WO2017002527A1 - 電気回路装置 - Google Patents

電気回路装置 Download PDF

Info

Publication number
WO2017002527A1
WO2017002527A1 PCT/JP2016/066524 JP2016066524W WO2017002527A1 WO 2017002527 A1 WO2017002527 A1 WO 2017002527A1 JP 2016066524 W JP2016066524 W JP 2016066524W WO 2017002527 A1 WO2017002527 A1 WO 2017002527A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
terminal
voltage
circuit
circuit device
Prior art date
Application number
PCT/JP2016/066524
Other languages
English (en)
French (fr)
Inventor
一成 戸田
哲 重田
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to JP2017526242A priority Critical patent/JP6379294B2/ja
Priority to CN201680038463.4A priority patent/CN107710539B/zh
Priority to DE112016002551.3T priority patent/DE112016002551B4/de
Priority to US15/736,333 priority patent/US10637232B2/en
Publication of WO2017002527A1 publication Critical patent/WO2017002527A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H11/00Emergency protective circuit arrangements for preventing the switching-on in case an undesired electric working condition might result
    • H02H11/002Emergency protective circuit arrangements for preventing the switching-on in case an undesired electric working condition might result in case of inverted polarity or connection; with switching for obtaining correct connection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/20Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for electronic equipment
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/08Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current
    • H02H3/085Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current making use of a thermal sensor, e.g. thermistor, heated by the excess current

