WO2017002686A1 - 光束制御部材、発光装置、面光源装置および表示装置 - Google Patents

光束制御部材、発光装置、面光源装置および表示装置 Download PDF

Info

Publication number
WO2017002686A1
WO2017002686A1 PCT/JP2016/068545 JP2016068545W WO2017002686A1 WO 2017002686 A1 WO2017002686 A1 WO 2017002686A1 JP 2016068545 W JP2016068545 W JP 2016068545W WO 2017002686 A1 WO2017002686 A1 WO 2017002686A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
flux controlling
controlling member
inclined surface
light flux
Prior art date
Application number
PCT/JP2016/068545
Other languages
English (en)
French (fr)
Inventor
悠生 藤井
佑 上條
Original Assignee
株式会社エンプラス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016103266A external-priority patent/JP2017017001A/ja
Application filed by 株式会社エンプラス filed Critical 株式会社エンプラス
Priority to CN201680038329.4A priority Critical patent/CN107710059A/zh
Priority to US15/738,252 priority patent/US10222651B2/en
Publication of WO2017002686A1 publication Critical patent/WO2017002686A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/04Refractors for light sources of lens shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses

Definitions

  • the present invention relates to a light flux controlling member that controls light distribution of light emitted from a light emitting element.
  • the present invention also relates to a light emitting device having the light flux controlling member, a surface light source device having the light emitting device, and a display device having the surface light source device.
  • a direct type surface light source device may be used as a backlight.
  • direct type surface light source devices having a plurality of light emitting elements as light sources have come to be used.
  • a direct-type surface light source device has a substrate, a plurality of light emitting elements, a plurality of light flux control members (lenses), and a light diffusion member.
  • the light emitting element is a light emitting diode (LED) such as a white light emitting diode.
  • the plurality of light emitting elements are arranged in a matrix on the substrate.
  • a light flux controlling member that spreads light emitted from each light emitting element in the surface direction of the substrate is disposed on each light emitting element. The light emitted from the light flux controlling member is diffused by the light diffusing member and illuminates the irradiated member (for example, a liquid crystal panel) in a planar shape.
  • FIG. 1 is a diagram showing a configuration of a conventional light flux controlling member.
  • 1A is a perspective view seen from the back side
  • FIG. 1B is a cross-sectional perspective view seen from the back side
  • FIG. 1C is a cross-sectional view.
  • legs provided on the back side are omitted.
  • the conventional light flux controlling member 20 has an incident surface 22 on which light emitted from the light emitting element is incident, and an output surface 24 that emits light incident on the incident surface 22 to the outside.
  • the incident surface 22 is a concave surface with respect to the light emitting element, and is formed to face the light emitting surface of the light emitting element.
  • FIG. 2 is an optical path diagram of the light flux controlling member 20.
  • 2A is an optical path diagram of a light beam emitted from the light emission center of the light emitting element 10 at an emission angle of 30 °
  • FIG. 2B is an optical path diagram of a light beam emitted from the light emission center of the light emitting element 10 at an emission angle of 40 °. is there.
  • the “emission angle” means an angle of the emitted light with respect to the optical axis LA of the light emitting element 10 ( ⁇ in FIG. 2A).
  • legs provided on the back side are also omitted.
  • the light emitted from the light emitting element 10 enters the light flux controlling member 20 at the incident surface 22.
  • the light incident on the light flux controlling member 20 reaches the emission surface 24 and is emitted to the outside from the emission surface 24 (solid arrow).
  • the traveling direction of the light is controlled.
  • part of the light reaching the emission surface 24 is reflected by the emission surface 24 (Fresnel reflection) and reaches the back surface 26 facing the substrate on which the light emitting element 10 is mounted (dashed arrow).
  • Patent Document 1 proposes a light flux controlling member that can solve such a problem.
  • FIG. 3 is a diagram showing a configuration of the light flux controlling member described in Patent Document 1.
  • 3A is a perspective view seen from the back side
  • FIG. 3B is a cross-sectional perspective view seen from the back side
  • FIG. 3C is a cross-sectional view.
  • legs provided on the back side are omitted.
  • a concave portion having an inclined surface 32 on the outer side and a surface 34 on the inner side substantially parallel to the central axis CA is formed on the rear surface 26. Is formed.
  • the inclined surface 32 is rotationally symmetric (circularly symmetric) with respect to the central axis CA of the light flux controlling member 30 and is inclined at a predetermined angle (for example, 45 °) with respect to a virtual straight line orthogonal to the central axis CA. .
  • FIG. 4 is an optical path diagram of the light flux controlling member 30.
  • 4A is an optical path diagram of a light beam emitted from the light emission center of the light emitting element 10 at an emission angle of 30 °
  • FIG. 4B is an optical path diagram of a light beam emitted from the light emission center of the light emitting element 10 at an emission angle of 40 °. is there.
  • the legs provided on the back side are omitted.
  • the light reflected by Fresnel on the exit surface 24 reaches a predetermined region on the back surface 26.
  • the inclined surface 32 By forming the inclined surface 32 in the predetermined region, it is possible to reflect at least a part of the light reaching the inclined surface 32 and to make light directed in the lateral direction (see FIGS. 4A and B).
  • the light emitting device having the light flux controlling member 30 described in Patent Document 1 can irradiate light more uniformly and efficiently than the light emitting device having the conventional light flux controlling member 20.
  • COB chip-on-board
  • the COB type LED is used for the light emitting element of the surface light source device described in Patent Document 1, from the viewpoint of causing a large amount of light emitted in the lateral direction of the LED to be incident from the incident surface 22 into the light flux controlling member.
  • the difference in height between the back surface of the control member and the top surface of the light emitting element is further reduced.
  • the light emitted in the lateral direction of the light emitting element and incident on the light flux controlling member propagates through the light flux controlling member and reaches the inner surface 34 forming the concave portion. This light is transmitted through the inner surface 34 and scattered depending on the surface state of the surface.
  • the light transmitted through the surface 34 is refracted by the inclined surface 32 and travels in a direction toward the vicinity of the upper portion of the light emitting device (see FIG. 5). Due to the scattering at the inner surface 34 and the refraction at the inclined surface 32, the light toward the upper part of the light emitting device becomes excessive, so that a region with high luminance is formed in an annular shape near the upper part of the light emitting device. Brightness unevenness occurs.
  • the present invention has been made in view of the above points, and is a light flux controlling member having an inclined surface that further reflects light reflected by an emission surface, and a large amount of light in a lateral direction, such as a COB type LED.
  • An object of the present invention is to provide a light flux controlling member that hardly causes uneven brightness in light emitted from the light flux controlling member even when used in combination with a light emitting element that emits light.
  • Another object of the present invention is to provide a light emitting device having the light flux controlling member, a surface light source device having the light emitting device, and a display device having the surface light source device.
  • the light flux controlling member of the present invention intersects with the central axis and an inner surface of a first recess formed on the back side so as to intersect with the central axis, and an incident surface on which light emitted from the light emitting element is incident. Formed on the front side of the light flux control member formed on the back side so as to surround the central axis outside the entrance surface and the exit surface for emitting the light incident on the entrance surface to the outside.
  • a second inclined portion, and the second recessed portion is inclined with respect to a virtual straight line orthogonal to the central axis and a virtual straight line orthogonal to the central axis.
  • An inclined second inclined surface wherein the second inclined surface is formed in a region closer to the central axis than the first inclined surface, and the first inclined surface is the incident surface. At least part of the light incident on the light flux controlling member and reflected by the Fresnel at the exit surface is reflected. At an angle to, the farther from the central axis, inclined in a direction towards the more rear side, the second inclined surface, farther from the central axis is inclined in a direction toward the more front side, a configuration.
  • the light emitting device of the present invention includes a light emitting element and the light flux controlling member of the present invention, and the light flux controlling member is arranged so that the central axis coincides with the optical axis of the light emitting element. take.
  • the surface light source device of the present invention employs a configuration having the light emitting device of the present invention and a light diffusing member that diffuses and transmits light from the light emitting device.
  • the display device of the present invention has a configuration including the surface light source device of the present invention and a display member that is irradiated with light emitted from the surface light source device.
  • the light flux controlling member of the present invention hardly causes uneven brightness in the emitted light even when combined with a light emitting element that emits a lot of light in the lateral direction, such as a COB type LED.
  • the light emitting device, the surface light source device, and the display device of the present invention include the light flux controlling member that does not easily cause the luminance unevenness, it is difficult to cause the luminance unevenness in the emitted light.
  • FIG. 1A to 1C are diagrams showing a configuration of a conventional light flux controlling member.
  • 2A and 2B are optical path diagrams of the light flux controlling member shown in FIG. 3A to 3C are diagrams showing the configuration of the light flux controlling member described in Patent Document 1.
  • FIG. 4A and 4B are optical path diagrams of the light flux controlling member shown in FIG.
  • FIG. 5 is another optical path diagram of the light flux controlling member shown in FIG. 6A and 6B are diagrams showing the configuration of the surface light source device according to the present invention.
  • 7A and 7B are cross-sectional views showing the configuration of the surface light source device according to the present invention.
  • FIG. 8 is a partially enlarged cross-sectional view in which a part of FIG. 7B is enlarged.
  • FIG. 8 is a partially enlarged cross-sectional view in which a part of FIG. 7B is enlarged.
  • FIG. 9 is a diagram showing a configuration of the light flux controlling member according to the present invention.
  • 10A to 10C are diagrams showing the configuration of the light flux controlling member according to the present invention.
  • 11A and 11B are diagrams showing another configuration of the light flux controlling member according to the present invention.
  • 12A to 12C are optical path diagrams of the light flux controlling member shown in FIG. 13A and 13B are views showing still another configuration of the light flux controlling member according to the present invention.
  • FIG. 14 is a diagram showing still another configuration of the light flux controlling member according to the present invention.
  • FIG. 15 is another optical path diagram of the light flux controlling member shown in FIG.
  • FIG. 16A is a partial cross-sectional view showing an outline of a light flux controlling member for comparison.
  • FIG. 16B is a partial cross-sectional view schematically showing the light flux controlling member according to Embodiment 1.
  • FIG. 16C is a graph showing a simulation result of the illuminance distribution in the region immediately above the light flux controlling member shown in FIGS. 16A and 16B.
  • FIG. 17A is a partial cross-sectional view illustrating an outline of another light flux controlling member according to Embodiment 1.
  • FIG. 17B is a graph showing a simulation result of the illuminance distribution in the region immediately above the light flux controlling member shown in FIGS. 16A and 17A.
  • 18A is a partial cross-sectional view illustrating an outline of another light flux controlling member according to Embodiment 1.
  • FIG. 18B is a graph showing a simulation result of the illuminance distribution in the region immediately above the light flux controlling member shown in FIGS. 16A and 18A.
  • FIG. 19A is a partial cross-sectional view illustrating an outline of a light flux controlling member according to Embodiment 2.
  • FIG. 19B is a graph showing a simulation result of the illuminance distribution in the region immediately above the light flux controlling member shown in FIGS. 16A and 19A.
  • FIG. 20A is a partial cross-sectional view illustrating an outline of another light flux controlling member according to Embodiment 2.
  • 20B is a graph showing a simulation result of the illuminance distribution in the region immediately above the light flux controlling member shown in FIGS. 16A and 20A.
  • FIG. 19A is a partial cross-sectional view illustrating an outline of a light flux controlling member according to Embodiment 2.
  • FIG. 20B is a graph showing a simulation result of the illuminance distribution in the region immediately above the light flux controlling
  • FIG. 21A is a partial cross-sectional view illustrating an outline of another light flux controlling member according to Embodiment 2.
  • FIG. 21B is a graph showing a simulation result of the illuminance distribution in the region immediately above the light flux controlling member shown in FIGS. 16A and 21A.
  • FIG. 22A is a partial cross-sectional view illustrating an outline of another light flux controlling member according to Embodiment 2.
  • FIG. 22B is a graph showing a simulation result of the illuminance distribution in the region immediately above the light flux controlling member shown in FIGS. 16A and 22A.
  • FIG. 23A is a partial cross-sectional view illustrating an outline of a light flux controlling member according to Embodiment 3.
  • FIG. 23A is a partial cross-sectional view illustrating an outline of a light flux controlling member according to Embodiment 3.
  • 23B is a graph showing a simulation result of the illuminance distribution in the region immediately above the light flux controlling member shown in FIGS. 16A and 23A.
  • 24A and 24B are diagrams showing the configuration of a light flux controlling member according to another embodiment of the present invention.
  • a surface light source device suitable for a backlight of a liquid crystal display device will be described as a representative example of the surface light source device of the present invention.
  • These surface light source devices can be used as a display device by combining with an irradiated member (for example, a liquid crystal panel) irradiated with light from the surface light source device.
  • FIG. 6A is a plan view
  • FIG. 6B is a front view
  • 7A is a cross-sectional view taken along line 7A-7A shown in FIG. 6B
  • FIG. 7B is a cross-sectional view taken along line 7B-7B shown in FIG. 6A
  • FIG. 8 is a partially enlarged cross-sectional view in which a part of FIG. 7B is enlarged.
  • the surface light source device 100 of the present invention includes a housing 110, a plurality of light emitting devices 200, and a light diffusing member 120.
  • the plurality of light emitting devices 200 are arranged in a matrix on the bottom plate 112 of the housing 110.
  • the inner surface of the bottom plate 112 functions as a diffuse reflection surface.
  • the top plate 114 of the housing 110 is provided with an opening.
  • the light diffusing member 120 is disposed so as to close the opening, and functions as a light emitting surface.
  • the size of the light emitting surface can be, for example, about 400 mm ⁇ about 700 mm.
  • the plurality of light emitting devices 200 are each fixed on a substrate 210.
  • Each of the plurality of substrates 210 is fixed at a predetermined position on the bottom plate 112 of the housing 110.
  • the plurality of light emitting devices 200 each include a light emitting element 220 and a light flux controlling member 300.
  • the light emitting element 220 is a light source of the surface light source device 100 and is mounted on the substrate 210.
  • the light emitting element 220 is a light emitting diode (LED) such as a white light emitting diode. From the viewpoint of easy mounting and high luminous efficiency, the light emitting element 220 is preferably a chip-on-board (COB) type LED.
  • COB chip-on-board
  • COB type LEDs are known to emit more light in the lateral direction than conventional LEDs.
  • the light emitting element 220 is an element that emits a lot of light in the lateral direction, such as a COB type LED, from the viewpoint of making more light emitted in the side surface direction of the LED incident on the light flux controlling member,
  • the upper surface is preferably vertically above the lower end of a first recess 310 (described later) of the light flux controlling member.
  • the light flux controlling member 300 is a lens and is fixed on the substrate 210.
  • the light flux controlling member 300 controls the light distribution of the light emitted from the light emitting element 220 and expands the traveling direction of the light in the surface direction of the substrate.
  • the light flux controlling member 300 is disposed on the light emitting element 220 so that the central axis CA coincides with the optical axis LA of the light emitting element 220 (see FIG. 8).
  • an entrance surface 320 and an exit surface 330 of the light flux controlling member 300 described later are both rotationally symmetric (circularly symmetric), and their rotational axes coincide.
  • the rotation axes of the entrance surface 320 and the exit surface 330 are referred to as “center axis CA of the light flux controlling member”.
  • the “optical axis LA of the light emitting element” means a light beam at the center of a three-dimensional outgoing light beam from the light emitting element 220.
  • the light flux controlling member 300 can be formed by integral molding using a plurality of divided dies.
  • the light flux controlling member 300 may be made of any material that can transmit light having a desired wavelength.
  • the material of the light flux controlling member 300 is light transmissive resin such as polymethyl methacrylate (PMMA), polycarbonate (PC), epoxy resin (EP), silicone resin, or glass.
