JP2003038948A - Device for processing particle - Google Patents

Device for processing particle

Info

Publication number
JP2003038948A
JP2003038948A JP2001229775A JP2001229775A JP2003038948A JP 2003038948 A JP2003038948 A JP 2003038948A JP 2001229775 A JP2001229775 A JP 2001229775A JP 2001229775 A JP2001229775 A JP 2001229775A JP 2003038948 A JP2003038948 A JP 2003038948A
Authority
JP
Japan
Prior art keywords
particle
particles
collected
particle processing
gas body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001229775A
Other languages
Japanese (ja)
Inventor
Yoshiro Funakoshi
嘉郎 船越
Susumu Natsuyama
晋 夏山
Kazuo Oishi
和男 大石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYOTO FUNTAI GIJUTSU KENKYUSHO
KYOTO FUNTAI GIJUTSU KENKYUSHO KK
Powrex KK
Original Assignee
KYOTO FUNTAI GIJUTSU KENKYUSHO
KYOTO FUNTAI GIJUTSU KENKYUSHO KK
Powrex KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYOTO FUNTAI GIJUTSU KENKYUSHO, KYOTO FUNTAI GIJUTSU KENKYUSHO KK, Powrex KK filed Critical KYOTO FUNTAI GIJUTSU KENKYUSHO
Priority to JP2001229775A priority Critical patent/JP2003038948A/en
Publication of JP2003038948A publication Critical patent/JP2003038948A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To efficiently separate and collect particles of a powder and granular material from a gas, to efficiently return the particles to a particle processing zone and to make cleaning work easy. SOLUTION: The particle processing zone (fluidized bed) 24 for drying or processing the particles 25 of the powder and granular material by passing a gas through the particles 25 in a treating vessel 21 is formed. A particle collecting means 30 for separating and collecting particles in the gas discharged after the particle processing zone (fluidized bed) has been formed and an ejector 31 for sucking the particles separated and collected at the particle collecting means 30 and for returning the particles to the particle processing zone 24 are provided. The particle collecting means 30 is constituted of a spiral passage 30a and a collected particle recovering chamber 30b which is communicated to the outside of the spiral passage 30a via a trap gate 30g, and the collected particle recovering chamber 30b is communicated to a negative pressure generating part 31a of the ejector 31.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、処理容器内の粉粒
体粒子にガス体を通気して該粒子を乾燥または加工する
と共に、前記処理容器から排出するガス体中の粒子を分
離捕集する粒子加工装置に関するもので、食品、医薬
品、農薬などの製造分野で使用されるものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method in which a gas body is ventilated through powder particles in a processing container to dry or process the particles, and particles in the gas discharged from the processing container are separated and collected. The present invention relates to an apparatus for processing particles, which is used in the field of manufacturing foods, pharmaceuticals, agricultural chemicals and the like.

【0002】[0002]

【従来の技術】従来、粉粒体粒子が混在したガス体から
該粒子を分離捕集する方法に、サイクロン方式とバッグ
フィルター方式とがある。
2. Description of the Related Art Conventionally, there are a cyclone system and a bag filter system as a method for separating and collecting particles from a gas body in which powder particles are mixed.

【0003】数十ミクロン以上の比較的大きい粒子の分
離捕集には、工業的に前者が用いられるが、製薬・食品
・農薬などの分野における微小粒子の分離捕集は、図2
に示すような粒子加工装置(例えば流動層装置)では、
通常、分離捕集した粒子を粒子加工ゾーンに容易に戻す
ために、処理容器1の上部にバッグフィルター2を設置
し、バッグフィルター2で濾過分離捕集した粉粒体粒子
を、バッグフィルター2に付属して設置される払い落と
し機構(図示省略)で払い落とすことによって下部の粒
子加工ゾーン(流動層)3に戻す方法が採られている。
なお、図2の粒子加工装置は、処理容器1の下部のガス
体導入口4からガス体(例えば、空気)が導入され、こ
のガス体が多数の通気孔を有する分散板5を通して上向
きに分散供給され、これによって粉粒体粒子6の流動層
3を形成させ、乾燥させたり、またこの流動層3に向け
てスプレーノズル8から粒子加工用の液体9が噴霧供給
され、目的の粒子加工が施される。該液体9は、例え
ば、コーティング液やバインダー液などである。処理容
器1内に分散供給されたガス体は、粉粒体粒子6の流動
層3を形成しつつ分散、乾燥またはその他の加工に寄与
した後、処理容器1の上部のバッグフィルター2で濾過
固気分離し、ガス体のみとなって排気ダクト10から排
気される。
The former is industrially used for separating and collecting relatively large particles of several tens of microns or more, but the separating and collecting of fine particles in the fields of pharmaceuticals, foods, pesticides, etc. is shown in FIG.
In a particle processing device (such as a fluidized bed device) as shown in,
Usually, in order to easily return the separated and collected particles to the particle processing zone, a bag filter 2 is installed on the upper part of the processing container 1, and the granular particles filtered and separated by the bag filter 2 are collected in the bag filter 2. A method of returning to the lower particle processing zone (fluidized bed) 3 by removing the particles with an accompanying installation mechanism (not shown) is adopted.
In the particle processing apparatus of FIG. 2, a gas body (for example, air) is introduced from the gas body introduction port 4 in the lower part of the processing container 1, and the gas body is dispersed upward through the dispersion plate 5 having a large number of ventilation holes. It is supplied, whereby the fluidized bed 3 of the granular particles 6 is formed and dried, and the liquid 9 for particle processing is sprayed and supplied from the spray nozzle 8 toward the fluidized bed 3 to carry out the intended particle processing. Is given. The liquid 9 is, for example, a coating liquid or a binder liquid. The gas body dispersedly supplied into the processing container 1 contributes to dispersion, drying or other processing while forming the fluidized bed 3 of the powder particles 6, and then is filtered and solidified by the bag filter 2 above the processing container 1. The gas is separated into only gas, which is exhausted from the exhaust duct 10.

【0004】バッグフィルター2では、比較的大きい粒
子はバッグフィルター2の網目で捕捉できるが、微小な
粉粒体粒子の捕捉は、運転の経過とともに生じる目詰ま
りによって初めて可能となる。従って、運転初期におけ
る粒子捕集効率が十分でなく、特に数十ミクロンより小
さい粉粒体粒子を取り扱う場合、運転初期のロスは無視
できず、捕集効率の増大は極めて重大な問題となってい
る。
In the bag filter 2, relatively large particles can be captured by the mesh of the bag filter 2, but fine powder particles can be captured only by clogging occurring with the progress of operation. Therefore, the particle collection efficiency in the initial stage of operation is not sufficient, especially when handling powder particles with a size of less than several tens of microns, the loss in the initial stage of operation cannot be ignored, and the increase in the collection efficiency becomes a very serious problem. There is.

