WO2017002387A1 - Humidifying device, dehumidifying device, and humidifying method - Google Patents
Humidifying device, dehumidifying device, and humidifying method Download PDFInfo
- Publication number
- WO2017002387A1 WO2017002387A1 PCT/JP2016/054479 JP2016054479W WO2017002387A1 WO 2017002387 A1 WO2017002387 A1 WO 2017002387A1 JP 2016054479 W JP2016054479 W JP 2016054479W WO 2017002387 A1 WO2017002387 A1 WO 2017002387A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- water
- polymer
- humidifying
- unit
- humidification
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F6/00—Air-humidification, e.g. cooling by humidification
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F6/00—Air-humidification, e.g. cooling by humidification
- F24F6/02—Air-humidification, e.g. cooling by humidification by evaporation of water in the air
- F24F6/08—Air-humidification, e.g. cooling by humidification by evaporation of water in the air using heated wet elements
- F24F6/10—Air-humidification, e.g. cooling by humidification by evaporation of water in the air using heated wet elements heated electrically
Definitions
- the present invention relates to a humidifier and a dehumidifier using a polymeric moisture absorbent.
- mist type there is a method in which ultrasonic vibration is applied to water in a water storage tank using an ultrasonic vibrator, and the generated mist is sent out by a blower and humidified
- the vaporization type is a method in which water in a water storage tank is infiltrated into a vaporization filter formed of paper having water absorption and air permeability and is humidified by blowing with a blower (see, for example, Patent Document 2).
- the steam type is a system in which water in a water storage tank is heated by a heater to generate steam, and is sent out by a blower to be humidified. (For example, refer patent document 3 etc.).
- the mist type utilizes the fact that mist is generated on the water surface by driving an ultrasonic transducer installed at the bottom of the water tank to vibrate the water in the water tank.
- the ultrasonic vibrator and the blower consume electric power, there is a feature that humidification can be performed with relatively low power consumption.
- the water in the water storage tank diffuses into the room as fine water droplets as it is, there is a problem of “white powder phenomenon” in which mineral components in water adhere to furniture and the like after the water droplets evaporate.
- the vaporization type utilizes the fact that water is vaporized from the surface of the vaporization filter by allowing water to permeate the vaporization filter installed in the water storage tank and blowing air. Since only water vaporizes, problems such as white powder do not occur. Further, there is a feature that humidification can be performed with lower power consumption than the ultrasonic type only by the power consumption of the blower. On the other hand, since the mineral component in water precipitates on the surface of the vaporization filter and the humidification ability decreases, there is a problem that it must be removed or replaced periodically.
- the heater installed in the water in the water tank is energized to generate steam and blow.
- Steam does not contain minerals in the water, so white powder and other problems do not occur.
- the blower and the heater consume power, and the amount of humidification is characterized by high power consumption because the power consumption of the heater directly affects.
- the mineral component in water adheres to the surface of a heater, it has the subject that it must remove or replace
- the dehumidifying device is generally equipped with a refrigeration circuit.
- the refrigeration circuit is configured by connecting a compressor, a condenser, an evaporator, a refrigerant flow rate controller, and the like in a closed circuit. By cooling the air below the dew point with an evaporator, moisture in the air is removed as condensed water (see, for example, Patent Document 4).
- Such a dehumidifying / humidifying device has a problem that there are many components of the dehumidifying device, and the device becomes heavy and large and difficult to handle.
- Japanese Patent Publication Japanese Patent Publication “Japanese Laid-Open Patent Publication No. 2014-202428 (Published October 27, 2014)” Japanese Patent Publication “Japanese Laid-Open Patent Publication No. 2013-250021 (Released on December 12, 2013)” Japanese Patent Publication “Japanese Patent Laid-Open No. 2012-233687 (published on November 29, 2012)” Japanese Patent Publication “Japanese Unexamined Patent Application Publication No. 2014-224633 (Released on December 4, 2014)”
- the ultrasonic humidifier has a small amount of mineral components adhering to the functional parts, but there is a problem that white powder adheres to furniture and the like in order to scatter the water droplets indoors.
- a conventional dehumidifying device equipped with a refrigeration circuit has many large and heavy components such as a heat exchanger and a compressor.
- a dehumidifying / humidifying device in which the dehumidifying device and the humidifying device are integrated is larger and heavier. It was not easy to handle.
- the present invention has been made in view of the above-mentioned problems, and is not humidified so that mineral components do not adhere to parts that perform functions such as a vaporization filter and a heater, and white powder is not scattered indoors.
- a device and a dehumidifying / humidifying device that is simple in structure, easy to downsize and easy to handle are realized.
- the humidifier according to the present invention includes a polymer moisture absorbent containing a stimulus-responsive polymer, a water supply unit for supplying water to the polymer moisture absorbent, and a stimulus applying unit for applying external stimulus to the polymer moisture absorbent. It is characterized by having.
- the humidifier according to the present invention further includes a vaporizing portion that contacts the polymer moisture absorbent, and the vaporizing portion preferably has a large number of pores.
- the humidifier according to the present invention is a humidifier unit that collects the elements formed with the polymer moisture absorbent on a base material, and supplies the humidifier unit with the water supply unit, and then supplies the humidifier unit with the humidifier unit. It is preferable to apply a stimulus to the portion of the humidifying unit to which the stimulus is given by the stimulus applying unit and to give the stimulus.
- the humidifying device further includes a second stimulus applying unit at a position different from the position where the stimulus applying unit is installed, the stimulus applying unit, and the second It is preferable to perform dehumidification by selectively operating the second stimulating unit and selectively operating the second stimulating unit.
- the humidification method according to the present invention includes a step of absorbing water into a polymer moisture absorbent containing a stimulus-responsive polymer, a step of applying external stimulus to the polymer moisture absorbent, and the external stimulus. And a step of vaporizing water exuded by blowing air to the polymeric hygroscopic material.
- the moisture absorbent water is absorbed by the stimulus-responsive polymer moisture absorbent or the polymer moisture absorbent containing the stimulus-responsive polymer, and then the polymer moisture absorbent is heated to release water.
- the mineral component contained in the water for humidification is captured by the polymer moisture absorbent.
- the humidifying device and the dehumidifying device can be configured to share the same components, and a dehumidifying / humidifying device that is simple in structure and easy to handle can be realized.
- FIG. 4 is a cross-sectional view of the humidifier taken along line AA in FIG. 3.
- Embodiment 1 it is a schematic diagram which shows a mode that water oozed from the element which moved to the humidification area.
- FIG. 1 is a chemical structural formula of alginic acid, which is an important part of the polymer hygroscopic material.
- FIG. 2 is a conceptual diagram showing how the polymeric hygroscopic material takes in mineral components in water into the structure.
- FIG. 3 is a longitudinal sectional view of the humidifying device 101 according to Embodiment 1 of the present invention as viewed from the side. 4 is a cross-sectional view taken along the line AA in FIG. 3 and viewed from the direction of the arrow.
- the humidifier 101 includes a rectangular parallelepiped housing.
- the housing includes an intake port 5 formed on one side surface of the upper portion, an exhaust port 7 formed on a side surface facing the intake port 5, and an exhaust port. It is formed in the lower part on the 7 side, and is provided with a humidifying tray 9 and a tank accommodating portion for accommodating a water supply tank (not shown).
- An intake filter 6 is provided inside the humidifier 101 of the intake port 5.
- a water supply tank (not shown) is a device for supplying water for humidification when the user operates the humidifier 101.
- An air circulation wall 23 is provided between the intake port 5 and the exhaust port 7 of the humidifier 101.
- the air taken in from the intake port 5 circulates in a limited space by the air circulation wall 23 as indicated by an arrow in FIG.
- an intake port 5 an intake filter 6, a humidification unit 1, a blower fan 8, and an exhaust port 7 are provided in this order from the air inlet side.
- the humidification unit 1 is an assembly of elements formed by laminating a polymer moisture absorbent 2 containing a stimulus-responsive polymer and a flat heater 4 on a substrate 3.
- Each element has a plate-like shape in which a polymer hygroscopic material 2 containing a stimulus-responsive polymer is laminated on one surface of a rectangular plate-like base material 3 and is in contact with the base material 3 on the other surface side of the base material 3.
- a heater 4 is provided.
- a plurality of such elements are fixed in close proximity on the side surface of the cylindrical pedestal, and are rotatably supported in a state of forming a cylinder as a whole.
- FIG. 4 is a cross-sectional view of the humidifier 101 taken along line AA in FIG.
- the humidifying unit 1 is horizontal in a direction penetrating the side surface where the intake port 5 is formed and the side surface where the exhaust port 7 is formed. Rotate around the shaft provided in.
- the humidifying unit 1 is rotationally driven by a stepping motor 10 whose rotational shaft is supported by a leg 11 and is driven by a control device (not shown).
- Each element constituting the humidifying unit 1 is arranged on the side surface of the cylinder centering on the rotation axis of the stepping motor 10 at equal intervals, and the periphery of the rotation axis is indicated by an arrow in FIG. It can rotate in the direction shown (counterclockwise).
- the time or rotation speed required for the humidifying unit 1 to make one rotation is appropriately determined depending on the moisture absorption characteristics and the release characteristics of the polymer moisture absorbent.
- the rotation of the humidification unit 1 may be a control for sending out from the humidification area 25 to the water absorption area 24 and from the water absorption area 24 to the humidification area 25 in units of each element every predetermined time. It may be.
- a temperature-responsive polymer whose affinity with water is reversibly changed in response to heat is used as the polymer hygroscopic material 2.
- Such temperature-responsive polymer is a polymer having a lower critical solution temperature (LCST (Lower Critical Solution Temperature), hereinafter referred to as “LCST” in this specification).
- LCST Lower Critical Solution Temperature
- a polymer having LCST becomes hydrophilic and absorbs water at low temperatures, but becomes hydrophobic and releases water contained therein as a liquid.
- LCST is the temperature at which the polymer is dissolved in water and becomes hydrophilic at low temperatures and dissolves in water, but becomes hydrophobic and becomes insoluble at a certain temperature or higher.
- LCST is adjusted to be 40 to 70 ° C.
- the polymer hygroscopic material 2 formed in the humidifying unit 1 is more preferably porous, but is not necessarily porous. In the case of a porous structure, water released from the bulk part of the polymer moisture absorbent can be easily discharged by moving through the hole part. A specific example of the polymer hygroscopic material 2 will be described later.
- the region in which the humidifying unit 1 rotates is divided into a humidifying area 25 located above the humidifying device 101 and a water absorption area 24 located below the humidifying device 101. Yes.
- each element moves from the humidification area 25 to the water absorption area 24, while moving sequentially from the water absorption area 24 to the humidification area 25.
- heater fixing electrodes are arranged at positions where they can be energized in contact with heater electrodes (not shown) of the heaters 4 of the respective elements immediately after moving into the humidification area 25.
- the heater fixed electrode is provided so that the heater 4 of the element immediately before moving from the humidification area 25 to the water absorption area 24 does not operate, and the heated polymer moisture absorbent 2 Is naturally cooled.
- each element in the lower part of the humidifying unit 1 is immersed in the humidifying water stored in the humidifying tray 9.
- the polymer hygroscopic material 2 is hydrophilic. Thereby, the polymer hygroscopic material 2 of each element absorbs water.
- Humidification water is supplied to the humidifying tray 9 from a water supply tank (not shown) via a water supply valve (not shown). The humidifying tray 9 always ensures a constant water level and supplies water to the polymer moisture absorbent 2.
- the blower fan 8 in the humidifying device 101 When the humidifying device 101 is operated, the blower fan 8 in the humidifying device 101 is operated, and the air 12 is taken into the humidifying device 101 from the intake port 5 via the intake filter 6.
- the humidification unit 1 is driven by the stepping motor 10 and is sent out from the humidification area 25 to the water absorption area 24 for each element every predetermined time, and rotates from the water absorption area 24 to the humidification area 25.
- the humidifying unit 1 rotates, and the element initially immersed in water in the humidifying tray 9 moves from the water absorption area 24 to the humidifying area 25.
- the humidification area 25 electric power is supplied from the heater fixed electrode, the heater 4 is activated, and the polymer hygroscopic material 2 is heated together with the substrate 3 to reach a temperature exceeding the LCST.
- the water for humidification taken in the water absorption area 24 is released from the polymer moisture absorbent 2 as water droplets. This is schematically shown in FIG.
- the air 12 taken into the humidifying device 101 passes through the humidifying area 25, it comes into contact with the polymer moisture absorbent 2 of the humidifying unit 1.
- the water exuded on the surface of the polymer hygroscopic material 2 is heated at the same time as the polymer hygroscopic material 2 and the base material 3 and becomes a temperature equal to or higher than the LCST and is easily vaporized.
- the air 12 taken into the humidifier 101 contains water on the surface of the polymer moisture absorbent 2 as a vapor. As a result, the air 12 passing through the humidification area 25 is humidified and becomes air 13 and is exhausted from the exhaust port 7.
- the polymer hygroscopic material 2 provided in the humidifying unit 1 repeats the operation of containing water for humidification of the humidifying tray 9 and then releasing it by heating.
- individual molecules of alginic acid constituting an important part of the polymer hygroscopic material shown in FIG. 1 are shown by curves modified with a hydroxyl group OH and a carboxyl group COO.
- the mineral component contained in the water for humidification is represented by Ca2 + .
- a mineral component contained in the water for humidification is taken together with the water absorption, and a part is used for bonding between the molecular chains.
- the water released from the polymer moisture absorbent 2 removes the mineral components contained in the humidifying water.
- cross-linking occurs between the molecules of the polymer hygroscopic material 2, and the molecular structure is self-repaired to become a strong structure.
- a plurality of elements laminated with the polymer hygroscopic material 2 are arranged in a cylindrical shape and rotate, a plurality of elements in the humidification area 25 are used for humidification while absorbing water. Water can be absorbed by the remaining plurality of elements in the area 24. That is, humidification and water absorption can be performed in parallel.
- the base material 3 is not particularly limited as long as it can transmit the heat of the heater 4 to the polymer moisture absorbent 2, but for example, a metal such as aluminum or stainless steel can be used more suitably.
- the material of the substrate 3 may be a resin such as polydimethylsiloxane (PDMS), polycarbonate (PC), polyolefin, polyacrylate, silica, ceramic, or the like.
- a photothermal conversion material such as carbon black or iron oxide particles, or iron oxide ceramic particles or magnetite nanoparticles is used on the surface of the substrate 3. It is more preferable that the magnetic heat conversion material is applied. Thereby, the base material 3 can be heated by inputting light irradiation, a variable magnetic field, or the like, and thus the polymer hygroscopic material 2 can be heated.
- the method for laminating the polymer hygroscopic material 2 on the base material 3 is not particularly limited, and for example, a method of laminating with a binder, a silane coupling agent or the like can be used.
- the polymer moisture absorbent 2 is laminated on one side of the plate-like substrate 3, and the plate-like heater 4 is provided on the other surface side of the substrate 3 so as to be in contact with the substrate 3. It has been.
- the heater 4 may be provided on the surface of the base material 3 on the side where the polymer hygroscopic material 2 is laminated. In this case, the polymer hygroscopic material 2 is heated by radiant heat, and heat loss in the base material 3 is reduced.
- the humidifier 101 includes the housing, the intake port 5, the intake filter 6, the blower fan 8, and the exhaust port 7.
- a humidifier 101 can be used as a humidity controller by itself.
- the humidifying device 101 may be configured only by a humidifying unit excluding these. That is, the humidifying device 101 may be a device including at least the humidifying unit 1, the humidifying tray 9 as a water supply unit, and the stepping motor 10 as a driving source of the humidifying unit 1. In such a case, the humidifier 101 can be incorporated into the humidity controller as a component.
- the plate-like heater 4 is used to efficiently apply thermal stimulation to the polymer hygroscopic material 2, but the shape of the heater 4 is not limited to a plate shape, Any material that can heat the polymer hygroscopic material 2 may be used. Further, the heater 4 need not be stacked on each element of the humidifying unit 1, and may be a structure that is installed at a predetermined position in the vicinity of the humidifying unit 1 and heats the polymer moisture absorbent 2.
- a heating device other than the heater 4 may be used as long as the polymer moisture absorbent 2 can be stimulated by heat.
- a heating device include a halogen lamp, an infrared lamp, a xenon lamp, a resistance heater such as a nichrome wire and a sheathed tube heater. These can be arranged inside or outside the cylinder of the humidifying unit 1.
- a plate-like or layered polymer hygroscopic material is used as the polymer hygroscopic material 2, but the shape of the polymer hygroscopic material 2 is not limited to this. It may be. In such a case, it is preferable to provide a reticulated heat transfer structure or a heating structure using hot air so that each particle can be heated.
- the humidifying unit 1 includes 12 elements, but the number of elements is not limited to this. Further, in the above-described example, there are three elements in the water absorption area 24 and nine elements in the humidification area 25, but the ratio is not limited to this, and may be changed as appropriate. Can do.
- the humidifying unit 1 is driven by the stepping motor 10 and rotates for a predetermined time.
- the humidifying unit 1 may be rotated according to an instruction from the user.
- a sensor for detecting the humidification amount and humidity may be provided in the internal air flow passage, and the sensor may rotate when the humidification amount and the humidified air humidity become a predetermined value or less.
- the heater fixed electrode (not shown) may be arranged at a position where a part of the elements existing in the humidification area 25 or all the elements are in contact with the heater 4.
- the heater fixed electrode may be disposed at a position where power is supplied except for an element immediately before moving from the humidification area 25 to the water absorption area 24.
- the heater fixed electrode may be arranged at a position in contact with all the heaters 4 of the elements existing in the humidification area 25.
- the polymer hygroscopic material 2 is a polymer hygroscopic material containing a temperature-responsive polymer having LCST.
- the temperature response is not an LCST type. It may be a polymer hygroscopic material containing a functional polymer.
- a polymer hygroscopic material containing a stimulus-responsive polymer that responds to other stimuli can also be used.
- a stimulus imparting unit when using a polymer hygroscopic material containing a stimulus-responsive polymer that responds to other stimuli, instead of the heater 4, as a stimulus imparting unit, light such as infrared rays, ultraviolet rays, and visible light, a fluctuating electric field, fluctuations A device that applies a corresponding stimulus such as a magnetic field to be used may be used.
- Embodiment 2 changes the water supply part of the humidification apparatus 101 demonstrated in Embodiment 1.
- FIG. Other parts are the same as those of the humidifying apparatus 101 described in the first embodiment, and members having the same functions are denoted by the same reference numerals and description thereof is omitted.
- the humidifying tray 9 when the humidifier 101 is not operated, the humidifying tray 9 is drained to lower the water level, and the humidifying unit 1 is not always immersed. By doing in this way, it can prevent that polymer hygroscopic material 2 absorbs water unnecessarily, and wear of humidification unit 1 is controlled.
