WO2017002626A1 - Glass substrate production method and glass substrate production device - Google Patents

Glass substrate production method and glass substrate production device Download PDF

Info

Publication number
WO2017002626A1
WO2017002626A1 PCT/JP2016/067823 JP2016067823W WO2017002626A1 WO 2017002626 A1 WO2017002626 A1 WO 2017002626A1 JP 2016067823 W JP2016067823 W JP 2016067823W WO 2017002626 A1 WO2017002626 A1 WO 2017002626A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
sheet glass
sheet
width direction
molten glass
Prior art date
Application number
PCT/JP2016/067823
Other languages
French (fr)
Japanese (ja)
Inventor
仁志 月向
Original Assignee
AvanStrate株式会社
安瀚視特股▲ふん▼有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AvanStrate株式会社, 安瀚視特股▲ふん▼有限公司 filed Critical AvanStrate株式会社
Priority to KR1020177036269A priority Critical patent/KR102025004B1/en
Priority to CN201680036367.6A priority patent/CN107735369B/en
Priority to JP2016540704A priority patent/JP6767866B2/en
Priority to TW105120580A priority patent/TWI703099B/en
Publication of WO2017002626A1 publication Critical patent/WO2017002626A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B17/00Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
    • C03B17/06Forming glass sheets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B17/00Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
    • C03B17/06Forming glass sheets
    • C03B17/067Forming glass sheets combined with thermal conditioning of the sheets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B17/00Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
    • C03B17/06Forming glass sheets
    • C03B17/064Forming glass sheets by the overflow downdraw fusion process; Isopipes therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B25/00Annealing glass products
    • C03B25/04Annealing glass products in a continuous way
    • C03B25/10Annealing glass products in a continuous way with vertical displacement of the glass products
    • C03B25/12Annealing glass products in a continuous way with vertical displacement of the glass products of glass sheets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Definitions

