in the processing container along with an air flow.
  • a continuous particle manufacturing apparatus characterized by spraying on a wall surface.
  • the particle return unit may include a discharge nozzle that discharges an air flow including the unprocessed particles in a tangential direction or an up-down direction with respect to an inner wall surface of the processing container.
  • the particle extraction unit may include a suction nozzle that sucks and takes out particles in the processing container by a suction airflow.
  • the sorting unit may include a classification mechanism that sorts the particles taken out by the particle take-out unit into treatment-completed particles and treatment-unfinished particles using a classification airflow.
  • the classification mechanism may be connected to the particle take-out portion and the particle return portion via a cyclone mechanism.
  • particles adhering to the inner surface of the processing vessel can be effectively removed, thereby improving the yield and quality of the granular product. Improvements can be made.
  • FIG. 10 is a cross-sectional view of the stirring blade taken along the line cc of FIG. 9B. It is a figure which shows notionally the embodiment which installed multiple spray nozzles in the bottom part of a processing container, and is the perspective view which looked at the processing container from diagonally upward. It is the figure which looked at the processing container from the upper part.
  • FIG. 1 conceptually shows a configuration example of a continuous particle manufacturing apparatus according to the first embodiment.
  • the continuous particle manufacturing apparatus is mainly composed of a fluidized bed apparatus, and a processing container 1 of the fluidized bed apparatus includes a processing chamber 2 for granulating or coating a granular material, and a processing chamber 2.
  • a solid-gas separation filter unit 3 disposed above and an exhaust chamber (not shown) provided above the filter unit 3 are provided.
  • the processing gas A1 such as hot air supplied from the gas introduction unit 4 is introduced into the processing container 1 through the gas dispersion plate 2a.
  • the spray nozzle 5 sprays a raw material liquid in which the raw material powder is dispersed or dissolved in a binder liquid or a film agent liquid.
  • the fluidized bed apparatus may be a so-called rolling fluidized bed apparatus in which a rotating disk (rolling plate) is installed above the gas dispersion plate 2a via a predetermined gap.
  • a particle take-out unit that takes out the particles P of the granular material from the inside of the processing container 1, in this embodiment, the suction nozzle 6 and the sorting unit 7 described later.
  • a particle return portion that is sprayed onto the inner wall surface 1a of the processing container 1 along with the air flow, in this embodiment, a discharge nozzle 8 is installed.
  • the suction nozzle 6 is connected to a cyclone mechanism 7a of the selection unit 7 to be described later via a suction means such as a suction ejector 9 outside the processing container 1. Further, the discharge nozzle 8 is connected to the cyclone mechanism 7 a outside the processing container 1.
  • the culm sorting unit 7 includes an upper cyclone mechanism 7a and a lower classification mechanism 7b.
  • the cyclone mechanism 7a swirls the particles P (processed uncompleted particles P0, process completed particles P1) sucked by the suction nozzle 6 and taken out from the inside of the processing container 1 together with the suction airflow (suction air) to increase the flow velocity.
  • the weight is lowered and lowered by its own weight and sent to the classification mechanism 7b.
  • the particles P that descend from the cyclone mechanism 7a to the classification mechanism 7b include the unprocessed particles P0 and the process completed particles P1, but depending on the performance of the cyclone mechanism 7a, the particles P0 that are not processed by the cyclone mechanism 7a. It is also possible to sort out the processed particles P1.
  • the classification mechanism 7b sorts the unprocessed particles P0 and the processed particles P1 by the classification airflow (classification air) A2 that blows upward.
  • the processing completion particles P1 selected by the classification mechanism 7b are discharged from the classification mechanism 7b to the discharge unit 10 below. Further, the unprocessed particles P0 selected by the classification mechanism 7b are sent to the discharge nozzle 8 by the classification airflow A2 or the mixed airflow of the classification airflow A2 and the suction airflow from the suction nozzle 6, and the airflow from the discharge nozzle 8 And discharged to the inner wall surface 1a of the processing container 1.
  • the shape and installation state of the suction nozzle 6 are set so that a suction air flow is generated in the tangential direction of the processing container 1 to suck the particles P in the processing container 1.
  • the Further, the form and the installation state of the discharge nozzle 8 are set so that the unfinished particles P0 are blown in a tangential direction on the inner wall surface 1a of the processing container 1 along with the air flow.
  • the discharge portion 8a of the discharge nozzle 8 is preferably formed in a flat shape in a direction perpendicular to the inner wall surface 1a in order to enhance the spraying effect on the inner wall surface 1a of the processing container 1. Further, the discharge portion of the suction nozzle 6 may be formed in the same manner to enhance the suction effect on the particles P.
  • the raw material liquid sprayed upward from the spray nozzle 5 installed at the bottom of the processing container 1 is dried by the processing gas A1 introduced into the processing container 1, and the raw material powder dispersed or dissolved in the raw material liquid Dry particles are produced.
  • the dry particles come into contact with the liquid picking of the raw material liquid sprayed from the spray nozzle 5 while floating in the processing container 1 by the processing gas A1 introduced into the processing container 1.
  • the droplets of the raw material liquid adhering to the dry particles are dried by the processing gas A1, and the particles of the raw material powder being liquefied are attached to the dry particles as the core, and the particle diameter of the dry particles grows.
  • the dry particles are further brought into contact with the liquid pickling of the raw material liquid sprayed from the spray nozzle 5 while floating in the processing container 1 by the processing gas A1 introduced into the processing container 1, and the particle size is reduced. Grows further. And the process of such particle growth is repeated and the process completion particle
  • unprocessed particles P0 including raw material particles serving as nuclei
  • a predetermined particle size or weight
  • a predetermined particle size or weight
  • the processing completed particles P1 that have reached the weight
  • the unprocessed particles P0 and the processed particles P1 are selected, and the processed particles P1 are discharged as a particle product, and the processing is continued for the unprocessed particles P0 to finish the processed particles P1.
  • the particles P in the processing container 1 in which the unprocessed particles P0 and the processing completed particles P1 are mixed are sucked by the suction air flow of the suction nozzle 6 and transferred to the cyclone mechanism 7a of the sorting unit 7.
  • the particles P transferred to the cyclone mechanism 7a have a reduced flow velocity while swirling in the cyclone mechanism 7a, are lowered by their own weight, and are sent to the classification mechanism 7b.
  • the particles P sent to the classification mechanism 7b are sorted into unprocessed particles P0 and processed particles P1 by the classification air flow A2 that blows upward, and the processed particles P1 descend downward against the classification air flow A2 by their own weight. And discharged to the discharge unit 10.
  • the unprocessed particles P0 are blown upward on the classified airflow A2 and returned to the cyclone mechanism 7a.
  • the classified airflow A2 When there are unprocessed particles P0 that have not moved down the cyclone mechanism 7a, the classified airflow A2, Alternatively, it is transferred to the discharge nozzle 8 by a mixed airflow of the classification airflow A2 and the suction airflow from the suction nozzle 6.
  • the unprocessed particles P0 transferred to the discharge nozzle 8 reach the discharge portion 8a by the airflow of the classified airflow A2 flowing through the discharge nozzle 8 or the mixed airflow of the classified airflow A2 and the suction airflow from the suction nozzle 6.
  • a suction unit that generates a suction force toward the discharge unit 8a for example, a suction ejector, or an air flow supply unit that supplies an air flow toward the discharge unit 8a may be provided at the connection portion with the mechanism 7a. .
  • the particle size (particle diameter) to be selected is appropriately adjusted. can do.
  • the particle size (particle diameter) to be selected by controlling the time during which the classification airflow A2 is introduced into the classification mechanism 7b manually or by a timer device and appropriately adjusting the classification time (for example, 0 to 1 hour). The accuracy can be adjusted as appropriate.
  • the suction nozzle 6 sucks the particles P in the processing container 1 in the tangential direction of the processing container 1, and the discharge nozzle 8 uses the unprocessed particles P0 as air currents.
  • the inner wall surface 1a of the processing container 1 is blown in the tangential direction, and the suction force (suction air flow) by the suction nozzle 6 and the discharge force (discharge air flow) by the discharge nozzle 8 work in the same circumferential direction. .
  • a swirl airflow A3 in the direction shown in the figure is generated in the processing container 1 by the suction force (suction airflow) of the suction nozzle 6 and the discharge force (discharge airflow) of the discharge nozzle 8, and the processing container is generated by this swirl airflow A3.
  • the particles P in 1 are dispersed, and generation of coarse particles due to adhesion and aggregation of the particles is prevented. Further, since the movement of the particles is promoted by the swirling airflow A3, the adhesion of the particles to the inner wall surface 1a of the processing container 1 is also suppressed.
  • the above-described processing operation is performed continuously or intermittently, whereby the processing-completed particles P1 (particle products) are continuously manufactured from the raw material liquid.
  • a fine particle product having a small particle size for example, a fine particle having a particle size of 100 ⁇ m or less can be continuously produced with a high yield.
  • FIG. 3 conceptually shows the continuous particle manufacturing apparatus according to the second embodiment.
  • the continuous particle production apparatus according to this embodiment is substantially different from the continuous particle production apparatus according to the first embodiment in that a plurality of discharge nozzles 8 (three in the example shown in the figure) are installed. It is in.
  • the discharge nozzles 8 are branched from the common portion 8 b, and the discharge portions 8 a of the discharge nozzles 8 are arranged along the vertical direction of the processing container 1.
  • at least one discharge nozzle 8 may be individually connected to the cyclone mechanism 7 a of the sorting unit 7. Since other matters are the same as those in the first embodiment, a duplicate description is omitted.
  • FIG. 4 conceptually shows the continuous particle manufacturing apparatus according to the third embodiment.
  • the continuous particle production apparatus according to this embodiment is substantially different from the continuous particle production apparatus according to the first and second embodiments in that a plurality of suction nozzles 6 (two in the example shown in the figure) are used. It is in the point where it was installed.
  • each suction nozzle 6 is branched from the common portion 6b.
  • at least one suction nozzle 6 may be individually connected to the cyclone mechanism 7 a of the sorting unit 7 via the ejector 9. Since other matters are the same as those in the first and second embodiments, redundant description is omitted.
  • FIG. 5 conceptually shows a continuous particle manufacturing apparatus according to the fourth embodiment.
  • the continuous particle manufacturing apparatus according to this embodiment is substantially different from the continuous particle manufacturing apparatus according to the first and second embodiments in that the discharge unit 8a of the discharge nozzle 8 is installed downward, and the discharge nozzle 8 is that the unfinished particles P0 are sprayed downward on the inner wall surface 1a of the processing container 1 along with the air flow.
  • the configuration of this embodiment is particularly effective when a so-called Wurster fluidized bed apparatus is used as the fluidized bed apparatus. That is, in the Wurster type fluidized bed apparatus, a draft tube (inner cylinder) is installed above the spray nozzle, and the spray flow (spray zone) of the processing liquid sprayed upward from the spray nozzle is guided upward by the draft tube. .
  • the particles that have risen in the draft tube as a result of the spray flow of the treatment liquid are ejected from above the draft tube, and then the flow velocity is lowered and falls along the inner wall surface 1 a of the treatment container 1.
  • the unfinished particles P0 from the discharge nozzle 8 downward along the inner wall surface 1a of the processing container 1 along with the air flow the movement of the particles descending along the inner wall surface 1a of the processing container 1 is promoted.
  • the adhesion of particles on the inner wall surface 1a is suppressed. Since other matters are the same as those in the first and second embodiments, redundant description is omitted.
  • bypass path 7b1 is connected to the upper part of the classification mechanism 7b of the sorting section 7, and the bypass path 7b1 is connected to the second discharge nozzle 8 ′ and the discharge section 10 via a switching valve, for example, the three-way switching valve 11. Connected to the discharge path 10a.
  • the three-way switching valve 11 is configured to block communication between the bypass path 7b1, the second discharge nozzle 8 ′ and the discharge path 10a by electromagnetic force, air pressure, hydraulic pressure, or manual operation, and the bypass path 7b1 and the second path It is possible to switch between a state in which the discharge nozzle 8 ′ is in communication and a state in which the bypass path 7b1 and the discharge path 10a are in communication.
  • An opening / closing valve 12 is interposed between the cyclone mechanism 7a and the classification mechanism 7b of the sorting unit 7.
  • the structure and function of the second discharge nozzle 8 ′ as the particle return unit are the same as or equivalent to those of the discharge nozzle 8 described above. However, instead of the second discharge nozzle 8 ′, a simple connection pipe may be used.
  • the classification mechanism 7b has a structure in which classification airflow (classification air) A2 and the like can be introduced into the inside thereof from below and particles can be retained therein.
  • the lower part of the classification mechanism 7b is composed of a mesh plate provided with a large number of ventilation holes having a predetermined hole diameter, and the classification airflow A2 and the like flow into the classification mechanism 7b through this mesh plate, while the particles Has a structure that cannot pass through the mesh plate.
  • the classification airflow A2 is introduced into the classification mechanism 7b through the main pipeline 13.
  • the auxiliary pipeline 14 is branched and connected to the main pipeline 13 via the release valve 15.
  • An auxiliary air flow A3 is supplied to the auxiliary pipeline 14.
  • bypass path 7b1 and the second discharge nozzle 8 communicate with each other by the three-way switching valve 11, and the bypass path 7b1 and the discharge path 10a are blocked.
  • the release valve 12 is open, and the cyclone mechanism 7a and the classification mechanism 7b communicate with each other. Further, the open valve 15 is closed, and only the classification airflow A2 is introduced into the classification mechanism 7b.
  • the particles P sucked by the suction nozzle 6 and sent from the cyclone mechanism 7a of the sorting unit 7 to the classification mechanism 7b are sorted into unprocessed particles P0 and processed particles P1 by the classification airflow A2 blown upward,
  • the processing-completed particle P1 descends downward against the classification airflow A2 by its own weight and stays in the lower part of the classification mechanism 7b.
  • the unprocessed particles P0 are blown upward on the classified air flow A2, and a part of them is transferred from the bypass path 7b1 to the second discharge nozzle 8 'via the three-way switching valve 11, and the rest is the cyclone. It is transferred to the discharge nozzle 8 via the mechanism 7a.
  • the particles P descending through the cyclone mechanism 7a are pushed by the momentum of the classification airflow A2 that blows upward from the lower part of the classification mechanism 7b to be lowered to the classification mechanism 7b. Instead, it may flow to the discharge nozzle 8 as it is. In order to prevent this, it is necessary to temporarily weaken or stop the classification airflow A2, which leads to complication of operation. Further, if the classification airflow A2 is temporarily stopped, the mesh plate of the classification mechanism 7b may be clogged.
  • the classified air flow A2 and a part of the processing incomplete particles P0 riding on this are passed from the bypass path 7b1 via the three-way switching valve 11. Since it is transferred (released) to the second discharge nozzle 8 ′, the particles P descending via the cyclone mechanism 7a are smoothly transferred to the classification mechanism 7b, and the sorting operation (classification operation) by the classification mechanism 7b is performed. Done effectively.
  • the bypass path 7b1 and the second discharge nozzle 8 ′ are switched by switching the three-way switching valve 11 as shown in FIG. Between the bypass path 7b1 and the discharge path 10a. Further, the on-off valve 12 is closed to shut off the cyclone mechanism 7a and the classification mechanism 7b.
  • the opening valve 15 of the auxiliary pipeline 14 is opened, and the auxiliary air flow A3 is supplied from the auxiliary pipeline 14 to the main pipeline 13.
  • a strong airflow airflow stronger than the classification airflow A2
  • the processing completion particles P1 staying in the lower part of the classification mechanism 7b are The classification mechanism 7b is effectively discharged to the discharge unit 10 via the bypass path 7b1, the three-way switching valve 11 and the discharge path 10a.
  • a two-way switching valve that switches between a state in which the bypass path 7b1 and the second discharge nozzle 8 'are in communication and a state in which the bypass path 7b1 and the discharge path 10a are in communication is used. Also good.
  • the gas ejection nozzle 21 may be installed on the wall portion of the processing container 1.
  • a plurality of, for example, three gas ejection nozzles 21 are installed along the circumferential direction at a predetermined height position of the processing container 1.
  • the predetermined height position where the gas ejection nozzle 21 is installed may be one height position, or may be a plurality of height positions separated in the vertical direction.
  • Each gas ejection nozzle 21 includes a support tube 21a attached to an installation hole 1b provided in the wall portion of the processing vessel 1 and a nozzle tube 21b inserted into the support tube 21a so as to be movable forward and backward.
  • Configured as The support tube 21a is fixed to the installation hole 1b by an appropriate means such as welding, and the distal end surface 21a1 thereof is flush with the inner wall surface 1a of the processing container 1.
  • the nozzle tube 21b includes a gas passage 21b1 and a nozzle hole 21b3 that communicates with the gas passage 21b1 and opens laterally in the vicinity of the distal end surface 21b2.
  • the gas passage 21b1 is connected to a gas supply port 21c, and a gas pipe connected to a gas supply source (such as a compressed air source) (not shown) is connected to the gas pipe 21c.
  • a gas supply source such as a compressed air source
  • the nozzle hole 21b3 is inclined in a predetermined direction with respect to the gas passage 21b1, and is oriented in one circumferential direction along the inner wall surface 1a of the processing container 1.
  • the tip surface 21b2 of the nozzle tube 21b has a curvature along the inner wall surface 1a of the processing container 1, and as shown in FIG. 8B, the nozzle tube 21b is held in the retracted position in the support tube 21a.
  • the front end surface 21b2 is flush with the front end surface 21a1 of the support tube 21a and the inner wall surface 1a of the processing container 1.
  • the tip opening of the nozzle hole 21b3 is blocked by the inner wall surface of the support tube 21a.
  • the holding of the nozzle tube 21b with respect to the support tube 21a is performed by a set screw 21d that penetrates the wall portion of the support tube 21a and is screwed to the support tube 21a.
  • a set screw 21d that penetrates the wall portion of the support tube 21a and is screwed to the support tube 21a.
  • the set screw 21d is tightened at this position (the advance position of the nozzle tube 21b) to hold the nozzle tube 21b on the support tube 21a.
  • compressed gas compressed air or the like
  • the compressed gas enters the nozzle hole 21b3 through the gas passage 21b1 and is ejected from the tip of the nozzle hole 21b3 into the processing container 1.
  • the nozzle hole 21b3 is oriented in one circumferential direction along the inner wall surface 1a of the processing container 1, and the tip of the nozzle hole 21b3 is located near the inner wall surface 1a of the processing container 1.
  • the compressed gas ejected from the nozzle hole 21b3 becomes a swirling flow that flows in the circumferential direction along the inner wall surface 1a of the processing container 1 ⁇ see the gas ejection nozzle 21 on the lower side of FIG. 8A ⁇ . . Due to the swirling flow of the compressed gas, the particulate particles P adhering to the inner wall surface 1 a of the processing container 1 are effectively removed from the inner wall surface 1 a and returned to the fluidized bed in the processing container 1. Further, when the particles moving in the processing vessel 1 riding on the swirling flow of the compressed gas collide with or come into contact with the inner wall surface 1a, the particles are subjected to a compacting action, and the spheroidization and heaviness thereof are promoted. Is done.
  • a rotating plate having a rotating plate having a stirring blade for example, a boss portion 2 b 1 and a plurality of (for example, three) stirring blades 2 b 2 at the bottom of the processing vessel 1.
  • 2b may be installed.
  • the rotating plate 2b is connected to the rotation drive shaft 2c and rotates in the arrow direction (R direction) shown in FIG.
  • the boss 2b1 has a substantially conical shape and is located at the center of rotation.
  • the stirring blades 2b2 respectively extend from the outer periphery of the boss portion 2b1 in the outer peripheral direction.
  • a mesh net 2d is installed below the rotating plate 2b, and a processing gas such as hot air supplied from the gas introduction unit 4 (see FIG.
  • the rotational front surface 2b21 of the stirring blade 2b2 has predetermined inclination angles ⁇ and ⁇ .
  • the inclination angle ⁇ is an angle formed by the lower edge of the front surface 2b21 in the rotational direction of the stirring blade 2b2 and the tangent S at the outer peripheral side corner of the lower edge, and the inclination angle ⁇ is set to 60 to 100 °. Is preferred.
  • the inclination angle ⁇ is an angle formed by the rotation direction front surface 2b21 of the stirring blade portion 2b2 and the upper surface of the rotating plate 2b, and the inclination angle ⁇ is preferably set to 25 to 45 °.
  • the rotating plate 2b having the stirring blade 2b2 By installing the rotating plate 2b having the stirring blade 2b2 at the bottom of the processing vessel 1, in particular, by setting the inclination angles ⁇ and ⁇ of the rotation direction front surface 2b21 of the stirring blade 2b2 to the above values, Along with the rotation, the particles P in the processing container 1 are given a movement that moves in the swiveling direction along the inner wall surface 1a1 of the processing container 1. The movement of the particles P facilitates the suction of the particles P by the suction nozzle 6 (see FIG. 1 and the like), and the particles P are efficiently taken out from the inside of the processing container 1.
  • the particles P are efficiently sent from the suction nozzle 6 (particle take-out unit) to the sorting unit 7 and the effect of sorting (classifying) the particles P by the sorting unit 7 is increased.
  • the product yield (particles having a desired particle size) Yield).
  • a plurality of spray nozzles 5 are installed at the bottom of the fluidized bed container 1 to spray the treatment liquid upward. Also good.
  • the installation position of each spray nozzle 5 is preferably shifted in the circumferential direction with respect to each filter 3 a of the filter unit 3.
  • the positions where the particles P in the processing container 1 are sucked by the suction nozzle 6 are the lower part, the middle part, the upper part of the fluidized bed of particles P and the fluidized bed of the particles P in the processing container 1. Of these positions, at least one position may be set.
  • the raw material liquid is sprayed into the processing container 1 from the spray nozzle 5 to continuously manufacture the processed particles P1 (particle product).
  • the spray nozzle 5 can be configured to spray the binder solution or the film agent solution upward, downward, or tangentially. Alternatively, spraying in these directions may be arbitrarily combined.
  • grains by the discharge part 10 are performed continuously. Or it may be performed intermittently.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Glanulating (AREA)