- a water supply valve (not shown) and a pump (not shown) are controlled by a control device (not shown) to lower the water level of the humidifying tray 9 to such an extent that the polymer moisture absorbent 2 of the humidifying unit 1 is not immersed.
- the collected water is returned to the water supply tank.
- the polymer moisture absorbent 2 of the humidification unit 1 is controlled to be submerged.
- the humidifying tray 9 for supplying water to the humidifying unit 1 is provided, and a part of the elements of the humidifying unit 1 is always immersed in the humidifying water.
- other structures may be used. . Such an example will be described in this embodiment.
- a water supply nozzle 18 and a water supply pump 19 are provided in the water absorption area 24, and water for humidification supplied from a water supply tank (not shown) is appropriately used.
- a structure for supplying to the humidifying unit 1 was adopted.
- the humidifying tray 9 is used as a relay container for humidifying water supplied from a water supply tank (not shown).
- the water supply pump 19 has a water absorption side connected to the humidifying tray 9 and a water supply nozzle 18 connected to the discharge side.
- the water supply pump 19 is driven by a control unit (not shown), and injects water for humidification toward the surface of the polymer moisture absorbent 2 as appropriate in accordance with the rotation of the humidification unit 1.
- the vaporization unit 15 is added to the humidifying device 101 described in the first embodiment.
- This schematic structure is shown in FIG.
- Other parts are the same as those of the humidifying apparatus 101 described in the first embodiment, and members having the same functions are denoted by the same reference numerals and description thereof is omitted.
- the humidifying device 103 is provided with a vaporizing unit 15 that transfers and vaporizes water droplets oozing from each element of the humidifying unit 1 to the humidifying area 25.
- the water vapor that has oozed out on the surface of the polymer hygroscopic material 2 of the humidifying unit 1 is transferred by the vaporizing section 15 to enlarge the area contributing to vaporization.
- the vaporizing unit 15 of the present embodiment is pivotally supported so as to rotate according to the rotation of the humidifying unit 1.
- the vaporization unit 15 is formed by forming a sheet having a large number of pores as shown in FIG. 8 into a cylindrical shape, and is installed so as to allow ventilation inside and outside the cylinder.
- the surface of the vaporizing unit 15 is in contact with the surface of the polymer absorbent material 2, and water droplets released from the polymer absorbent material 2 heated in the humidification area 25 are transferred. Water is sucked into the pores 15 a provided in the vaporization section 15 by bringing the vaporization section 15 into contact with the surface of the polymer moisture absorbent 2 of the humidification unit 1 in a state where water has oozed out.
- the water sucked into the vaporizing section 15 not only vaporizes from the front side surface of the vaporizing section 15 with which the polymer hygroscopic material 2 of the humidifying unit 1 contacts, but also spreads into the pores 15a and vaporizes from the inside of the cylinder of the vaporizing section 15 as well. It becomes possible to do. Since water is also vaporized from the surface of the polymer hygroscopic material 2, the area contributing to vaporization can be increased.
- the cylindrical diameter and number of the vaporization unit 15 are determined from the moisture absorption / release characteristics of the polymer moisture absorbent 2, the set humidification amount of the humidifier 103, and the like.
- the vaporizing section 15 has a good wettability with respect to water and is formed in a cylindrical shape with a material that does not absorb water.
- a large number of pores 15a are formed so as to penetrate from the front surface to the back surface of the substrate 15b. Since the pore 15a formed in the vaporization part 15 functions as a capillary tube, the water oozed to the surface of the polymer hygroscopic material can be drawn into the pore.
- the shape of the vaporizing unit 15 is preferably set so as to vaporize the oozed water droplets without waste according to the length of the humidifying unit 1 in the axial direction, but is not limited thereto.
- the pore 15a formed in the vaporization part 15 is not particularly limited as long as it has a pore diameter exhibiting a capillary phenomenon. However, the smaller the diameter, the larger the force for sucking water, and the larger the diameter, the force for sucking water. Becomes smaller. For this reason, the pore 15a formed in the vaporization part 15 can be formed with a small diameter on the surface in contact with the polymer moisture absorbent 2 and larger on the opposite surface than on the contact surface side.
- the processing method differs depending on the material of the base material, the thickness of the base material, and the hole diameter, processing by punching, drilling, laser, or the like is generally used.
- the air 12 taken in from the intake port 5 circulates only in the humidification area 25 by the air circulation wall 23 and does not circulate in the water absorption area 24.
- the polymer hygroscopic material 2 is in a water absorption state and does not discharge water, so that it is considered that the humidification efficiency deteriorates when the amount of air passing therethrough is large.
- FIG. 9 is a diagram illustrating a state after the moisture-absorbing element has moved to the humidification area 25 by the rotation of the humidification unit 1. For simplicity, only one vaporizer 15 is shown and the others are omitted.
- the polymer hygroscopic material 2 of the humidifying unit 1 has already become LCST or more by heating, and the contained water has oozed out as water droplets on the surface of the polymer hygroscopic material 2.
- the vaporization unit 15 comes into contact with the humidification unit 1 and water droplets exuded on the surface of the polymer moisture absorbent 2 are transferred to the vaporization unit 15. Water droplets that have oozed out from the polymer hygroscopic material 2 move to the surface of the vaporizing section 15 and are taken into the pores 15 a on the surface of the vaporizing section 15. While the vaporization unit 15 is rotated by the rotation of the humidification unit 1, the water taken into the pores 15a is vaporized in contact with the air 12 sucked from the intake port 5 on both the inside and outside of the cylinder of the vaporization unit 15. It is carried out.
- the vaporizing section 15 is cylindrical and always contacts the humidifying unit 1.
- other structures may be used as long as water can be transferred from the humidifying unit 1 and vaporized.
- an arc-shaped vaporization portion using a sheet having pores as shown in FIG. 8 in the humidification area 25 may be disposed along the peripheral edge of the humidification unit 1 and contacted in a timely manner by a control unit (not shown).
- a control unit not shown.
- a known structure such as a link, a lever, or a cam can be used.
- Embodiment 5 changes the vaporization part 15 of the humidification apparatus 103 demonstrated in Embodiment 4.
- FIG. This schematic structure is shown in FIG.
- Other parts are the same as those of the humidifying device 103 described in the fourth embodiment, and members having the same functions are denoted by the same reference numerals and description thereof is omitted.
- the vaporization unit 15 disclosed in the fourth embodiment is abolished and replaced with the vaporization unit 150 having the structure shown in FIG.
- seat shown in FIG. 10 is characterized by the number of pores differing in the 1st surface and 2nd surface of a plate-shaped base material.
- the pores 150a and 150c provided on the first surface merge inside the base material 150b and open on the second surface.
- the first surface having a large number of pores is brought into contact with and absorbed by the polymer hygroscopic material 2 so that water is accumulated up to the second surface and discharged from the second surface having a small number of pores. .
- Embodiments 4 and 5 disclose a structure in which water released from a polymer hygroscopic material is easily vaporized using a capillary phenomenon by using a vaporization part provided with pores in a substrate that does not absorb water. did.
- a vaporization part having such a capillary phenomenon a board formed by bundling with the fiber direction aligned in the sheet thickness direction, a nonwoven fabric such as wood or felt, a general fabric, a sponge having continuous pores, etc. are used. it can.
- Embodiments 4 and 5 disclosed a structure that facilitates vaporization of water released from a polymer hygroscopic material using the vaporization section 15 or the vaporization section 150. Such a structure can be used in the humidifiers 101 and 102 described in the first to third embodiments, and the same effect can be obtained.
- the sixth embodiment is a dehumidifying / humidifying device in which a dehumidifying function is added to the humidifying device, unlike the humidifying devices disclosed in the first to fifth embodiments.
- the water droplet removal unit 16 and the heater fixed electrode are added to the water absorption area 24 of the humidifier 102 described in the third embodiment.
- FIG. 11 shows the structure.
- Other parts are the same as those of the humidifying device 102 described in the third embodiment, and members having the same functions are denoted by the same reference numerals and description thereof is omitted.
- the water droplet removing unit 16 is provided inside the water absorbing area 24 and is disposed so as to be in contact with the surface of the polymer moisture absorbent 2 of the humidifying unit 1.
- the water droplet removing unit 16 is provided at an intermediate position between the humidifying unit 1 and the humidifying tray 9.
- the water droplet removing unit 16 does not have to be fixed, and preferably has a configuration that can move in a direction away from the surface of the polymeric moisture absorbent 2 when the dehumidifying function is not used.
- a known method such as a link, a lever, or a cam can be used.
- the dehumidifying / humidifying device 104 of the present embodiment needs to supply power to the heater 4 also in the water absorption area 24. For this reason, a heater fixed electrode (not shown) is provided at a position where the heater 4 of the humidifying unit 1 can be energized. With such a structure, the humidifier can have a dehumidifying function.
- the dehumidifying / humidifying device 104 When used as a humidifier, the dehumidifying / humidifying device 104 performs the operation shown in the third embodiment. Briefly, after the polymeric moisture absorbent 2 of the humidifying unit 1 that has been wetted by receiving water from the water supply nozzle 18 rotates and moves to the humidifying area 25, power is supplied from a heater fixed electrode (not shown). And heated to a temperature above LCST. The water contained in the polymer hygroscopic material 2 is released by heating, and the air 12 sucked by the blower fan 8 is sent out as air 13 containing vaporized water vapor.
- the dehumidifying operation is started when an operation is instructed from an operation unit or a control unit (not shown).
- the humidification area 25 becomes a moisture absorption area where the polymer hygroscopic material 2 absorbs moisture in the air
- the water absorption area 24 becomes a release area where the moisture absorbed by the polymer moisture absorbent 2 is released.
- the humidifying unit 1 has the same configuration as in the first to fifth embodiments, and rotates in the direction of the arrow in FIG.
- the blower fan 8 sucks air 12 from the intake port 5, and the polymer moisture absorbent 2 of the humidifying unit 1 absorbs moisture contained in the air 12. As a result, the air 12 is dried, and the air 13 is sent out from the exhaust port 7. In addition, the polymeric moisture absorbent 2 that has become wet with moisture moves from the humidification area 25 to the water absorption area 24 by the rotation of the humidification unit 1.
- the heater 4 of the humidifying unit 1 is powered by the heater fixed electrode, and the substrate 3 and the polymer moisture absorbent 2 are heated to a temperature equal to or higher than the LCST.
- the heated polymer hygroscopic material 2 releases the contained moisture and exudes as water droplets on the surface.
- the polymer hygroscopic material 2 in which water droplets are generated on the surface rotates and moves together with the humidifying unit 1 and moves to a position where the water droplet removing unit 16 is installed. Water droplets on the surface of the polymeric moisture absorbent 2 are wiped off by the water droplet removing unit 16 and collected in the humidifying tray 9.
- the polymer hygroscopic material 2 from which the water droplets have been removed moves to the humidification area 25 again while the power supply to the heater 4 is stopped and is naturally cooled.
- the cooled polymer hygroscopic material 2 again absorbs water vapor in the air and exhibits a dehumidifying function. The above operation is repeated and the operation as the dehumidifier continues. While operating as a dehumidifier, the heater fixed electrode installed in the humidification area 25 stops supplying power.
- the dehumidifying / humidifying device 104 operates as described above to exhibit functions as a humidifier and a dehumidifier, but these functions may be configured to be selected and executed by a user from an operation unit (not shown).
- the automatic operation may be configured so that the dehumidifying function and the humidifying function are used in a timely manner by using the humidity detection device as a criterion for determination based on the humidity set in advance or the humidity set by the user.
- the water released by the polymer moisture absorbent 2 is wiped by the water droplet removing unit 16, but the water droplet removing unit 16 is not necessarily required.
- the humidification area 24 water is released when the polymer hygroscopic material 2 reaches a temperature equal to or higher than the LCST. However, it is only necessary to supply power to the heater 4 so that water droplets can drip at the lowest position of the humidification unit 1.
- Water generated from water vapor in the air using the dehumidifying function does not contain impurities such as mineral components unlike ordinary city water, so white powder will not be generated even when used in a general humidifier.
- impurities such as mineral components unlike ordinary city water
- white powder will not be generated even when used in a general humidifier.
- the germs in the vaporizing filter and the humidifying dish are likely to be contaminated with airborne germs, and many germs grow over time. And it will change to unsanitary water. For this reason, in the conventional dehumidifying / humidifying apparatus, the dew condensation water generated during dehumidification has not been used as humidifying water.
- the polymer hygroscopic material according to the present invention has already been explained that mineral components contained in general city water are taken in as part of the structure, but at that time, germs are also trapped in the gel. For this reason, the moisture in the air or the city water once taken into the polymer hygroscopic material and taken out as water again has the effect that the bacteria and mineral components are extremely reduced.
- the water collected when functioning as a dehumidifier in automatic operation can be used as it is as humidifying water during the humidifying operation.
- the vaporizing unit 15 disclosed in the fourth embodiment can be employed.
- the vaporizing unit 15 does not exhibit a special function. This is because, when used as a dehumidifying device, the polymer moisture absorbent 2 in the humidifying area 25 is at a temperature below the LCST, so it does not release water and there is no room for the vaporizer 15 to contribute. It is.
- the vaporization unit 15 is effective when the dehumidifying / humidifying device 104 acts as a humidifying device. As described above, the humidification efficiency can be increased because it acts as an apparatus for expanding the vaporization area.
- a polymer hygroscopic material containing a dried body of stimulus-responsive polymer is used.
- the stimulus-responsive polymer is a crosslinked body
- a three-dimensional network structure formed by crosslinking the polymer forms a swollen polymer gel by absorbing a solvent such as water or an organic solvent.
- a dried polymer gel is used.
- the dried polymer gel refers to a polymer gel from which the solvent has been removed by drying.
- the dried polymer gel does not need to have the solvent completely removed from the polymer gel, and may contain a solvent or water as long as it can absorb moisture in the air.
- the moisture content of the dried body of the polymer gel is not particularly limited as long as the dried body can absorb moisture in the air. For example, it is more preferably 40% by weight or less.
- the moisture content refers to the ratio of moisture to the dry weight of the polymer gel.
- Stimulus-responsive polymer refers to a polymer that reversibly changes its properties in response to external stimuli.
- a stimulus-responsive polymer that reversibly changes its affinity with water in response to an external stimulus is used.
- the external stimulus is not particularly limited, and examples thereof include heat, light, a changing electric field, a changing magnetic field, and pH.
- the affinity for water reversibly changes in response to an external stimulus.
- a polymer given an external stimulus reversibly changes between hydrophilicity and hydrophobicity in response to an external stimulus. It means changing.
- a stimulus-responsive polymer whose affinity with water reversibly changes in response to heat i.e., a temperature-responsive polymer
- a temperature-responsive polymer is obtained by changing the temperature using a simple heating device.
- the moisture absorption of moisture, that is, water vapor, and the release of moisture absorbed by the moisture can be performed reversibly, so that it can be particularly suitably used for a humidity controller.
- examples of the temperature-responsive polymer include poly (N-isopropyl (meth) acrylamide), poly (N-normalpropyl (meth) acrylamide), and poly (N-methyl (meth) acrylamide).
- N-alkyl (meth) acrylamide poly (N-vinylisopropylamide), poly (N-vinylnormalpropylamide), poly (N-vinylnormalbutyramide), poly (N-vinylisobutyramide), poly ( Poly (N-vinylalkylamide) such as N-vinyl-t-butylamide); poly (N Vinyl (pyrrolidone); poly (2-alkyl-2-oxazoline) such as poly (2-ethyl-2-oxazoline), poly (2-isopropyl-2-oxazoline), poly (2-normalpropyl-2-oxazoline); Polyvinyl alkyl ethers such as polyvinyl methyl ether and polyvinyl ethyl ether; copolymers of polyethylene oxide and polypropylene oxide; poly (oxyethylene vinyl ether); cellulose derivatives such as methyl cellulose, ethyl cellulose, hydroxypropyl cellulose, hydroxypropyl cellulose
- the temperature-responsive polymer may be a crosslinked product of these polymers.
- examples of the crosslinked product include N-isopropyl (meth) acrylamide, N-normalpropyl (meth) acrylamide, N-methyl (meth) acrylamide, and N-ethyl (meta).
- N-alkyl (meth) acrylamides such as acrylamide, N-normal butyl (meth) acrylamide, N-isobutyl (meth) acrylamide, Nt-butyl (meth) acrylamide; N-vinylisopropylamide, N-vinyl normal propyl N-vinyl alkylamides such as amide, N-vinyl normal butyramide, N-vinyl isobutyramide, N-vinyl-t-butylamide; vinyl alkyl ethers such as vinyl methyl ether and vinyl ethyl ether; ethylene oxide and propylene oxide
- 2-ethyl-2-oxazoline such as 2-ethyl-2-oxazoline, 2-isopropyl-2-oxazoline, 2-normalpropyl-2-oxazoline, or two or more of these monomers in the presence of a crosslinking agent Mention may be made of polymers obtained by
- crosslinking agent conventionally known crosslinking agents may be appropriately selected and used.
- Crosslinkable monomer having polymerizable functional group such as diisocyanate, divinylbenzene, polyethylene glycol di (meth) acrylate; glutaraldehyde; polyhydric alcohol; polyvalent amine; polyvalent carboxylic acid; metal such as calcium ion and zinc ion Ions or the like can be preferably used.
- These crosslinking agents may be used alone or in combination of two or more.
- insoluble particles such as carbon and iron oxide can be mixed and used in the temperature-responsive polymer.
- carbon, iron oxide, and the like generate heat due to magnetic field fluctuations, an external stimulus can be used as a magnetic field.
- examples thereof include a copolymer with at least one of a polymer and a pH-responsive polymer, a crosslinked product of the photoresponsive polymer, or a crosslinked product of the copolymer.
- a polymer having a dissociation group such as a carboxyl group, a sulfonic acid group, a phosphate group, or an amino group, a carboxyl group
- a polymer having a dissociation group such as a carboxyl group, a sulfonic acid group, a phosphate group, or an amino group, a carboxyl group
- examples thereof include a polymer in which a complex is formed by electrostatic interaction, hydrogen bonding, or the like, such as a complex of a containing polymer and an amino group-containing polymer, or a crosslinked product thereof.
- a polymer having a dissociation group such as a carboxyl group, a sulfonic acid group, a phosphoric acid group, and an amino group, a carboxyl group
- a polymer having a dissociation group such as a carboxyl group, a sulfonic acid group, a phosphoric acid group, and an amino group, a carboxyl group
- examples thereof include a polymer in which a complex is formed by electrostatic interaction, hydrogen bonding, or the like, such as a complex of a containing polymer and an amino group-containing polymer, or a crosslinked product thereof.
- the stimulus-responsive polymer may be a derivative of the aforementioned stimulus-responsive polymer or a copolymer with another monomer.
- the other monomer is not particularly limited, and any monomer may be used.
- the stimulus-responsive polymer may be a polymer formed by forming an interpenetrating polymer network structure or a semi-interpenetrating polymer network structure with another crosslinked polymer or an uncrosslinked polymer. Good.