  • the present invention relates to a glass substrate manufacturing method and a glass substrate manufacturing apparatus.
  • the down draw method has been used as one of the methods for producing a glass plate.
  • the molten glass overflowed from the molded body is diverted and flows down along the side surface of the molded body.
  • the molten glass that is diverted and flows down joins at the lower end of the molded body and is formed into a glass plate.
  • the formed glass plate is cooled while being conveyed downward in the vertical direction. In the cooling step, the glass plate transitions from the viscous region to the elastic region through the viscoelastic region.
  • Patent Document 1 Between the formed body and the pulling roller below the formed body, in the vicinity of the edge in the width direction of the glass plate, a cooling unit provided apart from the glass plate is used. A method for adjusting the temperature of the edge and suppressing the shrinkage of the glass plate is disclosed. Thereafter, the glass plate whose shrinkage is suppressed is formed through the slow cooling space.
  • the plate thickness deviation is a thickness deviation generated in the width direction of the glass plate, and is continuously generated in the conveyance direction of the glass plate, and the generation position in the width direction of the glass plate is often constant. In order to satisfy the recent strict requirements for sheet thickness deviation, it is not sufficient to perform thermal management in a slow cooling space.
  • an object of the present invention is to provide a glass plate manufacturing method and a glass plate manufacturing apparatus capable of suppressing a plate thickness deviation that occurs along the conveying direction of the glass plate.
  • the difference t max ⁇ t min between the maximum glass plate thickness t max and the minimum glass plate thickness t min obtained every 100 mm in the glass width direction of the sheet glass obtained in the cooling step is 20 ⁇ m or less, respectively.
  • the molten glass or the sheet glass is heated in the upper space at the generation position in the width direction of the concave portion. It is preferable to adjust the temperature distribution by bringing the shielding member closer at the generation position.
  • the molten glass or the sheet glass is positioned at both sides sandwiching the generation position in the width direction of the convex part. It is preferable that the temperature distribution is adjusted by bringing the shielding member closer at the positions on both sides so as not to receive heat from the upper space.
  • the separation distance between the shielding member and the surface of the sheet glass is adjusted according to the degree of the thickness deviation.
  • the cooling step includes cooling both end portions of the sheet glass with a cooling roller in order to prevent the sheet glass from shrinking in the width direction of the sheet glass;
  • the upper space is located on the upstream side in the conveyance direction of the sheet glass with respect to the partition plate that partitions from the lower space in which the cooling roller is provided,
  • the shielding member is preferably provided in the upper space.
  • the molding furnace chamber allows the sheet glass to enter the lower space through a slit hole between the partition plates,
  • the shielding member is preferably supported by the partition plate.
  • Another embodiment of the present invention is a glass substrate manufacturing apparatus.
  • the manufacturing equipment A molding furnace chamber; A molded body that is provided in the upper space of the molding furnace chamber, overflows the molten glass and flows down along both side surfaces, and then forms a sheet glass that is conveyed by joining the molten glass at the lower end, and A heat source for heating the walls of the upper space and the atmosphere in the upper space; The molten glass or the sheet glass is partially blocked from receiving heat from the upper space in the width direction perpendicular to the conveying direction of the molten glass or the sheet glass. And a shielding member that adjusts the temperature distribution in the width direction.
  • the molten glass flowing on the side surface of the molded body, or the width direction orthogonal to the conveying direction of the sheet glass formed by separating the molten glass from the lower end of the molded body By adjusting the temperature distribution, the plate thickness deviation can be suppressed.
  • FIG. 1 is a schematic configuration diagram of an example of a glass plate manufacturing apparatus according to the present embodiment.
  • the glass plate manufacturing apparatus 100 is comprised from the melting tank 200, the clarification tank 300, and the shaping
  • the melting tank 200 the glass raw material is melted to produce molten glass.
  • the molten glass generated in the melting tank 200 is sent to the clarification tank 300.
  • the clarification tank 300 bubbles contained in the molten glass are removed.
  • the molten glass from which bubbles have been removed in the clarification tank 300 is sent to the molding apparatus 400.
  • the sheet glass G is continuously formed from the molten glass by, for example, an overflow down draw method. Thereafter, the formed sheet glass G is cooled and cut into a glass plate having a predetermined size.
  • the sheet glass G is, for example, a glass substrate for a display (for example, a glass substrate for a liquid crystal display, a glass substrate for a plasma display, a glass substrate for an organic EL display), a glass substrate for tempered glass such as a cover glass or a magnetic disk, or a roll. Used as a glass substrate on which electronic devices such as a glass substrate and a semiconductor wafer are laminated.
  • FIG. 2 is a schematic cross-sectional configuration diagram of an example of the molding apparatus
  • FIG. 3 is a schematic side configuration diagram of an example of the molding apparatus
  • FIG. 4 is an enlarged view illustrating an example of the upper space of the molding furnace chamber in which the molded body is arranged.
  • a forming step for producing a sheet glass by an overflow downdraw method a cooling step for cooling the formed sheet glass, and a temperature in the width direction perpendicular to the conveying direction of the molten glass or the sheet glass when producing the sheet glass.
  • An adjustment step of adjusting the distribution is performed. As shown in FIGS.
  • the forming apparatus 400 includes a formed body 10, a partition plate 20, a cooling roller 30, heat insulating members 40a, 40b,..., 40h, and feed rollers 50a, 50b,. , 50h and temperature control units (temperature control devices) 60a, 60b,..., 60h.
  • the molding apparatus 400 includes an upper space 410 in the molding furnace chamber that is a space above the partition plate 20, a lower space 42a in the molding furnace chamber that is a space immediately below the partition plate 20, and a space below the lower space 42a. And a certain slow cooling zone 420.
  • the slow cooling zone 420 has a plurality of slow cooling spaces 42b, 42c,.
  • the lower space 42a, the slow cooling space 42b, the slow cooling space 42c,..., The slow cooling space 42h are stacked in this order from the top to the bottom in the vertical direction.
  • the upper space 410, the lower space 42a, and the slow cooling zone 420 are surrounded by a refractory material and / or a heat insulating material building (not shown), and the cooling process of the sheet glass G is performed in the lower space 42a and the slow cooling zone 420.
  • the temperature control unit 60a or the like controls the temperature suitable for forming and cooling the sheet glass G.
  • the upper space 410 is separated from the external space by a furnace wall 412 made of a refractory material and a heat insulating material.
  • a furnace wall 412 made of a refractory material and a heat insulating material.
  • the atmosphere of the upper space 410 and the furnace wall 412 are heated according to the installation position of the molded body 10 in the height direction (up and down direction in FIG. 4).
  • a plurality of heaters 414 are provided.
  • the molded body 10 is a member having a substantially wedge-shaped cross-sectional shape as shown in FIG. 2 or FIG.
  • the molded body 10 is disposed in the upper space 410 so that the substantially wedge-shaped lower end 11 is at the lowest position.
  • a groove 12 is formed on the upper end surface of the molded body 10.
  • the grooves 12 are formed in the longitudinal direction of the molded body 10, that is, in the left-right direction on the paper surface of FIG. 3.
  • a glass supply tube 14 is provided at one end of the groove 12.
  • the groove 12 is formed so as to gradually become shallower as it approaches the other end from one end where the glass supply pipe 14 is provided.
  • the molten glass MG overflowing from the groove 12 flows on both side surfaces 13a and both inclined surfaces 13b of the molded body 10, and is fused at the lower end 11 to form the sheet glass G.
  • the width direction of the molten glass MG or the sheet glass G refers to a direction orthogonal to the conveying direction in the direction of the surface of the molten glass MG or the surface of the sheet glass G.
  • portions where the thickness is thicker than the plate thickness at the center in the width direction of the sheet glass G are formed.
  • region which is the area
  • the sheet thickness deviation including the striae that are irregularities of the sheet glass G is suppressed. .
  • the glass before fusing at the lower end 11 of the molded body 10 is referred to as molten glass MG, and the glass after fusing at the lower end 11 is referred to as sheet glass G.
  • molten glass MG glass before fusing at the lower end 11 of the molded body 10
  • sheet glass G glass after fusing at the lower end 11
  • the occurrence of a plate thickness deviation is not preferable, and in particular, in the case of a glass plate used for a glass substrate for a display, the generation of a partial plate thickness deviation is not preferable because it greatly affects the display accuracy of the display.
  • the partition plate 20 is a plate-like heat insulating material disposed in the vicinity of the lower end 11 of the molded body 10.
  • the partition plate 20 is arranged so that the position of the lower end in the height direction is located below the position of the lower end 11 of the molded body 10 in the height direction.
  • the partition plates 20 are disposed on both sides of the sheet glass G in the thickness direction, as shown in FIGS.
  • the partition plate 20 suppresses heat transfer from the upper space 410 to the lower space 42a by partitioning the upper space 410 of the molding furnace chamber and the lower space 42a of the molding furnace chamber.
  • the upper space 410 and the lower space 42a are separated from each other by the partition plate 20 that is a heat insulating material.
  • the temperature in the space in the upper space 410 and the lower space 42a is such that the two spaces do not affect each other. This is to perform control.
  • the partition plate 20 is arranged with the interval between the sheet glass G and the partition plate 20 adjusted in advance so as to suppress the volume flow rate of the rising airflow entering the upper space 410 from the slow cooling zone 420.
  • the cooling roller 30 is disposed in the vicinity of the partition plate 20 in the lower space 42a.
  • the cooling rollers 30 are disposed on both sides of the sheet glass G in the thickness direction, sandwich the sheet glass G in the thickness direction, and serve to cool the end of the sheet glass G while conveying the sheet glass G downward. Bear.
  • the molten glass MG flowing down along the side surface 13a and the inclined surface 13b of the molded body 10 leaves the lower end 11 of the molded body 10, and at the same time, the sheet glass G contracts in the width direction due to surface tension.
  • the cooling roller 30 sandwiches portions adjacent to the center region side with respect to both end portions of the sheet glass G contracting in the width direction, thereby preventing the sheet glass G from contracting in the width direction. Cool G.
  • contraction to the width direction of the sheet glass G is suppressed, and the distortion which arises in the sheet glass G, plate
  • corrugation are suppressed.
  • the cooling roller 30 may not be able to suppress distortion, plate thickness deviation, and unevenness.
  • the thermal management at the lower end 11 of the molded body 10 with the shielding member 80 by adjusting the thermal management at the lower end 11 of the molded body 10 with the shielding member 80, the accuracy of thermal management can be improved and the plate thickness deviation can be suppressed.
  • the step of cooling the sheet glass includes cooling the end portions on both sides of the sheet glass G with the cooling roller 30 in order to prevent the sheet glass G from shrinking in the width direction of the sheet glass G.
  • the space 410 is located on the upstream side in the conveyance direction of the sheet glass G with respect to the partition plate 20 that partitions from the lower space 42 a where the cooling roller 30 is provided, and the shielding member 80 is provided in the upper space 410.
  • the heat insulating members 40a, 40b,..., 40h are arranged in the slow cooling zone 420 in the slow cooling zone 420 with respect to the sheet glass G transport direction (vertically downward). -Dividing into 42h and suppressing the heat transfer in each of the gradually cooled spaces.
  • the heat insulating members 40a, 40b,..., 40h are plate-like members disposed below the cooling roller 30 and on both sides in the thickness direction of the sheet glass G, and the sheet glass G in the transport direction. It has a slit-like space to guide.
  • the lower space 42 a and the slow cooling zone 420 are surrounded by a refractory material and / or a heat insulating material building (not shown), but the sheet glass G is carried out to the slow cooling zone 420.
  • the heat insulating member 40a forms a lower space 42a and a slow cooling space 42b
  • the heat insulating member 40b forms a slow cooling space 42b and a slow cooling space 42c.
  • the heat insulating members 40a, 40b,..., 40h suppress heat transfer between the upper and lower spaces.
  • the heat insulating member 40a suppresses heat transfer and rising airflow between the lower space 42a and the slow cooling space 42b
  • the heat insulating member 40b transfers heat and rise between the slow cooling space 42b and the slow cooling space 42c. Suppress airflow.
  • the plurality of feed rollers 50a, 50b,..., 50h are arranged on both sides in the thickness direction of the sheet glass G at a predetermined interval in the vertical direction in the slow cooling zone 420.
  • the feeding rollers 50a, 50b,..., 50g are disposed in the slow cooling spaces 42b, 42c,..., 42h, respectively, and convey the sheet glass G downward.
  • the temperature control units 60a, 60b,..., 60h are composed of, for example, a sheathed heater, a cartridge heater, a ceramic heater, a temperature sensor, and the like that generate heat by resistance heating, dielectric heating, and microwave heating. 42h and the slow cooling spaces 42b, 42c,..., 42h are arranged along the width direction of the sheet glass G, and the ambient temperature of the lower space 42a and the slow cooling spaces 42b, 42c,. Control. Further, the temperature control units 60a, 60b,..., 60h form a predetermined temperature distribution (hereinafter referred to as “temperature profile”) designed to prevent warping and distortion of the sheet glass G. The ambient temperature of the lower space 42a and the slow cooling spaces 42b, 42c,.
  • the temperature control units 60a, 60b,..., 60h are collectively referred to as the temperature control unit 60.
  • the upstream side refers to the side opposite to the conveying direction of the sheet glass G, and in this embodiment refers to the side of the molded body 10 when viewed from the slow cooling zone 420.
  • the detection device 70 is a device that measures the thickness of the glass plate, and includes, for example, an optical sensor, and measures the thickness of the sheet glass conveyed from the slow cooling zone for each predetermined width (for example, 1 mm width).
  • the detection device 70 detects a portion (a convex portion or a concave portion) that is thicker or thinner than a reference value in the measured glass plate thickness, and sets this position as a position where a thickness deviation occurs.
  • the temperature distribution in the width direction of the glass sheet or molten glass is adjusted by moving the shielding member 80 close or away according to the width and extent of the thickness deviation (height of the convex portion or depth of the concave portion).
  • the heat from the heater is shielded by bringing the shielding member 80 close to the thin plate portion.
  • the viscosity of the portion where the plate thickness is thin rises locally, and the glass flow is suppressed when the glass is pulled in the width direction.
  • the shield member 80 is placed close to the portion adjacent to the thick plate portion to block the heat from the heater. Thereby, the viscosity of the part adjacent to the part with thick plate thickness rises, the flow of glass is suppressed, and the glass with the thick plate part flows on both sides, so that thickness deviation can be suppressed.
  • the thickness deviation for each predetermined interval in the glass width direction is adjusted to be a predetermined value or less.
  • the maximum glass plate thickness (t max ) and the minimum glass plate are measured at predetermined intervals (for example, 20 mm, 100 mm, 300 mm) in the glass width direction from the measured value of the glass plate thickness using the detection device.
  • the thickness (t max ) can be detected, and the thickness deviation (t max ⁇ t max ), which is the difference between them, can be calculated. That is, the maximum glass plate thickness (t max ) and the minimum glass plate thickness (t max ) are detected from data at a predetermined interval, and the thickness deviation (t max ⁇ t max ) that is the difference between these is calculated. Thereby, a thickness deviation (t max ⁇ t max ) at every predetermined interval can be obtained.
  • Adjustment of the temperature distribution in the width direction orthogonal to the conveying direction of the molten glass MG or the sheet glass G is performed by adjusting the maximum glass plate thickness (t max ) for every 20 mm in the glass width direction of the sheet glass obtained in the cooling step, and the minimum glass plate.
  • the thickness deviation in thickness (t max -t min) between (t min) is, so that each becomes 15 ⁇ m or less, it is preferable to adjust.
  • the thickness deviation (t max ⁇ t min ) between the maximum glass plate thickness (t max ) and the minimum glass plate thickness (t min ) every 100 mm in the glass width direction is adjusted to be 20 ⁇ m or less, respectively. It is preferable to do.
  • the thickness deviation (t max ⁇ t min ) between the maximum glass plate thickness (t max ) and the minimum glass plate thickness (t min ) every 300 mm in the glass width direction is adjusted to be 25 ⁇ m. It is preferable. Furthermore, it is preferable to adjust the difference (t max ⁇ t min ) between the maximum glass plate thickness (t max ) in the glass width direction and the minimum glass plate thickness (t min ) to be 25 ⁇ m or less.
  • the shielding member 80 is not particularly limited as long as it is a rod-like member that shields the heat of the furnace wall 412, but the material of the shielding member 80 is preferably, for example, ceramic made of aluminum or silica.
  • the shielding member 80 is provided on both sides of the surface of the sheet glass G so as to sandwich the sheet glass G. Further, the shielding member 80 is provided on the side of the surface where the molten glass MG faces the upper space 410 when the molten glass MG flowing down on both side surfaces of the molded body 10 is to be shielded.
  • the shielding member 80 extends through the furnace wall 412 from the outer space of the furnace wall 412 into the upper space 410.
  • a plurality of shielding members 80 that are rod-like members are continuously arranged so as to be aligned in a row in the width direction of the sheet glass G or the molten glass MG.
  • Each of the shielding members 80 is configured to be able to advance and retract with respect to the surface of the sheet glass G or the molten glass MG.
  • the length of one shielding member 80 along the width direction of the sheet glass G is, for example, 8 to 12 mm.
  • the shielding member 80 shields the heat so that the sheet glass G and the molten glass MG are not heated by receiving the radiant heat of the heater 414 or the heat of the gas in the upper space 410. It is configured.
  • the shielding member 80 is placed on the surface of the sheet glass G or the molten glass MG so that the sheet glass G or the molten glass MG does not receive heat from the upper space 410 in a part of the width direction of the sheet glass G or the molten glass MG. Move closer.
  • the shielding member 80 partially shields heat, the temperature distribution in the width direction of the sheet glass G or the molten glass MG can be adjusted.
  • the inspection device 70 can specify the position in the width direction of the sheet glass G of the concave portion or the convex portion where the thickness deviation has occurred, a plurality of shielding members are based on the position in the width direction. By bringing the rod-shaped shielding member 80 selected from 80 close to the surface of the sheet glass G or the molten glass MG, the temperature distribution in the width direction can be adjusted.
  • FIG. 5 is a diagram illustrating an example of adjusting the temperature distribution of the sheet glass G using a shielding member.
  • FIG. 5 is a view as seen from the upstream side of the sheet glass G in the conveying direction. The example shown in FIG.
  • the plate thickness is locally thinned along the width direction, a concave portion is generated, and a plate thickness deviation to be suppressed occurs.
  • the rod-shaped member 80a corresponding to the position A among the plurality of shielding members 80 is brought closer to the surface of the sheet glass G from both sides of the sheet glass G.
  • the sheet glass G contracts in the width direction due to surface tension, and when the sheet glass G is pulled in the width direction, the heat is not blocked by the shielding member 80 a at the position A. It can be suppressed that the sheet thickness of the sheet glass G at the position A is locally reduced due to the locally increased viscosity of the glass. That is, the plate thickness deviation can be suppressed.
  • the sheet glass G is a target for adjusting the temperature distribution, but it is also preferable that the molten glass MG flowing through the molded body 10 is a target for adjusting the temperature distribution.
  • FIG. 6 is a diagram for explaining another example of adjusting the temperature distribution of the sheet glass G using the shielding member 80.
  • FIG. 6 is a view as seen from the upstream side in the conveyance direction of the sheet glass G.
  • the example shown in FIG. 6 is an example in which, at a position B in the width direction, the plate thickness locally increases along the width direction, a convex portion is generated, and a plate thickness deviation to be suppressed is generated.
  • the shielding members 80b and 80c are brought close to the surface of the sheet glass G.
  • the heat from the upper space 410 is cut off, so that the temperature at the positions on both sides of the position B is locally decreased, and the viscosity of the glass is increased. Therefore, when the molten glass MG leaves the molded body 10 and the sheet glass G contracts in the width direction due to surface tension, and the sheet glass G is pulled in the width direction, the shielding members 80b and 80c are positioned at both sides of the position B. Since the glass flow is suppressed by the locally increased viscosity of the glass as compared with the case where the heat is not shut off at the position B, the glass at the position B is easy to flow on both sides, so that the thickness of the sheet glass G at the position B is locally Can be suppressed.
  • the plate thickness deviation can be suppressed.
  • the sheet glass G is a target for adjusting the temperature distribution, but it is also preferable that the molten glass MG flowing through the molded body 10 is a target for adjusting the temperature distribution.
  • the shielding member 80a and the shielding members 80b and 80c are brought close to the surface of the sheet glass G at positions A and B on both sides.
  • the distance between 80a and the tips of the shielding members 80b and 80c is preferably set in the range of 1 mm to 15 mm.
  • the shielding member 80a or the shielding members 80b and 80c and the sheet glass G depending on the degree of thickness deviation at the positions A and B, for example, the depth or height of the unevenness of the sheet glass G (thickness degree).
  • the separation distance from the surface is adjusted. For example, it is preferable to decrease the separation distance as the degree of the plate thickness deviation increases. When the degree of thickness deviation is large, the temperature distribution in the width direction also fluctuates greatly.
  • the separation distance is made smaller. It is preferable to do.
  • only the shielding member 80a and the shielding members 80b and 80c are brought close to the surface of the sheet glass G at the positions on both sides of the position A and the position B, but the shielding member 80a, the shielding member 80b, The shielding member 80 adjacent to the shielding member 80c may be close to the surface of the sheet glass G, although not as much as the shielding member 80a and the shielding members 80b and 80c.
  • the molten glass MG or the sheet glass G is performed in a region at a temperature equal to or higher than the softening point (the glass temperature when the glass viscosity corresponds to 10 7.6 poise). That is, the adjustment of the temperature distribution of the molten glass MG or the sheet glass G performed using the shielding member 80 is performed when the viscosity of the molten glass MG or the sheet glass G is 10 7.6 poise or less.
  • the glass viscosity of the glass is 10 4.3 ⁇ 10 7.5 poise
  • the glass viscosity is in the range of 10 4.3 to 10 5.5 poise.
  • the position in the transport direction of the shielding member 80 that is close to the surface of the molten glass MG or the sheet glass G according to the widthwise dimension of the concave portion or the convex portion generated in the molten glass MG or the sheet glass G is determined. It is preferable to adjust.
  • the temperature distribution can be adjusted from the lower end 11 of the molded body 10 to a position separated by 50 mm downstream or upstream in the transport direction. preferable.
  • the temperature distribution is adjusted at the height position (position in the transport direction) of the lower end 11 of the molded body 10.
  • the position in the conveying direction where temperature adjustment is performed to suppress the plate thickness deviation and the separation distance at which the shielding member 80 is brought close to the surface of the sheet glass G or the molten glass MG are the extent of the concave portion or convex portion (the degree of concave and convex portions).
  • the position is determined in advance according to the width, and the position of the conveyance direction in which the temperature adjustment is performed and the separation distance can be set according to the detected degree of the recess or protrusion (degree of unevenness) and the width.
  • the molding furnace chamber partitions (separates) the upper space 410 and the lower space 42a by the partition plate 20, and allows the sheet glass G to enter the lower space 42a through the slit holes between the partition plates 20. Cool down.
  • the shielding member 80 is preferably supported by the partition plate 20. Since the atmospheric temperature of the upper space 410 is extremely high, the rod-shaped shielding member 80 is thin and easy to bend due to its own weight. Therefore, the partition plate 20 supports the shielding member 80 from below so that the shielding member 80 is not deformed, and the temperature distribution can be adjusted at a predetermined position in the conveying direction of the sheet glass G or the molten glass MG. it can.
  • the position in the transport direction for adjusting the temperature distribution slightly deviates from the target position due to thermal deformation of the shielding member 80, the viscosity of the glass whose temperature distribution is to be adjusted tends to be different, so the thickness deviation can be accurately suppressed. Is difficult.
  • the temperature adjustment position in the transport direction differs. For this reason, when changing the temperature adjustment position, for example, by changing the thickness of the partition plate 20, the position of the shielding member 80 supported by the partition plate 20 in the transport direction is changed, thereby adjusting the temperature distribution. It is preferable to adjust the position in the transport direction to be attempted.
  • the shielding member 80 is provided so as to be sandwiched between the partition plates 20 by using two partition plates 20.
  • the furnace wall 412 is filled with glass wool made of glass fiber and the opening is closed.
  • the partition plate 20 and the shielding plate 80 are directed toward the molten glass MG or the sheet glass G in this portion. It is configured so that it can be inserted. Therefore, when the position of the shielding member 80 in the conveyance direction is positioned upstream in the conveyance direction, the position of the shielding plate 80 can be adjusted by increasing the thickness of the partition plate 20.
  • the molten glass MG or the sheet glass G receives heat from the upper space 410 in the width direction orthogonal to the conveying direction of the molten glass MG or the sheet glass G flowing down from the molded body 10.
  • the temperature distribution in the width direction of the molten glass MG or the sheet glass G can be adjusted, so that it is possible to suppress a thickness deviation that is likely to occur in the conveying direction of the glass plate. .