【0005】また、バッグフィルター2で濾過分離捕集
した粉粒体粒子を粒子加工ゾーン(流動層)3に戻すの
に、払い落とし機構が用いられているが、払い落とされ
た粒子の中で微小な粉粒体粒子はその質量が小さいた
め、再び舞い上がって、バッグフィルター2に付着しよ
うとして、粒子加工ゾーン3に戻りにくい。また、目詰
まりの除去や菌の発生やクロスコンタミネーションの防
止などのため必要な、作業後のバッグフィルター2の洗
浄作業が極めて厄介であるという問題がある。
[0005] Further, although a shredding mechanism is used to return the powdery and granular particles filtered and collected by the bag filter 2 to the particle processing zone (fluidized bed) 3, among the shredded particles, Since the fine powder particles have a small mass, they are soaring again that they tend to adhere to the bag filter 2 and are unlikely to return to the particle processing zone 3. In addition, there is a problem that the cleaning work of the bag filter 2 after the work, which is necessary for removing clogging, preventing the generation of bacteria and cross contamination, is extremely troublesome.

【0006】一方、粒子加工装置から排出される排気の
処理に従来のサイクロン方式を用いる場合、図3に示す
ように、粒子加工装置11から排出されるガス体をサイ
クロン容器12内の分離室13の上部に接線方向から導
入し、該分離室13内でガス体を旋回流動させ、その旋
回流動による遠心力でガス体中に含まれる粉粒体粒子を
外周側へ飛ばして分離させ、分離させた粉粒体粒子をサ
イクロン容器12の下部漏斗室14に自重で落下回収さ
せ、ガス体の方はサイクロン容器12の上部中心部から
排気させ、回収した粉粒体粒子の方は、適宜の時点で下
部漏斗室14からロータリーバルブ15を回転駆動する
ことによって取り出す。取り出した粒子を粒子加工装置
11に戻すには、粒子加工室壁を貫通する管を通して重
力を利用して落下させて行う必要があり、必ずしも粒子
加工処理に適した個所に戻せない。また、従来型サイク
ロン方式では、粒子分離効率が十分でないので、サイク
ロンの排気を更にバッグフィルターを通して、粒子分離
を補強する方法が採られる。バッグフィルターを接続す
ることなく、サイクロンのみで粉粒体粒子の捕集効率を
上げるために、ガス体導入口16のガス体流速を十分大
きくした上、分離室13の形状に工夫を加え、寸法を大
きくする必要がある。こうして上記構成からなるサイク
ロン方式を粒子加工装置容器内の上部に設けることは、
構造上及び操作上の制約から到底考えることはできな
い。従って図3のように粒子加工装置から出る排気を一
旦粒子加工装置の外に出した上で排気ガスの中に含まれ
る粉体粒子を分離捕集する必要がある。この場合、分離
捕集した粉体粒子を粒子加工装置内の所望の個所に戻す
には、特別の工夫が必要である。また、前述のように、
従来のバッグフィルター方式を粒子加工装置の外に設け
た場合にも、分離捕集した粒子を粒子加工ゾーンへ戻す
にも特別の工夫が要る。更に作業後の洗浄が大変である
などの問題も腹蔵する。
On the other hand, when the conventional cyclone system is used to treat the exhaust gas discharged from the particle processing apparatus, as shown in FIG. 3, the gas discharged from the particle processing apparatus 11 is separated into the separation chamber 13 in the cyclone container 12. Is introduced tangentially to the upper part of the gas chamber, the gas body is swirled in the separation chamber 13, and the centrifugal force generated by the swirling flow causes the granular particles contained in the gas body to fly to the outer peripheral side for separation and separation. The powder particles are dropped into the lower funnel chamber 14 of the cyclone container 12 by their own weight to be collected, the gas body is exhausted from the upper center part of the cyclone container 12, and the collected powder particles are collected at an appropriate time. Then, the rotary valve 15 is taken out from the lower funnel chamber 14 by rotating. In order to return the taken-out particles to the particle processing apparatus 11, it is necessary to drop the particles by using gravity through a pipe that penetrates the wall of the particle processing chamber, and it is not always possible to return the particles to a location suitable for particle processing. Further, in the conventional cyclone method, since the particle separation efficiency is not sufficient, a method of reinforcing the particle separation by further passing the exhaust of the cyclone through a bag filter is adopted. In order to improve the collection efficiency of powder particles with only a cyclone without connecting a bag filter, the flow velocity of the gas body at the gas body inlet 16 is made sufficiently large, and the shape of the separation chamber 13 is devised so that the dimensions can be improved. Needs to be increased. In this way, the cyclone system having the above configuration is provided in the upper part of the particle processing device container.
It cannot be considered at all due to structural and operational constraints. Therefore, as shown in FIG. 3, it is necessary to once exhaust the exhaust gas from the particle processing apparatus to the outside of the particle processing apparatus and then separate and collect the powder particles contained in the exhaust gas. In this case, a special device is required to return the separated and collected powder particles to a desired place in the particle processing device. Also, as mentioned above,
Even when the conventional bag filter system is provided outside the particle processing apparatus, special measures are required to return the separated and collected particles to the particle processing zone. Furthermore, the problem that cleaning after the work is difficult is also stuffed.

【0007】[0007]

【発明が解決しようとする課題】かくして粒子加工装置
に付設する粒子分離捕集機構において、捕集効率が高
く、分離捕集した粒子を効率よく粒子加工ゾーンに戻す
ことができ、できるだけ単純で、取り扱いおよび洗浄作
業も容易な粒子分離捕集機構が強く要望されてきた。
Thus, in the particle separating and collecting mechanism attached to the particle processing apparatus, the collecting efficiency is high, and the separated and collected particles can be efficiently returned to the particle processing zone. There has been a strong demand for a particle separation and collection mechanism that is easy to handle and wash.

【0008】本発明者らは、上記要望に応えるために鋭
意研究した結果、本発明を完成させるに至ったもので、
その目的とするところは、粉粒体粒子を含有するガス体
から、粉粒体粒子を効率的に分離捕集することができ、
かつ、分離捕集した粉粒体粒子を粒子加工ゾーンに効率
よく戻すことができ、取り扱いおよび洗浄作業が容易な
粉粒体粒子捕集手段を有する粒子加工装置を提供するこ
とにある。
The present inventors have completed the present invention as a result of intensive research to meet the above-mentioned demand.
The purpose is that the powder particles can be efficiently separated and collected from the gas body containing the powder particles,
Further, it is an object of the present invention to provide a particle processing apparatus having a powdery particle particle collecting means which can efficiently return the separated and collected powdery particle particles to the particle processing zone and which can be easily handled and washed.