- the molecular weight of the stimulus-responsive polymer is not particularly limited, but the number average molecular weight determined by gel permeation chromatography (GPC) is preferably 3000 or more.
- a humidifier according to aspect 1 of the present invention includes a water supply unit that supplies water for humidification, a stimulus-responsive polymer hygroscopic material whose affinity with water reversibly changes in response to an external stimulus, or the stimulus response.
- the polymer hygroscopic material and the stimulus imparting portion are formed on a substrate to form a unit element, and a plurality of the elements are combined to form a cylindrical humidification unit.
- a rotatable structure that alternately passes through the humidification area, water absorption and discharge are realized in parallel.
- the water for humidification after the water for humidification is once absorbed by the polymer moisture absorbent, the water released by heating is vaporized, so that the mineral components contained in the water for humidification are removed by the polymer moisture absorbent. And has the effect that white powder is not generated by humidification.
- the polymer moisture absorbent has an effect that the mineral component is not deposited on the humidification unit because the mineral component contained in the water for humidification is taken in as part of the structure. Further, the incorporated mineral component has an effect of strengthening the structure of the polymer hygroscopic material.
- the humidifying device is configured to variably configure the water level of a humidifying dish that stores humidifying water in addition to the aspect 1 described above.
- a water level is adjusted using well-known means, such as a water supply valve, a drain valve, and a water supply pump.
- the water level of the humidifying dish is lowered by a control unit (not shown). Since the polymer moisture absorbent is not immersed in humidifying water except when the humidifying operation is performed, an effect of preventing unnecessary wear can be obtained.
- the humidifier according to aspect 3 of the present invention includes a water supply nozzle and a water supply pump in addition to aspect 1 described above.
- the amount of water supplied to the polymer moisture absorbent can be made variable, the amount of humidification can be adjusted freely. Moreover, since the polymer hygroscopic material is not immersed in water except when the humidifying operation is performed, unnecessary wear can be suppressed.
- the humidifier according to aspect 4 of the present invention includes, in addition to aspect 1, a vaporization unit that facilitates vaporization of water released from the heated polymeric moisture absorbent in the humidification area.
- the humidifying device includes a vaporization unit having a structure in which water released from the surface of the polymer moisture absorbent is integrated inside, instead of the aspect 4.
- the dehumidifying / humidifying device according to Aspect 6 of the present invention is the humidifying device disclosed in Aspect 3, provided with a heater fixed electrode for supplying power to the heater so that the polymer moisture absorbent can be heated even in the water absorption area.
- the dehumidifying function can be exhibited by the configuration of the humidifying device. That is, the humidifying device and the dehumidifying device are integrated, and it is possible to judge the ambient conditions and use the humidifying function and the dehumidifying function properly by control, or to perform the humidifying and dehumidifying operations continuously.
- the humidifying function and the dehumidifying function can be realized by sharing substantially the same components, so that the number of components can be reduced, and miniaturization and weight reduction are facilitated.
- the air conditioner has the effect of expanding functions and improving convenience.
- the heater is integrated with the humidification unit, but the heater can be installed separately. It suffices to heat the polymer hygroscopic material that is installed in the vicinity of the humidifying unit and formed as the humidifying unit, and a general heater that radiates heat can be used.
- the humidification method according to the present invention is a humidification method using a stimulus-responsive polymer hygroscopic material whose affinity with water reversibly changes in response to an external stimulus or a polymer hygroscopic material containing a stimulus-responsive polymer.
- the water released by heating is vaporized, so that the mineral component contained in the water for humidification is removed by the polymer moisture absorbent.
- the white powder is not generated by humidification.
- the polymer moisture absorbent takes in the mineral component contained in the water for humidification as a part of the structure, it has an effect that the mineral component does not precipitate in the humidification unit. Furthermore, the taken-in mineral component bridge
- dehumidification or humidification can be achieved simply by heating and cooling the polymer hygroscopic material to an extent exceeding the LCST, so that it can be efficiently conditioned without using supercooling or a large amount of heat. There is an effect.
- the humidifier or dehumidifier according to the present invention includes a water supply unit that supplies water for humidification, and a stimulus-responsive polymer moisture absorbent or stimulus response in which the affinity with water reversibly changes in response to an external stimulus.
- the humidifier or dehumidifier according to the present invention is characterized by further comprising a vaporization section that promotes vaporization of water released from the polymer moisture absorbent, in addition to the above-described configuration.
- the humidifying device or the dehumidifying / humidifying device according to the present invention is characterized in that a member having a plurality of pores formed in a base material is used as a vaporizing portion that promotes vaporization of water released from the polymer moisture absorbent. .
- the dehumidifying / humidifying device is characterized in that, in addition to the above-described configuration, a heating means is additionally provided to release moisture absorbed from the air by the polymer hygroscopic material.
- the humidification method according to the present invention includes a step of absorbing moisture for absorption by a stimulus-responsive polymer moisture absorbent or a polymer moisture-absorbing material containing a stimulus-responsive polymer, and imparting stimulus to the polymer moisture-absorbing material. And a step of reducing the affinity with water and a step of vaporizing water from the polymeric moisture absorbent by blowing.
- the humidifier according to the present invention can be incorporated into other air conditioners by downsizing and weight reduction.
- the humidification method according to the present invention can be suitably used for a humidity control apparatus.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Air Humidification (AREA)
Abstract
The purpose of the present invention is to provide a humidifying device and a dehumidifying device which prevent the precipitation of mineral components in humidifying water on a functional component and prevent white powder damage to the interior of a room due to humidification. This humidifying device is equipped with: at least a stimuli-responsive polymer absorbent material or a polymer absorbent material containing the stimuli-responsive polymer absorbent material; a water supply unit which supplies water to the polymer absorbent material; and a stimulus applying unit which applies external stimuli to the polymer absorbent material.
Description
本発明は、高分子吸湿材を利用した加湿装置および除加湿装置に関する。
The present invention relates to a humidifier and a dehumidifier using a polymeric moisture absorbent.
従来、加湿装置としては、ミスト式と、気化式と、スチーム式の3タイプが一般的である。ミスト式の例としては、超音波振動子を使用して貯水槽の水に超音波振動を加え、発生したミストを送風機で送出して加湿する方式である(例えば、特許文献1等参照)。気化式とは、貯水槽の水を吸水性と通気性を有する紙などで形成された気化フィルターに浸透させて送風機で送風することにより加湿する方式である(例えば、特許文献2等参照)。また、スチーム式は貯水槽の水をヒーターで加熱して湯気を発生させ、送風機で送出して加湿する方式である。(例えば、特許文献3等参照)。
Conventionally, three types of humidifiers are commonly used: a mist type, a vaporization type, and a steam type. As an example of the mist type, there is a method in which ultrasonic vibration is applied to water in a water storage tank using an ultrasonic vibrator, and the generated mist is sent out by a blower and humidified (see, for example, Patent Document 1). The vaporization type is a method in which water in a water storage tank is infiltrated into a vaporization filter formed of paper having water absorption and air permeability and is humidified by blowing with a blower (see, for example, Patent Document 2). The steam type is a system in which water in a water storage tank is heated by a heater to generate steam, and is sent out by a blower to be humidified. (For example, refer patent document 3 etc.).
ミスト式は、貯水槽の底に設置した超音波振動子を駆動して、貯水槽内の水を振動させて、水面にミストが発生することを利用する。超音波振動子と送風機が電力を消費するが、比較的低消費電力で加湿が出来るという特徴がある。一方で、貯水槽の水がそのまま微細水滴として室内に拡散するので、水滴が蒸発した後に水中のミネラル成分が家具などに付着する「白粉現象」という課題を有する。
The mist type utilizes the fact that mist is generated on the water surface by driving an ultrasonic transducer installed at the bottom of the water tank to vibrate the water in the water tank. Although the ultrasonic vibrator and the blower consume electric power, there is a feature that humidification can be performed with relatively low power consumption. On the other hand, since the water in the water storage tank diffuses into the room as fine water droplets as it is, there is a problem of “white powder phenomenon” in which mineral components in water adhere to furniture and the like after the water droplets evaporate.
気化式は、貯水槽の中に設置した気化フィルターに水を浸透させて、送風することで気化フィルターの表面から水が気化することを利用する。水だけが気化するので、白粉などの問題は発生しない。また、送風機が電力消費するだけで、超音波式よりも低消費電力で加湿が出来るという特徴がある。一方で、気化フィルターの表面に水中のミネラル成分が析出して加湿能力が減少するので定期的に除去または交換しなければならないという課題を有する。
The vaporization type utilizes the fact that water is vaporized from the surface of the vaporization filter by allowing water to permeate the vaporization filter installed in the water storage tank and blowing air. Since only water vaporizes, problems such as white powder do not occur. Further, there is a feature that humidification can be performed with lower power consumption than the ultrasonic type only by the power consumption of the blower. On the other hand, since the mineral component in water precipitates on the surface of the vaporization filter and the humidification ability decreases, there is a problem that it must be removed or replaced periodically.
スチーム式は、貯水槽の水中に設置した加熱ヒーターに通電して湯気を発生させ、送風する。湯気は水中のミネラル成分などを含まないので白粉などの問題は発生しない。一方で、送風機と加熱ヒーターが電力消費し、加湿量は加熱ヒーターの消費電力が直接左右するので高消費電力であるという特徴がある。また、加熱ヒーターの表面に水中のミネラル成分が付着するので定期的に除去または交換しなければならないという課題を有する。
In the steam type, the heater installed in the water in the water tank is energized to generate steam and blow. Steam does not contain minerals in the water, so white powder and other problems do not occur. On the other hand, the blower and the heater consume power, and the amount of humidification is characterized by high power consumption because the power consumption of the heater directly affects. Moreover, since the mineral component in water adheres to the surface of a heater, it has the subject that it must remove or replace | exchange regularly.
また、加湿装置と除湿装置の機能を併せ持った除加湿装置において、除湿装置は一般に冷凍回路を搭載する。冷凍回路は、圧縮機、凝縮器、蒸発器、冷媒流量調節器などを閉回路で接続して構成される。蒸発器で空気を露点以下に冷却することで、空気中の湿分を結露水として除去する(例えば、特許文献4等参照)。このような除加湿装置は、特に除湿装置の構成要素が多く、重く大きい装置となってしまい扱いづらいという課題を有する。
Also, in a dehumidifying / humidifying device having both functions of a humidifying device and a dehumidifying device, the dehumidifying device is generally equipped with a refrigeration circuit. The refrigeration circuit is configured by connecting a compressor, a condenser, an evaporator, a refrigerant flow rate controller, and the like in a closed circuit. By cooling the air below the dew point with an evaporator, moisture in the air is removed as condensed water (see, for example, Patent Document 4). Such a dehumidifying / humidifying device has a problem that there are many components of the dehumidifying device, and the device becomes heavy and large and difficult to handle.
従来の気化式加湿装置では気化フィルターにミネラル成分が析出し、スチーム式加湿装置では加熱ヒーターにミネラル成分が析出する。各々主たる機能を発揮する部品に水中のミネラル成分が付着することで加湿能力が減退する。そのため定期的に交換または除去する必要があった。また、超音波式加湿装置は、機能部品に付着するミネラル成分は少ないが、水滴として室内に飛散させるため家具などに白粉が付着するという課題があった。
In the conventional vaporizing humidifier, mineral components are deposited on the vaporizing filter, and in the steam humidifier, mineral components are deposited on the heater. Humidification ability declines because the mineral component in water adheres to each part which exhibits each main function. Therefore, it was necessary to replace or remove it periodically. In addition, the ultrasonic humidifier has a small amount of mineral components adhering to the functional parts, but there is a problem that white powder adheres to furniture and the like in order to scatter the water droplets indoors.
また、従来の冷凍回路を搭載する除湿装置は熱交換器、圧縮機など、大きく、かつ重い構成要素が多く、さらに、除湿装置と加湿装置を一体に収納した除加湿装置は、一層大きく重い装置となっており、扱いやすいものではなかった。
In addition, a conventional dehumidifying device equipped with a refrigeration circuit has many large and heavy components such as a heat exchanger and a compressor. Furthermore, a dehumidifying / humidifying device in which the dehumidifying device and the humidifying device are integrated is larger and heavier. It was not easy to handle.
本発明は、前記の問題点に鑑みてなされたものであり、気化フィルターや加熱ヒーターなどの機能を発揮する部品にミネラル成分が付着せず、また、室内にも白粉を飛散させることがない加湿装置と、構造が簡素で小型化しやすく扱いやすい除加湿装置を実現するものである。
The present invention has been made in view of the above-mentioned problems, and is not humidified so that mineral components do not adhere to parts that perform functions such as a vaporization filter and a heater, and white powder is not scattered indoors. A device and a dehumidifying / humidifying device that is simple in structure, easy to downsize and easy to handle are realized.
本発明に係る加湿装置は、刺激応答性高分子を含有する高分子吸湿材と、前記高分子吸湿材に給水する給水部と、前記高分子吸湿材に外部刺激を付与する刺激付与部と、を備えていることを特徴としている。
The humidifier according to the present invention includes a polymer moisture absorbent containing a stimulus-responsive polymer, a water supply unit for supplying water to the polymer moisture absorbent, and a stimulus applying unit for applying external stimulus to the polymer moisture absorbent. It is characterized by having.
また、本発明に係る加湿装置は、さらに前記高分子吸湿材に接触する気化部を備え、前記気化部は、多数の細孔を有することが好ましい。
Further, the humidifier according to the present invention further includes a vaporizing portion that contacts the polymer moisture absorbent, and the vaporizing portion preferably has a large number of pores.
また、本発明に係る加湿装置は、前記高分子吸湿材を基材上に形成した素子を集合して加湿ユニットと成し、前記加湿ユニットに前記給水部で給水した後に、前記加湿ユニットに前記刺激付与部で刺激を与え、前記刺激を与えた加湿ユニットの部分に、送風することが好ましい。
In addition, the humidifier according to the present invention is a humidifier unit that collects the elements formed with the polymer moisture absorbent on a base material, and supplies the humidifier unit with the water supply unit, and then supplies the humidifier unit with the humidifier unit. It is preferable to apply a stimulus to the portion of the humidifying unit to which the stimulus is given by the stimulus applying unit and to give the stimulus.
また、本発明に係る加湿装置は、さらに前記構成に加え、前記刺激付与部が設置された位置と異なる位置に、さらに第2の刺激付与部を設置し、前記刺激付与部と、前記第2の刺激付与部とを択一的に選択して稼働させ、前記第2の刺激付与部を稼働させることで除湿を行うことが好ましい。
In addition to the above-described configuration, the humidifying device according to the present invention further includes a second stimulus applying unit at a position different from the position where the stimulus applying unit is installed, the stimulus applying unit, and the second It is preferable to perform dehumidification by selectively operating the second stimulating unit and selectively operating the second stimulating unit.
また、本発明に係る加湿方法は、刺激応答性高分子を含有する高分子吸湿材に水を吸水させる工程と、前記高分子吸湿材に外部刺激を付与する工程と、前記外部刺激を付与された高分子吸湿材に送風して滲出した水を気化させる工程と、を含むことを特徴としている。
Further, the humidification method according to the present invention includes a step of absorbing water into a polymer moisture absorbent containing a stimulus-responsive polymer, a step of applying external stimulus to the polymer moisture absorbent, and the external stimulus. And a step of vaporizing water exuded by blowing air to the polymeric hygroscopic material.
本発明によれば、刺激応答性高分子吸湿材または刺激応答性高分子を含有する高分子吸湿材に加湿用の水を吸湿させた後に、高分子吸湿材を加熱して水を放出させるので、加湿用の水に含まれるミネラル成分が高分子吸湿材に捕捉される。これにより、加湿用の水に含まれるミネラル成分が気化フィルターや加熱ヒーターに析出することなく、加湿によって白粉を拡散させることがない加湿装置または除加湿装置、及び加湿方法を実現することが可能となる。
According to the present invention, the moisture absorbent water is absorbed by the stimulus-responsive polymer moisture absorbent or the polymer moisture absorbent containing the stimulus-responsive polymer, and then the polymer moisture absorbent is heated to release water. The mineral component contained in the water for humidification is captured by the polymer moisture absorbent. As a result, it is possible to realize a humidifying device or a dehumidifying device and a humidifying method in which the mineral component contained in the water for humidification does not precipitate on the vaporization filter or the heater and does not diffuse the white powder by humidification. Become.
また、前記の構成によれば、加湿装置と除湿装置とを同じ構成要素を共有して構成することが出来、構造が簡素で小型化がしやすく扱いやすい除加湿装置が実現できる。
Further, according to the above-described configuration, the humidifying device and the dehumidifying device can be configured to share the same components, and a dehumidifying / humidifying device that is simple in structure and easy to handle can be realized.
〔実施の形態1〕
以下、本発明の一実施形態について説明する。図1は高分子吸湿材の重要部分を成すアルギン酸の化学構造式である。図2は高分子吸湿材が水中のミネラル成分を構造中に取り込む様子を示す概念図である。図3は本発明の実施の形態1に係る加湿装置101を側方から見た縦断面図である。図4は、図3中のA-A線で切断し矢印方向から見た断面図である。 [Embodiment 1]
Hereinafter, an embodiment of the present invention will be described. FIG. 1 is a chemical structural formula of alginic acid, which is an important part of the polymer hygroscopic material. FIG. 2 is a conceptual diagram showing how the polymeric hygroscopic material takes in mineral components in water into the structure. FIG. 3 is a longitudinal sectional view of thehumidifying device 101 according to Embodiment 1 of the present invention as viewed from the side. 4 is a cross-sectional view taken along the line AA in FIG. 3 and viewed from the direction of the arrow.
以下、本発明の一実施形態について説明する。図1は高分子吸湿材の重要部分を成すアルギン酸の化学構造式である。図2は高分子吸湿材が水中のミネラル成分を構造中に取り込む様子を示す概念図である。図3は本発明の実施の形態1に係る加湿装置101を側方から見た縦断面図である。図4は、図3中のA-A線で切断し矢印方向から見た断面図である。 [Embodiment 1]
Hereinafter, an embodiment of the present invention will be described. FIG. 1 is a chemical structural formula of alginic acid, which is an important part of the polymer hygroscopic material. FIG. 2 is a conceptual diagram showing how the polymeric hygroscopic material takes in mineral components in water into the structure. FIG. 3 is a longitudinal sectional view of the
以下、本発明の実施の形態1について図3,4を参照しながら説明する。加湿装置101は、直方体形状の筐体を備え、この筐体には、上部の一側面に形成された吸気口5と、吸気口5に対向する側面に形成された排気口7と、排気口7側の下部に形成され、加湿皿9と図示していない給水タンクを収容するタンク収容部とが備えられている。吸気口5の、加湿装置101の内部側には吸気フィルター6が備えられている。図示していない給水タンクは、使用者が加湿装置101を運転するときに、加湿用の水を供給するための装置である。
Hereinafter, Embodiment 1 of the present invention will be described with reference to FIGS. The humidifier 101 includes a rectangular parallelepiped housing. The housing includes an intake port 5 formed on one side surface of the upper portion, an exhaust port 7 formed on a side surface facing the intake port 5, and an exhaust port. It is formed in the lower part on the 7 side, and is provided with a humidifying tray 9 and a tank accommodating portion for accommodating a water supply tank (not shown). An intake filter 6 is provided inside the humidifier 101 of the intake port 5. A water supply tank (not shown) is a device for supplying water for humidification when the user operates the humidifier 101.