Abstract

When producing a glass substrate, after causing molten glass that has overflowed from the upper section of a molded body in the upper space of a molding furnace chamber that has been heated to flow down along both side surfaces of the molded body, the molten glass is caused to merge at the lower end of the molded body to create sheet glass to be conveyed, and thereafter, the sheet glass is cooled. At such time, the molten glass or the sheet glass is blocked from receiving heat from the upper space in parts with a shielding member in the width direction which is orthogonal to the conveyance direction of the molten glass or the glass sheet, thereby adjusting the temperature distribution of the molten glass or the sheet glass in the width direction.

Description

ガラス基板の製造方法及びガラス基板製造装置Glass substrate manufacturing method and glass substrate manufacturing apparatus
 本発明は、ガラス基板の製造方法及びガラス基板製造装置に関する。 The present invention relates to a glass substrate manufacturing method and a glass substrate manufacturing apparatus.
 従来、ガラス板の製造方法の一つとして、ダウンドロー法が用いられている。ダウンドロー法では、成形体からオーバーフローした熔融ガラスが、分流して成形体の側面に沿って流下する。分流して流下する熔融ガラスは、成形体の下端部で合流して、ガラス板に成形される。成形されたガラス板は、鉛直方向下方に搬送されながら冷却される。冷却工程において、ガラス板は、粘性域から粘弾性域を経て弾性域へと推移する。 Conventionally, the down draw method has been used as one of the methods for producing a glass plate. In the downdraw method, the molten glass overflowed from the molded body is diverted and flows down along the side surface of the molded body. The molten glass that is diverted and flows down joins at the lower end of the molded body and is formed into a glass plate. The formed glass plate is cooled while being conveyed downward in the vertical direction. In the cooling step, the glass plate transitions from the viscous region to the elastic region through the viscoelastic region.
 成形体の側面に沿って流下する熔融ガラスは、成形体を離れると同時に、表面張力によりガラス板が幅方向に収縮する。この収縮により、ガラス板には、板厚偏差あるいは凹凸が生じる。特許文献1には、成形体と成形体下方の引張りローラとの間において、ガラス板の幅方向の縁部の近傍において、ガラス板と離間して設けられた冷却ユニットを用いて、ガラス板の縁部の温度を調整し、ガラス板の収縮を抑制する方法が開示されている。その後、収縮が抑制されたガラス板は、徐冷空間を通過して成形される。この徐冷空間では、雰囲気温度が所望の温度プロファイル(ガラス板に歪みが発生しないような温度分布)になるように制御され、ガラス板の板厚偏差が抑制される。一方、近年、液晶表示装置用ガラス基板においては、ガラス板の板厚偏差の要求されるスペック(品質)が厳しくなっている。 The molten glass flowing down along the side of the molded body leaves the molded body, and at the same time, the glass plate contracts in the width direction due to surface tension. Due to this shrinkage, a thickness deviation or unevenness occurs in the glass plate. In Patent Document 1, between the formed body and the pulling roller below the formed body, in the vicinity of the edge in the width direction of the glass plate, a cooling unit provided apart from the glass plate is used. A method for adjusting the temperature of the edge and suppressing the shrinkage of the glass plate is disclosed. Thereafter, the glass plate whose shrinkage is suppressed is formed through the slow cooling space. In this slow cooling space, the ambient temperature is controlled so as to have a desired temperature profile (a temperature distribution that does not cause distortion in the glass plate), and the thickness deviation of the glass plate is suppressed. On the other hand, in recent years, in glass substrates for liquid crystal display devices, specifications (quality) required for deviations in the thickness of glass plates have become strict.
 板厚偏差とは、ガラス板の幅方向に生じる厚み偏差であり、ガラス板の搬送方向に連続的に発生し、ガラス板の幅方向の発生位置は一定であることが多い。板厚偏差に関する近年の厳しい要求スペックを満たすためには、徐冷空間における熱管理を行うだけでは、十分ではない。 The plate thickness deviation is a thickness deviation generated in the width direction of the glass plate, and is continuously generated in the conveyance direction of the glass plate, and the generation position in the width direction of the glass plate is often constant. In order to satisfy the recent strict requirements for sheet thickness deviation, it is not sufficient to perform thermal management in a slow cooling space.
特開平5-124827号公報Japanese Patent Laid-Open No. 5-12427
 そこで、本発明は、ガラス板の搬送方向に沿って発生する板厚偏差を抑えることができるガラス板の製造方法及びガラス板の製造装置を提供することを目的とする。 Therefore, an object of the present invention is to provide a glass plate manufacturing method and a glass plate manufacturing apparatus capable of suppressing a plate thickness deviation that occurs along the conveying direction of the glass plate.
 本発明の一態様は、ガラス基板の製造方法である。当該製造方法は、
 加熱された成形炉室の上部空間内にある成形体の上部からオーバーフローさせた熔融ガラスを、前記成形体の両側面に沿って流下させた後、前記成形体の下端で熔融ガラスを合流させて搬送されるシートガラスをつくる成形工程と、
 前記シートガラスを冷却する冷却工程と、
 前記熔融ガラスあるいは前記シートガラスの搬送方向と直交する幅方向において、前記熔融ガラスあるいは前記シートガラスが前記上部空間からの熱を受けることを遮蔽部材で部分的に遮断することにより、前記熔融ガラスあるいは前記シートガラスの前記幅方向の温度分布を調整する調整工程と、を備える。
One embodiment of the present invention is a method for manufacturing a glass substrate. The manufacturing method is
After the molten glass overflowed from the upper part of the molded body in the upper space of the heated molding furnace chamber is caused to flow down along both side surfaces of the molded body, the molten glass is joined at the lower end of the molded body. A molding process for making the sheet glass to be conveyed;
A cooling step for cooling the sheet glass;
In the width direction orthogonal to the conveying direction of the molten glass or the sheet glass, the molten glass or the sheet glass is partially blocked by the shielding member from receiving heat from the upper space, so that the molten glass or Adjusting the temperature distribution in the width direction of the sheet glass.
 前記調整工程において、前記冷却工程で得られた前記シートガラスの前記幅方向20mmごとに得られる、最大ガラス板厚tmaxと、最小ガラス板厚tminとの差tmax-tminが、それぞれ15μm以下となるように、前記熔融ガラスあるいは前記シートガラスの前記幅方向の温度分布を調整することが好ましい。 In the adjustment step, the difference t max −t min between the maximum glass plate thickness t max and the minimum glass plate thickness t min obtained for each 20 mm in the width direction of the sheet glass obtained in the cooling step is It is preferable to adjust the temperature distribution in the width direction of the molten glass or the sheet glass so as to be 15 μm or less.
 前記冷却工程で得られたシートガラスのガラス幅方向100mmごとに得られる、最大ガラス板厚tmaxと、最小ガラス板厚tminとの差tmax-tminが、それぞれ20μm以下となるように、前記調整工程において、前記熔融ガラスあるいは前記シートガラスの前記幅方向の温度分布を調整する、ことが好ましい。 The difference t max −t min between the maximum glass plate thickness t max and the minimum glass plate thickness t min obtained every 100 mm in the glass width direction of the sheet glass obtained in the cooling step is 20 μm or less, respectively. In the adjusting step, it is preferable to adjust the temperature distribution in the width direction of the molten glass or the sheet glass.
 このとき、前記熔融ガラスあるいは前記シートガラスに凹部が発生して厚み偏差が生じたとき、前記調整工程において、前記凹部の幅方向の発生位置で前記熔融ガラスあるいは前記シートガラスが前記上部空間の熱を受けないように、前記発生位置において前記遮蔽部材を近づけて前記温度分布を調整する、ことが好ましい。 At this time, when a concave portion is generated in the molten glass or the sheet glass and a thickness deviation occurs, in the adjusting step, the molten glass or the sheet glass is heated in the upper space at the generation position in the width direction of the concave portion. It is preferable to adjust the temperature distribution by bringing the shielding member closer at the generation position.
 前記熔融ガラスあるいは前記シートガラスに凸部が発生して厚み偏差が生じたとき、前記調整工程において、前記凸部の幅方向の発生位置を挟む両側の位置で前記熔融ガラスあるいは前記シートガラスが前記上部空間の熱を受けないように、前記両側の位置において前記遮蔽部材を近づけて前記温度分布を調整する、ことが好ましい。 When a convex part occurs in the molten glass or the sheet glass and a thickness deviation occurs, in the adjustment step, the molten glass or the sheet glass is positioned at both sides sandwiching the generation position in the width direction of the convex part. It is preferable that the temperature distribution is adjusted by bringing the shielding member closer at the positions on both sides so as not to receive heat from the upper space.
 前記厚み偏差の程度に応じて、前記遮蔽部材と前記シートガラスの表面との離間距離は調整される、ことが好ましい。 It is preferable that the separation distance between the shielding member and the surface of the sheet glass is adjusted according to the degree of the thickness deviation.
 前記調整工程は、前記熔融ガラスあるいは前記シートガラスの粘度が107.6poise以下にあるとき行なわれる、ことが好ましい。 The adjusting step is preferably performed when the viscosity of the molten glass or the sheet glass is 10 7.6 poise or less.
 前記成形体の前記下端から、前記熔融ガラスあるいは前記シートガラスの搬送方向下流側又は上流側に50mm離間した位置までの間で、前記調整工程を行う、ことが好ましい。 It is preferable that the adjustment step is performed from the lower end of the molded body to a position separated by 50 mm downstream or upstream in the conveying direction of the molten glass or the sheet glass.
 前記冷却工程は、前記シートガラスが前記シートガラスの幅方向に収縮することを防止するために、冷却ローラで前記シートガラスの両側の端部を冷却することを含み、
 前記上部空間は、前記冷却ローラが設けられる下部空間と仕切る仕切り板に対して、前記シートガラスの搬送方向上流側に位置し、
 前記遮蔽部材は、前記上部空間に設けられている、ことが好ましい。
The cooling step includes cooling both end portions of the sheet glass with a cooling roller in order to prevent the sheet glass from shrinking in the width direction of the sheet glass;
The upper space is located on the upstream side in the conveyance direction of the sheet glass with respect to the partition plate that partitions from the lower space in which the cooling roller is provided,
The shielding member is preferably provided in the upper space.
 前記成形炉室は、前記仕切り板の間のスリット孔を通して前記シートガラスを前記下部空間に進入させ、
 前記遮蔽部材は、前記仕切り板により支持されている、ことが好ましい。
The molding furnace chamber allows the sheet glass to enter the lower space through a slit hole between the partition plates,
The shielding member is preferably supported by the partition plate.
 前記仕切り板の厚さ又は高さを変化させることにより、前記遮蔽部材を用いて前記温度分布を調整する搬送方向の位置を調整する、ことが好ましい。 It is preferable to adjust the position in the transport direction in which the temperature distribution is adjusted by using the shielding member by changing the thickness or height of the partition plate.
 また、本発明の他の一態様は、ガラス基板の製造装置である。当該製造装置は、
 成形炉室と、
 前記成形炉室の上部空間内に設けられ、熔融ガラスをオーバーフローさせて両側面に沿って流下させた後、下端で熔融ガラスを合流させて搬送されるシートガラスをつくる成形体と、
 前記上部空間の壁及び前記上部空間内の雰囲気を加熱する熱源と、
 前記熔融ガラスあるいは前記シートガラスの搬送方向と直交する幅方向において、前記熔融ガラスあるいは前記シートガラスが前記上部空間からの熱を受けることを部分的に遮断することにより、前記熔融ガラスあるいは前記シートガラスの前記幅方向の温度分布を調整する遮蔽部材と、を備える。
Another embodiment of the present invention is a glass substrate manufacturing apparatus. The manufacturing equipment
A molding furnace chamber;
A molded body that is provided in the upper space of the molding furnace chamber, overflows the molten glass and flows down along both side surfaces, and then forms a sheet glass that is conveyed by joining the molten glass at the lower end, and
A heat source for heating the walls of the upper space and the atmosphere in the upper space;
The molten glass or the sheet glass is partially blocked from receiving heat from the upper space in the width direction perpendicular to the conveying direction of the molten glass or the sheet glass. And a shielding member that adjusts the temperature distribution in the width direction.
 上述のガラス板の製造方法及びガラス板製造装置によれば、成形体の側面を流れる熔融ガラス、あるいは成形体の下端から熔融ガラスが離れて形成されたシートガラスの搬送方向と直交する幅方向の温度分布を調整することにより、板厚偏差を抑えることができる。 According to the glass plate manufacturing method and the glass plate manufacturing apparatus described above, the molten glass flowing on the side surface of the molded body, or the width direction orthogonal to the conveying direction of the sheet glass formed by separating the molten glass from the lower end of the molded body. By adjusting the temperature distribution, the plate thickness deviation can be suppressed.
本実施形態のガラス板製造装置の一例の概略構成図である。It is a schematic block diagram of an example of the glass plate manufacturing apparatus of this embodiment. 本実施形態の成形装置の一例の断面概略構成図である。It is a cross-sectional schematic block diagram of an example of the shaping | molding apparatus of this embodiment. 本実施形態の成形装置の一例の側面概略構成図である。It is a side schematic block diagram of an example of the shaping | molding apparatus of this embodiment. 成形体が配置された本実施形態の成形炉室の上部空間の一例を拡大して説明する図である。It is a figure which expands and demonstrates an example of the upper space of the molding furnace chamber of this embodiment by which the molded object is arrange | positioned. 本実施形態の遮蔽部材を用いたシートガラスの温度分布の調整の一例を説明する図である。It is a figure explaining an example of adjustment of the temperature distribution of the sheet glass using the shielding member of this embodiment. 本実施形態の遮蔽部材を用いたシートガラスの温度分布の調整の他の例を説明する図である。It is a figure explaining the other example of adjustment of the temperature distribution of the sheet glass using the shielding member of this embodiment.
 以下、本実施形態にかかるガラス板の製造方法及びガラス板製造装置について説明する。図1は、本実施形態にかかるガラス板製造装置の一例の概略構成図である。
 ガラス板製造装置100は、図1に示すように、熔解槽200と、清澄槽300と、成形装置400とから構成される。熔解槽200では、ガラスの原料が熔解され熔融ガラスが生成される。熔解槽200で生成された熔融ガラスは、清澄槽300へ送られる。清澄槽300では、熔融ガラスに含有される気泡の除去が行われる。清澄槽300で気泡が除去された熔融ガラスは、成形装置400へ送られる。成形装置400では、例えばオーバーフローダウンドロー法によって、熔融ガラスからシートガラスGが連続的に成形される。その後、成形されたシートガラスGは、冷却され、所定の大きさのガラス板に切断される。シートガラスGは、例えば、ディスプレイ用ガラス基板(例えば、液晶ディスプレイ用ガラス基板、プラズマディスプレイ用ガラス基板、有機ELディスプレイ用ガラス基板)、カバーガラスや磁気ディスク用などの強化ガラス用ガラス基板、ロール状に巻き取られるガラス基板、半導体ウエハ等の電子デバイスが積層されたガラス基板として用いられる。
Hereinafter, the manufacturing method and glass plate manufacturing apparatus of the glass plate concerning this embodiment are demonstrated. FIG. 1 is a schematic configuration diagram of an example of a glass plate manufacturing apparatus according to the present embodiment.
The glass plate manufacturing apparatus 100 is comprised from the melting tank 200, the clarification tank 300, and the shaping | molding apparatus 400, as shown in FIG. In the melting tank 200, the glass raw material is melted to produce molten glass. The molten glass generated in the melting tank 200 is sent to the clarification tank 300. In the clarification tank 300, bubbles contained in the molten glass are removed. The molten glass from which bubbles have been removed in the clarification tank 300 is sent to the molding apparatus 400. In the forming apparatus 400, the sheet glass G is continuously formed from the molten glass by, for example, an overflow down draw method. Thereafter, the formed sheet glass G is cooled and cut into a glass plate having a predetermined size. The sheet glass G is, for example, a glass substrate for a display (for example, a glass substrate for a liquid crystal display, a glass substrate for a plasma display, a glass substrate for an organic EL display), a glass substrate for tempered glass such as a cover glass or a magnetic disk, or a roll. Used as a glass substrate on which electronic devices such as a glass substrate and a semiconductor wafer are laminated.