Abstract

Particles P within a processing vessel 1 wherein unprocessed particles P0 and processed particles P1 are mixed are sucked in by a suction nozzle 6 and are sent to a classification mechanism 7b from a cyclone mechanism 7a of a sorting unit 7. Particles P, which are sent to the classification mechanism 7b, are sorted into unprocessed particles P0 and processed particles P1 in a classification airflow A2 that is blown upward, and the processed particles P1 drop down against the classification airflow A2 by their own weight and are discharged in a discharge unit 10. The unprocessed particles P0 ride the classification airflow A2 and are blown upward, returning to the cyclone mechanism 7a, and are transferred to a discharge nozzle 8 by the classification airflow A2 or a mixed airflow of the classification airflow A2 and suction airflow from the suction nozzle 6 along with unprocessed particles P0 that have not dropped in the cyclone mechanism 7a, if any. The unprocessed particles P0 transferred to the discharge nozzle 8 move to a discharge section 8a by the airflow of the classification airflow A2 flowing within the discharge nozzle 8, and are blown against an inside wall surface 1a of the processing vessel 1 with the airflow from the discharge section 8a.

Description

連続式粒子製造装置Continuous particle production equipment
  本発明は、医薬品、化学薬品、食品、農薬、飼料、化粧品、ファインケミカル等の各種製造分野において、粉粒体の造粒又はコーティング粒子を連続的に製造する連続式粒子製造装置に関する。 The present invention relates to a continuous particle production apparatus for continuously producing granulated particles or coated particles in various production fields such as pharmaceuticals, chemicals, foods, agricultural chemicals, feeds, cosmetics, and fine chemicals.
  造粒又はコーティング粒子を連続的に製造する装置として、原料粉末を分散又は溶解させた原料液を処理容器内でスプレーノズルから噴霧して乾燥させる、いわゆる噴霧造粒方式の製造装置が知られている(下記の特許文献1~4)。 As a device for continuously producing granulated or coated particles, a so-called spray granulation type production device is known in which a raw material liquid in which raw material powder is dispersed or dissolved is sprayed from a spray nozzle in a processing vessel and dried. (Patent Documents 1 to 4 below).
  特許文献1に開示された装置では、原料液を噴霧するノズルの下方に、導入管と、この導入管内に熱風を吹き込む吹込管とを有するエジェクタを設けている。そして、このエジェクタによって、流動室内の微粒子又は小径顆粒をノズル付近に導いて、ノズルから噴霧される噴霧液滴でコーティングすると共に、ノズル付近での微粒子又は小径顆粒の運動エネルギーを増大させて、粒子同士の付着を防止している。流動室内でコーティング処理された粒子は、排出口から分級機構に送られ、所定の粒子径・重量に達していない微粒子又は小径顆粒は、分級機構に供給される空気で吹き上げられて流動室に戻される。 In the apparatus disclosed in Patent Document 1, an ejector having an introduction pipe and a blow pipe for blowing hot air into the introduction pipe is provided below the nozzle for spraying the raw material liquid. Then, with this ejector, the fine particles or small diameter granules in the flow chamber are guided to the vicinity of the nozzle and coated with spray droplets sprayed from the nozzle, and the kinetic energy of the fine particles or small diameter granules in the vicinity of the nozzle is increased. The adhesion between each other is prevented. The particles coated in the flow chamber are sent from the discharge port to the classification mechanism, and the fine particles or small-sized granules that have not reached the predetermined particle size / weight are blown up by the air supplied to the classification mechanism and returned to the flow chamber. It is.
  特許文献2に開示された装置では、噴霧乾燥部の円錐部の上端付近に、この円錐部の内面に沿って下向き又は斜め下向きに気流を導入する手段を設け、円錐部の内面に付着した乾燥工程終了後の乾燥粉体を気流導入手段から導入される気流によって吹き飛ばして、下方の流動造粒部に強制的に移送すると共に、円錐部の内面への乾燥粉体の付着・堆積を防止している。排気ラインにはサイクロンが介装されており、排気に混じった微粉はサイクロンにより回収されて流動層造粒部に戻される。 In the apparatus disclosed in Patent Document 2, a means for introducing an air flow downward or obliquely downward along the inner surface of the conical portion is provided near the upper end of the conical portion of the spray drying unit, and the drying adhered to the inner surface of the conical portion. The dry powder after completion of the process is blown off by the air flow introduced from the air flow introduction means and forcibly transferred to the lower fluid granulation section, and also prevents the dry powder from adhering to and depositing on the inner surface of the cone section. ing. A cyclone is interposed in the exhaust line, and fine powder mixed in the exhaust is recovered by the cyclone and returned to the fluidized bed granulation unit.
  特許文献3に開示された装置では、造粒室内の粉体の流動層に対して高圧気体を吹き付ける複数組のジェットノズルを設けて、粒子同士の凝集を抑制している。 In the apparatus disclosed in Patent Document 3, a plurality of sets of jet nozzles for blowing high-pressure gas to the fluidized bed of powder in the granulation chamber are provided to suppress aggregation of particles.
  特許文献4に開示された装置では、造粒室内壁面に対して流体を噴出するノズルを複数設けている。各ノズルから噴出する液体は、気体、液体、またはスチームに切り替えることができる。 In the apparatus disclosed in Patent Document 4, a plurality of nozzles for ejecting fluid are provided on the wall surface of the granulation chamber. The liquid ejected from each nozzle can be switched to gas, liquid, or steam.
特許第4658652号公報Japanese Patent No. 4658652 特開2002-45675号公報Japanese Patent Laid-Open No. 2002-45675 特許第3894686号公報Japanese Patent No. 3894686 特許第3907605号公報Japanese Patent No. 3907605
  粘着性を有する粒子や粒子径の小さい微粒子等、付着性の高い粒子を処理容器内で造粒又はコーティング処理する際に、処理容器の内壁面への粒子の付着が問題になることが多い。特に、これらの粒子が原料液、結合剤液又は膜剤液の噴霧によって湿潤すると、処理容器内壁面への付着性がより高まる。そして、処理容器内壁面への粒子付着が起こると、造粒又はコーティング製品の収率が低下するばかりではなく、処理容器内壁面に付着した粒子が塊となって処理容器内に落下して製品品質を低下させる原因となる。 When highly adherent particles such as sticky particles and fine particles having a small particle diameter are granulated or coated in the processing container, the adhesion of the particles to the inner wall surface of the processing container often becomes a problem. In particular, when these particles are wetted by spraying the raw material liquid, the binder liquid or the film liquid, the adhesion to the inner wall surface of the processing container is further increased. And when the particles adhere to the inner wall of the processing container, not only the yield of the granulated or coated product decreases, but the particles adhering to the inner wall of the processing container fall into the processing container and fall into the processing container. It causes the quality to deteriorate.
  しかしながら、特許文献1、3は、処理容器内壁面への粒子付着の問題は考慮していない。また、特許文献2では、噴霧乾燥部の円錐部の内面に付着した乾燥粉体を気流導入手段から導入される気流によって吹き飛ばして、円錐部の内面への乾燥粉体の付着・堆積を防止しているが、付着性の高い粒子の付着を気流の吹き付けだけで払い落とすのは難しい。同様に、特許文献4では、ノズルから気体を噴出させることにより、造粒室内壁面に付着した粉体を払い落とすことができるが、付着性の高い粒子の付着を気体の噴出だけで払い落とすのは難しい。 However, Patent Documents 1 and 3 do not consider the problem of particle adhesion to the inner wall surface of the processing container. Further, in Patent Document 2, the dry powder adhering to the inner surface of the conical portion of the spray drying unit is blown off by the air flow introduced from the air flow introducing means to prevent the adhering / depositing of the dry powder on the inner surface of the conical portion. However, it is difficult to remove the adherence of highly adherent particles by simply blowing an air stream. Similarly, in Patent Document 4, the powder adhering to the wall surface of the granulation chamber can be removed by ejecting gas from the nozzle. However, the adhesion of particles having high adhesion properties is eliminated only by ejecting the gas. Is difficult.
  本願発明の課題は、造粒又はコーティング粒子を連続的に製造する装置において、処理容器内面に付着した粒子を効果的に払い落とすことができる構成を提供し、これにより、粉粒体製品の収率向上や品質向上を図ることである。 An object of the present invention is to provide a configuration capable of effectively removing particles adhering to the inner surface of a processing container in an apparatus for continuously producing granulated or coated particles, thereby collecting powder products. To improve the rate and quality.
  上記課題を解決するため、本発明は、処理容器と、前記処理容器の内部に処理気体を導入する処理気体導入部と、前記処理容器の内部に設けられ、原料粉末を含む原料液、結合剤液及び膜剤液のうち一の処理液を噴霧するスプレーノズルとを備え、前記処理容器内で前記スプレーノズルから噴霧される原料液の乾燥によって連続的又は断続的に生成される原料粉末の乾燥粒子、または、前記処理容器内に連続的又は断続的に投入される原料粉末の粒子を、前記処理気体によって浮遊流動させつつ、前記スプレーノズルから噴霧される前記処理液と接触させて造粒又はコーティング処理を行い、前記造粒又はコーティング処理が完了した処理完了粒子を排出する連続式粒子製造装置において、前記処理容器の内部から粒子を取り出す粒子取出し部と、前記粒子取出し部で取り出された粒子を処理完了粒子と処理未完了粒子とに選別する選別部と、前記選別部で選別された処理完了粒子を連続的又は断続的に排出する排出部と、前記選別部で選別された処理未完了粒子を前記処理容器の内部に戻す粒子戻し部とを備え、前記粒子戻し部は、前記処理未完了粒子を気流と伴に前記処理容器の内壁面に吹き付けることを特徴とする連続式粒子製造装置を提供する。 In order to solve the above-described problems, the present invention provides a processing container, a processing gas introduction unit that introduces a processing gas into the processing container, a raw material liquid that includes a raw material powder, and a binder provided in the processing container. A spray nozzle for spraying one of the liquid and the film liquid, and drying the raw material powder generated continuously or intermittently by drying the raw material liquid sprayed from the spray nozzle in the processing container The particles or particles of the raw material powder that are continuously or intermittently charged into the processing vessel are suspended and flowed by the processing gas and are brought into contact with the processing liquid sprayed from the spray nozzle for granulation or In a continuous particle manufacturing apparatus that performs a coating process and discharges the processed particles after the granulation or coating process is completed, the particles are taken out from the processing container. And a sorting unit that sorts the particles taken out by the particle take-out unit into processed and unfinished particles, and discharge that continuously or intermittently discharges the processed particles sorted by the sorting unit. And a particle return unit that returns the unfinished particles that have been sorted by the sorting unit to the inside of the processing container, and the particle returning unit includes the unfinished particles in the processing container along with an air flow. Provided is a continuous particle manufacturing apparatus characterized by spraying on a wall surface.
 上記構成において、前記粒子戻し部は、前記処理未完了粒子を含む気流を、前記処理容器の内壁面に対して接線方向又は上下方向に吐出する吐出ノズルを備えている構成とすることができる。 In the above-described configuration, the particle return unit may include a discharge nozzle that discharges an air flow including the unprocessed particles in a tangential direction or an up-down direction with respect to an inner wall surface of the processing container.
 上記構成において、前記粒子取出し部は、前記処理容器内の粒子を吸引気流により吸引して取り出す吸引ノズルを備えている構成とすることができる。 In the above-described configuration, the particle extraction unit may include a suction nozzle that sucks and takes out particles in the processing container by a suction airflow.
 上記構成において、前記選別部は、前記粒子取出し部で取り出された粒子を分級気流により処理完了粒子と処理未完了粒子とに選別する分級機構を備えている構成とすることができる。 In the above-described configuration, the sorting unit may include a classification mechanism that sorts the particles taken out by the particle take-out unit into treatment-completed particles and treatment-unfinished particles using a classification airflow.
  上記構成において、前記分級機構はサイクロン機構を介して前記粒子取出し部と前記粒子戻し部に接続されている構成とすることができる。 に お い て In the above configuration, the classification mechanism may be connected to the particle take-out portion and the particle return portion via a cyclone mechanism.