  • the surface light source device 100 has a main feature in the configuration of the light flux controlling member 300. Therefore, the light flux controlling member 300 will be described in detail separately.
  • the light diffusing member 120 is a plate-like member having light diffusibility, and transmits the light emitted from the light emitting device 200 while diffusing it.
  • the light diffusing member 120 is approximately the same size as an irradiated member such as a liquid crystal panel.
  • the light diffusing member 120 is made of a light transmissive resin such as polymethyl methacrylate (PMMA), polycarbonate (PC), polystyrene (PS), styrene / methyl methacrylate copolymer resin (MS).
  • PMMA polymethyl methacrylate
  • PC polycarbonate
  • PS polystyrene
  • MS styrene / methyl methacrylate copolymer resin
  • fine irregularities are formed on the surface of the light diffusion member 120, or light diffusers such as beads are dispersed inside the light diffusion member 120.
  • the surface light source device 100 In the surface light source device 100 according to the present invention, the light emitted from each light emitting element 220 is expanded by the light flux controlling member 300 so as to illuminate a wide area of the light diffusing member 120. The light emitted from each light flux controlling member 300 is further diffused by the light diffusing member 120. As a result, the surface light source device 100 according to the present invention can uniformly illuminate a planar irradiated member (for example, a liquid crystal panel).
  • a planar irradiated member for example, a liquid crystal panel
  • FIG. 9 and 10 are diagrams showing the configuration of the light flux controlling member 300 according to the present invention.
  • FIG. 9 is a perspective view seen from the back side (substrate 210 side).
  • 10A is a plan view
  • FIG. 10B is a front view
  • FIG. 10C is a cross-sectional view taken along line 10C-10C shown in FIG. 10A.
  • the light flux controlling member 300 has a first recess 310, an incident surface 320, an exit surface 330, a second recess 340, and a flange 350.
  • the light flux controlling member 300 may have a back surface or a plurality of legs, not shown.
  • the first recess 310 is formed at the center of the back side (light emitting element 220 side) of the light flux controlling member 300.
  • the inner surface of the first recess 310 functions as the incident surface 320.
  • the incident surface 320 causes most or all of the light emitted from the light emitting element 220 to enter the light flux controlling member 300 while controlling the traveling direction thereof.
  • the incident surface 320 intersects with the central axis CA of the light flux controlling member 300 and is rotationally symmetric (circular symmetric) about the central axis CA.
  • the exit surface 330 is formed on the front side (light diffusion member 120 side) of the light flux controlling member 300 so as to protrude from the flange portion 350.
  • the exit surface 330 emits the light incident in the light flux controlling member 300 to the outside while controlling the traveling direction.
  • the exit surface 330 intersects the central axis CA and is rotationally symmetric (circular symmetric) about the central axis CA.
  • the emission surface 330 includes a first emission surface 330a located in a predetermined range centered on the central axis CA, a second emission surface 330b formed continuously around the first emission surface 330a, and a second emission surface 330b. And a third emission surface 330c that connects the flange 350 (see FIG. 10C).
  • the first emission surface 330a is a curved surface convex on the back side.
  • the second emission surface 330b is a smooth curved surface that is located on the front side and is located around the first emission surface 330a.
  • the shape of the second emission surface 330b is an annular convex shape.
  • the third emission surface 330c is a curved surface located around the second emission surface 330b. In the cross section shown in FIG. 10C, the cross section of the third emission surface 330c may be linear or curved.
  • the second concave portion 340 is formed on the back side of the light flux controlling member and outside the first concave portion 310 (region farther from the central axis CA) so as to surround the central axis CA.
  • the second recess 340 has a first inclined surface 342 formed on the outer side and a second inclined surface 344 provided on the inner side (region closer to the central axis CA).
  • the second recess 340 may further include a non-inclined portion having a non-inclined surface to be described later. Both the first inclined surface 342 and the second inclined surface 344 are inclined with respect to a virtual straight line orthogonal to the central axis CA.
  • the first inclined surface 342 is inclined in a direction toward the back side as the distance from the central axis increases.
  • the second inclined surface 344 is inclined in the direction toward the front side as the distance from the central axis CA increases.
  • the inclined surface means a surface that is inclined (intersects at a predetermined angle) with respect to a virtual straight line orthogonal to the central axis CA, and the non-inclined surface is a plane parallel to the virtual straight line orthogonal to the central axis CA. Means.
  • the inclination angle of the inclined surface (hereinafter also simply referred to as “inclination angle”) with respect to a virtual straight line orthogonal to the central axis CA is when the inclined surface in the cross section including the central axis CA is linear. It means an angle formed by the straight line and a virtual straight line orthogonal to the central axis CA.
  • the inclined surface in the cross section including the central axis CA is curved, it is included in the inclined surface in the cross section including the central axis CA. It means an angle formed by a straight line connecting a point closest to the central axis CA and a point farthest from the central axis CA and a virtual straight line orthogonal to the central axis CA.
  • the first inclined surface 342 and the second inclined surface 344 may be formed continuously, or a non-inclined portion is formed between the first inclined surface 342 and the second inclined surface 344. Also good. When the first inclined surface 342 and the second inclined surface 344 are formed continuously, the first inclined surface 342 and the second inclined surface 344 are in direct contact with each other in the cross section including the central axis CA. In addition, the cross-sectional shape of the second recess 340 is substantially V-shaped with the top and bottom reversed. When the non-inclined portion is formed between the first inclined surface 342 and the second inclined surface 344, the first inclined surface 342 and the second inclined surface 344 are not in the cross section including the central axis CA. It is in contact via an inclined part.
  • the contact through the non-inclined portion means that the line segment representing the first inclined surface 342 and the line segment representing the second inclined surface 344 in the cross-section pass through the non-inclined surface (at this time, the second The cross-sectional shape of the concave portion 340 is a shape obtained by removing the lower base from a substantially trapezoidal shape having a short upper base (side located on the front side), or a convex non-inclined surface having a non-inclined surface formed on the top surface. This means that the second concave portion 340 is formed in a cross section by being disposed through the portion.
  • the non-inclined surface formed between the first inclined surface 342 and the second inclined surface 344 is a mold for forming the light flux controlling member 300 from a plurality of divided molds.
  • the central axis is formed. It can be used as a reference for aligning the rotational direction with CA as the rotational axis and the height direction along the central axis CA. Therefore, the light flux controlling member 300 having the non-inclined surface is easier to manufacture.
  • FIG. 11A is a cross-sectional view including the central axis CA of the light flux controlling member 300 having the non-inclined surface 343 and its back side (the substrate 210 side).
  • the non-inclined portion is disposed only on a part of the contact side between the first inclined surface 342 and the second inclined surface 344 that are continuously formed.
  • the first inclined surface 342 and the second inclined surface 344 are in direct contact with each other (FIG. 10C).
  • the first inclined surface 342 and the second inclined surface 344 are in contact with each other via a non-inclined portion (FIG. 11B).
  • the first inclined surface 342 and the non-inclined surface 343, and the non-inclined surface 343 and the second inclined surface 344 may be in contact with each other or other surfaces (for example, the central axis) It may be in contact via a plane substantially parallel to CA.
  • the planar shape of the non-inclined surface 343 may be an oval shape as shown in FIG. 11B or another shape such as a circle.
  • the light flux controlling member 300 preferably has non-inclined portions at two positions substantially opposite to each other with the central axis CA interposed therebetween. It is preferable to have at least one combination of inclined portions.
  • the non-inclined surface 343 can also be used as a measurement reference surface for accurately grasping the positions of the first inclined surface 342 and the second inclined surface 344 in the height direction along the central axis CA.
  • the number of non-inclined portions of the light flux controlling member 300 is small. Considering the balance between the alignment effect and the luminance unevenness suppression effect, It is preferable to have only two combinations of two non-inclined portions.
  • the inclination angle of the first inclined surface 342 is an angle at which at least a part of the light incident on the light flux controlling member 300 at the incident surface 320 and reflected by Fresnel at the output surface 330 is reflected.
  • the first inclined surface 342 is, for example, in a region where the light incident on the light flux controlling member 300 at the incident surface 320 reaches the output surface 330 by Fresnel reflection. Can be provided.
  • the optical path from when the light incident on the incident surface 320 is Fresnel-reflected on the output surface 330 to reach the back side of the light flux controlling member 300 can be obtained by simulation.
  • FIG. 12 is an optical path diagram of the light flux controlling member 300.
  • 12A is an optical path diagram of a light beam emitted from the light emission center of the light emitting element 220 at an emission angle of 30 °, and FIG.
  • FIG. 12B is an optical path diagram of a light beam emitted from the light emission center of the light emitting element 220 at an emission angle of 40 °.
  • FIG. 12C is an optical path diagram of light rays emitted from the light emission center of the light emitting element 220 at an emission angle of 50 °.
  • the light reflected by the emission surface 330 reaches a predetermined region on the back side of the light flux controlling member 300 (the back surface is formed in these drawings).
  • the region where the light incident on the light flux controlling member 300 at the incident surface 320 reaches after being reflected by Fresnel at the output surface 330 is, for example, the region where most of the optical path has reached by performing the above simulation for a plurality of different angles. Can be set to include.
  • the first inclined surface 342 may include a plurality of ridges 342d having a substantially triangular cross section perpendicular to the ridge line 342c and rotationally symmetric with respect to the central axis CA. (See FIG. 13A).
  • the ridge 342d has a planar first reflecting surface 342a, a planar second reflecting surface 342b, and a ridge line 342c that is an intersection of the first reflecting surface 342a and the second reflecting surface 342b.
  • the virtual straight line including the ridge line 342c intersects the central axis CA at a position on the front side of the ridge line 342c.
  • the 2nd inclined surface 344 is abbreviate
  • Such ridges 342d function as a total reflection prism, and further reflect the light that has reached the first inclined surface 342 by the Fresnel reflection in the lateral direction of the light flux controlling member 300.
  • line 342d further suppresses generation
  • the light flux controlling member 300 is continuous in order to facilitate alignment between the molds.
  • the non-inclined part which has the non-inclined surface 343 may be formed in a part of tangent side of the 1st inclined surface 342 and the 2nd inclined surface 344 which were formed in this way.
  • the non-inclined surface 343 shown in FIG. 14 is the height of the ridge 342d and the depth of the second recess 340 (the bottom of the second recess 340 (the point on the most front side of the surface of the second recess 340).
  • the planar shape of the non-inclined surface 343 may be an oval shape as shown in FIG. 14, or may be another shape such as a circle.
  • the light flux controlling member 300 preferably has non-inclined portions at two positions substantially opposite to each other with the central axis CA interposed therebetween. It is preferable to have at least one combination of inclined portions.
  • the non-inclined surface 343 As a measurement reference surface for accurately grasping the positions of the first inclined surface 342 and the second inclined surface 344 in the height direction along the central axis CA, it is preferable to have two non-inclined portions at rotationally symmetric positions with the central axis CA as the symmetry axis.
  • the number of non-inclined portions of the light flux controlling member 300 is small. Considering the balance between the alignment effect and the luminance unevenness suppression effect, It is preferable to have only two combinations of two non-inclined portions.
  • the second inclined surface 344 may be a single truncated cone surface having a constant inclination angle (see Embodiment 1 described later), or a combination of a plurality of truncated cone surfaces having different inclination angles (described later). Or a curved surface (see embodiment 3 described later) having an inclination angle that gradually changes toward the outside.
  • a truncated cone surface means the surface which has the shape of the side surface of a truncated cone.
  • the second inclined surface 344 When the second inclined surface 344 has a single truncated cone shape with a constant inclination angle, the second inclined surface 344 is linear in a cross section passing through the central axis CA. When the second inclined surface 344 is a set of a plurality of frustoconical surfaces having different inclination angles, the second inclined surface 344 is linearly refracted midway in a cross section passing through the central axis CA. When the second inclined surface 344 is a curved surface having an inclination angle that gradually changes toward the outside, the second inclined surface 344 has a curved shape in which the inclination angle gradually changes in a cross section passing through the central axis CA.
  • the inner surface of the second recess 340 has been formed substantially parallel to the central axis CA (for example, the surface 34 in FIGS. 3 and 4). Therefore, light traveling in a direction substantially perpendicular to the central axis CA is scattered or redirected by the inner surface and the first inclined surface 342 above the light flux controlling member (for example, FIG. 5), brightness unevenness occurred in the light emitted from the surface light source device due to such light. On the other hand, the amount of light traveling on the optical path as shown in FIG. 5 is reduced by inclining the inner surface to form the second inclined surface 344.
  • the second inclined surface 344 reflects or refracts light traveling in a direction substantially orthogonal to the central axis CA and travels in the lateral direction of the light flux controlling member (see FIG. 15, in FIG. 15, Only the light reflected by the second inclined surface 344 is shown). For these reasons, the second inclined surface 344 suppresses the progress of light upward of the light flux controlling member 300 and makes it difficult to generate the luminance unevenness. From the viewpoint of making the luminance unevenness due to the scattered light and the light whose direction has been changed upward less likely to occur, the second inclined surface 344 is incident on the light flux controlling member 300 at the incident surface 320 and substantially orthogonal to the central axis CA, for example. It can be provided in a region where a large amount of light traveling in the direction to reach.
  • the luminous flux control member 300 of the present invention can make it more difficult for luminance unevenness to occur when the light emitting element is a COB type LED as compared with the conventional luminous flux control member.
  • the second inclined surface 344 is in a direction orthogonal to the central axis CA.
  • the inclination angle of the second inclined surface 344 is the point closest to the emission surface 330 included in the line segment representing the second inclined surface 344 in an arbitrary cross section including the central axis CA and the most from the emission surface 330. It means an angle formed by a straight line connecting a distant point and a virtual straight line orthogonal to the central axis CA.
  • the inclination angle of the total surface area of the second inclined surface 344 is the angle for total reflection. More preferably, the proportion of the surface area of the inclined surface having a smaller angle is at least half or more. From the above viewpoint, when the second inclined surface 344 includes a plurality of inclined surfaces having different inclination angles, it is more preferable that the inclination angle of any of the inclined surfaces is smaller than the angle for total reflection.
  • the second inclination angle of the surface 344 is preferably an angle that totally reflects the light. Further, from the viewpoint of making it difficult to form a surface substantially parallel to the central axis CA between the first inclined surface 342 and the second inclined surface 344, the inclination angle of the second inclined surface 344 is: It is preferable that the angle be equal to or greater than an angle formed by a straight line connecting the bottom of the second recess 340 and the lower end of the first recess 310 and a virtual straight line orthogonal to the central axis CA.
  • the second inclined surface 344 is convex on the back side from the viewpoint of further reducing luminance unevenness.
  • the second inclined surface 344 is, for example, a combination of a plurality of frustoconical surfaces having different inclination angles, or a curved surface having an inclination angle that gradually changes toward the outside.
  • Each of the two inclined surfaces 344 has a combination of a plurality of line segments (see FIGS. 19A and 21A) that are convex on the back side, or a curved shape with a larger inclination angle toward the outer side (see FIG. 23A).
  • the second inclined surface 344 has a constant inclination angle.
  • the second inclined surface 344 has a single truncated cone shape, and the second inclined surface 344 has a linear shape in a cross section including the central axis CA (see FIG. 16B).
  • the entire back surface of the light flux controlling member 300 is the second recess 340.
  • the second recess is formed. 340 may be formed only in a partial region on the back side of the light flux controlling member 300. At this time, the back surface is formed in the remaining region on the back side of the light flux controlling member 300.