 次に、成形装置400の詳細な構成について説明する。図2は、成形装置の一例の断面概略構成図であり、図3は、成形装置の一例の側面概略構成図である。図4は、成形体が配置された成形炉室の上部空間の一例を拡大して説明する図である。
 成形装置400では、オーバーフローダウンドロー法によりシートガラスをつくる成形工程と、成形したシートガラスを冷却する冷却工程と、シートガラスをつくるとき、熔融ガラスあるいはシートガラスの搬送方向と直交する幅方向の温度分布を調整する調整工程とが行われる。
 成形装置400は、図2~4に示すように、成形体10と、仕切り板20と、冷却ローラ30と、断熱部材40a,40b,・・・,40hと、送りローラ50a,50b,・・・,50hと、温度制御ユニット(温度制御装置)60a,60b,・・・,60hとを備える。また、成形装置400は、仕切り板20より上方の空間である成形炉室の上部空間410と、仕切り板20直下の空間である成形炉室の下部空間42aと、下部空間42aの下方の空間である徐冷ゾーン420とを有する。徐冷ゾーン420は、複数の徐冷空間42b,42c,・・・,42hを有する。下部空間42a、徐冷空間42b、徐冷空間42c、・・・,徐冷空間42hは、この順番で鉛直方向上方から下方に向かって積層している。上部空間410、下部空間42a、及び徐冷ゾーン420は、耐火材及び/又は断熱材建物(図示せず)によって囲まれ、下部空間42a、徐冷ゾーン420において、シートガラスGの冷却工程が行われ、温度制御ユニット60a等が、シートガラスGを成形、冷却するのに適する温度に制御する。
Next, a detailed configuration of the molding apparatus 400 will be described. FIG. 2 is a schematic cross-sectional configuration diagram of an example of the molding apparatus, and FIG. 3 is a schematic side configuration diagram of an example of the molding apparatus. FIG. 4 is an enlarged view illustrating an example of the upper space of the molding furnace chamber in which the molded body is arranged.
In the forming apparatus 400, a forming step for producing a sheet glass by an overflow downdraw method, a cooling step for cooling the formed sheet glass, and a temperature in the width direction perpendicular to the conveying direction of the molten glass or the sheet glass when producing the sheet glass. An adjustment step of adjusting the distribution is performed.
As shown in FIGS. 2 to 4, the forming apparatus 400 includes a formed body 10, a partition plate 20, a cooling roller 30, heat insulating members 40a, 40b,..., 40h, and feed rollers 50a, 50b,. , 50h and temperature control units (temperature control devices) 60a, 60b,..., 60h. The molding apparatus 400 includes an upper space 410 in the molding furnace chamber that is a space above the partition plate 20, a lower space 42a in the molding furnace chamber that is a space immediately below the partition plate 20, and a space below the lower space 42a. And a certain slow cooling zone 420. The slow cooling zone 420 has a plurality of slow cooling spaces 42b, 42c,. The lower space 42a, the slow cooling space 42b, the slow cooling space 42c,..., The slow cooling space 42h are stacked in this order from the top to the bottom in the vertical direction. The upper space 410, the lower space 42a, and the slow cooling zone 420 are surrounded by a refractory material and / or a heat insulating material building (not shown), and the cooling process of the sheet glass G is performed in the lower space 42a and the slow cooling zone 420. The temperature control unit 60a or the like controls the temperature suitable for forming and cooling the sheet glass G.
 上部空間410は、図4に示すように、耐火材であり断熱材である部材からなる炉壁412で外部空間と区切られている。炉壁412の上部空間410に面する内壁面には、成形体10の高さ方向(図4中の紙面上下方向)の設置位置にあわせて、上部空間410の雰囲気及び炉壁412を加熱するヒータ414が複数設けられている。 As shown in FIG. 4, the upper space 410 is separated from the external space by a furnace wall 412 made of a refractory material and a heat insulating material. On the inner wall surface of the furnace wall 412 facing the upper space 410, the atmosphere of the upper space 410 and the furnace wall 412 are heated according to the installation position of the molded body 10 in the height direction (up and down direction in FIG. 4). A plurality of heaters 414 are provided.
 成形体10は、図2あるいは図4示すように、略楔状の断面形状を有する部材である。成形体10は、略楔状の下端11が最下部になるように、上部空間410に配置される。図2,4に示すように、成形体10の上端面には、溝12が形成されている。溝12は、成形体10の長手方向、すなわち図3の紙面左右方向に形成されている。溝12の一方の端部には、ガラス供給管14が設けられている。溝12は、ガラス供給管14が設けられる一方の端部から他方の端部に近づくに従って、徐々に浅くなるように形成されている。成形体10の長手方向の両端には、側壁から熔融ガラスMGがはみ出るのを妨ぐガイドが取り付けられている。溝12から溢れ出た熔融ガラスMGは、成形体10の両側面13a、両傾斜面13bを流れて、下端11で融合してシートガラスGが成形される。熔融ガラスMGあるいはシートガラスGの幅方向とは、熔融ガラスMGの表面あるいはシートガラスGの表面の面内における方向のうち、搬送される搬送方向に直交する方向をいう。ここでシートガラスGの両側の端部には、シートガラスGの幅方向中央の板厚に対して厚さが厚くなった部分が形成される。また、シートガラスGの両側の端部で挟まれた幅方向の領域である中央領域は、端部と比較して薄く、保有熱量が小さい。このため、温度ムラ等によって保有熱量が変化しやすく、反り、歪みが生じやすい。このため、中央領域の冷却量を厳密に管理する必要がある。本実施形態では、成形体10の下端11で融合する熔融ガラスMG、シートガラスGの温度、粘度の調整精度を高めることにより、シートガラスGの凹凸である脈理を含む板厚偏差を抑制する。以下では、成形体10の下端11で融合する前のガラスを熔融ガラスMGといい、下端11で融合した後のガラスをシートガラスGという。薄板ガラスにおいて、板厚偏差の発生は好ましくなく、特に、ディスプレイ用ガラス基板に用いるガラス板では、部分的な板厚偏差の発生は、ディスプレイの表示精度に大きな悪影響を与えるので好ましくない。 The molded body 10 is a member having a substantially wedge-shaped cross-sectional shape as shown in FIG. 2 or FIG. The molded body 10 is disposed in the upper space 410 so that the substantially wedge-shaped lower end 11 is at the lowest position. As shown in FIGS. 2 and 4, a groove 12 is formed on the upper end surface of the molded body 10. The grooves 12 are formed in the longitudinal direction of the molded body 10, that is, in the left-right direction on the paper surface of FIG. 3. A glass supply tube 14 is provided at one end of the groove 12. The groove 12 is formed so as to gradually become shallower as it approaches the other end from one end where the glass supply pipe 14 is provided. Guides that prevent the molten glass MG from protruding from the side walls are attached to both ends in the longitudinal direction of the molded body 10. The molten glass MG overflowing from the groove 12 flows on both side surfaces 13a and both inclined surfaces 13b of the molded body 10, and is fused at the lower end 11 to form the sheet glass G. The width direction of the molten glass MG or the sheet glass G refers to a direction orthogonal to the conveying direction in the direction of the surface of the molten glass MG or the surface of the sheet glass G. Here, at the end portions on both sides of the sheet glass G, portions where the thickness is thicker than the plate thickness at the center in the width direction of the sheet glass G are formed. Moreover, the center area | region which is the area | region of the width direction pinched | interposed by the edge part of the both sides of the sheet glass G is thin compared with an edge part, and heat retention is small. For this reason, the amount of retained heat is likely to change due to temperature unevenness or the like, and warpage and distortion are likely to occur. For this reason, it is necessary to strictly manage the cooling amount in the central region. In the present embodiment, by adjusting the temperature and viscosity adjustment accuracy of the molten glass MG and the sheet glass G that are fused at the lower end 11 of the molded body 10, the sheet thickness deviation including the striae that are irregularities of the sheet glass G is suppressed. . Hereinafter, the glass before fusing at the lower end 11 of the molded body 10 is referred to as molten glass MG, and the glass after fusing at the lower end 11 is referred to as sheet glass G. In a thin glass, the occurrence of a plate thickness deviation is not preferable, and in particular, in the case of a glass plate used for a glass substrate for a display, the generation of a partial plate thickness deviation is not preferable because it greatly affects the display accuracy of the display.
 仕切り板20は、成形体10の下端11の近傍に配置される板状の断熱材である。仕切り板20は、その下端の高さ方向の位置が、成形体10の下端11の高さ方向の位置から下方に位置するように、配置されている。仕切り板20は、図2及び図4に示すように、シートガラスGの厚さ方向の両側に配置される。仕切り板20は、成形炉室の上部空間410と成形炉室の下部空間42aとを仕切ることにより、上部空間410から下部空間42aへの熱移動を抑制する。断熱材である仕切り板20により、上部空間410と下部空間42aとを仕切るのは、上部空間410と下部空間42aとの各々において、空間内の温度について両空間が互いに影響しあわないように温度制御を行うためである。また、仕切り板20は、徐冷ゾーン420から上部空間410に入る上昇気流の体積流量を抑制するように、シートガラスGと仕切り板20との間の間隔があらかじめ調節されて配置されている。 The partition plate 20 is a plate-like heat insulating material disposed in the vicinity of the lower end 11 of the molded body 10. The partition plate 20 is arranged so that the position of the lower end in the height direction is located below the position of the lower end 11 of the molded body 10 in the height direction. The partition plates 20 are disposed on both sides of the sheet glass G in the thickness direction, as shown in FIGS. The partition plate 20 suppresses heat transfer from the upper space 410 to the lower space 42a by partitioning the upper space 410 of the molding furnace chamber and the lower space 42a of the molding furnace chamber. The upper space 410 and the lower space 42a are separated from each other by the partition plate 20 that is a heat insulating material. The temperature in the space in the upper space 410 and the lower space 42a is such that the two spaces do not affect each other. This is to perform control. In addition, the partition plate 20 is arranged with the interval between the sheet glass G and the partition plate 20 adjusted in advance so as to suppress the volume flow rate of the rising airflow entering the upper space 410 from the slow cooling zone 420.
 冷却ローラ30は、下部空間42aにおいて、仕切り板20の近傍に配置される。また、冷却ローラ30は、シートガラスGの厚さ方向の両側に配置され、シートガラスGを厚さ方向に挟み、シートガラスGを下方に搬送しながらシートガラスGの端部を冷却する役割を担う。成形体10の側面13a、傾斜面13bに沿って流下した熔融ガラスMGは、成形体10の下端11を離れると同時に、表面張力によりシートガラスGが幅方向に収縮する。
 冷却ローラ30は、幅方向に収縮するシートガラスGの両側の端部に対して中央領域の側に隣接する部分を挟み込むことにより、シートガラスGが幅方向へ収縮することを防ぎながら、シートガラスGを冷却する。これにより、シートガラスGの幅方向への収縮を抑制し、シートガラスGに生じる歪み、板厚偏差、凹凸を抑制する。しかし、成形体10の下端11でのシートガラスGの粘性が高く、シートガラスGの収縮率が大きいと、冷却ローラ30により歪み、板厚偏差、凹凸を抑制することができない場合がある。このため、本実施形態では、成形体10の下端11における熱管理の調整を遮蔽部材80で行なうことで、熱管理の精度を高め、板厚偏差を抑制することができる。すなわち、シートガラスを冷却する工程は、シートガラスGがシートガラスGの幅方向に収縮することを防止するために、冷却ローラ30でシートガラスGの両側の端部を冷却することを含み、上部空間410は、冷却ローラ30が設けられる下部空間42aと仕切る仕切り板20に対して、シートガラスGの搬送方向上流側に位置し、遮蔽部材80は、上部空間410に設けられている。
The cooling roller 30 is disposed in the vicinity of the partition plate 20 in the lower space 42a. The cooling rollers 30 are disposed on both sides of the sheet glass G in the thickness direction, sandwich the sheet glass G in the thickness direction, and serve to cool the end of the sheet glass G while conveying the sheet glass G downward. Bear. The molten glass MG flowing down along the side surface 13a and the inclined surface 13b of the molded body 10 leaves the lower end 11 of the molded body 10, and at the same time, the sheet glass G contracts in the width direction due to surface tension.
The cooling roller 30 sandwiches portions adjacent to the center region side with respect to both end portions of the sheet glass G contracting in the width direction, thereby preventing the sheet glass G from contracting in the width direction. Cool G. Thereby, the shrinkage | contraction to the width direction of the sheet glass G is suppressed, and the distortion which arises in the sheet glass G, plate | board thickness deviation, and an unevenness | corrugation are suppressed. However, when the viscosity of the sheet glass G at the lower end 11 of the molded body 10 is high and the contraction rate of the sheet glass G is large, the cooling roller 30 may not be able to suppress distortion, plate thickness deviation, and unevenness. For this reason, in this embodiment, by adjusting the thermal management at the lower end 11 of the molded body 10 with the shielding member 80, the accuracy of thermal management can be improved and the plate thickness deviation can be suppressed. That is, the step of cooling the sheet glass includes cooling the end portions on both sides of the sheet glass G with the cooling roller 30 in order to prevent the sheet glass G from shrinking in the width direction of the sheet glass G. The space 410 is located on the upstream side in the conveyance direction of the sheet glass G with respect to the partition plate 20 that partitions from the lower space 42 a where the cooling roller 30 is provided, and the shielding member 80 is provided in the upper space 410.
 断熱部材40a,40b,・・・,40hは、徐冷ゾーン420において、シートガラスGの搬送方向(鉛直方向下方)に対して、徐冷ゾーン420を複数の徐冷空間42b,42c,・・・,42hに分割し、分割した各徐冷空間の熱移動を抑制する。また、断熱部材40a,40b,・・・,40hは、冷却ローラ30の下方、かつ、シートガラスGの厚さ方向の両側に配置される板状の部材であり、シートガラスGを搬送方向へ導くスリット状の空間を有する。上述したように、下部空間42aと徐冷ゾーン420とは、耐火材及び/又は断熱材建物(図示せず)によって囲まれているが、徐冷ゾーン420には、シートガラスGが搬出されるスリット状の空間があり、また、断熱材建物等には一部微細な隙間がある。このため、煙突効果によって、徐冷ゾーン420において、鉛直方向下方から下部空間42aに向かう上昇気流が発生する。この気流はシートガラスGに沿って上昇し、気流によってシートガラスGが冷却されるため、この気流を抑制する断熱部材40a,40b,・・・,40hがあることが好ましい。例えば、図2に示すように、断熱部材40aは、下部空間42aと徐冷空間42bとを形成し、断熱部材40bは、徐冷空間42bと徐冷空間42cとを形成する。断熱部材40a,40b,・・・,40hは、上下の空間の間における熱移動を抑制する。例えば、断熱部材40aは、下部空間42aと徐冷空間42bとの間の熱移動及び上昇気流を抑制し、断熱部材40bは、徐冷空間42bと徐冷空間42cとの間の熱移動及び上昇気流を抑制する。 The heat insulating members 40a, 40b,..., 40h are arranged in the slow cooling zone 420 in the slow cooling zone 420 with respect to the sheet glass G transport direction (vertically downward). -Dividing into 42h and suppressing the heat transfer in each of the gradually cooled spaces. In addition, the heat insulating members 40a, 40b,..., 40h are plate-like members disposed below the cooling roller 30 and on both sides in the thickness direction of the sheet glass G, and the sheet glass G in the transport direction. It has a slit-like space to guide. As described above, the lower space 42 a and the slow cooling zone 420 are surrounded by a refractory material and / or a heat insulating material building (not shown), but the sheet glass G is carried out to the slow cooling zone 420. There is a slit-like space, and there are some fine gaps in the heat insulation building. For this reason, due to the chimney effect, an ascending airflow is generated from the lower side in the vertical direction toward the lower space 42a in the slow cooling zone 420. Since this airflow rises along the sheet glass G and the sheet glass G is cooled by the airflow, it is preferable that there are heat insulating members 40a, 40b,. For example, as shown in FIG. 2, the heat insulating member 40a forms a lower space 42a and a slow cooling space 42b, and the heat insulating member 40b forms a slow cooling space 42b and a slow cooling space 42c. The heat insulating members 40a, 40b,..., 40h suppress heat transfer between the upper and lower spaces. For example, the heat insulating member 40a suppresses heat transfer and rising airflow between the lower space 42a and the slow cooling space 42b, and the heat insulating member 40b transfers heat and rise between the slow cooling space 42b and the slow cooling space 42c. Suppress airflow.