 本発明によれば、造粒又はコーティング粒子を連続的に製造する装置において、処理容器内面に付着した粒子を効果的に払い落とすことができ、これにより、粉粒体製品の収率向上や品質向上を図ることができる。 According to the present invention, in an apparatus for continuously producing granulated or coated particles, particles adhering to the inner surface of the processing vessel can be effectively removed, thereby improving the yield and quality of the granular product. Improvements can be made.
第1の実施形態に係る連続式粒子製造装置を概念的に示す図である。It is a figure which shows notionally the continuous type particle manufacturing apparatus which concerns on 1st Embodiment. 処理容器の内部を上方から見た図である。It is the figure which looked at the inside of a processing container from the upper part. 吸引ノズルと吐出ノズルを側方からみた図である。It is the figure which looked at the suction nozzle and the discharge nozzle from the side. 第2の実施形態に係る連続式粒子製造装置を概念的に示す図である。It is a figure which shows notionally the continuous type particle manufacturing apparatus which concerns on 2nd Embodiment. 第3の実施形態に係る連続式粒子製造装置を概念的に示す図である。It is a figure which shows notionally the continuous type particle manufacturing apparatus which concerns on 3rd Embodiment. 第4の実施形態に係る連続式粒子製造装置を概念的に示す図である。It is a figure which shows notionally the continuous type particle manufacturing apparatus which concerns on 4th Embodiment. 第5の実施形態に係る連続式粒子製造装置を概念的に示す図である。It is a figure which shows notionally the continuous type particle manufacturing apparatus which concerns on 5th Embodiment. 第5の実施形態に係る連続式粒子製造装置を概念的に示す図である。It is a figure which shows notionally the continuous type particle manufacturing apparatus which concerns on 5th Embodiment. 処理容器の壁部に気体噴出ノズルを設置した実施形態を示す図であり、処理容器の横断面図である。It is a figure which shows embodiment which installed the gas ejection nozzle in the wall part of the processing container, and is a cross-sectional view of a processing container. 気体噴出ノズル周辺部の拡大断面図である。It is an expanded sectional view of a gas jet nozzle peripheral part. 攪拌羽根を有する回転板を処理容器の底部に設置した実施形態を示す図であり、処理容器の底部周辺の縦断面図である。It is a figure which shows embodiment which installed the rotating plate which has a stirring blade in the bottom part of a processing container, and is a longitudinal cross-sectional view of the bottom part periphery of a processing container. 回転板を上方からみた図である。It is the figure which looked at the rotating plate from the upper part. 図9(b)のc-c線に沿った攪拌羽根の断面図である。FIG. 10 is a cross-sectional view of the stirring blade taken along the line cc of FIG. 9B. 処理容器の底部にスプレーノズルを複数設置した実施形態を概念的に示す図であり、処理容器を斜め上方からみた斜視図である。It is a figure which shows notionally the embodiment which installed multiple spray nozzles in the bottom part of a processing container, and is the perspective view which looked at the processing container from diagonally upward. 処理容器を上方からみた図である。It is the figure which looked at the processing container from the upper part.
 以下、本発明の実施形態を図面に従って説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1は、第1の実施形態に係る連続式粒子製造装置の一構成例を概念的に示している。 FIG. 1 conceptually shows a configuration example of a continuous particle manufacturing apparatus according to the first embodiment.
  この実施形態に係る連続式粒子製造装置は、流動層装置を主体として構成され、流動層装置の処理容器1は、粉粒体の造粒又はコーティング処理を行う処理室2と、処理室2の上方に配置された固気分離用のフィルター部3と、フィルター部3の上方に設けられた排気室(図示省略)とを備えている。 The continuous particle manufacturing apparatus according to this embodiment is mainly composed of a fluidized bed apparatus, and a processing container 1 of the fluidized bed apparatus includes a processing chamber 2 for granulating or coating a granular material, and a processing chamber 2. A solid-gas separation filter unit 3 disposed above and an exhaust chamber (not shown) provided above the filter unit 3 are provided.
  処理室2の底部には、パンチングメタル等の多孔板(又は金網)で構成された気体分散板2aが配設されている。気体導入部4から供給される熱風等の処理気体A1は、気体分散板2aを介して処理容器1内に導入される。また、処理室2の底部には処理液(原料液、結合剤液又は膜剤液)を上向きに噴霧するスプレーノズル5が設置されている。この実施形態において、スプレーノズル5は、原料粉末を結合剤液又は膜剤液に分散又は溶解させた原料液を噴霧する。また、流動層装置は、気体分散板2aの上方に所定の隙間を介して回転円板(転動板)を設置した、いわゆる転動流動層装置であっても良い。 A gas dispersion plate 2 a made of a perforated plate (or metal mesh) such as punching metal is disposed at the bottom of the soot treatment chamber 2. The processing gas A1 such as hot air supplied from the gas introduction unit 4 is introduced into the processing container 1 through the gas dispersion plate 2a. Further, a spray nozzle 5 for spraying a processing liquid (raw material liquid, binder liquid or film agent liquid) upward is installed at the bottom of the processing chamber 2. In this embodiment, the spray nozzle 5 sprays a raw material liquid in which the raw material powder is dispersed or dissolved in a binder liquid or a film agent liquid. The fluidized bed apparatus may be a so-called rolling fluidized bed apparatus in which a rotating disk (rolling plate) is installed above the gas dispersion plate 2a via a predetermined gap.
  処理容器1の内部には、処理容器1の内部から粉粒体の粒子Pを取り出す粒子取出し部、この実施形態では吸引ノズル6と、後述する選別部7で選別された処理未完了粒子P0を気流と伴に処理容器1の内壁面1aに吹き付ける粒子戻し部、この実施形態では吐出ノズル8とが設置されている。吸引ノズル6は、処理容器1の外部で吸引手段、例えば吸引エジェクタ9を介して、後述する選別部7のサイクロン機構7aに接続される。また、吐出ノズル8は、処理容器1の外部でサイクロン機構7aに接続される。 In the inside of the processing container 1, unprocessed particles P0 sorted by a particle take-out unit that takes out the particles P of the granular material from the inside of the processing container 1, in this embodiment, the suction nozzle 6 and the sorting unit 7 described later. A particle return portion that is sprayed onto the inner wall surface 1a of the processing container 1 along with the air flow, in this embodiment, a discharge nozzle 8 is installed. The suction nozzle 6 is connected to a cyclone mechanism 7a of the selection unit 7 to be described later via a suction means such as a suction ejector 9 outside the processing container 1. Further, the discharge nozzle 8 is connected to the cyclone mechanism 7 a outside the processing container 1.
  選別部7は、上方側のサイクロン機構7aと、下方側の分級機構7bとで構成される。サイクロン機構7aは、吸引ノズル6で吸引され、吸引気流(吸引エアー)と伴に処理容器1の内部から取り出された粒子P(処理未完了粒子P0、処理完了粒子P1)を旋回させて流速を低下させ、自重により降下させて分級機構7bに送る。サイクロン機構7aから分級機構7bに降下する粒子Pには、処理未完了粒子P0と処理完了粒子P1が混在する場合が多いが、サイクロン機構7aの性能によっては、サイクロン機構7aで処理未完了粒子P0と処理完了粒子P1とを選別することも可能である。 The culm sorting unit 7 includes an upper cyclone mechanism 7a and a lower classification mechanism 7b. The cyclone mechanism 7a swirls the particles P (processed uncompleted particles P0, process completed particles P1) sucked by the suction nozzle 6 and taken out from the inside of the processing container 1 together with the suction airflow (suction air) to increase the flow velocity. The weight is lowered and lowered by its own weight and sent to the classification mechanism 7b. In many cases, the particles P that descend from the cyclone mechanism 7a to the classification mechanism 7b include the unprocessed particles P0 and the process completed particles P1, but depending on the performance of the cyclone mechanism 7a, the particles P0 that are not processed by the cyclone mechanism 7a. It is also possible to sort out the processed particles P1.
  この実施形態において、分級機構7bは、上方に吹き上げる分級気流(分級エアー)A2によって、処理未完了粒子P0と処理完了粒子P1とを選別する。分級機構7bによって選別された処理完了粒子P1は、分級機構7bから下方の排出部10に排出される。また、分級機構7bによって選別された処理未完了粒子P0は、分級気流A2、または、分級気流A2と吸引ノズル6からの吸引気流との混合気流によって吐出ノズル8に送られ、吐出ノズル8から気流と伴に処理容器1の内壁面1aに吐出する。 に お い て In this embodiment, the classification mechanism 7b sorts the unprocessed particles P0 and the processed particles P1 by the classification airflow (classification air) A2 that blows upward. The processing completion particles P1 selected by the classification mechanism 7b are discharged from the classification mechanism 7b to the discharge unit 10 below. Further, the unprocessed particles P0 selected by the classification mechanism 7b are sent to the discharge nozzle 8 by the classification airflow A2 or the mixed airflow of the classification airflow A2 and the suction airflow from the suction nozzle 6, and the airflow from the discharge nozzle 8 And discharged to the inner wall surface 1a of the processing container 1.
  図2に模式的に示すように、吸引ノズル6は、処理容器1の接線方向に吸引気流を発生させて、処理容器1内の粒子Pを吸引するように、その形態及び設置状態が設定される。また、吐出ノズル8は、処理未完了粒子P0を気流と伴に、処理容器1の内壁面1aに接線方向に吹き付けるように、その形態及び設置状態が設定される。吐出ノズル8の吐出部8aは、好ましくは、処理容器1の内壁面1aへの吹き付け効果を高めるため、内壁面1aと直交する方向に偏平な形態に形成される。また、吸引ノズル6の吐出部も同様の形態にして、粒子Pに対する吸引効果を高めても良い。 As schematically shown in FIG. 2, the shape and installation state of the suction nozzle 6 are set so that a suction air flow is generated in the tangential direction of the processing container 1 to suck the particles P in the processing container 1. The Further, the form and the installation state of the discharge nozzle 8 are set so that the unfinished particles P0 are blown in a tangential direction on the inner wall surface 1a of the processing container 1 along with the air flow. The discharge portion 8a of the discharge nozzle 8 is preferably formed in a flat shape in a direction perpendicular to the inner wall surface 1a in order to enhance the spraying effect on the inner wall surface 1a of the processing container 1. Further, the discharge portion of the suction nozzle 6 may be formed in the same manner to enhance the suction effect on the particles P.
  処理容器1の底部に設置されたスプレーノズル5から上向きに噴霧された原料液は、処理容器1内に導入される処理気体A1によって乾燥されて、原料液中に分散又は溶解された原料粉末の乾燥粒子が生成される。この乾燥粒子は、処理容器1内に導入される処理気体A1によって処理容器1内を浮遊流動する間に、スプレーノズル5から噴霧される原料液の液摘と接触する。乾燥粒子に付着した原料液の液滴は処理気体A1によって乾燥され、液摘中の原料粉末の粒子が核となる乾燥粒子に付着して、乾燥粒子の粒子径が成長する。この乾燥粒子は、さらに、処理容器1内に導入される処理気体A1によって処理容器1内を浮遊流動する間に、スプレーノズル5から噴霧される原料液の液摘と接触して、粒子径が更に成長する。そして、このような粒子成長の過程が繰り返されて、所定の粒子径(又は重量)をもった処理完了粒子P1(造粒物)が生成される(いわゆるレイヤリング造粒)。尚、処理過程で原料粉末を処理容器1内に散布するようにしても良い。 The raw material liquid sprayed upward from the spray nozzle 5 installed at the bottom of the processing container 1 is dried by the processing gas A1 introduced into the processing container 1, and the raw material powder dispersed or dissolved in the raw material liquid Dry particles are produced. The dry particles come into contact with the liquid picking of the raw material liquid sprayed from the spray nozzle 5 while floating in the processing container 1 by the processing gas A1 introduced into the processing container 1. The droplets of the raw material liquid adhering to the dry particles are dried by the processing gas A1, and the particles of the raw material powder being liquefied are attached to the dry particles as the core, and the particle diameter of the dry particles grows. The dry particles are further brought into contact with the liquid pickling of the raw material liquid sprayed from the spray nozzle 5 while floating in the processing container 1 by the processing gas A1 introduced into the processing container 1, and the particle size is reduced. Grows further. And the process of such particle growth is repeated and the process completion particle | grains P1 (granulated material) with a predetermined particle diameter (or weight) are produced | generated (what is called layering granulation). In addition, you may make it disperse | distribute raw material powder in the processing container 1 in the process.