【0009】[0009]

【課題を解決するための手段】前記目的を達成するた
め、本発明は、処理容器内の粉粒体粒子にガス体を通気
して該粒子を乾燥または造粒若しくはコーティングなど
処理加工するための粒子加工ゾーンを形成する粒子加工
装置において、バッグフィルターを極力用いることな
く、できるだけ単純な機構を用いて、ガス体の旋回運動
に伴う遠心力を利用して粒子を効率的に分離捕集する機
構を考案した。即ち、分離効率を上げるために、ガス体
の旋回流の旋回速度を上げるための手段と、効率的に分
離捕集するための手段と、分離捕集した粒子を効率的に
粒子加工ゾーンに戻すための手段を考案した。次に、こ
れを更に具体的に説明を加える。旋回流の旋回速度を上
げるために、粉末を含むガス体が旋回流路の中に、必要
に応じて旋回方向に圧縮空気を吹き込み、また旋回流路
を螺旋流路とし、その断面積を適当に設計するなどの手
段により、旋回流の流速を十分大きくし、粒子に加わる
遠心力を大きくすることによって、分離効率の増大を図
り、前記粒子加工ゾーン形成後に排出されるガス体中の
粒子を効率的に分離捕集する粒子捕集手段である。遠心
力によって旋回流路の外壁近傍に移動し流れる粒子を旋
回流の外に取り出すために、旋回流路の外壁にスリット
(30g,30h)を設け、該スリットから旋回流系外
に設けた粒子捕集室(30b)に粒子リッチなガス体を
導いた。ここに該スリットから最適量のガス体が流出す
るようにするためには、スリットの内外の圧バランスが
適当でなければならない。そのために、粒子捕集室(3
0b)とエジェクター(31)の吸引口を接続し、粒子
捕集室(30b)を適当に陰圧に調節した。粒子捕集室
を経て、エジェクター(31)の吸い込み口を粒子捕集
室の底部に設けることにより、粒子捕集室に沈降した粒
子はエジェクターに効率よく吸い込まれる。エジェクタ
ー(31)に吸い込まれた粒子は圧縮空気の気流によ
り、粒子加工処理ゾーンの適当な個所に戻すことは容易
になる。エジェクター(31)の採用は、図3のように
サイクロンを粒子加工装置の外においた場合でも、サイ
クロンの下部にエジェクターの吸引口を接続することに
より、粒子加工処理ゾーンの適当な個所に戻すことは容
易になる。このエジェクターは、圧縮空気等のガス体の
供給配管を接続しておくだけでよいためロータリーバル
ブのような開閉操作が不要となり、しかも、分離捕集し
た粉粒体粒子を負圧発生部に吸引させて圧縮空気等のガ
ス体に同伴させて粒子加工ゾーンへ効率よく戻すことが
できる。
In order to achieve the above-mentioned object, the present invention provides a method for aerating a powder or granule particles in a processing container with a gas to dry or granulate or coat the particles. In a particle processing device that forms a particle processing zone, a mechanism that efficiently separates and collects particles by using the centrifugal force that accompanies the swirling motion of a gas body, using a mechanism that is as simple as possible without using a bag filter as much as possible. Devised. That is, in order to increase the separation efficiency, means for increasing the swirling speed of the swirling flow of the gas body, means for efficiently separating and collecting, and efficiently returning the separated and collected particles to the particle processing zone. I devised a means for it. Next, this will be described more specifically. In order to increase the swirling speed of the swirling flow, a gas body containing powder blows compressed air into the swirling flow path in the swirling direction as needed, and the swirling flow path is made a spiral flow path, and its cross-sectional area is appropriate. By increasing the flow velocity of the swirl flow and increasing the centrifugal force applied to the particles, the separation efficiency is increased and the particles in the gas discharged after the particle processing zone are formed. It is a particle collecting means for efficiently separating and collecting. In order to take out the particles moving near the outer wall of the swirl flow path by the centrifugal force to the outside of the swirl flow, slits (30g, 30h) are provided on the outer wall of the swirl flow path, and particles provided from the slit to the outside of the swirl flow system. A particle-rich gas body was introduced into the collection chamber (30b). In order to allow an optimum amount of gas to flow out from the slit, the pressure balance inside and outside the slit must be appropriate. Therefore, the particle collection chamber (3
0b) and the suction port of the ejector (31) were connected, and the particle collection chamber (30b) was adjusted to a negative pressure appropriately. By providing the suction port of the ejector (31) at the bottom of the particle collection chamber through the particle collection chamber, the particles settled in the particle collection chamber are efficiently sucked by the ejector. The particles sucked into the ejector (31) can be easily returned to an appropriate place in the particle processing zone by the flow of compressed air. Adopting the ejector (31), even if the cyclone is placed outside the particle processing equipment as shown in Fig. 3, it can be returned to an appropriate place in the particle processing zone by connecting the ejector suction port to the lower part of the cyclone. Will be easier. Since this ejector only needs to be connected to a supply pipe for a gas body such as compressed air, it does not require an opening / closing operation like a rotary valve, and moreover the separated and collected powder particles are sucked into the negative pressure generating section. Then, it can be efficiently returned to the particle processing zone by being entrained in a gas body such as compressed air.

【0010】前記粒子捕集手段を要約すれば、粒子を含
むガス体を通す旋回流路または螺旋状通路と、該旋回流
路または螺旋状通路の外側に設けた捕集粒子回収室と、
旋回流路または螺旋状通路と捕集粒子回収室とを連通さ
せる通路とを備え、捕集粒子回収室がエジェクターの負
圧発生部に連通された構造である。該螺旋状通路は旋回
流を規制し一定以上の流速の旋回流を形成するためのも
のである。この構成によって、ガス体中に含まれる粉粒
体粒子は、旋回流路または螺旋状通路を通る間に、遠心
力により該流路の外壁近傍に集まり、エジェクターの負
圧により、旋回流路外壁に設けたスリットを通じて捕集
粒子回収室に吸引捕集される。捕集された粒子は、エジ
ェクターにより吸引され、該エジェクターに供給されて
いる圧縮空気等のガス体に同伴させて粒子加工ゾーンへ
戻される。
To summarize the above-mentioned particle collecting means, a swirl flow passage or a spiral passage for passing a gas body containing particles, and a collected particle recovery chamber provided outside the swirl flow passage or the spiral passage,
A structure is provided in which a swirl flow path or a spiral passage and a passage for connecting the collected particle collection chamber to each other are provided, and the collected particle collection chamber is connected to the negative pressure generating portion of the ejector. The spiral passage is for regulating a swirling flow and forming a swirling flow having a flow velocity above a certain level. With this configuration, the granular particles contained in the gas body gather near the outer wall of the flow passage due to centrifugal force while passing through the swirl flow passage or the spiral passage, and due to the negative pressure of the ejector, the swirl flow passage outer wall The particles are suctioned and collected in the collection particle collection chamber through the slit provided in the. The collected particles are sucked by the ejector and are returned to the particle processing zone by being entrained in a gas body such as compressed air supplied to the ejector.

【0011】また、前記粒子捕集手段は、旋回流路また
は螺旋状通路と捕集粒子回収室とを連通させる通路にト
ラップゲートを設け、必要に応じて鎧状に形成する。こ
の構成によって、ガス体中に含まれる粉粒体粒子は、旋
回流路または螺旋状通路を通る間に遠心力で該流路の外
壁方向に移行し、トラップゲートを通り抜けて捕集粒子
回収室に効率よく分離捕集される。
Further, the particle collecting means is provided with a trap gate in the swirl flow path or a passage for connecting the spiral passage and the collected particle recovery chamber, and is formed in an armored shape as required. With this configuration, the particulate material particles contained in the gas body are moved toward the outer wall of the flow passage by centrifugal force while passing through the swirling flow passage or the spiral passage, pass through the trap gate, and the collected particle recovery chamber. Are efficiently separated and collected.