 送りローラ50a,50b,・・・,50hは、徐冷ゾーン420において、鉛直方向に所定間隔で、シートガラスGの厚さ方向の両側に複数配置される。送りローラ50a,50b,・・・,50gは、それぞれ、徐冷空間42b,42c,・・・,42hに配置され、シートガラスGを下方に搬送する。 The plurality of feed rollers 50a, 50b,..., 50h are arranged on both sides in the thickness direction of the sheet glass G at a predetermined interval in the vertical direction in the slow cooling zone 420. The feeding rollers 50a, 50b,..., 50g are disposed in the slow cooling spaces 42b, 42c,..., 42h, respectively, and convey the sheet glass G downward.
 温度制御ユニット60a,60b,・・・,60hは、例えば、抵抗加熱、誘電加熱、マイクロ波加熱によって発熱するシーズヒータ、カートリッジヒータ、セラミックヒータ、及び、温度センサ等から構成され、それぞれ、下部空間42a及び徐冷空間42b,42c,・・・,42hにシートガラスGの幅方向に沿って配置され、下部空間42a及び徐冷空間42b,42c,・・・,42hの雰囲気温度を測定し、制御する。また、温度制御ユニット60a,60b,・・・,60hは、シートガラスGの反り、歪みが生じないように設計された所定の温度分布(以下、「温度プロファイル」という)を形成するように、下部空間42a及び徐冷空間42b,42c,・・・,42hの雰囲気温度を制御する。温度制御ユニット60a,60b,・・・,60hを総称する場合、温度制御ユニット60と記載する。なお、上流側とは、シートガラスGの搬送方向と逆方向の側をいい、本実施形態では、徐冷ゾーン420からみて成形体10の側をいう。 The temperature control units 60a, 60b,..., 60h are composed of, for example, a sheathed heater, a cartridge heater, a ceramic heater, a temperature sensor, and the like that generate heat by resistance heating, dielectric heating, and microwave heating. 42h and the slow cooling spaces 42b, 42c,..., 42h are arranged along the width direction of the sheet glass G, and the ambient temperature of the lower space 42a and the slow cooling spaces 42b, 42c,. Control. Further, the temperature control units 60a, 60b,..., 60h form a predetermined temperature distribution (hereinafter referred to as “temperature profile”) designed to prevent warping and distortion of the sheet glass G. The ambient temperature of the lower space 42a and the slow cooling spaces 42b, 42c,. The temperature control units 60a, 60b,..., 60h are collectively referred to as the temperature control unit 60. The upstream side refers to the side opposite to the conveying direction of the sheet glass G, and in this embodiment refers to the side of the molded body 10 when viewed from the slow cooling zone 420.
 検出装置70は、ガラス板厚を測定する装置であり、例えば光学センサから構成され、徐冷ゾーンから搬送されてきたシートガラスの板厚を所定の幅ごと(例えば、1mm幅)に測定する。検出装置70は、測定したガラス板厚のうち、基準値を超えて板厚が厚い又は薄い部分(凸部あるいは凹部)を検出し、この位置を厚み偏差の発生位置とする。この厚み偏差の幅及び程度(凸部の高さあるいは凹部の深さ)に応じて、遮蔽部材80を近接または離間させてガラスシート又は熔解ガラスの幅方向の温度分布を調節する。
 板厚が薄い部分の温度分布の調整では、板厚が薄い部分に遮蔽部材80を近接させて、ヒータからの熱を遮蔽する。これにより板厚が薄い部分の粘度が局部的に上昇し、ガラスが幅方向に引っ張られる時にガラスの流れが抑制される。
 板厚が厚い部分の温度分布の調整では、板厚が厚い部分に隣接する部分に遮蔽部材80を近接させて、ヒータからの熱を遮断する。これにより、板厚が厚い部分に隣接する部分の粘度が上昇しガラスの流れが抑制され、板厚が厚い部分のガラスは両側に流れるので、厚み偏差を抑制できる。
 上記の温度分布の調整を繰り返すことにより、ガラス幅方向の所定間隔ごとの厚み偏差が所定値以下となるように調整する。
 厚み偏差に関しては、上記検出装置を用いて、ガラス板厚の測定値から、ガラス幅方向の所定間隔(例えば、20mm、100mm、300mm)ごとに、最大ガラス板厚(tmax)と最小ガラス板厚(tmax)とを検出し、これらの差である厚み偏差(tmax-tmax)を計算することができる。すなわち、所定間隔のデータから、最大ガラス板厚(tmax)と最小ガラス板厚(tmax)を検出して、これらの差である厚み偏差(tmax-tmax)を計算する。これにより、所定間隔毎の厚み偏差(tmax-tmax)を得ることができる。
The detection device 70 is a device that measures the thickness of the glass plate, and includes, for example, an optical sensor, and measures the thickness of the sheet glass conveyed from the slow cooling zone for each predetermined width (for example, 1 mm width). The detection device 70 detects a portion (a convex portion or a concave portion) that is thicker or thinner than a reference value in the measured glass plate thickness, and sets this position as a position where a thickness deviation occurs. The temperature distribution in the width direction of the glass sheet or molten glass is adjusted by moving the shielding member 80 close or away according to the width and extent of the thickness deviation (height of the convex portion or depth of the concave portion).
In the adjustment of the temperature distribution of the thin plate portion, the heat from the heater is shielded by bringing the shielding member 80 close to the thin plate portion. As a result, the viscosity of the portion where the plate thickness is thin rises locally, and the glass flow is suppressed when the glass is pulled in the width direction.
In adjusting the temperature distribution of the thick plate portion, the shield member 80 is placed close to the portion adjacent to the thick plate portion to block the heat from the heater. Thereby, the viscosity of the part adjacent to the part with thick plate thickness rises, the flow of glass is suppressed, and the glass with the thick plate part flows on both sides, so that thickness deviation can be suppressed.
By repeating the adjustment of the temperature distribution described above, the thickness deviation for each predetermined interval in the glass width direction is adjusted to be a predetermined value or less.
Regarding the thickness deviation, the maximum glass plate thickness (t max ) and the minimum glass plate are measured at predetermined intervals (for example, 20 mm, 100 mm, 300 mm) in the glass width direction from the measured value of the glass plate thickness using the detection device. The thickness (t max ) can be detected, and the thickness deviation (t max −t max ), which is the difference between them, can be calculated. That is, the maximum glass plate thickness (t max ) and the minimum glass plate thickness (t max ) are detected from data at a predetermined interval, and the thickness deviation (t max −t max ) that is the difference between these is calculated. Thereby, a thickness deviation (t max −t max ) at every predetermined interval can be obtained.
 熔融ガラスMGあるいはシートガラスGの搬送方向と直交する幅方向の温度分布の調整は、冷却工程で得られたシートガラスのガラス幅方向20mmごとの最大ガラス板厚(tmax)と、最小ガラス板厚(tmin)との間の厚み偏差(tmax-tmin)が、それぞれ15μm以下となるように、調整することが好ましい。さらに、ガラス幅方向100mmごとの最大ガラス板厚(tmax)と、最小ガラス板厚(tmin)との間の厚み偏差(tmax-tmin)が、それぞれ20μm以下となるように、調整することが好ましい。さらに、ガラス幅方向300mmごとの最大ガラス板厚(tmax)と、最小ガラス板厚(tmin)との間の厚み偏差(tmax-tmin)が、それぞれ25μmとなるように、調整することが好ましい。さらに、ガラス幅方向の最大ガラス板厚(tmax)と、最小ガラス板厚(tmin)との差(tmax-tmin)が、25μm以下となるように調整することが好ましい。 Adjustment of the temperature distribution in the width direction orthogonal to the conveying direction of the molten glass MG or the sheet glass G is performed by adjusting the maximum glass plate thickness (t max ) for every 20 mm in the glass width direction of the sheet glass obtained in the cooling step, and the minimum glass plate. the thickness deviation in thickness (t max -t min) between (t min) is, so that each becomes 15μm or less, it is preferable to adjust. Further, the thickness deviation (t max −t min ) between the maximum glass plate thickness (t max ) and the minimum glass plate thickness (t min ) every 100 mm in the glass width direction is adjusted to be 20 μm or less, respectively. It is preferable to do. Further, the thickness deviation (t max −t min ) between the maximum glass plate thickness (t max ) and the minimum glass plate thickness (t min ) every 300 mm in the glass width direction is adjusted to be 25 μm. It is preferable. Furthermore, it is preferable to adjust the difference (t max −t min ) between the maximum glass plate thickness (t max ) in the glass width direction and the minimum glass plate thickness (t min ) to be 25 μm or less.
 遮蔽部材80は、炉壁412の熱を遮蔽する棒状部材であれば、特に限定されないが、遮蔽部材80の材質は、例えば、アルミやシリカを原料としたセラミックスであることが好ましい。遮蔽部材80は、シートガラスGを遮蔽の対象とする場合、シートガラスGを挟むようにシートガラスGの面に対して両側に設けられる。また、遮蔽部材80は、成形体10の両側面を流下する熔融ガラスMGを遮蔽の対象とする場合、熔融ガラスMGが上部空間410に向いている面の側に設けられる。
 遮蔽部材80は、炉壁412を貫通して炉壁412の外部空間から上部空間410内に延びている。棒状部材である遮蔽部材80がシートガラスGあるいは熔融ガラスMGの幅方向に一列に並ぶように連続して複数配置されている。遮蔽部材80それぞれは、シートガラスGあるいは熔融ガラスMGの表面に対して前進、後退できるように構成されている。1つの遮蔽部材80のシートガラスGの幅方向に沿った長さは、例えば8~12mmである。
 この遮蔽部材80は、例えば、ヒータ414の放射熱や、上部空間410内のガスの熱を、シートガラスGや熔融ガラスMGが受けて加熱されることがないように、熱を遮断するように構成されている。すなわち、シートガラスGあるいは熔融ガラスMGが、シートガラスGあるいは熔融ガラスMGの幅方向の一部分において、上部空間410から熱を受けないように、遮蔽部材80をシートガラスGあるいは熔融ガラスMGの表面に近づける。このように、遮蔽部材80が熱を部分的に遮断することにより、シートガラスGあるいは熔融ガラスMGの幅方向の温度分布を調整することができる。
 上述したように、検査装置70は、厚み偏差が生じた凹部あるいは凸部の、シートガラスGの幅方向の位置を特定することができるので、この幅方向の位置に基づいて、複数の遮蔽部材80の中から選択された棒状の遮蔽部材80をシートガラスGあるいは熔融ガラスMGの表面に近づけることで、幅方向の温度分布を調整することができる。
The shielding member 80 is not particularly limited as long as it is a rod-like member that shields the heat of the furnace wall 412, but the material of the shielding member 80 is preferably, for example, ceramic made of aluminum or silica. When the sheet glass G is to be shielded, the shielding member 80 is provided on both sides of the surface of the sheet glass G so as to sandwich the sheet glass G. Further, the shielding member 80 is provided on the side of the surface where the molten glass MG faces the upper space 410 when the molten glass MG flowing down on both side surfaces of the molded body 10 is to be shielded.
The shielding member 80 extends through the furnace wall 412 from the outer space of the furnace wall 412 into the upper space 410. A plurality of shielding members 80 that are rod-like members are continuously arranged so as to be aligned in a row in the width direction of the sheet glass G or the molten glass MG. Each of the shielding members 80 is configured to be able to advance and retract with respect to the surface of the sheet glass G or the molten glass MG. The length of one shielding member 80 along the width direction of the sheet glass G is, for example, 8 to 12 mm.
For example, the shielding member 80 shields the heat so that the sheet glass G and the molten glass MG are not heated by receiving the radiant heat of the heater 414 or the heat of the gas in the upper space 410. It is configured. That is, the shielding member 80 is placed on the surface of the sheet glass G or the molten glass MG so that the sheet glass G or the molten glass MG does not receive heat from the upper space 410 in a part of the width direction of the sheet glass G or the molten glass MG. Move closer. Thus, when the shielding member 80 partially shields heat, the temperature distribution in the width direction of the sheet glass G or the molten glass MG can be adjusted.
As described above, since the inspection device 70 can specify the position in the width direction of the sheet glass G of the concave portion or the convex portion where the thickness deviation has occurred, a plurality of shielding members are based on the position in the width direction. By bringing the rod-shaped shielding member 80 selected from 80 close to the surface of the sheet glass G or the molten glass MG, the temperature distribution in the width direction can be adjusted.
 具体的には、検出装置70は、板厚が局部的に薄くなった板厚偏差を検出した場合、板厚が薄くなったシートガラスGあるいは熔融ガラスMGの幅方向の位置を特定する。この位置に対応したシートガラスGあるいは熔融ガラスMGの幅方向の対応位置に、棒状の遮蔽部材80を近づけるように、遮蔽部材80を図示されない駆動機構を用いて前進させる。図5は、遮蔽部材を用いたシートガラスGの温度分布の調整の一例を説明する図である。図5は、シートガラスGの搬送方向上流側から見た図である。図5に示す例は、幅方向の位置Aにおいて、板厚が幅方向に沿って局部的に薄くなり凹部が発生し、抑制すべき板厚偏差が発生している例である。このとき、複数の遮蔽部材80のうち、位置Aに対応する棒状部材80aを、シートガラスGの両側からシートガラスGの表面に近づける。これにより、位置Aでは、上部空間410からの熱が遮断されるので、位置Aにおける温度は局部的に低下し、位置Aにおけるガラスの粘度は上昇する。したがって、成形体10を熔融ガラスMGが離れ、表面張力によりシートガラスGは幅方向に収縮し、シートガラスGが幅方向に引っ張られるとき、位置Aにおいて、遮蔽部材80aで熱を遮断しない場合に比べて局部的に上昇したガラスの粘度により、位置AにおけるシートガラスGの板厚が局部的に薄くなることは抑えることができる。すなわち、板厚偏差を抑制することができる。図5に示す例では、シートガラスGを温度分布の調整の対象とするが、成形体10を流れる熔融ガラスMGを温度分布の調整の対象とすることも好ましい。 Specifically, when detecting the thickness deviation in which the plate thickness is locally reduced, the detection device 70 specifies the position in the width direction of the sheet glass G or the molten glass MG in which the plate thickness is reduced. The shielding member 80 is advanced using a drive mechanism (not shown) so that the rod-shaped shielding member 80 is brought close to the corresponding position in the width direction of the sheet glass G or the molten glass MG corresponding to this position. FIG. 5 is a diagram illustrating an example of adjusting the temperature distribution of the sheet glass G using a shielding member. FIG. 5 is a view as seen from the upstream side of the sheet glass G in the conveying direction. The example shown in FIG. 5 is an example in which, at a position A in the width direction, the plate thickness is locally thinned along the width direction, a concave portion is generated, and a plate thickness deviation to be suppressed occurs. At this time, the rod-shaped member 80a corresponding to the position A among the plurality of shielding members 80 is brought closer to the surface of the sheet glass G from both sides of the sheet glass G. Thereby, in the position A, since the heat from the upper space 410 is interrupted, the temperature at the position A is locally decreased, and the viscosity of the glass at the position A is increased. Therefore, when the molten glass MG leaves the formed body 10, the sheet glass G contracts in the width direction due to surface tension, and when the sheet glass G is pulled in the width direction, the heat is not blocked by the shielding member 80 a at the position A. It can be suppressed that the sheet thickness of the sheet glass G at the position A is locally reduced due to the locally increased viscosity of the glass. That is, the plate thickness deviation can be suppressed. In the example shown in FIG. 5, the sheet glass G is a target for adjusting the temperature distribution, but it is also preferable that the molten glass MG flowing through the molded body 10 is a target for adjusting the temperature distribution.