  上記の造粒又はコーティング処理の過程で、処理容器1内には、所定の粒子径(又は重量)に達しない処理未完了粒子P0(核となる原料粒子を含む)と、所定の粒子径(又は重量)に達した処理完了粒子P1とが混在することになる。そこで、処理未完了粒子P0と処理完了粒子P1とを選別し、処理完了粒子P1は粒子製品として排出し、処理未完了粒子P0に対しては処理を続行して、処理完了粒子P1に仕上げる。 In the course of the above granulation or coating process, in the processing container 1, unprocessed particles P0 (including raw material particles serving as nuclei) that do not reach a predetermined particle size (or weight), and a predetermined particle size ( Alternatively, the processing completed particles P1 that have reached the weight) are mixed. Therefore, the unprocessed particles P0 and the processed particles P1 are selected, and the processed particles P1 are discharged as a particle product, and the processing is continued for the unprocessed particles P0 to finish the processed particles P1.
  処理未完了粒子P0と処理完了粒子P1が混在した処理容器1内の粒子Pは、吸引ノズル6の吸引気流によって吸引されて、選別部7のサイクロン機構7aに移送される。サイクロン機構7aに移送された粒子Pは、サイクロン機構7a内を旋回する間に流速が低下して、自重により降下して分級機構7bに送られる。分級機構7bに送られた粒子Pは、上方に吹き上げる分級気流A2によって、処理未完了粒子P0と処理完了粒子P1とに選別され、処理完了粒子P1は自重により分級気流A2に逆らって下方に降下して排出部10に排出される。また、処理未完了粒子P0は分級気流A2に乗って上方に吹き上げられてサイクロン機構7aに戻り、サイクロン機構7aを降下しなかった処理未完了粒子P0がある場合は該粒子と共に、分級気流A2、または、分級気流A2と吸引ノズル6からの吸引気流との混合気流によって、吐出ノズル8に移送される。そして、吐出ノズル8に移送された処理未完了粒子P0は、吐出ノズル8内を流れる分級気流A2の気流、または、分級気流A2と吸引ノズル6からの吸引気流との混合気流によって吐出部8aまで進み、吐出部8aから気流と伴に処理容器1の内壁面1aに吹き付けられる。この処理容器1の内壁面1aに接線方向に吹き付けられる気流と処理未完了粒子P0によって、処理容器1の内壁面1aに付着した粉体粒子が効果的に払い落とされて、処理容器1内の流動層に戻される。また、吐出ノズル8から処理容器1内に吐出された処理未完了粒子P0は、上記の払い落とし作用を行った後、処理容器1内の流動層に戻り、造粒又はコーティング処理を受ける。尚、吐出ノズル8の吐出部8aから吐出される気流及び処理未完了粒子P0の流速を高めて、払い落とし効果をより一層高めるために、吐出ノズル8の一部、または、吐出ノズル8とサイクロン機構7aとの接続部に、吐出部8a側に向かう吸引力を発生させる吸引手段、例えば吸引エジェクタを設けたり、あるいは、吐出部8aに向かう気流を供給する気流供給手段を設けたりしても良い。 The particles P in the processing container 1 in which the unprocessed particles P0 and the processing completed particles P1 are mixed are sucked by the suction air flow of the suction nozzle 6 and transferred to the cyclone mechanism 7a of the sorting unit 7. The particles P transferred to the cyclone mechanism 7a have a reduced flow velocity while swirling in the cyclone mechanism 7a, are lowered by their own weight, and are sent to the classification mechanism 7b. The particles P sent to the classification mechanism 7b are sorted into unprocessed particles P0 and processed particles P1 by the classification air flow A2 that blows upward, and the processed particles P1 descend downward against the classification air flow A2 by their own weight. And discharged to the discharge unit 10. Further, the unprocessed particles P0 are blown upward on the classified airflow A2 and returned to the cyclone mechanism 7a. When there are unprocessed particles P0 that have not moved down the cyclone mechanism 7a, the classified airflow A2, Alternatively, it is transferred to the discharge nozzle 8 by a mixed airflow of the classification airflow A2 and the suction airflow from the suction nozzle 6. The unprocessed particles P0 transferred to the discharge nozzle 8 reach the discharge portion 8a by the airflow of the classified airflow A2 flowing through the discharge nozzle 8 or the mixed airflow of the classified airflow A2 and the suction airflow from the suction nozzle 6. It advances and is sprayed from the discharge part 8a to the inner wall surface 1a of the processing container 1 with the airflow. The powder particles adhering to the inner wall surface 1a of the processing container 1 are effectively wiped off by the air flow blown tangentially to the inner wall surface 1a of the processing container 1 and the processing incomplete particles P0. Returned to fluidized bed. Further, the unfinished particles P0 discharged from the discharge nozzle 8 into the processing container 1 return to the fluidized bed in the processing container 1 after being subjected to the above-described dropping operation, and undergo granulation or coating processing. In order to increase the airflow discharged from the discharge portion 8a of the discharge nozzle 8 and the flow velocity of the unprocessed particles P0 and further increase the effect of removing, a part of the discharge nozzle 8, or the discharge nozzle 8 and the cyclone. A suction unit that generates a suction force toward the discharge unit 8a, for example, a suction ejector, or an air flow supply unit that supplies an air flow toward the discharge unit 8a may be provided at the connection portion with the mechanism 7a. .
  上記の分級気流A2の流量を、減圧装置(例えば0~0.5MPa)や流量調整弁(例えば0~1000L/min)により調節可能とすることで、選別する粒子サイズ(粒子径)を適宜調節することができる。あるいは、上記の分級気流A2が分級機構7bに導入される時間を手動やタイマー装置で制御して、分級時間を適宜調節(例えば0~1時間)することにより、選別する粒子サイズ(粒子径)の精度を適宜調整することができる。 By adjusting the flow rate of the classification airflow A2 with a decompression device (for example, 0 to 0.5 MPa) or a flow rate adjusting valve (for example, 0 to 1000 L / min), the particle size (particle diameter) to be selected is appropriately adjusted. can do. Alternatively, the particle size (particle diameter) to be selected by controlling the time during which the classification airflow A2 is introduced into the classification mechanism 7b manually or by a timer device and appropriately adjusting the classification time (for example, 0 to 1 hour). The accuracy can be adjusted as appropriate.
  図2に示すように、この実施形態において、吸引ノズル6は、処理容器1内の粒子Pを処理容器1の接線方向に吸引し、また、吐出ノズル8は、処理未完了粒子P0を気流と伴に処理容器1の内壁面1aに接線方向に吹き付けるように構成され、しかも、吸引ノズル6による吸引力(吸引気流)と吐出ノズル8による吐出力(吐出気流)は周方向の同じ向きに働く。そのため、吸引ノズル6の吸引力(吸引気流)と吐出ノズル8の吐出力(吐出気流)によって、処理容器1内に同図に示す方向の旋回気流A3が発生し、この旋回気流A3によって処理容器1内の粒子Pが分散されて、粒子同士の付着凝集による粗大粒の発生が防止される。また、旋回気流A3によって粒子の運動が促進されるため、処理容器1の内壁面1aへの粒子の付着も抑制される。 As shown in FIG. 2, in this embodiment, the suction nozzle 6 sucks the particles P in the processing container 1 in the tangential direction of the processing container 1, and the discharge nozzle 8 uses the unprocessed particles P0 as air currents. Along with this, the inner wall surface 1a of the processing container 1 is blown in the tangential direction, and the suction force (suction air flow) by the suction nozzle 6 and the discharge force (discharge air flow) by the discharge nozzle 8 work in the same circumferential direction. . Therefore, a swirl airflow A3 in the direction shown in the figure is generated in the processing container 1 by the suction force (suction airflow) of the suction nozzle 6 and the discharge force (discharge airflow) of the discharge nozzle 8, and the processing container is generated by this swirl airflow A3. The particles P in 1 are dispersed, and generation of coarse particles due to adhesion and aggregation of the particles is prevented. Further, since the movement of the particles is promoted by the swirling airflow A3, the adhesion of the particles to the inner wall surface 1a of the processing container 1 is also suppressed.
 上述した処理操作は連続的又は断続的に行われ、これにより、原料液から、処理完了粒子P1(粒子製品)が連続的に製造される。この実施形態の連続式粒子製造装置によれば、粒子径の小さい微粒子製品、例えば粒子径100μm以下の微粒子を連続的に収率良く製造することができる。 The above-described processing operation is performed continuously or intermittently, whereby the processing-completed particles P1 (particle products) are continuously manufactured from the raw material liquid. According to the continuous particle production apparatus of this embodiment, a fine particle product having a small particle size, for example, a fine particle having a particle size of 100 μm or less can be continuously produced with a high yield.
  図3は、第2の実施形態に係る連続式粒子製造装置を概念的に示している。この実施形態に係る連続式粒子製造装置が、第1の実施形態に係る連続式粒子製造装置と実質的に異なる点は、吐出ノズル8を複数(同図に示す例では3本)設置した点にある。同図に示す例では、各吐出ノズル8は共通部分8bからそれぞれ分岐し、また、各吐出ノズル8の吐出部8aは処理容器1の上下方向に沿って配列されている。ただし、各吐出ノズル8の吐出部8aが処理容器1の円周方向の異なる位置に設置されるように構成しても良い。また、少なくとも1本の吐出ノズル8は、選別部7のサイクロン機構7aに個別に接続するようにしても良い。その他の事項は第1の実施形態に準じるので、重複する説明を省略する。 FIG. 3 conceptually shows the continuous particle manufacturing apparatus according to the second embodiment. The continuous particle production apparatus according to this embodiment is substantially different from the continuous particle production apparatus according to the first embodiment in that a plurality of discharge nozzles 8 (three in the example shown in the figure) are installed. It is in. In the example shown in the figure, the discharge nozzles 8 are branched from the common portion 8 b, and the discharge portions 8 a of the discharge nozzles 8 are arranged along the vertical direction of the processing container 1. However, you may comprise so that the discharge part 8a of each discharge nozzle 8 may be installed in the position where the circumferential direction of the processing container 1 differs. Further, at least one discharge nozzle 8 may be individually connected to the cyclone mechanism 7 a of the sorting unit 7. Since other matters are the same as those in the first embodiment, a duplicate description is omitted.
  図4は、第3の実施形態に係る連続式粒子製造装置を概念的に示している。この実施形態に係る連続式粒子製造装置が、第1及び第2の実施形態に係る連続式粒子製造装置と実質的に異なる点は、吸引ノズル6を複数(同図に示す例では2本)設置した点にある。同図に示す例では、各吸引ノズル6は共通部分6bからそれぞれ分岐している。ただし、少なくとも1本の吸引ノズル6は、エジェクタ9を介して選別部7のサイクロン機構7aに個別に接続するようにしても良い。その他の事項は第1及び第2の実施形態に準じるので、重複する説明を省略する。 FIG. 4 conceptually shows the continuous particle manufacturing apparatus according to the third embodiment. The continuous particle production apparatus according to this embodiment is substantially different from the continuous particle production apparatus according to the first and second embodiments in that a plurality of suction nozzles 6 (two in the example shown in the figure) are used. It is in the point where it was installed. In the example shown in the figure, each suction nozzle 6 is branched from the common portion 6b. However, at least one suction nozzle 6 may be individually connected to the cyclone mechanism 7 a of the sorting unit 7 via the ejector 9. Since other matters are the same as those in the first and second embodiments, redundant description is omitted.
  図5は、第4の実施形態に係る連続式粒子製造装置を概念的に示している。この実施形態に係る連続式粒子製造装置が、第1及び第2の実施形態に係る連続式粒子製造装置と実質的に異なる点は、吐出ノズル8の吐出部8aを下向きに設置し、吐出ノズル8から処理未完了粒子P0を気流と伴に処理容器1の内壁面1aに下向きに吹き付けるようにした点にある。この実施形態の構成は、流動層装置として、いわゆるワースター式流動層装置を用いる場合に特に有効である。すなわち、ワースター式流動層装置では、スプレーノズルの上方にドラフトチューブ(内筒)を設置して、スプレーノズルから上向きに噴霧される処理液の噴霧流(スプレーゾーン)をドラフトチューブによって上方に案内する。ドラフトチューブ内を処理液の噴霧流に乗って上昇した粒子は、ドラフトチューブの上方から噴出した後、流速が低下して、処理容器1の内壁面1aに沿って下降する。吐出ノズル8から処理未完了粒子P0を気流と伴に処理容器1の内壁面1aに下向きに吹き付ける構成とすることにより、処理容器1の内壁面1aに沿って下降する粒子の運動が促進され、内壁面1aの粒子の付着が抑制される。その他の事項は第1及び第2の実施形態に準じるので、重複する説明を省略する。 FIG. 5 conceptually shows a continuous particle manufacturing apparatus according to the fourth embodiment. The continuous particle manufacturing apparatus according to this embodiment is substantially different from the continuous particle manufacturing apparatus according to the first and second embodiments in that the discharge unit 8a of the discharge nozzle 8 is installed downward, and the discharge nozzle 8 is that the unfinished particles P0 are sprayed downward on the inner wall surface 1a of the processing container 1 along with the air flow. The configuration of this embodiment is particularly effective when a so-called Wurster fluidized bed apparatus is used as the fluidized bed apparatus. That is, in the Wurster type fluidized bed apparatus, a draft tube (inner cylinder) is installed above the spray nozzle, and the spray flow (spray zone) of the processing liquid sprayed upward from the spray nozzle is guided upward by the draft tube. . The particles that have risen in the draft tube as a result of the spray flow of the treatment liquid are ejected from above the draft tube, and then the flow velocity is lowered and falls along the inner wall surface 1 a of the treatment container 1. By moving the unfinished particles P0 from the discharge nozzle 8 downward along the inner wall surface 1a of the processing container 1 along with the air flow, the movement of the particles descending along the inner wall surface 1a of the processing container 1 is promoted. The adhesion of particles on the inner wall surface 1a is suppressed. Since other matters are the same as those in the first and second embodiments, redundant description is omitted.