  • a plurality of (for example, two) second concave portions 340 are formed on the back side of the light flux controlling member 300, one of the concave portions has a first inclined surface 342, and the other concave portion is a second inclined surface. 344 may be included.
  • the second inclined surface 344 is the most of the plurality of second recesses 340. It is preferable that the concave surface close to the incident surface 320 is a surface on the incident surface 320 side.
  • a plane substantially parallel to the central axis CA is formed in addition to the first inclined surface 342 and the second inclined surface 344, and this surface is directed upward. May cause slight scattering. From the viewpoint of suppressing this slight upward scattering, only one second recess 340 is formed, the outer surface thereof is defined as the first inclined surface 342, and the inner surface is defined as the second inclined surface 344. It is preferable to do.
  • the flange portion 350 is located between the outer peripheral portion of the emission surface 330 and the outer peripheral portion on the back side of the light flux controlling member 300, and protrudes radially outward.
  • the shape of the collar part 350 is substantially annular. Although the collar part 350 is not an essential component, the provision and provision of the collar part 350 facilitates handling and positioning of the light flux controlling member 300.
  • the thickness of the flange 350 can be determined in consideration of the required area of the emission surface 330, the formability of the flange 350, and the like.
  • the arbitrarily formed back surface is a surface that is located on the back side (substrate 210 side) of the light flux controlling member and extends in a direction substantially orthogonal to the central axis CA.
  • the opening edge of the first recess 310 It is a surface extending in the radial direction from.
  • the plurality of arbitrarily formed legs are substantially cylindrical members protruding from the back side of the light flux controlling member 300.
  • the plurality of legs support the light flux controlling member 300 at an appropriate position with respect to the light emitting element 220.
  • the light emitting element 220 that is a COB type LED that emits light with Lambertian light distribution on the five surfaces other than the bottom surface, and the light flux controlling member 300 or the above-described comparative light flux controlling member on the substrate 210.
  • the illuminance distribution on the light diffusing member 120 in the upper part of the light flux controlling member 300 or the comparative light flux controlling member when arranged is examined.
  • the light emitting element 220 was installed such that the upper surface thereof was vertically above the lower end of the first recess 310 included in the light flux controlling member 300 or the comparative light flux controlling member.
  • the light flux control member 300 and the comparative light flux control member used in the simulation differ only in whether or not they have the second inclined surface 344.
  • the parameters of the light flux controlling member 300 and the comparative light flux controlling member were set as follows.
  • the illuminance distribution by the plurality of light flux control members 300 in which the inclination angle and the inner diameter of the second inclined surface were changed was obtained, and each was compared with the illuminance distribution by the comparative light flux control member.
  • the first embodiment relates to an aspect in which the second inclined surface 344 has a single truncated cone shape. At this time, the second inclined surface 344 is linear in a cross section passing through the central axis CA.
  • FIG. 16A is a cross section passing through the central axis CA, showing an outline of a comparative light beam control member having the first inclined surface 342 but not having the second inclined surface among the light beam control members used in the simulation.
  • FIG. 16B is a partial cross-sectional view in a cross section passing through the central axis CA, showing an outline of the light beam control member 300 having both the first inclined surface 342 and the second inclined surface 344 among the light beam control members used in the simulation. It is.
  • the second recess 340 is formed on the entire back side of the light flux controlling member 300, and the first inclined surface 342 and the second inclined surface 344 are formed continuously.
  • the vertical axis indicates the vertical distance from the lower end of the first recess 310 of the light flux controlling member 300
  • the horizontal axis indicates the horizontal distance (mm) from the central axis CA of the light flux controlling member 300.
  • the shape of the comparative light flux controlling member or the light flux controlling member 300 is indicated by a bold line.
  • FIG. 16C is a simulation result of the illuminance distribution in the region immediately above the comparative light flux controlling member shown in FIG. 16A and the light flux controlling member 300 shown in FIG. 16B.
  • the vertical axis represents illuminance (lx)
  • the horizontal axis represents the horizontal distance (mm) from the central axis CA of the light flux controlling member.
  • the broken line indicates the simulation result of the comparative light flux controlling member
  • the thick line indicates the simulation result of the light flux controlling member 300.
  • the illuminance in the region immediately above light flux controlling member 300 is low, and conversely, the illuminance in the peripheral region is high, resulting in a mountain shape with a smoother illuminance distribution.
  • FIG. 17A shows a part in a cross section passing through the central axis CA, showing an outline of another light flux controlling member 300 having both the first inclined surface 342 and the second inclined surface 344 among the light flux controlling members used in the simulation. It is sectional drawing.
  • the second concave portion 340 is formed on the entire back side of the light flux controlling member 300, and between the first inclined surface 342 and the second inclined surface 344, with respect to the central axis CA.
  • a rotationally symmetric non-tilted surface is formed.
  • the vertical axis represents the vertical distance from the lower end of the first recess 310 of the light flux controlling member 300
  • the horizontal axis represents the horizontal distance (mm) from the central axis CA of the light flux controlling member 300, respectively.
  • the shape of the light flux controlling member 300 is indicated by a bold line.
  • FIG. 17B is a simulation result of the illuminance distribution in the region immediately above the comparative light flux controlling member shown in FIG. 16A and the light flux controlling member 300 shown in FIG. 17A.
  • the vertical axis represents the illuminance (lx)
  • the horizontal axis represents the horizontal distance (mm) from the central axis CA of the light flux controlling member.
  • the broken line indicates the simulation result of the comparative light flux controlling member
  • the thick line indicates the simulation result of the light flux controlling member 300.
  • the illuminance in the region immediately above light flux controlling member 300 is low, and conversely, the illuminance in the peripheral region is high, resulting in a mountain shape with a smoother illuminance distribution.
  • FIG. 18A is a cross-section passing through the central axis CA showing an outline of still another light flux controlling member 300 having both the first inclined surface 342 and the second inclined surface 344 among the light flux controlling members used in the simulation. It is a fragmentary sectional view.
  • the second recess 340 is formed only in a partial region on the back side of the light flux controlling member 300, and the first inclined surface 342 and the second inclined surface 344 are formed continuously.
  • the vertical axis represents the vertical distance from the lower end of the first recess 310 of the light flux controlling member 300
  • the horizontal axis represents the horizontal distance (mm) from the central axis CA of the light flux controlling member 300. Show.
  • the shape of the light flux controlling member 300 is indicated by a thick line.
  • FIG. 18B is a simulation result of the illuminance distribution in the region immediately above the comparative light flux controlling member shown in FIG. 16A and the light flux controlling member 300 shown in FIG. 18A.
  • the vertical axis represents the illuminance (lx)
  • the horizontal axis represents the horizontal distance (mm) from the central axis CA of the light flux controlling member.
  • the broken line indicates the simulation result of the comparative light flux controlling member
  • the thick line indicates the simulation result of the light flux controlling member 300.
  • the comparative light flux controlling member has a portion (indicated by two arrows in the figure) where the illuminance is higher than the surroundings in the vicinity of the upper portion of the light emitting device.
  • the portion where the illuminance was high did not occur.
  • the illuminance in the region immediately above light flux controlling member 300 is low, and conversely, the illuminance in the peripheral region is high, resulting in a mountain shape with a smoother illuminance distribution.
  • an annular shape is formed above the concave portion by the light that is irradiated and scattered on the inner surface 34 that forms the concave portion that forms the first inclined surface 342. Areas with high illuminance are unlikely to occur. Further, in light flux controlling member 300 according to the present embodiment, the illuminance in the region immediately above light flux controlling member 300 is low, and conversely, the illuminance in the peripheral region is high, resulting in a mountain shape with a smoother illuminance distribution. Therefore, the light emitting device 200 according to the present embodiment can irradiate light in a more efficient and smoother mountain shape than the light emitting device having the comparative light flux controlling member.
  • the inclination angle of the second inclined surface 344 is preferably small. This is because, by reducing the tilt angle, most of the light that travels substantially parallel to the central axis CA and is reflected or scattered by the second tilted surface 344 easily travels in the lateral direction of the light flux controlling member 300. It is thought to be.
  • the inclination angle of the second inclined surface 344 is an angle greater than an angle formed by a straight line connecting the lower end of the second recess 340 and the lower end of the first recess 310 and a virtual straight line orthogonal to the central axis CA. It is preferable that
  • the second embodiment relates to an aspect in which the second inclined surface 344 of the light flux controlling member 300 is a set of a plurality (here, two) truncated cone surfaces having different inclination angles. At this time, in the cross section passing through the central axis CA, the second inclined surface 344 includes a plurality of straight lines having different angles on the way.
  • FIG. 19A, FIG. 20A, FIG. 21A, and FIG. 22A show an outline of still another light flux controlling member 300 having both the first inclined surface 342 and the second inclined surface 344 among the light flux controlling members used in the simulation. It is a partial sectional view in a section which passes along central axis CA shown.
  • the second inclined surface 344 includes an inclined surface 344a and an inclined surface 344b having different inclination angles.
  • the vertical axis represents the vertical distance from the lower end of the first recess 310 of the light flux controlling member 300
  • the horizontal axis represents the horizontal distance from the central axis CA of the light flux controlling member 300. The distance (mm) in the direction is shown.
  • the shape of the light flux controlling member 300 is indicated by a bold line.
  • FIG. 19A and FIG. 21A show the light flux controlling member 300 formed by combining two truncated cone surfaces having different inclination angles so that the second inclined surface 344 is convex on the back side.
  • FIGS. 20A and 22A show a light flux controlling member 300 in which two truncated cone surfaces having different inclination angles are combined so that the second inclined surface 344 is convex on the front side.
  • FIG. 19B, FIG. 20B, FIG. 21B, and FIG. 22B show the illuminance distribution in the region immediately above the comparative light flux control member shown in FIG. 16A and the light flux control member 300 shown in FIGS. 19A, 20A, 21A, and 22A, respectively.
  • This is a simulation result.
  • the vertical axis represents illuminance (lx)
  • the horizontal axis represents the horizontal distance (mm) from the central axis CA of the light flux controlling member.
  • the broken line indicates the simulation result of the comparative light beam control member
  • the thick line indicates the simulation result of the light beam control member 300.
  • the second inclined surface 344 is formed by combining a plurality of truncated cone surfaces having different inclination angles so as to be convex on the front side.
  • FIG. 20A, FIG. 22A is also a single truncated cone surface (FIG. 16B)
  • the illuminance distribution is more smooth and has a plurality of slopes with different inclination angles so as to be convex on the back side.
  • the truncated cone surfaces were combined (FIGS. 19A and 21A)
  • the illuminance distribution became a more smooth mountain shape.
  • the third embodiment is a mode in which the second inclined surface 344 of the light flux controlling member 300 is a curved surface having a changing inclination angle and having a gradually changing inclination angle toward the outside, such as being convex on the back side.
  • the second inclined surface 344 has a substantially parabolic shape in a cross section passing through the central axis CA.
  • FIG. 23A is a cross-section passing through the central axis CA showing an outline of still another light flux controlling member 300 having both the first inclined surface 342 and the second inclined surface 344 among the light flux controlling members used in the simulation. It is a fragmentary sectional view.
  • the second inclined surface 344 is a curved surface having an inclination angle that gradually changes outward.
  • the vertical axis represents the vertical distance from the lower end of the first recess 310 of the light flux controlling member 300
  • the horizontal axis represents the horizontal distance (mm) from the central axis CA of the light flux controlling member 300, respectively. Show.
  • the shape of the light flux controlling member 300 is indicated by a bold line.
  • FIG. 23B is a simulation result of the illuminance distribution in the region immediately above the comparative light flux controlling member shown in FIG. 16A and the light flux controlling member 300 shown in FIG. 23A, respectively.
  • the vertical axis represents the illuminance (lx)
  • the horizontal axis represents the horizontal distance (mm) from the central axis CA of the light flux controlling member.
  • the broken line indicates the simulation result of the comparative light flux controlling member
  • the thick line indicates the simulation result of the light flux controlling member 300.
  • a portion (indicated by two arrows in the figure) where the illuminance is higher than the surroundings is generated in the vicinity of the upper portion of the light emitting device.
  • the portion where the illuminance is high is difficult to occur.
  • the illuminance in the region immediately above light flux controlling member 300 is low, and conversely, the illuminance in the peripheral region is high, resulting in a mountain shape with a smoother illuminance distribution.
  • the second inclined surface 344 has an inclination angle that gradually changes toward the outside such that the second inclined surface 344 is convex toward the back side as compared with a single truncated cone surface shape having a constant inclination angle (FIG. 16B).
  • the curved surface (FIG. 23A) was a mountain shape with a smoother illuminance distribution.
  • the light flux controlling member 300 of the present invention suppresses the increase in the illuminance near the upper part of the light emitting device, and also reduces the illuminance in the region directly above the light flux controlling member 300, and conversely the illuminance in the peripheral region.
  • the illuminance distribution immediately above the light flux controlling member 300 can be made a smoother mountain shape.
  • the light emitting device 200, the surface light source device 100, and the display device having such a light flux controlling member 300 are less likely to cause unevenness in brightness, and can easily make the illuminance distribution more uniform.
  • the second inclined surface 344 may include a plurality of ridges 344f whose cross section perpendicular to the ridge line 344e is substantially triangular and rotationally symmetric with respect to the central axis CA.
  • the ridge 344f has a planar first reflecting surface 344c, a planar second reflecting surface 344d, and a ridge line 344e that is an intersection of the first reflecting surface 344c and the second reflecting surface 344d.
  • Such ridges 344f also reflect or refract light traveling in a direction substantially perpendicular to the central axis CA, similarly to the second inclined surface of the first to third embodiments, and suppress the occurrence of luminance unevenness.
  • stray light existing in the system of the surface light source device 100 is incident from the exit surface 330 of the light flux controlling member 300, reaches the second inclined surface 344, is retroreflected by the ridges 344f, and directly below the light flux controlling member 300.
  • substrate can be anticipated. Thereby, there is a possibility that a decrease in the light utilization efficiency can be suppressed.
  • the light flux controlling member 300 may have only a plurality of ridges 344d as shown in FIG. 24A, or a plurality of ridges 344d and a plurality of ridges 342d as shown in FIG. 24B. Also good.
  • the light flux controlling member 300 has a non-inclined surface 343 at a part of the contact side between the first inclined surface 342 and the second inclined surface 344 that are continuously formed.
  • An inclined portion may be formed.
  • the light flux controlling member 300 preferably has non-inclined portions at two positions substantially opposite to each other with the central axis CA interposed therebetween. It is preferable to have at least one combination of inclined portions.
  • the non-inclined surface 343 As a measurement reference surface for accurately grasping the positions of the first inclined surface 342 and the second inclined surface 344 in the height direction along the central axis CA, it is preferable to have two non-inclined portions at rotationally symmetric positions with the central axis CA as the symmetry axis.
  • the number of non-inclined portions of the light flux controlling member 300 is small. It is preferable to have only two combinations of two non-inclined portions.
  • the light flux controlling member, light emitting device, and surface light source device of the present invention can be applied to, for example, a backlight of a liquid crystal display device or general illumination.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Planar Illumination Modules (AREA)

