WO2017002539A1 - ブレード平板、それを用いた発電機およびその組み立てキット、送風装置およびその組み立てキット - Google Patents

ブレード平板、それを用いた発電機およびその組み立てキット、送風装置およびその組み立てキット Download PDF

Info

Publication number
WO2017002539A1
WO2017002539A1 PCT/JP2016/066703 JP2016066703W WO2017002539A1 WO 2017002539 A1 WO2017002539 A1 WO 2017002539A1 JP 2016066703 W JP2016066703 W JP 2016066703W WO 2017002539 A1 WO2017002539 A1 WO 2017002539A1
Authority
WO
WIPO (PCT)
Prior art keywords
blade
flat plate
generator
blade flat
plate according
Prior art date
Application number
PCT/JP2016/066703
Other languages
English (en)
French (fr)
Inventor
祥二 勝目
Original Assignee
祥二 勝目
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 祥二 勝目 filed Critical 祥二 勝目
Publication of WO2017002539A1 publication Critical patent/WO2017002539A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/10Submerged units incorporating electric generators or motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a flat blade, a generator and its assembly kit, a blower and its assembly kit.
  • the horizontal axis type wind power generator includes, for example, a propeller type
  • the vertical axis type includes, for example, a gyromill type, a Darius type, a Savonius type, and the like, and each existing wind generator has the following problems.
  • Propeller type is a typical example of horizontal axis type wind power generator, and it is the most popular power generation style in the world because of its high efficiency and good size.
  • upwind wind generators are not affected by wind turbulence, but they require a yaw drive that follows the wind direction and are more complex in structure than other types of wind generators.
  • the failure rate due to precision devices such as drive devices is high, the maintenance for that is difficult, and furthermore, the manufacture of the blade member requires a mold and the manufacturing cost is high. This is a very costly power generation style.
  • the vertical axis wind power generator can be manufactured at a lower cost than the horizontal axis type, but the power generation efficiency is low.
  • many Savonius types are installed in the city, but in principle, the peripheral speed ratio is 1 or less, the power generation efficiency is poor, and in fact, it can only serve as a monument.
  • the horizontal axis type propeller type the gyromill type that rotates with the lift generated by the airflow is more efficient than the vertical axis type and can be rotated regardless of the wind direction. Since it does not occur, it can be used in town.
  • an object of the present invention is to provide a blade flat plate for constructing a multi-helical structure, a generator using the same, an assembly kit thereof, a blower, and an assembly kit thereof.
  • the present invention has a spiral cut in a flat plate portion, and a three-dimensional spiral blade is disposed in a state where the central portion of the spiral cut is extended.
  • the spiral blade of the multi-helical structure constructed by stretching with one or both of the central part and the outer peripheral part has an organic three-dimensional shape with a large surface area.
  • a blade member such as a generator, for example, it is possible to easily catch a fluid medium such as wind or water and generate lift and drag.
  • a vane member can be provided.
  • FIG. 1 is a top view of a blade flat plate according to the first embodiment.
  • FIG. 2 is a perspective view of the blade flat plate, and is a perspective view before extending the central portion side of the blade flat plate.
  • FIG. 3A is a perspective view of a state in which the center side of the blade flat plate is extended.
  • FIG. 3B is a view of the central portion side of the blade flat plate as viewed from the extension direction.
  • FIG. 4A is a perspective view in which the blade flat plate is further extended as compared with the state of FIG. 3A.
  • FIG. 4B is a view of the blade flat plate as viewed from the extending direction as compared with the state of FIG. 3B.
  • FIG. 5 is a perspective view showing an example of another embodiment of a blade flat plate.
  • FIG. 5 is a perspective view showing an example of another embodiment of a blade flat plate.
  • FIG. 6 is a perspective view showing an example of another embodiment of a blade flat plate.
  • FIG. 7 is a top view of a blade plate before extension as an example of the embodiment of the present invention.
  • FIG. 8 is a diagram illustrating an example of a variation of the spiral cut of the blade flat plate.
  • FIG. 9 is a diagram illustrating another example of the variation of the spiral cut.
  • FIG. 10 is a top view of a modified example of the flat blade of FIG. 11 is a top view of the independent blade of FIG.
  • FIG. 12 is a drawing showing a modification of the shape of the spiral cut of the blade flat plate.
  • FIG. 13 is a drawing showing another modification of the spiral cut shape.
  • FIG. 14 is a drawing showing another modification of the spiral cut shape.
  • FIG. 14 is a drawing showing another modification of the spiral cut shape.
  • FIG. 15 is a drawing showing another modification of the shape of the spiral cut.
  • FIG. 16 is a drawing showing another modification of the shape of the spiral cut.
  • FIG. 17 is a plan view of the blade flat plate, the base supporting it, and the pressing member.
  • FIG. 18 is a process diagram for assembling the blade flat plate, the base supporting the blade flat plate, and the pressing member.
  • FIG. 19 is a top view of another blade flat plate according to the fifth embodiment.
  • FIG. 20A is a perspective view of another blade flat plate.
  • FIG. 20B is a perspective view of another blade flat plate in an extended state.
  • FIG. 20C is a top view of another blade flat plate in an extended state.
  • FIG. 21 is a perspective view showing an example of another embodiment of a blade flat plate.
  • FIG. 20A is a perspective view of another blade flat plate.
  • FIG. 20B is a perspective view of another blade flat plate in an extended state.
  • FIG. 20C is a top view of another blade flat plate in an
  • FIG. 22 is a state diagram showing an example of another embodiment of the blade member.
  • FIG. 23 is a diagram showing the relationship between the number of blades formed on a blade flat plate and the number of turns (rotation).
  • FIG. 24 is an explanatory diagram of another blade flat plate according to the sixth embodiment.
  • FIG. 25 is a side view of a wind power generator showing an example of implementation of the present invention.
  • FIG. 26 is a rear view of a wind power generator showing an example of the implementation of the present invention.
  • FIG. 27 is a perspective view of a wind power generator showing an example of implementation of the present invention.
  • FIG. 28 is a perspective view showing a range that self-follows the wind direction of a wind power generator showing an example of implementation of the present invention.
  • FIG. 29 is a side view of the wind power generator with the blade member variable according to an example of the embodiment of the present invention before variable.
  • FIG. 30 is a side view of a wind power generator that can change the blade member according to an embodiment of the present invention.
  • FIG. 31 is a side view of a wind power generator having two blade members showing an example of implementation of the present invention.
  • FIG. 32 is a front view of an assembly type wind power generator showing an example of the implementation of the present invention.
  • FIG. 33 is a side view of the assembly type wind power generator shown in FIG. 32.
  • FIG. 34 is a front view of a coupled assembly type wind power generator showing an example of implementation of the present invention.
  • FIG. 35 is a side view of the coupled assembly type wind power generator shown in FIG. 34.
  • FIG. 36 is a top view of the coupled assembly type wind power generator shown in FIG. 34.
  • FIG. 37 is a conceptual front view of a coupled wind power and solar hybrid generator showing an example of the implementation of the present invention.
  • FIG. 38 is a diagram illustrating a state before and after variable of the vertical axis wind power generator in which the blade member is variable.
  • FIG. 39 is a diagram illustrating a state before and after variable of the vertical axis wind power generator in which the blade member is variable.
  • FIG. 40 is a conceptual front view showing a power generation main unit of a levitation generator as an example of the embodiment of the present invention.
  • FIG. 41 is a conceptual front view of a power generation main body portion of a coupled levitation generator showing an example of implementation of the present invention.
  • FIG. 42 is a conceptual front view of a coupled inclined wind power generator showing an example of the implementation of the present invention.
  • FIG. 43 is a conceptual top view of the coupled inclined wind power generator shown in FIG.
  • FIG. 44 is a conceptual perspective view of a buoyant wind power generator showing an example of implementation of the present invention.
  • FIG. 45A is a conceptual front view showing a power generation main body portion of a truncated icosahedron type floating generator having a plurality of blade members.
  • FIG. 45B is a conceptual side view showing a power generation main body portion of a truncated icosahedron type floating generator having a plurality of blade members.
  • FIG. 45A is a conceptual front view showing a power generation main body portion of a truncated icosahedron type floating generator having a plurality of blade members.
  • FIG. 45B is a conceptual side view showing a power generation main body portion of a truncated icosahedron type floating generator
  • FIG. 45C is a conceptual top view showing a power generation main body portion of a truncated icosahedron type floating generator having a plurality of blade members.
  • FIG. 46 is a conceptual perspective view of a buoyant wind power generator showing an example of implementation of the present invention.
  • FIG. 47 is a conceptual perspective view of a vertical axis wind power generator showing an example of implementation of the present invention.
  • FIG. 48 is a conceptual front view showing a power generation main unit of a levitation generator as an example of the embodiment of the present invention.
  • FIG. 49 is a conceptual perspective view of a coupled floating wind power generator showing an example of the implementation of the present invention.
  • FIG. 50 is a conceptual perspective view of a buoyant wind power generator showing an example of implementation of the present invention.
  • FIG. 51 is a conceptual perspective view of a buoyant ocean current generator showing an example of implementation of the present invention.
  • FIG. 52 is a conceptual side view of a hydroelectric generator showing an example of implementation of the present invention.
  • FIG. 53A is a conceptual side view of a moored hydropower and ocean current generator showing an example of implementation of the present invention.
  • FIG. 53B is a perspective view of the blade plate 100 before extension.
  • FIG. 53C is a perspective view showing an example of another blade flat plate embodiment.
  • FIG. 53D is a conceptual side view and top view of the mooring-type tidal current and ocean current generator during power generation showing an example of the implementation of the present invention.
  • FIG. 53E is a conceptual side view of the mooring type tidal current and ocean current generator shown in FIG. 53D when they are pulled up.
  • FIG. 54 is a conceptual perspective view and front view of a blower device showing an example of the implementation of the present invention.
  • FIG. 55 is a statistical diagram of the voltage amount in the number of blades of the blade member of the wind power generator according to the first embodiment of the present invention.
  • FIG. 56 is a statistical diagram of the voltage amount in the expansion difference of the blade member of the wind power generator according to the second embodiment of the present invention.
  • FIG. 57 is a statistical diagram of the rotation angle in the wind direction of the blade member of the wind power generator according to Example 3 of the present invention.
  • FIG. 58 is a configuration diagram of an apparatus for testing a blade member using a wind tunnel test apparatus.
  • FIG. 59 is a diagram showing test results.
  • FIG. 1 is a top view of a blade flat plate according to the first embodiment.
  • FIG. 2 is a perspective view of a blade flat plate.
  • FIG. 3A is a perspective view before the central portion side of the blade flat plate is extended.
  • FIG. 3B is a perspective view of a state in which the center side of the blade flat plate is extended.
  • FIG. 3C is a diagram in which the central portion side of the blade flat plate is viewed from the extension direction.
  • FIG. 4A is a perspective view in which the blade flat plate is further extended from the state of FIG. 3B.
  • FIG. 4B is a view of the blade flat plate as viewed from the extending direction, compared to the state of FIG.
  • the blade flat plate 100 of this embodiment has a spiral cut 4 in a flat plate portion 101. And from the state of the flat blade flat plate 100 shown in FIG. 2, as shown in FIG. 3 (A), the central portion side of the spiral cut 4 is extended in a direction orthogonal to the flat plate surface. Thus, the three-dimensional spiral blade 102A is arranged.
  • the three-dimensional spiral blade 102A is used as, for example, a three-dimensional blade member for a windmill of a wind turbine generator.
  • a central portion 1 is a central portion of a circular flat plate portion 101, extends from the vicinity 2 of the central portion 1, and is in contact with the outer peripheral portion 3.
  • the outer peripheral side end 4a of the notch 4 is preferably formed to be separated from the outer peripheral portion 3 toward the inner periphery in a range of 5 to 10%. Moreover, it is preferable to form the inner peripheral side end part 4b on the center part 2 side of the notch 4 so as to be spaced from the center part 1 toward the outer periphery in a range of 5 to 10%.
  • the cut 4 of the blade flat plate 100 can be manufactured only by cutting or laser processing, for example.
  • the material of the blade flat plate 100 is not particularly limited, and any material may be used as long as it is made of a material having at least flexibility. In particular, durability is preferable when a resin material, a metal material, a rubber material, a fiber composite material, or the like is used.
  • the blade flat plate 100 may be manufactured using a shape memory alloy. Thereby, a three-dimensional shape is fixed by the thermal deformation at the time of use.
  • the stored three-dimensional spiral blade 100 may be restored by applying heat from a dryer or the like during use.
  • a fixing material such as an adhesive that retains the three-dimensional shape may be sprayed to fix the shape to be used as a blade member. .
  • the blade flat plate of this embodiment can be used as a three-dimensional blade member simply by extending a two-dimensional flat plate having an outer periphery.
  • the three-dimensional blade member has a self-starting property and a self-flow direction following property by a fluid medium, can rotate without limiting the direction of the rotation axis, and can control the rotational force. Further, by using a three-dimensional blade member, it is possible to provide a generator that can be manufactured and operated at low cost, and further a blower that generates winds having various airflows.
  • the three-dimensional spiral blade formed by the blade flat plate of this embodiment is used as a blade member of, for example, a generator, a blower, or a heat generator, a molding die is not required and a low-cost blade member is provided. be able to.
  • FIG. 2 is a state diagram before extension showing an example of the flat blade 100.
  • FIG. 3A shows the present embodiment constructed by extending the central portion 1 in the vertical direction (direction perpendicular to the flat plate surface of the flat plate portion 101) with respect to the surface formed by the outer periphery of the flat plate blade 100 in the flat plate state. It is a state diagram which shows 102 A of spiral blades of the three-dimensional shape which is a blade flat plate of form.
  • reference numeral 7 illustrates the blade after the spiral cut 4 has been extended.
  • 3B is a drawing when viewed from the extension direction (any one of the upper and lower directions) in the extended state, and is a state diagram in which the adjacent blades 7 and 7 do not intersect each other.
  • the multiple spiral structure of the multiple spiral structure is a multiple spiral having a constricted portion in an expanded state.
  • This multiple helix refers to a structure in which the angle of the helical blade 7 is initially loose, gradually tightened, and further loosened.
  • FIG. 4A is a state diagram showing a three-dimensional spiral blade 102B constructed from the state of the three-dimensional spiral blade 102A of FIG. .
  • reference numeral 8 illustrates a constricted neck portion that is constructed by increasing the stretch rate by the second stretch 6.
  • FIG. 4B is a drawing when viewed from the extension direction (any one of the upper and lower directions) in the extended state, and is a state diagram in which adjacent blades 7 and 7 intersect each other. This intersecting state forms the constricted portion 8.
  • FIG. 5 and 6 are perspective views showing examples of other blade flat plate embodiments.
  • FIG. 5 is a perspective view of the blade flat plate 100 before extension.
  • the blade flat plate 100 of the present embodiment includes a substantially bowl-shaped curved portion 103 along the periphery of the outer peripheral portion 3.
  • 6 shows a three-dimensional spiral with a constricted portion 8 constructed by subjecting the central portion 1 to a second extension 6 in a direction perpendicular to the plane having the central portion 1 of the blade flat plate 100 shown in FIG. Blade 102B.
  • the shape maintenance is strengthened from the flat plate.
  • the flat blade 100 of the present embodiment in order to extend the flat blade 100 of the present embodiment and arrange the three-dimensional spiral blades 102A and 102B, it is preferable that the flat blade 100 is stretched while being slightly twisted in the rotational direction of the cut 4. A slight twist in the rotational direction will be described later.
  • the spiral blade 102 (102A, 102B) of the blade flat plate of the present embodiment constructed by extending with one or both of the central portion 1 and the outer peripheral portion 3 has a surface area when viewed from any direction. Has a large organic three-dimensional shape.
  • the spiral blade 102 of the blade flat plate of the present embodiment is used for a blade member such as a generator, for example, it can easily catch a fluid medium such as wind or water and generate lift and drag.
  • wing member which can be provided can be provided.
  • the blade flat plate of the present embodiment has a self-starting property by the fluid medium and can control the rotational force. .
  • the blade flat plate of the present embodiment can be used as a blade member of a generator or a blower.
  • the blade flat plate of this embodiment can be transported in a flat state during transportation, and is provided with a low-cost generator and blower device that is easy to assemble and easy to carry or a blade member of any of these assembly kits can do.
  • the blade flat plate of the present embodiment having a bowl-shaped curved outer periphery is used as a blade member of a generator and a blower, even if the blade flat plate of the present embodiment is made of a resin plate, the outer peripheral portion The outer peripheral member can be simplified, and the generator and the blower device or any of these assembly kits can be reduced in weight.
  • the blade flat plate material of the present embodiment is not limited to resin, but may be any combination of, for example, metal, carbon fiber, plant fiber, or resin, and the blade flat plate material of the present embodiment is limited. Not what you want.
  • FIG. 7 is a top view of a blade plate before extension as an example of the embodiment of the present invention.
  • the blade flat plate 100 of FIG. 7A is a blade member in which a plurality of spiral cuts 4 connected in a straight line are provided, and the outer peripheral portion 3 is a circular blade member.
  • the blade flat plate 100 of FIG. 7B is provided with three spiral cuts 4 each having a wave shape connected in a combination of a part of a circle and a straight line, and a blade having a circular outer periphery 3. It is a member.
  • the blade flat plate 100 in FIG. 7D is provided with five spiral cuts 4 that are connected by a part of a circle, and a plurality of outer peripheral parts 3 are connected by a combination of a part of a circle and a straight line. This is a blade member having a corrugated shape.
  • a multi-spiral structure that is a three-dimensional spiral blade using the blade plate 100 of the present embodiment is used as a blade member of a generator or a blower, a highly efficient cutting shape for a fluid medium It is possible to provide a blade member having the following.
  • FIG. 8 is a diagram illustrating an example of a variation of the spiral cut of the blade flat plate.
  • the blade flat plate 100 in FIG. 8A is an example having one spiral cut 4.
  • One vortex is formed from the end 4 a of the outer periphery 3 of the cut 4 of the blade flat plate 100 toward the center 1, and the end 4 b of the cut 4 is disposed in the vicinity of the center 1.
  • the blade flat plate 100 shown in FIG. 8B has two spiral cuts 4 as an example.
  • the blade flat plate 100 of FIG. 8C is an example having three spiral cuts 4.
  • Three vortices are formed from the three end portions 4 a of the outer peripheral portion 3 of the blade flat plate 100 toward the center portion 1, and the three end portions 4 b are arranged in the vicinity of the center portion 1.
  • the blade flat plate 100 in FIG. 8D is an example having five spiral cuts 4.
  • the blade flat plate 100 of FIG. 8E is an example having 18 spiral cuts 4. Eighteen vortices are formed from the 18 end portions 4a of the outer peripheral portion 3 of the blade flat plate 100 toward the central portion 1 side, and the 18 end portions 4b are arranged in the vicinity of the central portion 1.
  • the blade flat plate 100 in FIG. 8F is a modification of FIG. 8B, and is an example in which two slit-shaped cutouts are used as spiral cuts.
  • Two cutout 9 vortices are formed from the two end portions 4 a of the outer peripheral portion 3 of the blade flat plate 100 toward the central portion 1, and the two end portions 4 b formed by the vortex of the cutout 9 are Arranged in the vicinity 2 of the central portion 1.
  • FIG. 9 is a diagram showing another example of the variation of the spiral cut.
  • the blade flat plate 100 in FIG. 9A is an example in which two blades 7 are formed by forming a spiral cut 4.
  • a spiral notch 4 is formed from the end 4a of the outer periphery 3 of the notch 4 of the blade flat plate 100 toward the center 1 side, and two independent arcuate blade ends 7a are disposed in the vicinity of the center 1. ing.
  • a connecting hole 7b is formed in the arcuate blade end 7a.
  • the blade flat plate 100 in FIG. 9B is an example in which the three blades 7 are formed by forming the spiral cuts 4.
  • a spiral notch 4 is formed from the end 4a of the outer periphery 3 of the notch 4 of the blade flat plate 100 toward the center 1 side, and three independent arcuate blade ends 7a are disposed in the vicinity of the center 1. ing.
  • a connecting hole 7b is formed in the arcuate blade end 7a.
  • the blade flat plate 100 in FIG. 9C is an example in which four blades 7 are formed by forming the spiral cuts 4.
  • a spiral notch 4 is formed from the end 4a of the outer periphery 3 of the notch 4 of the blade flat plate 100 toward the center 1 side, and four independent arcuate blade ends 7a are disposed in the vicinity of the center 1. ing.
  • a connecting hole 7b is formed in the arcuate blade end 7a.
  • the blade flat plate 100 in FIG. 9D is an example in which the notch 4 in FIG. 9A is provided with slit notches 9 to form two blades 7.
  • FIG. 10 is a top view of a modification of the flat blade of FIG. 9 (B).
  • the blade flat plate 100 is formed as three independent blades 7 by forming a spiral cut 4.
  • the outer peripheral side end 7c of the blade 7 of the outer peripheral portion 3 of the notch 4 of the blade flat plate 100 is also independent, and a spiral notch 4 is formed from the independent outer peripheral end 7c toward the central portion 1 side.
  • three independent arcuate blade end portions 7 a are arranged in the vicinity 2 of the center portion 1.
  • a connecting hole 7b is formed in each of the arcuate blade end portion 7a and the outer peripheral side end portion 7c.
  • FIG. 11 is a top view of the independent piece of blade 7 of FIG. Since the blade end portion 7c of the outer peripheral portion 3 of the notch 4 of the blade flat plate 100 is independent, it can be separated and becomes a single blade 7. Therefore, the flat blade of FIG. 10 can be constructed by combining these three independent blades 7. Thereby, it becomes more compact by stacking three blades 7. As a result, it can be stored in a stacked state, and the portability is improved.
  • the hole 7b of the end 7c is fixed to the base by a fixing member such as a pin, and the hole 7b of the arcuate blade end 7a is held by a holding member such as a pin.
  • the three-dimensional spiral blades 102A and 102B can be constructed by pulling up the holding member.
  • FIG. 12 is a drawing showing a modification of the spiral cut shape of the blade flat plate.
  • the blade flat plate 100 shown in FIGS. 12A to 12E is provided with five spiral cuts 4 connected by a combination of a part of a circle, a straight line, and a part of an outer peripheral shape reduced in size.
  • the outer peripheral portion 3 is a blade member having a circular shape.
  • the blade flat plate 100 of FIG. 12 (F) is provided with two spiral cuts 4 connected by a combination of a part of a circle, a straight line, and a part of the outer peripheral shape reduced in size.
  • the part 3 is a blade member having a circular shape.
  • the blade flat plate 100 of FIG. 12 (G) is provided with three spiral cuts 4 that are connected by a combination of a part of a circle, a straight line, and a part of the outer peripheral shape reduced in size.
  • the part 3 is a blade member having a circular shape.
  • the blade flat plate 100 of FIGS. 12 (H) to (K) has a spiral cut 4 having a plurality of cutouts 9 connected by a combination of a part of a circle, a straight line, and a part of the outer peripheral shape reduced in size. Three blade members are provided and the outer peripheral portion 3 has a circular shape.
  • the blade flat plate 100 shown in FIGS. 12H to 12K is a blade member having a notch 4 along the edge of the outer peripheral portion 3.
  • FIG. 13 is a drawing showing another modification of the spiral cut shape.
  • the blade flat plate 100 of FIGS. 13A to 13C is a modification of the blade flat plate of FIG. 12B.
  • two or more holes 11 through which a fixing member such as a screw is passed, and the holes 11 are connected to each other.
  • the blade flat plate has flexibility in addition to the deformation caused by the positive extension, so that the local deformation is possible, and the three-dimensional spiral Blade 102 can be constructed. By this self-deformation, the rotation efficiency of the blade member can be improved.
  • FIG. 14 is a drawing showing another modification of the shape of the spiral cut.
  • the blade flat plate 100 of FIG. 14A is a modification of the blade flat plate 100 of FIG. 9A, and a plurality of blades are connected by a combination of a part of a circle, a straight line, and a part of an outer peripheral shape reduced in size.
  • Two spiral cuts 4 are formed to form a blade 7, and the outer peripheral portion 3 is a blade member having a circular shape.
  • 14 (B) to 14 (C) is a modification of the blade flat plate 100 of FIG. 9 (B), and a plurality of combinations of a part of a circle, a straight line, and a part of the outer peripheral shape reduced in size are similar.
  • Three spiral cuts 4 connected to each other are formed to form a blade 7, and the outer peripheral portion 3 is a blade member having a circular shape.
  • FIG. 15 is a drawing showing another modification of the spiral cut shape.
  • a blade flat plate 100 shown in FIG. 15 is a blade member in which two arc-shaped cuts 4 are formed to form one blade 7 and the outer peripheral portion 3 has a circular shape.
  • the incision 4 in the broken line state is before the start of the use of the blade flat plate 100, and the solid line indicates that when using the blade flat plate 100, the central portion 2 is elongated in the vertical direction and the blade 7 is self-intersecting.
  • the constricted portion 8 can be formed to construct the spiral blade 102 having a three-dimensional shape.
  • FIG. 16 is a drawing showing another modification of the shape of the spiral cut. In the blade flat plate 100 of FIG.
  • the outer peripheral portion 3 is not a perfect circle, and the end portion 7 c of the spiral cut 4 constitutes a part of the outer peripheral portion 3.
  • the three-dimensional spiral blades 102A and 102B are arranged by fixing the hole 7b formed in the end 7c using a fixing member and extending in the fixed state.
  • the broken line of the center part 2 of FIG.16 (B) illustrates a holding
  • a multi-spiral structure that is a three-dimensional spiral blade using the blade plate 100 of the present embodiment is used as a blade member of a generator or a blower, a highly efficient cutting shape for a fluid medium It is possible to provide a blade member having the following.
  • FIG. 17 is a plan view of the blade flat plate, the base supporting it, and the pressing member.
  • FIG. 17A shows a blade flat plate 100 in which four spiral cuts 4 are formed
  • FIG. 17B shows a base 20 that supports the blade flat plate 100
  • FIG. 17A shows a blade flat plate 100 in which four spiral cuts 4 are formed
  • FIG. 17B shows a base 20 that supports the blade flat plate 100
  • FIG. 17A shows a blade flat plate 100 in which four spiral cuts 4 are formed
  • FIG. 17B shows a base 20 that supports the blade flat plate 100
  • FIG. 17A shows a blade flat plate 100 in which four spiral cuts 4 are formed
  • FIG. 17B shows a base 20 that supports the blade flat plate 100
  • FIG. 17A shows a base 20 that supports the blade flat plate 100
  • FIG. 17A shows a base 20 that supports the blade flat plate 100
  • FIG. 17A shows a base 20 that supports the blade flat plate 100
  • FIG. 17A shows a base 20 that supports the blade flat plate 100
  • FIG. 18 is a process diagram for assembling the blade flat plate, the base supporting it, and the holding member.
  • FIG. 18A is a plan view showing a state in which the members shown in FIGS. 17A to 17C are combined.