加湿装置101の、吸気口5と排気口7との間には、空気流通壁23が設けられている。吸気口5から取り込まれた空気は、図3中の矢印で示されるように、空気流通壁23によって限られた空間を流通する。空気流通路には、空気の入り口側から順に、吸気口5、吸気フィルター6、加湿ユニット1、送風ファン8、及び排気口7が設けられている。
An air circulation wall 23 is provided between the intake port 5 and the exhaust port 7 of the humidifier 101. The air taken in from the intake port 5 circulates in a limited space by the air circulation wall 23 as indicated by an arrow in FIG. In the air flow passage, an intake port 5, an intake filter 6, a humidification unit 1, a blower fan 8, and an exhaust port 7 are provided in this order from the air inlet side.
加湿ユニット1は、基材3上に刺激応答性高分子を含有する高分子吸湿材2と平板状の加熱ヒーター4を積層して形成した素子の集合体である。各素子は、四角形板状の基材3の一面上に刺激応答性高分子を含有する高分子吸湿材2が積層され、基材3の他面側に基材3に接するように板状の加熱ヒーター4が設けられてなる。このような素子が、円筒状の台座の側面上に複数個、近接して固定され、全体として円筒を成す状態で、回転可能に支持されている。
The humidification unit 1 is an assembly of elements formed by laminating a polymer moisture absorbent 2 containing a stimulus-responsive polymer and a flat heater 4 on a substrate 3. Each element has a plate-like shape in which a polymer hygroscopic material 2 containing a stimulus-responsive polymer is laminated on one surface of a rectangular plate-like base material 3 and is in contact with the base material 3 on the other surface side of the base material 3. A heater 4 is provided. A plurality of such elements are fixed in close proximity on the side surface of the cylindrical pedestal, and are rotatably supported in a state of forming a cylinder as a whole.
図4は、加湿装置101を、図3中のA-A線で切断した断面図である。図3および図4に示すように、加湿ユニット1は、加湿装置101の筐体の、吸気口5が形成されている側面と、排気口7が形成されている側面とを貫通する方向に水平に設けた軸を中心に回転する。加湿ユニット1は、回転軸が脚11によって支持され、図示をしていない制御装置で駆動されるステッピングモーター10で回転駆動される。
FIG. 4 is a cross-sectional view of the humidifier 101 taken along line AA in FIG. As shown in FIG. 3 and FIG. 4, the humidifying unit 1 is horizontal in a direction penetrating the side surface where the intake port 5 is formed and the side surface where the exhaust port 7 is formed. Rotate around the shaft provided in. The humidifying unit 1 is rotationally driven by a stepping motor 10 whose rotational shaft is supported by a leg 11 and is driven by a control device (not shown).
加湿ユニット1を構成する各素子は、ステッピングモーター10の回転軸を中心とする円筒の側面上に、等間隔で近接して配置されており、当該回転軸のまわりを、図4中に矢印で示す方向(反時計回り)に回転可能となっている。なお、加湿ユニット1が1回転するのに要する時間または回転速度は、高分子吸湿材の吸湿特性および放出特性によって適切に決定される。加湿ユニット1の回転は、所定の時間ごとに各素子単位で加湿エリア25から吸水エリア24へ、また吸水エリア24から加湿エリア25へ送り出す制御であってもよく、連続して緩やかに回転する制御であってもよい。
Each element constituting the humidifying unit 1 is arranged on the side surface of the cylinder centering on the rotation axis of the stepping motor 10 at equal intervals, and the periphery of the rotation axis is indicated by an arrow in FIG. It can rotate in the direction shown (counterclockwise). In addition, the time or rotation speed required for the humidifying unit 1 to make one rotation is appropriately determined depending on the moisture absorption characteristics and the release characteristics of the polymer moisture absorbent. The rotation of the humidification unit 1 may be a control for sending out from the humidification area 25 to the water absorption area 24 and from the water absorption area 24 to the humidification area 25 in units of each element every predetermined time. It may be.
本実施の形態では、高分子吸湿材2として、熱に応答して水との親和性が可逆的に変化する温度応答性高分子を用いる。かかる温度応答性高分子は、下限臨界溶液温度(LCST(Lower Critical Solution Temperature)、以下、本明細書において「LCST」と称することがある。)を持つ高分子である。LCSTを持つ高分子は低温では親水性となって吸水するが、LCST以上になると疎水性となって含んでいた水を液体として放出する。なお、ここで、LCSTとは、高分子を水に溶解したときに、低温では親水性で水に溶解するが、ある温度以上になると疎水性となって不溶化する場合の、その境となる温度をいう。一般にLCSTは40~70℃となるように調整される。
In this embodiment, a temperature-responsive polymer whose affinity with water is reversibly changed in response to heat is used as the polymer hygroscopic material 2. Such temperature-responsive polymer is a polymer having a lower critical solution temperature (LCST (Lower Critical Solution Temperature), hereinafter referred to as “LCST” in this specification). A polymer having LCST becomes hydrophilic and absorbs water at low temperatures, but becomes hydrophobic and releases water contained therein as a liquid. Here, LCST is the temperature at which the polymer is dissolved in water and becomes hydrophilic at low temperatures and dissolves in water, but becomes hydrophobic and becomes insoluble at a certain temperature or higher. Say. Generally, LCST is adjusted to be 40 to 70 ° C.
加湿ユニット1に形成される高分子吸湿材2は多孔質であることがより好ましいが、必ずしも多孔質でなくてもよい。多孔質構造とした場合には、高分子吸湿材のバルク部分から放出された水を、孔部分を移動して排出されやすくできる。なお、高分子吸湿材2の具体例については、後述する。
The polymer hygroscopic material 2 formed in the humidifying unit 1 is more preferably porous, but is not necessarily porous. In the case of a porous structure, water released from the bulk part of the polymer moisture absorbent can be easily discharged by moving through the hole part. A specific example of the polymer hygroscopic material 2 will be described later.
本実施の形態では図4に示すように、加湿ユニット1が回転する領域は、加湿装置101の上部に位置する加湿エリア25と、加湿装置101の下部に位置する吸水エリア24とに区分されている。加湿ユニット1が、所定の時間で一度回転する毎に、前記各素子が加湿エリア25から吸水エリア24に移動し、一方で吸水エリア24から加湿エリア25に順番に移動する。
In the present embodiment, as shown in FIG. 4, the region in which the humidifying unit 1 rotates is divided into a humidifying area 25 located above the humidifying device 101 and a water absorption area 24 located below the humidifying device 101. Yes. Each time the humidification unit 1 rotates once in a predetermined time, each element moves from the humidification area 25 to the water absorption area 24, while moving sequentially from the water absorption area 24 to the humidification area 25.
本実施の形態では、加湿エリア25内に9個の素子が存在する。加湿エリア25では、加湿エリア25内に移動した直後から各素子の加熱ヒーター4の図示しないヒーター電極と接触して通電できる位置に、図示しないヒーター用固定電極がそれぞれ配置されている。
In the present embodiment, nine elements exist in the humidification area 25. In the humidification area 25, heater fixing electrodes (not shown) are arranged at positions where they can be energized in contact with heater electrodes (not shown) of the heaters 4 of the respective elements immediately after moving into the humidification area 25.
この構造によりステッピングモーター10で回転駆動されて、加湿ユニット1の前記各素子が、ヒーター用固定電極が配置されている位置に到達すると、各素子の加熱ヒーター4がそれぞれ通電により作動するようになっている。また、本実施の形態では、加湿エリア25内から吸水エリア24に移動する直前の素子の加熱ヒーター4は作動しないようにヒーター用固定電極が設置されており、加熱されていた高分子吸湿材2が自然冷却される。
With this structure, when the respective elements of the humidifying unit 1 are driven to rotate by the stepping motor 10 and reach the position where the heater fixed electrode is disposed, the heaters 4 of the respective elements are activated by energization. ing. Further, in the present embodiment, the heater fixed electrode is provided so that the heater 4 of the element immediately before moving from the humidification area 25 to the water absorption area 24 does not operate, and the heated polymer moisture absorbent 2 Is naturally cooled.
次に加湿装置101による加湿方法について、図3~5を参照して説明する。吸水エリア24では、加湿皿9に蓄えられた加湿用の水に加湿ユニット1の下部にある各素子が浸漬される。この時点では、各素子は室温前後の温度であってLCST以下であるため、高分子吸湿材2は親水性となっている。これによって、各素子の高分子吸湿材2が吸水する。加湿用の水は、図示をしていない給水タンクから図示をしていない給水弁を経由して加湿皿9に供給される。加湿皿9は常時一定の水位が確保されて、高分子吸湿材2への給水を行う。
Next, a humidifying method by the humidifying device 101 will be described with reference to FIGS. In the water absorption area 24, each element in the lower part of the humidifying unit 1 is immersed in the humidifying water stored in the humidifying tray 9. At this time, since each element has a temperature around room temperature and is equal to or lower than LCST, the polymer hygroscopic material 2 is hydrophilic. Thereby, the polymer hygroscopic material 2 of each element absorbs water. Humidification water is supplied to the humidifying tray 9 from a water supply tank (not shown) via a water supply valve (not shown). The humidifying tray 9 always ensures a constant water level and supplies water to the polymer moisture absorbent 2.
加湿装置101が運転されると、加湿装置101内の送風ファン8が作動されて、空気12が吸気口5から吸気フィルター6を介して、加湿装置101内に取り込まれる。加湿ユニット1は、ステッピングモーター10によって駆動されて、所定の時間ごとに各素子単位で加湿エリア25から吸水エリア24へ送り出され、吸水エリア24から加湿エリア25へ回転移動する。
When the humidifying device 101 is operated, the blower fan 8 in the humidifying device 101 is operated, and the air 12 is taken into the humidifying device 101 from the intake port 5 via the intake filter 6. The humidification unit 1 is driven by the stepping motor 10 and is sent out from the humidification area 25 to the water absorption area 24 for each element every predetermined time, and rotates from the water absorption area 24 to the humidification area 25.
加湿装置101の運転で、加湿ユニット1が回転をし、当初、加湿皿9で水に浸されていた素子が、吸水エリア24から加湿エリア25へと移動をする。加湿エリア25では、ヒーター用固定電極から給電されて加熱ヒーター4が作動し、高分子吸湿材2が基材3とともに加熱されてLCSTを超える温度に達する。これによって、吸水エリア24で取り込んだ加湿用の水が、高分子吸湿材2から水滴として放出される。この様子を図5に模式的に示す。
In the operation of the humidifying device 101, the humidifying unit 1 rotates, and the element initially immersed in water in the humidifying tray 9 moves from the water absorption area 24 to the humidifying area 25. In the humidification area 25, electric power is supplied from the heater fixed electrode, the heater 4 is activated, and the polymer hygroscopic material 2 is heated together with the substrate 3 to reach a temperature exceeding the LCST. As a result, the water for humidification taken in the water absorption area 24 is released from the polymer moisture absorbent 2 as water droplets. This is schematically shown in FIG.
加湿装置101に取り込まれた空気12は、加湿エリア25を通過するときに、加湿ユニット1の高分子吸湿材2と接触する。高分子吸湿材2の表面に滲出した水は、高分子吸湿材2や基材3と同時に加熱されてLCST以上の温度になって気化しやすくなっている。加湿装置101に取り込まれた空気12は、高分子吸湿材2の表面の水を蒸気として含む。これによって、加湿エリア25を通過する空気12は加湿され、空気13となって排気口7から排気される。
When the air 12 taken into the humidifying device 101 passes through the humidifying area 25, it comes into contact with the polymer moisture absorbent 2 of the humidifying unit 1. The water exuded on the surface of the polymer hygroscopic material 2 is heated at the same time as the polymer hygroscopic material 2 and the base material 3 and becomes a temperature equal to or higher than the LCST and is easily vaporized. The air 12 taken into the humidifier 101 contains water on the surface of the polymer moisture absorbent 2 as a vapor. As a result, the air 12 passing through the humidification area 25 is humidified and becomes air 13 and is exhausted from the exhaust port 7.
一連の動作で、加湿ユニット1に設けた高分子吸湿材2は、加湿皿9の加湿用の水を含み、次に加熱によって放出するという動作を繰り返す。図1で示した高分子吸湿材の重要部分を成すアルギン酸の個々の分子が、図2中では水酸基OHとカルボキシル基COOで修飾された曲線で示される。また、加湿用の水に含まれるミネラル成分はCa2+で代表して表記されている。図2に示すように、高分子吸湿材2の内部では、加湿用の水に含まれるミネラル成分を吸水とともに取り入れ、一部は分子鎖間で結合に用いられる。これによって高分子吸湿材2から放出される水では、加湿用の水に含まれていたミネラル成分が除去される。同時に高分子吸湿材2の分子間で架橋が起こり、分子構造が自己補修され強固な構造になる。
In a series of operations, the polymer hygroscopic material 2 provided in the humidifying unit 1 repeats the operation of containing water for humidification of the humidifying tray 9 and then releasing it by heating. In FIG. 2, individual molecules of alginic acid constituting an important part of the polymer hygroscopic material shown in FIG. 1 are shown by curves modified with a hydroxyl group OH and a carboxyl group COO. Moreover, the mineral component contained in the water for humidification is represented by Ca2 + . As shown in FIG. 2, inside the polymer hygroscopic material 2, a mineral component contained in the water for humidification is taken together with the water absorption, and a part is used for bonding between the molecular chains. As a result, the water released from the polymer moisture absorbent 2 removes the mineral components contained in the humidifying water. At the same time, cross-linking occurs between the molecules of the polymer hygroscopic material 2, and the molecular structure is self-repaired to become a strong structure.
本実施の形態では、高分子吸湿材2を積層した複数の素子が円筒状に配置されて、回転する仕組みとなっているので、加湿エリア25内にある複数の素子を加湿に用いつつ、吸水エリア24内にある残りの複数の素子において吸水することができる。すなわち、加湿と吸水とを並行して行なうことができる。
In the present embodiment, since a plurality of elements laminated with the polymer hygroscopic material 2 are arranged in a cylindrical shape and rotate, a plurality of elements in the humidification area 25 are used for humidification while absorbing water. Water can be absorbed by the remaining plurality of elements in the area 24. That is, humidification and water absorption can be performed in parallel.
基材3は、加熱ヒーター4の熱を高分子吸湿材2に伝えることができるものであれば特に限定されるものではないが、例えば、アルミニウム、ステンレス等の金属をより好適に用いることができる。また、基材3の材料は、ポリジメチルシロキサン(PDMS)、ポリカーボネート(PC)、ポリオレフィン、ポリアクリレート等の樹脂、シリカ、セラミック等であってもよい。
The base material 3 is not particularly limited as long as it can transmit the heat of the heater 4 to the polymer moisture absorbent 2, but for example, a metal such as aluminum or stainless steel can be used more suitably. . The material of the substrate 3 may be a resin such as polydimethylsiloxane (PDMS), polycarbonate (PC), polyolefin, polyacrylate, silica, ceramic, or the like.
基材3の材料として、ポリジメチルシロキサン(PDMS)等を用いる場合は、基材3の表面に、カーボンブラック、酸化鉄粒子等の光熱変換材、または、酸化鉄系セラミック粒子、マグネタイトナノ粒子等の磁気熱変換材を塗布したものであることがより好ましい。これにより、光照射や変動磁場等の投入によって、基材3を加熱することができ、よって、高分子吸湿材2を加熱することができる。
When polydimethylsiloxane (PDMS) or the like is used as the material of the substrate 3, a photothermal conversion material such as carbon black or iron oxide particles, or iron oxide ceramic particles or magnetite nanoparticles is used on the surface of the substrate 3. It is more preferable that the magnetic heat conversion material is applied. Thereby, the base material 3 can be heated by inputting light irradiation, a variable magnetic field, or the like, and thus the polymer hygroscopic material 2 can be heated.
基材3への高分子吸湿材2の積層方法も特に限定されるものではないが、例えば、バインダー、シランカップリング剤等により積層する方法を用いることができる。
The method for laminating the polymer hygroscopic material 2 on the base material 3 is not particularly limited, and for example, a method of laminating with a binder, a silane coupling agent or the like can be used.
また、上述した例では、板状の基材3の片面上に高分子吸湿材2が積層され、基材3の他面側に、基材3に接するように板状の加熱ヒーター4が設けられている。ここにおいて、加熱ヒーター4は、高分子吸湿材2が積層されている側の基材3の面上に設けられていてもよい。この場合は、輻射熱で高分子吸湿材2が加熱され、基材3での熱損失が削減される。
In the above-described example, the polymer moisture absorbent 2 is laminated on one side of the plate-like substrate 3, and the plate-like heater 4 is provided on the other surface side of the substrate 3 so as to be in contact with the substrate 3. It has been. Here, the heater 4 may be provided on the surface of the base material 3 on the side where the polymer hygroscopic material 2 is laminated. In this case, the polymer hygroscopic material 2 is heated by radiant heat, and heat loss in the base material 3 is reduced.
上述した例では、加湿装置101は、筐体、吸気口5、吸気フィルター6、送風ファン8、排気口7を備えている。かかる加湿装置101は、それ自体で調湿装置としても利用することができる。しかし、加湿装置101は、これらを除いた加湿部のみで構成されていてもよい。すなわち、加湿装置101は、加湿ユニット1と、給水部としての加湿皿9と、加湿ユニット1の駆動源としてのステッピングモーター10と、を少なくとも備えた装置であってもよい。かかる場合は、加湿装置101は、部品として、調湿装置に組み込むことができる。
In the above-described example, the humidifier 101 includes the housing, the intake port 5, the intake filter 6, the blower fan 8, and the exhaust port 7. Such a humidifier 101 can be used as a humidity controller by itself. However, the humidifying device 101 may be configured only by a humidifying unit excluding these. That is, the humidifying device 101 may be a device including at least the humidifying unit 1, the humidifying tray 9 as a water supply unit, and the stepping motor 10 as a driving source of the humidifying unit 1. In such a case, the humidifier 101 can be incorporated into the humidity controller as a component.