Abstract

本発明は、COB型のLED等の、側方方向に光を多く出射する発光素子を用いた場合でも、発光装置から照射される光に輝度ムラをさせにくい光束制御部材を提供することを目的とする。上記目的は、発光素子から出射された光の配光を制御する光束制御部材によって解決される。この光束制御部材は、その中心軸と交わるように裏側に形成された第1の凹部の内面である入射面と、前記入射面で入射した光を外部に出射する出射面と、裏側に形成された第2の凹部と、を有し、第2の凹部は前記中心軸と直交する仮想直線に対して傾斜する第1の傾斜面および第2の傾斜面を有し、第2の傾斜面は、前記第1の傾斜面よりも前記中心軸に近い領域に形成され、第1の傾斜面は、前記入射面で光束制御部材に入射して前記出射面でフレネル反射した光の少なくとも一部を反射させる角度で傾斜する。

Description

光束制御部材、発光装置、面光源装置および表示装置
 本発明は、発光素子から出射された光の配光を制御する光束制御部材に関する。また、本発明は、前記光束制御部材を有する発光装置、前記発光装置を有する面光源装置、および前記面光源装置を有する表示装置に関する。
 液晶表示装置などの透過型画像表示装置では、バックライトとして直下型の面光源装置を使用することがある。近年、光源として複数の発光素子を有する、直下型の面光源装置が使用されるようになってきている。
 たとえば、直下型の面光源装置は、基板、複数の発光素子、複数の光束制御部材(レンズ)および光拡散部材を有する。発光素子は、例えば白色発光ダイオードなどの発光ダイオード(LED)である。複数の発光素子は、基板上にマトリックス状に配置されている。各発光素子の上には、各発光素子から出射された光を基板の面方向に拡げる光束制御部材が配置されている。光束制御部材から出射された光は、光拡散部材により拡散され、被照射部材(例えば液晶パネル)を面状に照らす。
 図1は、従来の光束制御部材の構成を示す図である。図1Aは、裏側から見た斜視図であり、図1Bは、裏側から見た断面斜視図であり、図1Cは、断面図である。なお、図1Aおよび図1Bでは、裏側に設けられた脚部を省略している。これらの図に示されるように、従来の光束制御部材20は、発光素子から出射された光を入射する入射面22と、入射面22で入射した光を外部に出射する出射面24とを有する。入射面22は、発光素子に対して凹形状の面であり、発光素子の発光面と対向するように形成されている。
 図2は、光束制御部材20の光路図である。図2Aは、出射角30°で発光素子10の発光中心から出射された光線の光路図であり、図2Bは、出射角40°で発光素子10の発光中心から出射された光線の光路図である。ここで「出射角」とは、発光素子10の光軸LAに対する、出射された光線の角度(図2Aのθ)を意味する。なお、図2でも、裏側に設けられた脚部を省略している。
 図2に示されるように、発光素子10から出射された光は、入射面22で光束制御部材20内に入射する。光束制御部材20内に入射した光は、出射面24に到達し、出射面24から外部に出射される(実線の矢印)。このとき、出射面24の形状により光が屈折するため、光の進行方向が制御される。その一方で、出射面24に到達した光の一部は、出射面24で反射し(フレネル反射)、発光素子10が実装されている基板と対向する裏面26に到達する(破線の矢印)。裏面26に到達した光が裏面26で反射した場合、光束制御部材20の直上に向かう光が過剰になってしまうため、発光装置から照射される光の輝度に不均一な分布(輝度ムラ)が生じてしまう。また、裏面26に到達した光が裏面26から出射された場合、光が基板に吸収されてしまうため、光の損失が大きい。そこで、特許文献1では、このような問題を解決できる光束制御部材が提案されている。
 図3は、特許文献1に記載の光束制御部材の構成を示す図である。図3Aは、裏側から見た斜視図であり、図3Bは、裏側から見た断面斜視図であり、図3Cは、断面図である。なお、図3Aおよび図3Bでは、裏側に設けられた脚部を省略している。これらの図に示されるように、特許文献1に記載の光束制御部材30では、傾斜面32を外側に有し、中心軸CAに対して略平行な面34を内側に有する凹部が裏面26に形成されている。傾斜面32は、光束制御部材30の中心軸CAに対して回転対称(円対称)であり、かつ中心軸CAに直交する仮想直線に対して所定の角度(例えば45°)で傾斜している。
 図4は、光束制御部材30の光路図である。図4Aは、出射角30°で発光素子10の発光中心から出射された光線の光路図であり、図4Bは、出射角40°で発光素子10の発光中心から出射された光線の光路図である。なお、これらの図でも、裏側に設けられた脚部を省略している。これらの図に示されるように、出射面24でフレネル反射した光は、裏面26上の所定の領域に到達する。上記所定の領域に傾斜面32を形成することで、傾斜面32に到達した光の少なくとも一部を反射させて、側方方向へ向かう光にすることができる(図4A、B参照)。
 このように、特許文献1に記載の光束制御部材30では、出射面24で反射した光が、光束制御部材30の直上に向かう光になりにくく、また、基板に吸収もされにくい。したがって、特許文献1に記載の光束制御部材30を有する発光装置は、従来の光束制御部材20を有する発光装置に比べて、均一にかつ効率よく光を照射することができる。
 また、近年、チップ・オン・ボード(COB)型のLEDが、実装の容易さ、および発光効率の高さから、照明用に用いられている。COB型のLEDは、上方への出射に加えて、従来のLEDよりも多くの光を側方方向へも出射することが知られている。
特開2011-23204号公報
 特許文献1に記載の面光源装置の発光素子に前記COB型のLEDを用いるときは、LEDの側方方向に出射される光を入射面22から光束制御部材内へ多く入射させる観点から、光束制御部材の裏面と発光素子の上面との高さの差をより少なくする。このとき、発光素子の側方方向に出射され、光束制御部材に入射した光は、光束制御部材の内部を伝播し、前記凹部を形成する内側の面34に到達する。この光は、前記内側の面34を透過するとともに面の表面状態によっては散乱する。さらに面34を透過した光が傾斜面32で屈折して、発光装置の上部近傍に向かう方向へ多く進行する(図5参照)。この内側の面34での散乱および傾斜面32での屈折により、発光装置の上部近傍に向かう光が過剰になってしまうため、発光装置の上部近傍に円環状に輝度の高い領域ができて、輝度ムラが生じてしまう。
 本発明は、かかる点に鑑みてなされたものであり、出射面で反射した光をさらに反射させる傾斜面を有する光束制御部材であって、COB型のLED等の、側方方向に光を多く出射する発光素子と組みあわせて用いた場合でも、光束制御部材から出射される光に輝度ムラを生じさせにくい光束制御部材を提供することを目的とする。
 また、本発明は、この光束制御部材を有する発光装置、この発光装置を有する面光源装置、およびこの面光源装置を有する表示装置を提供することも目的とする。
 本発明の光束制御部材は、その中心軸と交わるように裏側に形成された第1の凹部の内面であって、発光素子から出射された光を入射する入射面と、前記中心軸と交わるように表側に形成された、前記入射面で入射した光を外部に出射する出射面と、前記入射面よりも外側で前記中心軸を取り囲むように裏側に形成された、光束制御部材の内部に陥入した第2の凹部と、を有し、前記第2の凹部は、前記中心軸と直交する仮想直線に対して傾斜する第1の傾斜面と、前記中心軸と直交する仮想直線に対して傾斜する第2の傾斜面と、を有し、前記第2の傾斜面は、前記第1の傾斜面よりも前記中心軸に近い領域に形成され、前記第1の傾斜面は、前記入射面で光束制御部材に入射して前記出射面でフレネル反射した光の少なくとも一部を反射させる角度で、前記中心軸から離れるほど、より裏側に向かう方向に傾斜し、前記第2の傾斜面は、前記中心軸から離れるほど、より表側に向かう方向に傾斜する、構成を採る。
 本発明の発光装置は、発光素子と、本発明の光束制御部材とを有し、前記光束制御部材は、前記中心軸が前記発光素子の光軸と合致するように配置されている、構成を採る。
 本発明の面光源装置は、本発明の発光装置と、前記発光装置からの光を拡散させつつ透過させる光拡散部材とを有する、構成を採る。
 本発明の表示装置は、本発明の面光源装置と、前記面光源装置から出射された光を照射される表示部材とを有する、構成を採る。
 本発明の光束制御部材は、COB型のLED等の、側方方向に光を多く出射する発光素子と組み合わせた場合でも、出射される光に輝度ムラを生じさせにくい。
 また、本発明の発光装置、面光源装置および表示装置は、上記輝度ムラを生じさせにくい光束制御部材を含むため、出射される光に輝度ムラを生じさせにくい。
図1A~Cは、従来の光束制御部材の構成を示す図である。 図2A、Bは、図1に示される光束制御部材の光路図である。 図3A~Cは、特許文献1に記載の光束制御部材の構成を示す図である。 図4A、Bは、図3に示される光束制御部材の光路図である。 図5は、図3に示される光束制御部材の別の光路図である。 図6A、Bは、本発明に係る面光源装置の構成を示す図である。 図7A、Bは、本発明に係る面光源装置の構成を示す断面図である。 図8は、図7Bの一部を拡大した部分拡大断面図である。 図9は、本発明に係る光束制御部材の構成を示す図である。 図10A~Cは、本発明に係る光束制御部材の構成を示す図である。 図11A、Bは、本発明に係る光束制御部材の別の構成を示す図である。 図12A~Cは、図10に示される光束制御部材の光路図である。 図13A、Bは、本発明に係る光束制御部材のさらに別の構成を示す図である。 図14は、本発明に係る光束制御部材のさらに別の構成を示す図である。 図15は、図10に示される光束制御部材の別の光路図である。 図16Aは、比較用の光束制御部材の概略を示す部分断面図である。図16Bは、実施の形態1に係る光束制御部材の概略を示す部分断面図である。図16Cは、図16Aおよび図16Bに示す光束制御部材の直上領域における照度分布のシミュレーション結果を示すグラフである。 図17Aは、実施の形態1に係る別の光束制御部材の概略を示す部分断面図である。図17Bは、図16Aおよび図17Aに示す光束制御部材の直上領域における照度分布のシミュレーション結果を示すグラフである。 図18Aは、実施の形態1に係る別の光束制御部材の概略を示す部分断面図である。図18Bは、図16Aおよび図18Aに示す光束制御部材の直上領域における照度分布のシミュレーション結果を示すグラフである。 図19Aは、実施の形態2に係る光束制御部材の概略を示す部分断面図である。図19Bは、図16Aおよび図19Aに示す光束制御部材の直上領域における照度分布のシミュレーション結果を示すグラフである。 図20Aは、実施の形態2に係る別の光束制御部材の概略を示す部分断面図である。図20Bは、図16Aおよび図20Aに示す光束制御部材の直上領域における照度分布のシミュレーション結果を示すグラフである。 図21Aは、実施の形態2に係る別の光束制御部材の概略を示す部分断面図である。図21Bは、図16Aおよび図21Aに示す光束制御部材の直上領域における照度分布のシミュレーション結果を示すグラフである。 図22Aは、実施の形態2に係る別の光束制御部材の概略を示す部分断面図である。図22Bは、図16Aおよび図22Aに示す光束制御部材の直上領域における照度分布のシミュレーション結果を示すグラフである。 図23Aは、実施の形態3に係る光束制御部材の概略を示す部分断面図である。図23Bは、図16Aおよび図23Aに示す光束制御部材の直上領域における照度分布のシミュレーション結果を示すグラフである。 図24A、Bは、本発明の他の実施形態に係る光束制御部材の構成を示す図である。
 以下、本発明の光束制御部材、発光装置、面光源装置および表示装置について、図面を参照して詳細に説明する。以下の説明では、本発明の面光源装置の代表例として、液晶表示装置のバックライトなどに適する面光源装置について説明する。これらの面光源装置は、面光源装置からの光を照射される被照射部材(例えば液晶パネル)と組み合わせることで、表示装置として使用されうる。
 [面光源装置および発光装置の構成]
 図6~図8は、本発明の面光源装置の構成を示す図である。図6Aは、平面図であり、図6Bは、正面図である。図7Aは、図6Bに示される7A-7A線の断面図であり、図7Bは、図6Aに示される7B-7B線の断面図である。図8は、図7Bの一部を拡大した部分拡大断面図である。
 図6、図7に示されるように、本発明の面光源装置100は、筐体110、複数の発光装置200および光拡散部材120を有する。複数の発光装置200は、筐体110の底板112上にマトリックス状に配置されている。底板112の内面は、拡散反射面として機能する。また、筐体110の天板114には、開口部が設けられている。光拡散部材120は、この開口部を塞ぐように配置されており、発光面として機能する。発光面の大きさは、例えば約400mm×約700mmとすることができる。