【0012】また、前記粒子捕集手段は、旋回流路内の
ガス体の旋回流速を加速するように設けたガス体噴射ノ
ズルを付設してもよい。この構成によれば、螺旋状通路
または旋回流路を通るガス体の旋回流を加速して、遠心
力が増大し、ガス体中に含まれる粉粒体粒子を旋回流路
外壁近傍に移動させ、分離捕集効率を一段と向上させる
ことができる。
Further, the particle collecting means may be provided with a gas body injection nozzle provided so as to accelerate the swirling flow velocity of the gas body in the swirling flow path. According to this configuration, the swirling flow of the gas body passing through the spiral passage or the swirling flow passage is accelerated, the centrifugal force is increased, and the granular particles contained in the gas body are moved to the vicinity of the outer wall of the swirling flow passage. The separation and collection efficiency can be further improved.

【0013】また、前記粒子捕集手段は、一般に用いら
れるサイクロンに比べて、粒子の分離捕集効率は高く、
殆どの粒子は捕集されるが、念のため旋回流路または螺
旋状通路の終端付近に最終分離捕集室を設け、ガス体中
に残存する僅少の粒子を完全に濾過分離して捕集する濾
材を配設してもよい。この構成によれば、粉粒体粒子の
回収効率が一層向上し、飛散ロスも極端に減少する。な
お、この構成は、旋回流路または螺旋状通路における遠
心力分離作用により大部分の粉粒体粒子が分離捕集さ
れ、残部の極く僅少の粉粒体を最終分離捕集室で分離捕
集するので、従来のバッグフィルター方式に比べて濾材
の濾過面積が極めて小さくて済む。したがって従来のバ
ッグフィルター方式に比べて取り扱いも容易で濾材の洗
浄作業も容易である。
Further, the particle collecting means has a high efficiency of separating and collecting particles as compared with a generally used cyclone,
Most particles are collected, but just in case, a final separation / collection chamber is provided near the end of the swirl flow path or spiral path to collect and collect the small amount of particles remaining in the gas body by filtration. You may arrange | position the filter material which does. According to this structure, the efficiency of collecting the powder particles is further improved, and the scattering loss is extremely reduced. In this configuration, most of the granular material particles are separated and collected by the centrifugal force separating action in the swirling flow path or the spiral passage, and the remaining very small amount of granular material is separated and collected in the final separation collection chamber. Since they are collected, the filtration area of the filter medium can be extremely small as compared with the conventional bag filter system. Therefore, compared to the conventional bag filter method, the handling is easier and the cleaning work of the filter medium is easier.

【0014】また、前記粒子捕集手段は、処理容器内の
上部に配設されるものであり、この構成によれば、粒子
捕集手段を含む粒子加工装置をコンパクトに構成するこ
とができる。
Further, the particle collecting means is arranged in the upper part of the processing container, and according to this structure, the particle processing apparatus including the particle collecting means can be made compact.

【0015】仮に、粒子分離捕集機構を粒子加工処理装
置外に本発明に係る機構を配設する場合でも満足に機能
することは当然である。一歩譲って、従来のサイクロン
方式の粒子分離捕集機構を粒子加工処理装置外に配設す
る場合でも、本発明に係るエジェクター機構は十分活用
できる。
Even if the particle separating and collecting mechanism is arranged outside the particle processing apparatus, the particle separating and collecting mechanism naturally functions satisfactorily. Even if the conventional cyclone type particle separating and collecting mechanism is arranged outside the particle processing apparatus, the ejector mechanism according to the present invention can be fully utilized.

【0016】また、処理容器内に形成される粒子加工ゾ
ーンは、粉粒体粒子の流動層である。ここでの流動層に
は、転動、攪拌、噴流(ワースター方式を含む)の1種
以上を伴うものも含まれる。
The particle processing zone formed in the processing container is a fluidized bed of powder particles. The fluidized bed here also includes a fluidized bed accompanied by one or more of rolling, stirring, and jet (including Worster system).

【0017】[0017]

【発明の実施の形態】以下、本発明の実施の態様例を図
面に基づいて説明する。図1は本発明に係る粒子加工装
置の実施の形態を示す概略縦断面図であって、21は処
理容器、22はガス体導入口、23は分散板、24は粒
子加工ゾーン(流動層)、25は粉粒体粒子、27はス
プレーノズル、28はスプレーノズル27から流動層2
6に向けて噴射される粒子加工用のスプレー液、29は
排気ダクト、30は粒子捕集手段、31はエジェクタ
ー、32は捕集粒子排出管、33は捕集粒子フィードバ
ック管、34は最終分離捕集室、35は濾材を示してい
る。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic vertical sectional view showing an embodiment of a particle processing apparatus according to the present invention, in which 21 is a processing container, 22 is a gas body inlet, 23 is a dispersion plate, and 24 is a particle processing zone (fluidized bed). , 25 is powder particles, 27 is a spray nozzle, 28 is from the spray nozzle 27 to the fluidized bed 2
A spray liquid for processing particles to be sprayed toward 6, 29 is an exhaust duct, 30 is a particle collecting means, 31 is an ejector, 32 is a collected particle discharge pipe, 33 is a collected particle feedback pipe, and 34 is a final separation. A collection chamber, 35 is a filter medium.

【0018】処理容器21は、略円筒状をなし、底部側
面にガス体導入口22が形成され、該底部から所定高さ
上方に分散板23が設置されている。分散板23は多数
の通気孔を有し、ガス体導入口22から導入されたガス
体を略均等に分散させて上方の粒子加工ゾーン(流動
層)24に噴出させ、該粒子加工ゾーン24に供給され
ている粉粒体粒子25の流動層24を形成させるための
ものである。スプレーノズル27は粒子加工用のスプレ
ー液28を流動層24に向けて噴射させるもので、これ
により、粉粒体粒子25の造粒やコーティング処理加工
が行われる。排気ダクト29は処理容器21の天井板の
中央部に接続されている。
The processing container 21 has a substantially cylindrical shape, a gas body introduction port 22 is formed on the bottom side surface, and a dispersion plate 23 is installed above the bottom part by a predetermined height. The dispersion plate 23 has a large number of ventilation holes, and the gas body introduced from the gas body introduction port 22 is substantially evenly dispersed and jetted to the upper particle processing zone (fluidized bed) 24, and the gas is introduced into the particle processing zone 24. It is for forming the fluidized bed 24 of the powder particles 25 being supplied. The spray nozzle 27 sprays a spray liquid 28 for particle processing toward the fluidized bed 24, whereby granulation and coating processing of the powder particles 25 are performed. The exhaust duct 29 is connected to the central portion of the ceiling plate of the processing container 21.