上述した例では、高分子吸湿材2に効率的に熱刺激を付与するために、板状の加熱ヒーター4を用いているが、加熱ヒーター4の形状は板状に限定されるものではなく、高分子吸湿材2を加熱できるものであればよい。また、加湿ユニット1の各々の素子に加熱ヒーター4が積層される必要はなく、加湿ユニット1の近傍の所定の位置に設置されて高分子吸湿材2を加熱する構造でもよい。
In the above-described example, the plate-like heater 4 is used to efficiently apply thermal stimulation to the polymer hygroscopic material 2, but the shape of the heater 4 is not limited to a plate shape, Any material that can heat the polymer hygroscopic material 2 may be used. Further, the heater 4 need not be stacked on each element of the humidifying unit 1, and may be a structure that is installed at a predetermined position in the vicinity of the humidifying unit 1 and heats the polymer moisture absorbent 2.
また、高分子吸湿材2に熱による刺激を与えることができれば、加熱ヒーター4以外の加熱装置を用いてもよい。かかる加熱装置としては、例えば、ハロゲンランプ、赤外線ランプ、キセノンランプ、ニクロム線やシーズ管ヒーターなどの抵抗式ヒーター等を挙げることができる。これらは、加湿ユニット1の円筒の内側もしくは外側に配置することが出来る。
Further, a heating device other than the heater 4 may be used as long as the polymer moisture absorbent 2 can be stimulated by heat. Examples of such a heating device include a halogen lamp, an infrared lamp, a xenon lamp, a resistance heater such as a nichrome wire and a sheathed tube heater. These can be arranged inside or outside the cylinder of the humidifying unit 1.
また、上述した例では、高分子吸湿材2として、板状または層状の高分子吸湿材を用いているが、高分子吸湿材2の形状も、これに限定されるものではなく、例えば粒子状であってもよい。このような場合には、各粒子が加熱できるように網状伝熱構造や温風による加熱構造を備えることが好ましい。
Further, in the above-described example, a plate-like or layered polymer hygroscopic material is used as the polymer hygroscopic material 2, but the shape of the polymer hygroscopic material 2 is not limited to this. It may be. In such a case, it is preferable to provide a reticulated heat transfer structure or a heating structure using hot air so that each particle can be heated.
また、上述した例では、加湿ユニット1は、12個の素子を備えているが、素子の数はこれに限定されるものではない。また、上述した例では、吸水エリア24に3個の素子が存在し、加湿エリア25に9個の素子が存在しているが、その割合もこれに限定されるものではなく、適宜変更することができる。
In the above-described example, the humidifying unit 1 includes 12 elements, but the number of elements is not limited to this. Further, in the above-described example, there are three elements in the water absorption area 24 and nine elements in the humidification area 25, but the ratio is not limited to this, and may be changed as appropriate. Can do.
また、上述した例では、加湿ユニット1は、ステッピングモーター10によって駆動され、所定の時間で回転するようになっているが、ユーザーからの指示に応じて回転するようにしてもよく、加湿エリア25内の空気流通路に加湿量や湿度を検知するセンサーを設け、当該加湿量や加湿後の空気湿度が所定値以下になったときに回転するようにしてもよい。
In the above-described example, the humidifying unit 1 is driven by the stepping motor 10 and rotates for a predetermined time. However, the humidifying unit 1 may be rotated according to an instruction from the user. A sensor for detecting the humidification amount and humidity may be provided in the internal air flow passage, and the sensor may rotate when the humidification amount and the humidified air humidity become a predetermined value or less.
また、図示をしていないヒーター用固定電極は、加湿エリア25内に存在する素子の一部、又は全部の素子の加熱ヒーター4と接触する位置に配置されていてもよい。例えば、ヒーター用固定電極は、加湿エリア25から吸水エリア24に移動する直前の素子を除いて給電する位置に配置されていてもよい。或いは、加湿エリア25内に存在する素子の全部の加熱ヒーター4と接触する位置にヒーター用固定電極が配置されていてもよい。
Further, the heater fixed electrode (not shown) may be arranged at a position where a part of the elements existing in the humidification area 25 or all the elements are in contact with the heater 4. For example, the heater fixed electrode may be disposed at a position where power is supplied except for an element immediately before moving from the humidification area 25 to the water absorption area 24. Alternatively, the heater fixed electrode may be arranged at a position in contact with all the heaters 4 of the elements existing in the humidification area 25.
また、上述した例では、高分子吸湿材2としては、LCSTを持つ温度応答性高分子を含有する高分子吸湿材を用いているが、温度応答性高分子であればLCST型ではない温度応答性高分子を含む高分子吸湿材であってもよい。また、他の刺激に応答する刺激応答性高分子を含有する高分子吸湿材を用いることもできる。他の刺激に応答する刺激応答性高分子を含有する高分子吸湿材を用いる場合は、加熱ヒーター4の代わりに、刺激付与部として、赤外線、紫外線、可視光等の光、変動する電場、変動する磁場等、対応する刺激を与える装置を用いればよい。
In the above-described example, the polymer hygroscopic material 2 is a polymer hygroscopic material containing a temperature-responsive polymer having LCST. However, if the polymer is a temperature-responsive polymer, the temperature response is not an LCST type. It may be a polymer hygroscopic material containing a functional polymer. In addition, a polymer hygroscopic material containing a stimulus-responsive polymer that responds to other stimuli can also be used. When using a polymer hygroscopic material containing a stimulus-responsive polymer that responds to other stimuli, instead of the heater 4, as a stimulus imparting unit, light such as infrared rays, ultraviolet rays, and visible light, a fluctuating electric field, fluctuations A device that applies a corresponding stimulus such as a magnetic field to be used may be used.
〔実施の形態2〕
実施の形態2は、実施の形態1で説明した加湿装置101の給水部を変更したものである。その他の部分は実施の形態1で説明した加湿装置101と同じであり、同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。 [Embodiment 2]
Embodiment 2 changes the water supply part of the humidification apparatus 101 demonstrated in Embodiment 1. FIG. Other parts are the same as those of the humidifying apparatus 101 described in the first embodiment, and members having the same functions are denoted by the same reference numerals and description thereof is omitted.
実施の形態2は、実施の形態1で説明した加湿装置101の給水部を変更したものである。その他の部分は実施の形態1で説明した加湿装置101と同じであり、同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。 [Embodiment 2]
本実施の形態では、加湿装置101の運転を行わないときは、加湿皿9を排水して水位を低下させ、加湿ユニット1が常に浸漬されない構造とする。このようにすることで、高分子吸湿材2が不要に吸水することを防止でき、加湿ユニット1の損耗が抑制される。本実施の形態では、図示しない給水弁と図示しないポンプを、図示しない制御装置で制御して、加湿ユニット1の高分子吸湿材2が浸漬されない程度に加湿皿9の水位を低下させる。回収した水は給水タンクに戻される。加湿運転が開始されるときに、加湿ユニット1の高分子吸湿材2が浸水するように制御される。
In the present embodiment, when the humidifier 101 is not operated, the humidifying tray 9 is drained to lower the water level, and the humidifying unit 1 is not always immersed. By doing in this way, it can prevent that polymer hygroscopic material 2 absorbs water unnecessarily, and wear of humidification unit 1 is controlled. In the present embodiment, a water supply valve (not shown) and a pump (not shown) are controlled by a control device (not shown) to lower the water level of the humidifying tray 9 to such an extent that the polymer moisture absorbent 2 of the humidifying unit 1 is not immersed. The collected water is returned to the water supply tank. When the humidification operation is started, the polymer moisture absorbent 2 of the humidification unit 1 is controlled to be submerged.
〔実施の形態3〕
実施の形態3は、実施の形態1で説明した加湿装置101の給水部を変更したものである。この概略構造を図6に示す。その他の部分は実施の形態1で説明した加湿装置101と同じであり、同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。 [Embodiment 3]
In the third embodiment, the water supply unit of thehumidifying device 101 described in the first embodiment is changed. This schematic structure is shown in FIG. Other parts are the same as those of the humidifying apparatus 101 described in the first embodiment, and members having the same functions are denoted by the same reference numerals and description thereof is omitted.
実施の形態3は、実施の形態1で説明した加湿装置101の給水部を変更したものである。この概略構造を図6に示す。その他の部分は実施の形態1で説明した加湿装置101と同じであり、同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。 [Embodiment 3]
In the third embodiment, the water supply unit of the
実施の形態1では加湿ユニット1に給水する加湿皿9を設け、常に加湿ユニット1の一部の素子が加湿用の水に浸漬される構造としたが、他の構造とすることも可能である。そのような例を本実施の形態で説明する。本実施の形態の加湿装置102では、図6に示すように、吸水エリア24内に給水ノズル18と給水ポンプ19とを設け、図示をしていない給水タンクから給水される加湿用の水を適宜加湿ユニット1に供給する構造とした。
In the first embodiment, the humidifying tray 9 for supplying water to the humidifying unit 1 is provided, and a part of the elements of the humidifying unit 1 is always immersed in the humidifying water. However, other structures may be used. . Such an example will be described in this embodiment. In the humidifying device 102 of the present embodiment, as shown in FIG. 6, a water supply nozzle 18 and a water supply pump 19 are provided in the water absorption area 24, and water for humidification supplied from a water supply tank (not shown) is appropriately used. A structure for supplying to the humidifying unit 1 was adopted.
本実施の形態では、加湿皿9は、図示していない給水タンクから供給される加湿用の水の中継容器として使用される。給水ポンプ19は、吸水側が加湿皿9と接続されるとともに吐出側に給水ノズル18が接続される。給水ポンプ19は、図示していない制御部によって駆動され、加湿ユニット1の回転に合わせて適宜高分子吸湿材2の表面に向けて加湿用の水を噴射する。このようにすることで、給水量が調整可能となり、単位時間の加湿量や加湿後の空気の湿度が調節でき、細やかな制御が可能になる。
In the present embodiment, the humidifying tray 9 is used as a relay container for humidifying water supplied from a water supply tank (not shown). The water supply pump 19 has a water absorption side connected to the humidifying tray 9 and a water supply nozzle 18 connected to the discharge side. The water supply pump 19 is driven by a control unit (not shown), and injects water for humidification toward the surface of the polymer moisture absorbent 2 as appropriate in accordance with the rotation of the humidification unit 1. By doing in this way, the amount of water supply can be adjusted, the humidification amount per unit time and the humidity of the air after humidification can be adjusted, and fine control becomes possible.
〔実施の形態4〕
実施の形態4は、実施の形態1で説明した加湿装置101に気化部15を追加したものである。この概略構造を図7に示す。その他の部分は実施の形態1で説明した加湿装置101と同じであり、同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。 [Embodiment 4]
In the fourth embodiment, thevaporization unit 15 is added to the humidifying device 101 described in the first embodiment. This schematic structure is shown in FIG. Other parts are the same as those of the humidifying apparatus 101 described in the first embodiment, and members having the same functions are denoted by the same reference numerals and description thereof is omitted.
実施の形態4は、実施の形態1で説明した加湿装置101に気化部15を追加したものである。この概略構造を図7に示す。その他の部分は実施の形態1で説明した加湿装置101と同じであり、同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。 [Embodiment 4]
In the fourth embodiment, the
本実施の形態の加湿装置103は、加湿エリア25に、加湿ユニット1の各素子から滲み出る水滴を転写し気化する気化部15が備えられている。加湿ユニット1の高分子吸湿材2の表面に滲み出てきた水滴を、気化部15が転写して気化に寄与する面積を拡大する。
The humidifying device 103 according to the present embodiment is provided with a vaporizing unit 15 that transfers and vaporizes water droplets oozing from each element of the humidifying unit 1 to the humidifying area 25. The water vapor that has oozed out on the surface of the polymer hygroscopic material 2 of the humidifying unit 1 is transferred by the vaporizing section 15 to enlarge the area contributing to vaporization.
本実施の形態の気化部15は、加湿ユニット1の回転に従って回転するように軸支されている。気化部15は、図8に示すような多数の細孔を設けたシートを円筒状に形成したものであり、円筒の内外ともに通気可能に設置される。図7に示すように、気化部15の表面は高分子吸湿材2の表面に接しており、加湿エリア25で加熱された高分子吸湿材2が放出した水滴が転写される。加湿ユニット1の高分子吸湿材2の表面に水が滲出した状態で、気化部15を接触させることで気化部15に設けた細孔15a内に水が吸引される。
The vaporizing unit 15 of the present embodiment is pivotally supported so as to rotate according to the rotation of the humidifying unit 1. The vaporization unit 15 is formed by forming a sheet having a large number of pores as shown in FIG. 8 into a cylindrical shape, and is installed so as to allow ventilation inside and outside the cylinder. As shown in FIG. 7, the surface of the vaporizing unit 15 is in contact with the surface of the polymer absorbent material 2, and water droplets released from the polymer absorbent material 2 heated in the humidification area 25 are transferred. Water is sucked into the pores 15 a provided in the vaporization section 15 by bringing the vaporization section 15 into contact with the surface of the polymer moisture absorbent 2 of the humidification unit 1 in a state where water has oozed out.
気化部15に吸引された水は、加湿ユニット1の高分子吸湿材2が接触する気化部15の表側面から気化するだけでなく、細孔15a内に行き渡り気化部15の円筒内側からも気化することが可能になる。高分子吸湿材2の表面からも水が気化するので、これによって、気化に寄与する面積が拡大できる。気化部15の円筒直径や数は、高分子吸湿材2の吸放湿特性、加湿装置103の設定加湿量などから決定される。
The water sucked into the vaporizing section 15 not only vaporizes from the front side surface of the vaporizing section 15 with which the polymer hygroscopic material 2 of the humidifying unit 1 contacts, but also spreads into the pores 15a and vaporizes from the inside of the cylinder of the vaporizing section 15 as well. It becomes possible to do. Since water is also vaporized from the surface of the polymer hygroscopic material 2, the area contributing to vaporization can be increased. The cylindrical diameter and number of the vaporization unit 15 are determined from the moisture absorption / release characteristics of the polymer moisture absorbent 2, the set humidification amount of the humidifier 103, and the like.
本実施の形態では気化部15は、水に対する濡れ性が良く、また、吸水性を有さない材質で円筒状に形成されている。多数の細孔15aが基材15bの表面から裏面に貫通するように形成されている。気化部15に形成される細孔15aは、毛細管として機能するため、高分子吸湿材の表面に滲出した水を細孔内部に引き込むことが出来る。気化部15の形状は、加湿ユニット1の軸方向の長さに合わせて、滲み出た水滴を無駄なく気化できるようにしておくのが好ましいが、これに限定されるものではない。
In the present embodiment, the vaporizing section 15 has a good wettability with respect to water and is formed in a cylindrical shape with a material that does not absorb water. A large number of pores 15a are formed so as to penetrate from the front surface to the back surface of the substrate 15b. Since the pore 15a formed in the vaporization part 15 functions as a capillary tube, the water oozed to the surface of the polymer hygroscopic material can be drawn into the pore. The shape of the vaporizing unit 15 is preferably set so as to vaporize the oozed water droplets without waste according to the length of the humidifying unit 1 in the axial direction, but is not limited thereto.
気化部15に形成される細孔15aは、毛細管現象を示す孔径であれば特に寸法を限定するものではないが、径が小さいほど水を吸い込む力が大きくなり、径が大きくなると水を吸い込む力が小さくなる。このため、気化部15に形成される細孔15aは、高分子吸湿材2と接触する面では径を小さく、反対側の面では接触面側よりも大きく形成することも可能である。また、細孔は基材の材質、基材の厚さ、孔径によっても加工方法が異なるが、パンチング、ドリル、レーザーなどによる加工が一般に使用される。
The pore 15a formed in the vaporization part 15 is not particularly limited as long as it has a pore diameter exhibiting a capillary phenomenon. However, the smaller the diameter, the larger the force for sucking water, and the larger the diameter, the force for sucking water. Becomes smaller. For this reason, the pore 15a formed in the vaporization part 15 can be formed with a small diameter on the surface in contact with the polymer moisture absorbent 2 and larger on the opposite surface than on the contact surface side. In addition, although the processing method differs depending on the material of the base material, the thickness of the base material, and the hole diameter, processing by punching, drilling, laser, or the like is generally used.
なお、吸気口5から取り込まれた空気12は、空気流通壁23によって、加湿エリア25のみを流通し、吸水エリア24には流通しないようになっていることが好ましい。吸水エリア24側では高分子吸湿材2が吸水状態であって、水の放出を行わないので、通過する空気量が多いと加湿効率が悪くなることを考慮している。
In addition, it is preferable that the air 12 taken in from the intake port 5 circulates only in the humidification area 25 by the air circulation wall 23 and does not circulate in the water absorption area 24. In the water absorption area 24 side, the polymer hygroscopic material 2 is in a water absorption state and does not discharge water, so that it is considered that the humidification efficiency deteriorates when the amount of air passing therethrough is large.
図9は、吸湿した素子が、加湿ユニット1の回転により加湿エリア25に移動した後の様子を示す図である。簡単のために、気化部15は1つだけ記載をして他は省略している。加湿ユニット1の高分子吸湿材2がすでに加熱によってLCST以上となって、含有されていた水が高分子吸湿材2の表面に水滴となって滲み出てきた状態である。
FIG. 9 is a diagram illustrating a state after the moisture-absorbing element has moved to the humidification area 25 by the rotation of the humidification unit 1. For simplicity, only one vaporizer 15 is shown and the others are omitted. The polymer hygroscopic material 2 of the humidifying unit 1 has already become LCST or more by heating, and the contained water has oozed out as water droplets on the surface of the polymer hygroscopic material 2.
図9の上部中央では、加湿ユニット1に気化部15が接触して、高分子吸湿材2の表面に滲出した水滴が気化部15に転写される様子を示す。高分子吸湿材2から滲み出た水滴が気化部15の表面に移動し、気化部15の表面の細孔15a内に取り込まれる。細孔15a内に取り込まれた水は、加湿ユニット1の回転によって気化部15が回転する間に、気化部15の円筒の内外両面で吸気口5から吸い込まれた空気12と接触して気化、搬出される。
In the upper center of FIG. 9, the vaporization unit 15 comes into contact with the humidification unit 1 and water droplets exuded on the surface of the polymer moisture absorbent 2 are transferred to the vaporization unit 15. Water droplets that have oozed out from the polymer hygroscopic material 2 move to the surface of the vaporizing section 15 and are taken into the pores 15 a on the surface of the vaporizing section 15. While the vaporization unit 15 is rotated by the rotation of the humidification unit 1, the water taken into the pores 15a is vaporized in contact with the air 12 sucked from the intake port 5 on both the inside and outside of the cylinder of the vaporization unit 15. It is carried out.
本実施の形態では、気化部15は円筒状として常に加湿ユニット1と接触する構造としたが、加湿ユニット1から水を転写し気化させることが出来れば、他の構造であってもよい。例えば、加湿エリア25内で図8のような細孔を有するシートを使用した円弧状の気化部を加湿ユニット1の周縁部に沿って配置し、図示しない制御部で適時に接触させる構造でもよい。移動させる機構は、リンク、レバーやカムなど公知の構造を用いることが出来る。
In the present embodiment, the vaporizing section 15 is cylindrical and always contacts the humidifying unit 1. However, other structures may be used as long as water can be transferred from the humidifying unit 1 and vaporized. For example, an arc-shaped vaporization portion using a sheet having pores as shown in FIG. 8 in the humidification area 25 may be disposed along the peripheral edge of the humidification unit 1 and contacted in a timely manner by a control unit (not shown). . As the moving mechanism, a known structure such as a link, a lever, or a cam can be used.