  • 18B the shaft body 25 is used from the state of FIG. 18A, the shaft body 25 is passed through the hole 20a of the base 20, and then the shaft 100 is inserted into the hole 100a formed in the central portion 1 of the blade flat plate 100. The tip of the body 25 is fixed. Then, in this fixed state, the first extension 5 is made in the direction orthogonal to the plane of the base 20 to form a three-dimensional spiral blade 102 as shown in FIG.
  • the three-dimensional spiral blade 102 can be used as a horizontal blade member of a generator or a blower.
  • the blade flat plate of the present embodiment is used as a blade member of a generator or a blower, a blade member having a highly efficient cutting shape with respect to a fluid medium can be provided.
  • FIG. 19 is a top view of another blade flat plate according to the fifth embodiment.
  • FIG. 20 is a perspective view and a top view of another blade flat plate.
  • FIG. 19 is a state diagram before extension of the blade flat plate according to the fifth embodiment.
  • 20A to 20C are perspective views of other blade flat plates, showing that the blade flat plates are deformed by extension.
  • FIG. 20A is a perspective view of another blade flat plate.
  • FIG. 20B is a perspective view of another blade flat plate in an extended state.
  • FIG. 20C is a top view of another blade flat plate in an extended state.
  • FIG. 20B is a perspective view of a state in which the blade is flattened while being held at the center side, and
  • FIG. 20C is a top view of this stretched state.
  • the blade flat plate 100 of this embodiment has a spiral cut 4 in the flat plate portion 101.
  • four blades 7 are formed by forming a spiral cut 4.
  • a spiral notch 4 is formed from the end 4a of the outer periphery 3 of the notch 4 of the blade flat plate 100 toward the center 1 side, and four independent arc-shaped blade ends 7a are arranged in the vicinity 2 of the center 1.
  • each blade 7 is twisted and the back surface of the blade is directed to the ceiling side, and held at the center by a holding member (not shown).
  • the spiral blade 102 ⁇ / b> C having a three-dimensional shape is arranged by being extended in an orthogonal direction.
  • the three-dimensional spiral blade 102C is used as, for example, a vertical three-dimensional blade member for a windmill of a wind turbine generator.
  • a central portion 1 of a circular flat plate portion 101 is a central portion 1, and a spiral notch 4 extending from the vicinity 2 of this central portion and not in contact with the outer peripheral portion 3 is formed.
  • edge part 4a of the outer peripheral part 3 of the notch 4 in the range of 5 to 10% from the outer peripheral part 3 toward the inner periphery.
  • edge part 4b by the side of the center part 2 of the notch 4 in the range of 5 to 10% from the center part 1 toward the outer periphery.
  • the cut 4 of the blade flat plate 100 can be manufactured only by cutting or laser processing, for example.
  • FIG. 21 is a perspective view showing an example of another blade flat plate embodiment. Further, as shown in FIG. 21A, a substantially bowl-shaped curved portion 103 is provided along the periphery of the outer peripheral portion 3 of the blade flat plate 100 before extension. In FIG. 21B, each blade 7 of the blade flat plate 100 shown in FIG. 21A is twisted one by one and held at the central portion 1, and in the held state, the first extension 5 in the vertical direction is obtained. This is a three-dimensional spiral blade 102C constructed as described above. By providing the outer peripheral portion 3 with the bowl-shaped curved portion 103, the shape maintenance is strengthened from the flat plate.
  • FIG. 22 is a state diagram showing an example of an embodiment of another blade member.
  • FIG. 22A shows the base shown in FIGS. 17B and 17C using the blade flat plate 100 having the four blades 7 by forming the spiral cut 4 shown in FIG. It is a state figure which shows the process of pinching
  • FIG. 22B shows the tip of the shaft body 25 in the hole 7b formed in the independent arcuate blade end portion 7a of one blade 7 using the shaft body 25 from the state of FIG. Is fixed.
  • FIG. 22C is an example of fixing using a holding member that holds the shaft body 25, and the tip of the shaft body 25 is fixed by an upper fastener 26 a and a lower fastener 26 b that are holding members.
  • FIG. 22D is a state diagram in which the four blades 7 are fixed in a twisted state.
  • FIG. 22E the four blades 7 are twisted and fixed to the tip of the shaft body 25 to form a three-dimensional spiral blade 102.
  • the three-dimensional spiral blade 102 can be used as a vertical blade member of a generator or a blower.
  • FIG. 23 is a diagram showing the relationship between the number of blades formed on the blade flat plate and the number of turns (rotation). As shown in FIG. 23, when the number of blades is 3 and 4, the number of turns (rotation) is 3/4 rotation, 1 rotation 1 and 1/4 rotation, 1 and 1/2 rotation, 1 and 3 / It is a state figure of the spiral blade of the three-dimensional shape formed when it rotates 4 times. As shown in FIG. 23, it is found that the spiral blade having a three-dimensional shape becomes more complicated by applying rotation (twisting).
  • FIG. 23 further shows the relationship between the number of blades and the number of turns (rotation).
  • the number of turns (rotation) is 3/4 rotation, 7/8 rotation, 1 rotation 1 and 1/8 rotation, 1 rotation 1
  • FIG. 23 shows a relationship between a top view and a perspective view of a blade flat plate when the number of blades is 3, 4, and 5.
  • the blade flat plate of the present embodiment is used as a blade member of a generator or a blower, a blade member having a highly efficient cutting shape with respect to a fluid medium can be provided.
  • FIG. 24 is an explanatory diagram of another blade flat plate according to the sixth embodiment.
  • FIG. 24A is a top view of a blade flat plate according to Embodiment 6, a state diagram before extension, and is the blade flat plate 100 of FIG.
  • FIG. 24B the blade plate 100 in the state of FIG. 24A is subjected to the first extension 5 and the second extension 6 directly above and deformed to construct a three-dimensional spiral blade 102B.
  • the three-dimensional spiral blade 102 can be used as a horizontal blade member of a generator or a blower.
  • FIG. 24C the blade flat plate 100 in the state of FIG. 24A is reversely twisted with respect to the vortex direction in which the cut 4 is formed, and the first extension 5 is performed directly above the deformation.
  • the three-dimensional spiral blade 102D is constructed.
  • the three-dimensional spiral blade 102D can be used as a vertical blade member of a generator or a blower.
  • a multi-spiral structure that is a three-dimensional spiral blade using the blade plate 100 of the present embodiment is used as a blade member of a generator or a blower, a highly efficient cutting shape for a fluid medium It is possible to provide a blade member having the following.
  • FIG. 25 is a side view of a wind power generator showing an example of implementation of the present invention.
  • FIG. 26 is a rear view of a wind power generator showing an example of the implementation of the present invention.
  • Reference numeral 30 denotes a blade member by the spiral blade 102 of the three-dimensional shape of the present example in which the counterclockwise cut is made
  • 31 is a shaft body for maintaining the shape of the blade member 30, and 32 is rotatable with the blade member 30
  • a central member that is connected and slidable along the rotational axis of the blade member 30, 33 is an outer peripheral member that is firmly connected to the blade member 30 and the shaft body 31, and 34 controls the rotation of the blade member 30.
  • A is a rotational speed control member
  • A is a blade member 30 by a blade flat plate of this example, a windmill portion including a shaft body 31 and a central member 32, 35 is a generator, B is a rotational speed control member 34 and a generator 35 are built in
  • the power generation unit 36 is a support structure for fixing the wind turbine unit D and the power generation unit B
  • 37 is a support fixed to the pedestal 38
  • 39 is a rotating member rotatably connected to the shaft 31
  • 40 is a support structure Supporting the rotating member for rotatably supporting the 36
  • C is the support structure 35, post 36, rotary member 39, each illustrates a support member comprising a supporting rotating member 40.
  • the wind power generator includes a windmill portion A, a power generation portion B, and an indicator member C, and thereby, the shaft body 31 generates a rotational force generated by the rotation of the blade member 30 by a fluid medium (for example, wind).
  • the generated power can be obtained from the power generation unit B.
  • the blade member 30 can be disassembled and can be easily stored by loading it in a flat plate state.
  • FIG. 27 is a perspective view of a wind power generator showing an example of implementation of the present invention. As shown in FIG. 27, it is shown that the blade member 30 rotates in the rotation direction 42 shown in FIG. However, when the cutting direction of the blade member 30 is reverse, the rotation direction is also reverse.
  • the blade member 30 has a large surface area and high visibility, thereby preventing wild birds from colliding. That is, it is possible to solve the bird strike problem and consider the environment.
  • the blade member 30 has no blade tip, no wind noise is generated at the blade tip due to rotation. That is, the noise problem caused by wind noise can be solved and installed in towns and residential areas.
  • FIG. 28 is a perspective view showing a range of self-following wind direction of a wind power generator showing an example of implementation of the present invention.
  • reference numeral 42 denotes a blade member that does not limit the cutting direction
  • 43 denotes a rotation direction of the blade member 42
  • 44 denotes a rotation axis of the blade member 42
  • 45 denotes a base point defined on the rotation axis
  • 46 denotes a blade with respect to the wind direction 41.
  • the self-following range of the member 42 is shown.
  • the wind direction 41 flows along the axis of the rotation shaft 44.
  • the blade member 42 can follow itself so that it can rotate within a range of 0 to less than 45 degrees from the left and right with the base point 45 as the axis with the axis of the rotating shaft 44 as 0 degree.
  • the support rotating member 40 rotates by receiving the wind from the wind direction 41 on the blade member 42 and the outer peripheral member 33.
  • the blade member 42 can turn in the direction shown in FIG.
  • the optimum angle of self-following of the blade member 42 varies depending on the wind speed, and is one of the self-following ranges 46 shown in FIG.
  • the blade member 42 is expanded and contracted instantaneously like a spring material. By dispersing or diffusing the resistance applied to the blade surface, it is possible to easily prevent the blade member 42 from being damaged.
  • materials having characteristics such as plasticity, plasticity or shape memory property can also be used.
  • FIG. 29 is a side view of the wind power generator with the blade member variable according to an example of the embodiment of the present invention before variable.
  • FIG. 29 is a side view of the wind power generator with the blade member variable according to an example of the embodiment of the present invention before variable.
  • reference numeral 30 denotes a blade member of the blade flat plate of the present example in which a counterclockwise cut is made
  • 31 denotes a shaft body for maintaining the shape of the blade member
  • 43 denotes a central member having a female screw portion
  • 44 Is a rotating member
  • 45 is a screw rod having a male screw portion
  • 46 is an outer peripheral member firmly connected to the blade member 30 and the shaft body
  • 47 is a rotation speed control member for controlling the rotation of the blade member 30, and 35
  • 36 is a support structure
  • a support 37 is fixed to a pedestal 38
  • 40 is a support rotating member that rotatably supports the support structure 36 on both the left and right sides
  • 48 is a screw rod 45 that rotates.
  • the motor 49 moves the central member 43 along the rotation axis of the blade member 30, and 49 is a protective member that expands and contracts in conjunction with the expansion and contraction of the central member 43.
  • FIG. 30 is a side view of a wind power generator that can change the blade member according to an embodiment of the present invention.
  • the rotational force can be controlled with respect to the wind speed by moving the central member 43 in the extending direction 50 shown in FIG. That is, the generated power can be generated safely even in a strong wind.
  • the rotation by the fluid medium can be stopped by further moving the central member 43 in the extending direction 50 and setting the expansion rate of the blade member 30 to 0%.
  • FIG. 31 is a side view of a wind power generator having two blade members showing an example of implementation of the present invention.
  • reference sign D denotes a windmill portion in which two blade members 30 are arranged in the orientation shown in the figure
  • 31 denotes a shaft body having the rotation axis of each blade member 30 as a central axis
  • 32 denotes A central member that is rotatably connected to the blade member 30 and is slidable along the rotation axis of the blade member 30, 33 is an outer peripheral member that is firmly connected to the blade member 30 and the shaft body 31, and 52 is The blade fixing member that is firmly connected to the outer circumferential member 33, 34 is a rotation speed control member for controlling the rotation of the blade member 30, and 35 is a rotation of the rotor and stator connected to the two shaft bodies 31.
  • the generator 55 generates power
  • 55 is a support member
  • the column 56 is fixed to the pedestal 57
  • 58 is a rotary member that is rotatably connected to the shaft body 31
  • 59 is a support that rotatably supports the support member 55. Rotating members for each Shimesuru. Then, by receiving wind from the wind direction 41, the windmill portion D follows itself in the direction shown in the figure, and each blade member 30 rotates in the rotation direction (61 and 62) shown in the figure. .
  • the rotational force generated by the rotation of the blade members 30, 30 is connected to each other. Can be transmitted to the shaft body 35, and the blade member can generate more generated electric power than a single generator.
  • a plurality of blade members such as four, six, eight, etc., and the number of blade members is not limited.
  • blade fixing member 52 it is possible to prevent damage to the blade due to fatigue damage of the blade due to self-excited vibration generated by the wind, strong winds such as typhoons, as well as turbulence and gusts.
  • a highly reliable blade member can be provided.
  • a heating device is provided adjacent to the generator 35, the rotational energy generated from the windmill part D is converted into heat energy and installed on the pedestal 57 using a heat medium such as oil and molten salt. It is possible to provide a blade member of a wind heat storage generator that combines wind power generation and thermal power generation, storing steam in a heat storage tank, generating steam with a heat exchanger, and generating electric power with a steam turbine generator.
  • FIG. 32 is a front view of an assembly type wind power generator showing an example of the implementation of the present invention.
  • FIG. 33 is a side view of the assembly type wind power generator shown in FIG. 32.
  • the symbol D is a power generation unit shown in FIG. 31
  • 63 is a pipe-shaped connection support member
  • 64 is a structure for connecting the plurality of connection support members 63 to form a connection support structure E.
  • a pipe-shaped connection support member 65 is a protective member for protecting the connection port of the connection support member 64.
  • the connection support structure E is a structure that can stand by itself.
  • the blade flat plate of the present embodiment is used as a blade member of a wind power generator, the blade member can be transported in a flat plate state, thereby providing a compact and portable blade member for a wind generator of an assembly kit type. be able to.
  • FIG. 34 is a front view of a coupled assembly type wind power generator showing an example of implementation of the present invention.
  • FIG. 35 is a side view of the coupled assembly type wind power generator shown in FIG. 34.
  • FIG. 36 is a top view of the coupled assembly type wind power generator shown in FIG. 34.
  • the drawings shown in FIGS. 34 to 36 are obtained by connecting a plurality of connection support structures F, which are a combination of a plurality of connection support members 63 and 64, and a plurality of assembly-type windmill portions D described in FIGS.
  • connection support structures F which are a combination of a plurality of connection support members 63 and 64, and a plurality of assembly-type windmill portions D described in FIGS.
  • reference numeral 66 denotes a reinforcing member for firmly reinforcing and fixing the connection support structure F connected to the connection support member 64 with the wire 67.
  • the wire 67 is not only connected to a plurality of reinforcing members 66 to reinforce the connection support structure F, but also connected to a pile or weight, for example, to the connection support structure F. Can be fixed, and the method of reinforcing and fixing is not limited.
  • a blade member of a connected assembling type wind power generator capable of adjusting a power generation amount according to a necessary power amount by connecting a plurality of blade flat plates of the present embodiment as blade members of a wind power generator. it can.
  • connection support structure F can be constructed by using a plurality of connection support members 63 and 64, for example, a connection support structure capable of generating power by connecting to wall surfaces of a plurality of adjacent buildings. If constructed, the tower and pedestal as in the existing wind power generator is not required, and the wind power generator using the blade plate blade member of the present embodiment is difficult even in places where it is difficult to install such as in a densely populated town. Can be provided. However, even if it is not a building, a rocky place, a building, and a combination thereof are also possible, and what is connected to the connection support structure is not limited.
  • FIG. 37 is a conceptual front view of a coupled wind power and solar hybrid generator showing an example of the implementation of the present invention.
  • Reference numeral A denotes the wind power generator shown in FIGS. 25 and 26, and an organic thin film solar cell capable of processing a curved surface is provided on the surface of the blade member of the wind power generator A, although not shown.
  • the wind power generators are arranged in parallel in three horizontal rows, and the three wind power generators arranged in parallel are arranged in two vertical rows.
  • Reference numeral 68 denotes a connection support member for connecting them at appropriate intervals in order to effectively generate power.
  • curved surface processing is possible for inorganic and compound solar cells.
  • a vane member can be provided.
  • FIGS. 38 and 39 are views showing the state before and after variable of the vertical axis wind power generator in which the blade member is variable.
  • FIG. 38 is a front view of the vertical axis wind power generator with variable blade members after being changed.
  • FIG. 39 is a front view of a vertical axis wind power generator with variable blade members before variable.
  • the windmill part of this embodiment can generate electric power from any direction of wind. In a storm, as shown in FIG. 39, it is possible to avoid damage by closing the blade member.
  • a brake device is unnecessary, and cost reduction and ignition of the brake device can be avoided, which is safe.
  • FIG. 40 is a conceptual front view showing a power generation main unit of a levitation generator as an example of the embodiment of the present invention.
  • reference numeral 30 ⁇ / b> A denotes a blade member made of a blade flat plate of the present embodiment, which is not contacted with the outer peripheral portion 3 extending counterclockwise from the vicinity 2 of the center portion 1, and 30 ⁇ / b> B is a vicinity 2 of the center portion 1.
  • This is a blade member made of a blade flat plate of the present embodiment in which cuts that do not contact the outer peripheral portion 3 extending in the clockwise direction are made.
  • Reference numeral 71 denotes a connection support member for arranging the blade members 30A and 30B at appropriate intervals in order to generate power effectively
  • 72 denotes a shaft body connected to the rotor side of the generator 73
  • 74 denotes the generator 73.
  • a tubular shaft connected to the stator side, 75 is a connecting member
  • 76 is a cable having strength for connecting the power generating main body G having the connecting member 75 and the floating member
  • 77 is connected to the generator 73.
  • the reference numeral 78 denotes a strong power cable
  • 79 denotes an outer peripheral member
  • 80 denotes a rotating member
  • 81 denotes a commutator for conducting the generated power flowing in the wiring 77 to the power cable 78.
  • the power generation main body G has at least rust prevention, waterproof, air tightness, pressure resistance, or a combination thereof.
  • the rotational force generated when the blade members 30A and 30B are rotated by the fluid medium in the directions of the arrows shown in the figure is generated.
  • the generated power is obtained by transmitting the shafts 72 and 74 connected to the rotor side and the stator side of 73 respectively.
  • the levitation generator can be levitated in the air by the levitation member so that power can be generated regardless of the wind direction.
  • a strong and continuous wind can be obtained, and a blade member can be provided that generates generated power more efficiently than a conventional wind power generator installed near the ground.
  • the power generation main body G can be used even in the sea by having a function of incorporating gas, and by using the ocean current, it is possible to obtain a stronger and more stable energy than the wind, which is more efficient than a wind power generator. Generation power can be generated.
  • FIG. 41 is a conceptual front view of a power generation main body portion of a coupled levitation generator showing an example of implementation of the present invention.
  • 3 shows a configuration in which three power generation main body parts G are connected in series, and the connected floating generator can be connected to a levitation member, and generates electric power generated from the generators 73 of the plurality of power generation main body parts G.
  • the power cable 82 can be transmitted.
  • mold floating generator has the characteristic of at least rust prevention property, waterproofness, airtightness or pressure resistance, or these combination.
  • the blade flat plate of the present embodiment is used as a blade member of a connection type levitation generator, a plurality of power generation main body parts G can be connected in a connected manner by combining a plurality of connection support members 71.
  • a blade member that generates a larger amount of generated power than the wind in the sky can be provided by combining the coupled floating generator with a floating member.
  • the connected floating generator can be used in the sea by having a function of incorporating gas, and can generate a large amount of generated power from the ocean current.
  • FIG. 42 is a conceptual front view of a coupled inclined wind power generator showing an example of the implementation of the present invention.
  • FIG. 43 is a conceptual top view of the coupled inclined wind power generator shown in FIG.
  • the four power generation main bodies G connected to the power cable 83 are inclined 45 degrees from the upper part of the tower 84 installed in the vertical direction, and 90 degrees from the center of the tower 84 as a base point. It is arranged by rotating.
  • FIG. 42 is a conceptual front view of a coupled inclined wind power generator showing an example of the implementation of the present invention.
  • FIG. 43 is a conceptual top view of the coupled inclined wind power generator shown in FIG.
  • the four power generation main bodies G connected to the power cable 83 are inclined 45 degrees from the upper part of the tower 84 installed in the vertical direction, and 90 degrees from the center of the tower 84 as a base point. It is arranged by rotating.
  • reference numeral 85 is a lightning rod
  • 86 is an inverter that collectively controls the power generated by each power generation body G
  • 87 is a pedestal
  • 88 is a generator for maintaining the inclination angle of the power generation body G.
  • the main body fixing member 89 is a cable connecting the power generation main body G and the generator main body fixing member 88.
  • the inclination angle of the power generation main body G to be arranged can be other than 45 degrees, and is within the range of the protection angle of the lightning rod in consideration of the height of the tower.
  • the blade flat plate of this embodiment is used as a blade member of a connection type inclined wind power generator, a plurality of power generation main body parts G can be connected, and the installation of a wind power generator having a large blade member can be performed.
  • a blade member that generates a large amount of generated power even in a difficult place can be provided.
  • the number of power cables 83 connected to the plurality of power generation main body portions G arranged on the upper portion of the tower 84 is any of 3 or more, 4 or more, 5 or more, 6 or more, or 7 or more, and 20 or less. 16 or less, 12 or less, 10 or less, 9 or less, or 8 or less.
  • FIG. 44 is a conceptual perspective view of a buoyant wind power generator showing an example of implementation of the present invention.
  • the levitation member 90 is connected to the power generation main body G via the connection member 75.
  • reference numeral 91 is a winding member for winding the power cable 78
  • 92 is a pedestal connected to the winding member 91 so as to be rotatable along a horizontal plane
  • 26 is a wind direction
  • H is a vehicle.
  • the blade flat plate of this embodiment is used as a blade member of a floating wind power generator, the blade members 30A and 30B rotate in different directions with respect to the wind direction 26 as shown in FIG.
  • the inertial force due to the rotation of the members 30A and 30B can be offset, the power cable 78 can be prevented from being kinked due to the rotation of the power generation main body G, and more power can be generated than the one blade member. it can.
  • the winding of the winding member 91 in conjunction with the movement of the power generation main body G that receives the wind in the sky rotates along the horizontal plane, thereby preventing the power cable 78 from being kinked.
  • the power generation main body G and the levitation member 90 can be installed on the ground.
  • failure and breakage due to bad weather such as typhoons and thunderstorms can be prevented, and maintenance can be easily performed. Can be done.
  • typhoons and thunderstorms they can be installed on the ground even under bad weather conditions such as cold waves, heat waves, squalls, and storms, and the weather conditions are not limited.
  • the vehicle H with the winding member 91 and the pedestal 92, a foundation such as an existing wind power generator is not required, and the installation cost can be reduced and the vehicle can be moved. Therefore, even when power shortage or power outage occurs, power generation and power supply can be performed in a disaster area, and a blade member of a mobile floating wind power generator that does not limit the power generation location can be provided.
  • a blade member of a mobile floating wind power generator that does not limit the power generation location can be provided.
  • FIG. 45 is a conceptual perspective view of a buoyant wind power generator showing an example of implementation of the present invention.
  • FIG. 45A is a conceptual front view showing a power generation main body portion of a truncated icosahedron type floating generator having a plurality of blade members.
  • FIG. 45B is a conceptual side view showing a power generation main body portion of a truncated icosahedron type floating generator having a plurality of blade members.
  • FIG. 45A is a conceptual front view showing a power generation main body portion of a truncated icosahedron type floating generator having a plurality of blade members.
  • FIG. 45B is a conceptual side view showing a power generation main body portion of a truncated icosahedron type floating generator having a plurality of blade members.
  • 45C is a conceptual top view showing a power generation main body portion of a truncated icosahedron type floating generator having a plurality of blade members.
  • the power generation main body H having the blade member 30 and the generator A has a backminster comprising a truncated icosahedron whose support member shape is composed of 20 hexagons and 12 pentagons. Fullerene structure. Wind in all directions can be used regardless of the vertical and horizontal directions. Moreover, power generation is possible even in turbulent flow.
  • a plurality of blade members 30 having different cutting directions are provided, and when the blade members are rotated by the wind, the rotational inertia force is canceled to prevent the electric cable 78 from being twisted.
  • the generator A is stationary with respect to the wind direction 26 in any of the wind direction following directions 26A.
  • FIG. 46 is a conceptual perspective view of a buoyant wind power generator showing an example of implementation of the present invention.
  • the truncated icosahedron type power generation main body H includes a levitation member 90 as in the seventeenth embodiment, and 90 is connected to the power generation main body H via a connection member 75.
  • reference numeral 91 is a winding member for winding the power cable 78
  • 92 is a pedestal that is rotatably connected to the winding member 91 along a horizontal plane
  • 26 is a wind direction
  • H is a vehicle. .
  • FIG. 47 is a conceptual perspective view of a vertical axis wind power generator showing an example of implementation of the present invention.
  • the blade member by the three-dimensional spiral blade 102C shown in FIGS. 19 and 20 is held by the shaft body 31 for maintaining this shape.
  • Reference numeral 34 denotes a rotation speed control member for controlling the rotation of the blade member
  • 35 denotes a generator
  • 37 denotes a column fixed to the pedestal 38
  • 39 denotes a rotation member that is rotatably connected to the shaft body 31. ing.