Definitions

  • the present invention relates to an electric circuit device.
  • Hybrid vehicles and electric vehicles have an increasing number of electrical components, and are equipped with a large number of connectors for electrical connection of electrical components.
  • the connector terminals in these connectors may be in a so-called power-to-power state when a battery voltage is applied due to a short circuit between terminals due to foreign matter adhering to the connector terminals or incorrect wiring.
  • In order to prevent the breakdown of the equipment due to the power fault it is necessary to prevent the influence on the load connected to the connector terminal and the internal electric circuit device.
  • a voltage follower circuit and a derived resistor connected in parallel to the voltage follower circuit belong to the short circuit protection circuit, and a parallel circuit composed of the voltage follower circuit and the derived resistor is connected to the second output terminal on the one hand, On the other hand, it is considered to be configured to be connected to the second input terminal (Patent Document 1). And when a connector terminal has a power fault, the electric current which flows into an internal electric circuit apparatus is controlled, and damage to an electric circuit apparatus is performed.
  • An electric circuit device includes a positive electrode terminal and a negative electrode terminal to which a load is connected, a power supply circuit that supplies an output voltage, and a current reverse flow that is connected between the output voltage side and the positive electrode terminal of the power supply circuit. And a switching circuit connected to the negative side terminal.
  • the current backflow prevention circuit controls the switching circuit when the voltage at the positive side terminal is equal to or higher than a predetermined value, and loads the load from the positive side terminal. The current flowing through the negative electrode side terminal is cut off.
  • the present invention it is possible to protect not only the internal electric circuit device connected to the connector terminal but also the load connected to the connector terminal in the event of a power fault.
  • FIG. 1 is a circuit diagram of an electric circuit device according to this embodiment. Hereinafter, the configuration of the electric circuit device will be described with reference to FIG.
  • a load 103 is connected between the positive terminal 100 and the negative terminal 101 of the connector.
  • a current backflow prevention circuit 104 is connected to the positive terminal 100 via a resistor 110.
  • the current backflow prevention circuit 104 includes an operational amplifier 105, a diode 107 connected to the output terminal of the operational amplifier 105, and a resistor 106 connected from the cathode side of the diode 107 to the negative side of the operational amplifier 105.
  • a power supply circuit 108 is connected to the positive side of the operational amplifier 105.
  • the operational amplifier 105 is supplied with power supply V1 and GND.
  • the connection point between the output terminal of the operational amplifier 105 and the anode side of the diode 107 is connected to the gate terminal of the switching element 109.
  • the switching element 109 is, for example, a MOSFET (Metal-Oxide-Semiconductor-Field-Effect-Transistor), the drain terminal of the switching element 109 is connected to the negative terminal 101 of the connector, and the source terminal of the switching element 109 is connected to GND. ing.
  • a microcomputer 112 is connected to the positive terminal 100 of the connector via a resistor 111, and a connection point between the positive terminal 100 and the resistor 111 is connected to GND via a resistor 113.
  • the power supply circuit 108 is used as a power source for various sensors, and an example in which a current sensor 114 is connected is shown here as an example.
  • the operation of the electric circuit device will be described with reference to FIG.
  • a battery voltage (not shown) (for example, 14V)
  • 14V the voltage of the positive terminal 100 is supplied with power.
  • the voltage value is equal to or higher than the voltage of the output voltage (for example, 5 V) of the power supply circuit 108 that performs the above.
  • the output voltage of the operational amplifier 105 is changed from the output voltage (5 V) of the power supply circuit 108 to the operational amplifier 105. It changes to the voltage (0V) connected to the negative power source.
  • the output voltage of the operational amplifier 105 becomes 0 V
  • the voltage difference between the gate and the source of the switching element 109 becomes equal to or less than a predetermined voltage, so that the drain and source of the switching element 109 are opened, and the negative terminal 101 is connected. Cut off the flowing current. That is, the switching element 109 is controlled by using the change in the output voltage of the operational amplifier 105 due to the power supply fault of the positive terminal 100. Therefore, the load 103 can be protected from overcurrent.
  • a resistance such as a thermistor whose resistance value varies depending on the temperature may be used.
  • an NTC (negative temperature coefficient) thermistor is a thermistor whose resistance decreases as the temperature rises, and its resistance value is much smaller at high temperatures than at low temperatures.
  • the overcurrent flowing through the thermistor can be cut off and the thermistor can be protected by the circuit operation described above.
  • the current backflow prevention circuit 104 for power supply of the reference voltage from the power supply circuit 108, it is possible to prevent a current flowing into the power supply circuit 108 when the positive terminal 100 is in a power fault.
  • the current backflow prevention circuit 104 provides high power supply accuracy.
  • a power supply can be used.
  • the accurate power supply indicates the accuracy of the output voltage of the power supply.
  • the current backflow prevention circuit 104 for example, by using a power supply with an output rated value of 10V ⁇ 1% max20mA for the power supply V1, even if a current of 10mA is required for the load 103, the output rated value of 5V ⁇ 0. .5% max 5mA power supply can be used as it is, and power supply remains at 5V ⁇ 0.5%.
  • the load current is supplied from the power source used for the operational amplifier 105. Therefore, by using the current backflow prevention circuit 104, a highly accurate power supply can be used for the power supply circuit 108.
  • the power circuit 108 is used as a power source for various sensors, and for example, a current sensor 114 is connected thereto. If the output voltage of the power supply circuit 108 is directly connected to the load 103, if the battery voltage has a power fault at the positive terminal 100, the current flows backward to the output voltage of the power supply circuit 108, and the output voltage of the power supply circuit 108. There is concern about the failure and malfunction of various sensors connected to the. For example, even if the vehicle system is in a non-operating state (power OFF state), if the battery voltage has a power supply fault at the positive terminal 100, the above-described operation causes the sensors to malfunction and adversely affect the entire system. May affect. As in this embodiment, by using the current backflow prevention circuit 104, it is possible to prevent malfunctions and malfunctions of various sensors connected to the output voltage of the power supply circuit 108 when the positive terminal 100 has a power fault. it can.
  • the electric circuit device includes a positive terminal 100 and a negative terminal 101 to which the load 103 is connected, a power supply circuit 108 that supplies an output voltage, and between the output voltage side of the power circuit 108 and the positive terminal 100. And a switching element 109 connected to the negative side terminal 101.
  • the current backflow prevention circuit 104 performs switching when the voltage of the positive side terminal 100 is equal to or higher than a predetermined value.
  • the element 109 is controlled to cut off the current flowing from the positive terminal 100 to the negative terminal 101 through the load 103.
  • the present invention is not limited to the above-described embodiment, and other forms conceivable within the scope of the technical idea of the present invention are also included in the scope of the present invention as long as the characteristics of the present invention are not impaired. It is.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Protection Of Static Devices (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