 図6及び図7は、第5の実施形態に係る連続式粒子製造装置を概念的に示している。この実施形態では、選別部7の分級機構7bの上部にバイパス経路7b1を接続し、バイパス経路7b1を切換え弁、例えば三方切換え弁11を介して、第2の吐出ノズル8’と、排出部10に繋がる排出経路10aとに接続している。三方切換え弁11は、電磁気力、空気圧、油圧又は手動操作により、バイパス経路7b1、第2の吐出ノズル8’及び排出経路10aの相互間の連通を遮断する状態と、バイパス経路7b1と第2の吐出ノズル8’とを連通させる状態と、バイパス経路7b1と排出経路10aとを連通させる状態とに切り換えることができる。また、選別部7のサイクロン機構7aと分級機構7bとの間に、開閉弁12を介装している。粒子戻し部としての第2の吐出ノズル8’の構造及び機能は、上述した吐出ノズル8と同じ又は同等である。但し、第2の吐出ノズル8’に代えて、単なる接続管のような形態のものを用いても良い。分級機構7bは、分級気流(分級エアー)A2等を下方からその内部に導入できると共に、その内部に粒子が滞留できる構造になっている。例えば、分級機構7bの下部は、所定孔径の多数の通気孔が設けられたメッシュ板で構成されており、分級気流A2等はこのメッシュ板を通って分級機構7bの内部に流入する一方、粒子はメッシュ板を通過できない構造になっている。分級気流A2は、主管路13を介して分級機構7bに導入される。また、この実施形態では、主管路13に開放弁15を介して補助管路14を分岐接続している。補助管路14には、補助気流A3が供給される。 6 and 7 conceptually show a continuous particle manufacturing apparatus according to the fifth embodiment. In this embodiment, the bypass path 7b1 is connected to the upper part of the classification mechanism 7b of the sorting section 7, and the bypass path 7b1 is connected to the second discharge nozzle 8 ′ and the discharge section 10 via a switching valve, for example, the three-way switching valve 11. Connected to the discharge path 10a. The three-way switching valve 11 is configured to block communication between the bypass path 7b1, the second discharge nozzle 8 ′ and the discharge path 10a by electromagnetic force, air pressure, hydraulic pressure, or manual operation, and the bypass path 7b1 and the second path It is possible to switch between a state in which the discharge nozzle 8 ′ is in communication and a state in which the bypass path 7b1 and the discharge path 10a are in communication. An opening / closing valve 12 is interposed between the cyclone mechanism 7a and the classification mechanism 7b of the sorting unit 7. The structure and function of the second discharge nozzle 8 ′ as the particle return unit are the same as or equivalent to those of the discharge nozzle 8 described above. However, instead of the second discharge nozzle 8 ′, a simple connection pipe may be used. The classification mechanism 7b has a structure in which classification airflow (classification air) A2 and the like can be introduced into the inside thereof from below and particles can be retained therein. For example, the lower part of the classification mechanism 7b is composed of a mesh plate provided with a large number of ventilation holes having a predetermined hole diameter, and the classification airflow A2 and the like flow into the classification mechanism 7b through this mesh plate, while the particles Has a structure that cannot pass through the mesh plate. The classification airflow A2 is introduced into the classification mechanism 7b through the main pipeline 13. In this embodiment, the auxiliary pipeline 14 is branched and connected to the main pipeline 13 via the release valve 15. An auxiliary air flow A3 is supplied to the auxiliary pipeline 14.
 図6に示す状態では、三方切換え弁11により、バイパス経路7b1と第2の吐出ノズル8’とが連通し、バイパス経路7b1と排出経路10aとの間は遮断されている。開放弁12は開いており、サイクロン機構7aと分級機構7bとは連通している。また、開放弁15は閉じており、分級機構7bには分級気流A2のみが導入される。吸引ノズル6によって吸引されて、選別部7のサイクロン機構7aから分級機構7bに送られた粒子Pは、上方に吹き上げる分級気流A2によって、処理未完了粒子P0と処理完了粒子P1とに選別され、処理完了粒子P1は自重により分級気流A2に逆らって下方に降下して、分級機構7bの下部に滞留する。一方、処理未完了粒子P0は分級気流A2に乗って上方に吹き上げられ、その一部は、バイパス経路7b1から三方切換え弁11を介して第2の吐出ノズル8’に移送され、残りは、サイクロン機構7aを経由して吐出ノズル8に移送される。 In the state shown in FIG. 6, the bypass path 7b1 and the second discharge nozzle 8 'communicate with each other by the three-way switching valve 11, and the bypass path 7b1 and the discharge path 10a are blocked. The release valve 12 is open, and the cyclone mechanism 7a and the classification mechanism 7b communicate with each other. Further, the open valve 15 is closed, and only the classification airflow A2 is introduced into the classification mechanism 7b. The particles P sucked by the suction nozzle 6 and sent from the cyclone mechanism 7a of the sorting unit 7 to the classification mechanism 7b are sorted into unprocessed particles P0 and processed particles P1 by the classification airflow A2 blown upward, The processing-completed particle P1 descends downward against the classification airflow A2 by its own weight and stays in the lower part of the classification mechanism 7b. On the other hand, the unprocessed particles P0 are blown upward on the classified air flow A2, and a part of them is transferred from the bypass path 7b1 to the second discharge nozzle 8 'via the three-way switching valve 11, and the rest is the cyclone. It is transferred to the discharge nozzle 8 via the mechanism 7a.
 選別部7での粒子Pの選別操作において、サイクロン機構7aを介して降下してくる粒子Pが、分級機構7bの下部から上方に吹き上げる分級気流A2の勢いに押されて分級機構7bまで降下せずに、そのまま吐出ノズル8へ流れてしまうことがある。これを防止するためには、分級気流A2を一時的に弱め又は停止させる必要があるが、これは操作の煩雑化につながる。また、分級気流A2を一時的にでも停止させると、分級機構7bのメッシュ板が目詰まりする懸念がある。これに対して、この実施形態の連続式粒子製造装置では、上述のように、分級気流A2及びこれに乗った処理未完了粒子P0の一部が、バイパス経路7b1から三方切換え弁11を介して第2の吐出ノズル8’に移送される(逃がされる)ので、サイクロン機構7aを介して降下してくる粒子Pが分級機構7bに円滑に移送され、分級機構7bによる選別操作(分級操作)が効果的に行われる。 In the sorting operation of the particles P in the sorting unit 7, the particles P descending through the cyclone mechanism 7a are pushed by the momentum of the classification airflow A2 that blows upward from the lower part of the classification mechanism 7b to be lowered to the classification mechanism 7b. Instead, it may flow to the discharge nozzle 8 as it is. In order to prevent this, it is necessary to temporarily weaken or stop the classification airflow A2, which leads to complication of operation. Further, if the classification airflow A2 is temporarily stopped, the mesh plate of the classification mechanism 7b may be clogged. On the other hand, in the continuous particle manufacturing apparatus of this embodiment, as described above, the classified air flow A2 and a part of the processing incomplete particles P0 riding on this are passed from the bypass path 7b1 via the three-way switching valve 11. Since it is transferred (released) to the second discharge nozzle 8 ′, the particles P descending via the cyclone mechanism 7a are smoothly transferred to the classification mechanism 7b, and the sorting operation (classification operation) by the classification mechanism 7b is performed. Done effectively.
 吸引ノズル6による粒子Pの処理容器1からの取り出し、選別部7による粒子Pの選別、吐出ノズル8及び第2の吐出ノズル8’による粒子P(P0)の処理容器1への戻しという一連の循環サイクルを繰り返して、分級機構7bの下部に一定量の処理完了粒子P1が滞留すると、図7に示すように、三方切換え弁11の切り換えにより、バイパス経路7b1と第2の吐出ノズル8’との間を遮断し、バイパス経路7b1と排出経路10aとを連通させる。また、開閉弁12を閉じ、サイクロン機構7aと分級機構7bとの間を遮断する。さらに、補助管路14の開放弁15を開き、補助管路14から主管路13に補助気流A3を供給する。これにより、分級気流A2に補助気流A3が加えられた強い気流(分級気流A2よりも強い気流)が主管路13から分級機構7bに導入され、分級機構7bの下部に滞留した処理完了粒子P1は、分級機構7bからバイパス経路7b1、三方切換え弁11及び排出経路10aを経由して排出部10に効果的に排出される。 A series of steps of taking out the particles P from the processing container 1 by the suction nozzle 6, sorting the particles P by the sorting unit 7, and returning the particles P (P0) to the processing container 1 by the discharge nozzle 8 and the second discharge nozzle 8 ′. When a certain amount of the processing completion particle P1 stays in the lower part of the classifying mechanism 7b by repeating the circulation cycle, the bypass path 7b1 and the second discharge nozzle 8 ′ are switched by switching the three-way switching valve 11 as shown in FIG. Between the bypass path 7b1 and the discharge path 10a. Further, the on-off valve 12 is closed to shut off the cyclone mechanism 7a and the classification mechanism 7b. Further, the opening valve 15 of the auxiliary pipeline 14 is opened, and the auxiliary air flow A3 is supplied from the auxiliary pipeline 14 to the main pipeline 13. As a result, a strong airflow (airflow stronger than the classification airflow A2) obtained by adding the auxiliary airflow A3 to the classification airflow A2 is introduced from the main pipe 13 to the classification mechanism 7b, and the processing completion particles P1 staying in the lower part of the classification mechanism 7b are The classification mechanism 7b is effectively discharged to the discharge unit 10 via the bypass path 7b1, the three-way switching valve 11 and the discharge path 10a.
  尚、三方切換え弁11に代えて、バイパス経路7b1と第2の吐出ノズル8’とを連通させる状態と、バイパス経路7b1と排出経路10aとを連通させる状態とに切り換える二方切換え弁を用いても良い。 Instead of the three-way switching valve 11, a two-way switching valve that switches between a state in which the bypass path 7b1 and the second discharge nozzle 8 'are in communication and a state in which the bypass path 7b1 and the discharge path 10a are in communication is used. Also good.
 以上の実施形態において、図8に示すように、処理容器1の壁部に気体噴出ノズル21を設置しても良い。同図に示す実施形態では、処理容器1の所定高さ位置に円周方向に沿って複数、例えば3つの気体噴出ノズル21を設置している。気体噴出ノズル21を設置する上記の所定高さ位置は、1つの高さ位置であっても良いし、上下方向に離隔した複数の高さ位置であっても良い。 In the above embodiment, as shown in FIG. 8, the gas ejection nozzle 21 may be installed on the wall portion of the processing container 1. In the embodiment shown in the figure, a plurality of, for example, three gas ejection nozzles 21 are installed along the circumferential direction at a predetermined height position of the processing container 1. The predetermined height position where the gas ejection nozzle 21 is installed may be one height position, or may be a plurality of height positions separated in the vertical direction.
 各気体噴出ノズル21は、それぞれ、処理容器1の壁部に設けられた設置穴1bに取り付けられた支持管21aと、支持管21aに進退移動可能に挿入されたノズル管21bとを主要な要素として構成される。支持管21aは、溶接等の適宜の手段で設置穴1bに固定され、その先端面21a1は、処理容器1の内壁面1aと面一となる。ノズル管21bは、気体通路21b1と、気体通路21b1と連通し、先端面21b2の近傍で側方に開口したノズル孔21b3とを備えている。気体通路21b1は、気体供給口21cに接続され、気体配管21cには、図示されていない気体供給源(圧縮空気源等)に繋がる気体配管が接続される。処理容器1の横断面(水平方向断面)において、ノズル孔21b3は、気体通路21b1に対して所定方向に傾斜し、処理容器1の内壁面1aに沿うように円周方向の一方向を指向している。ノズル管21bの先端面21b2は、処理容器1の内壁面1aに沿った曲率を有し、図8(b)に示すように、支持管21a内でノズル管21bが後退位置に保持されているとき、先端面21b2は、支持管21aの先端面21a1及び処理容器1の内壁面1aと面一となる。また、ノズル管21bが後退位置に保持されているとき、ノズル孔21b3の先端開口は、支持管21aの内壁面によって閉塞される。 Each gas ejection nozzle 21 includes a support tube 21a attached to an installation hole 1b provided in the wall portion of the processing vessel 1 and a nozzle tube 21b inserted into the support tube 21a so as to be movable forward and backward. Configured as The support tube 21a is fixed to the installation hole 1b by an appropriate means such as welding, and the distal end surface 21a1 thereof is flush with the inner wall surface 1a of the processing container 1. The nozzle tube 21b includes a gas passage 21b1 and a nozzle hole 21b3 that communicates with the gas passage 21b1 and opens laterally in the vicinity of the distal end surface 21b2. The gas passage 21b1 is connected to a gas supply port 21c, and a gas pipe connected to a gas supply source (such as a compressed air source) (not shown) is connected to the gas pipe 21c. In the cross section (horizontal cross section) of the processing container 1, the nozzle hole 21b3 is inclined in a predetermined direction with respect to the gas passage 21b1, and is oriented in one circumferential direction along the inner wall surface 1a of the processing container 1. ing. The tip surface 21b2 of the nozzle tube 21b has a curvature along the inner wall surface 1a of the processing container 1, and as shown in FIG. 8B, the nozzle tube 21b is held in the retracted position in the support tube 21a. At this time, the front end surface 21b2 is flush with the front end surface 21a1 of the support tube 21a and the inner wall surface 1a of the processing container 1. When the nozzle tube 21b is held at the retracted position, the tip opening of the nozzle hole 21b3 is blocked by the inner wall surface of the support tube 21a.