〔実施の形態5〕
実施の形態5は、実施の形態4で説明した加湿装置103の気化部15を変更したものである。この概略構造を図10に示す。その他の部分は実施の形態4で説明した加湿装置103と同じであり、同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。 [Embodiment 5]
Embodiment 5 changes the vaporization part 15 of the humidification apparatus 103 demonstrated in Embodiment 4. FIG. This schematic structure is shown in FIG. Other parts are the same as those of the humidifying device 103 described in the fourth embodiment, and members having the same functions are denoted by the same reference numerals and description thereof is omitted.
実施の形態5は、実施の形態4で説明した加湿装置103の気化部15を変更したものである。この概略構造を図10に示す。その他の部分は実施の形態4で説明した加湿装置103と同じであり、同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。 [Embodiment 5]
本実施の形態では、実施の形態4で開示した気化部15を廃止し、図10に示す構造を有する気化部150に換える。図10に示すシートを整形した気化部150は、細孔の数が、板状基材の第1面と第2面で異なることを特徴とする。第1面に設けた細孔150a,150cは、基材150b内部で合流し第2面に開口する。細孔数の多い第1面で高分子吸湿材2と接触、吸水させ、第2面に至るまでに水を集積して、細孔数の少ない第2面から放出するようにしたものである。このような構造とすることで、高分子吸湿材2表面に滲出した水量が少ない場合でも、第1面側から第2面側へ移動する途中で水滴が肥大し搬出されやすくなる。
In the present embodiment, the vaporization unit 15 disclosed in the fourth embodiment is abolished and replaced with the vaporization unit 150 having the structure shown in FIG. The vaporization part 150 which shaped the sheet | seat shown in FIG. 10 is characterized by the number of pores differing in the 1st surface and 2nd surface of a plate-shaped base material. The pores 150a and 150c provided on the first surface merge inside the base material 150b and open on the second surface. The first surface having a large number of pores is brought into contact with and absorbed by the polymer hygroscopic material 2 so that water is accumulated up to the second surface and discharged from the second surface having a small number of pores. . By adopting such a structure, even when the amount of water exuded on the surface of the polymeric moisture absorbent 2 is small, water droplets are enlarged and easily carried out while moving from the first surface side to the second surface side.
実施の形態4および5において、高分子吸湿材から放出される水を吸水性の無い基材に細孔を設けた気化部を使用して、毛管現象を利用して気化させやすくする構造を開示した。このような毛細管現象を有する気化部としては、他に繊維方向をシートの厚さ方向に揃えて束ねて成形した板、木材、フェルトなどの不織布、一般の布地、連続気孔を有するスポンジなどが使用できる。
Embodiments 4 and 5 disclose a structure in which water released from a polymer hygroscopic material is easily vaporized using a capillary phenomenon by using a vaporization part provided with pores in a substrate that does not absorb water. did. As a vaporization part having such a capillary phenomenon, a board formed by bundling with the fiber direction aligned in the sheet thickness direction, a nonwoven fabric such as wood or felt, a general fabric, a sponge having continuous pores, etc. are used. it can.
実施の形態4および5において、気化部15または気化部150を使用して高分子吸湿材から放出される水を、気化させやすくする構造を開示した。このような構造は、実施の形態1~3で説明した加湿装置101および102においても使用でき、同様の効果を得ることが出来る。
Embodiments 4 and 5 disclosed a structure that facilitates vaporization of water released from a polymer hygroscopic material using the vaporization section 15 or the vaporization section 150. Such a structure can be used in the humidifiers 101 and 102 described in the first to third embodiments, and the same effect can be obtained.
〔実施の形態6〕
実施の形態6は、実施の形態1~5に開示する加湿装置と異なって、加湿装置に除湿機能を追加した除加湿装置である。具体的には、実施の形態3で説明した加湿装置102の吸水エリア24内に、水滴除去部16とヒーター用固定電極を追加したものである。図11にその構造を示す。その他の部分は実施の形態3で説明した加湿装置102と同じであり、同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。 [Embodiment 6]
The sixth embodiment is a dehumidifying / humidifying device in which a dehumidifying function is added to the humidifying device, unlike the humidifying devices disclosed in the first to fifth embodiments. Specifically, the waterdroplet removal unit 16 and the heater fixed electrode are added to the water absorption area 24 of the humidifier 102 described in the third embodiment. FIG. 11 shows the structure. Other parts are the same as those of the humidifying device 102 described in the third embodiment, and members having the same functions are denoted by the same reference numerals and description thereof is omitted.
実施の形態6は、実施の形態1~5に開示する加湿装置と異なって、加湿装置に除湿機能を追加した除加湿装置である。具体的には、実施の形態3で説明した加湿装置102の吸水エリア24内に、水滴除去部16とヒーター用固定電極を追加したものである。図11にその構造を示す。その他の部分は実施の形態3で説明した加湿装置102と同じであり、同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。 [Embodiment 6]
The sixth embodiment is a dehumidifying / humidifying device in which a dehumidifying function is added to the humidifying device, unlike the humidifying devices disclosed in the first to fifth embodiments. Specifically, the water
本実施の形態に係る除加湿装置104では、水滴除去部16が吸水エリア24内部に設けられ、加湿ユニット1の高分子吸湿材2の表面と接触可能に配置される。水滴除去部16は、加湿ユニット1と加湿皿9との中間の位置に設けられる。水滴除去部16は固定式である必要はなく、除湿機能を使用しない場合には高分子吸湿材2の表面から離れる方向に移動可能な構成とすることが好ましい。水滴除去部16を移動させる機構は、リンク、レバーやカムなど公知の方法を用いることが出来る。
In the dehumidifying / humidifying device 104 according to the present embodiment, the water droplet removing unit 16 is provided inside the water absorbing area 24 and is disposed so as to be in contact with the surface of the polymer moisture absorbent 2 of the humidifying unit 1. The water droplet removing unit 16 is provided at an intermediate position between the humidifying unit 1 and the humidifying tray 9. The water droplet removing unit 16 does not have to be fixed, and preferably has a configuration that can move in a direction away from the surface of the polymeric moisture absorbent 2 when the dehumidifying function is not used. As a mechanism for moving the water droplet removing unit 16, a known method such as a link, a lever, or a cam can be used.
また、本実施の形態の除加湿装置104は、吸水エリア24においても加熱ヒーター4に給電する必要がある。このため、図示をしていないヒーター用固定電極が加湿ユニット1の加熱ヒーター4に通電可能な位置に設けられる。この様な構造にすることで、加湿装置が除湿機能を有することが出来る。
Further, the dehumidifying / humidifying device 104 of the present embodiment needs to supply power to the heater 4 also in the water absorption area 24. For this reason, a heater fixed electrode (not shown) is provided at a position where the heater 4 of the humidifying unit 1 can be energized. With such a structure, the humidifier can have a dehumidifying function.
以下に、本実施の形態の除加湿装置104の動作について説明をする。除加湿装置104は、加湿器として使用されるときには前述の実施の形態3に示すような動作を行う。簡単に説明すると、給水ノズル18から給水を受けて湿り状態になった加湿ユニット1の高分子吸湿材2が、加湿エリア25に回転移動した後、図示をしていないヒーター用固定電極から給電されてLCST以上の温度まで加熱される。加熱によって高分子吸湿材2が含んでいた水が放出され、送風ファン8によって吸引された空気12が、気化した水蒸気を含んで空気13となって送出される。
Hereinafter, the operation of the dehumidifying / humidifying device 104 of the present embodiment will be described. When used as a humidifier, the dehumidifying / humidifying device 104 performs the operation shown in the third embodiment. Briefly, after the polymeric moisture absorbent 2 of the humidifying unit 1 that has been wetted by receiving water from the water supply nozzle 18 rotates and moves to the humidifying area 25, power is supplied from a heater fixed electrode (not shown). And heated to a temperature above LCST. The water contained in the polymer hygroscopic material 2 is released by heating, and the air 12 sucked by the blower fan 8 is sent out as air 13 containing vaporized water vapor.
次に、除湿動作について説明をする。除湿動作は、図示をしない操作部または制御部から運転を指示されて開始される。除湿運転が開始されると、加湿エリア25は高分子吸湿材2が空気中の水分を吸収する吸湿エリアとなり、吸水エリア24は高分子吸湿材2が吸収した水分を放出する放出エリアとなる。加湿ユニット1は、実施の形態1~5と同じ構成であって、図11中の矢印方向に回転をする。
Next, the dehumidifying operation will be described. The dehumidifying operation is started when an operation is instructed from an operation unit or a control unit (not shown). When the dehumidifying operation is started, the humidification area 25 becomes a moisture absorption area where the polymer hygroscopic material 2 absorbs moisture in the air, and the water absorption area 24 becomes a release area where the moisture absorbed by the polymer moisture absorbent 2 is released. The humidifying unit 1 has the same configuration as in the first to fifth embodiments, and rotates in the direction of the arrow in FIG.
除湿運転の開始によって、送風ファン8が吸気口5から空気12を吸い込み、加湿ユニット1の高分子吸湿材2が、空気12に含まれる水分を吸収する。これによって空気12は乾燥し、空気13となって排気口7から送出される。また、水分を含んで湿り状態となった高分子吸湿材2は、加湿ユニット1の回転によって加湿エリア25から吸水エリア24に移動する。
When the dehumidifying operation is started, the blower fan 8 sucks air 12 from the intake port 5, and the polymer moisture absorbent 2 of the humidifying unit 1 absorbs moisture contained in the air 12. As a result, the air 12 is dried, and the air 13 is sent out from the exhaust port 7. In addition, the polymeric moisture absorbent 2 that has become wet with moisture moves from the humidification area 25 to the water absorption area 24 by the rotation of the humidification unit 1.
吸水エリア24では、ヒーター用固定電極によって加湿ユニット1の加熱ヒーター4が給電されて、基材3と高分子吸湿材2がLCST以上の温度まで加熱される。加熱された高分子吸湿材2は、含んでいた水分を放出し表面に水滴として滲出する。表面に水滴を生じた高分子吸湿材2は、加湿ユニット1とともに回転移動して、水滴除去部16が設置されている位置まで移動する。高分子吸湿材2の表面の水滴が、水滴除去部16によって拭い去られて加湿皿9に回収される。
In the water absorption area 24, the heater 4 of the humidifying unit 1 is powered by the heater fixed electrode, and the substrate 3 and the polymer moisture absorbent 2 are heated to a temperature equal to or higher than the LCST. The heated polymer hygroscopic material 2 releases the contained moisture and exudes as water droplets on the surface. The polymer hygroscopic material 2 in which water droplets are generated on the surface rotates and moves together with the humidifying unit 1 and moves to a position where the water droplet removing unit 16 is installed. Water droplets on the surface of the polymeric moisture absorbent 2 are wiped off by the water droplet removing unit 16 and collected in the humidifying tray 9.
水滴を除去された高分子吸湿材2は、加熱ヒーター4への給電が停止され、自然冷却されながら再び加湿エリア25へと移動する。冷却された高分子吸湿材2は、再び空気中の水蒸気を吸収して除湿機能を発揮する。以上の動作が繰り返されて除湿機としての動作が継続する。除湿機として動作している間は、加湿エリア25内に設置されたヒーター用固定電極は給電を停止している。
The polymer hygroscopic material 2 from which the water droplets have been removed moves to the humidification area 25 again while the power supply to the heater 4 is stopped and is naturally cooled. The cooled polymer hygroscopic material 2 again absorbs water vapor in the air and exhibits a dehumidifying function. The above operation is repeated and the operation as the dehumidifier continues. While operating as a dehumidifier, the heater fixed electrode installed in the humidification area 25 stops supplying power.
除加湿装置104は、上記のように動作して加湿器および除湿機としての機能を発揮するが、これらの機能は図示しない操作部から使用者が選択して実行させるように構成してもよく、また、湿度検知装置を備えて予め設定された湿度、もしくは使用者によって設定された湿度を判断基準として、除湿機能と加湿機能を適時使用するように自動運転を構成してもよい。
The dehumidifying / humidifying device 104 operates as described above to exhibit functions as a humidifier and a dehumidifier, but these functions may be configured to be selected and executed by a user from an operation unit (not shown). In addition, the automatic operation may be configured so that the dehumidifying function and the humidifying function are used in a timely manner by using the humidity detection device as a criterion for determination based on the humidity set in advance or the humidity set by the user.
なお、実施の形態6の除湿動作において、高分子吸湿材2が放出した水を水滴除去部16によって拭う構造としたが、水滴除去部16は必ずしも必要ではない。加湿エリア24において、高分子吸湿材2がLCST以上の温度になれば水が放出されるが、加湿ユニット1の最も低い位置で水滴が滴下できるように加熱ヒーター4に給電すればよい。
In the dehumidifying operation of the sixth embodiment, the water released by the polymer moisture absorbent 2 is wiped by the water droplet removing unit 16, but the water droplet removing unit 16 is not necessarily required. In the humidification area 24, water is released when the polymer hygroscopic material 2 reaches a temperature equal to or higher than the LCST. However, it is only necessary to supply power to the heater 4 so that water droplets can drip at the lowest position of the humidification unit 1.
除湿機能を使用して空気中の水蒸気から生じた水は、一般の市水と異なりミネラル成分などの不純物を含まないので、一般的な加湿器に使用しても白粉を発生させたりはしない。一方で、蒸発器表面に付着した雑菌やほこりを結露水と一緒に滴下させるので、気化フィルターや加湿皿中の水には、空気中の雑菌が混入しやすく、時間経過とともに多くの菌が繁殖し不衛生な水に変化してしまう。このために、従来の除加湿装置では、除湿中に発生した結露水を加湿用の水として使用することはなかった。
∙ Water generated from water vapor in the air using the dehumidifying function does not contain impurities such as mineral components unlike ordinary city water, so white powder will not be generated even when used in a general humidifier. On the other hand, since germs and dust adhering to the evaporator surface are dripped together with the dew condensation water, the germs in the vaporizing filter and the humidifying dish are likely to be contaminated with airborne germs, and many germs grow over time. And it will change to unsanitary water. For this reason, in the conventional dehumidifying / humidifying apparatus, the dew condensation water generated during dehumidification has not been used as humidifying water.
本発明に係る高分子吸湿材は、一般市水に含まれるミネラル成分を構造の一部として取り込むことをすでに説明したが、その時に雑菌もゲル中に捕捉する。そのため、高分子吸湿材に一度取り込まれた後に、再び水として取り出された空気中の水分、もしくは市水は細菌やミネラル成分が非常に少なくなるという効果が見られる。実施の形態6で説明したような除加湿装置では、自動運転で除湿機として機能した場合に回収された水は、そのまま加湿運転時の加湿用の水としても使用することが出来る。
The polymer hygroscopic material according to the present invention has already been explained that mineral components contained in general city water are taken in as part of the structure, but at that time, germs are also trapped in the gel. For this reason, the moisture in the air or the city water once taken into the polymer hygroscopic material and taken out as water again has the effect that the bacteria and mineral components are extremely reduced. In the dehumidifying / humidifying device as described in the sixth embodiment, the water collected when functioning as a dehumidifier in automatic operation can be used as it is as humidifying water during the humidifying operation.
実施の形態6で示した除加湿装置104においても、実施の形態4で開示した気化部15を採用することが可能である。本実施の形態の除加湿装置104を除湿装置として使用するときには気化部15が特別な機能を発揮することはない。これは、除湿装置として使用しているときは、加湿エリア25にある高分子吸湿材2が、LCST以下の温度であるため水を放出することはなく、気化部15が寄与する余地がないためである。しかし、除加湿装置104を加湿装置として作用するときには、気化部15が有効であることは実施の形態4で説明した通りである。前述のように気化面積を拡大する装置として作用するため加湿効率を高めることが出来る。
Also in the dehumidifying / humidifying device 104 shown in the sixth embodiment, the vaporizing unit 15 disclosed in the fourth embodiment can be employed. When the dehumidifying / humidifying device 104 of the present embodiment is used as a dehumidifying device, the vaporizing unit 15 does not exhibit a special function. This is because, when used as a dehumidifying device, the polymer moisture absorbent 2 in the humidifying area 25 is at a temperature below the LCST, so it does not release water and there is no room for the vaporizer 15 to contribute. It is. However, as described in the fourth embodiment, the vaporization unit 15 is effective when the dehumidifying / humidifying device 104 acts as a humidifying device. As described above, the humidification efficiency can be increased because it acts as an apparatus for expanding the vaporization area.
〔高分子吸湿材の詳細〕
以下に、上述した各実施形態で用いられる、刺激応答性高分子を含有する高分子吸湿材の詳細について説明する。なお、本明細書においては、「アクリル」または「メタアクリル」のいずれをも意味する場合「(メタ)アクリル」と表記する。 [Details of polymer hygroscopic material]
Below, the detail of the polymer hygroscopic material containing the stimulus responsive polymer used in each embodiment described above will be described. In the present specification, “(meth) acryl” is used to mean “acryl” or “methacryl”.
以下に、上述した各実施形態で用いられる、刺激応答性高分子を含有する高分子吸湿材の詳細について説明する。なお、本明細書においては、「アクリル」または「メタアクリル」のいずれをも意味する場合「(メタ)アクリル」と表記する。 [Details of polymer hygroscopic material]
Below, the detail of the polymer hygroscopic material containing the stimulus responsive polymer used in each embodiment described above will be described. In the present specification, “(meth) acryl” is used to mean “acryl” or “methacryl”.
上述した各実施形態では、刺激応答性高分子の乾燥体を含む高分子吸湿材を用いる。特に、刺激応答性高分子が架橋体である場合は、高分子が架橋されて形成された3次元の網目構造が、水、有機溶媒等の溶媒を吸収して膨潤した高分子ゲルを形成することが多い。かかる場合、上述した各実施形態では、高分子ゲルの乾燥体を用いる。
In each embodiment described above, a polymer hygroscopic material containing a dried body of stimulus-responsive polymer is used. In particular, when the stimulus-responsive polymer is a crosslinked body, a three-dimensional network structure formed by crosslinking the polymer forms a swollen polymer gel by absorbing a solvent such as water or an organic solvent. There are many cases. In such a case, in each of the above-described embodiments, a dried polymer gel is used.