【0019】粒子捕集手段30は、処理容器21内の上
部に配設されている。この粒子捕集手段30は、粒子を
含むガス体を通す螺旋状通路30aと、螺旋状通路30
aの外側の捕集粒子回収室30bと、螺旋状通路30a
と捕集粒子回収室30bとを連通させる通路、例えば、
トラップゲート30gとを備え、該捕集粒子回収室30
bがエジェクター31の負圧発生部31aに捕集粒子排
出管32を介して接続連通されている。
The particle collecting means 30 is arranged in the upper part of the processing container 21. The particle collecting means 30 includes a spiral passage 30a for passing a gas body containing particles and a spiral passage 30.
a, a trapped particle recovery chamber 30b outside the a, and a spiral passage 30a
And a passage for communicating the collected particle collection chamber 30b with each other, for example,
A trap gate 30g, and the trapped particle recovery chamber 30
b is connected and communicated with the negative pressure generating portion 31a of the ejector 31 via the collected particle discharge pipe 32.

【0020】螺旋状通路30aは、粒子を含むガス体に
旋回流を発生させ、ガス体中の粒子を遠心力で外側の捕
集粒子回収室30bに分離捕集させるためのもので、円
筒状の外壁30cと内壁30dとの間の環状空間に上下
方向に所定ピッチで螺旋状仕切り板30eを配置するこ
とによって断面矩形の通路として形成されており、下端
中央部にガス体導入口30fが形成されている。ここで
螺旋状通路は旋回流を最適状態に発生するものである
が、旋回気流の速度が保証されれば、仕切り板を部分的
に省略することも可能である(図4参照)。
The spiral passage 30a is used to generate a swirling flow in the gas body containing the particles and separate and collect the particles in the gas body by the centrifugal force in the outer collection particle recovery chamber 30b. The spiral partition plates 30e are vertically arranged at a predetermined pitch in the annular space between the outer wall 30c and the inner wall 30d to form a passage having a rectangular cross section, and a gas body introduction port 30f is formed at the center of the lower end. Has been done. Here, the spiral passage generates the swirling flow in the optimum state, but the partition plate can be partially omitted as long as the velocity of the swirling air flow is guaranteed (see FIG. 4).

【0021】外壁30cの上端は、処理容器21の天井
板に固着され、内壁30dの上端はそれより短くされ、
内壁30dの上下両端または一端は閉鎖されている。そ
して、内壁30dの上端と処理容器21の天井板との間
の空間を最終分離捕集室34としてあり、この部分に濾
材35が排気ダクト29への接続口を囲繞するように取
り付けてあり、濾材35は、例えば、バッグフィルター
で構成され、周辺に旋回気流を加速する機構や捕集した
粒子の払い落とし機構(図示省略)が設けられる。
The upper end of the outer wall 30c is fixed to the ceiling plate of the processing container 21, and the upper end of the inner wall 30d is shorter than that.
The upper and lower ends or one end of the inner wall 30d are closed. Then, a space between the upper end of the inner wall 30d and the ceiling plate of the processing container 21 is provided as a final separation / collection chamber 34, and a filter medium 35 is attached to this portion so as to surround a connection port to the exhaust duct 29, The filter medium 35 is, for example, a bag filter, and is provided with a mechanism for accelerating the swirling airflow and a mechanism for removing collected particles (not shown) in the periphery.

【0022】捕集粒子回収室30bは、螺旋状通路30
aの外壁30cの外側に上下方向に形成され、上下部に
分割されていてもよい。この捕集粒子回収室30bと螺
旋状通路30aとの間の外壁30cには、螺旋状通路3
0aでの旋回流による遠心力で外側に飛ばされる粒子を
効率よく分離捕集するための通路としてトラップゲート
30gが多段状に形成されている。このトラップゲート
30gには、例えば、鎧戸のような開口度調節羽根30
hを取り付け、粒子の捕集粒子回収室30bへの取り込
みを容易にする。処理容器21に設けた鎧戸の開口度の
調節操作は外部から可能とすることができる。
The trapped particle recovery chamber 30b has a spiral passage 30.
It may be vertically formed outside the outer wall 30c of a and may be divided into upper and lower parts. The spiral passage 3 is formed on the outer wall 30c between the collected particle recovery chamber 30b and the spiral passage 30a.
The trap gate 30g is formed in multiple stages as a passage for efficiently separating and collecting particles that are blown outward by the centrifugal force due to the swirling flow at 0a. The trap gate 30g includes, for example, an aperture adjusting blade 30 such as a shutter.
h is attached to facilitate the intake of particles into the collected particle recovery chamber 30b. The operation of adjusting the opening degree of the shutter in the processing container 21 can be enabled from the outside.

【0023】旋回流路 または螺旋状通路30aには、
粉粒体粒子25を含むガス体の旋回流を加速するための
圧縮空気等のガス体を噴出するガス体噴射ノズル(図示
省略)を設置することができる。この噴射ノズルは、ガ
ス体導入口30f付近または途中適所に設置するもの
で、例えば、螺旋状通路30aに対して略接線方向から
ガス体の旋回流を加速し得るように設置される。
In the swirling flow path or spiral path 30a,
A gas body injection nozzle (not shown) for ejecting a gas body such as compressed air for accelerating the swirling flow of the gas body containing the powder particles 25 can be installed. This injection nozzle is installed near the gas body introduction port 30f or at a suitable place on the way, and is installed so as to accelerate the swirling flow of the gas body from the direction substantially tangential to the spiral passage 30a, for example.

【0024】エジェクター31は、処理容器21の外部
に取り付けられるが、粒子加工容器内に設けてもよい。
このエジェクター31の負圧発生部31aは、捕集粒子
回収室30bの底部に設けた捕集粒子排出管32を介し
て接続されている。また、エジェクター31の先端圧縮
空気排出口は、捕集粒子フィードバック管33を介して
粒子加工ゾーン24の適所、例えば、スプレーゾーンな
どに接続され、捕集粒子回収室30bに回収された粉粒
体粒子25を負圧発生部31aに吸引させて圧縮空気ま
たは適宜のガス体と一緒に同伴させて戻すように構成さ
れている。
The ejector 31 is attached to the outside of the processing container 21, but may be provided inside the particle processing container.
The negative pressure generating part 31a of the ejector 31 is connected via a collected particle discharge pipe 32 provided at the bottom of the collected particle recovery chamber 30b. Further, the tip compressed air discharge port of the ejector 31 is connected to an appropriate place of the particle processing zone 24, for example, a spray zone or the like, via the collected particle feedback pipe 33, and the granular material recovered in the collected particle recovery chamber 30b. The particles 25 are sucked into the negative pressure generating portion 31a and are returned together with the compressed air or an appropriate gas body.

【0025】本発明装置の実施の形態は以上の構成から
なり、次に、その動作を説明する。ガス体導入口22か
ら適宜のガス体、例えば、ホットエアを適宜の流量、例
えば、粒子加工ゾーン24での粉粒体粒子25の流動層
を形成するのに適正な流量で供給し、分散板23を通し
て粒子加工ゾーン24の全域に分散供給する。これによ
り、粒子加工ゾーン24において、粉粒体粒子25が分
散板23の多数の通気孔から噴き出すホットエアの墳出
力で吹き上げられ、やがて自重で落下し、途中から再び
吹き上げられ、これを反復して粉粒体粒子25の流動層
24が形成され、この流動層24にスプレーノズル27
から粒子加工用のスプレー液28が噴霧供給されること
によって、所定の造粒またはコーティング処理加工並び
に乾燥などが行われる。
The embodiment of the device of the present invention has the above-mentioned configuration, and the operation thereof will be described below. An appropriate gas body, for example, hot air, is supplied from the gas body inlet port 22 at an appropriate flow rate, for example, an appropriate flow rate for forming a fluidized bed of the granular particles 25 in the particle processing zone 24, and the dispersion plate 23. Through the particle processing zone 24 is dispersedly supplied. As a result, in the particle processing zone 24, the powder particles 25 are blown up by the mounding power of the hot air ejected from the numerous vent holes of the dispersion plate 23, eventually fall by their own weight, and again blown up from the middle, and this is repeated. A fluidized bed 24 of powder particles 25 is formed, and a spray nozzle 27 is formed on the fluidized bed 24.
By spraying and supplying the spray liquid 28 for particle processing, predetermined granulation or coating processing and drying are performed.