  • the wind power generator according to the present embodiment is a vertical windmill M having a blade member formed by a three-dimensional spiral blade 102C, the rotational force generated by the blade member rotating by a fluid medium (for example, wind). Is transmitted to the shaft 31, the generated power can be obtained from the generator 35.
  • FIG. 48 is a conceptual front view showing a power generation main unit of a levitation generator as an example of the embodiment of the present invention.
  • the blade member M-1 that is connected to the blade 7 that rotates counterclockwise to form a three-dimensional spiral blade 102C and the M-1 are reversed along the rotation axis.
  • M-2 is connected by a connecting member.
  • Reference numeral 71 is a connecting support member for arranging the blade members M-1 and M-2 at appropriate intervals for effective power generation
  • 72 is a shaft body connected to the rotor side of the generator 73
  • 74 is A shaft body connected to the stator side of the generator 73
  • 75 is a connection member
  • 76 is a strong cable for connecting the generator body M having the connection member 75 and the levitation member
  • 77 is connected to the generator 73.
  • the reference numeral 78 denotes a strong power cable
  • 79 denotes an outer peripheral member
  • 80 denotes a rotating member
  • 81 denotes a commutator for conducting the generated power flowing in the wiring 77 to the power cable 78.
  • FIG. 49 is a conceptual perspective view of a buoyant wind power generator showing an example of implementation of the present invention.
  • FIG. 49 is a conceptual front view of a power generation main body portion of a coupled levitation generator showing an example of implementation of the present invention.
  • 48 shows a configuration in which the three power generation main body parts N of FIG. 48 are connected in series, and the connected floating generator can be connected to a levitation member and is generated from the generators 73 of the plurality of power generation main body parts N. The generated power can be transmitted to the power cable 82.
  • mold floating generator has the characteristic of at least rust prevention property, waterproofness, airtightness or pressure resistance, or these combination.
  • the blade flat plate of the present embodiment is used as a blade member of a connection type levitation generator, a plurality of power generation main body parts N can be connected in a connecting manner by combining a plurality of connection support members 71.
  • a blade member that generates a larger amount of generated power than the wind in the sky can be provided by combining the coupled floating generator with a floating member.
  • FIG. 50 is a conceptual perspective view of a buoyant wind power generator showing an example of implementation of the present invention.
  • the levitation member 90 is connected to the power generation main body N via the connection member 75.
  • reference numeral 91 is a winding member for winding the power cable 78
  • 92 is a pedestal rotatably connected to the winding member 91 along a horizontal plane
  • 26 is a wind direction
  • H is a vehicle. .
  • FIG. 51 is a conceptual perspective view of a buoyant ocean current generator showing an example of implementation of the present invention.
  • the counterclockwise blade member 30 ⁇ / b> A and the clockwise blade member 30 ⁇ / b> B are arranged in parallel to the ocean current 96.
  • 97 is a keel for allowing the blade members 30A and 30B to follow the ocean current 96 so as to be able to rotate
  • 98 is a floating member
  • 99 is a generator
  • 100 is a strong power cable for transmitting the power generated from the ocean current 96
  • O shows the power generation main body. Note that the levitation member 98 contains gas, and the power cable 100 is firmly connected to the anchor 101.
  • the inertial force due to the rotation of the blade members 30A and 30B can be offset with respect to the ocean current 96 as shown in FIG.
  • a blade member capable of preventing the power cable 100 from being twisted due to the rotation of the power generation main body O can be provided.
  • the generated power can be transmitted to the ground, and the generated power can be provided more stably than the ocean current and with a large output.
  • the buoyancy of the levitation member 98 can be adjusted and the power generation body O can be lifted to the sea, and maintenance can be easily performed.
  • the means is not limited.
  • the stored storage battery can be transported to land, and a submarine power cable is not required, thereby reducing the cost of the power transmission network.
  • FIG. 52 is a conceptual front view of a hydroelectric generator showing an example of implementation of the present invention.
  • the water turbine portion denoted by reference symbol P includes a plurality of blade members 30 made of a blade flat plate of this embodiment in which cuts are made not in contact with the outer peripheral portion 3 extending in the counterclockwise direction from the vicinity 2 of the central portion 1 in the direction shown in FIG. It is connected and arranged.
  • FIG. P The water turbine portion denoted by reference symbol P includes a plurality of blade members 30 made of a blade flat plate of this embodiment in which cuts are made not in contact with the outer peripheral portion 3 extending in the counterclockwise direction from the vicinity 2 of the central portion 1 in the direction shown in FIG. It is connected and arranged.
  • reference numeral 123 denotes a shaft body whose central axis is on the rotation axis of the water turbine portion P
  • 124 denotes a central member firmly connected to the shaft body 123
  • 125 denotes a blade member 30 and the shaft body 123 to be strong.
  • the outer peripheral member connected, 126 is a generator
  • 127 is a support member for fixing the water turbine portion P
  • 128 is a rotation member rotatably connected to the shaft body 123
  • 129 is the generator 126 and support
  • Each of the pedestals for fixing the member 127 is illustrated.
  • the broken arrow indicates the flow direction of the water flow 130
  • the solid arrow 131 indicates the rotation direction of the water turbine portion P that is rotated by the water flow.
  • the generated power is generated from the generator 126 by transmitting the rotational force generated by the rotation of the blade member 30 by the water flow to the shaft body 123. Is obtained.
  • the water flow can be captured more efficiently.
  • protrusions, dimple-like recesses, or combinations thereof can be formed on the surface, and the shape of the surface is not limited.
  • FIG. 53A is a conceptual side view of a moored hydropower and ocean current generator showing an example of implementation of the present invention.
  • a mooring-type hydropower and ocean current generator that transmits power by rotation of a seawater-resistant cable 123 that is firmly connected to the blade member 30.
  • This hydropower and ocean current generator has water resistance, pressure resistance, seawater resistance, and corrosion resistance. Cavitation can be reduced by the shape without the blade tip, and damage to the blade member can be prevented. Since the blade member 30 self-extends and rotates due to the drag generated by the water flow 130, a shaft body is not necessary.
  • reference numeral 53 denotes a central member having a hollow structure, and power can be generated at an optimal water depth by filling with air.
  • the generator 126, the rotation speed control member x, the speed increaser x, and the mechanical device can be installed on the water or the sea, preventing a failure and facilitating maintenance. . Furthermore, it is possible to reduce environmental burden and cost.
  • FIG. 53B and 53C are perspective views showing examples of other blade flat plate embodiments.
  • FIG. 53B is a perspective view of the blade plate 100 before extension.
  • the blade flat plate 100 of the present embodiment is firmly connected to a central buoyant body having a pressure resistance and a waterproof property at the center.
  • the central buoyancy body 212 incorporates a seawater-resistant and pressure-resistant shaft body that can be expanded and contracted.
  • FIG. 53C (A) is constructed by extending and contracting a stretchable shaft body 213 built in the central buoyancy body 212 in a direction perpendicular to the plane having the central portion 1 of the blade flat plate 100 shown in FIG. 53B.
  • This is a three-dimensional spiral blade having a constricted portion 8.
  • FIG. 53C (B) is a drawing when viewed from the extension direction (one of the upper and lower directions) in the extended state, and has an outer peripheral member 215, and 216 is connected to the spiral blade 102B and the outer peripheral member 215. It is the outer peripheral part buoyancy body.
  • the spiral blade 102B of the blade flat plate of the present embodiment constructed by extending the central portion 1 and the outer peripheral portion 3 with the shaft body 213 is an organic material having a large surface area when viewed from any direction. Has a three-dimensional shape.
  • a blade member such as an ocean current generator, for example, a fluid medium such as seawater or water can be easily captured, and lift and drag are generated.
  • a blade member that can be provided can be provided.
  • the blade flat plate of the present embodiment has a self-starting property by a fluid medium, and The rotational force can be controlled.
  • the central buoyant body 212 and the outer buoyant body 216 can be charged with air or liquid to generate power at an optimal water depth, and can float on the sea surface, water surface, etc. during maintenance.
  • the blade flat plate of the present embodiment is simply stretched to construct a three-dimensional spiral blade from the two-dimensional blade flat plate and used as a blade member of a generator or a blower, the present embodiment will be implemented.
  • a blade member of a low-cost generator and blower device or any of these assembly kits that can be transported in a flat state when transporting a blade flat plate in a form, is easy to assemble and is easy to carry Can do.
  • the blade flat plate of the present embodiment having a bowl-shaped curved outer periphery is used as a blade member of a generator and a blower, even if the blade flat plate of the present embodiment is made of a resin plate, the outer peripheral portion The outer peripheral member can be simplified, and the generator and the blower device or any of these assembly kits can be reduced in weight.
  • the blade flat plate material of the present embodiment is not limited to resin, but may be any combination of, for example, metal, carbon fiber, plant fiber, or resin, and the blade flat plate material of the present embodiment is limited. Not what you want.
  • FIG. 53D is a conceptual side view at the time of power generation by a mooring type tidal current and ocean current generator showing an example of implementation of the present invention.
  • the mooring-type tidal current and the ocean current transmit power to the power generation main body X by the rotation of a strong seawater-resistant cable 217 firmly connected to the blade member Y that rotates by the tidal current and the ocean current. It is a generator.
  • This tidal current and ocean current generator have at least water resistance, pressure resistance, seawater resistance, and corrosion resistance. Cavitation can be reduced by the shape without the blade tip, and damage to the blade member can be prevented.
  • the center float 218 is firmly connected with the anchor 225 installed in the seabed via the chain 224 made from steel.
  • FIG. 53D (B) is a conceptual top view at the time of power generation by a mooring type tidal current and ocean current generator showing an example of the embodiment of the present invention.
  • FIG. 53D (B) shows a float floating on the sea (central float 218, side float 219), power generation main body X and mechanical device (power storage device 221, power conversion and control device 222, cable 217, winding member 223, etc. ).
  • the power generation main body X can freely adjust the angle along the horizontal plane and the vertical plane in accordance with the movement of the blade member Y to be moored.
  • FIG. 53E (A) is a conceptual side view of the mooring-type tidal current and ocean current generator shown in FIG. 53D when pulling up.
  • FIG. 53E in order to stop the rotation, the blade member Z shown in FIG. 53B having a flat plate shape is deformed, and the blade member Z floated on the cable 217 and the sea surface by the winding member 223 is collected. And recovered in the central float 218.
  • FIG. 53E A is a conceptual side view of the mooring-type tidal current and ocean current generator shown in FIG. 53D when pulling up.
  • the blade member Z shown in FIG. 53B having a flat plate shape is deformed, and the blade member Z floated on the cable 217 and the sea surface by the winding member 223 is collected. And recovered in the central float 218.
  • 53E (B) shows a float floating on the sea (central float 218, side float 219), power generation main body X, and mechanical device (power storage device 221 and electric power) in order to collect the blade member Z by the winding member 223.
  • the direction of the conversion and control device 222, the cable 217, the winding member 223, etc.) is turned 90 degrees in the arrow direction by the thruster 220, and the broken line portion indicates the position before turning.
  • the blade flat plate of this embodiment is used as a blade member of a tidal current and ocean current generator, the blade member rotated from the ocean current 226 by the cable 217 firmly connected to the blade member Y as shown in FIG. It is possible to transmit the rotational power of Y, and it is possible to install a generator and a gearbox on the sea, so that maintenance can be easily performed on the sea, and a tidal current and an ocean current generator that are safe and have few failures are provided. be able to.
  • the rotation can be stopped and a brake device becomes unnecessary.
  • a movable power storage device can be transported to land, and a submarine power cable is not required, which contributes to a reduction in power generation cost.
  • FIG. 54 is a conceptual perspective view and front view of a blower device showing an example of the implementation of the present invention.
  • reference numeral Q-1 is a blower device using the blade member 30 by the spiral blade 102A having a three-dimensional shape of the blade flat plate of this embodiment having no constricted shape
  • Q-2 is a blower device using the blade member 30 by the three-dimensional spiral blade 102B of the blade flat plate of the present embodiment having a constricted shape
  • Q-3 is the blade flat plate of the present embodiment having a constricted shape in FIG.
  • FIG. 54 is a conceptual perspective view and front view of a blower device showing an example of the implementation of the present invention.
  • reference numeral Q-1 is a blower device using the blade member 30 by the spiral blade 102A having a three-dimensional shape of the blade flat plate of this embodiment having no constricted shape
  • Q-2 is a blower device using the blade member 30 by the three-dimensional spiral blade 102B of the blade flat plate of the present embodiment having a cons
  • Q-4 is a blade flat plate of the present embodiment having a constricted shape, in which two blade members 30 by three-dimensional spiral blades 102B are used in combination as shown in FIG.
  • the air blower uses a combination of two blade members 30 each having a three-dimensional spiral blade 102B.
  • Reference numeral 131 denotes a shaft body
  • 133 denotes a central member
  • 134 denotes a motor
  • 135 denotes a power cable
  • 136 denotes a connection pipe through which the shaft body passes.
  • a broken arrow indicates the airflow generated by the rotation of the blade member, and a solid arrow indicates the direction in which the motor 134 rotates.
  • the blade flat plate of the present embodiment as a blade member of the blower, a swinging device such as an existing blower is not required, and a wide range of air with various airflows is generated.
  • a vane member can be provided.
  • ribs on the surface of the blade member 30, it is possible to more efficiently generate wind having a wide range and various airflows.
  • protrusions, dimple-like recesses, or a combination thereof can be formed on the surface.
  • the blade flat plate of the present invention is a structure that is constructed only by stretching, and can be stacked and easily stored and transported.
  • the blade flat plate of the present invention can be manufactured by simple processing, if it is used as a blade member for a generator using a fluid medium, a die is not required and the manufacturing cost of the blade member can be reduced.
  • the blade flat plate of the present invention has a plurality of spiral blades, if it is used as a blade member of a generator, it will rotate by generating drag and lift by a flow direction medium, and at startup A blade member that does not require external power can be provided.
  • the blade flat plate of the present invention has a shape without a blade tip, when used as a blade member of a wind power generator, a silent wind power generator that solves the problem of low-frequency noise caused by wind noise at the blade tip.
  • a vane member can be provided.
  • the blade flat plate of the present invention expands and contracts like a spring material, and if used as a blade member of a wind power generator, the resistance due to wind pressure due to turbulent flow or gust wind is dispersed or diffused to prevent damage to the blade member. can do.
  • the blade flat plate of the present invention has a self-flow direction tracking function with respect to the fluid medium, if it is used as a blade member of a wind power generator, a yaw driving device for tracking the wind direction is unnecessary and manufactured.
  • a blade member that reduces costs and maintenance costs can be provided.
  • the blade flat plate of the present invention has a large surface area, if it is used as a blade member of a wind power generator, visibility is high and the bird strike problem can be solved.
  • the number of blade members is larger than that of a single generator.
  • the generated power can be generated.
  • the blade flat plate of the present invention is used for a blade member of a wind power generator provided with a blade member fixing member, the blade portion is fatigued by self-excited vibration generated by a fluid medium, a strong wind such as a typhoon, or a gust of wind. Furthermore, damage to the blade portion due to turbulent flow can be prevented, and a blade member with higher safety can be provided.
  • a coupling type and a coupling that can adjust the power generation amount according to the required power amount by combining with a plurality of coupling support members.
  • mold assembly type wind power generator can be provided.
  • a tower and a pedestal as in an existing wind power generator are not required by constructing a coupled support structure.
  • a blade member of a low-cost wind power generator can be provided.
  • a large amount of output can be obtained by combining a plurality of small generators by connecting the power generation main body parts in a multiple connection type.
  • the generated power can be generated.
  • a plurality of blade flat plates of the present invention are used as blade members of a connected inclined wind power generator, a plurality of power generation main bodies can be connected, and a wind power generator having a large blade member can be installed.
  • a blade member that generates a large amount of generated power even in a difficult place can be provided.
  • the blade flat plate of the present invention is used as a blade member of a buoyant wind power generator, the wind in the sky can be used stably by rotating with respect to the fluid medium without limiting the direction of the rotation axis. It is possible to provide a blade member that can obtain efficient generated power and that can move and can supply electricity even in the event of a power shortage or a power failure in an emergency such as a disaster.
  • the blade flat plate of the present invention is used as a blade member of a wind power generator whose blade member is variable, a brake like an existing wind power generator is controlled by adjusting the expansion rate of the blade member and controlling the rotation.
  • a blade member that does not require a device can be provided.
  • the blade flat plate of the present invention having a constricted shape constructed by stretching is used as a blade member of a generator that generates electricity with a fluid medium, the blade that generates generated power with higher efficiency than that without a constricted shape A member can be provided.
  • the blade flat plate of the present invention is used as a blade member of a wind power generator, the blade member is deformed from a two-dimensional flat state to a three-dimensional multi-helical structure that can be rotated by a fluid medium.
  • a blade member of a wind turbine generator of an assembly kit type that is easy to assemble and can be easily assembled.
  • blade flat plates of the present invention are used as blade members of a floating ocean current generator, it is possible to provide a blade member of an ocean current generator that generates a stable and large amount of generated power.
  • the blade flat plate of the present invention is used as a blade member of a generator or a blower, a blade member of a generator or a blower with high efficiency and low cost can be provided.
  • a plurality of blade flat plates of the present invention are used as the blade member of a hydroelectric generator, it is possible to provide a blade member of a hydraulic turbine blade of a low cost.
  • the blade flat plate of the present invention is used as a blade member of a blower device, it is possible to generate a wide range of winds having various air currents, and to provide a blade member of a blower device that does not require a swinging device. it can.
  • the blade flat plate of the present invention is used as a blade member of a generator, it can be used as a blade member simply by extending the flat plate having the outer periphery, and has a self-starting property and a self-flow direction following property by a fluid medium, It can be rotated without limiting the direction of the rotation axis, and the rotational force can be controlled. There is no wind noise noise problem or bird strike problem at the tip of the wing, and the roof and walls of suburbs, towns, residential areas, buildings, houses, etc.
  • the blade flat plate of the present invention is composed of the flat plate having at least one of the following characteristics: elasticity, plasticity, plasticity, shape memory property, friction reducing property, water repellency, weather resistance, phosphorescent property, luminescent property, or transparency property.
  • the blade flat plate of the present invention has a plurality of dimple-like dents or protrusions and a combination thereof, and is arranged at an appropriate interval in order to efficiently capture the fluid medium.
  • the blade flat plate of the present invention has a plurality of ribs connected in a spiral shape, a part of a circle, a straight line, or a combination thereof, and is provided radially at appropriate intervals around the center portion.
  • the blade flat plate of the present invention includes a blade fixing member and is firmly connected by a blade flat plate, a shaft body, a central member, an outer peripheral member, or a combination thereof.
  • a shaft or the like is conceivable as the blade fixing member.
  • the blade flat plate of the present invention has a function of emitting light, and is configured to be able to emit light using an LED material or inorganic and organic electroluminescence materials.
  • the generator or generator assembly kit of the present invention includes at least a blade flat plate or a power generation unit that generates electric power by rotating the blade flat plate.
  • the blower or the assembly kit of the blower of the present invention includes at least one blade flat plate or a drive unit that rotates the blade flat plate.
  • the generator or blower related to the invention of the present application, or any one of these assembly kits includes a plurality of the central member and the shaft body, and a plurality of blade flat plates of the invention of the present invention or the invention of the present application having the outer peripheral portion as a bottom surface.
  • the blade flat plate according to the related invention is configured to be able to generate electric power with the power generation unit with the bottom surfaces facing each other.
  • the generator or generator assembly kit of the present invention includes a levitation member, and the levitation member has at least a blade flat plate or a cable for connecting a power generation main body including the blade flat plate.
  • FIG. 55 is a statistical diagram of the voltage amount in the number of blades of the blade member of the wind power generator according to the first embodiment of the present invention.
  • a wind power generator having a blade member and a generator which is a blade flat plate of this embodiment in which a central portion and an outer peripheral portion of a diameter of 150 mm, which are simply configured so as to be able to follow the wind direction, are extended by 80 mm.
  • the voltage generated by the rotation of the wind power generator connected to the blade member is measured under a certain non-resistance by generating wind (about 3m / sec) from the blower from a distance of 400mm It is.
  • the simply configured wind power generator used in the measurement of FIG. 55 has two different styles, and the first wind power generator has a wind direction at the center of the blade member rather than the outer periphery.
  • the horizontal axis type which is configured to face to the side
  • the second wind power generator is an inclined axis type in which the rotation plane of the blade member is inclined 45 degrees with the horizontal plane being 0 degree, and the number of blades is 3 and 5
  • the voltage generated by attaching different blade members to each wind power generator is measured.
  • FIG. 56 is a statistical diagram of the voltage amount in the expansion difference of the blade member of the wind power generator according to the second embodiment of the present invention.
  • the wind power generator used in the measurement of the figure is the horizontal axis type having four blades with four different expansion ratios, and the third wind power generator has an extension of 100 mm (hereinafter referred to as an expansion ratio of 100 mm).
  • the fourth wind power generator has a blade member with a stretch rate of 70%
  • the fifth wind power generator has a blade member with a stretch rate of 40%
  • the generator has a blade member having an expansion rate of 0%
  • each wind power generator generates wind (about 4 m / second) from a blower device at a distance of 500 mm toward each wind power generator.
  • the voltage generated from the machine is measured.
  • the blade member has a constricted shape with an elongation rate of about 70% or more.
  • the blade member has a different voltage depending on the extension difference. That is, when the blade flat plate of this embodiment is used as a blade member of a wind power generator because the power generation efficiency is high in a certain extension range and the rotation does not rotate at an extension rate of 0%, the extension rate of the blade member is It was found that the rotational force can be controlled by.
  • the third and fourth wind power generators having a constricted shape showed higher voltage than the fifth and sixth wind power generators having no constricted shape. That is, it was found that when the blade flat plate of this embodiment is used as a blade member of a wind power generator, the power generation efficiency is high in the extension range where the constricted shape is constructed.
  • FIG. 57 is a statistical diagram of the rotation angle in the wind direction of the blade member of the wind power generator according to Example 3 of the present invention.
  • the wind power generator used in the measurement of the figure is a five-blade type without a wind direction following function in which a blade member, which is a blade flat plate of this embodiment having a diameter of 150 mm, is extended by 80 mm, and the wind direction (I ) From the distance of 400 mm toward the wind power generator, wind (about 4 m / sec) is generated from the blower, and the angle is changed with the base point (III) on the axis of rotation (II) of the blade member as the axis. This is the result of examining the impossibility of rotation.
  • the blade flat plate of the present embodiment when used as a blade member of a buoyant wind power generator, the levitation member is swept away by the wind flowing upward, and the power generation main body portion is inclined to rotate the blade member. Power generation. Further, if the blade flat plate of the present embodiment is used as a blade member of a floating ocean current generator, it is considered that the blade member rotates to generate power when the power generation main body portion is inclined by the ocean current.
  • FIG. 58 is a block diagram of an apparatus for testing blade members using a wind tunnel test apparatus.
  • FIG. 59 is a diagram showing test results.
  • wind 200 generated from a large blower passes through a pitot tube 201 and rotates a blade member 30 which is a wind turbine of a test body connected to a torque transducer 202.
  • the torque is measured by a power sensor 205 by applying a brake to a rotor 204 by a torque motor brake 203.
  • the rotation of the rotor 202 is measured by the rotation sensor 206 and the peripheral speed ratio is measured by the torque converter 207.
  • the power coefficient is derived from the torque and the peripheral speed ratio thus obtained.
  • Reference numeral 208 denotes a power source
  • 209 denotes a betz type manometer.
  • the power coefficient was measured by extending a stainless steel windmill having a diameter of 800 mm by 200 mm, 300 mm, 400 mm, and 500 mm, respectively. The result is shown in FIG.
  • the horizontal axis in FIG. 59 is the peripheral speed ratio, and the vertical axis is the power coefficient.
  • FIGS. 59A to 59D it has been found that the power coefficient varies depending on the difference in expansion.
  • the expansion ratio of the windmill was changed at a wind speed of 6 m / s, the expansion was the maximum at 300 mm.
  • the wind speed was changed to 4 m, 6 m, 8 m, and 10 m / s in a windmill having an extension of 300 mm, the maximum was obtained at a wind speed of 10 m / s.
  • the blade flat plate 100 of the present invention is effective when used as a blade member of a wind power generator or a power generator as a blade of a blower.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Wind Motors (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