ここで、高分子ゲルの乾燥体とは、高分子ゲルを乾燥することによって溶媒を除去したものをいう。なお、本発明において、高分子ゲルの乾燥体は、高分子ゲルから溶媒が完全に除去されている必要はなく、空気中の水分を吸収することができれば、溶媒または水を含んでいてもよい。したがって、前記高分子ゲルの乾燥体の含水率は、該乾燥体が空気中の水分を吸収することができれば、特に限定されるものではないが、例えば、40重量%以下であることがより好ましい。なお、ここで含水率とは、高分子ゲルの乾燥重量に対する水分の割合をいう。
Here, the dried polymer gel refers to a polymer gel from which the solvent has been removed by drying. In the present invention, the dried polymer gel does not need to have the solvent completely removed from the polymer gel, and may contain a solvent or water as long as it can absorb moisture in the air. . Accordingly, the moisture content of the dried body of the polymer gel is not particularly limited as long as the dried body can absorb moisture in the air. For example, it is more preferably 40% by weight or less. . Here, the moisture content refers to the ratio of moisture to the dry weight of the polymer gel.
刺激応答性高分子とは、外部刺激に応答して、その性質を可逆的に変化させる高分子をいう。本発明においては、外部刺激に応答して水との親和性が可逆的に変化する刺激応答性高分子を用いる。
“Stimulus-responsive polymer” refers to a polymer that reversibly changes its properties in response to external stimuli. In the present invention, a stimulus-responsive polymer that reversibly changes its affinity with water in response to an external stimulus is used.
前記外部刺激としては、特に限定されるものではないが、例えば、熱、光、変動する電場、変動する磁場、pH等を挙げることができる。
The external stimulus is not particularly limited, and examples thereof include heat, light, a changing electric field, a changing magnetic field, and pH.
また、外部刺激に応答して水との親和性が可逆的に変化するとは、外部刺激を与えられた高分子が、外部刺激に応答して、親水性と疎水性との間で可逆的に変化することをいう。
In addition, the affinity for water reversibly changes in response to an external stimulus. A polymer given an external stimulus reversibly changes between hydrophilicity and hydrophobicity in response to an external stimulus. It means changing.
中でも、熱に応答して水との親和性が可逆的に変化する刺激応答性高分子、すなわち、温度応答性高分子は、簡易な加熱装置を用いて温度を変化させることにより、空気中の水分つまり水蒸気の吸湿と、吸湿した水分の放出とを可逆的に行えることから、調湿機に特に好適に用いることができる。
Among them, a stimulus-responsive polymer whose affinity with water reversibly changes in response to heat, i.e., a temperature-responsive polymer, is obtained by changing the temperature using a simple heating device. The moisture absorption of moisture, that is, water vapor, and the release of moisture absorbed by the moisture can be performed reversibly, so that it can be particularly suitably used for a humidity controller.
前記温度応答性高分子としては、より具体的には、例えば、ポリ(N-イソプロピル(メタ)アクリルアミド)、ポリ(N-ノルマルプロピル(メタ)アクリルアミド)、ポリ(N-メチル(メタ)アクリルアミド)、ポリ(N-エチル(メタ)アクリルアミド)、ポリ(N-ノルマルブチル(メタ)アクリルアミド)、ポリ(N-イソブチル(メタ)アクリルアミド)、ポリ(N-t-ブチル(メタ)アクリルアミド)等のポリ(N-アルキル(メタ)アクリルアミド);ポリ(N-ビニルイソプロピルアミド)、ポリ(N-ビニルノルマルプロピルアミド)、ポリ(N-ビニルノルマルブチルアミド)、ポリ(N-ビニルイソブチルアミド)、ポリ(N-ビニル-t-ブチルアミド)等のポリ(N-ビニルアルキルアミド);ポリ(N-ビニルピロリドン);ポリ(2-エチル-2-オキサゾリン)、ポリ(2-イソプロピル-2-オキサゾリン)、ポリ(2-ノルマルプロピル-2-オキサゾリン)等のポリ(2-アルキル-2-オキサゾリン);ポリビニルメチルエーテル、ポリビニルエチルエーテル等のポリビニルアルキルエーテル;ポリエチレンオキサイドとポリプロピレンオキサイドの共重合体;ポリ(オキシエチレンビニルエーテル);メチルセルロース、エチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース等のセルロース誘導体等、およびこれらの高分子の共重合体を挙げることができる。
More specifically, examples of the temperature-responsive polymer include poly (N-isopropyl (meth) acrylamide), poly (N-normalpropyl (meth) acrylamide), and poly (N-methyl (meth) acrylamide). Poly (N-ethyl (meth) acrylamide), poly (N-normal butyl (meth) acrylamide), poly (N-isobutyl (meth) acrylamide), poly (Nt-butyl (meth) acrylamide), etc. (N-alkyl (meth) acrylamide); poly (N-vinylisopropylamide), poly (N-vinylnormalpropylamide), poly (N-vinylnormalbutyramide), poly (N-vinylisobutyramide), poly ( Poly (N-vinylalkylamide) such as N-vinyl-t-butylamide); poly (N Vinyl (pyrrolidone); poly (2-alkyl-2-oxazoline) such as poly (2-ethyl-2-oxazoline), poly (2-isopropyl-2-oxazoline), poly (2-normalpropyl-2-oxazoline); Polyvinyl alkyl ethers such as polyvinyl methyl ether and polyvinyl ethyl ether; copolymers of polyethylene oxide and polypropylene oxide; poly (oxyethylene vinyl ether); cellulose derivatives such as methyl cellulose, ethyl cellulose, hydroxypropyl cellulose, hydroxypropyl methyl cellulose, and the like; A high molecular copolymer can be mentioned.
また、温度応答性高分子は、これらの高分子の架橋体であってもよい。温度応答性高分子が架橋体である場合、かかる架橋体としては、例えば、N-イソプロピル(メタ)アクリルアミド、N-ノルマルプロピル(メタ)アクリルアミド、N-メチル(メタ)アクリルアミド、N-エチル(メタ)アクリルアミド、N-ノルマルブチル(メタ)アクリルアミド、N-イソブチル(メタ)アクリルアミド、N-t-ブチル(メタ)アクリルアミド等のN-アルキル(メタ)アクリルアミド;N-ビニルイソプロピルアミド、N-ビニルノルマルプロピルアミド、N-ビニルノルマルブチルアミド、N-ビニルイソブチルアミド、N-ビニル-t-ブチルアミド等のN-ビニルアルキルアミド;ビニルメチルエーテル、ビニルエチルエーテル等のビニルアルキルエーテル;エチレンオキサイドとプロピレンオキサイド;2-エチル-2-オキサゾリン、2-イソプロピル-2-オキサゾリン、2-ノルマルプロピル-2-オキサゾリン等の2-アルキル-2-オキサゾリン等のモノマーまたはこれらのモノマーの2種類以上を、架橋剤の存在下で重合して得られる高分子を挙げることができる。
Further, the temperature-responsive polymer may be a crosslinked product of these polymers. When the temperature-responsive polymer is a crosslinked product, examples of the crosslinked product include N-isopropyl (meth) acrylamide, N-normalpropyl (meth) acrylamide, N-methyl (meth) acrylamide, and N-ethyl (meta). ) N-alkyl (meth) acrylamides such as acrylamide, N-normal butyl (meth) acrylamide, N-isobutyl (meth) acrylamide, Nt-butyl (meth) acrylamide; N-vinylisopropylamide, N-vinyl normal propyl N-vinyl alkylamides such as amide, N-vinyl normal butyramide, N-vinyl isobutyramide, N-vinyl-t-butylamide; vinyl alkyl ethers such as vinyl methyl ether and vinyl ethyl ether; ethylene oxide and propylene oxide Existence of a monomer such as 2-ethyl-2-oxazoline such as 2-ethyl-2-oxazoline, 2-isopropyl-2-oxazoline, 2-normalpropyl-2-oxazoline, or two or more of these monomers in the presence of a crosslinking agent Mention may be made of polymers obtained by polymerization under the following conditions.
前記架橋剤としては、従来公知のものを適宜選択して用いればよいが、例えば、エチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、N,N’-メチレンビス(メタ)アクリルアミド、トリレンジイソシアネート、ジビニルベンゼン、ポリエチレングリコールジ(メタ)アクリレート等の重合性官能基を有する架橋性モノマー;グルタールアルデヒド;多価アルコール;多価アミン;多価カルボン酸;カルシウムイオン、亜鉛イオン等の金属イオン等を好適に用いることができる。これらの架橋剤は単独で用いてもよく、また2種類以上を組み合わせて用いてもよい。
As the crosslinking agent, conventionally known crosslinking agents may be appropriately selected and used. For example, ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, N, N′-methylenebis (meth) acrylamide, Crosslinkable monomer having polymerizable functional group such as diisocyanate, divinylbenzene, polyethylene glycol di (meth) acrylate; glutaraldehyde; polyhydric alcohol; polyvalent amine; polyvalent carboxylic acid; metal such as calcium ion and zinc ion Ions or the like can be preferably used. These crosslinking agents may be used alone or in combination of two or more.
また、温度応答性高分子にカーボンや酸化鉄などの不溶性粒子を混合して使用することが出来る。このようにすると、カーボンや酸化鉄などが磁場変動によって発熱するために外部刺激を磁場とすることが出来る。
In addition, insoluble particles such as carbon and iron oxide can be mixed and used in the temperature-responsive polymer. In this way, since carbon, iron oxide, and the like generate heat due to magnetic field fluctuations, an external stimulus can be used as a magnetic field.
また、光に応答して水との親和性が可逆的に変化する刺激応答性高分子としては、アゾベンゼン誘導体、スピロピラン誘導体等の光により親水性または極性が変化する高分子、それらと温度応答性高分子およびpH応答性高分子の少なくともいずれかとの共重合体、前記光応答性高分子の架橋体、または、前記共重合体の架橋体を挙げることができる。
Examples of stimuli-responsive polymers that reversibly change their affinity for water in response to light include polymers that change hydrophilicity or polarity by light, such as azobenzene derivatives and spiropyran derivatives, and their temperature responsiveness. Examples thereof include a copolymer with at least one of a polymer and a pH-responsive polymer, a crosslinked product of the photoresponsive polymer, or a crosslinked product of the copolymer.
また、電場に応答して水との親和性が可逆的に変化する刺激応答性高分子としては、カルボキシル基、スルホン酸基、リン酸基、アミノ基等の解離基を有する高分子、カルボキシル基含有高分子とアミノ基含有高分子との複合体のような静電相互作用や水素結合などによって複合体を形成した高分子、または、これらの架橋体を挙げることができる。
In addition, as a stimulus-responsive polymer whose affinity with water reversibly changes in response to an electric field, a polymer having a dissociation group such as a carboxyl group, a sulfonic acid group, a phosphate group, or an amino group, a carboxyl group Examples thereof include a polymer in which a complex is formed by electrostatic interaction, hydrogen bonding, or the like, such as a complex of a containing polymer and an amino group-containing polymer, or a crosslinked product thereof.
また、pHに応答して水との親和性が可逆的に変化する刺激応答性高分子としては、カルボキシル基、スルホン酸基、リン酸基、アミノ基等の解離基を有する高分子、カルボキシル基含有高分子とアミノ基含有高分子との複合体のような静電相互作用や水素結合などによって複合体を形成した高分子、または、これらの架橋体を挙げることができる。
In addition, as a stimulus-responsive polymer whose affinity with water reversibly changes in response to pH, a polymer having a dissociation group such as a carboxyl group, a sulfonic acid group, a phosphoric acid group, and an amino group, a carboxyl group Examples thereof include a polymer in which a complex is formed by electrostatic interaction, hydrogen bonding, or the like, such as a complex of a containing polymer and an amino group-containing polymer, or a crosslinked product thereof.
また、刺激応答性高分子は、上述した刺激応答性高分子の誘導体であってもよいし、他のモノマーとの共重合体であってもよい。なお、他のモノマーとしては、特に限定されるものではなく、どのようなモノマーであってもよい。例えば、(メタ)アクリル酸、アリルアミン、酢酸ビニル、(メタ)アクリルアミド、N,N’-ジメチル(メタ)アクリルアミド、2-ヒドロキシエチルメタクリレート、アルキル(メタ)アクリレート、マレイン酸、ビニルスルホン酸、ビニルベンゼンスルホン酸、アクリルアミドアルキルスルホン酸、ジメチルアミノプロピル(メタ)アクリルアミド、(メタ)アクリロニトリル等のモノマーを好適に用いることができる。
Further, the stimulus-responsive polymer may be a derivative of the aforementioned stimulus-responsive polymer or a copolymer with another monomer. The other monomer is not particularly limited, and any monomer may be used. For example, (meth) acrylic acid, allylamine, vinyl acetate, (meth) acrylamide, N, N′-dimethyl (meth) acrylamide, 2-hydroxyethyl methacrylate, alkyl (meth) acrylate, maleic acid, vinyl sulfonic acid, vinyl benzene Monomers such as sulfonic acid, acrylamide alkyl sulfonic acid, dimethylaminopropyl (meth) acrylamide, and (meth) acrylonitrile can be suitably used.
或いは、刺激応答性高分子は、他の架橋された高分子又は架橋されていない高分子と、相互浸入高分子網目構造またはセミ相互浸入高分子網目構造を形成してなる高分子であってもよい。
Alternatively, the stimulus-responsive polymer may be a polymer formed by forming an interpenetrating polymer network structure or a semi-interpenetrating polymer network structure with another crosslinked polymer or an uncrosslinked polymer. Good.
前記刺激応答性高分子の分子量も特に限定されるものではないが、ゲルパーミエーションクロマトグラフィー(GPC)により決定された数平均分子量が3000以上であることが好ましい。
The molecular weight of the stimulus-responsive polymer is not particularly limited, but the number average molecular weight determined by gel permeation chromatography (GPC) is preferably 3000 or more.
〔まとめ〕
本発明の態様1に係る加湿装置は、加湿用の水を供給する給水部と、外部刺激に応答して水との親和性が可逆的に変化する刺激応答性高分子吸湿材または前記刺激応答性高分子を含有する高分子吸湿材と、前記高分子吸湿材に外部刺激を付与する刺激付与部と、前記高分子吸湿材に送風して加熱によって滲出した水を気化させる送風ファンを備えていることを特徴とする。 [Summary]
A humidifier according toaspect 1 of the present invention includes a water supply unit that supplies water for humidification, a stimulus-responsive polymer hygroscopic material whose affinity with water reversibly changes in response to an external stimulus, or the stimulus response. A polymer hygroscopic material containing a functional polymer, a stimulus applying unit for applying external stimulus to the polymer hygroscopic material, and a blower fan for blowing the polymer hygroscopic material to vaporize water exuded by heating. It is characterized by being.
本発明の態様1に係る加湿装置は、加湿用の水を供給する給水部と、外部刺激に応答して水との親和性が可逆的に変化する刺激応答性高分子吸湿材または前記刺激応答性高分子を含有する高分子吸湿材と、前記高分子吸湿材に外部刺激を付与する刺激付与部と、前記高分子吸湿材に送風して加熱によって滲出した水を気化させる送風ファンを備えていることを特徴とする。 [Summary]
A humidifier according to
より具体的には、前記高分子吸湿材と、刺激付与部とを基板上に形成して単位となる素子を形成し、前記素子を複数組み合わせて円筒状の加湿ユニットを構成し、吸水エリアと加湿エリアを交互に通過する回転可能な構造とすることで吸水と放出を並行して実現する。
More specifically, the polymer hygroscopic material and the stimulus imparting portion are formed on a substrate to form a unit element, and a plurality of the elements are combined to form a cylindrical humidification unit. By adopting a rotatable structure that alternately passes through the humidification area, water absorption and discharge are realized in parallel.
前記の構成によれば、加湿用の水を一度高分子吸湿材に吸水させた後に、加熱によって放出された水を気化させるので、加湿用の水に含まれるミネラル成分が高分子吸湿材によって除去され、加湿によって白粉を発生させることがないという効果を有する。
According to the above configuration, after the water for humidification is once absorbed by the polymer moisture absorbent, the water released by heating is vaporized, so that the mineral components contained in the water for humidification are removed by the polymer moisture absorbent. And has the effect that white powder is not generated by humidification.
また、前記高分子吸湿材は、加湿用の水に含まれるミネラル成分を構造の一部として取り込むので、加湿ユニットにミネラル成分が析出しないという効果を有する。さらに、取り込んだミネラル成分は、高分子吸湿材の構造を強固にするという効果を生じる。
Also, the polymer moisture absorbent has an effect that the mineral component is not deposited on the humidification unit because the mineral component contained in the water for humidification is taken in as part of the structure. Further, the incorporated mineral component has an effect of strengthening the structure of the polymer hygroscopic material.
本発明の態様2に係る加湿装置は、前記態様1に加えて加湿用の水を貯える加湿皿の水位を可変に構成する。例えば、給水弁や排水弁と、給水ポンプなど公知の手段を使用して水位を調節する。
The humidifying device according to aspect 2 of the present invention is configured to variably configure the water level of a humidifying dish that stores humidifying water in addition to the aspect 1 described above. For example, a water level is adjusted using well-known means, such as a water supply valve, a drain valve, and a water supply pump.
本発明の態様2に係る加湿装置では、加湿動作を行わないときに図示しない制御部によって加湿皿の水位を低下させる。加湿動作を行うとき以外は高分子吸湿材を加湿用の水に浸漬しないので、不要な損耗を防ぐという効果を奏する。
In the humidifying device according to aspect 2 of the present invention, when the humidifying operation is not performed, the water level of the humidifying dish is lowered by a control unit (not shown). Since the polymer moisture absorbent is not immersed in humidifying water except when the humidifying operation is performed, an effect of preventing unnecessary wear can be obtained.
本発明の態様3に係る加湿装置は、前記態様1に加えて、給水ノズルと給水ポンプを備える。
The humidifier according to aspect 3 of the present invention includes a water supply nozzle and a water supply pump in addition to aspect 1 described above.
前記の構成によれば、高分子吸湿材への給水量を可変にできるので、加湿量を自由に調整できるという効果を奏する。また、加湿動作を行うとき以外は高分子吸湿材を水に浸漬しないので不要な損耗を抑制できる。
According to the above configuration, since the amount of water supplied to the polymer moisture absorbent can be made variable, the amount of humidification can be adjusted freely. Moreover, since the polymer hygroscopic material is not immersed in water except when the humidifying operation is performed, unnecessary wear can be suppressed.
本発明の態様4に係る加湿装置は、前記態様1に加えて、加湿エリアにおいて、加熱された高分子吸湿材から放出された水を気化しやすくさせる気化部を備える。
The humidifier according to aspect 4 of the present invention includes, in addition to aspect 1, a vaporization unit that facilitates vaporization of water released from the heated polymeric moisture absorbent in the humidification area.
前記の構成によれば、高分子吸湿材表面から水を積極的に吸い取り、水が放出されやすくするとともに、水の気化に寄与する表面積を気化部が拡大するので、加湿効率が高められるという効果を奏する。
According to the above configuration, water is actively sucked from the surface of the polymer moisture absorbent material, and the water is easily released, and the vaporization part expands the surface area that contributes to the vaporization of the water, so that the humidification efficiency is increased. Play.