【0026】上記粉粒体粒子25の流動層24の形成に
寄与したホットエアは、処理容器21内の粒子を流動分
散状態にし、適当な粒子加工処理に供された後、粒子捕
集手段30のガス体導入口30fから旋回流路(螺旋状
通路)30aを旋回しながら通り、ガス体中の粉粒体粒
子を遠心力で外壁方向に移行させ、トラップゲート30
gから捕集粒子回収室30b内に分離捕集させ、さらに
最終分離捕集室34に至ってその周囲を旋回し、ここに
もトラップゲート30gが設けてあるため、ガス体中の
粉粒体粒子を遠心力で捕集粒子回収室30b内に分離捕
集させる。さらに、濾材35で粉粒体粒子を完全に濾過
分離した後、粉粒体粒子が殆ど皆無となったガス体が排
気ダクト29から系外に排出される。
The hot air, which has contributed to the formation of the fluidized bed 24 of the powder particles 25, brings the particles in the processing container 21 into a fluid dispersion state, is subjected to an appropriate particle processing, and then is processed by the particle collecting means 30. While passing through the swirl flow path (spiral passage) 30a while swirling from the gas body introduction port 30f, the granular particles in the gas body are moved toward the outer wall by centrifugal force, and the trap gate 30
g to be separated and collected in the collected particle collection chamber 30b, and further to the final separation and collection chamber 34 and swirl around it, and since the trap gate 30g is also provided here, the particulate particles in the gas body Are separated and collected in the collected particle collection chamber 30b by centrifugal force. Further, after the particulate material particles are completely filtered and separated by the filter material 35, the gas body in which the particulate material particles are almost absent is discharged from the exhaust duct 29 to the outside of the system.

【0027】エジェクター31には、圧縮空気等のガス
体を前記ホットエアの流量およびホットエアに含まれる
粒子濃度に応じて適切な供給圧に設定する。これによ
り、エジェクター31のスロート部、即ち、負圧発生部
31aに最適な負圧が発生し、ガス内に含まれる粒子は
捕集粒子回収室30b内に分離捕集される。下部に沈降
する粉粒体粒子は捕集粒子排出管32を介して吸引さ
れ、これをエジェクター31に供給している圧縮空気ま
たはガス体に同伴させて捕集粒子フィードバック管33
から粒子加工ゾーン24にフィードバックさせ、粒子加
工に供される。
In the ejector 31, a gas body such as compressed air is set to an appropriate supply pressure according to the flow rate of the hot air and the concentration of particles contained in the hot air. As a result, an optimal negative pressure is generated in the throat portion of the ejector 31, that is, the negative pressure generating portion 31a, and the particles contained in the gas are separated and collected in the collected particle recovery chamber 30b. The powder particles settled in the lower part are sucked through the collected particle discharge pipe 32, and are entrained in the compressed air or gas body supplied to the ejector 31 to collect particle feedback pipe 33.
Is fed back to the particle processing zone 24 for particle processing.

【0028】螺旋状通路30aの通路断面積は、処理容
器21内に導入されるガス体の流量との関係で適正に設
定されるものであって、粉粒体粒子の分離捕集効率を所
定水準に維持させるために、例えば、ガス体の流速が5
0m/s以上になるようにし、必要に応じて、ガス体導
入口30fの付近や途中の適所に圧縮空気等のガス体噴
射ノズル(図示省略)を設置して、ガス体の旋回流を加
速することができるようにしておくのが好ましい。ま
た、分離捕集効率の増大を図るため、粒子の粒径および
濃度に応じて、螺旋状通路30aの長さを適当に設計す
る。なお、エジェクター31へ供給する圧縮空気は、捕
集粒子回収室の回収状態が最適になるように圧力調節さ
れる。また、捕集粒子フィードバック管33の先端はそ
れぞれ粒子加工に最適な個所および方向に挿入する。
The passage cross-sectional area of the spiral passage 30a is properly set in relation to the flow rate of the gas body introduced into the processing container 21, and the separation and collection efficiency of the powder particles is predetermined. To maintain the level, for example, the flow velocity of the gas body is 5
0 m / s or more, and if necessary, install a gas body injection nozzle (not shown) for compressed air or the like near the gas body inlet 30f or in an appropriate place on the way to accelerate the swirling flow of the gas body. It is preferable to be able to do so. Further, in order to increase the separation and collection efficiency, the length of the spiral passage 30a is appropriately designed according to the particle size and concentration of the particles. The pressure of the compressed air supplied to the ejector 31 is adjusted so that the collection state of the trapped particle collection chamber is optimized. Further, the tips of the collected particle feedback tubes 33 are inserted at the optimum locations and directions for particle processing.

【0029】ここで説明した実施例では、粒子加工用装
置の内部に粒子分離捕集装置を設けたが、粒子加工装置
の外部に粒子分離捕集装置を設置し、粒子捕集回収室に
溜まった粒子を同じくエジェクターで粒子加工装置に戻
してもよい。また、従来型のサイクロンを粒子加工装置
の外部に設置し、サイクロンに溜まった粒子をエジェク
ターで粒子加工装置に戻してもよい(図5参照)。
In the embodiment described here, the particle separation / collection device is provided inside the particle processing device. However, the particle separation / collection device is installed outside the particle processing device and collected in the particle collection / recovery chamber. The particles may be returned to the particle processing device by the same ejector. Alternatively, a conventional cyclone may be installed outside the particle processing device, and particles accumulated in the cyclone may be returned to the particle processing device by an ejector (see FIG. 5).

【0030】[0030]

【発明の効果】本発明によれば、従来、固気分離特性や
分離粒子の粒子加工ゾーンへのフィードバック、操作後
の洗浄作業など、問題とされてきたバッグフィルターを
用いることなく、本装置によれば、殆ど完全に固気分離
が可能で、分離捕集した粒子を、粒子加工ゾーンの所望
の個所にフィードバックでき、操作後の洗浄も容易にな
ることは、製薬、食品、農薬などの分野における裨益は
量り知れない。最近、製薬・食品の生産現場では、粒子
の機能性を付与するために、微粒子を原料として用いる
ことが多くなり、粒子加工ゾーンからの飛散ロスが大き
くなる傾向があるが、原料のロスを極力低減するために
もその経済効果は極めて大きい。
EFFECTS OF THE INVENTION According to the present invention, the apparatus of the present invention can be used without using a bag filter, which has been problematic in the past such as solid-gas separation characteristics, feedback of separated particles to a particle processing zone, and cleaning work after operation. According to this, almost complete solid-gas separation is possible, the separated and collected particles can be fed back to a desired part of the particle processing zone, and cleaning after operation becomes easy. The benefits to you are immeasurable. Recently, in pharmaceutical and food production sites, fine particles are often used as a raw material in order to impart the functionality of the particles, and the scattering loss from the particle processing zone tends to increase, but the raw material loss is minimized. The economic effect is extremely large in order to reduce it.