【課題】多重螺旋式構造体を構築するブレード平板、それを用いた発電機およびその組み立てキット、送風装置およびその組み立てキットを提供することを課題とする。 【解決手段】 本発明のブレード平板100は、平板部101に渦巻き状の切り込み4を有している。そして、平板状のブレード平板100の状態から、渦巻き状の切り込み4の中心部側を、平板面に対して直交する方向に伸長させた状態とすることで、三次元形状の螺旋ブレードを配置する。この三次元形状の螺旋ブレードは、例えば風力発電装置の風車用の三次元の羽根部材として利用される。

Description

ブレード平板、それを用いた発電機およびその組み立てキット、送風装置およびその組み立てキット
 本願発明は、平板ブレード、発電機およびその組み立てキット、送風装置およびその組み立てキットに関する。
 例えば風、水等の流体媒体の利用分野として、再生可能エネルギーを利用した発電分野がある。世界的にみても今後期待されている分野の1つに潮流や海流を利用した発電方式があるが、風力発電は再生可能エネルギー発電分野のなかでも代表格であり、種々の提案がなされている(特許文献1、2参照)。風力発電装置は、風車の回転軸方向により水平軸型と垂直軸型に分類できる。
特開2001-289149号公報 特開2008-228570号公報 特表2009-531227号公報 米国特許公開第2012/0076656号明細書 特開2012-002069号公報 米国特許第9103567号公報
 水平軸型の風力発電機には、例えばプロペラ式等、垂直軸型には例えばジャイロミル式、ダリウス式、サボニウス式等があり、それぞれの既存風力発電機には下記のような課題がある。
 水平軸型風力発電機においては、プロペラ式が代表格であり、効率性が良く大型化に向いていることで世界的にみても普及率が一番高い発電様式である。しかしながら、野鳥の衝突によるバードストライク、強風および落雷による羽根部材の破損事故が問題となっており、また、翼先端により発生する風切り音の低周波騒音問題により、プロペラ式風力発電機の利用は、街中や住宅地を避けた郊外に留まっている状況である。さらには、アップウインド方式の風力発電機は風の乱れの影響を受けないが、風向追従するヨー駆動装置を必要とし、他の様式の風力発電機と比べても構造が複雑である点、ヨー駆動装置などの精密装置による故障率が高い点、そのためのメンテナンスが大変である点、さらにまた、羽根部材の製造には金型を必要とし製造コストが高価な点などが挙げられ、全体的にみれば非常にコストのかかる発電様式である。
 垂直軸型風力発電機においては、水平軸型と比べ低いコストで製造可能であるが発電効率は低くなる。例えば、サボニウス式は街中に数多く設置されているが周速比が原理上1以下で発電効率が悪く、実際はモニュメントとしての役割しか果たせていない状況である。一方、水平軸型のプロペラ式と同様に、気流により発生する揚力で回転するジャイロミル式は、垂直軸型のなかでも効率は良く風向きに関係なく回転可能であり、風切り音による低周波騒音が発生しないために街中でも利用可能である。しかしながら、起動時には自力で回転することができずに外部電力を要する点、水平軸型のプロペラ式のように翼の角度を調整して回転を停止することができずに強力なブレーキ装置を要する点、また、大型化が不向きな構造である点などが挙げられ、街中の利用も小規模なものに限定されている発電様式である。
 既存の風力装置の回転翼においては、立体的に構築された三次元形状のものが主流であり、例えば災害時等の必要なときに三次元形状の回転翼として風力や水力を利用して発電機を稼働することができる発電技術の出現が切望されている。
 本発明は、以上の課題に鑑み、多重螺旋式構造体を構築するブレード平板、それを用いた発電機およびその組み立てキット、送風装置およびその組み立てキットを提供することを目的とする。
 前記目的を達成するために、本願発明は、平板部に渦巻き状の切り込みを有し、前記渦巻き状の切り込みの中心部側を伸長させた状態で三次元形状の螺旋ブレードを配置する。
 中心部と外周部のいずれか一方または両方をもって伸張することで構築された多重螺旋式構造体の螺旋ブレードは、表面積が大きい有機的な三次元形状を有する。この結果、多重螺旋式構造体の螺旋ブレードを、例えば発電機等の羽根部材に使用すれば、流体媒体である例えば風や水等を容易に捉え、かつ、揚力および抗力を発生させることができる羽根部材を提供することができる。
図1は、実施形態1に係るブレード平板の上面図である。 図2は、ブレード平板の斜視図であり、ブレード平板の中心部側を伸長させる前の斜視図である。 図3Aは、ブレード平板の中心部側を伸長させた状態の斜視図である。 図3Bは、ブレード平板の中心部側を伸張方向からみた図である。 図4Aは、図3Aの状態よりもさらにブレード平板を伸長させた斜視図である。 図4Bは、図3Bの状態よりもさらにブレード平板を伸張方向からみた図である。 図5は、他のブレード平板の実施形態の一例を示す斜視図である。 図6は、他のブレード平板の実施形態の一例を示す斜視図である。 図7は、本願発明の実施の一例としての伸張前のブレード平板の上面図である。 図8は、ブレード平板の渦巻き状の切込みのバリエーションの一例を示す図である。 図9は、渦巻き状の切込みのバリエーションの他の一例を示す図である。 図10は、図9(B)の平板ブレードの変形例の上面図である。 図11は、図10の独立したブレードの上面図である。 図12は、ブレード平板の渦巻き状の切り込みの形状の変形例を示す図面である。 図13は、渦巻き状の切り込みの形状の他の変形例を示す図面である。 図14は、渦巻き状の切り込みの形状の他の変形例を示す図面である。 図15は、渦巻き状の切り込みの形状の他の変形例を示す図面である。 図16は、渦巻き状の切り込みの形状の他の変形例を示す図面である。 図17は、ブレード平板とそれを支える基台および押さえ部材の平面図である。 図18は、ブレード平板とそれを支える基台および押さえ部材を組み立てる工程図である。 図19は、実施形態5に係る他のブレード平板の上面図である。 図20Aは、他のブレード平板の斜視図である。 図20Bは、他のブレード平板の伸長状態の斜視図である。 図20Cは、他のブレード平板の伸長状態の上面図である。 図21は、他のブレード平板の実施形態の一例を示す斜視図である。 図22は、他のブレード部材の実施形態の一例を示す状態図である。 図23は、ブレード平板に形成されるブレードの枚数と巻数(回転)との関係を示す図である。 図24は、実施形態6に係る他のブレード平板の説明図である。 図25は、本発明の実施の一例を示す風力発電機の側面図である。 図26は、本発明の実施の一例を示す風力発電機の背面図である。 図27は、本発明の実施の一例を示す風力発電機の斜視図である。 図28は、本発明の実施の一例を示す風力発電機の風向に自己追従する範囲を示す斜視図である。 図29は、本発明の実施の一例を示す羽根部材が可変する風力発電機の可変前の側面図である。 図30は本発明の実施の一例を示す羽根部材が可変する風力発電機の可変後の側面図である。 図31は、本願発明の実施の一例を示す2つの羽根部材を有する風力発電機の側面図である。 図32は、本願発明の実施の一例を示す組立て式風力発電機の正面図である。 図33は、図32に記載の組立て式風力発電機の側面図である。 図34は、本願発明の実施の一例を示す連結型組立て式風力発電機の正面図である。 図35は、図34に記載の連結型組立て式風力発電機の側面図である。 図36は、図34に記載の連結型組立て式風力発電機の上面図である。 図37は、本願発明の実施の一例を示す連結型風力および太陽光ハイブリット式発電機の概念的な正面図である。 図38は、羽根部材が可変する垂直軸型風力発電機の可変前後の状態を示す図である。 図39は、羽根部材が可変する垂直軸型風力発電機の可変前後の状態を示す図である。 図40は、本願発明の実施の一例としての浮揚式発電機の発電本体部を示す概念的な正面図である。 図41は、本願発明の実施の一例を示す連結型浮揚式発電機の発電本体部の概念的な正面図である。 図42は、本願発明の実施の一例を示す連結型傾斜式風力発電機の概念的な正面図である。 図43は、図42に記載の連結型傾斜式風力発電機の概念的な上面図である。 図44は、本願発明の実施の一例を示す浮揚式風力発電機の概念的な斜視図である。 図45Aは、羽根部材を複数有する切頂二十面体型の浮揚式発電機の発電本体部を示す概念的な正面図である。 図45Bは、羽根部材を複数有する切頂二十面体型の浮揚式発電機の発電本体部を示す概念的な側面図である。 図45Cは、羽根部材を複数有する切頂二十面体型の浮揚式発電機の発電本体部を示す概念的な上面図である。 図46は、本願発明の実施の一例を示す浮揚式風力発電機の概念的な斜視図である。 図47は、本願発明の実施の一例を示す垂直軸型風力発電機の概念的な斜視図である。 図48は、本願発明の実施の一例としての浮揚式発電機の発電本体部を示す概念的な正面図である。 図49は、本願発明の実施の一例を示す連結型浮揚式風力発電機の概念的な斜視図である。 図50は、本願発明の実施の一例を示す浮揚式風力発電機の概念的な斜視図である。 図51は、本願発明の実施の一例を示す浮揚式海流発電機の概念的な斜視図である。 図52は、本願発明の実施の一例を示す水力発電機の概念的な側面図である。 図53Aは、本願発明の実施の一例を示す係留式水力および海流発電機の概念的な側面図である。 図53Bは、伸張前のブレード平板100の斜視図である。 図53Cは、他のブレード平板の実施形態の一例を示す斜視図である。 図53Dは、本願発明の実施の一例を示す係留式潮流および海流発電機の発電時の概念的な側面図および上面図である。 図53Eは、図53Dに示した係留式潮流および海流発電機の引上げ時の概念的な側面図である。 図54は、本願発明の実施の一例を示す送風装置の概念的な斜視図および正面図である。 図55は、本願発明にかかる実施例1における風力発電機の羽根部材の翼数における電圧量の統計図である。 図56は、本願発明にかかる実施例2における風力発電機の羽根部材の伸張差における電圧量の統計図である。 図57は、本願発明の実施例3における風力発電機の羽根部材の風向における自転角度の統計図である。 図58は,風洞試験装置を用いて羽根部材を試験した装置の構成図である。 図59は、試験結果を示す図である。
 以下、本発明の実施形態について説明するが、本発明はこの実施形態に限定されるものではない。また、複数の実施形態を組み合わせるようにしてもよい。
(実施形態1)
 本願発明にかかる実施形態1におけるブレード平板について説明する。図1は、実施形態1に係るブレード平板の上面図である。図2は、ブレード平板の斜視図である。図3Aは、ブレード平板の中心部側を伸長させた前の斜視図である。図3Bは、ブレード平板の中心部側を伸長させた状態の斜視図である。図3Cは、ブレード平板の中心部側を伸張方向からのみた図である。図4Aは、図3Bの状態よりもさらにブレード平板を伸長させた斜視図である。図4Bは、図3の状態よりもさらにブレード平板を伸張方向からみた図である。図1に示すように、本実施形態のブレード平板100は、平板部101に渦巻き状の切り込み4を有している。そして、図2に示す平板状のブレード平板100の状態から、図3(A)に示すように、渦巻き状の切り込み4の中心部側を、平板面に対して直交する方向に伸長させた状態とすることで、三次元形状の螺旋ブレード102Aを配置するものである。この三次元形状の螺旋ブレード102Aは、例えば風力発電装置の風車用の三次元の羽根部材として利用される。
 具体的には、図1に示すように、ブレード平板100としては、例えば円形の平板部101の中心部を中心部1とし、この中心部1の近傍2から伸び、且つ外周部3には接しない渦巻き状の切り込み(以下「切り欠き」ともいう)4が、本実施形態では中心部1を中心に角度(α)=72度の間隔で5つ施されている。
 切り込み4の外周側端部4aは、外周部3から内周に向かって5から10%の範囲で隔てて形成するのが好ましい。また、切り込み4の中心部2側の内周側端部4bは、中心部1から外周に向かって5から10%の範囲で隔てて形成するのが好ましい。
 また、ブレード平板100の切り込み4は、例えば断裁加工やレーザ加工のみで製造することが可能である。
 ブレード平板100の材質としては、特に限定されるものではないが、少なくとも可撓性を備えた材質の材料からなるものであれば、いずれのもであってもよい。特には、樹脂製材料、金属製材料、ゴム製材料、繊維複合材料などを用いると、耐久性が好ましい、
 また、形状記憶合金を用いてブレード平板100を製造するようにしてもよい。これにより、使用時の熱変形により、三次元形状が固定される。例えば、使用時にはドライヤなどの熱を与えることにより、既に記憶させた三次元形状の螺旋ブレード100を復元させるようにしてもよい。または、三次元形状の螺旋ブレードとしたのち、その三次元形状を保持する例えば接着剤等の固定化材料等を噴射させて、その形状を固定化させて羽根部材として使用するようにしてもよい。
 本実施形態のブレード平板によれば、外周を有する2次元の平板を伸張させるだけで三次元の羽根部材として利用することができる。そして、三次元の羽根部材は、流体媒体による自己起動性および自己流向追従性を有し、回転軸方向を限定せずに自転可能で、かつ、回転力を制御できる。また、三次元の羽根部材を用いることにより、低コストで製造および運用が可能な発電機、さらには、多様な気流を有する風を発生させる送風装置を提供することができる。本実施形態のブレード平板により形成される三次元形状の螺旋ブレードを例えば発電機、送風装置、発熱装置の羽根部材として使用すれば、成形用の金型が不要となり低コストの羽根部材を提供することができる。
 次に、図2~図6を参照して平板ブレード100の使用態様の一例についてさらに説明する。図2は、平板ブレード100の一例を示す伸張前の状態図である。図3Aは、平板状態の平板ブレード100の外周がつくる面に対して中心部1を垂直方向(平板部101の平板面に直交する方向)に第1の伸張5をして構築された本実施形態のブレード平板である三次元形状の螺旋ブレード102Aを示す状態図である。図3A中、符号7は渦巻き状の切込み4が伸張された後のブレードを図示する。図3Bは、伸長させた状態で、伸長方向(上下のいずれか一方向)からみたときの図面であり、隣り合うブレード7、7同士は交差していない状態図である。ここで、多重螺旋式構造体の多重螺旋構造とは、伸長させた状態でくびれ部をそなえる多重螺旋である。この多重螺旋は、螺旋のブレード7の角度が最初は緩く、次第にきつくなり、さらに緩くなる構造をいう。 
 図4Aは、図3Aの三次元形状の螺旋ブレード102Aの状態から、中心部1をさらに垂直方向に第2の伸張6をして構築された三次元形状の螺旋ブレード102Bを示す状態図である。図4A中、符号8は第2の伸長6により伸張率を上げることで構築されるくびれ形状のくびれ部を図示する。図4Bは、伸長させた状態で、伸長方向(上下のいずれか一方向)からみたときの図面であり、隣り合うブレード7、7同士は交差している状態図である。この交差している状態がくびれ部8を形成する。
 図5および図6は、他のブレード平板の実施形態の一例を示す斜視図である。図5は、伸張前のブレード平板100の斜視図である。図5に示すように本実施形態のブレード平板100は、外周部3の周囲に沿って、略お椀形状の湾曲部103を備えている。図6は、図5に示すブレード平板100の中心部1を有する面に対して垂直方向に中心部1を第2の伸張6を施して構築されたくびれ部8を備えた三次元形状の螺旋ブレード102Bである。外周部3にお椀形状の湾曲部103を備えることで、平板より形状維持が強化される。
 ここで、本実施形態の平板ブレード100を伸長させて三次元形状の螺旋ブレード102A、102Bを配置するには、切り込み4の回転方向にわずかに捻れながら伸張するのが好ましい。回転方向にわずかな捻じれについては、後述する。
 このように、中心部1と外周部3のいずれか一方または両方をもって伸張することで構築された本実施形態のブレード平板の螺旋ブレード102(102A、102B)は、いずれの方向から見ても表面積が大きい有機的な三次元形状を有している。この結果、本実施形態のブレード平板の螺旋ブレード102を、例えば発電機等の羽根部材に使用すれば、流体媒体である例えば風や水等を容易に捉え、かつ、揚力および抗力を発生させることができる羽根部材を提供することができる。
 また、風速を考慮して中心部1と外周部3の伸張度合いを調整することによって、本実施形態のブレード平板は流体媒体による自己起動性を有し、かつ、回転力を制御することができる。
 さらには、本実施形態のブレード平板は伸張するだけで2次元のブレード平板100から三次元形状の螺旋ブレード102を構築することによって、発電機または送風装置の羽根部材として使用すれば、本実施形態本実施形態のブレード平板を運搬時には平板状態で運搬することができ、組立てが容易で、かつ、持ち運びが容易な低コストの発電機および送風装置またはこれらのいずれかの組立てキットの羽根部材を提供することができる。
 さらにまた、外周部がお椀状の湾曲形状を有する本実施形態のブレード平板を発電機および送風装置の羽根部材として使用すれば、例えば樹脂板から成る本実施形態のブレード平板であっても外周部には撓みが発生せず、前記外周部材を簡素化することができ、かつ、発電機および送風装置またはこれらのいずれかの組立てキットの軽量化に貢献できる。ただし、本実施形態のブレード平板の材質は樹脂以外にも、例えば金属、炭素繊維または植物繊維さらには樹脂を含むこれらいずれかの組み合わせなども可能であり、本実施形態のブレード平板の材質を限定するものではない。
(実施形態2)
 次に、本願発明にかかる実施形態2におけるブレード平板のブレード平板のバリエーションの形状について説明する。図7は、本願発明の実施の一例としての伸張前のブレード平板の上面図である。図7(A)のブレード平板100は、直線で複数連結されている渦巻き状の切り込み4が5つ施されていると共に、外周部3が円形の羽根部材である。図7(B)のブレード平板100は、円の一部および直線の組み合わせで複数連結されている波形状を有する渦巻き状の切り込み4が3つ施されていると共に、外周部3が円形の羽根部材である。図7(C)のブレード平板100は、円の一部で複数連結されている渦巻き状の切り込み4が5つ施されていると共に、外周部3が10角形状の多角形形状を有する羽根部材である。図7(D)のブレード平板100は、円の一部で複数連結されている渦巻き状の切り込み4が5つ施されていると共に、外周部3が円の一部および直線の組み合わせで複数連結されている波形状を有する羽根部材である。
 これにより、本実施形態のブレード平板100を用いて三次元形状の螺旋ブレードとした多重螺旋式構造体を発電機または送風装置の羽根部材として使用すれば、流体媒体に対して高効率な切り込み形状を有する羽根部材を提供することができる。
 また、例えば、羽根部材の切り込みおよび外周に微細な波形状を施すことによって、回転による騒音を抑制することができる。但し、微細な波形状を施す以外にも、毛のような付属部材などを接続することも可能である。
(実施形態3)
 次に、本願発明にかかる実施形態3におけるブレード平板の羽根部材の形状について説明する。図8は、ブレード平板の渦巻き状の切込みのバリエーションの一例を示す図である。図8(A)のブレード平板100は、渦巻き状の切込み4が1本の例示である。ブレード平板100の切り込み4の外周部3の端部4aから中心部1側にむかって1本の渦が形成され、切り込み4の端部4bは中心部1の近傍に配置されている。図8(B)のブレード平板100は、渦巻き状の切込み4が2本の例示である。ブレード平板100の中心部1を中心として対象の位置の外周部3の2か所の端部4aから中心部1側にむかって2本の渦が形成され、2つの端部4bは中心部1の近傍に配置されている。図8(C)のブレード平板100は、渦巻き状の切込み4が3本の例示である。ブレード平板100の外周部3の3か所の端部4aから中心部1側にむかって3本の渦が形成され、3つの端部4bは中心部1の近傍に配置されている。図8(D)のブレード平板100は、渦巻き状の切込み4が5本の例示である。ブレード平板100の外周部3の5か所の端部4aから中心部1側にむかって5本の渦が形成され、5つの端部4bは中心部1の近傍に配置されている。図8(E)のブレード平板100は、渦巻き状の切込み4が18本の例示である。ブレード平板100の外周部3の18か所の端部4aから中心部1側にむかって18本の渦が形成され、18つの端部4bは中心部1の近傍に配置されている。図8(F)のブレード平板100は、図8(B)の変形例であり、渦巻き状の切込みをスリット状の2つのくり抜きとした例示である。ブレード平板100の外周部3の2か所の端部4aから中心部1側にむかって2本のくり抜かれた切り抜き9の渦が形成され、切り抜き9の渦が形成する2つの端部4bは中心部1の近傍2に配置されている。
 図9は、渦巻き状の切込みのバリエーションの他の一例を示す図である。図9(A)のブレード平板100は、渦巻き状の切込み4の形成により2本のブレード7を形成する例示である。ブレード平板100の切り込み4の外周部3の端部4aから中心部1側に向かって渦状の切込み4が形成され、中心部1の近傍に2つの独立した円弧状のブレード端部7aが配置されている。なお、円弧状のブレード端部7aには、連結用の孔7bが形成されている。図9(B)のブレード平板100は、渦巻き状の切込み4の形成により3本のブレード7とする例示である。ブレード平板100の切り込み4の外周部3の端部4aから中心部1側に向かって渦状の切込み4が形成され、中心部1の近傍に3つの独立した円弧状のブレード端部7aが配置されている。なお、円弧状のブレード端部7aには、連結用の孔7bが形成されている。図9(C)のブレード平板100は、渦巻き状の切込み4の形成により4本のブレード7とする例示である。ブレード平板100の切り込み4の外周部3の端部4aから中心部1側に向かって渦状の切込み4が形成され、中心部1の近傍に4つの独立した円弧状のブレード端部7aが配置されている。なお、円弧状のブレード端部7aには、連結用の孔7bが形成されている。図9(D)のブレード平板100は、図9(A)の切込み4がスリットの切り欠き9を設けて、2つのブレード7を形成する例示である。