 支持管21aに対するノズル管21bの保持は、支持管21aの壁部を貫通して支持管21aに螺合接続された止めねじ21dによって行う。図8(b)に示す状態から、止めねじ21dを緩め、ノズル管21bを支持管21aに対して進出移動させると、図8(a)に示すように、ノズル管21bの先端面21b2が支持管21aの先端面21a1から処理容器1の内部側に僅かに突出し、ノズル孔21b3の先端が処理容器1の内壁面1aの近傍位置で開口する。この位置(ノズル管21bの進出位置)で止めねじ21dを締めて、ノズル管21bを支持管21aに保持する。この状態で、気体供給口21cに圧縮気体(圧縮空気等)を供給すると、この圧縮気体は、気体通路21b1を介してノズル孔21b3に入り、ノズル孔21b3の先端から処理容器1の内部に噴出する。上述のように、ノズル孔21b3は、処理容器1の内壁面1aに沿うように円周方向の一方向を指向し、また、ノズル孔21b3の先端は処理容器1の内壁面1aの近傍位置で開口するので、ノズル孔21b3から噴出した圧縮気体は、処理容器1の内壁面1aに沿って円周方向に流れる旋回流となる{図8(a)の下側の気体噴出ノズル21を参照}。この圧縮気体の旋回流によって、処理容器1の内壁面1aに付着した粉粒体粒子Pが内壁面1aから効果的に払い落とされて、処理容器1内の流動層内に戻される。また、上記の圧縮気体の旋回流に乗って処理容器1内を移動する粒子が内壁面1aと衝突しあるいは接触することにより、該粒子が圧密作用を受け、その球形化・重質化が促進される。 The holding of the nozzle tube 21b with respect to the support tube 21a is performed by a set screw 21d that penetrates the wall portion of the support tube 21a and is screwed to the support tube 21a. When the set screw 21d is loosened from the state shown in FIG. 8B and the nozzle tube 21b is moved forward relative to the support tube 21a, the tip surface 21b2 of the nozzle tube 21b is supported as shown in FIG. 8A. The tube 21a slightly protrudes from the tip surface 21a1 to the inside of the processing container 1, and the tip of the nozzle hole 21b3 opens at a position near the inner wall surface 1a of the processing container 1. The set screw 21d is tightened at this position (the advance position of the nozzle tube 21b) to hold the nozzle tube 21b on the support tube 21a. In this state, when compressed gas (compressed air or the like) is supplied to the gas supply port 21c, the compressed gas enters the nozzle hole 21b3 through the gas passage 21b1 and is ejected from the tip of the nozzle hole 21b3 into the processing container 1. To do. As described above, the nozzle hole 21b3 is oriented in one circumferential direction along the inner wall surface 1a of the processing container 1, and the tip of the nozzle hole 21b3 is located near the inner wall surface 1a of the processing container 1. Since it opens, the compressed gas ejected from the nozzle hole 21b3 becomes a swirling flow that flows in the circumferential direction along the inner wall surface 1a of the processing container 1 {see the gas ejection nozzle 21 on the lower side of FIG. 8A}. . Due to the swirling flow of the compressed gas, the particulate particles P adhering to the inner wall surface 1 a of the processing container 1 are effectively removed from the inner wall surface 1 a and returned to the fluidized bed in the processing container 1. Further, when the particles moving in the processing vessel 1 riding on the swirling flow of the compressed gas collide with or come into contact with the inner wall surface 1a, the particles are subjected to a compacting action, and the spheroidization and heaviness thereof are promoted. Is done.
 また、以上の実施形態において、図9に示すように、処理容器1の底部に、攪拌羽根を有する回転板、例えばボス部2b1と複数(例えば3つ)の攪拌羽根2b2とを備えた回転板2bを設置しても良い。回転板2bは、回転駆動軸2cに連結され、図9(b)に示す矢印方向(R方向)に回転する。ボス部2b1は、略円錐形状をなし、回転中心部に位置する。攪拌羽根2b2は、それぞれ、ボス部2b1の外周から外周方向に延びている。また、回転板2bの下方には、メッシュ網2dが設置されており、気体導入部4(図1参照)から供給される熱風等の処理気体は、メッシュ網2d、処理容器1の底部と回転板2bの下面との間の隙間、及び処理容器1の内周と回転板2bの外周との間の隙間を通って、処理容器1内に導入される。 In the above embodiment, as shown in FIG. 9, a rotating plate having a rotating plate having a stirring blade, for example, a boss portion 2 b 1 and a plurality of (for example, three) stirring blades 2 b 2 at the bottom of the processing vessel 1. 2b may be installed. The rotating plate 2b is connected to the rotation drive shaft 2c and rotates in the arrow direction (R direction) shown in FIG. The boss 2b1 has a substantially conical shape and is located at the center of rotation. The stirring blades 2b2 respectively extend from the outer periphery of the boss portion 2b1 in the outer peripheral direction. Further, a mesh net 2d is installed below the rotating plate 2b, and a processing gas such as hot air supplied from the gas introduction unit 4 (see FIG. 1) rotates with the mesh net 2d and the bottom of the processing container 1. It is introduced into the processing container 1 through a gap between the lower surface of the plate 2b and a gap between the inner periphery of the processing container 1 and the outer periphery of the rotating plate 2b.
 図9(b)及び図9(c)に示すように、この実施形態では、攪拌羽根2b2の回転方向前面2b21に所定の傾斜角度α及びβを持たせている。傾斜角度αは、攪拌羽根2b2の回転方向前面2b21の下縁と、該下縁の外周側角部における接線Sとのなす角度であり、この傾斜角度αは、60~100°に設定することが好ましい。また、傾斜角度βは、攪拌羽根部2b2の回転方向前面2b21と、回転板2bの上面とのなす角度であり、この傾斜角度βは、25~45°に設定することが好ましい。 As shown in FIGS. 9B and 9C, in this embodiment, the rotational front surface 2b21 of the stirring blade 2b2 has predetermined inclination angles α and β. The inclination angle α is an angle formed by the lower edge of the front surface 2b21 in the rotational direction of the stirring blade 2b2 and the tangent S at the outer peripheral side corner of the lower edge, and the inclination angle α is set to 60 to 100 °. Is preferred. Further, the inclination angle β is an angle formed by the rotation direction front surface 2b21 of the stirring blade portion 2b2 and the upper surface of the rotating plate 2b, and the inclination angle β is preferably set to 25 to 45 °.
 攪拌羽根2b2を有する回転板2bを処理容器1の底部に設置したことにより、特に、攪拌羽根2b2の回転方向前面2b21の傾斜角度α及びβを上記の値に設定したことにより、回転板2bの回転に伴い、処理容器1内の粒子Pに、処理容器1の内壁面1a1に沿って旋回方向に移動する動きが与えられる。この粒子Pの動きによって、吸引ノズル6(図1等を参照)による粒子Pの吸引が促進され、粒子Pが処理容器1の内部から効率的に取り出される。そして、吸引ノズル6(粒子取出し部)から選別部7に粒子Pが効率的に送られ、選別部7による粒子Pの選別(分級)効果が高まる結果、製品収率(所望の粒子径の粒子の収率)が向上する。また、処理容器1内を旋回方向に移動する粒子が内壁面1aと衝突しあるいは接触することにより、該粒子が圧密作用を受け、その球形化・重質化が促進される。 By installing the rotating plate 2b having the stirring blade 2b2 at the bottom of the processing vessel 1, in particular, by setting the inclination angles α and β of the rotation direction front surface 2b21 of the stirring blade 2b2 to the above values, Along with the rotation, the particles P in the processing container 1 are given a movement that moves in the swiveling direction along the inner wall surface 1a1 of the processing container 1. The movement of the particles P facilitates the suction of the particles P by the suction nozzle 6 (see FIG. 1 and the like), and the particles P are efficiently taken out from the inside of the processing container 1. Then, the particles P are efficiently sent from the suction nozzle 6 (particle take-out unit) to the sorting unit 7 and the effect of sorting (classifying) the particles P by the sorting unit 7 is increased. As a result, the product yield (particles having a desired particle size) Yield). Further, when the particles moving in the swirl direction in the processing container 1 collide with or come into contact with the inner wall surface 1a, the particles are subjected to a consolidation action, and the spheroidization / heavyening of the particles is promoted.
 また、以上の実施形態において、図10に模式的に示すように、処理液を上向きに噴霧するスプレーノズル5を流動層容器1の底部に複数(同図に示す例では3つ)設置しても良い。この場合、各スプレーノズル5の設置位置は、フィルター部3の各フィルター3aに対して円周方向にずらすのが好ましい。スプレーノズル5を複数設置することにより、スケールアップの簡便化を図ることができる。また、各スプレーノズル5の設置位置をフィルター部3の各フィルター3aに対して円周方向にずらすことにより、スプレーノズル5から噴霧される処理液がフィルター3aに付着して、フィルター機能が低下することが抑制される。 In the above embodiment, as schematically shown in FIG. 10, a plurality of spray nozzles 5 (three in the example shown in the figure) are installed at the bottom of the fluidized bed container 1 to spray the treatment liquid upward. Also good. In this case, the installation position of each spray nozzle 5 is preferably shifted in the circumferential direction with respect to each filter 3 a of the filter unit 3. By installing a plurality of spray nozzles 5, it is possible to simplify the scale-up. Further, by shifting the installation position of each spray nozzle 5 in the circumferential direction with respect to each filter 3a of the filter unit 3, the processing liquid sprayed from the spray nozzle 5 adheres to the filter 3a, and the filter function is lowered. It is suppressed.
 以上の実施形態において、処理容器1内の粒子Pを吸引ノズル6で吸引する位置は、処理容器1内における粒子Pの流動層の下部、中部、上部、および、粒子Pの流動層よりも上方の位置のうち、少なくとも一の位置に設定すれば良い。 In the above embodiment, the positions where the particles P in the processing container 1 are sucked by the suction nozzle 6 are the lower part, the middle part, the upper part of the fluidized bed of particles P and the fluidized bed of the particles P in the processing container 1. Of these positions, at least one position may be set.
  以上の実施形態の連続式粒子製造装置では、スプレーノズル5から処理容器1内に原料液を噴霧して、処理完了粒子P1(粒子製品)を連続的に製造するようにしているが、原料粉末の粒子を連続的又は断続的に処理容器1内に投入し、スプレーノズル5から結合剤液又は膜剤液を噴霧して、処理完了粒子P1(粒子製品)を連続的に製造するようにしても良い。この場合、スプレーノズル5は、結合剤液又は膜剤液を上向き、下向き又は接線方向に噴霧する構成にすることができる。あるいは、これらの方向への噴霧を任意に組み合わせても良い。 In the continuous particle manufacturing apparatus of the above embodiment, the raw material liquid is sprayed into the processing container 1 from the spray nozzle 5 to continuously manufacture the processed particles P1 (particle product). Are continuously or intermittently charged into the processing vessel 1 and sprayed with a binder liquid or a film liquid from the spray nozzle 5 to continuously manufacture processed particles P1 (particle product). Also good. In this case, the spray nozzle 5 can be configured to spray the binder solution or the film agent solution upward, downward, or tangentially. Alternatively, spraying in these directions may be arbitrarily combined.
  また、スプレーノズル5からの原料液の噴霧による原料粉末の乾燥粒子の生成、吸引ノズル6による粒子の取り出し、選別部7による粒子の選別、および排出部10による粒子の排出は、連続的に行っても良いし、断続的に行っても良い。 Moreover, the production | generation of the dry particle | grains of the raw material powder by spraying of the raw material liquid from the spray nozzle 5, the taking-out of the particle | grains by the suction nozzle 6, the selection of the particle | grains by the selection part 7, and discharge | emission of the particle | grains by the discharge part 10 are performed continuously. Or it may be performed intermittently.
1 処理容器
1a 内壁面
4 気体導入部
5 スプレーノズル
6 吸引ノズル
7 選別部
7a サイクロン機構
7b 分級機構
7b1 バイパス経路
8 吐出ノズル
8’ 第2の吐出ノズル
10 排出部
10a 排出経路
11 三方切換え弁
12 開放弁
21 気体噴出ノズル
P 粒子
P0 処理未完了粒子
P1 処理完了粒子
DESCRIPTION OF SYMBOLS 1 Processing container 1a Inner wall surface 4 Gas introduction part 5 Spray nozzle 6 Suction nozzle 7 Sorting part 7a Cyclone mechanism 7b Classification mechanism 7b1 Bypass path 8 Discharge nozzle 8 'Second discharge nozzle 10 Discharge part 10a Discharge path 11 Three-way switching valve 12 Open Valve 21 Gas ejection nozzle P Particle P0 Unfinished particle P1 Treated particle