 図7、図8に示されるように、複数の発光装置200は、それぞれ基板210上に固定されている。複数の基板210は、それぞれ筐体110の底板112上の所定の位置に固定されている。図8に示されるように、複数の発光装置200は、それぞれ発光素子220および光束制御部材300を有している。
 発光素子220は、面光源装置100の光源であり、基板210上に実装されている。発光素子220は、例えば白色発光ダイオードなどの発光ダイオード(LED)である。実装が容易であり、かつ、発光効率が高い観点からは、発光素子220はチップ・オン・ボード(COB)型のLEDであることが好ましい。
 COB型のLEDは、従来のLEDよりも多くの光を側方方向に出射することが知られている。発光素子220が、COB型のLED等の、側方方向に多くの光を出射する素子であるとき、LEDの側面方向に出射する光をより多く光束制御部材に入射させる観点から、発光素子の上面は、光束制御部材が有する第1の凹部310(後述)の下端よりも鉛直方向上方にあることが好ましい。
 光束制御部材300は、レンズであり、基板210上に固定されている。光束制御部材300は、発光素子220から出射された光の配光を制御し、上記光の進行方向を基板の面方向に拡げる。光束制御部材300は、その中心軸CAが発光素子220の光軸LAに一致するように、発光素子220の上に配置されている(図8参照)。なお、後述する光束制御部材300の入射面320および出射面330はいずれも回転対称(円対称)であり、かつこれらの回転軸は一致する。この入射面320および出射面330の回転軸を「光束制御部材の中心軸CA」という。また、「発光素子の光軸LA」とは、発光素子220からの立体的な出射光束の中心の光線を意味する。
 光束制御部材300は、複数に駒割した金型などを用いて、一体成形により形成することができる。光束制御部材300の材料は、所望の波長の光を通過させ得る材料であればよい。たとえば、光束制御部材300の材料は、ポリメタクリル酸メチル(PMMA)やポリカーボネート(PC)、エポキシ樹脂(EP)、シリコーン樹脂などの光透過性樹脂、またはガラスである。
 本発明に係る面光源装置100は、光束制御部材300の構成に主たる特徴を有する。そこで、光束制御部材300については、別途詳細に説明する。
 光拡散部材120は、光拡散性を有する板状の部材であり、発光装置200からの出射光を拡散させつつ透過させる。通常、光拡散部材120は、液晶パネルなどの被照射部材とほぼ同じ大きさである。たとえば、光拡散部材120は、ポリメタクリル酸メチル(PMMA)、ポリカーボネート(PC)、ポリスチレン(PS)、スチレン・メチルメタクリレート共重合樹脂(MS)などの光透過性樹脂により形成される。光拡散性を付与するため、光拡散部材120の表面に微細な凹凸が形成されているか、または光拡散部材120の内部にビーズなどの光拡散子が分散している。
 本発明に係る面光源装置100では、各発光素子220から出射された光は、光束制御部材300により光拡散部材120の広範囲を照らすように拡げられる。各光束制御部材300から出射された光は、さらに光拡散部材120により拡散される。その結果、本発明に係る面光源装置100は、面状の被照射部材(例えば液晶パネル)を均一に照らすことができる。
 [光束制御部材の構成]
 図9および図10は、本発明に係る光束制御部材300の構成を示す図である。図9は、裏側(基板210側)から見た斜視図である。図10Aは、平面図であり、図10Bは、正面図であり、図10Cは、図10Aに示される10C-10C線の断面図である。
 図9に示されるように、光束制御部材300は、第1の凹部310、入射面320、出射面330、第2の凹部340、および鍔部350を有する。光束制御部材300は、いずれも不図示の、裏面または複数の脚部を有していてもよい。
 第1の凹部310は、光束制御部材300の裏側(発光素子220側)の中央部に形成されている。第1の凹部310の内面は、入射面320として機能する。入射面320は、発光素子220から出射された光の大部分またはすべてを、その進行方向を制御しつつ光束制御部材300の内部に入射させる。入射面320は、光束制御部材300の中心軸CAと交わり、中心軸CAを軸として回転対称(円対称)である。
 出射面330は、光束制御部材300の表側(光拡散部材120側)に、鍔部350から突出するように形成されている。出射面330は、光束制御部材300内に入射した光を、進行方向を制御しつつ外部に出射させる。出射面330は、中心軸CAと交わり、中心軸CAを軸として回転対称(円対称)である。
 出射面330は、中心軸CAを中心とする所定範囲に位置する第1出射面330aと、第1出射面330aの周囲に連続して形成される第2出射面330bと、第2出射面330bと鍔部350とを接続する第3出射面330cとを有する(図10C参照)。第1出射面330aは、裏側に凸の曲面である。第2出射面330bは、第1出射面330aの周囲に位置する、表側に凸の滑らかな曲面である。第2出射面330bの形状は、円環状の凸形状である。第3出射面330cは、第2出射面330bの周囲に位置する曲面である。図10Cに示される断面において、第3出射面330cの断面は、直線状であってもよいし、曲線状であってもよい。
 第2の凹部340は、光束制御部材の裏側の、前記第1の凹部310よりも外側(中心軸CAからより遠い領域)に、中心軸CAを取り囲むように形成されている。第2の凹部340は、その外側に形成された第1の傾斜面342と、より内側(中心軸CAにより近い領域)に設けられた第2の傾斜面344とを有する。第2の凹部340は、後述する非傾斜面を有する非傾斜部をさらに有していてもよい。第1の傾斜面342および第2の傾斜面344は、いずれも中心軸CAに直交する仮想直線に対して傾斜している。第1の傾斜面342は、中心軸から離れるほど、より裏側に向かう方向に、傾斜する。第2の傾斜面344は、中心軸CAから離れるほど、より表側に向かう方向に、傾斜する。なお、傾斜面とは、中心軸CAに直交する仮想直線に対して傾斜する(所定の角度で交わる)面を意味し、非傾斜面とは、中心軸CAに直交する仮想直線と平行な平面を意味する。
 また、中心軸CAに直交する仮想直線に対する、傾斜面の傾斜角(以下、単に「傾斜角」ともいう。)とは、中心軸CAを含む断面におけるその傾斜面が直線状であるときは、その直線と中心軸CAに直交する仮想直線とがなす角度を意味し、中心軸CAを含む断面におけるその傾斜面が曲線状であるときは、中心軸CAを含む断面におけるその傾斜面に含まれる、中心軸CAに最も近い点と中心軸CAから最も遠い点とを結ぶ直線と、中心軸CAに直交する仮想直線と、がなす角度を意味する。
 第1の傾斜面342と第2の傾斜面344とは、連続して形成されてもよいし、第1の傾斜面342と第2の傾斜面344との間に非傾斜部が形成されてもよい。第1の傾斜面342と第2の傾斜面344とが連続して形成されるとき、中心軸CAを含む断面において、第1の傾斜面342と第2の傾斜面344とは直接に接しており、第2の凹部340の断面形状は、上下を逆転させた略V字状である。第1の傾斜面342と第2の傾斜面344との間に非傾斜部が形成されるとき、中心軸CAを含む断面において、第1の傾斜面342と第2の傾斜面344とは非傾斜部を介して接している。なお、非傾斜部を介して接するとは、断面における第1の傾斜面342を表す線分、および第2の傾斜面344を表す線分が、非傾斜面を介して(このとき、第2の凹部340の断面形状は、上底(より表側に位置する辺)が短い略台形から下底を除いた形状である。)、または頂面に非傾斜面が形成された凸状の非傾斜部を介して配置されて第2の凹部340の断面を形成していることを意味する。
 上記第1の傾斜面342と第2の傾斜面344との間に形成された非傾斜面は、駒割された複数の金型から光束制御部材300を成形するときの金型を、第1の傾斜面342を成形するための転写面を有する側の金型と、第2の傾斜面344を成形するための転写面を有する側の金型とに分割して形成するときに、中心軸CAを回転軸とした回転方向、および中心軸CAに沿った高さ方向の位置合わせするための基準として用いることができる。そのため、上記非傾斜面を有する光束制御部材300は、製造がより容易である。ただし、後述する図16B、図16Cと図17A、図17Bとの比較から明らかなように、非傾斜面を有さない光束制御部材は、輝度ムラがより生じにくい。そのため、上記製造の容易さと輝度ムラを抑制する効果とを両立させる観点からは、非傾斜面343を有する光束制御部材300の中心軸CAを含む断面図である図11Aおよびその裏側(基板210側)から見た斜視図である図11Bに示されるように、非傾斜部は、連続して形成された第1の傾斜面342と第2の傾斜面344との接辺の一部にのみ配置されることが好ましい。このとき、光束制御部材300の、中心軸CAを含む一の断面では、第1の傾斜面342と第2の傾斜面344とは直接に接しており(図10C)、中心軸CAを含む他の断面では、第1の傾斜面342と第2の傾斜面344とは非傾斜部を介して接している(図11B)。このとき、上記第1の傾斜面342と上記非傾斜面343と、および、非傾斜面343と第2の傾斜面344とは、互いに接していてもよいし、他の面(たとえば、中心軸CAに略平行な面)を介して接していてもよい。
 非傾斜面343の平面形状は、図11Bに示すような小判型であってもよいし、円形などの他の形状であってもよい。金型同士の位置合わせをより容易にする観点からは、光束制御部材300は、中心軸CAを挟んで略対向する2つの位置に非傾斜部を有することが好ましく、上記略対向する2つの非傾斜部の組み合わせを少なくとも1組有することが好ましい。また、非傾斜面343は、中心軸CAに沿った高さ方向について第1の傾斜面342および第2の傾斜面344の位置を正確に把握するための測定基準面として使用することもできる。その場合、測定を容易にし、且つ安定した測定結果を得るためには、非傾斜部を、中心軸CAを対称軸として回転対称な位置に2個以上有することが好ましい。ただし、輝度ムラの発生を最小限に抑制する観点からは、光束制御部材300が有する非傾斜部の数は少ない方が好ましく、位置合わせ効果および輝度ムラ抑制効果のバランスを考慮し、上記略対向する2つの非傾斜部の組み合わせを2組のみ有することが好ましい。
 第1の傾斜面342の傾斜角は、入射面320で光束制御部材300に入射して出射面330でフレネル反射した光の少なくとも一部を反射させる角度である。このような構成とすることで、上記フレネル反射して第1の傾斜面342に到達した光の少なくとも一部は、第1の傾斜面342で反射して、側方方向へ向かう光となる。そのため、出射面330でフレネル反射した光が、基板210でさらに反射することによる輝度ムラの発生や、基板210に吸収されることによる光の損失を、抑制することができる(図4参照)。
 より多くの光を側方方向へ向かわせる観点からは、第1の傾斜面342は、たとえば、入射面320で光束制御部材300に入射した光が出射面330でフレネル反射して到達する領域に設けることができる。入射面320で入射した光が出射面330でフレネル反射して光束制御部材300の裏側に到達するまでの光路は、シミュレーションで求めることができる。図12は、光束制御部材300の光路図である。図12Aは、出射角30°で発光素子220の発光中心から出射された光線の光路図であり、図12Bは、出射角40°で発光素子220の発光中心から出射された光線の光路図であり、図12Cは、出射角50°で発光素子220の発光中心から出射された光線の光路図である。これらの図に示されるように、光束制御部材300では、出射面330で反射した光は、光束制御部材300の裏側(これらの図では、裏面が形成されている)の所定の領域に到達する。前記入射面320で光束制御部材300に入射した光が前記出射面330でフレネル反射して到達する領域は、たとえば、複数の異なる角度について上記シミュレーションを行い、そのうち大部分の光路が到達した領域を含むように、設定することができる。
 図13に示されるように、第1の傾斜面342は、稜線342cに垂直な断面が略三角形状であり、かつ中心軸CAに対して回転対称な、複数の凸条342dからなってもよい(図13A参照)。凸条342dは、平面状の第1反射面342aと、平面状の第2反射面342bと、第1反射面342aと第2反射面342bとの交線である稜線342cとを有している。また、図13Bに示すように、稜線342cを含む仮想直線は、稜線342cよりも表側の位置で中心軸CAと交わる。なお、説明を簡略化するため、図13Bでは第2の傾斜面344を省略している。このような凸条342dは、全反射プリズムのように機能して、上記フレネル反射して第1の傾斜面342に到達した光を光束制御部材300の側方方向にさらに反射させる。これにより、上記凸条342dは、第1の傾斜面342を通過して光束制御部材300直下の基板に到達する光による、輝度ムラの発生および光の利用効率の低下をさらに抑制する。