 図6は、遮蔽部材80を用いたシートガラスGの温度分布の調整の他の例を説明する図である。図6は、シートガラスGの搬送方向上流側から見た図である。図6に示す例は、幅方向の位置Bにおいて、板厚が幅方向に沿って局部的に厚くなり凸部が発生し、抑制すべき板厚偏差が発生している例である。このとき、複数の遮蔽部材80のうち、板厚偏差の幅方向の発生位置である位置Bを挟む両側の位置でシートガラスGが上部空間410の熱を受けないように、この両側の位置において遮蔽部材80b,80cをシートガラスGの表面に近づける。これにより、位置Bの両側では、上部空間410からの熱が遮断されるので、位置Bの両側の位置における温度は局部的に低下し、ガラスの粘度は上昇する。したがって、成形体10を熔融ガラスMGが離れ、表面張力によりシートガラスGは幅方向に収縮し、シートガラスGが幅方向に引っ張られるとき、位置Bを挟む両側の位置において、遮蔽部材80b,80cで熱を遮断しない場合に比べて局部的に上昇したガラスの粘度によりガラスの流れが抑制される一方、位置Bのガラスは両側に流れ易くなるので、位置BにおけるシートガラスGの板厚が局部的に厚くなることを抑制することができる。すなわち、板厚偏差を抑制することができる。図6に示す例では、シートガラスGを温度分布の調整の対象とするが、成形体10を流れる熔融ガラスMGを温度分布の調整の対象とすることも好ましい。 FIG. 6 is a diagram for explaining another example of adjusting the temperature distribution of the sheet glass G using the shielding member 80. FIG. 6 is a view as seen from the upstream side in the conveyance direction of the sheet glass G. The example shown in FIG. 6 is an example in which, at a position B in the width direction, the plate thickness locally increases along the width direction, a convex portion is generated, and a plate thickness deviation to be suppressed is generated. At this time, at the positions on both sides of the plurality of shielding members 80 so that the sheet glass G does not receive the heat of the upper space 410 at the positions on both sides of the position B that is the position where the thickness deviation is generated in the width direction. The shielding members 80b and 80c are brought close to the surface of the sheet glass G. Thereby, on both sides of the position B, the heat from the upper space 410 is cut off, so that the temperature at the positions on both sides of the position B is locally decreased, and the viscosity of the glass is increased. Therefore, when the molten glass MG leaves the molded body 10 and the sheet glass G contracts in the width direction due to surface tension, and the sheet glass G is pulled in the width direction, the shielding members 80b and 80c are positioned at both sides of the position B. Since the glass flow is suppressed by the locally increased viscosity of the glass as compared with the case where the heat is not shut off at the position B, the glass at the position B is easy to flow on both sides, so that the thickness of the sheet glass G at the position B is locally Can be suppressed. That is, the plate thickness deviation can be suppressed. In the example shown in FIG. 6, the sheet glass G is a target for adjusting the temperature distribution, but it is also preferable that the molten glass MG flowing through the molded body 10 is a target for adjusting the temperature distribution.
 なお、図5、図6に示す例では、位置A、位置Bの両側の位置においてシートガラスGの表面に遮蔽部材80a、遮蔽部材80b,80cを近づけるが、シートガラスGの表面と、遮蔽部材80a、遮蔽部材80b,80cの先端との間の離間距離は、1mm~15mmの範囲設定されることが好ましい。特に、位置A,Bにおける板厚偏差の程度、例えば、シートガラスGの凹凸の深さあるいは高さの程度(厚み偏差の程度)に応じて遮蔽部材80aあるいは遮蔽部材80b,80cとシートガラスGの表面との離間距離は調整されることが好ましい。例えば、板厚偏差の程度が大きいほど、上記離間距離を小さくすることが好ましい。板厚偏差の程度が大きい場合、幅方向の温度分布の変動も大きいので、シートガラスGが上部空間410から熱を受け難くするために遮断の程度を大きくするために、上記離間距離をより小さくすることが好ましい。
 また、図5、図6に示す例では、位置A、位置Bの両側の位置においてシートガラスGの表面に遮蔽部材80a、遮蔽部材80b,80cのみを近づけるが、遮蔽部材80a,遮蔽部材80b,遮蔽部材80cに隣り合う遮蔽部材80を、遮蔽部材80a、遮蔽部材80b,80c程ではないが、シートガラスGの表面に近づけてもよい。
5 and 6, the shielding member 80a and the shielding members 80b and 80c are brought close to the surface of the sheet glass G at positions A and B on both sides. The distance between 80a and the tips of the shielding members 80b and 80c is preferably set in the range of 1 mm to 15 mm. In particular, the shielding member 80a or the shielding members 80b and 80c and the sheet glass G depending on the degree of thickness deviation at the positions A and B, for example, the depth or height of the unevenness of the sheet glass G (thickness degree). It is preferable that the separation distance from the surface is adjusted. For example, it is preferable to decrease the separation distance as the degree of the plate thickness deviation increases. When the degree of thickness deviation is large, the temperature distribution in the width direction also fluctuates greatly. Therefore, in order to make the sheet glass G difficult to receive heat from the upper space 410, in order to increase the degree of blocking, the separation distance is made smaller. It is preferable to do.
In the examples shown in FIGS. 5 and 6, only the shielding member 80a and the shielding members 80b and 80c are brought close to the surface of the sheet glass G at the positions on both sides of the position A and the position B, but the shielding member 80a, the shielding member 80b, The shielding member 80 adjacent to the shielding member 80c may be close to the surface of the sheet glass G, although not as much as the shielding member 80a and the shielding members 80b and 80c.
 本実施形態では、熔融ガラスMGあるいはシートガラスGは、軟化点(ガラスの粘度が107.6poiseに相当するときのガラスの温度)以上の温度にある領域で行なわれる。すなわち、遮蔽部材80を用いて行う熔融ガラスMGあるいはシートガラスGの温度分布の調整は、熔融ガラスMGあるいはシートガラスGの粘度が107.6poise以下にあるとき行なわれる。例えばガラスの粘度が104.3~107.5poiseの領域で、遮蔽部材80を用いて熔融ガラスMGあるいはシートガラスGの温度分布を調整することが、板厚偏差を効率よく低減することができる点から好ましい。より好ましくは、ガラス粘度104.3~105.5poiseの領域である。また、成形体10の下端11あるいはそれより搬送方向上流側において遮蔽部材80を用いて温度分布の調整を行なうことが、板厚偏差を効率よく低減することができる点から好ましい。上記粘度の領域において、温度分布を局所的に変化させることで、板厚偏差の発生を効果的に抑制することができる。 In the present embodiment, the molten glass MG or the sheet glass G is performed in a region at a temperature equal to or higher than the softening point (the glass temperature when the glass viscosity corresponds to 10 7.6 poise). That is, the adjustment of the temperature distribution of the molten glass MG or the sheet glass G performed using the shielding member 80 is performed when the viscosity of the molten glass MG or the sheet glass G is 10 7.6 poise or less. For example, in the region of the viscosity of the glass is 10 4.3 ~ 10 7.5 poise, to adjust the temperature distribution of the molten glass MG or sheet glass G by using the shielding member 80, reducing the thickness deviation efficiently It is preferable because of More preferably, the glass viscosity is in the range of 10 4.3 to 10 5.5 poise. In addition, it is preferable to adjust the temperature distribution using the shielding member 80 on the lower end 11 of the molded body 10 or on the upstream side in the conveying direction from the viewpoint that the thickness deviation can be efficiently reduced. By changing the temperature distribution locally in the viscosity region, the occurrence of thickness deviation can be effectively suppressed.
 また、本実施形態では、熔融ガラスMGあるいはシートガラスGに発生する凹部あるいは凸部の幅方向の寸法に応じて、熔融ガラスMGあるいはシートガラスGの表面に近づける遮蔽部材80の搬送方向の位置を調整することが好ましい。熔融ガラスMGあるいはシートガラスGに凹部あるいは凸部が発生した場合、成形体10の下端11から、搬送方向下流側又は上流側に50mm離間した位置までの間で、温度分布の調整を行なうことが好ましい。また、成形体10の下端11から、この下端11より搬送方向下流側又は上流側に20mm離間した位置までの間で、温度分布の調整を行なうことがより好ましい。さらに好ましくは、成形体10下端11の高さ位置(搬送方向の位置)にて、温度分布の調整を行なう。板厚偏差を抑制するために温度調整を行なう搬送方向の位置と、シートガラスGあるいは熔融ガラスMGの表面に遮蔽部材80を近づける離間距離は、上記凹部あるいは凸部の程度(凹凸の程度)と幅に応じて予め定められており、検出した凹部あるいは凸部の程度(凹凸の程度)と幅に応じて、温度調整を行なう搬送方向の位置と、離間距離を設定することができる。 In the present embodiment, the position in the transport direction of the shielding member 80 that is close to the surface of the molten glass MG or the sheet glass G according to the widthwise dimension of the concave portion or the convex portion generated in the molten glass MG or the sheet glass G is determined. It is preferable to adjust. When a concave portion or a convex portion is generated in the molten glass MG or the sheet glass G, the temperature distribution can be adjusted from the lower end 11 of the molded body 10 to a position separated by 50 mm downstream or upstream in the transport direction. preferable. Further, it is more preferable to adjust the temperature distribution from the lower end 11 of the molded body 10 to a position 20 mm away from the lower end 11 on the downstream side or the upstream side in the transport direction. More preferably, the temperature distribution is adjusted at the height position (position in the transport direction) of the lower end 11 of the molded body 10. The position in the conveying direction where temperature adjustment is performed to suppress the plate thickness deviation and the separation distance at which the shielding member 80 is brought close to the surface of the sheet glass G or the molten glass MG are the extent of the concave portion or convex portion (the degree of concave and convex portions). The position is determined in advance according to the width, and the position of the conveyance direction in which the temperature adjustment is performed and the separation distance can be set according to the detected degree of the recess or protrusion (degree of unevenness) and the width.
 本実施形態は、成形炉室は、仕切り板20によって上部空間410と下部空間42aを仕切り(区切り)、仕切り板20の間のスリット孔を通してシートガラスGを下部空間42aに進入させてシートガラスGを冷却する。
 このとき、遮蔽部材80は、仕切り板20により支持されていることが好ましい。上部空間410の雰囲気温度は極めて高いため、棒状の遮蔽部材80は、長細いため自重で曲がり易い。このため、遮蔽部材80が変形しないように、仕切り板20が遮蔽部材80を下方から支持することが、シートガラスGや熔融ガラスMGの搬送方向の所定の位置で、温度分布を調整することができる。温度分布を調整する搬送方向の位置が遮蔽部材80の熱変形によって目標位置からわずかにずれると、温度分布を調整しようとするガラスの粘度が異なり易くなるため、板厚偏差を正確に抑制することは難しい。
 熔融ガラスMGあるいはシートガラスGに発生する凹部あるいは凸部の幅によって、搬送方向における温度調整位置が異なる。このため、温度調整位置を変更する場合、例えば、仕切り板20の厚さを変化させることにより、仕切り板20に支持される遮蔽部材80の搬送方向の位置を変え、これによって、温度分布を調整しようとする搬送方向の位置を調整することが好ましい。
 また、遮蔽部材80は、仕切り板20を2つ用い、仕切り板20の間に挟むように設けることも好ましい。
 炉壁412には、ガラス繊維からなるガラスウールが開口部に詰め込まれて開口部が閉塞されているが、この部分に仕切り板20及び遮蔽板80を熔融ガラスMGあるいはシートガラスGの方向に向けて挿入することができるように構成されている。したがって、遮蔽部材80の搬送方向の位置を搬送方向上流側に位置させる場合、仕切り板20の板厚を厚くすることにより、遮蔽板80の位置を調整することができる。
In the present embodiment, the molding furnace chamber partitions (separates) the upper space 410 and the lower space 42a by the partition plate 20, and allows the sheet glass G to enter the lower space 42a through the slit holes between the partition plates 20. Cool down.
At this time, the shielding member 80 is preferably supported by the partition plate 20. Since the atmospheric temperature of the upper space 410 is extremely high, the rod-shaped shielding member 80 is thin and easy to bend due to its own weight. Therefore, the partition plate 20 supports the shielding member 80 from below so that the shielding member 80 is not deformed, and the temperature distribution can be adjusted at a predetermined position in the conveying direction of the sheet glass G or the molten glass MG. it can. If the position in the transport direction for adjusting the temperature distribution slightly deviates from the target position due to thermal deformation of the shielding member 80, the viscosity of the glass whose temperature distribution is to be adjusted tends to be different, so the thickness deviation can be accurately suppressed. Is difficult.
Depending on the width of the concave portion or convex portion generated in the molten glass MG or the sheet glass G, the temperature adjustment position in the transport direction differs. For this reason, when changing the temperature adjustment position, for example, by changing the thickness of the partition plate 20, the position of the shielding member 80 supported by the partition plate 20 in the transport direction is changed, thereby adjusting the temperature distribution. It is preferable to adjust the position in the transport direction to be attempted.
Moreover, it is also preferable that the shielding member 80 is provided so as to be sandwiched between the partition plates 20 by using two partition plates 20.
The furnace wall 412 is filled with glass wool made of glass fiber and the opening is closed. The partition plate 20 and the shielding plate 80 are directed toward the molten glass MG or the sheet glass G in this portion. It is configured so that it can be inserted. Therefore, when the position of the shielding member 80 in the conveyance direction is positioned upstream in the conveyance direction, the position of the shielding plate 80 can be adjusted by increasing the thickness of the partition plate 20.
 このように、本実施形態では、成形体10から流下する熔融ガラスMGあるいはシートガラスGの搬送方向と直交する幅方向において、熔融ガラスMGあるいはシートガラスGが上部空間410からの熱を受けることを遮蔽部材80で部分的に遮断することにより、熔融ガラスMGあるいはシートガラスGの幅方向の温度分布を調整することができるので、ガラス板の搬送方向に発生し易い板厚偏差を抑えることができる。 As described above, in the present embodiment, the molten glass MG or the sheet glass G receives heat from the upper space 410 in the width direction orthogonal to the conveying direction of the molten glass MG or the sheet glass G flowing down from the molded body 10. By partially blocking with the shielding member 80, the temperature distribution in the width direction of the molten glass MG or the sheet glass G can be adjusted, so that it is possible to suppress a thickness deviation that is likely to occur in the conveying direction of the glass plate. .
 以上、本発明のガラス板の製造方法、及びガラス板製造装置について詳細に説明したが、本発明は上記実施形態に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良や変更をしてもよいのはもちろんである。 As mentioned above, although the manufacturing method of the glass plate of this invention and the glass plate manufacturing apparatus were demonstrated in detail, this invention is not limited to the said embodiment, In the range which does not deviate from the main point of this invention, various improvement and a change are carried out. Of course.
10 成形体
11 下端
12 溝
13a 側面
13b 傾斜面
14 ガラス供給管
20 仕切り板
30 冷却ローラ
40a~40h 断熱部材
42a 下部空間
42b~42h 徐冷空間 
50a~50h 送りローラ
60a~60h 温度制御ユニット
70 検出装置
80,80a,80b,80c 遮蔽部材
100 ガラス板製造装置
200 熔解槽
300 清澄槽
400 成形装置
410 上部空間
412 炉壁
414 ヒータ
420 徐冷ゾーン
DESCRIPTION OF SYMBOLS 10 Molded body 11 Lower end 12 Groove 13a Side surface 13b Inclined surface 14 Glass supply pipe 20 Partition plate 30 Cooling roller 40a-40h Heat insulation member 42a Lower space 42b-42h Slow cooling space
50a to 50h Feed rollers 60a to 60h Temperature control unit 70 Detection device 80, 80a, 80b, 80c Shield member 100 Glass plate manufacturing device 200 Melting tank 300 Clarification tank 400 Molding apparatus 410 Upper space 412 Furnace wall 414 Heater 420 Slow cooling zone