天絡時にコネクタ端子に接続されている内部の電気回路装置は保護できるが、コネクタ端子に接続されている負荷を保護することができなかった。 正極側端子100の天絡によって、ダイオード107のカソード側の電圧が、電源回路108の出力電圧の以上の電圧になると、オペアンプ105の出力電圧は、電源回路108の出力電圧(5V)からオペアンプ105の負電源に接続している電圧(0V)に変化する。オペアンプ105の出力電圧が0Vになると、スイッチング素子109のゲート・ソース間電圧の電圧差が所定の電圧以下になるため、スイッチング素子109のドレイン-ソース間はオープン状態になり、負極側端子101に流れこむ電流を遮断する。よって、過電流から負荷103を保護することができる。

Description

電気回路装置
 本発明は、電気回路装置に関する。
 ハイブリッド自動車や電気自動車は、電気部品の数が増大しており、電気部品等の電気的な接続を行うコネクタが多数搭載されている。これらのコネクタにおけるコネクタ端子は、コネクタ端子への異物付着による端子間ショートや誤配線等によって、バッテリ電圧が印加され、所謂、天絡の状態になる可能性がある。この天絡による機器の故障を防ぐために、コネクタ端子に接続している負荷や内部の電気回路装置への影響を阻止する必要がある。
 このため、短絡保護回路に電圧フォロア回路と、該電圧フォロア回路に並列に接続された導出抵抗を所属させ、電圧フォロア回路と導出抵抗からなる並列回路が一方では第2の出力端子に接続され、もう一方では第2の入力端子に接続されるように構成することが考えられている(特許文献1)。そして、コネクタ端子が天絡した場合に、内部の電気回路装置に流れ込む電流を制御し、電気回路装置の損傷を防ぐことが行われている。
特開2006-129697号公報
 上述した、特許文献1に記載の方法を用いた場合、天絡時にコネクタ端子に接続されている内部の電気回路装置は保護できるが、コネクタ端子に接続されている負荷を保護することができなかった。
 本発明による電気回路装置は、負荷が接続される正極側端子及び負極側端子と、出力電圧を供給する電源回路と、電源回路の出力電圧側と正極側端子との間に接続される電流逆流防止回路と、負極側端子に接続されるスイッチング回路と、を備え、電流逆流防止回路は、正極側端子の電圧が所定値以上である場合に、スイッチング回路を制御して、正極側端子から負荷を通って負極側端子に流れる電流を遮断する。
 本発明によれば、天絡時にコネクタ端子に接続されている内部の電気回路装置だけでなく、コネクタ端子に接続されている負荷も保護することが可能となる。
電気回路装置の回路図である。
 図1は、本実施形態に係わる電気回路装置の回路図である。以下、図1を参照して電気回路装置の構成について説明する。
 コネクタの正極側端子100と負極側端子101の間に負荷103が接続されている。正極側端子100には、抵抗110を介して、電流逆流防止回路104が接続されている。
 電流逆流防止回路104は、オペアンプ105と、オペアンプ105の出力端子に接続されたダイオード107と、ダイオード107のカソード側からオペアンプ105の負極側へ接続する抵抗106とを備えている。オペアンプ105の正極側には電源回路108が接続される。なお、オペアンプ105は電源V1とGNDが印加されている。
 オペアンプ105の出力端子とダイオード107のアノード側の接続点はスイッチング素子109のゲート端子と接続される。スイッチング素子109は、例えば、MOSFET(Metal-Oxide-Semiconductor-Field-Effect-Transistor)であり、スイッチング素子109のドレイン端子はコネクタの負極側端子101に、スイッチング素子109のソース端子はGNDに接続されている。
 また、コネクタの正極側端子100には、抵抗111を介してマイコン112が接続され、正極側端子100と抵抗111の接続点は、抵抗113を介してGNDに接続されている。
 電源回路108は、各種センサー類の電源として用いられ、ここでは一例として電流センサー114が接続されている例を示す。
 次に、図1を参照して電気回路装置の動作について説明する。
 コネクタ端子への異物付着による端子間ショートやコネクタの誤配線等によって、正極側端子100に、図示省略したバッテリ電圧(例えば、14V)が天絡した場合、正極側端子100の電圧は、電源供給を行う電源回路108の出力電圧(例えば、5V)の電圧以上の電圧値となる。
 正極側端子100の天絡によって、ダイオード107のカソード側の電圧が、電源回路108の出力電圧の以上の電圧になると、オペアンプ105の出力電圧は、電源回路108の出力電圧(5V)からオペアンプ105の負電源に接続している電圧(0V)に変化する。