 図10は、図9(B)の平板ブレードの変形例の上面図である。図10に示すように、ブレード平板100は、渦巻き状の切込み4の形成により、3本の独立したブレード7としている。この結果、ブレード平板100の切り込み4の外周部3のブレード7の外周側端部7cも独立することとなり、この独立した外周側端部7cから中心部1側に向かって渦状の切込み4が形成され、中心部1の近傍2に3つの独立した円弧状のブレード端部7aが配置される。なお、円弧状ブレード端部7aおよび外周側端部7cには、各々連結用の孔7bが形成されている。
 図11は、図10の独立した一片のブレード7の上面図である。ブレード平板100の切り込み4の外周部3のブレードの端部7cが独立しているので、切り離すことができ、単独のブレード7となる。よって、この独立した3つのブレード7を組み合わせることで、図10の平板ブレードを構築することができる。これにより、3つのブレード7を重ねることでよりコンパクトになる。この結果、重ねた状態で収納することができ、可搬性が向上する。組み立てる際には、端部7cの孔7bにピン等の固定部材で基部に固定し、円弧状のブレード端部7aの孔7bをピンなどの保持部材により保持する。そして、この保持部材を引き上げることで、三次元形状の螺旋ブレード102A、102Bを構築することができる。
 図12は、ブレード平板の渦巻き状の切り込みの形状の変形例を示す図面である。図12(A)から(E)のブレード平板100は、円の一部および直線さらには相似縮小した外周形状の一部の組み合わせで複数連結されている渦巻き状の切り込み4が5つ施されていると共に、外周部3が円形状を有する羽根部材である。
 図12(F)のブレード平板100は、円の一部および直線さらには相似縮小した外周形状の一部の組み合わせで複数連結されている渦巻き状の切り込み4が2つ施されていると共に、外周部3が円形状を有する羽根部材である。
 図12(G)のブレード平板100は、円の一部および直線さらには相似縮小した外周形状の一部の組み合わせで複数連結されている渦巻き状の切り込み4が3つ施されていると共に、外周部3が円形状を有する羽根部材である。
 図12(H)から(K)のブレード平板100は、円の一部および直線さらには相似縮小した外周形状の一部の組み合わせで複数連結されている切り抜き9部分を有する渦巻き状の切り込み4が3つ施されていると共に、外周部3が円形状を有する羽根部材である。なお、図12(H)から(K)のブレード平板100は、外周部3の縁に沿って、切り込み4を有する羽根部材である。
 図13は、渦巻き状の切り込みの形状の他の変形例を示す図面である。図13(A)から図13(C)のブレード平板100は、図12(B)のブレード平板の変形例であり、例えばネジなどの固定部材を通す2以上の孔11と、この孔11同士をネジなどで結合させるための切り込み12を有する羽根部材である。この切り込み12を用いて、孔11同士を結合させるだけで、積極的な伸張による変形以外に、ブレード平板が可撓性を備えていることにより、局部の変形が可能となり、三次元形状の螺旋ブレード102を構築することができる。これの自己変形により、羽根部材の回転効率を向上させることができる。
 図14は、渦巻き状の切り込みの形状の他の変形例を示す図面である。図14(A)のブレード平板100は、図9(A)のブレード平板100の変形例であり、円の一部および直線さらには相似縮小した外周形状の一部の組み合わせで複数連結されている渦巻き状の切り込み4が2つ施されてブレード7を形成していると共に、外周部3が円形状を有する羽根部材である。図14(B)から(C)のブレード平板100は、図9(B)のブレード平板100の変形例であり、円の一部および直線さらには相似縮小した外周形状の一部の組み合わせで複数連結されている渦巻き状の切り込み4が3つ施されてブレード7を形成していると共に、外周部3が円形状を有する羽根部材である。
 図15は、渦巻き状の切り込みの形状の他の変形例を示す図面である。図15に示すブレード平板100は、円弧状の切り込み4が2つ施されて1本のブレード7を形成していると共に、外周部3が円形状を有する羽根部材である。図15中、破線状態の切込み4は、ブレード平板100の使用開始前であり、実線は、ブレード平板100を使用する際に、中心部2を垂直方向に伸長させて、ブレード7を自己交差させて、くびれ部8を形成させて三次元形状の螺旋ブレード102を構築することができる。図16は、渦巻き状の切り込みの形状の他の変形例を示す図面である。図16(A)のブレード平板100は、外周部3が真円の円形ではなく、渦巻き状の切り込み4の端部7cが外周部3の一部を構成しており、伸長させる際には、端部7cに形成された孔7bに対して固定部材を用いて固定し、その固定した状態で伸長することで、三次元形状の螺旋ブレード102A、102Bを配置するものである。なお、図16(B)の中心部2の破線は保持部を図示する。
 これにより、本実施形態のブレード平板100を用いて三次元形状の螺旋ブレードとした多重螺旋式構造体を発電機または送風装置の羽根部材として使用すれば、流体媒体に対して高効率な切り込み形状を有する羽根部材を提供することができる。
(実施形態4)
 次に、本願発明にかかる実施形態4におけるブレード平板の羽根部材の使用例について説明する。図17はブレード平板とそれを支える基台および押さえ部材の平面図である。図17(A)は、渦巻き状の切り込み4が4つ形成されたブレード平板100であり、図17(B)は、そのブレード平板100を支える基台20であり、図17(C)は、基台20の上にブレード平板100を載せた後に、ブレード平板100の上面側周囲をおさえるくり抜かれた空間部21aを有する環状の押さえ部材21である。図17(A)のブレード平板100の中心部には孔100aが形成されている。また、図17(B)の基台20の中心部には孔20aが形成されている。
 図18はブレード平板とそれを支える基台および押さえ部材を組み立てる工程図である。図18(A)は、図17(A)から(C)の各部材を組み合わせた状態の平面図である。図18(B)は、図18(A)の状態から軸体25を用い、基台20の孔20aに軸体25を通し、次いでブレード平板100の中心部1に形成された孔100aに軸体25の先端を固定させている。そして、この固定した状態で基台20の平面と直交する方向に第1の伸長5をさせて、図18(C)に示すように、三次元形状の螺旋ブレード102を形成する。この三次元形状の螺旋ブレード102は、発電機または送風装置の水平型の羽根部材として使用することができる。
 これにより、本実施形態のブレード平板を発電機または送風装置の羽根部材として使用すれば、流体媒体に対して高効率な切り込み形状を有する羽根部材を提供することができる。
(実施形態5)
 次に、本願発明にかかる実施形態5におけるブレード平板の羽根部材の使用例について説明する。図19は、実施形態5に係る他のブレード平板の上面図である。図20は、他のブレード平板の斜視図および上面図である。図19は、実施形態5に係るブレード平板の伸張前の状態図である。図20Aから図20Cは、他のブレード平板の斜視図であり、ブレード平板が伸張により変形することを示す図である。図20Aは、他のブレード平板の斜視図である。図20Bは、他のブレード平板の伸長状態の斜視図である。図20Cは、他のブレード平板の伸長状態の上面図である。図20Bは、ブレード平板の中心部側を保持した状態で伸長させた状態の斜視図であり、図20Cは、この伸長状態の上面図である。
 図19に示すように、本実施形態のブレード平板100は、平板部101に渦巻き状の切り込み4を有している。図19に示すように、渦巻き状の切込み4の形成により4本のブレード7とする例示である。ブレード平板100の切り込み4の外周部3の端部4aから中心部1側に向かって渦状の切込み4が形成され、中心部1の近傍2に4つの独立した円弧状のブレード端部7aが配置されている。そして、図20Aに示す平板状のブレード平板100の状態から、ブレード7を各々一捻りさせてブレード裏面を天井側にむけてその中心部において、図示しない保持部材により保持し、平板面に対して直交する方向に伸長させた状態とすることで、三次元形状の螺旋ブレード102Cを配置するものである。この三次元形状の螺旋ブレード102Cは、例えば風力発電装置の風車用の垂直型の三次元の羽根部材として利用される。
 具体的には、図19に示すように、例えば円形の平板部101の中心部を中心部1とし、この中心部の近傍2から伸び、且つ外周部3には接しない渦巻き状の切り込み4が、中心部1を中心に角度(α)=72度の間隔で5つ施されている。
 なお、切り込み4の外周部3の端部4aは、外周部3から内周に向かって5から10%の範囲で隔てて形成するのが好ましい。また、切り込み4の中心部2側の端部4bは、中心部1から外周に向かって5から10%の範囲で隔てて形成するのが好ましい。
 また、ブレード平板100の切り込み4は、例えば断裁加工やレーザ加工のみで製造することが可能である。
 図21は、他のブレード平板の実施形態の一例を示す斜視図である。また、図21(A)に示すように、伸張前のブレード平板100の外周部3の周囲に沿って、略お椀形状の湾曲部103を備えている。図21(B)は、図21(A)に示すブレード平板100の各ブレード7を一本毎に一捻りさせ、中心部1で保持し、その保持した状態で垂直方向に第1の伸張5をして構築された三次元形状の螺旋ブレード102Cである。外周部3にお椀形状の湾曲部103を備えることで、平板より形状維持が強化される。
 図22は、他のブレード部材の実施形態の一例を示す状態図である。図22(A)は、図19で示した渦巻き状の切込み4の形成により4本のブレード7を有したブレード平板100を用いて、前述した図17(B)、(C)に示す基台20および押さえ部材21により挟み、組み合わせた工程を示す状態図である。図22(B)は、図22(A)の状態から軸体25を用いて、1本のブレード7の独立した円弧状のブレード端部7aに形成された孔7bに、軸体25の先端を固定させている。図22(C)は、軸体25を保持する保持部材を用いて固定する一例であり、軸体25の先端を保持部材である上留め具26a、下留め具26bで固定している。この固定の際、ブレード7を反転させて捻り、ブレード裏面が天井面となる。すなわち、ブレード7を伸長させた状態で、一方向からみたとき、ブレード表裏面が露出していることとなる。図22(D)は、4本のブレード7を一捻りした状態で固定させている状態図である。図22(E)は、4本のブレード7を一捻りした状態で軸体25の先端部に固定させて、三次元形状の螺旋ブレード102を形成する。この三次元形状の螺旋ブレード102は、発電機または送風装置の垂直型の羽根部材として使用することができる。
 図23は、ブレード平板に形成されるブレードの枚数と巻数(回転)との関係を示す図である。図23に示すように、ブレードの枚数が3枚と4枚の場合、巻き数(回転)を3/4回転、1回転1と1/4回転、1と1/2回転、1と3/4回転した場合に形成さる三次元形状の螺旋ブレードの状態図である。図23に示すように、回転をかける(捻る)ことにより三次元形状の螺旋ブレードがより複雑となることが判明する。
 図23は、さらに、ブレードの枚数と巻き数(回転)との関係を示す。図23は、ブレードの枚数が3枚と4枚と5枚と6枚の場合、巻数(回転)を3/4回転、7/8回転、1回転1と1/8回転、1回転1と1/4回転、1回転1と3/8回転、1と1/2回転、1回転1と5/8回転、1と3/4回転した場合に形成さる三次元形状の螺旋ブレードの状態を示す。図23は、翼数が3、4、5の場合における、ブレード平板の上面図と斜視図との関係を示す。
 これにより、本実施形態のブレード平板を発電機または送風装置の羽根部材として使用すれば、流体媒体に対して高効率な切り込み形状を有する羽根部材を提供することができる。
(実施形態6)
 次に、本願発明にかかる実施形態6におけるブレード平板の羽根部材の使用例について説明する。図24は、実施形態6に係る他のブレード平板の説明図である。図24(A)は、実施形態6に係るブレード平板の上面図であり、伸張前の状態図であり、図8(E)のブレード平板100である。図24(B)は、図24(A)の状態のブレード平板100を真上に第1の伸張5および第2の伸長6を行い、変形させて、三次元形状の螺旋ブレード102Bを構築したものである。この三次元形状の螺旋ブレード102は、発電機または送風装置の水平型の羽根部材として使用することができる。
 これに対して、図24(C)は、図24(A)の状態のブレード平板100を切込み4を形成した渦方向に対して逆捻りを施し真上に第1の伸長5を行い、変形させて、三次元形状の螺旋ブレード102Dを構築したものである。この三次元形状の螺旋ブレード102Dは、発電機または送風装置の垂直型の羽根部材として使用することができる。
 これにより、本実施形態のブレード平板100を用いて三次元形状の螺旋ブレードとした多重螺旋式構造体を発電機または送風装置の羽根部材として使用すれば、流体媒体に対して高効率な切り込み形状を有する羽根部材を提供することができる。
(実施の形態7)
 次に、本発明にかかる実施の形態7におけるブレード平板を羽根部材に使用した風力発電機について説明する。図25は、本発明の実施の一例を示す風力発電機の側面図である。図26は、本発明の実施の一例を示す風力発電機の背面図である。符号30は反時計回りの切り込みが施された本例の三次元形状の螺旋ブレード102による羽根部材、31は羽根部材30の形状を維持するための軸体、32は羽根部材30と回転可能に接続され、かつ、羽根部材30の回転軸上に沿って摺動可能な中心部材、33は羽根部材30および軸体31と強固に接続されている外周部材、34は羽根部材30の回転を制御するための回転速度制御部材、Aは本例のブレード平板による羽根部材30、軸体31および中心部材32を含む風車部、35は発電機、Bは回転速度制部材34および発電機35が内蔵されている発電部、36は風車部Dおよび発電部Bを固定するための支持構造体、37は台座38に固定される支柱、39は軸体31と回転自在に接続されている回転部材、40は支持構造体36を回転自在に支持する支持用回転部材、Cは支持構造体35、支柱36、回転部材39、支持用回転部材40からなる支持部材を各々図示している。 
 本実施形態の風力発電機は、風車部Aと発電部Bと指示部材Cとからなり、これにより、流体媒体(例えば風)によって羽根部材30が回転することで発生する回転力を軸体31に伝えることで発電部Bから発電電力が得られる。
 また、羽根部材30は分解可能であって、平板状態にして積載することで容易に保管ができる。
 さらには、羽根部材30、軸体31、中心部材32および外周部材33を強固に接続させることによって、回転により発生する風車部Aの振動を抑制することができる。
 図27は、本発明の実施の一例を示す風力発電機の斜視図である。図27に示すように、風向41に対して羽根部材30が同図に示す回転方向42に回転することを示している。但し、羽根部材30の切り込み方向が逆向きの場合には回転方向も逆向きとなる。
 これにより、羽根部材30は表面積が大きく高い視認性を有することによって、野鳥の衝突を防止する。すなわち、バードストライク問題を解消して環境にも配慮することができる。
 また、羽根部材30には翼先端がないことによって、回転による翼先端の風切り音が発生しない。すなわち、風切り音による騒音問題を解消して街中および住宅地にも設置することができる。
 図28は、本発明の実施の一例を示す風力発電機の風向に自己追従する範囲を示す斜視図である。図28中、符号42は切り込み方向を限定しない羽根部材、43は羽根部材42の回転方向、44は羽根部材42の回転軸、45は前記回転軸上に定めた基点、46は風向41に対する羽根部材42の自己追従範囲を示している。なお、風向41は回転軸44の軸線上に沿って流れている。
 これにより、羽根部材42は、回転軸44の軸線上を0度として基点45を軸に左右0から45度未満の範囲で自転可能に自己追従することができる。
 また、例えば、風向41に対して羽根部材42がいずれの方向を向いている状態であっても、羽根部材42および外周部材33が風向41より風を受けることによって、支持用回転部材40が回転して羽根部材42は回転しながら同図に示す方向に向くことができる。
 さらには、羽根部材42の自己追従する最適な角度は風速によって異なり、同図に示す自己追従範囲46のいずれかである。
 さらにまた、例えば、羽根部材42に弾性の特性を有する素材を使用すれば、強風や突風などにより強い風圧が生じた場合であっても、羽根部材42がバネ材のように瞬時に伸縮して翼面にかかる抵抗を分散または拡散させることによって、羽根部材42の破損を容易に防止することができる。但し、前記弾性以外にも、塑性、可塑性または形状記憶性などの特性を有する素材も使用可能である。
(実施の形態8)
 次に、本発明にかかる実施の形態8におけるブレード平板を羽根部材に使用した風力発電機について説明する。図29は、本発明の実施の一例を示す羽根部材が可変する風力発電機の可変前の側面図である。図29中、符号30は反時計回りの切り込みが施された本例のブレード平板による羽根部材、31は羽根部材30の形状を維持するための軸体、43は雌ねじ部を有する中心部材、44は回転部材、45は雄ねじ部を有するスクリュー棒、46は羽根部材30および軸体31と強固に接続されている外周部材、47は羽根部材30の回転を制御するための回転速度制御部材、35は発電機、36は支持構造体、支柱37は台座38に固定されており、40は支持構造体36を左右のいずれにも回転自在に支持する支持用回転部材、48はスクリュー棒45を回転させて中心部材43を羽根部材30の回転軸上に沿って移動させるためのモーター、49は中心部材43の伸縮に連動して伸縮する保護部材を示している。
 図30は本発明の実施の一例を示す羽根部材が可変する風力発電機の可変後の側面図である。このように、中心部材43を同図に示す伸張方向50に移動して羽根部材30の形状を可変させることによって、風速に対して回転力を制御できる。すなわち、強風時でも安全に発電電力を発生させることができる。
 さらにまた、図30に示すように中心部材43を伸張方向50にさらに移動させて羽根部材30の伸張率を0%にすることによって、流体媒体による回転を静止することができる。
(実施形態9)
 次に、本願発明にかかる実施形態9におけるブレード平板を羽根部材に使用した風力発電機について説明する。図31は、本願発明の実施の一例を示す2つの羽根部材を有する風力発電機の側面図である。図31中、符号Dは、2つの羽根部材30が同図に示すような向きで配置されている風車部、31はそれぞれの羽根部材30の回転軸上を中心軸とする軸体、32は羽根部材30と回転可能に接続され、かつ、羽根部材30の回転軸上に沿って摺動可能な中心部材、33は羽根部材30および軸体31と強固に接続されている外周部材、52は外周部材33と強固に接続されている羽根部用固定部材、34は羽根部材30の回転を制御するための回転速度制御部材、35は2つの軸体31と接続されているローターおよびステーターの回転により発電する発電機、55は支持部材、支柱56は台座57に固定されており、58は軸体31と回転自在に接続されている回転部材、59は支持部材55を回転自在に支持する支持用回転部材を各々図示する。そして、風向41より風を受けることによって、風車部Dが同図に示す向きに自己追従し、それぞれの羽根部材30が同図に示す回転方向(61および62)に回転することを示している。
 これにより、本実施形態の2つのブレード平板を風力発電機の羽根部材として同図に示すように配置させることによって、それぞれの羽根部材30,30が回転することで発生する回転力をそれぞれに接続されている軸体35に伝えることができ、羽根部材が1つの発電機に比べてより多くの発電電力を発生させることができる。但し、羽根部材は2枚以外にも、4枚、6枚、8枚など偶数枚で複数配置させることも可能であり、羽根部材の数を限定するものではない。
 また、羽根部用固定部材52を備えることによって、風により発生する自励振動による羽根部の疲労破壊および台風などの強風さらには乱流や突風による羽根部の破損を防ぐことができ、より安全性の高い羽根部材を提供することができる。
 さらには、例えば発電機35に隣接して発熱装置を備えれば、風車部Dより発生した回転エネルギーを熱エネルギーに変換して油および溶融塩などの熱媒体を使用して台座57に設置された蓄熱槽に貯蓄し熱交換器で蒸気を発生させ蒸気タービン発電機により発電することができ、風力発電および熱発電を複合した風力熱蓄積式の発電機の羽根部材を提供することができる。
(実施形態10)
 次に、本願発明にかかる実施形態10におけるブレード平板を羽根部材に使用した風力発電機について説明する。図32は、本願発明の実施の一例を示す組立て式風力発電機の正面図である。図33は、図32に記載の組立て式風力発電機の側面図である。図32および図33中、符号Dは図31に示す発電部、63はパイプ形状の連結支持部材、64は複数の連結支持部材63と強固に接続させて連結支持構造体Eを構成するためのパイプ形状の連結支持部材、65は連結支持部材64の接続口を保護する保護部材を示している。なお、連結支持構造体Eは自立可能な構造としている。
 これにより、本実施形態のブレード平板を風力発電機の羽根部材として使用すれば、羽根部材を平板状態で運搬できることによって、コンパクトで持ち運びが可能な組立てキット式の風力発電機の羽根部材を提供することができる。
(実施形態11)