Claims (9)

  1.  処理容器と、前記処理容器の内部に処理気体を導入する処理気体導入部と、前記処理容器の内部に設けられ、原料粉末を含む原料液、結合剤液及び膜剤液のうち一の処理液を噴霧するスプレーノズルとを備え、前記処理容器内で前記スプレーノズルから噴霧される原料液の乾燥によって連続的又は断続的に生成される原料粉末の乾燥粒子、または、前記処理容器内に連続的又は断続的に投入される原料粉末の粒子を、前記処理気体によって浮遊流動させつつ、前記スプレーノズルから噴霧される前記処理液と接触させて造粒又はコーティング処理を行い、前記造粒又はコーティング処理が完了した処理完了粒子を連続的又は断続的に排出する連続式粒子製造装置において、
     前記処理容器の内部から粒子を取り出す粒子取出し部と、前記粒子取出し部で取り出された粒子を処理完了粒子と処理未完了粒子とに選別する選別部と、前記選別部で選別された処理完了粒子を排出する排出部と、前記選別部で選別された処理未完了粒子を前記処理容器の内部に戻す粒子戻し部とを備え、前記粒子戻し部は、前記処理未完了粒子を気流と伴に前記処理容器の内壁面に吹き付けることを特徴とする連続式粒子製造装置。
    A processing container, a processing gas introduction part for introducing a processing gas into the processing container, and a processing liquid provided inside the processing container and containing a raw material powder, a binder liquid, and a film liquid. A spray nozzle for spraying a raw material powder continuously or intermittently produced by drying a raw material liquid sprayed from the spray nozzle in the processing container, or continuously in the processing container Alternatively, the raw material powder particles that are intermittently charged are suspended and flowed by the processing gas, and contacted with the processing liquid sprayed from the spray nozzle to perform granulation or coating, and the granulation or coating processing In a continuous particle production apparatus that continuously or intermittently discharges processing-completed particles that have been completed,
    A particle take-out unit for taking out particles from the inside of the processing container, a sorting unit for sorting the particles taken out in the particle take-out unit into process-completed particles and unprocessed particles, and the process-completed particles sorted in the sorting unit A discharge unit that discharges the unprocessed particles sorted by the sorting unit, and a particle return unit that returns the unfinished particles returned to the inside of the processing container. A continuous particle manufacturing apparatus characterized by spraying on an inner wall surface of a processing container.
  2.  前記粒子戻し部は、前記処理未完了粒子を含む気流を、前記処理容器の内壁面に対して接線方向又は上下方向に吐出する吐出ノズルを備えていることを特徴とする請求項1に記載の連続式粒子製造装置。 The said particle return part is equipped with the discharge nozzle which discharges the airflow containing the said process incomplete particle | grains to a tangential direction or an up-down direction with respect to the inner wall face of the said process container. Continuous particle production equipment.
  3.  前記粒子取出し部は、前記処理容器内の粒子を吸引して取り出す吸引ノズルを備えていることを特徴とする請求項1又は2に記載の連続式粒子製造装置。 The continuous particle manufacturing apparatus according to claim 1 or 2, wherein the particle extraction unit includes a suction nozzle that sucks and takes out particles in the processing container.
  4.  前記選別部は、前記粒子取出し部で取り出された粒子を分級気流により処理完了粒子と処理未完了粒子とに選別する分級機構を備えていることを特徴とする請求項1から3の何れか一項に記載の連続式粒子製造装置。 The said selection part is provided with the classification mechanism which classify | categorizes the particle | grains taken out by the said particle | grain extraction part into a process completion particle | grain and an unprocessed particle | grain by classification airflow. The continuous particle manufacturing apparatus according to Item.
  5.  前記選別部は、サイクロン機構を備えており、前記分級機構は、前記サイクロン機構を介して前記粒子取出し部と前記粒子戻し部に接続されていることを特徴とする請求項4に記載の連続式粒子製造装置。 5. The continuous type according to claim 4, wherein the selection unit includes a cyclone mechanism, and the classification mechanism is connected to the particle extraction unit and the particle return unit via the cyclone mechanism. Particle production equipment.
  6.  前記選別部は、前記分級機構の上部に接続されたバイパス経路と、該バイパス経路と連通可能な第2の粒子戻し部とを備えており、前記バイパス経路と前記第2の粒子戻し部とが連通した状態で、前記分級気流及び前記処理未完了粒子の一部が前記バイパス経路と前記第2の粒子戻し部を通って前記処理容器の内部に戻されることを特徴とする請求項4又は5に記載の連続式粒子製造装置。 The sorting unit includes a bypass path connected to an upper part of the classification mechanism, and a second particle return unit capable of communicating with the bypass path, and the bypass path and the second particle return unit are 6. The classified airflow and a part of the unfinished particles are returned to the inside of the processing container through the bypass path and the second particle return unit in a communicated state. The continuous particle manufacturing apparatus according to 1.
  7.  前記バイパス経路は、切換え弁を介して前記第2の粒子戻し部と、前記排出部に繋がる排出経路とに接続され、前記切換え弁は、前記バイパス経路と前記第2の粒子戻し部とが連通した状態と、前記バイパス経路と前記排出経路とが連通した状態と、に切り換え可能であり、前記分級機構の上部は、前記バイパス経路よりも上方の位置で開閉弁により開閉可能に構成され、前記切換え弁により、前記バイパス経路と前記排出経路とを連通させ、かつ、前記開閉弁により、前記分級機構の上部を閉じた状態で、前記分級機構に前記分級気流よりも強い気流を導入し、前記分級機構に滞留した前記処理完了粒子を前記気流により前記バイパス経路及び前記排出経路を介して前記排出部に排出することを特徴とする請求項6に記載の連続式粒子製造装置。 The bypass path is connected to the second particle return unit and a discharge path connected to the discharge unit via a switching valve, and the switching valve communicates with the bypass path and the second particle return unit. And a state where the bypass path and the discharge path communicate with each other, and the upper part of the classification mechanism is configured to be opened and closed by an on-off valve at a position above the bypass path, The switching valve communicates the bypass path and the discharge path, and the opening / closing valve introduces an airflow stronger than the classification airflow to the classification mechanism with the upper part of the classification mechanism closed. The continuous particle product according to claim 6, wherein the processing-completed particles staying in the classification mechanism are discharged to the discharge portion by the airflow through the bypass path and the discharge path. Apparatus.
  8.  前記処理容器の壁部に気体噴出ノズルが設置されており、該気体噴出ノズルは、前記処理容器の内壁面に沿って円周方向に流れる旋回流を形成するように気体を噴出することを特徴とする請求項1から7の何れか一項に記載の連続式粒子製造装置。 A gas ejection nozzle is installed on the wall of the processing container, and the gas ejection nozzle ejects gas so as to form a swirling flow that flows in a circumferential direction along the inner wall surface of the processing container. The continuous particle manufacturing apparatus according to any one of claims 1 to 7.
  9.  攪拌羽根を有する回転板を前記処理容器の底部に設置したことを特徴とする請求項1から7の何れか一項に記載の連続式粒子製造装置。 The continuous particle manufacturing apparatus according to any one of claims 1 to 7, wherein a rotating plate having a stirring blade is installed at the bottom of the processing vessel.
PCT/JP2016/068607 2015-06-30 2016-06-23 Continuous particle manufacturing device WO2017002694A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201680023548.5A CN107530664B (en) 2015-06-30 2016-06-23 Continuous particle manufacturing apparatus
KR1020177026743A KR102503372B1 (en) 2015-06-30 2016-06-23 Continuous granulation machine
EP16817802.8A EP3318319B1 (en) 2015-06-30 2016-06-23 Continuous particle manufacturing device
US15/572,933 US10661238B2 (en) 2015-06-30 2016-06-23 Continuous particle manufacturing device
PCT/JP2016/068607 WO2017002694A1 (en) 2015-06-30 2016-06-23 Continuous particle manufacturing device
CA2991105A CA2991105C (en) 2015-06-30 2016-06-23 Continuous particle manufacturing device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015131036A JP6526502B2 (en) 2014-06-30 2015-06-30 Continuous particle production system
JP2015-131036 2015-06-30
PCT/JP2016/068607 WO2017002694A1 (en) 2015-06-30 2016-06-23 Continuous particle manufacturing device