 このときも、光束制御部材300の裏側(基板210側)から見た斜視図である図14に示されるように、金型同士の位置合わせをより容易にするため、光束制御部材300は、連続して形成された第1の傾斜面342と第2の傾斜面344との接辺の一部に非傾斜面343を有する非傾斜部が形成されていてもよい。図14に示される非傾斜面343は、凸条342dの高さおよび第2の凹部340の深さ(第2の凹部340の底(第2の凹部340の表面のうち、最も表側にある点)と、第1の凹部310の下端(第1の凹部310の表面のうち、最も裏側にある点)を含んで中心軸CAに直交する仮想直線と、の間の距離)などを測定する際の基準面として用いることもできる。非傾斜面343の平面形状は、図14に示すような小判型であってもよいし、円形などの他の形状であってもよい。金型同士の位置合わせをより容易にする観点からは、光束制御部材300は、中心軸CAを挟んで略対向する2つの位置に非傾斜部を有することが好ましく、上記略対向する2つの非傾斜部の組み合わせを少なくとも1組有することが好ましい。また、非傾斜面343を、中心軸CAに沿った高さ方向について第1の傾斜面342および第2の傾斜面344の位置を正確に把握するための測定基準面として使用する観点からは、測定を容易にし、且つ安定した測定結果を得るためには、非傾斜部を、中心軸CAを対称軸として回転対称な位置に2個有することが好ましい。ただし、輝度ムラの発生を最小限に抑制する観点からは、光束制御部材300が有する非傾斜部の数は少ない方が好ましく、位置合わせ効果および輝度ムラ抑制効果のバランスを考慮し、上記略対向する2つの非傾斜部の組み合わせを2組のみ有することが好ましい。
 第2の傾斜面344は、傾斜角が一定の、ひとつの円錐台面(後述する実施の態様1を参照)でもよいし、異なる傾斜角を有する複数の円錐台面を組み合わせてなるもの(後述する実施の態様2を参照)でもよいし、外側に向けて漸次変化する傾斜角を有する曲面(後述する実施の態様3を参照)であってもよい。なお、円錐台面とは、円錐台の側面の形状を有する面を意味する。
 第2の傾斜面344が、傾斜角が一定である、ひとつの円錐台面状であるとき、中心軸CAを通る断面において第2の傾斜面344は直線状となる。第2の傾斜面344が、異なる傾斜角を有する複数の円錐台面の集合であるとき、中心軸CAを通る断面において第2の傾斜面344は途中で屈折した直線状となる。第2の傾斜面344が、外側に向けて漸次変化する傾斜角を有する曲面であるとき、中心軸CAを通る断面において第2の傾斜面344は、傾斜角が漸次変化する曲線状となる。
 従来、第2の凹部340の内側の面は、中心軸CAに対して略平行に形成されていた(たとえば、図3および図4の面34)。そのため、上記中心軸CAに略直交する方向に進行する光は、上記内側の面および第1の傾斜面342により、光束制御部材の上方に散乱したり方向変換されたりしてしまい(たとえば、図5の光路図を参照)、このような光により、面光源装置から照射される光には、輝度ムラが発生していた。これに対し、上記内側の面を傾斜させ、第2の傾斜面344とすることで、図5に記載されるような光路を進行する光の量は、減少する。また、第2の傾斜面344は、上記中心軸CAに略直交する方向に進行する光を反射または屈折させて光束制御部材の側方方向に進行させる(図15参照。なお、図15では、第2の傾斜面344で反射した光のみが示されている。)。これらの理由により、第2の傾斜面344は、光束制御部材300の上方への光の進行を抑制し、上記輝度ムラを発生しにくくする。上記散乱および上方へ方向変換した光による輝度ムラをより発生しにくくする観点からは、第2の傾斜面344は、たとえば、入射面320で光束制御部材300に入射して中心軸CAに略直交する方向に進行する光が多く到達する領域に設けることができる。
 特に、発光素子がCOB型のLEDであるとき、LEDの側方方向へ出射する光の量が従来のLEDよりも多いため、上記中心軸CAに略直交する方向に進行する光の量も多くなる。そのため、本発明の光束制御部材300は、発光素子がCOB型のLEDであるときに、従来の光束制御部材と比べて、輝度ムラをより発生しにくくすることができる。
 第2の傾斜面344で反射した光が光束制御部材300の上方へ進行することによる輝度ムラを、より生じにくくする観点からは、第2の傾斜面344は、中心軸CAと直交する方向に進行し入射面320の縁部で光束制御部材に入射して、第2の傾斜面344に到達する光を、中心軸CAに平行な方向へ進行するように全反射させる角度より小さい角度で、中心軸CAと直交する仮想直線に対して傾斜することが好ましい。なお、第2の傾斜面344の傾斜角とは、中心軸CAを含む任意の断面において第2の傾斜面344を表す線分に含まれる、出射面330に最も近い点と出射面330から最も遠い点とを結ぶ直線と、中心軸CAに直交する仮想直線とがなす角度を意味する。後述する実施の形態2のように、第2の傾斜面344が傾斜角の異なる複数の傾斜面を含むときは、第2の傾斜面344の全表面積のうち、傾斜角が上記全反射させる角度より小さい角度である傾斜面の表面積が占める割合が、少なくとも半分以上であることがより好ましい。上記観点からは、第2の傾斜面344が傾斜角の異なる複数の傾斜面を含むときは、いずれの傾斜面の傾斜角も、上記全反射させる角度より小さい角度であることがさらに好ましい。
 一方で、上記中心軸CAに略直交する方向に進行する光のほぼ全てを光束制御部材の側方方向に進行させ、上記上方への光の散乱をより抑制する観点からは、第2の傾斜面344の傾斜角は、上記光を全反射させる角度であることが好ましい。また、第1の傾斜面342と第2の傾斜面344との間に、中心軸CAに対して略平行な面が形成されにくくする観点からは、第2の傾斜面344の傾斜角は、前記第2の凹部340の底と前記第1の凹部310の下端とを結ぶ直線と、中心軸CAに直交する仮想直線と、のなす角度以上の角度であることが好ましい。
 後述する実施の形態2から明らかなように、より輝度ムラを少なくする観点からは、第2の傾斜面344は、裏側に凸となっていることが好ましい。このとき、第2の傾斜面344は、たとえば、異なる傾斜角を有する複数の円錐台面の組み合わせ、または外側に向けて漸次変化する傾斜角を有する曲面であり、中心軸CAを含む断面において、第2の傾斜面344は、それぞれ、いずれも裏側に凸な、複数の線分の組みあわせ(図19A、図21A参照)、または外側ほど傾斜角が大きい曲線状(図23A参照)となる。
 一方で、成形の容易さの観点からは、第2の傾斜面344は、傾斜角が一定であることが好ましい。このとき、第2の傾斜面344は、ひとつの円錐台面状となり、中心軸CAを含む断面において、第2の傾斜面344は、直線状となる(図16B参照)。
 なお、図9では、光束制御部材300の裏側の全面を第2の凹部340としているが、第1の傾斜面342および第2の傾斜面344が上記領域に形成される限り、第2の凹部340は光束制御部材300の裏側の一部の領域にのみ形成されてもよい。このとき、光束制御部材300の裏側の残りの領域には、裏面が形成される。
 また、光束制御部材300の裏側に複数(たとえば2つ)の第2の凹部340を形成して、そのうち一つの凹部が第1の傾斜面342を有し、他の凹部が第2の傾斜面344を有してもよい。このとき、上記中心軸CAに略直交する方向に進行する光の散乱による輝度ムラの発生をより抑制する観点からは、第2の傾斜面344は、複数の第2の凹部340のうち、最も入射面320に近い凹部の、入射面320側の面とすることが好ましい。ただし、第2の凹部340が2つ以上存在すると、第1の傾斜面342および第2の傾斜面344以外に、中心軸CAに対して略平行な面が形成され、この面が前記上方への散乱をわずかに生じさせることがある。このわずかな上方への散乱を抑制する観点からは、第2の凹部340を一つのみ形成し、その外側の面を第1の傾斜面342とし、内側の面を第2の傾斜面344とすることが好ましい。
 鍔部350は、出射面330の外周部と光束制御部材300の裏側の外周部との間に位置し、径方向外側に突出している。鍔部350の形状は、略円環状である。鍔部350は、必須の構成要素ではないが、鍔部350を設けることで、光束制御部材300の取り扱いおよび位置合わせが容易になる。鍔部350の厚みは、出射面330の必要面積や鍔部350の成形性などを考慮して決定され得る。
 任意に形成される裏面は、光束制御部材の裏側(基板210側)に位置する、上記中心軸CAに略直交する方向に延在する面であり、たとえば、第1の凹部310の開口縁部から径方向に延在する面である。
 任意に形成される複数の脚部は、光束制御部材300の裏側から突出している略円柱状の部材である。複数の脚部は、発光素子220に対して適切な位置に光束制御部材300を支持する。
 [照度分布のシミュレーション結果]
 以下、第2の傾斜面344の形状ごとに、光束制御部材300の直上領域における照度分布をシミュレーションした結果を示す。また、比較のため、第1の傾斜面342は有するが、第2の傾斜面344は有さない比較用の光束制御部材について、同様に照度分布をシミュレーションした結果も示す。
 図8に示されるように基板210の上に、底面以外の5面がランバーシアン配光で発光するCOB型のLEDである発光素子220、および光束制御部材300または上記比較用の光束制御部材を配置した場合の、光束制御部材300または上記比較用の光束制御部材の上部における光拡散部材120上の照度分布を調べた。なお、発光素子220は、その上面が、光束制御部材300または上記比較用の光束制御部材が有する第1の凹部310の下端よりも鉛直方向上方になるように、設置した。シミュレーションに用いた光束制御部材300および比較用の光束制御部材は、第2の傾斜面344を有するかどうかのみで相違する。光束制御部材300および比較用の光束制御部材のパラメーターを以下のように設定した。第2の傾斜面の傾斜角および内径を変更した複数の光束制御部材300による照度分布を求めて、それぞれを上記比較用の光束制御部材による照度分布と比較した。
 (共通のパラメーター)
 ・光束制御部材の外径: 15.5mm
 ・出射面の外径: 15.0mm
 ・第1の凹部の開口径: 2.0mm
 ・基板表面から入射面縁部までの高さ: 0.02mm
 ・第1の傾斜面の内径: 9.4mm
 ・第1の傾斜面の外径: 15.5mm
 ・第1の傾斜面の内径部の高さ: 0.7mm
 ・発光素子の高さ: 0.35mm
 ・発光素子の大きさ: 1.5mm×1.5mm
 (実施の形態1)
 実施の形態1は、第2の傾斜面344が、ひとつの円錐台面状である態様に係る。このとき、中心軸CAを通る断面において、第2の傾斜面344は直線状となる。
 図16Aは、シミュレーションに用いた光束制御部材のうち、第1の傾斜面342を有するが第2の傾斜面を有さない、比較用の光束制御部材の概略を示す、中心軸CAを通る断面における部分断面図である。図16Bは、シミュレーションに用いた光束制御部材のうち、第1の傾斜面342および第2の傾斜面344をいずれも有する光束制御部材300の概略を示す、中心軸CAを通る断面における部分断面図である。図16Bにおいて、第2の凹部340は、光束制御部材300の裏側の全体に形成されており、第1の傾斜面342および第2の傾斜面344は、連続して形成されている。図16Aおよび図16Bにおいて、縦軸は光束制御部材300の第1の凹部310の下端からの鉛直方向の距離を、横軸は光束制御部材300の中心軸CAからの水平方向の距離(mm)を、それぞれ示している。また、図16Aおよび図16Bにおいて、上記比較用の光束制御部材または光束制御部材300の形状は、太線で示されている。
 図16Cは、図16Aに示す比較用の光束制御部材および図16Bに示す光束制御部材300の、直上領域における照度分布のシミュレーション結果である。図16Cにおいて、縦軸は照度(lx)を、横軸は光束制御部材の中心軸CAからの水平方向の距離(mm)を示している。図16Cにおいて、破線は上記比較用の光束制御部材のシミュレーション結果を、太線は光束制御部材300のシミュレーション結果を、それぞれ示す。
 図16Cから明らかなように、上記比較用の光束制御部材では、発光装置の上部近傍に周囲よりも照度が高くなった部分(図中2つの矢印で示す。)が生じているが、本実施の形態に係る光束制御部材300では、上記照度が高くなった部分は生じなかった。また、本実施の形態に係る光束制御部材300では、光束制御部材300の直上領域の照度が低くなり、逆に周辺領域の照度が高くなって、照度分布がより滑らかな山型になった。
 図17Aは、シミュレーションに用いた光束制御部材のうち、第1の傾斜面342および第2の傾斜面344をいずれも有する別の光束制御部材300の概略を示す、中心軸CAを通る断面における部分断面図である。図17Aにおいて、第2の凹部340は、光束制御部材300の裏側の全体に形成されており、第1の傾斜面342および第2の傾斜面344との間には、中心軸CAに対して回転対称な非傾斜面が形成されている。図17Aにおいて、縦軸は光束制御部材300の第1の凹部310の下端からの鉛直方向の距離を、横軸は光束制御部材300の中心軸CAからの水平方向の距離(mm)を、それぞれ示している。また、図17Aにおいて、光束制御部材300の形状は、太線で示されている。