 次に、本願発明にかかる実施形態11におけるブレード平板を羽根部材に使用した風力発電機について説明する。図34は、本願発明の実施の一例を示す連結型組立て式風力発電機の正面図である。図35は、図34に記載の連結型組立て式風力発電機の側面図である。図36は、図34に記載の連結型組立て式風力発電機の上面図である。図34から図36に示す図は、複数の連結支持部材63、64を組み合わせた連結支持構造体Fと、図32および33に記載の組立て式の風車部Dを複数連結したものである。図34中、符号66は連結支持部材64に接続された連結支持構造体Fをワイヤー67により強固に補強および固定するための補強部材を示している。但し、ワイヤー67は同図に示すように、複数の補強部材66同士と接続させて連結支持構造体Fを補強するだけではなく、例えば、杭または重しなどと接続させて連結支持構造体Fを固定することも可能であり、補強および固定する方法を限定するものではない。
 これにより、本実施形態のブレード平板を風力発電機の羽根部材として複数連結させることによって、必要な電力量に合わせて発電量を調整できる連結型組立て式風力発電機の羽根部材を提供することができる。
 また、複数の連結支持部材63、64を多用することにより連結支持構造体Fを構築することができ、例えば、隣接した複数の建築物の壁面部と接続させて発電可能な連結支持構造体を構築すれば、既存の風力発電機のようなタワーおよび台座が不要となり、建物が密集した街中などの設置が困難な場所であっても本実施形態のブレード平板の羽根部材を使用した風力発電機を提供することができる。但し、建築物でなくても、岩場および建造物さらにはこれらの組み合わせなども可能であって、前記連結支持構造体と接続するものを限定するものではない。
(実施形態12)
 次に、本願発明にかかる実施形態12におけるブレード平板を羽根部材に使用した風力発電機について説明する。図37は、本願発明の実施の一例を示す連結型風力および太陽光ハイブリット式発電機の概念的な正面図である。符号Aは、図25および図26に記載の風力発電機であって、風力発電機Aの羽根部材の面上には、図示しないが、例えば曲面加工が可能な有機薄膜式太陽光電池を備えており、図37に示すように前記風力発電機を横3列に並列配置させ、さらに、前記並列配置された3つの前記風力発電機を縦2列に縦列配置させたものである。符号68は、これらを効果的に発電させるために適切な間隔で連結させるための連結支持部材を示している。但し、前記有機薄膜式太陽光電池以外にも、無機系および化合物系の太陽光電池なども曲面加工が可能である。
 このように、本実施形態のブレード平板を風力発電機の羽根部材として複数連結させることによって、大型の羽根部材を有する風力発電機の設置が困難な場所であっても大量の発電電力を発生させる羽根部材を提供することができる。
 これにより、例えば、無風時には太陽光より発電し夜間時には風より発電することによって、既存の風力発電機に比べ安定的に発電電力を発生させることができ、かつ、太陽光および風より同時に発電すればより多くの発電電力を発生させることができる。但し、無風時または夜間時以外にも、日中または雨天時などの様々な天候の状況下においても発電可能であって天候状況を限定するものではない。
(実施形態13)
 次に、本願発明にかかる実施形態13におけるブレード平板を羽根部材に使用した風力発電機について説明する。図38、39は、羽根部材が可変する垂直軸型風力発電機の可変前後の状態を示す図である。羽根部材30を閉じて平板状とすることで、風の抵抗をうけない風車とすることができる。図38は、羽根部材が可変する垂直軸型風力発電機の可変後の正面図である。図39は、羽根部材が可変する垂直軸型風力発電機の可変前の正面図である。本実施形態の風車部は、どの方向からの風向きでも発電することが可能である。なお、暴風時には、図39に示すように、羽根部材を閉じることにより、破損を回避することが可能となる。本実施形態では、ブレーキ装置が不要で、コスト削減とブレーキ装置の発火などを回避することができ、安全である。
(実施形態14)
 次に、本願発明にかかる実施形態14におけるブレード平板を羽根部材に使用した流体媒体による発電機について説明する。図40は、本願発明の実施の一例としての浮揚式発電機の発電本体部を示す概念的な正面図である。図40中、符号30Aは中心部1の近傍2から反時計回りに伸びる前記外周部3には接しない切り込みが施された本実施形態のブレード平板による羽根部材、30Bは中心部1の近傍2から時計回りに伸びる外周部3には接しない切り込みが施された本実施形態のブレード平板による羽根部材である。符号71は効果的に発電させるために羽根部材30A、30Bを適切な間隔で配置させるための連結支持部材、72は発電機73のローター側に接続されている軸体、74は発電機73のステーター側に接続されている管状の軸体、75は接続部材、76は接続部材75を有する発電本体部Gと浮揚部材とをつなぐための強度を有するケーブル、77は発電機73に接続されている配線、78は丈夫な電力ケーブル、79は外周部材、80は回転部材、81は配線77に流れる発電電力を電力ケーブル78に伝導させるためのコミュテーターを示している。なお、発電本体部Gは少なくとも防錆性、防水性、気密性もしくは耐圧性またはこれらの組み合わせの特性を有する。
 このように、本実施形態のブレード平板を発電機の羽根部材として使用することによって、流体媒体により羽根部材30A、30Bが同図に示す矢印方向にそれぞれ回転することで発生する回転力を発電機73のローター側およびステーター側のそれぞれに接続されている軸体72、74に伝えることで発電電力が得られる。
 また、本実施形態のブレード平板を浮揚式発電機の羽根部材として使用すれば、浮揚部材により前記浮揚式発電機を空中に浮揚させるとこによって上空でも風向に関係なく発電することができ、上空の強くて継続的な風を得ることができ、地上付近に設置した従来の風力発電機よりも高効率な発電電力を発生させる羽根部材を提供することができる。
 さらには、発電本体部Gは気体を内蔵させる機能を有することによって海中でも利用可能となり、海流を利用すれば風よりも強くて安定的なエネルギーを得ることができ、風力発電機よりも高効率な発電電力を発生させることができる。
(実施形態15)
 次に、本願発明にかかる実施形態15におけるブレード平板を羽根部材に使用した風力発電機について説明する。図41は、本願発明の実施の一例を示す連結型浮揚式発電機の発電本体部の概念的な正面図である。3つの発電本体部Gを縦列に連結したものを示しており、前記連結型浮揚式発電機は浮揚部材と接続可能であって、複数の発電本体部Gの発電機73より発生した発電電力を電力ケーブル82へ伝達可能に構成されている。なお、前記連結型浮揚式発電機は少なくとも防錆性、防水性、気密性もしくは耐圧性またはこれらの組み合わせの特性を有する。
 これにより、本実施形態のブレード平板を連結型浮揚式発電機の羽根部材として使用すれば、複数の連結支持部材71を組み合わせることによって、連結凧式に発電本体部Gを複数連結することができ、前記連結型浮揚式発電機を浮揚部材と組み合わせることで上空の風より大出量の発電電力を発生させる羽根部材を提供することができる。
 また、前記連結型浮揚式発電機は気体を内蔵させる機能を有することによって海中でも利用可能となり、海流より大出量の発電電力を発生させることができる。
(実施形態16)
 次に、本願発明にかかる実施形態16におけるブレード平板を羽根部材に使用した連結型傾斜式風力発電機について説明する。図42は、本願発明の実施の一例を示す連結型傾斜式風力発電機の概念的な正面図である。図43は、図42に記載の連結型傾斜式風力発電機の概念的な上面図である。図42に示すように、電力ケーブル83と接続されている4つの発電本体部Gを鉛直方向に設置されたタワー84の上部より45度傾斜させ、かつ、タワー84の中心を基点とし90度ずつ回転させて配置したものである。図42中、符号85は避雷針、86はそれぞれの発電本体Gより発電された発電電力を一括して制御するインバーター、87は台座、88は発電本体部Gの傾斜角度を維持するための発電機本体用固定部材、89は発電本体部Gと発電機本体用固定部材88をつなぐケーブルを各々図示する。但し、配置する発電本体部Gの傾斜角度は45度以外でも可能であって、タワーの高さを考慮した避雷針の保護角の範囲内である。
 これにより、本実施形態のブレード平板を連結型傾斜式風力発電機の羽根部材として使用すれば、複数の発電本体部Gを連結することができ、大型の羽根部材を有する風力発電機の設置が困難な場所であっても大量の発電電力を発生させる羽根部材を提供することができる。好ましくは、タワー84の上部に配置された複数の発電本体部Gと接続された電力ケーブル83の数は、3以上、4以上、5以上、6以上または7以上のいずれかであり、20以下、16以下、12以下、10以下、9以下または8以下のいずれかである。
(実施形態17)
 次に、本願発明にかかる実施形態17におけるブレード平板を羽根部材に使用した風力発電機について説明する。図44は、本願発明の実施の一例を示す浮揚式風力発電機の概念的な斜視図である。浮揚部材90は接続部材75を介して発電本体部Gと接続されている。図44中、符号91は電力ケーブル78を巻き取るための巻取り部材、92は巻取り部材91と水平面に沿って回転可能に接続されている台座、26は風向、Hは車両を示している。
 これにより、本実施形態のブレード平板を浮揚式風力発電機の羽根部材として使用すれば、同図に示すように風向26に対して羽根部材30A、30Bがそれぞれ異なる方向に回転することによって、羽根部材30A、30Bの回転による慣性力を相殺することができ、発電本体部Gの回転による電力ケーブル78のよじれを防ぎ、かつ、羽根部材が1つに比べより多くの発電電力を発生させることができる。
 また、上空の風を受ける発電本体部Gの動きに対して、巻取り部材91が連動して水平面に沿って回転することによって、電力ケーブル78のよじれを防ぐことができる。
 さらには、電力ケーブル78を巻き取ることで、発電本体部Gおよび浮揚部材90を地上に設置させることが可能となり、例えば、台風および雷雨の悪天候による故障および破損を防ぎ、かつ、メンテナンスも容易に行なうことができる。但し、台風および雷雨以外にも、寒波、熱波およびスコールさらには暴風などの悪天候の状況下であっても地上に設置することができ、気象状況を限定するものではない。
 さらにまた、車両Hに巻取り部材91および台座92を備えることによって、既存の風力発電機のような基礎部は不要となり設置コストを削減することができ、かつ、移動可能となることで、災害による電力不足時または停電時においても災害地にて発電および電力供給を行なうことができ、発電場所を限定しない移動式の浮揚式風力発電機の羽根部材を提供することができる。但し、災害地以外にも、停電地域、山岳地帯、仮設住宅地および難民キャンプ地さらには野外イベント場などの電力網のない場所や厳しい環境下などでも移動して現場にて電気を供給することができ、発電する場所を限定するものではない。
 さらにまた、高高度に吹く強風のジェット気流を利用すれば高効率に発電可能であって、複数の発電本体部Gを連結させれば、発電量に対するコストを削減することができる。
 さらにまた、図44において、浮揚部材90の面上には、図示しないが、例えば曲面加工が可能な有機薄膜式太陽光電池を備えれば、風力および太陽光によるハイブリット発電が可能となる。但し、前記有機薄膜式太陽光電池以外にも、無機系および化合物系の太陽光電池なども曲面加工が可能である。
(実施形態18)
 次に、本願発明にかかる実施形態17におけるブレード平板を羽根部材に使用した風力発電機について説明する。図45は、本願発明の実施の一例を示す浮揚式風力発電機の概念的な斜視図である。図45Aは、羽根部材を複数有する切頂二十面体型の浮揚式発電機の発電本体部を示す概念的な正面図である。図45Bは、羽根部材を複数有する切頂二十面体型の浮揚式発電機の発電本体部を示す概念的な側面図である。図45Cは、羽根部材を複数有する切頂二十面体型の浮揚式発電機の発電本体部を示す概念的な上面図である。図45A~図45Cに示すように、羽根部材30および発電機Aを有する発電本体部Hは、支持部材形状が20個の六角形と12個の五角形からなる切頂二十面体から成るバックミンスターフラーレン構造である。上下左右関係なく、全方向の風が利用可能である。しかも、乱流でも発電可能となる。複数の切り込み方向が異なる羽根部材30を有し、風により羽根部材が回転する際に回転慣性力を相殺して、電気ケーブル78の捻れを防ぐ。すなわち、図45Cに示すように、風向26に対して、発電機Aはいずれかの風向追従方向26Aで静止する。なお、20個の六角形と12個の五角形をそれぞれ1枠として、合計32個の羽根部材30および発電機Aを有することも可能である。
(実施形態19)
 次に、本願発明にかかる実施形態19におけるブレード平板を羽根部材に使用した風力発電機について説明する。図46は、本願発明の実施の一例を示す浮揚式風力発電機の概念的な斜視図である。図46に示すように、切頂二十面体型の発電本体部Hは、実施形態17と同様に、浮揚部材90を備えており、90は接続部材75を介して発電本体部Hと接続されている。図46中、符号91は電力ケーブル78を巻き取るための巻取り部材、92は巻取り部材91と水平面に沿って回転可能に接続されている台座、26は風向、Hは車両を示している。
(実施形態20)
 次に、本願発明にかかる実施形態20におけるブレード平板を羽根部材に使用した風力発電機について説明する。図47は、本願発明の実施の一例を示す垂直軸型風力発電機の概念的な斜視図である。図19および図20に示す三次元形状の螺旋ブレード102Cによる羽根部材が、この形状を維持するための軸体31に保持されている。34は羽根部材の回転を制御するための回転速度制御部材、35は発電機、37は台座38に固定される支柱、39は軸体31と回転自在に接続されている回転部材を各々図示している。
 本実施形態の風力発電機は、三次元形状の螺旋ブレード102Cによる羽根部材を備えた垂直型の風車部Mとしているので、流体媒体(例えば風)によって羽根部材が回転することで発生する回転力を軸体31に伝えることで発電機35から発電電力が得られる。
(実施形態21)
 次に、本願発明にかかる実施形態21におけるブレード平板を羽根部材に使用した流体媒体による発電機について説明する。図48は、本願発明の実施の一例としての浮揚式発電機の発電本体部を示す概念的な正面図である。前述した実施形態14と同様に、反時計回りに回転するブレード7を連結して三次元形状の螺旋ブレード102Cとした羽根部材M-1と、M-1を回転軸上に沿って反転させたM-2とを連結部材で連結している。符号71は効果的に発電させるために羽根部材M-1、M-2を適切な間隔で配置させるための連結支持部材、72は発電機73のローター側に接続されている軸体、74は発電機73のステーター側に接続されている軸体、75は接続部材、76は接続部材75を有する発電本体部Mと浮揚部材とをつなぐための丈夫なケーブル、77は発電機73に接続されている配線、78は丈夫な電力ケーブル、79は外周部材、80は回転部材、81は配線77に流れる発電電力を電力ケーブル78に伝導させるためのコミュテーターを示している。
 このように、本実施形態の三次元形状の螺旋ブレード102Cのブレード平板を羽根部材M-1、M-2として使用して、発電本体部Nとすることによって、流体媒体により羽根部材M-1、M-2が同図に示す矢印方向にそれぞれ回転することで発生する回転力を発電機73のローター側およびステーター側のそれぞれに接続されている軸体72、74に伝えることで発電電力が得られる。
(実施形態22)
 次に、本願発明にかかる実施形態22におけるブレード平板を羽根部材に使用した風力発電機について説明する。図49は、本願発明の実施の一例を示す浮揚式風力発電機の概念的な斜視図である。図49は、本願発明の実施の一例を示す連結型浮揚式発電機の発電本体部の概念的な正面図である。図48の3つの発電本体部Nを縦列に連結したものを示しており、前記連結型浮揚式発電機は浮揚部材と接続可能であって、複数の発電本体部Nの発電機73より発生した発電電力を電力ケーブル82へ伝達可能に構成されている。なお、前記連結型浮揚式発電機は少なくとも防錆性、防水性、気密性もしくは耐圧性またはこれらの組み合わせの特性を有する。
 これにより、本実施形態のブレード平板を連結型浮揚式発電機の羽根部材として使用すれば、複数の連結支持部材71を組み合わせることによって、連結凧式に発電本体部Nを複数連結することができ、前記連結型浮揚式発電機を浮揚部材と組み合わせることで上空の風より大出量の発電電力を発生させる羽根部材を提供することができる。
(実施形態23)
 次に、本願発明にかかる実施形態23におけるブレード平板を羽根部材に使用した風力発電機について説明する。図50は、本願発明の実施の一例を示す浮揚式風力発電機の概念的な斜視図である。浮揚部材90は接続部材75を介して発電本体部Nと接続されている。図50中、符号91は電力ケーブル78を巻き取るための巻取り部材、92は巻取り部材91と水平面に沿って回転可能に接続されている台座、26は風向、Hは車両を示している。
(実施形態24)
 次に、本願発明にかかる実施形態24におけるブレード平板を羽根部材に使用した海流発電機について説明する。図51は、本願発明の実施の一例を示す浮揚式海流発電機の概念的な斜視図である。図51に示すように、反時計回りの羽根部材30A、時計回りの羽根部材30Bが海流96に対して並列に配置されている。97は海流96に対して羽根部材30A、30Bを自転可能に追従させるためのキール、98は浮揚部材、99は発電機、100は海流96より発電した電力を送電するための丈夫な電力ケーブル、Oは発電本体部を図示している。なお、浮揚部材98には気体が内蔵されており、電力ケーブル100はアンカー101と強固に接続されている。
 これにより、本実施形態のブレード平板を海流発電機の羽根部材として使用することによって、図51に示すように海流96に対して羽根部材30A、30Bの回転による慣性力を相殺することができ、発電本体部Oの回転による電力ケーブル100のねじれを防ぐことが可能な羽根部材を提供することができる。また、例えば、海底電力ケーブルと組み合わせることによって、発電した電力を地上まで送電することができ海流より安定的で、かつ、大出量の発電電力を提供することができる。
 さらには、例えば、蓄電池を備えた少なくとも1つのフロートと組み合わせることにより、浮揚部材98の浮力を調整して発電本体部Oを海上に引き揚げることでき、容易にメンテナンスを行なうことができる。但し、海上への引き揚げは、浮揚部材98の浮力を調整する以外にも、フロートに巻取り部材91を備えて発電本体部Oを接続したワイヤーで海上に引き揚げることも可能であり、海上に引き揚げる手段を限定するものではない。
さらにまた、船舶を利用すれば、蓄電された蓄電池を陸上へ運搬することができ、海底電力ケーブルが不要となり送電網のコストを削減することができる。
(実施形態25)
 次に、本願発明にかかる実施形態19におけるブレード平板を羽根部材に使用した水力発電機について説明する。図52は、本願発明の実施の一例を示す水力発電機の概念的な正面図である。符号Pの水車部は中心部1の近傍2から反時計回りに伸びる外周部3には接しない切り込みが施された本実施形態のブレード平板による羽根部材30を同図に示すような向きで複数連結させて配置したものである。図52中、符号123は水車部Pの回転軸上を中心軸とする軸体、124は、軸体123と強固に接続されている中心部材、125は羽根部材30および軸体123と強固に接続されている外周部材、126は発電機、127は水車部Pを固定するための支持部材、そして、128は軸体123と回転自在に接続されている回転部材、129は発電機126および支持部材127を固定する台座を各々図示する。図52中、破線の矢印は水流130の流れ方向、実線の矢印131は水流によって回転する水車部Pの回転方向を示している。
 これにより、本実施形態のブレード平板を水力発電機の羽根部材として使用することによって、水流によって羽根部材30が回転することで発生する回転力を軸体123に伝えることで発電機126から発電電力が得られる。
 また、例えば、羽根部材30の面上に複数のリブを有することによって、水流をさらに効率的に捉えることができる。但し、前記リブ以外にも前記面上には、突起物またはディンプル状の凹さらにはこれらの組み合わせなども可能であり、前記面上に有する形状を限定するものではない。
(実施形態26)
 次に、本願発明にかかる実施形態19におけるブレード平板を羽根部材に使用した水力および海流発電機について説明する。図53Aは、本願発明の実施の一例を示す係留式水力および海流発電機の概念的な側面図である。羽根部材30に強固に接続された耐海水ケーブル123の回転により動力を伝達する係留式水力および海流発電機である。この水力および海流発電機は、耐水性、耐圧性、耐海水、耐腐食性を有する。翼先端がない形状によりキャビテーションを低減することが可能で、羽根部材の破損を防ぐことができる。水流130によって発生する抗力により羽根部材30が自己伸張して自転するため軸体が不要となる。また水流130により三次元形状の螺旋ブレード102Aから、くびれ部8を有する三次元形状の螺旋ブレード102Cに変化する。図中53、符号124は中空構造を有する中心部材であって、空気を充てんすることで最適な水深で発電が可能となる。発電機126、回転速度制御部材x、増速機xおよび機械装置(回転指示部材141、支柱142、台座143等)を水上または海上に設置することができ、故障を防ぎかつメンテナンスが容易となる。さらには環境負担やコスト削減が可能となる。