Claims (12)

  1.  ガラス基板の製造方法であって、
     加熱された成形炉室の上部空間内にある成形体の上部からオーバーフローさせた熔融ガラスを、前記成形体の両側面に沿って流下させた後、前記成形体の下端で熔融ガラスを合流させて搬送されるシートガラスをつくる成形工程と、
     前記シートガラスを冷却する冷却工程と、
     前記熔融ガラスあるいは前記シートガラスの搬送方向と直交する幅方向において、前記熔融ガラスあるいは前記シートガラスが前記上部空間からの熱を受けることを遮蔽部材で部分的に遮断することにより、前記熔融ガラスあるいは前記シートガラスの前記幅方向の温度分布を調整する調整工程と、を備えることを特徴とするガラス基板の製造方法。
    A method of manufacturing a glass substrate,
    After the molten glass overflowed from the upper part of the molded body in the upper space of the heated molding furnace chamber is caused to flow down along both side surfaces of the molded body, the molten glass is joined at the lower end of the molded body. A molding process for making the sheet glass to be conveyed;
    A cooling step for cooling the sheet glass;
    In the width direction orthogonal to the conveying direction of the molten glass or the sheet glass, the molten glass or the sheet glass is partially blocked by the shielding member from receiving heat from the upper space, so that the molten glass or An adjustment step of adjusting the temperature distribution in the width direction of the sheet glass.
  2.  前記調整工程において、前記熔融ガラスあるいは前記シートガラスが前記上部空間からの熱を受けることを遮蔽部材で部分的に遮断することにより、前記冷却工程で得られたシートガラスのガラス幅方向20mmごとに得られる、最大ガラス板厚tmaxと、最小ガラス板厚tminとの差tmax-tminが、それぞれ15μm以下となるように、前記熔融ガラスあるいは前記シートガラスの前記幅方向の温度分布を調整する、請求項1に記載のガラス基板の製造方法。 In the adjusting step, the molten glass or the sheet glass is partially blocked by the shielding member from receiving heat from the upper space, so that every 20 mm in the glass width direction of the sheet glass obtained in the cooling step. The temperature distribution in the width direction of the molten glass or the sheet glass is adjusted so that the difference t max −t min between the maximum glass plate thickness t max and the minimum glass plate thickness t min is 15 μm or less, respectively. The manufacturing method of the glass substrate of Claim 1 adjusted.
  3.  前記冷却工程で得られたシートガラスのガラス幅方向100mmごとに得られる、最大ガラス板厚tmaxと、最小ガラス板厚tminとの差tmax-tminが、それぞれ20μm以下となるように、前記調整工程において、前記熔融ガラスあるいは前記シートガラスの前記幅方向の温度分布を調整する、請求項1または2に記載のガラス基板の製造方法。 The difference t max −t min between the maximum glass plate thickness t max and the minimum glass plate thickness t min obtained every 100 mm in the glass width direction of the sheet glass obtained in the cooling step is 20 μm or less, respectively. The method for producing a glass substrate according to claim 1, wherein in the adjusting step, the temperature distribution in the width direction of the molten glass or the sheet glass is adjusted.
  4.  前記熔融ガラスあるいは前記シートガラスに凹部が発生して厚み偏差が生じたとき、前記調整工程において、前記凹部の幅方向の発生位置で前記熔融ガラスあるいは前記シートガラスが前記上部空間の熱を受けないように、前記発生位置において前記遮蔽部材を近づけて前記温度分布を調整する、請求項1~3のいずれか1項に記載のガラス基板の製造方法。 When a concave portion is generated in the molten glass or the sheet glass and a thickness deviation occurs, the molten glass or the sheet glass does not receive heat in the upper space at the generation position in the width direction of the concave portion in the adjustment step. The method of manufacturing a glass substrate according to claim 1, wherein the temperature distribution is adjusted by bringing the shielding member closer to the generation position.
  5.  前記熔融ガラスあるいは前記シートガラスに凸部が発生して厚み偏差が生じたとき、前記調整工程において、前記凸部の幅方向の発生位置を挟む両側の位置で前記熔融ガラスあるいは前記シートガラスが前記上部空間の熱を受けないように、前記両側の位置において前記遮蔽部材を近づけて前記温度分布を調整する、請求項1~4のいずれか1項に記載のガラス基板の製造方法。 When a convex part occurs in the molten glass or the sheet glass and a thickness deviation occurs, in the adjustment step, the molten glass or the sheet glass is positioned at both sides sandwiching the generation position in the width direction of the convex part. The method of manufacturing a glass substrate according to any one of claims 1 to 4, wherein the temperature distribution is adjusted by bringing the shielding member close to the positions on both sides so as not to receive heat of the upper space.
  6.  前記厚み偏差の程度に応じて、前記遮蔽部材と前記シートガラスの表面との離間距離は調整される、請求項4または5に記載のガラス基板の製造方法。 The method for manufacturing a glass substrate according to claim 4 or 5, wherein a separation distance between the shielding member and the surface of the sheet glass is adjusted according to a degree of the thickness deviation.
  7.  前記調整工程は、前記熔融ガラスあるいは前記シートガラスの粘度が107.6poise以下にあるとき行なわれる、請求項1~6のいずれか1項に記載のガラス基板の製造方法。 The method for producing a glass substrate according to any one of claims 1 to 6, wherein the adjusting step is performed when the viscosity of the molten glass or the sheet glass is 10 7.6 poise or less.
  8.  前記成形体の前記下端から、前記熔融ガラスあるいは前記シートガラスの搬送方向下流側又は上流側に50mm離間した位置までの間で、前記調整工程を行う、請求項1~7のいずれか1項に記載のガラス基板の製造方法。 The adjustment process is performed according to any one of claims 1 to 7, wherein the adjusting step is performed from the lower end of the molded body to a position spaced 50 mm away from the molten glass or the sheet glass in the conveyance direction downstream side or upstream side. The manufacturing method of the glass substrate of description.
  9.  前記冷却工程は、前記シートガラスが前記シートガラスの幅方向に収縮することを防止するために、冷却ローラで前記シートガラスの両側の端部を冷却することを含み、
     前記上部空間は、前記冷却ローラが設けられる下部空間と仕切る仕切り板に対して、前記シートガラスの搬送方向上流側に位置し、
     前記遮蔽部材は、前記上部空間に設けられている、請求項1~8のいずれか1項に記載のガラス基板の製造方法。
    The cooling step includes cooling both end portions of the sheet glass with a cooling roller in order to prevent the sheet glass from shrinking in the width direction of the sheet glass;
    The upper space is located on the upstream side in the conveyance direction of the sheet glass with respect to the partition plate that partitions from the lower space in which the cooling roller is provided,
    The glass substrate manufacturing method according to any one of claims 1 to 8, wherein the shielding member is provided in the upper space.
  10.  前記成形炉室は、前記仕切り板の間のスリット孔を通して前記シートガラスを前記下部空間に進入させ、
     前記遮蔽部材は、前記仕切り板により支持されている、請求項9に記載のガラス基板の製造方法。
    The molding furnace chamber allows the sheet glass to enter the lower space through a slit hole between the partition plates,
    The method for manufacturing a glass substrate according to claim 9, wherein the shielding member is supported by the partition plate.
  11.  前記仕切り板の厚さ又は高さを変化させることにより、前記遮蔽部材を用いて前記温度分布を調整する搬送方向の位置を調整する、請求項10に記載のガラス基板の製造方法。 The method for manufacturing a glass substrate according to claim 10, wherein the position in the transport direction for adjusting the temperature distribution is adjusted by using the shielding member by changing the thickness or height of the partition plate.
  12.  ガラス基板の製造装置であって、
     成形炉室と、
     前記成形炉室の上部空間内に設けられ、熔融ガラスをオーバーフローさせて両側面に沿って流下させた後、下端で熔融ガラスを合流させて搬送されるシートガラスをつくる成形体と、
     前記上部空間の壁及び前記上部空間内の雰囲気を加熱する熱源と、
     前記熔融ガラスあるいは前記シートガラスの搬送方向と直交する幅方向において、前記熔融ガラスあるいは前記シートガラスが前記上部空間からの熱を受けることを部分的に遮断することにより、前記熔融ガラスあるいは前記シートガラスの前記幅方向の温度分布を調整する遮蔽部材と、を備えることを特徴とするガラス基板製造装置。
    An apparatus for manufacturing a glass substrate,
    A molding furnace chamber;
    A molded body that is provided in the upper space of the molding furnace chamber, overflows the molten glass and flows down along both side surfaces, and then forms a sheet glass that is conveyed by joining the molten glass at the lower end, and
    A heat source for heating the walls of the upper space and the atmosphere in the upper space;
    The molten glass or the sheet glass is partially blocked from receiving heat from the upper space in the width direction perpendicular to the conveying direction of the molten glass or the sheet glass. And a shielding member that adjusts the temperature distribution in the width direction of the glass substrate.
PCT/JP2016/067823 2015-06-30 2016-06-15 Glass substrate production method and glass substrate production device WO2017002626A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020177036269A KR102025004B1 (en) 2015-06-30 2016-06-15 Glass substrate manufacturing method and glass substrate manufacturing apparatus
CN201680036367.6A CN107735369B (en) 2015-06-30 2016-06-15 Method for manufacturing glass substrate and glass substrate manufacturing apparatus
JP2016540704A JP6767866B2 (en) 2015-06-30 2016-06-15 Glass substrate manufacturing method and glass substrate manufacturing equipment
TW105120580A TWI703099B (en) 2015-06-30 2016-06-29 Manufacturing method of glass substrate and glass substrate manufacturing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-132206 2015-06-30
JP2015132206 2015-06-30