【0031】またGMP(Good Management Practice)
の立場からも問題の多いバッグフィルターが不要になる
ことの裨益することは計り知れない。即ち、バッグフィ
ルターを用いる場合、バッグに付着した粉粒体粒子の洗
浄が不充分であると、次回の粒子加工に当たり、前回の
付着粒子が異物となって品質を損なう欠点があり、十分
な洗浄が必要であるため、洗浄に手間を要していたが、
本発明によれば、粒子捕集手段が前記のように目詰まり
を起こす心配のない構造であり、粒子加工後の洗浄過程
でジェット水流などによる自動洗浄が可能で、自動化で
き、GMP的に最適のプロセスが構築できる。また運転
初期から終わりまで分離捕集機能は変わらないので、バ
ッグフィルター方式のように運転初期におけるロスはな
い。従って、本発明は、製薬・食品の生産現場に多大な
貢献をもたらし得るものである。
GMP (Good Management Practice)
From the standpoint as well, the benefits of eliminating the problematic bag filter are immeasurable. That is, when a bag filter is used, if the powder particles attached to the bag are insufficiently washed, there is a defect that the attached particles of the previous time become foreign matters and the quality is impaired at the time of the next particle processing. It took a lot of time to clean it because
According to the present invention, the particle collecting means has a structure that does not cause clogging as described above, and can be automatically cleaned by a jet water stream in the cleaning process after particle processing, which can be automated and is optimal for GMP. The process of can be built. In addition, since the separation and collection function does not change from the beginning to the end of operation, there is no loss at the beginning of operation as in the bag filter method. Therefore, the present invention can bring a great contribution to the production sites of pharmaceuticals and foods.

【0032】また、粒子捕集手段は、処理容器内の上部
に配設することによって、粒子捕集手段を含む粒子加工
装置をコンパクトに構成することができる。
By disposing the particle collecting means in the upper part of the processing container, the particle processing apparatus including the particle collecting means can be made compact.

【図面の簡単な説明】[Brief description of drawings]

【図1】螺旋流路を用いた本発明に係る粒子加工装置の
実施の形態を示す概略縦断面図。
FIG. 1 is a schematic vertical sectional view showing an embodiment of a particle processing apparatus according to the present invention using a spiral flow path.

【図2】バッグフィルター方式の粒子捕集手段を備えた
従来の粒子加工装置の概略縦断面図。
FIG. 2 is a schematic vertical cross-sectional view of a conventional particle processing apparatus equipped with a bag filter type particle collecting means.

【図3】サイクロン方式の粒子捕集手段を備えた従来の
粒子加工装置の概略縦断面図。
FIG. 3 is a schematic vertical cross-sectional view of a conventional particle processing apparatus equipped with a cyclone type particle collecting means.

【図4】螺旋状仕切り板のない旋回流路を用いた本発明
に係る粒子加工装置の実施の形態を示す概略縦断面図。
FIG. 4 is a schematic vertical cross-sectional view showing an embodiment of a particle processing device according to the present invention using a swirl flow path without a spiral partition plate.

【図5】従来のサイクロン方式粒子分離捕集装置を粒子
加工装置の外部に設け、捕集した粒子をエジェクターに
より粒子加工装置に戻す機構の概略図。
FIG. 5 is a schematic view of a mechanism in which a conventional cyclone-type particle separation / collection device is provided outside the particle processing device, and the collected particles are returned to the particle processing device by an ejector.

【符号の説明】 21 処理容器 22 ガス体導入口 23 分散板 24 粒子加工ゾーン(流動層) 25 粉粒体粒子 27 スプレーノズル 28 粒子加工用のスプレー液 29 排気ダクト 30 捕集手段 30a 螺旋状通路 30b 捕集粒子回収室 30g トラップゲート 31 エジェクター 31a 負圧発生部 32 捕集粒子排出管 33 捕集粒子フィードバック管 34 最終分離捕集室 35 濾材[Explanation of symbols] 21 Processing container 22 Gas body inlet 23 Dispersion plate 24 Particle processing zone (fluidized bed) 25 powder particles 27 spray nozzles 28 Particle processing spray liquid 29 Exhaust duct 30 Collection means 30a spiral passage 30b Collection particle collection room 30g trap gate 31 ejector 31a Negative pressure generating section 32 Collected particle discharge pipe 33 Collected particle feedback tube 34 Final Separation Collection Room 35 filter media

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大石 和男 京都府京田辺市棚倉31−15 Fターム(参考) 3L113 AA07 AB03 AC01 AC58 AC67 BA02 DA04 DA14 DA24 4D031 AC02 AC04 BA01 BA03 BB00 DA01 4G004 AA01 BA02    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Kazuo Oishi             31-15 Tanagura, Kyotanabe City, Kyoto Prefecture F term (reference) 3L113 AA07 AB03 AC01 AC58 AC67                       BA02 DA04 DA14 DA24                 4D031 AC02 AC04 BA01 BA03 BB00                       DA01                 4G004 AA01 BA02