 図17Bは、図16Aに示す比較用の光束制御部材および図17Aに示す光束制御部材300の、直上領域における照度分布のシミュレーション結果である。図17Bにおいて、縦軸は照度(lx)を、横軸は光束制御部材の中心軸CAからの水平方向の距離(mm)を示している。図17Bにおいて、破線は上記比較用の光束制御部材のシミュレーション結果を、太線は光束制御部材300のシミュレーション結果を、それぞれ示す。
 図17Bから明らかなように、上記比較用の光束制御部材では、発光装置の上部近傍に周囲よりも照度が高くなった部分(図中2つの矢印で示す。)が生じているが、本実施の形態に係る光束制御部材300では、上記照度が高くなった部分は生じなかった。また、本実施の形態に係る光束制御部材300では、光束制御部材300の直上領域の照度が低くなり、逆に周辺領域の照度が高くなって、照度分布がより滑らかな山型になった。
 図18Aは、シミュレーションに用いた光束制御部材のうち、第1の傾斜面342および第2の傾斜面344をいずれも有するさらに別の光束制御部材300の概略を示す、中心軸CAを通る断面における部分断面図である。図18Aにおいて、第2の凹部340は、光束制御部材300の裏側の一部の領域にのみ形成されており、第1の傾斜面342および第2の傾斜面344は、連続して形成されている。図18Aにおいて、縦軸は光束制御部材300の第1の凹部310の下端からの鉛直方向の距離を、横軸は光束制御部材300の中心軸CAからの水平方向の距離(mm)を、それぞれ示している。また、図18Aにおいて、光束制御部材300の形状は、太線で示されている。
 図18Bは、図16Aに示す比較用の光束制御部材および図18Aに示す光束制御部材300の、直上領域における照度分布のシミュレーション結果である。図18Bにおいて、縦軸は照度(lx)を、横軸は光束制御部材の中心軸CAからの水平方向の距離(mm)を示している。図18Bにおいて、破線は上記比較用の光束制御部材のシミュレーション結果を、太線は光束制御部材300のシミュレーション結果を、それぞれ示す。
 図18Bから明らかなように、上記比較用の光束制御部材部材では、発光装置の上部近傍に周囲よりも照度が高くなった部分(図中2つの矢印で示す。)が生じているが、本実施の形態に係る光束制御部材300では、上記照度が高くなった部分は生じなかった。また、本実施の形態に係る光束制御部材300では、光束制御部材300の直上領域の照度が低くなり、逆に周辺領域の照度が高くなって、照度分布がより滑らかな山型になった。
 以上のように、本実施の形態に係る光束制御部材300では、第1の傾斜面342を形成する凹部を形成する内側の面34に照射されて散乱する光による、凹部の上方に円環状に照度の高い領域が生じにくい。また、本実施の形態に係る光束制御部材300では、光束制御部材300の直上領域の照度が低くなり、逆に周辺領域の照度が高くなって、照度分布がより滑らかな山型になる。したがって、本実施の形態に係る発光装置200は、上記比較用の光束制御部材を有する発光装置に比べて、効率よくかつより滑らかな山型に光を照射することができる。
 上記効果は、中心軸CAを含む断面における第2の凹部340の断面形状が、上下を逆転させた略V字状であるとき(図16B)および上底が短い略台形から下底を除いた形状であるとき(図17A)、ならびに第2の凹部340が光束制御部材300の裏側の一部の領域にのみ形成されているとき(図18A)、のいずれにおいても奏される。
 また、図16Cと図17Bおよび図18Bとの比較からも明らかなように、第2の傾斜面344の傾斜角は小さいほうがよい。これは、上記傾斜角を小さくすることで、中心軸CAに略平行に進行し、第2の傾斜面344で反射または散乱した光の多くを、光束制御部材300の側方方向に進行させやすくなるためと考えられる。ただし、第2の傾斜面344の傾斜角は、第2の凹部340の下端と第1の凹部310の下端とを結ぶ直線と、中心軸CAに直交する仮想直線と、がなす角度以上の角度であることが好ましい。
 (実施の形態2)
 実施の形態2は、光束制御部材300の第2の傾斜面344が、異なる傾斜角を有する複数(ここでは2つ)の円錐台面の集合である態様に係る。このとき、中心軸CAを通る断面において、第2の傾斜面344は途中で角度の異なる複数の直線からなる。
 図19A、図20A、図21Aおよび図22Aは、シミュレーションに用いた光束制御部材のうち、第1の傾斜面342および第2の傾斜面344をいずれも有するさらに別の光束制御部材300の概略を示す、中心軸CAを通る断面における部分断面図である。図19A、図20A、図21Aおよび図22Aにおいて、第2の傾斜面344は、異なる傾斜角を有する傾斜面344aおよび傾斜面344bを有する。図19A、図20A、図21Aおよび図22Aにおいて、縦軸は光束制御部材300の第1の凹部310の下端からの鉛直方向の距離を、横軸は光束制御部材300の中心軸CAからの水平方向の距離(mm)を、それぞれ示している。また、図19A、図20A、図21Aおよび図22Aにおいて、光束制御部材300の形状は、太線で示されている。
 これらのうち、図19Aおよび図21Aは、第2の傾斜面344が裏側に凸となるように、異なる傾斜角を有する2つの円錐台面を組み合わせてなる、光束制御部材300を示す。逆に、図20Aおよび図22Aは、第2の傾斜面344が表側に凸となるように、異なる傾斜角を有する2つの円錐台面を組み合わせてなる、光束制御部材300を示す。
 図19B、図20B、図21Bおよび図22Bは、それぞれ、図16Aに示す比較用の光束制御部材および図19A、図20A、図21Aおよび図22Aに示す光束制御部材300の、直上領域における照度分布のシミュレーション結果である。図19B、図20B、図21Bおよび図22Bにおいて、縦軸は照度(lx)を、横軸は光束制御部材の中心軸CAからの水平方向の距離(mm)を示している。図19B、図20B、図21Bおよび図22Bにおいて、破線は上記比較用の光束制御部材のシミュレーション結果を、太線は光束制御部材300のシミュレーション結果を、それぞれ示す。
 図19B、図20B、図21Bおよび図22Bから明らかなように、上記比較用の光束制御部材では、発光装置の上部近傍に周囲よりも照度が高くなった部分(図中2つの矢印で示す。)が生じているが、本実施の形態に係る光束制御部材300では、上記照度が高くなった部分は生じなかった。また、本実施の形態に係る光束制御部材300では、光束制御部材300の直上領域の照度が低くなり、逆に周辺領域の照度が高くなって、照度分布がより滑らかな山型になった。
 また、図16B、図19B、図20B、図21Bおよび図22Bから明らかなように、第2の傾斜面344は、表側に凸となるように、異なる傾斜角を有する複数の円錐台面を組み合わせてなるときより(図20A、図22A)も、ひとつの円錐台面(図16B)であるほうが、照度分布がより滑らかな山型であり、裏側に凸となるように、異なる傾斜角を有する複数の円錐台面を組み合わせてなるとき(図19A、図21A)、照度分布がさらに滑らかな山型になった。
 (実施の形態3)
 実施の形態3は、光束制御部材300の第2の傾斜面344が、変化する傾斜角を有する、裏側に凸となるような、外側に向けて漸次変化する傾斜角を有する曲面である態様に係る。このとき、中心軸CAを通る断面において、第2の傾斜面344は略放物線状となる。
 図23Aは、シミュレーションに用いた光束制御部材のうち、第1の傾斜面342および第2の傾斜面344をいずれも有するさらに別の光束制御部材300の概略を示す、中心軸CAを通る断面における部分断面図である。図23Aにおいて、第2の傾斜面344は、外側に向けて漸次変化する傾斜角を有する曲面である。図23Aにおいて、縦軸は光束制御部材300の第1の凹部310の下端からの鉛直方向の距離を、横軸は光束制御部材300の中心軸CAからの水平方向の距離(mm)を、それぞれ示している。また、図23Aにおいて、光束制御部材300の形状は、太線で示されている。
 図23Bは、それぞれ、図16Aに示す比較用の光束制御部材および図23Aに示す光束制御部材300の、直上領域における照度分布のシミュレーション結果である。図23Bにおいて、縦軸は照度(lx)を、横軸は光束制御部材の中心軸CAからの水平方向の距離(mm)を示している。図23Bにおいて、破線は上記比較用の光束制御部材のシミュレーション結果を、太線は光束制御部材300のシミュレーション結果を、それぞれ示す。
 図23Bから明らかなように、上記比較用の光束制御部材では、発光装置の上部近傍に周囲よりも照度が高くなった部分(図中2つの矢印で示す。)が生じているが、本実施の形態に係る光束制御部材300では、上記照度が高くなった部分は生じにくかった。また、本実施の形態に係る光束制御部材300では、光束制御部材300の直上領域の照度が低くなり、逆に周辺領域の照度が高くなって、照度分布がより滑らかな山型になった。
 また、第2の傾斜面344が、傾斜角が一定の、ひとつの円錐台面状(図16B)であるときよりも、裏側に凸となるような、外側に向けて漸次変化する傾斜角を有する曲面(図23A)であるほうが、照度分布がより滑らかな山型であった。
 [効果]
 以上述べたように、本発明の光束制御部材300は、発光装置の上部近傍の照度が高まることを抑制し、かつ、光束制御部材300の直上領域の照度も低くし、逆に周辺領域の照度を高くして、光束制御部材300の直上における照度分布をより滑らかな山型にすることができる。また、このような光束制御部材300を有する発光装置200、面光源装置100および表示装置は、同様に、輝度ムラが発生しにくく、照度分布をより均一にしやすい。
 [その他]
 図24に示すように、第2の傾斜面344は、稜線344eに垂直な断面が略三角形状であり、かつ中心軸CAに対して回転対称な、複数の凸条344fからなっていてもよい。凸条344fは、平面状の第1反射面344cと、平面状の第2反射面344dと、第1反射面344cと第2反射面344dとの交線である稜線344eとを有している。このような凸条344fも、実施の形態1から3の第2の傾斜面と同様に上記中心軸CAに略直交する方向に進行する光を反射または屈折させ、輝度ムラの発生を抑制する。また、面光源装置100の系内に存在する迷光が、光束制御部材300の出射面330から入射し、第2の傾斜面344に到達して凸条344fによって再帰反射され、光束制御部材300直下の基板に到達することを抑制する効果が期待できる。これにより、光の利用効率の低下を抑制できる可能性もある。
 光束制御部材300は、図24Aに示すように、複数の凸条344dのみを有してもよいし、図24Bに示すように、複数の凸条344dおよび複数の凸条342dを有していてもよい。
 図24Aおよび図24Bに示すいずれの形態においても、金型同士の位置合わせをより容易にし、かつ、凸条342dの高さ、凸条344fの高さおよび第2の凹部340の深さなどを測定する際の基準面として用いるため、光束制御部材300は、連続して形成された第1の傾斜面342と第2の傾斜面344との接辺の一部に非傾斜面343を有する非傾斜部が形成されていてもよい。金型同士の位置合わせをより容易にする観点からは、光束制御部材300は、中心軸CAを挟んで略対向する2つの位置に非傾斜部を有することが好ましく、上記略対向する2つの非傾斜部の組み合わせを少なくとも1組有することが好ましい。また、非傾斜面343を、中心軸CAに沿った高さ方向について第1の傾斜面342および第2の傾斜面344の位置を正確に把握するための測定基準面として使用する観点からは、測定を容易にし、且つ安定した測定結果を得るためには、非傾斜部を、中心軸CAを対称軸として回転対称な位置に2個有することが好ましい。ただし、輝度ムラの発生を最小限に抑制する観点からは、光束制御部材300が有する非傾斜部の数は少ない方が好ましく、位置合わせ効果および輝度ムラ抑制効果のバランスを考慮し、上記略対向する2つの非傾斜部の組み合わせを2組のみ有することが好ましい。
 本出願は、2015年7月1日出願の日本国出願番号2015-132803号および2016年5月24日出願の日本国出願番号2016-103266号に基づく優先権を主張する出願であり、当該出願の明細書、特許請求の範囲および図面に記載された内容は本出願に援用される。
 本発明の光束制御部材、発光装置および面光源装置は、例えば、液晶表示装置のバックライトや一般照明などに適用することができる。
 10 発光素子
 20、30 光束制御部材
 22 入射面
 24 出射面
 26 裏面
 32 傾斜面
 34 中心軸に対して略平行な面
 100 面光源装置
 110 筐体
 112 底板
 114 天板
 120 光拡散部材
 200 発光装置
 210 基板
 220 発光素子
 300 光束制御部材
 310 第1の凹部
 320 入射面
 330 出射面
 330a 第1出射面
 330b 第2出射面
 330c 第3出射面
 340 第2の凹部
 342 第1の傾斜面
 342a 第1反射面
 342b 第2反射面
 342c 稜線
 342d 凸条
 343 非傾斜面
 344 第2の傾斜面
 344a 傾斜面
 344b 傾斜面
 344c 第1反射面
 344d 第2反射面
 344e 稜線
 344f 凸条
 350 鍔部
 CA 光束制御部材の中心軸
 LA 発光素子の光軸