 図53Bおよび図53Cは、他のブレード平板の実施形態の一例を示す斜視図である。図53Bは、伸張前のブレード平板100の斜視図である。図53Bに示すように本実施形態のブレード平板100は、中心部に耐圧および防水性の中央浮力体と強固に接続されている。図示しないが、中央浮力体212には耐海水および耐圧性の伸縮可能な軸体が内蔵されている。
図53Cの(A)は、図53Bに示すブレード平板100の中心部1を有する面に対して垂直方向に中央浮力体212に内蔵された伸縮可能な軸体213が伸張214を施して構築されたくびれ部8を備えた三次元形状の螺旋ブレードである。外周部3にお椀形状の湾曲部103を備えることで、平板より形状維持が強化される。図53Cの(B)は、伸長させた状態で、伸長方向(上下のいずれか一方向)からみたときの図面であり、外周部材215を有し、216は螺旋ブレード102Bおよび外周部材215と接続されている外周部浮力体である。
 このように、中心部1と外周部3を、軸体213でもって伸張することで構築された本実施形態のブレード平板の螺旋ブレード102Bは、いずれの方向から見ても表面積が大きい有機的な三次元形状を有している。この結果、本実施形態のブレード平板の螺旋ブレード102Bを、例えば海流発電機等の羽根部材に使用すれば、流体媒体である例えば海水や水等を容易に捉え、かつ、揚力および抗力を発生させることができる羽根部材を提供することができる。
 また、海水や水等の流速を考慮して中心部1と外周部3の伸張度合いを軸体213により調整することによって、本実施形態のブレード平板は流体媒体による自己起動性を有し、かつ、回転力を制御することができる。
 さらには、中央浮力体212および外周部浮力体216には、空気または液体を充でんすることで最適な水深で発電でき、かつ、メンテナンス時には海面や水面等に浮上することができる。
 さらにまた、本実施形態のブレード平板は伸張するだけで2次元のブレード平板から三次元形状の螺旋ブレードを構築することによって、発電機または送風装置の羽根部材として使用すれば、本実施形態本実施形態のブレード平板を運搬時には平板状態で運搬することができ、組立てが容易で、かつ、持ち運びが容易な低コストの発電機および送風装置またはこれらのいずれかの組立てキットの羽根部材を提供することができる。
 さらにまた、外周部がお椀状の湾曲形状を有する本実施形態のブレード平板を発電機および送風装置の羽根部材として使用すれば、例えば樹脂板から成る本実施形態のブレード平板であっても外周部には撓みが発生せず、前記外周部材を簡素化することができ、かつ、発電機および送風装置またはこれらのいずれかの組立てキットの軽量化に貢献できる。ただし、本実施形態のブレード平板の材質は樹脂以外にも、例えば金属、炭素繊維または植物繊維さらには樹脂を含むこれらいずれかの組み合わせなども可能であり、本実施形態のブレード平板の材質を限定するものではない。
(実施形態26´)
 次に、本願発明にかかる実施形態26´におけるブレード平板を羽根部材に使用した潮流および海流発電機について説明する。図53Dの(A)は、本願発明の実施の一例を示す係留式潮流および海流発電機の発電時の概念的な側面図である。図53Dの(A)に示すように、潮流および海流より自転する羽根部材Yに強固に接続された耐海水の丈夫なケーブル217の回転により動力を発電本体部Xに伝達する係留式潮流および海流発電機である。この潮流および海流発電機は、少なくとも耐水性、耐圧性、耐海水、耐腐食性を有する。翼先端がない形状によりキャビテーションを低減することが可能で、羽根部材の破損を防ぐことができる。図に示すように、中央フロート218、側部フロート219、中央フロート218および側部フロート219の方向転回をするためのスラスター220、移動可能な蓄電装置221、電力変換および制御装置222、ケーブル217および羽根部材Yを一括して海上に引き揚げる巻取り部材223であって、中央フロート218は、鉄鋼製のチェーン224を介して海底に設置されたアンカー225と強固に連結されている。図53Dの(B)は、本願発明の実施形態の一例を示す係留式潮流および海流発電機の発電時の概念的な上面図である。図53Dの(B)は、海上に浮かぶフロート(中央フロート218、側部フロート219)、発電本体部Xおよび機械装置(蓄電装置221、電力変換および制御装置222、ケーブル217、巻取り部材223等)を示している。発電本体部Xは、係留する羽根部材Yの動きに合わせて水平面上および垂直面上に沿って角度を自在に調整できる。
(実施形態53´´)
 次に、本願発明にかかる実施形態53´´におけるブレード平板を羽根部材に使用した潮流および海流発電機について説明する。図53Eの(A)は、図53Dに示す係留式潮流および海流発電機の引上げ時の概念的な側面図である。図53Eの(A)に示すように、回転を停止させるために平板状の図53Bに示す羽根部材Zに変形させて、巻取り部材223によりケーブル217および海面に浮上させた羽根部材Zを一括して中央フロート218に回収する。図53Eの(B)は、巻取り部材223により羽根部材Zを回収するために、海上に浮かぶフロート(中央フロート218、側部フロート219)、発電本体部Xおよび機械装置(蓄電装置221、電力変換および制御装置222、ケーブル217、巻取り部材223等)の方向をスラスター220によって矢印方向に90度旋回した状態であり、破線部分は旋回前の位置を示している。
 このように、本実施形態のブレード平板を潮流および海流発電機の羽根部材として使用すれば、図Cに示すように羽根部材Yと強固に接続されたケーブル217によって、海流226より回転した羽根部材Yの回転動力を伝達させることができ、発電機および増速機を海上に設置することが可能となることで、海上で容易にメンテナンスを行なえ安全で故障の少ない潮流および海流発電機を提供することができる。
 また、平板上の羽根部材Zに変形させることによって、回転を停止させることが可能でブレーキ装置が不要となる。
さらには、船舶を利用すれば、移動可能な蓄電装置を陸上へ運搬することができ、海底電力ケーブルが不要となり発電コストの低コスト化に貢献できる。
(実施形態27)
 次に、本願発明にかかる実施形態27におけるブレード平板を羽根部材に使用した送風装置について説明する。図54は、本願発明の実施の一例を示す送風装置の概念的な斜視図および正面図である。図54(A)中、符号Q―1はくびれ形状がない本実施形態のブレード平板の三次元形状の螺旋ブレード102Aによる羽根部材30を使用した送風装置、図54(B)中、Q―2はくびれ形状を有する本実施形態のブレード平板の三次元形状の螺旋ブレード102Bによる羽根部材30を使用した送風装置、図54(C)中、Q―3はくびれ形状を有する本実施形態のブレード平板の三次元形状の螺旋ブレード102Bによる羽根部材30を同図に示すように2つ組み合わせて使用した送風装置、図54(D)中、Q―4はくびれ形状を有する本実施形態のブレード平板の三次元形状の螺旋ブレード102Bによる羽根部材30を同図に示すように2つ組み合わせて使用した送風装置である。符号131は軸体、133は中心部材、134はモーター、135は電力ケーブル、136は内側に軸体が通っている接続パイプを示している。また、破線の矢印は羽根部材の回転により発生する気流、実線の矢印はモーター134が回転する方向である。
 このように、本実施形態のブレード平板を送風装置の羽根部材として使用することによって、既存の送風装置のような首振り装置が不要となり、広範囲で、かつ、多様な気流を有する風を発生させる羽根部材を提供することができる。
 また、例えば、羽根部材30の面上に複数のリブを有することによって、広範囲で、かつ、多様な気流を有する風をさらに効率的に発生させることができる。但し、前記リブ以外にも前記面上には、突起物またはディンプル状の凹さらにはこれらの組み合わせなども可能である。
 以上のように、本願発明のブレード平板によれば、伸張するだけで構築される構造体であり、平板のため積載することができ保管および運搬が容易である。
 また、本願発明のブレード平板は単純な加工で製造可能であることによって、流体媒体を利用した発電機などの羽根部材として使用すれば、金型が不要となり羽根部材の製造コストが削減できる。
 さらには、本願発明のブレード平板は螺旋形状の多重の羽根を有していることによって、発電機の羽根部材として使用すれば、流向媒体により抗力と揚力を発生させて自転し、かつ、起動時には外部電力を必要としない羽根部材を提供できる。
 さらにまた、本願発明のブレード平板は翼先端がない形状であることによって、風力発電機の羽根部材として使用すれば、翼先端の風切り音による低周波騒音の問題を解消する静音の風力発電機の羽根部材を提供することができる。
 さらにまた、本願発明のブレード平板はバネ材のように伸縮することによって、風力発電機の羽根部材として使用すれば、乱流や突風による風圧による抵抗を分散または拡散して羽根部材の破損を防止することができる。
 さらにまた、本願発明のブレード平板は流体媒体に対して自己流向追従の機能を有していることによって、風力発電機の羽根部材として使用すれば、風向追従するためのヨー駆動装置は不要となり製造コストおよびメンテナンスコストを削減する羽根部材を提供することができる。
 さらにまた、本願発明のブレード平板は表面積が大きいことによって、風力発電機の羽根部材として使用すれば、視認性が高くバードストライク問題を解消できる。
 さらにまた、本願発明のブレード平板に表面に色彩構成を施すことによって、街中などで視覚効果を利用した広告および宣伝効果のある風力発電機の羽根部材を提供することができる。
 さらにまた、複数の本願発明のブレード平板を発電機のローターとステーターを互いに異なる方向に回転させて発電する風力発電機の羽根部材として使用すれば、羽根部材が1つの発電機に比べてより多くの発電電力を発生させることができる。
 さらにまた、本願発明のブレード平板を、羽根部用固定部材を備えた風力発電機の羽根部材に利用すれば、流体媒体により発生する自励振動による羽根部の疲労破壊、台風などの強風または突風さらには乱流による羽根部の破損を防ぐことができ、より安全性の高い羽根部材を提供することができる。
 さらにまた、複数の本願発明のブレード平板を組立て式風力発電機の羽根部材として使用すれば、複数の連結支持部材と組み合わせることによって、必要な電力量に合わせて発電量を調整できる連結型および連結型組立て式風力発電機の羽根部材を提供することができる。
 さらにまた、複数の本願発明のブレード平板を連結型組立て式風力発電機の羽根部材として使用すれば、連結支持構造体を構築することによって、既存の風力発電機のようなタワーおよび台座が不要な低コストの風力発電機の羽根部材を提供することができる。
 さらにまた、本願発明のブレード平板の面上に太陽光電池を備えることによって、広い受光面積を活用したハイブリットの風力発電機の羽根部材を提供できる。
 さらにまた、複数の本願発明のブレード平板を連結型浮揚式発電機の羽根部材として使用すれば、複数連結凧式に発電本体部を連結することによって、小型の発電機を複数組み合わせて大出量の発電電力を発生させることができる。
 さらにまた、複数の本願発明のブレード平板を連結型傾斜式風力発電機の羽根部材として使用すれば、複数の発電本体部を連結することができ、大型の羽根部材を有する風力発電機の設置が困難な場所であっても大量の発電電力を発生させる羽根部材を提供することができる。
 さらにまた、本願発明のブレード平板を浮揚式風力発電機の羽根部材として使用すれば、流体媒体に対して回転軸方向を限定せずに自転することによって、上空の風を利用でき安定的で高効率な発電電力を得られ、かつ、移動可能であり災害などの急事の電力不足時および停電時においても電気を供給することが可能な羽根部材を提供することができる。
 さらにまた、本願発明のブレード平板を羽根部材が可変する風力発電機の羽根部材として使用すれば、羽根部材の伸張率を調整して回転を制御することによって、既存の風力発電機のようなブレーキ装置が不要となる羽根部材を提供することができる。
 さらにまた、伸張によって構築されるくびれ形状を有する本願発明のブレード平板を流体媒体により発電する発電機の羽根部材として使用すれば、くびれ形状のないものよりも高効率性の発電電力を発生する羽根部材を提供することができる。
 さらにまた、本願発明のブレード平板を風力発電機の羽根部材として使用すれば、2次元の平板状態から流体媒体により自転可能な三次元の多重螺旋式構造体に変形することによって、羽根部材を平板で運搬でき、かつ、組立てが容易でコンパクトな組立てキット式の風力発電機の羽根部材を提供することができる。
 さらにまた、複数の本願発明のブレード平板を浮揚式海流発電機の羽根部材として使用すれば、安定的で大出量の発電電力を発生する海流発電機の羽根部材を提供することができる。
 さらにまた、本願発明のブレード平板を発電機または送風装置の羽根部材として使用すれば、高効率で低コストの発電機または送風装置の羽根部材を提供することができる。
 さらにまた、複数の本願発明のブレード平板を水力発電機の羽根部材として使用すれば、低コストの水力発電機の水車の羽根部材を提供することができる。
 さらにまた、本願発明のブレード平板を送風装置の羽根部材として使用すれば、広範囲で、かつ、多様な気流を有する風を発生でき、首振り装置の不要な送風装置の羽根部材を提供することができる。
 以上の発明の各特徴は、適宜組み合わせることが可能である。
 よって、本願発明のブレード平板を発電機の羽根部材として使用すれば、外周を有する平板を伸張させるだけで羽根部材として利用することができ、流体媒体による自己起動性および自己流向追従性を備え、回転軸方向を限定せずに自転可能で、かつ、回転力を制御でき、翼先端の風切り音の騒音問題およびバードストライク問題がなく、郊外、街中、住宅地、ビルまたは家屋などの屋上および壁面部に設置する低コストで製造可能な風力発電機の羽根部材を提供することができ、また、浮揚部材と組み合わせれば上空の風または海中の海流を利用した発電機の羽根部材を提供でき、さらには、水流を利用した水力発電機の羽根部材としても利用でき、さらにまた、本願発明のブレード平板を送風装置の羽根部材として使用すれば、首振りの機能が不要な静音で広範囲に多様な気流を有する風を発生させる送風装置の羽根部材を提供することができ、さらにまた、組立てキット式にすることで持ち運びが容易で、かつ、安価で連結が可能な発電機または送風装置の羽根部材を提供することができる。
 本願発明のブレード平板は、弾性、塑性、可塑性、形状記憶性、摩擦低減性、撥水性、耐候性、蓄光性、発光性または透過性の少なくとも1つの特性を有する前記平板から成る。
 本願発明のブレード平板は、ディンプル状の凹みまたは突起物さらにはこれらの組み合わせを複数有し、流体媒体を効率的に捉えるために適切な間隔で配置されている。
 本願発明のブレード平板は、渦巻き状、円の一部、直線またはこれらの組み合わせで複数連結されているリブを複数有し、前記中心部を中心として放射状に適切な間隔で設けられている。
 本願発明のブレード平板は、羽根部用固定部材を備え、ブレード平板、軸体、中心部材、外周部材またはこれらの組み合わせで強固に接続されている。羽根部用固定部材として軸体などが考えられる。
 本願発明のブレード平板は、発光する機能を有し、LED材または無機および有機エレクトロルミネッセンス材を使用し発光可能に構成される。
 本願発明の発電機または発電機の組立てキットは、少なくともブレード平板またはブレード平板の回転により発電する発電部を備えている。
 本願発明の送風装置または送風装置の組立てキットは、少なくとも1つのブレード平板またはブレード平板を回転させる駆動部を備えている。
 本願発明に関連する発電機または送風装置さらにはこれらいずれかの組立てキットは、複数の前記中心部材および前記軸体を備え、前記外周部を底面とする複数の本願発明のブレード平板または本願発明に関連する発明のブレード平板の前記底面を互いに向かい合わせにさせて発電部と発電可能に構成されている。
 本願発明の発電機または発電機の組立てキットは、浮揚部材を備え、前記浮揚部材は少なくともブレード平板またはブレード平板を含む発電本体部をつなぐためのケーブルを有している。
(実施例1)
 以下に、本願発明にかかる実施例1における風力発電機について説明する。図55は、本願発明にかかる実施例1における風力発電機の羽根部材の翼数における電圧量の統計図である。風向追従可能に簡易的に構成された直径150mmの中心部および外周部を80mm伸張させた本実施形態のブレード平板である羽根部材と発電機を有する風力発電機であって、前記風力発電機に向けて400mmの距離から送風装置より風(約3m/秒)を発生させることで、前記羽根部材と接続された前記風力発電機の回転により発生する電圧を一定の不可抵抗のもと測定したものである。
 なお、図55の測定に使用された前記簡易的に構成された風力発電機は2つの異なる様式を有しており、第1の風力発電機は前記羽根部材の中心部が外周部よりも風向側に向くように構成された水平軸型、第2の風力発電機は水平面を0度として前記羽根部材の回転軸を45度傾斜させた傾斜軸型であって、翼数が3枚と5枚の異なる羽根部材をそれぞれの前記風力発電機に取付けて発生する電圧を測定したものである。
 これにより、特に第2の風力発電機では翼数の違いにより顕著に電圧に差が出ることを示した。すなわち、本実施形態のブレード平板を風力発電機の羽根部材として使用する場合、翼数が5枚以上で発電効率が高いことが分かった。
(実施例2)
 以下に、本願発明にかかる実施例2における風力発電機について説明する。図56は、本願発明にかかる実施例2における風力発電機の羽根部材の伸張差における電圧量の統計図である。同図の測定に使用された風力発電機は、4つの伸張率の異なる5枚翼を有する前記水平軸型であって、第3の風力発電機は伸張が100mm(以下、これを伸張率100%とする)の羽根部材を有し、第4の風力発電機は伸張率が70%の羽根部材を有し、第5の風力発電機は伸張率が40%の羽根部材を有し、風力発電機は伸張率が0%の羽根部材を有しており、それぞれの前記風力発電機に向けて500mmの距離から送風装置より風(約4m/秒)を発生させることでそれぞれの前記風力発電機より発生する電圧を測定したものである。なお、前記羽根部材は伸張率が約70%以上でくびれ形状を構築する。
 これにより、前記羽根部材は伸張差によって電圧が異なることを示した。すなわち、一定の伸張範囲で発電効率が高く、かつ、伸張率が0%では自転しなかったことにより、本実施形態のブレード平板を風力発電機の羽根部材として使用する場合、羽根部材の伸張率によって回転力を制御できることが分かった。
 また、くびれ形状のない第5および6の風力発電機に比べ、くびれ形状を有する第3および4の風力発電機は電圧が高いことを示した。すなわち、本実施形態のブレード平板を風力発電機の羽根部材として使用する場合、くびれ形状が構築される伸張範囲で発電効率が高いことが分かった。
(実施例3)
 以下に、本願発明にかかる実施例3における風力発電機について説明する。図57は、本願発明の実施例3における風力発電機の羽根部材の風向における自転角度の統計図である。同図の測定に使用された風力発電機は直径150mmの本実施形態のブレード平板である羽根部材を80mm伸張させた風向追従機能のない5枚翼式であって、同図に示す風向(I)より前記風力発電機に向けて400mmの距離から送風装置より風(約4m/秒)を発生させて前記羽根部材の回転軸(II)の軸上の基点(III)を軸に角度を変えて自転の不可を調べたものである。
 これにより、本実施形態のブレード平板を浮揚式風力発電機の羽根部材として使用すれば、上空に流れる風により浮揚部材が押し流されて前記発電本体部が傾斜することによって、前記羽根部材が回転して発電することができると考えられる。また、本実施形態のブレード平板を浮揚式海流発電機の羽根部材として使用すれば、海流により前記発電本体部が傾斜することによって、前記羽根部材が回転して発電することができると考えられる。
[試験例]
 図58は風洞試験装置を用いて羽根部材を試験した装置の構成図である。図59は、試験結果を示す図である。図58に示すように、大型送風機より発生した風200がピトー管(Pitot tube)201を通り、トルクトランスジューサ(Torque Transducer)202に接続された試験体の風車である羽根部材30を回転させて、トルクモータブレーキ(Torque Mortor Brake)203により、ローター(Rotor)204にブレーキをかけてパワーセンサ(Power Sensor)205によりトルクを測定する。同時に回転センサ(Revolution Sensor)206によりローター(Rotor)202の回転を測定しトルクコンバータ(Torque Converter)207により周速比を測定する。これにより求めたトルクと周速比からパワー係数を導き出す。なお、符号208は電源部(Power Source)、209はベッツ型マノメメータ(Betz Type Manometer)を示す。
 試験は、直径800mmのステンレス材の風車を、各々200mm、300mm、400mm、500mm伸張させてパワー係数を測定した。その結果を、図59に示す。図59の横軸は周速比であり、縦軸はパワー係数である。図59(A)~(D)に示すように、伸張の違いによって、パワー係数が異なることが判明した。風速6m/sにおいて風車の伸張率を変えた場合には、伸張が300mmで最大であった。伸張が300mmの風車において風速を各々4m、6m、8m、10m/sと変えた場合には、風速10m/sで最大であった。
 この結果、本願発明のブレード平板100を風力発電装置や発電装置の羽根部材として、送風機の翼として用いて有効であることが判明した。
100 ブレード平板
101 平板部
102、102A、102B 三次元形状の螺旋ブレード
103 お椀形状の湾曲部
1 中心部
2 中心部の近傍
3 外周部
4 切込み
4a 外周側端部
4b 内周側端部
5 第1の伸長
6 第2の伸長
7 ブレード
8 くびれ部
9 切り抜き
20 基台
21 押さえ部材