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 処理容器内の粉粒体粒子にガス体を通気
して該粒子を乾燥または造粒若しくはコーティング処理
加工するための粒子加工ゾーンを形成する粒子加工装置
において、 前記粒子加工ゾーン形成後に排出されるガス体中の粒子
を分離捕集する粒子捕集手段と、該粒子捕集手段で分離
捕集した粒子を吸引して前記粒子加工ゾーンに戻すエジ
ェクターを具備したことを特徴とする粒子加工装置。
1. A particle processing apparatus for forming a particle processing zone for aerating a gas body through particles in a processing container to dry or granulate or coat the particles. It is characterized by further comprising a particle collecting means for separating and collecting particles in a gas body to be discharged later, and an ejector for sucking the particles separated and collected by the particle collecting means and returning them to the particle processing zone. Particle processing equipment.
【請求項2】 粒子捕集手段が、粒子を含むガス体を通
す旋回流路と、該旋回流路の外周部に設けた捕集粒子回
収室と、旋回流路と捕集粒子回収室とを連通させる通路
とを備え、捕集粒子回収室がエジェクターの負圧発生部
に連通されてなる請求項1に記載の粒子加工装置。
2. The particle collecting means comprises a swirl flow path for passing a gas body containing particles, a collected particle recovery chamber provided on an outer peripheral portion of the swirl flow path, a swirl flow path and a collected particle recovery chamber. The particle processing apparatus according to claim 1, further comprising: a passage for communicating the collected particle collection chamber with the negative pressure generating portion of the ejector.
【請求項3】 請求項2において、旋回流路が螺旋状通
路を形成することを特徴とする請求項2に記載する粒子
加工装置。
3. The particle processing apparatus according to claim 2, wherein the swirl flow path forms a spiral passage.
【請求項4】 請求項3において、螺旋状通路と捕集粒
子回収室とを連通させる通路がトラップゲートを多段状
に形成したものである請求項2に記載の粒子加工装置。
4. The particle processing apparatus according to claim 2, wherein the passage that connects the spiral passage and the collected particle recovery chamber has a trap gate formed in a multi-stage shape.
【請求項5】 旋回流路または螺旋状通路内のガス体の
旋回流を加速するガス体噴射ノズルを設けてなる請求項
3,4,または5に記載の粒子加工装置。
5. The particle processing device according to claim 3, 4, or 5, further comprising a gas body injection nozzle for accelerating the swirling flow of the gas body in the swirling flow path or the spiral passage.
【請求項6】 旋回流路または螺旋状通路の終端付近に
最終分離捕集室を設け、その中にガス体中の粒子を濾過
分離する濾材を配設してなる請求項2〜5のいずれかに
記載の粒子加工装置。
6. The final separation / collection chamber is provided near the end of the swirl flow path or the spiral passage, and a filter medium for filtering and separating particles in the gas body is provided therein. The particle processing device according to claim 1.
【請求項7】 粒子捕集手段が、処理容器内の上部に配
設されてなる請求項1〜6のいずれかに記載の粒子加工
装置。
7. The particle processing apparatus according to claim 1, wherein the particle collecting means is arranged in the upper part of the processing container.
【請求項8】 粒子を捕集分離する手段が粒子加工処理
容器の外に設けられ、捕集分離した粒子をエジェクター
により吸引してエジェクター排気とともに、粒子加工ゾ
ーンに戻すことを特徴とする粒子加工装置。
8. A particle processing method, wherein means for collecting and separating particles is provided outside a particle processing container, and the collected and separated particles are sucked by an ejector and returned to a particle processing zone together with ejector exhaust. apparatus.
【請求項9】 処理容器内に形成される粒子加工ゾーン
が、粉粒体粒子の流動層である請求項1〜8のいずれか
に記載の粒子加工装置。
9. The particle processing apparatus according to claim 1, wherein the particle processing zone formed in the processing container is a fluidized bed of powder particles.
JP2001229775A 2001-07-30 2001-07-30 Device for processing particle Withdrawn JP2003038948A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001229775A JP2003038948A (en) 2001-07-30 2001-07-30 Device for processing particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001229775A JP2003038948A (en) 2001-07-30 2001-07-30 Device for processing particle

Publications (1)

Publication Number Publication Date
JP2003038948A true JP2003038948A (en) 2003-02-12

Family

ID=19062075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001229775A Withdrawn JP2003038948A (en) 2001-07-30 2001-07-30 Device for processing particle

Country Status (1)

Country Link
JP (1) JP2003038948A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008298657A (en) * 2007-06-01 2008-12-11 Japan Agengy For Marine-Earth Science & Technology Powder and grain recovery apparatus
JP2009156509A (en) * 2007-12-26 2009-07-16 Earth Technica:Kk Rotary blade type stirring device and material drying method by rotary blade type stirring device
JP2015511165A (en) * 2011-12-02 2015-04-16 ドザコートヴィチ アバイエフ、アレクサンドル Method and apparatus for purifying fluid media by removing contaminating multi-component elements
WO2016001813A1 (en) 2014-07-04 2016-01-07 Tubitak Circulating fluidized bed gasification or combustion system
JP2016026867A (en) * 2014-06-30 2016-02-18 株式会社パウレック Continuous particle production device
CN107530664A (en) * 2015-06-30 2018-01-02 株式会社保锐士 Continous way particle manufacture device
CN109126632A (en) * 2018-08-01 2019-01-04 遵义大兴复肥有限责任公司 Fertilizer manufacture equipment
CN111569535A (en) * 2020-05-22 2020-08-25 重庆开山压缩机有限公司 But accurate control's dewatering jar

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008298657A (en) * 2007-06-01 2008-12-11 Japan Agengy For Marine-Earth Science & Technology Powder and grain recovery apparatus
JP2009156509A (en) * 2007-12-26 2009-07-16 Earth Technica:Kk Rotary blade type stirring device and material drying method by rotary blade type stirring device
JP2015511165A (en) * 2011-12-02 2015-04-16 ドザコートヴィチ アバイエフ、アレクサンドル Method and apparatus for purifying fluid media by removing contaminating multi-component elements
JP2016026867A (en) * 2014-06-30 2016-02-18 株式会社パウレック Continuous particle production device
WO2016001813A1 (en) 2014-07-04 2016-01-07 Tubitak Circulating fluidized bed gasification or combustion system
US10035964B2 (en) 2014-07-04 2018-07-31 Tubitak Circulating fluidized bed gasification or combustion system
CN107530664A (en) * 2015-06-30 2018-01-02 株式会社保锐士 Continous way particle manufacture device
US10661238B2 (en) 2015-06-30 2020-05-26 Kabushiki Kaisha Powrex Continuous particle manufacturing device
CN107530664B (en) * 2015-06-30 2021-03-19 株式会社保锐士 Continuous particle manufacturing apparatus
CN109126632A (en) * 2018-08-01 2019-01-04 遵义大兴复肥有限责任公司 Fertilizer manufacture equipment
CN109126632B (en) * 2018-08-01 2020-12-08 遵义大兴复肥有限责任公司 Fertilizer maker
CN111569535A (en) * 2020-05-22 2020-08-25 重庆开山压缩机有限公司 But accurate control's dewatering jar

Similar Documents

Publication Publication Date Title
JP3859968B2 (en) Improvement of powder spray coating
US7225931B2 (en) Filter device
US4880530A (en) Self-cleaning screening device
JP2000507876A (en) Separator for removing particulates from air
JP2003038948A (en) Device for processing particle
JP2750505B2 (en) Method and apparatus for producing finely pulverized powder
JPH1156718A (en) Cyclone dust collector
US4741803A (en) Spray dryer and operating method therefor
CN208526160U (en) A kind of high effect dust cleaner
JP4640542B2 (en) Cyclone
WO2022001712A1 (en) Fluidized bed
CN106268131A (en) The dust pelletizing system of waste product exhausting line
EP0053943B1 (en) Improved powder spray booth apparatus
KR102503372B1 (en) Continuous granulation machine
JP4383073B2 (en) Cyclone type air flow separation device
EP1163059B1 (en) Particle size classifier
PL204355B1 (en) Spray-drying device
EP3124110A1 (en) A process and spray drying apparatus for spray drying products
JPH0852399A (en) Cyclone recovery device
JP2002306944A (en) Granulation/drying process and fluidized bed granulation/drying equipment
WO2001050937A1 (en) Device for the separation of particles from a fluid
CN208600201U (en) A kind of medicine particle powder separating and reclaiming device
JP3434867B2 (en) Powder sorting equipment
JPH09276687A (en) Fluidized bed apparatus and fluidized granulating and coating method using the same
CN215550123U (en) Filtering structure of granulator

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20081007