Claims (9)

  1.  発光素子から出射された光の配光を制御する光束制御部材であって、
     その中心軸と交わるように裏側に形成された第1の凹部の内面であって、発光素子から出射された光を入射する入射面と、
     前記中心軸と交わるように表側に形成された、前記入射面で入射した光を外部に出射する出射面と、
     前記入射面よりも外側で前記中心軸を取り囲むように裏側に形成された、光束制御部材の内部に陥入した第2の凹部と、
     を有し、
     前記第2の凹部は、前記中心軸と直交する仮想直線に対して傾斜する第1の傾斜面と、前記中心軸と直交する仮想直線に対して傾斜する第2の傾斜面と、を有し、
     前記第2の傾斜面は、前記第1の傾斜面よりも前記中心軸に近い領域に形成され、
     前記第1の傾斜面は、前記入射面で光束制御部材に入射して前記出射面でフレネル反射した光の少なくとも一部を反射させる角度で、前記中心軸から離れるほど、より裏側に向かう方向に傾斜し、
     前記第2の傾斜面は、前記中心軸から離れるほど、より表側に向かう方向に傾斜する、光束制御部材。
  2.  前記第2の傾斜面は、前記中心軸と直交する方向に進行し前記入射面の縁部で光束制御部材に入射して前記第2の傾斜面に到達する光を前記中心軸と平行な方向へ全反射させる角度より小さい角度で、前記中心軸と直交する仮想直線に対して傾斜する、請求項1に記載の光束制御部材。
  3.  前記第2の傾斜面は、裏側に凸となっている、請求項1または2に記載の光束制御部材。
  4.  前記第2の傾斜面は、傾斜角が一定である、請求項1または2に記載の光束制御部材。
  5.  前記第2の凹部は、前記中心軸に直交する仮想直線に対して平行な非傾斜面が形成された非傾斜部をさらに有し、
     前記中心軸を含む一の断面において、前記第1の傾斜面と前記第2の傾斜面とは直接に接しており、前記中心軸を含む他の断面において、前記第1の傾斜面と前記第2の傾斜面とは前記非傾斜部を介して接している、請求項1~4のいずれか1項に記載の光束制御部材。
  6.  発光素子と、請求項1~5のいずれか1項に記載の光束制御部材とを有し、前記光束制御部材は、前記中心軸が前記発光素子の光軸と合致する位置に配置されている、発光装置。
  7.  前記発光素子はチップ・オン・ボード型(COB)の発光ダイオード(LED)である、請求項6に記載の発光装置。
  8.  請求項6または7に記載の発光装置と、前記発光装置からの光を拡散させつつ透過させる光拡散部材とを有する、面光源装置。
  9.  請求項8に記載の面光源装置と、前記面光源装置から出射された光を照射される表示部材とを有する、表示装置。
PCT/JP2016/068545 2015-07-01 2016-06-22 光束制御部材、発光装置、面光源装置および表示装置 WO2017002686A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680038329.4A CN107710059A (zh) 2015-07-01 2016-06-22 光束控制部件、发光装置、面光源装置以及显示装置
US15/738,252 US10222651B2 (en) 2015-07-01 2016-06-22 Light flux controlling member, light emitting device, surface light source device and display device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015132803 2015-07-01
JP2015-132803 2015-07-01
JP2016103266A JP2017017001A (ja) 2015-07-01 2016-05-24 光束制御部材、発光装置、面光源装置および表示装置
JP2016-103266 2016-05-24

Publications (1)

Publication Number Publication Date
WO2017002686A1 true WO2017002686A1 (ja) 2017-01-05

Family

ID=57608095

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/068545 WO2017002686A1 (ja) 2015-07-01 2016-06-22 光束制御部材、発光装置、面光源装置および表示装置

Country Status (1)

Country Link
WO (1) WO2017002686A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10831062B2 (en) 2017-01-23 2020-11-10 Enplas Corporation Luminous flux control member, light-emitting device, planar light source device, and display device
CN112837479A (zh) * 2019-11-25 2021-05-25 杭州海康威视数字技术股份有限公司 警号

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009117207A (ja) * 2007-11-07 2009-05-28 Enplas Corp 発光装置、面光源装置、及び表示装置
JP2011044315A (ja) * 2009-08-20 2011-03-03 Panasonic Electric Works Co Ltd 光学レンズおよびこれを用いた照明器具
WO2012164790A1 (ja) * 2011-05-31 2012-12-06 パナソニック株式会社 面光源および液晶ディスプレイ装置
US20140168999A1 (en) * 2012-12-19 2014-06-19 Tpv Display Technology (Xiamen) Co., Ltd. Optical Lens

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009117207A (ja) * 2007-11-07 2009-05-28 Enplas Corp 発光装置、面光源装置、及び表示装置
JP2011044315A (ja) * 2009-08-20 2011-03-03 Panasonic Electric Works Co Ltd 光学レンズおよびこれを用いた照明器具
WO2012164790A1 (ja) * 2011-05-31 2012-12-06 パナソニック株式会社 面光源および液晶ディスプレイ装置
US20140168999A1 (en) * 2012-12-19 2014-06-19 Tpv Display Technology (Xiamen) Co., Ltd. Optical Lens

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10831062B2 (en) 2017-01-23 2020-11-10 Enplas Corporation Luminous flux control member, light-emitting device, planar light source device, and display device
CN112837479A (zh) * 2019-11-25 2021-05-25 杭州海康威视数字技术股份有限公司 警号

Similar Documents

Publication Publication Date Title
JP6111110B2 (ja) 光束制御部材、発光装置、面光源装置および表示装置
JP2017017001A (ja) 光束制御部材、発光装置、面光源装置および表示装置
JP5957364B2 (ja) 光束制御部材、発光装置、面光源装置および表示装置
JP6629601B2 (ja) 光束制御部材、発光装置、面光源装置および表示装置
WO2017038810A1 (ja) 光束制御部材、発光装置および面光源装置
JP6356997B2 (ja) 光束制御部材、発光装置、面光源装置および表示装置
JP6682229B2 (ja) 光束制御部材、発光装置、面光源装置および表示装置
WO2018194118A1 (ja) 光束制御部材、発光装置、面光源装置および表示装置
JP2014209158A (ja) 光束制御部材、発光装置および照明装置
WO2017002686A1 (ja) 光束制御部材、発光装置、面光源装置および表示装置
JP6162280B1 (ja) 発光装置および面光源装置
JP2016186977A (ja) 発光装置、面光源装置および表示装置
JP6983116B2 (ja) 面光源装置および表示装置
WO2018135407A1 (ja) 光束制御部材、発光装置、面光源装置および表示装置
US20200348566A1 (en) Light bundle control member, light emitting device, area-light source device, and display device
WO2019039366A1 (ja) 発光装置、面光源装置および光束制御部材
JP2019040859A (ja) 発光装置、面光源装置および光束制御部材
WO2017038758A1 (ja) 光束制御部材、発光装置、面光源装置および表示装置
WO2021187571A1 (ja) 光束制御部材、発光装置、面光源装置および表示装置
JP2018036407A (ja) 光束制御部材、発光装置、面光源装置および表示装置
JP2015212792A (ja) 光束制御部材、発光装置、面光源装置および表示装置
JP2022002203A (ja) 光束制御部材、発光装置、面光源装置および表示装置
JP2021148908A (ja) 光束制御部材、発光装置、面光源装置および表示装置
JP2022144845A (ja) 発光装置、面光源装置および表示装置
JP2021086812A (ja) 光束制御部材、発光装置、面光源装置および表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16817794

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16817794

Country of ref document: EP

Kind code of ref document: A1