Publications (1)

Publication Number Publication Date
WO2017002626A1 true WO2017002626A1 (en) 2017-01-05

Family

ID=57608192

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/067823 WO2017002626A1 (en) 2015-06-30 2016-06-15 Glass substrate production method and glass substrate production device

Country Status (5)

Country Link
JP (1) JP6767866B2 (en)
KR (1) KR102025004B1 (en)
CN (1) CN107735369B (en)
TW (1) TWI703099B (en)
WO (1) WO2017002626A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021504279A (en) * 2017-11-29 2021-02-15 コーニング インコーポレイテッド Glass manufacturing equipment and glass manufacturing method including heat shield
US11834361B2 (en) 2017-10-27 2023-12-05 Schott Ag Device and method for the production of a flat glass

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108996891B (en) * 2018-07-24 2021-05-14 彩虹显示器件股份有限公司 Width control system of overflow shaping glass base
CN112938506B (en) * 2021-02-01 2022-09-02 河北光兴半导体技术有限公司 Slicing device, slicing equipment, slicing system and slicing method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010269998A (en) * 2009-05-21 2010-12-02 Corning Inc Equipment for reduction of radiation heat loss from molding in method of glass molding
WO2011007617A1 (en) * 2009-07-13 2011-01-20 旭硝子株式会社 Glass plate manufacturing method and manufacturing device
JP2011246345A (en) * 2010-05-26 2011-12-08 Corning Inc Method and apparatus for controlling thickness of flowing ribbon of molten glass
JP2013018707A (en) * 2011-03-31 2013-01-31 Avanstrate Inc Method and apparatus for manufacturing glass substrate
JP2013528148A (en) * 2010-05-26 2013-07-08 コーニング インコーポレイテッド Apparatus and method for controlling thickness of flowing molten glass ribbon
JP2013139342A (en) * 2011-12-28 2013-07-18 Avanstrate Inc Method for manufacturing glass sheet
WO2015125943A1 (en) * 2014-02-21 2015-08-27 AvanStrate株式会社 Glass plate production method and glass plate production device
JP2015171986A (en) * 2014-02-21 2015-10-01 AvanStrate株式会社 Manufacturing method of glass plate, and manufacturing apparatus of glass plate
JP2016069273A (en) * 2014-09-30 2016-05-09 AvanStrate株式会社 Manufacturing method of glass substrate for display

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05124827A (en) 1991-10-31 1993-05-21 Hoya Corp Device for producing glass plate and production of glass plate
CN201317730Y (en) * 2008-11-20 2009-09-30 陕西彩虹电子玻璃有限公司 Device for adjusting thickness of sheet glass
JP5746380B2 (en) * 2012-09-28 2015-07-08 AvanStrate株式会社 Glass substrate manufacturing method and glass substrate manufacturing apparatus
JP2014189483A (en) * 2013-03-28 2014-10-06 Avanstrate Inc Glass plate manufacturing method and glass plate manufacturing device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010269998A (en) * 2009-05-21 2010-12-02 Corning Inc Equipment for reduction of radiation heat loss from molding in method of glass molding
WO2011007617A1 (en) * 2009-07-13 2011-01-20 旭硝子株式会社 Glass plate manufacturing method and manufacturing device
JP2011246345A (en) * 2010-05-26 2011-12-08 Corning Inc Method and apparatus for controlling thickness of flowing ribbon of molten glass
JP2013528148A (en) * 2010-05-26 2013-07-08 コーニング インコーポレイテッド Apparatus and method for controlling thickness of flowing molten glass ribbon
JP2013018707A (en) * 2011-03-31 2013-01-31 Avanstrate Inc Method and apparatus for manufacturing glass substrate
JP2013139342A (en) * 2011-12-28 2013-07-18 Avanstrate Inc Method for manufacturing glass sheet
WO2015125943A1 (en) * 2014-02-21 2015-08-27 AvanStrate株式会社 Glass plate production method and glass plate production device
JP2015171986A (en) * 2014-02-21 2015-10-01 AvanStrate株式会社 Manufacturing method of glass plate, and manufacturing apparatus of glass plate
JP2016069273A (en) * 2014-09-30 2016-05-09 AvanStrate株式会社 Manufacturing method of glass substrate for display

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11834361B2 (en) 2017-10-27 2023-12-05 Schott Ag Device and method for the production of a flat glass
JP2021504279A (en) * 2017-11-29 2021-02-15 コーニング インコーポレイテッド Glass manufacturing equipment and glass manufacturing method including heat shield

Also Published As

Publication number Publication date
CN107735369A (en) 2018-02-23
KR102025004B1 (en) 2019-09-24
JPWO2017002626A1 (en) 2018-04-12
TW201708131A (en) 2017-03-01
KR20180008710A (en) 2018-01-24
JP6767866B2 (en) 2020-10-14
TWI703099B (en) 2020-09-01
CN107735369B (en) 2021-06-18

Similar Documents

Publication Publication Date Title
US8826694B2 (en) Method of manufacturing glass sheet
EP2077254B1 (en) Glass ribbon producing apparatus and process for producing the same
WO2017002626A1 (en) Glass substrate production method and glass substrate production device
KR101755136B1 (en) Method and apparatus for making glass sheet
JP5994992B2 (en) Sheet glass manufacturing apparatus and sheet glass manufacturing method
JP6189584B2 (en) Manufacturing method of glass plate
JP6396142B2 (en) Glass plate manufacturing method and glass plate manufacturing apparatus
TWI605022B (en) Glass substrate for display
JP6638381B2 (en) Sheet glass manufacturing apparatus and sheet glass manufacturing method
JP2015105206A (en) Manufacturing method of glass plate, and glass plate
JP6285180B2 (en) Glass plate manufacturing method and glass plate manufacturing apparatus
JP2014125363A (en) Glass substrate production apparatus, and production method of glass substrate for display
WO2022131205A1 (en) Glass article production apparatus
JP2016210634A (en) Manufacturing apparatus of sheet glass, and manufacturing method of sheet glass

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016540704

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16817735

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177036269

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16817735

Country of ref document: EP

Kind code of ref document: A1