本発明の態様5に係る加湿装置は、前記態様4に換えて、高分子吸湿材の表面から放出された水を内部で集積する構造を有する気化部を備える。
The humidifying device according to aspect 5 of the present invention includes a vaporization unit having a structure in which water released from the surface of the polymer moisture absorbent is integrated inside, instead of the aspect 4.
前記の構成によれば、気化部の吸水側表面と放出側表面で細孔数が異なるため、高分子吸湿材表面から水を吸い込み、吸い込んだ水を集積して放出側に送り出すことが出来る。これによって、高分子吸湿材表面からの水の放出を促進し、放出側では水滴を肥大化して放出するので気化部の機能を向上させることが出来る。水の放出が少量でも気化しやすく加湿効率が高められるという効果を奏する。
According to the above configuration, since the number of pores is different between the water absorption side surface and the discharge side surface of the vaporization part, water can be sucked from the polymer moisture absorbent surface, and the sucked water can be collected and sent to the discharge side. Accordingly, the release of water from the surface of the polymer moisture absorbent is promoted, and water droplets are enlarged and released on the release side, so that the function of the vaporizing portion can be improved. Even if a small amount of water is released, it is easy to vaporize and the effect of increasing the humidification efficiency is achieved.
本発明の態様6に係る除加湿装置は、前記態様3に開示した加湿装置において、吸水エリア内においても、高分子吸湿材を加熱できるように加熱ヒーターに給電するヒーター用固定電極を設けた。
The dehumidifying / humidifying device according to Aspect 6 of the present invention is the humidifying device disclosed in Aspect 3, provided with a heater fixed electrode for supplying power to the heater so that the polymer moisture absorbent can be heated even in the water absorption area.
前記の構成によれば、加湿エリア内で空気中の水分を吸湿させ、吸水エリア内で高分子吸湿材から水として放出させることが出来る。これによって、加湿装置の構成で除湿機能を発揮させることが出来る。つまり、加湿装置と除湿装置が一体となり、周囲条件を判断し制御によって加湿機能と除湿機能を使い分けしたり、加湿と除湿を連続動作したりすることが可能になる。
According to the above configuration, moisture in the air can be absorbed in the humidification area and can be released as water from the polymer moisture absorbent in the water absorption area. Thereby, the dehumidifying function can be exhibited by the configuration of the humidifying device. That is, the humidifying device and the dehumidifying device are integrated, and it is possible to judge the ambient conditions and use the humidifying function and the dehumidifying function properly by control, or to perform the humidifying and dehumidifying operations continuously.
また、前記の構成によれば、加湿機能と除湿機能がほぼ同じ構成部品を共有して実現できるので、構成部品が少なくて済み小型化、軽量化が容易になる。さらに、空調装置として機能拡大と利便性向上が出来るという効果を奏する。
Further, according to the above-described configuration, the humidifying function and the dehumidifying function can be realized by sharing substantially the same components, so that the number of components can be reduced, and miniaturization and weight reduction are facilitated. In addition, the air conditioner has the effect of expanding functions and improving convenience.
実施の形態1~6で、加熱ヒーターを加湿ユニットと一体化した構造としたが、加熱ヒーターを別設置とすることも可能である。加湿ユニットの近傍に設置して加湿ユニットとして形成した高分子吸湿材を加熱できれば良く、熱を放射する一般的なヒーターを使用することが出来る。
In Embodiments 1 to 6, the heater is integrated with the humidification unit, but the heater can be installed separately. It suffices to heat the polymer hygroscopic material that is installed in the vicinity of the humidifying unit and formed as the humidifying unit, and a general heater that radiates heat can be used.
本発明に係る加湿方法は、外部刺激に応答して水との親和性が可逆的に変化する刺激応答性高分子吸湿材または刺激応答性高分子を含有する高分子吸湿材を使用する加湿方法であって、高分子吸湿材に加湿用の水を吸水させる工程と、前記高分子吸湿材に外部刺激を付与して水との親和性を低下させる工程と、送風によって高分子吸湿材から放出された水を気化する工程とを含む。
The humidification method according to the present invention is a humidification method using a stimulus-responsive polymer hygroscopic material whose affinity with water reversibly changes in response to an external stimulus or a polymer hygroscopic material containing a stimulus-responsive polymer. A step of absorbing water for humidification into the polymer moisture absorbent, a step of reducing external affinity to the polymer moisture absorbent to reduce the affinity with water, and a release from the polymer moisture absorbent by blowing air Vaporizing the generated water.
本発明によれば、加湿用の水を一度高分子吸湿材に吸水させた後に、加熱によって放出された水を気化させるので、加湿用の水に含まれるミネラル成分が高分子吸湿材によって除去され、加湿によって白粉を発生させることがないという効果を有する。
According to the present invention, after the water for humidification is once absorbed by the polymer moisture absorbent, the water released by heating is vaporized, so that the mineral component contained in the water for humidification is removed by the polymer moisture absorbent. The white powder is not generated by humidification.
また、前記高分子吸湿材は加湿用の水に含まれるミネラル成分を構造の一部として取り込むので、加湿ユニットにミネラル成分が析出しないという効果を有する。さらに、取り込んだミネラル成分は架橋することで高分子吸湿材の構造を強固にするという効果を生じる。
Further, since the polymer moisture absorbent takes in the mineral component contained in the water for humidification as a part of the structure, it has an effect that the mineral component does not precipitate in the humidification unit. Furthermore, the taken-in mineral component bridge | crosslinks, and produces the effect of strengthening the structure of a polymeric moisture absorption material.
また、本発明によれば、高分子吸湿材をLCSTを超える程度に加熱し、冷却するだけで除湿または加湿が出来るので、過冷却や大きな熱量を用いずに効率よく調湿することができるという効果を奏する。
In addition, according to the present invention, dehumidification or humidification can be achieved simply by heating and cooling the polymer hygroscopic material to an extent exceeding the LCST, so that it can be efficiently conditioned without using supercooling or a large amount of heat. There is an effect.
本発明に係る加湿装置または除加湿装置は、加湿用の水を供給する給水部と、外部刺激に応答して水との親和性が可逆的に変化する刺激応答性高分子吸湿材または刺激応答性高分子を含有する高分子吸湿材と、前記高分子吸湿材に外部刺激を付与して水との親和性を低下させる刺激付与部と、前記高分子吸湿材に送風して高分子吸湿材から滲出した水を気化させる送風装置を備えている。
The humidifier or dehumidifier according to the present invention includes a water supply unit that supplies water for humidification, and a stimulus-responsive polymer moisture absorbent or stimulus response in which the affinity with water reversibly changes in response to an external stimulus. A polymeric hygroscopic material containing a functional polymer, a stimulus imparting portion that imparts external stimuli to the polymeric hygroscopic material to reduce its affinity with water, and a polymer hygroscopic material that blows air to the polymeric hygroscopic material It is equipped with a blower that vaporizes the water oozed from the water.
また、本発明に係る加湿装置または除加湿装置は、さらに前記構成に加え、高分子吸湿材から放出された水の気化を促進させる気化部を備えることを特徴としている。
Further, the humidifier or dehumidifier according to the present invention is characterized by further comprising a vaporization section that promotes vaporization of water released from the polymer moisture absorbent, in addition to the above-described configuration.
また、本発明に係る加湿装置または除加湿装置は、高分子吸湿材から放出された水を気化促進させる気化部として、基材に複数の細孔を形成した部材を使用することを特徴としている。
Further, the humidifying device or the dehumidifying / humidifying device according to the present invention is characterized in that a member having a plurality of pores formed in a base material is used as a vaporizing portion that promotes vaporization of water released from the polymer moisture absorbent. .
また、本発明に係る除加湿装置は、さらに前記構成に加え、高分子吸湿材が空気中から吸収した水分を放出させるために加熱手段を追加して備えることを特徴としている。
Further, the dehumidifying / humidifying device according to the present invention is characterized in that, in addition to the above-described configuration, a heating means is additionally provided to release moisture absorbed from the air by the polymer hygroscopic material.
また、本発明に係る加湿方法は、刺激応答性高分子吸湿材または刺激応答性高分子を含有する高分子吸湿材に加湿用の水を吸収させる工程と、前記高分子吸湿材に刺激を付与して水との親和性を低下させる工程と、送風によって高分子吸湿材から水を気化させる工程とを備えていることを特徴としている。
In addition, the humidification method according to the present invention includes a step of absorbing moisture for absorption by a stimulus-responsive polymer moisture absorbent or a polymer moisture-absorbing material containing a stimulus-responsive polymer, and imparting stimulus to the polymer moisture-absorbing material. And a step of reducing the affinity with water and a step of vaporizing water from the polymeric moisture absorbent by blowing.
本発明に係る加湿装置は、小型化軽量化によって、他の空気調和機への組み込みが出来る。
The humidifier according to the present invention can be incorporated into other air conditioners by downsizing and weight reduction.
また、本発明に係る加湿方法は、調湿装置に好適に用いることができる。
Moreover, the humidification method according to the present invention can be suitably used for a humidity control apparatus.
1 加湿ユニット
2 高分子吸湿材
3 基材
4 加熱ヒーター(刺激付与部)
5 吸気口
6 吸気フィルター
7 排気口
8 送風ファン
9 加湿皿
10 ステッピングモーター
12 空気(処理前)
13 空気(処理後)
14 滴下水
15 気化部
16 水滴除去部
18 給水ノズル
19 給水ポンプ
23 空気流通壁
24 吸水エリア
25 加湿エリア DESCRIPTION OFSYMBOLS 1 Humidification unit 2 Polymer hygroscopic material 3 Base material 4 Heating heater (stimulation part)
5Intake port 6 Intake filter 7 Exhaust port 8 Blower fan 9 Humidifying dish 10 Stepping motor 12 Air (before processing)
13 Air (after treatment)
DESCRIPTION OFSYMBOLS 14 Dropped water 15 Vaporization part 16 Water drop removal part 18 Water supply nozzle 19 Water supply pump 23 Air distribution wall 24 Water absorption area 25 Humidification area
2 高分子吸湿材
3 基材
4 加熱ヒーター(刺激付与部)
5 吸気口
6 吸気フィルター
7 排気口
8 送風ファン
9 加湿皿
10 ステッピングモーター
12 空気(処理前)
13 空気(処理後)
14 滴下水
15 気化部
16 水滴除去部
18 給水ノズル
19 給水ポンプ
23 空気流通壁
24 吸水エリア
25 加湿エリア DESCRIPTION OF
5
13 Air (after treatment)
DESCRIPTION OF
Claims (5)
- 刺激応答性高分子を含有する高分子吸湿材と、
前記高分子吸湿材に給水する給水部と、
前記高分子吸湿材に外部刺激を付与する刺激付与部と、
を備えていることを特徴とする加湿装置。 A polymeric hygroscopic material containing a stimulus-responsive polymer;
A water supply unit for supplying water to the polymer hygroscopic material;
A stimulus applying unit for applying an external stimulus to the polymer hygroscopic material;
A humidifying device comprising: - さらに前記高分子吸湿材に接触する気化部を備え、
前記気化部は、多数の細孔を有すること
を特徴とする請求項1に記載の加湿装置。 Furthermore, it comprises a vaporization part that contacts the polymer hygroscopic material,
The humidifying device according to claim 1, wherein the vaporizing unit has a large number of pores. - 前記高分子吸湿材を基材上に形成した素子を集合して加湿ユニットと成し、
前記加湿ユニットに前記給水部で給水した後に、
前記加湿ユニットに前記刺激付与部で刺激を与え、
前記刺激を与えた加湿ユニットの部分に、
送風すること
を特徴とする請求項1に記載の加湿装置。 Collecting elements formed on the substrate with the polymer hygroscopic material to form a humidification unit,
After supplying water to the humidification unit in the water supply unit,
Stimulating the humidifying unit with the stimulus applying unit,
In the portion of the humidifying unit that gave the stimulus,
The humidifier according to claim 1, wherein the air is blown. - 前記刺激付与部が設置された位置と異なる位置に、さらに第2の刺激付与部を設置し、
前記刺激付与部と、前記第2の刺激付与部とを択一的に選択して稼働させ、
前記第2の刺激付与部を稼働させることで除湿を行うこと
を特徴とする請求項3に記載の加湿装置。 A second stimulus applying unit is further installed at a position different from the position where the stimulus applying unit is installed,
Selectively operating the stimulus applying unit and the second stimulus applying unit,
The humidifier according to claim 3, wherein dehumidification is performed by operating the second stimulus applying unit. - 刺激応答性高分子を含有する高分子吸湿材に水を吸水させる工程と、
前記高分子吸湿材に外部刺激を付与する工程と、
前記外部刺激を付与された高分子吸湿材に送風して滲出した水を気化させる工程と、
を含むことを特徴とする、加湿方法。 A step of absorbing water into a polymeric hygroscopic material containing a stimulus-responsive polymer;
Applying an external stimulus to the polymer hygroscopic material;
Vaporizing the water exuded by blowing to the polymeric moisture absorbent provided with the external stimulus;
The humidification method characterized by including.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201680013058.7A CN108139097A (en) | 2015-07-01 | 2016-02-16 | Humidifier, air dehumidifying and humidifying apparatus and air-humidification method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-132294 | 2015-07-01 | ||
JP2015132294A JP6569063B2 (en) | 2015-07-01 | 2015-07-01 | Humidifying device, dehumidifying device and humidifying method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017002387A1 true WO2017002387A1 (en) | 2017-01-05 |
Family
ID=57608541
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/054479 WO2017002387A1 (en) | 2015-07-01 | 2016-02-16 | Humidifying device, dehumidifying device, and humidifying method |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6569063B2 (en) |
CN (1) | CN108139097A (en) |
WO (1) | WO2017002387A1 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11326327B2 (en) | 2017-02-09 | 2022-05-10 | Board Of Regents, The University Of Texas System | Atmospheric water harvesting system |
JP6890029B2 (en) * | 2017-03-31 | 2021-06-18 | 東京エレクトロン株式会社 | Board transfer device and board transfer method |
CN109764419B (en) * | 2018-12-28 | 2021-06-11 | 东南大学 | Pump-free solution dehumidifying and regenerating device based on solution infiltration |
WO2021230052A1 (en) * | 2020-05-14 | 2021-11-18 | パナソニックIpマネジメント株式会社 | Dryer, drying method, and dehumidifying filter |
CN114923231A (en) * | 2022-04-01 | 2022-08-19 | 东南大学 | LCST type temperature sensitive ionic liquid dehumidification air conditioning system |
CN118565023A (en) * | 2024-08-05 | 2024-08-30 | 山东欧风环境科技有限公司 | Filter element type multifunctional air disinfection and purification device |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56102633A (en) * | 1980-01-18 | 1981-08-17 | Matsushita Electric Ind Co Ltd | Humidifier |
JPH01219478A (en) * | 1988-02-26 | 1989-09-01 | Mitsubishi Electric Corp | Freezing device |
JP2000199633A (en) * | 1998-12-29 | 2000-07-18 | Zojirushi Corp | Humidifier |
JP2002126442A (en) * | 2000-10-31 | 2002-05-08 | New Industry Research Organization | Dehumidifying/water-absorbing sheet |
WO2015083733A1 (en) * | 2013-12-06 | 2015-06-11 | シャープ株式会社 | Dehumidifier |
WO2015083732A1 (en) * | 2013-12-06 | 2015-06-11 | シャープ株式会社 | Dehumidifier |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1330907C (en) * | 2004-03-26 | 2007-08-08 | 松下电器产业株式会社 | Humidifier |
CN201173543Y (en) * | 2007-12-18 | 2008-12-31 | 珠海格力电器股份有限公司 | Humidifier |
JP5012971B2 (en) * | 2010-07-26 | 2012-08-29 | ダイキン工業株式会社 | Humidifier |
-
2015
- 2015-07-01 JP JP2015132294A patent/JP6569063B2/en active Active
-
2016
- 2016-02-16 WO PCT/JP2016/054479 patent/WO2017002387A1/en active Application Filing
- 2016-02-16 CN CN201680013058.7A patent/CN108139097A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56102633A (en) * | 1980-01-18 | 1981-08-17 | Matsushita Electric Ind Co Ltd | Humidifier |
JPH01219478A (en) * | 1988-02-26 | 1989-09-01 | Mitsubishi Electric Corp | Freezing device |
JP2000199633A (en) * | 1998-12-29 | 2000-07-18 | Zojirushi Corp | Humidifier |
JP2002126442A (en) * | 2000-10-31 | 2002-05-08 | New Industry Research Organization | Dehumidifying/water-absorbing sheet |
WO2015083733A1 (en) * | 2013-12-06 | 2015-06-11 | シャープ株式会社 | Dehumidifier |
WO2015083732A1 (en) * | 2013-12-06 | 2015-06-11 | シャープ株式会社 | Dehumidifier |
Also Published As
Publication number | Publication date |
---|---|
JP2017015321A (en) | 2017-01-19 |
CN108139097A (en) | 2018-06-08 |
JP6569063B2 (en) | 2019-09-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6569063B2 (en) | Humidifying device, dehumidifying device and humidifying method | |
JP6528097B2 (en) | Dehumidifying device and dehumidifying method | |
JP2020091096A (en) | Rooftop liquid desiccant systems and methods | |
CN106659968B (en) | Dehumidifying device | |
CN106687199B (en) | Moisture-absorbing material, dehumidifying apparatus and dehumidifying method | |
KR101756850B1 (en) | Apparatus for controlling humidity | |
WO2007026023A1 (en) | Vapour extraction device | |
JP6275854B2 (en) | Humidity control device | |
JP4651163B2 (en) | Wet film coil type air conditioner | |
JP2018534517A (en) | humidifier | |
JP2011012894A (en) | Material for total heat exchange element and heat exchange type ventilation device using the material | |
US20180050298A1 (en) | Water collection device and water collection method | |
US11383201B2 (en) | Humidity controller | |
KR20140018598A (en) | Dehumidification apparatus using lithium bromide aqueous solution, dehumidifying/cooling system and a method for air dehumidification | |
WO2020055326A1 (en) | Desiccant composition and use thereof | |
JP2011027332A (en) | Heat exchanger and heat pump type desiccant system | |
WO2016163160A1 (en) | Humidity control device | |
JP2008175525A (en) | Wet film coil, and wet film forming device for coil | |
JP2003001047A (en) | Dehumidification device and cold air generator using this dehumidification device | |
JP2000279745A (en) | Moisture controlling device | |
US10898849B2 (en) | Smart dehumidifier | |
JP2011012893A (en) | Material for total heat exchange element and heat exchange type ventilation device using the material | |
WO2021112025A1 (en) | Dehumidification device and dehumidification method | |
JPH10292932A (en) | Humidity absorbing type dehumidifier |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16817497 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16817497 Country of ref document: EP Kind code of ref document: A1 |