 オペアンプ105の出力電圧が0Vになると、スイッチング素子109のゲート・ソース間電圧の電圧差が所定の電圧以下になるため、スイッチング素子109のドレイン-ソース間はオープン状態になり、負極側端子101に流れこむ電流を遮断する。つまり、正極側端子100の天絡によるオペアンプ105の出力電圧の変化を利用して、スイッチング素子109を制御する。よって、過電流から負荷103を保護することができる。
 正極側端子100と負極側端子101の間に接続される負荷103は、サーミスタ等、温度に応じて抵抗値が変動する抵抗が用いられる場合がある。例えば、NTC (negative temperature coefficient)サーミスタは温度の上昇に対して抵抗が減少するサーミスタであり、高温時は低温時に比べて、非常に抵抗値が小さくなる。しかし、このような負荷103が用いられた場合でも、先に述べた回路動作により、サーミスタに流れる過電流を遮断し、サーミスタを保護することができる。
 また、 電源回路108からの基準電圧の電源供給に電流逆流防止回路104を使用することにより、正極側端子100の天絡時に、電源回路108へ流れ込む電流を防ぐことができる。一般に、電源回路108に精度の良い電源を使用したいが、負荷電流が大きく、駆動能力が満たせないため、精度の良い電源が使用できないが、この電流逆流防止回路104によって、電源供給に精度の良い電源を使用することができる。ここで、精度の良い電源とは、電源の出力電圧の精度を指す。例えば、負荷に10mAの電流が必要の場合、電源供給に出力定格値:電圧5V±0.5% 電流max5mAの電源は使用できない。理由は、負荷電流が10mA必要であるのに対し、電源は5mAまでしか電流を出す能力がないためである。これを解決するためには、電源供給の電源には、負荷電流(10mA)以上の電流を流すことができる電源を使用する必要があり、その場合、出力電圧の精度が悪くなる可能性がある。しかし、電流逆流防止回路104を使用し、例えば、電源V1に出力定格値10V±1% max20mAの電源を使用することによって、負荷103に10mAの電流が必要な場合でも、出力定格値5V±0.5% max5mAの電源をそのまま使用でき、電源供給も5V±0.5%のままになる。なお、負荷電流の供給はオペアンプ105に使用されている電源から賄われる。よって、電流逆流防止回路104を使用することによって、電源回路108に精度の良い電源を使用することができる。
 また、電源回路108は、各種センサー類の電源として用いられ、例えば、電流センサー114が接続されている。仮に、電源回路108の出力電圧が直接、負荷103と接続されている場合、正極側端子100にバッテリ電圧が天絡すると、電源回路108の出力電圧に電流が逆流し、電源回路108の出力電圧に接続されている各種センサー類の故障や誤動作が懸念される。例えば、車両のシステムが非動作状態時(電源OFFの状態)にも関わらず、正極側端子100にバッテリ電圧が天絡すると、上述の動作により、センサー類が誤動作してしまい、システム全体に悪影響を及ぼす可能性がある。本実施形態のように、電流逆流防止回路104を使用することにより、正極側端子100の天絡時に、電源回路108の出力電圧に接続されている各種センサー類の故障や誤動作を防止することができる。
 以上説明した実施形態によれば、次の作用効果が得られる。
(1)電気回路装置は、負荷103が接続される正極側端子100及び負極側端子101と、出力電圧を供給する電源回路108と、電源回路108の出力電圧側と正極側端子100との間に接続される電流逆流防止回路104と、負極側端子101に接続されるスイッチング素子109と、を備え、電流逆流防止回路104は、正極側端子100の電圧が所定値以上である場合に、スイッチング素子109を制御して、正極側端子100から負荷103を通って負極側端子101に流れる電流を遮断する。これにより、天絡時に正極側端子100に接続されている内部の各種センサー類だけでなく、正極側端子100と負極側端子100の間に接続されている負荷103も保護することが可能となる。
 本発明は、上記の実施の形態に限定されるものではなく、本発明の特徴を損なわない限り、本発明の技術思想の範囲内で考えられるその他の形態についても、本発明の範囲内に含まれる。
100 正極側端子
101 負極側端子
103 負荷 
104 電流逆流防止回路
105 オペアンプ
107 ダイオード
108 電源回路
109 スイッチング素子

Claims (5)

  1.  負荷が接続される正極側端子及び負極側端子と、
     出力電圧を供給する電源回路と、
     前記電源回路の前記出力電圧側と前記正極側端子との間に接続される電流逆流防止回路と、
     前記負極側端子に接続されるスイッチング回路と、を備え、
     前記電流逆流防止回路は、前記正極側端子の電圧が所定値以上である場合に、前記スイッチング回路を制御して、前記正極側端子から前記負荷を通って前記負極側端子に流れる電流を遮断する電気回路装置。
  2.  請求項1に記載の電気回路装置において、
     前記負荷は、温度に応じて抵抗値が変動する状態検知用の抵抗である電気回路装置。
  3.  請求項1または2のいずれか一項に記載の電気回路装置において、
     前記電源回路の前記出力電圧側に電流センサーが接続される電気回路装置。
  4.  請求項1に記載の電気回路装置において、
     前記正極側端子から前記負荷までの配線が天絡した場合に、前記電流逆流防止回路は、前記正極側端子の電圧が所定値以上であると判定する電気回路装置。
  5.  請求項4に記載の電気回路装置において、
     前記電流逆流防止回路は、前記正極側端子に接続されるオペアンプと、当該オペアンプの出力端子と当該オペアンプへ負帰還する接続部との間に接続されたダイオードと、を有し、
     前記スイッチング回路は、前記オペアンプの出力端子と前記ダイオードとの間の電圧に基づいて制御される電気回路装置。
PCT/JP2016/066524 2015-07-01 2016-06-03 電気回路装置 WO2017002527A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017526242A JP6379294B2 (ja) 2015-07-01 2016-06-03 電気回路装置
CN201680038463.4A CN107710539B (zh) 2015-07-01 2016-06-03 电路装置
DE112016002551.3T DE112016002551B4 (de) 2015-07-01 2016-06-03 Elektrische schaltungsvorrichtung
US15/736,333 US10637232B2 (en) 2015-07-01 2016-06-03 Electric circuit device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-132319 2015-07-01
JP2015132319 2015-07-01

Publications (1)

Publication Number Publication Date
WO2017002527A1 true WO2017002527A1 (ja) 2017-01-05

Family

ID=57608556

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/066524 WO2017002527A1 (ja) 2015-07-01 2016-06-03 電気回路装置

Country Status (5)

Country Link
US (1) US10637232B2 (ja)
JP (1) JP6379294B2 (ja)
CN (1) CN107710539B (ja)
DE (1) DE112016002551B4 (ja)
WO (1) WO2017002527A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002271183A (ja) * 2001-03-13 2002-09-20 Denso Corp 過電圧保護回路
JP2008092277A (ja) * 2006-10-02 2008-04-17 Hitachi Ltd 負荷駆動回路
US20100284114A1 (en) * 2009-05-08 2010-11-11 Hamilton Sundstrand Corporation System and method to provide transient overvoltage suppression
JP2014171346A (ja) * 2013-03-05 2014-09-18 Mitsubishi Electric Corp 車載電子制御装置及びその給電制御方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4723846Y1 (ja) 1968-08-21 1972-07-29
JPS4726649Y1 (ja) 1969-06-13 1972-08-16
JP2004088956A (ja) * 2002-07-04 2004-03-18 Ricoh Co Ltd 電源回路
DE10349282A1 (de) 2003-10-23 2005-05-25 Hella Kgaa Hueck & Co. Verpol- und Überspannungsschutz für 5V-Sensoren
DE102004053031B4 (de) 2004-10-30 2007-04-26 Phoenix Contact Gmbh & Co. Kg Schaltungsanordnung mit einer Kurzschlußschutzschaltung
CN102938574A (zh) * 2012-11-09 2013-02-20 谢亚平 一种锂离子电池组电压均衡电路

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002271183A (ja) * 2001-03-13 2002-09-20 Denso Corp 過電圧保護回路
JP2008092277A (ja) * 2006-10-02 2008-04-17 Hitachi Ltd 負荷駆動回路
US20100284114A1 (en) * 2009-05-08 2010-11-11 Hamilton Sundstrand Corporation System and method to provide transient overvoltage suppression
JP2014171346A (ja) * 2013-03-05 2014-09-18 Mitsubishi Electric Corp 車載電子制御装置及びその給電制御方法

Also Published As

Publication number Publication date
CN107710539A (zh) 2018-02-16
CN107710539B (zh) 2019-05-28
US10637232B2 (en) 2020-04-28
DE112016002551B4 (de) 2024-02-29
JP6379294B2 (ja) 2018-08-22
JPWO2017002527A1 (ja) 2018-03-15
US20180191153A1 (en) 2018-07-05
DE112016002551T5 (de) 2018-03-01

Similar Documents

Publication Publication Date Title
US10044180B2 (en) Electronic circuit breaker for an electrical load in an on-board electrical system of a motor vehicle
US8089742B2 (en) Overcurrent protection apparatus for load circuit
US8508900B2 (en) Overvoltage protection circuit and electronic device comprising the same
CN103904629B (zh) 半导体器件和电子控制装置
JP7443679B2 (ja) 半導体装置
WO2010150488A1 (ja) 電源保護回路およびそれを備えたモータ駆動装置
CN106100008B (zh) 电池装置以及电池装置的制造方法
TW201916537A (zh) 控制裝置、平衡修正系統、蓄電系統以及裝置
KR102555498B1 (ko) 돌입 전류 제한 장치 및 이를 포함하는 시스템
JP2017188983A (ja) 電源供給装置
WO2017090352A1 (ja) 波及故障防止回路を備えた電子装置
US10193326B2 (en) Non-intrusive short-circuit protection for power supply devices
JP2019083632A (ja) 電力変換装置
EP3065295B1 (en) Overcurrent protection circuit
JP6603695B2 (ja) 異常検出装置
JP6379294B2 (ja) 電気回路装置
JP2013031273A (ja) 過電圧保護回路
JP2007189844A (ja) 半導体素子保護回路
JP5982632B2 (ja) 車載用電源回路およびそれを用いた車載電源ユニット
US9935537B2 (en) Inverter circuit with voltage limitation
US20170329378A1 (en) Load driving device
JP6519498B2 (ja) スイッチング電源装置
JP7568018B2 (ja) 駆動装置
US20240305112A1 (en) Overvoltage protection circuit
US11899043B2 (en) Current detection apparatus and power supply control apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16817636

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017526242

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112016002551

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16817636

Country of ref document: EP

Kind code of ref document: A1