Claims (24)

  1.  平板部に渦巻き状の切り込みを有し、
     前記渦巻き状の切り込みの中心部側を伸長させた状態で三次元形状の螺旋ブレードを配置することを特徴とするブレード平板。
  2.  前記三次元形状の螺旋ブレードは、伸長させた状態で、くびれ部を備えることを特徴とする請求項1に記載のブレード平板。
  3.  前記切り込みは、平板の外周端部または外周側から所定間隔をもった少なくとも一つの起点を有することを特徴とする請求項1または2に記載のブレード平板。
  4.  前記切り込みは、平板の中心近傍から少なくとも一つの起点を有することを特徴とする請求項1乃至3のいずれか一つに記載のブレード平板。
  5.  前記切り込みは、互いに交わらず2つ以上施されていることを特徴とする請求項1乃至4のいずれか一つに記載のブレード平板。
  6.  前記三次元形状の螺旋ブレードは、伸長させた状態で、伸長方向からみたときに、ブレード同士が交差することを特徴とする請求項1記載のブレード平板。
  7.  前記三次元形状の螺旋ブレードは、伸長させた状態で、一方向からみたとき、ブレード表裏面が露出していることを特徴とする請求項1記載のブレード平板。
  8.  前記渦巻き状の切り込みは、中心部側が連結されることを特徴とする請求項1乃至7のいずれか一つに記載のブレード平板。
  9.  前記中心部側が連結された切り込み片の中心先端部が保持部に保持される、請求項8に記載のブレード平板。
  10.  前記中心部側が連結された切り込み片の中心部先端部が保持部に捻った状態で保持される、請求項8に記載のブレード平板。
  11.  回転軸を中心に回転する少なくとも一つの軸体を備え、前記軸体と組み合わされている、請求項1乃至10のいずれか一つに記載のブレード平板。
  12.  前記切り込みは、円の一部、直線またはこれらの組み合わせで複数連結されている、請求項1乃至11のいずれか一つに記載のブレード平板。
  13.  前記回転軸を中心に回転する外周部材を備え、前記軸体および前記外周部と組み合わされている、あるいは、プリント配線を備え、前記軸体および前記外周部と伝導可能に組み合わされている、請求項1乃至12のいずれか一つに記載のブレード平板。
  14.  請求項1乃至13のいずれか一つに記載のブレード平板の回転により発電する発電部を備えていることを特徴とする発電機。
  15.  前記発電部に太陽光電池を備えることを特徴とする請求項14に記載の発電機。
  16.  少なくとも一つの回転部材を備えている、流体媒体に対して自己流向追従可能な追従装置を備えることを特徴とする請求項14に記載の発電機。
  17.  少なくとも一つの浮遊部材を備えることを特徴する請求項14または15に記載の発電機。
  18.  蓄電装置を備えていることを特徴とする請求項14乃至16のいずれか一つに記載の発電機。
  19.  請求項1乃至13のいずれか一つに記載のブレード平板による回転エネルギーを熱エネルギーに変換することを特徴とする発熱装置。
  20.  請求項1乃至13のいずれか一つに記載のブレード平板、発電部、回転部材、浮揚部材、発熱装置、蓄電装置およびこれらを支持する支持部材のいずれかを備え発電可能に構成されていることを特徴とする発電機。
  21.  請求項1乃至13のいずれか一つに記載のブレード平板、発電部、回転部材、浮揚部材、発熱装置、蓄電装置およびこれらを支持する支持部材のいずれかを備え発電可能に構成されていることを特徴とする発電機の組立てキット。
  22.  請求項1乃至13のいずれか一つに記載のブレード平板の回転により送風する駆動装置を備えていることを特徴とする送風装置。
  23.  請求項1乃至13のいずれか一つに記載のブレード平板、発電部、回転部材、浮揚部材、発熱装置、蓄電装置、駆動装置およびこれらを支持する支持部材のいずれかを備え、発電可能に構成されていることを特徴とする発電機。
  24.  請求項1乃至13のいずれか一つに記載のブレード平板、発電部、回転部材、浮揚部材、発熱装置、蓄電装置、前記駆動装置およびこれらを支持する支持部材のいずれかを備え、発電可能に構成されていることを特徴とする送風装置の組立てキット。
PCT/JP2016/066703 2015-06-30 2016-06-04 ブレード平板、それを用いた発電機およびその組み立てキット、送風装置およびその組み立てキット WO2017002539A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015141653A JP5941200B1 (ja) 2015-06-30 2015-06-30 多重螺旋式構造体
JP2015-141653 2015-06-30

Publications (1)

Publication Number Publication Date
WO2017002539A1 true WO2017002539A1 (ja) 2017-01-05

Family

ID=56244678

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/066703 WO2017002539A1 (ja) 2015-06-30 2016-06-04 ブレード平板、それを用いた発電機およびその組み立てキット、送風装置およびその組み立てキット

Country Status (2)

Country Link
JP (1) JP5941200B1 (ja)
WO (1) WO2017002539A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021004804B3 (de) 2021-09-23 2023-02-16 Norbert Lother Aerodynamische Antriebseinheit

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4043097A4 (en) * 2019-09-27 2023-11-01 Shoji Katsume AGITATION BODY AND AGITATION DEVICE INCLUDING SAME

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03503437A (ja) * 1988-03-24 1991-08-01 カルーセ,ピエール 非容積移送式回転機械
US20110311363A1 (en) * 2010-06-17 2011-12-22 Chris Bills Vortex propeller
US20130343891A1 (en) * 2012-06-07 2013-12-26 Uppala RAJAKARUNA Spiral screw fluid turbine having axial void

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100266414A1 (en) * 2009-04-20 2010-10-21 Viryd Technologies Inc. Fluid energy converter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03503437A (ja) * 1988-03-24 1991-08-01 カルーセ,ピエール 非容積移送式回転機械
US20110311363A1 (en) * 2010-06-17 2011-12-22 Chris Bills Vortex propeller
US20130343891A1 (en) * 2012-06-07 2013-12-26 Uppala RAJAKARUNA Spiral screw fluid turbine having axial void

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021004804B3 (de) 2021-09-23 2023-02-16 Norbert Lother Aerodynamische Antriebseinheit
WO2023046316A1 (de) 2021-09-23 2023-03-30 Norbert Lother Aerodynamische antriebseinheit

Also Published As

Publication number Publication date
JP5941200B1 (ja) 2016-06-29
JP2017015066A (ja) 2017-01-19

Similar Documents

Publication Publication Date Title
Ragheb Vertical axis wind turbines
US9404474B2 (en) System and method for efficient wind power generation
US20080159873A1 (en) Cross fluid-flow axis turbine
US6755608B2 (en) Wind turbine enhancement apparatus, method and system
JP2005504205A (ja) 浮体式洋上風力発電設備
KR20130099036A (ko) 유체의 유동하는 조류로부터 전력을 발생하기 위한 시스템 및 방법
EP2171268A2 (en) Linear power station
US20100327596A1 (en) Venturi Effect Fluid Turbine
US8109732B2 (en) Horizontal-axis wind generator
US20120070293A1 (en) Wind turbine apparatus, wind turbine system and methods of making and using the same
KR100948788B1 (ko) 부유식 멀티 풍력터빈
JP6103411B1 (ja) ブレード平板、それを用いた発電機およびその組み立てキット、送風装置およびその組み立てキット
US20140212285A1 (en) Combined omnidirectional flow turbine system
WO2017002539A1 (ja) ブレード平板、それを用いた発電機およびその組み立てキット、送風装置およびその組み立てキット
Hossain et al. Design and development of a 1/3 scale vertical axis wind turbine for electrical power generation
US10756596B2 (en) Fluid-powered generator
US20110001321A1 (en) Wind-operated torque generator for producing electric power, designed to be installed on top of roofs of both sloping and flat type
JP2017219026A (ja) ブレード平板、それを用いた発電機およびその組み立てキット、送風装置およびその組み立てキット
US20180045177A1 (en) Combined omnidirectional flow turbine system
KR101288356B1 (ko) 구조물 외벽에 부착되는 패널형 풍력발전 장치
US9546643B2 (en) Revolving overhead windmill
US20190277252A1 (en) Systems and Methods for Maximizing Wind Energy
KR101057225B1 (ko) 풍력발전용 사보니우스 터빈 구조
WO2024101372A1 (ja) 風力発電装置用プロペラ及びこれを用いた風力発電装置。
US20240280081A1 (en) Energymaster - a floating hybrid tidal/wave/wind harvesting system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16817648

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16817648

Country of ref document: EP

Kind code of ref document: A1