Publications (1)

Publication Number Publication Date
WO2017002694A1 true WO2017002694A1 (en) 2017-01-05

Family

ID=60765566

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/068607 WO2017002694A1 (en) 2015-06-30 2016-06-23 Continuous particle manufacturing device

Country Status (1)

Country Link
WO (1) WO2017002694A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62130727U (en) * 1986-02-04 1987-08-18
JPH1133384A (en) * 1997-07-22 1999-02-09 Kawasaki Heavy Ind Ltd Method and apparatus for continuous granulation-coating
JP2002045675A (en) * 2000-08-08 2002-02-12 Ajinomoto Co Inc Novel spray drying pelletizing device and manufacturing method of granular food product
JP2004122057A (en) * 2002-10-04 2004-04-22 Pauretsuku:Kk Fluidized bed apparatus
JP2004174481A (en) * 2002-10-03 2004-06-24 Hosokawa Funtai Gijutsu Kenkyusho:Kk Granulator and powder manufacturing method using the granulator
JP2006263543A (en) * 2005-03-23 2006-10-05 Okawara Mfg Co Ltd Method and apparatus for manufacturing small-diameter heavy granule
JP2016026867A (en) * 2014-06-30 2016-02-18 株式会社パウレック Continuous particle production device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62130727U (en) * 1986-02-04 1987-08-18
JPH1133384A (en) * 1997-07-22 1999-02-09 Kawasaki Heavy Ind Ltd Method and apparatus for continuous granulation-coating
JP2002045675A (en) * 2000-08-08 2002-02-12 Ajinomoto Co Inc Novel spray drying pelletizing device and manufacturing method of granular food product
JP2004174481A (en) * 2002-10-03 2004-06-24 Hosokawa Funtai Gijutsu Kenkyusho:Kk Granulator and powder manufacturing method using the granulator
JP2004122057A (en) * 2002-10-04 2004-04-22 Pauretsuku:Kk Fluidized bed apparatus
JP2006263543A (en) * 2005-03-23 2006-10-05 Okawara Mfg Co Ltd Method and apparatus for manufacturing small-diameter heavy granule
JP2016026867A (en) * 2014-06-30 2016-02-18 株式会社パウレック Continuous particle production device

Similar Documents

Publication Publication Date Title
CN101357365B (en) Powder classifying device
JP3031923B2 (en) Granulation coating apparatus and granulation coating method using the same
KR102503372B1 (en) Continuous granulation machine
JP2763806B2 (en) Granulation coating method and apparatus
EP2906354B1 (en) Fluidized bed coating apparatus
JP2016026867A (en) Continuous particle production device
JPH05245358A (en) Coating device
TWI656947B (en) Jet processing device and jet processing device column
JP5429301B2 (en) Cyclone classifier
US10549286B2 (en) Apparatus for producing molybdenum disulfide powders
WO2017002694A1 (en) Continuous particle manufacturing device
TW201607618A (en) Blasting device and blasting method
JP2003038948A (en) Device for processing particle
JPH01215354A (en) Crushing and coating device
JP4658652B2 (en) Manufacturing method of small-diameter heavy granules
JPH09323263A (en) Blasting machine
JP3126023B2 (en) Continuous granulation and coating equipment
CN106944222A (en) A kind of jet mill grinding technique of powder
JP2020054963A (en) Particle production apparatus
JPH02152559A (en) Pulverizing and coating device
JPH0667492B2 (en) Jet airflow crusher
KR20200064804A (en) Fine particle classifying appratus
JP2002306944A (en) Granulation/drying process and fluidized bed granulation/drying equipment
RU2295398C1 (en) Chamber-type air separator
JPH1119498A (en) Continuous granulating and coating method and apparatus therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16817802

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177026743

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15572933

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2991105

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE