WO2021112025A1 - Dehumidification device and dehumidification method - Google Patents

Dehumidification device and dehumidification method Download PDF

Info

Publication number
WO2021112025A1
WO2021112025A1 PCT/JP2020/044408 JP2020044408W WO2021112025A1 WO 2021112025 A1 WO2021112025 A1 WO 2021112025A1 JP 2020044408 W JP2020044408 W JP 2020044408W WO 2021112025 A1 WO2021112025 A1 WO 2021112025A1
Authority
WO
WIPO (PCT)
Prior art keywords
absorbing material
moisture absorbing
moisture
accommodating portion
dehumidifying device
Prior art date
Application number
PCT/JP2020/044408
Other languages
French (fr)
Japanese (ja)
Inventor
伸基 崎川
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to JP2021562629A priority Critical patent/JPWO2021112025A1/ja
Publication of WO2021112025A1 publication Critical patent/WO2021112025A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours

Definitions

  • the present invention relates to a dehumidifying device and a dehumidifying method.
  • the refrigeration cycle type is a method in which a compressor (compressor) is built in and the indoor air is cooled by an evaporator (evaporator) to condense and dehumidify the moisture in the air.
  • the zeolite type uses a hygroscopic porous material such as zeolite processed into a rotor shape. Specifically, the rotor temporarily absorbs the moisture (water vapor) contained in the indoor air. Next, the high-temperature warm air created by the electric heater is applied to the moisture-absorbed rotor, the moisture in the rotor is taken out as high-temperature and high-humidity air, and the air is cooled by the indoor air to create the high-temperature and high-humidity air. Dehumidify by condensing humidity.
  • the dehumidifier disclosed in Patent Document 1 is known.
  • the dehumidifier disclosed in Patent Document 2 and the dehumidifier disclosed in Patent Document 3 are known.
  • a so-called desiccant air-conditioning system that performs air-conditioning such as cooling by utilizing the adsorption and desorption of water by a zeolite type using an adsorbent such as silica gel and activated carbon having hygroscopicity is also widespread.
  • the desiccant air conditioning system for example, the open suction type air conditioner disclosed in Patent Document 5 is known. Highly efficient humidity control systems, including this desiccant air conditioning system, are still being actively developed in response to the demand for global environmental protection.
  • Japanese Patent Application Laid-Open No. 2002-310485 Japanese Patent Application Laid-Open No. 2001-259349 Japanese Patent Application Laid-Open No. 2003-144833 Japanese Patent Application Laid-Open No. 2005-34838 Japanese Patent Application Laid-Open No. 5-301014 Japanese Patent No. 6159822 Japanese Patent No. 6349556
  • zeolite dehumidifiers and desiccant air conditioning systems including zeolite and silica gel.
  • a stimulus-responsive material as a moisture-absorbing material, but examples thereof include (Patent Documents 6 and 7), and the material having a stimulus-responsive property due to heat or the like used here is also, for example, pNIPAM (poly N-isopropylacrylamide).
  • pNIPAM poly N-isopropylacrylamide
  • the conventional dehumidifying device and dehumidifying material did not have a sufficient moisture absorption rate. Increasing the rate of moisture absorption led to more efficient dehumidification, and it was a motivation to pursue diligent research, recognizing that it is a technical issue indispensable for energy saving.
  • the present invention has been made in view of the above-mentioned conventional problems, and an object of the present invention is a stimulus-responsive hygroscopic material composed of IPN or semi-IPN of a stimulus-responsive polymer and a hydrophilic polymer, a composite material thereof, an acrylic system, or the like. It is an object of the present invention to provide a dehumidifying device and a dehumidifying method or an air moisture collecting method capable of increasing the hygroscopicity rate of a hygroscopic material such as a polymer material, zeolite, silica gel, or calcium chloride.
  • the dehumidifying device comprises a stimulus-responsive polymer whose affinity with water changes reversibly in response to an external stimulus and a hydrophilic polymer.
  • Various moisture-absorbing material particles, films, and blocks including a moisture-absorbing material containing a dried body of a polymer gel containing the same are accommodated, and an introduction hole for introducing air from the outside is formed in the contained moisture-absorbing material to absorb moisture.
  • the moisture absorbing material accommodating portion is provided with a material accommodating portion, and the pressure (atmospheric pressure) in the moisture absorbing material accommodating portion becomes higher than the pressure (atmospheric pressure) in front of the introduction hole due to the introduction of air from the introduction hole. It is characterized in that it is formed like this.
  • the dehumidifying method is a dried product of a polymer gel containing a stimulus-responsive polymer whose affinity with water changes reversibly in response to an external stimulus and a hydrophilic polymer. It is a dehumidifying method using various hygroscopic material particles, films, blocks, especially polymer hygroscopic hygroscopic materials including a hygroscopic material containing, and has an introduction hole for introducing air and an introduction hole. It is characterized in that air is introduced from the introduction hole in a state where the moisture absorbing material is accommodated in the moisture absorbing material accommodating portion whose surface facing the surface is made of a member that does not allow air to pass through.
  • the rate of water adsorption (absorption) to the hygroscopic material can be increased.
  • FIG. 3A is a plan view
  • FIG. 3B is a cross-sectional view taken along the line XX of FIG.
  • FIG. 3A is a plan view
  • FIG. 3B is a cross-sectional view taken along the line XX of FIG.
  • FIG. 1 is a vertical cross-sectional view showing the configuration of the dehumidifying device 1A at the time of moisture absorption when viewed from the side surface.
  • the temperature-sensitive polymer gel dried body as the hygroscopic material 22 used in the dehumidifying device 1A adsorbs moisture (water vapor) in the air on its surface and absorbs it inside. This is called settlement.
  • moisture water vapor
  • LCST Lower Critical Solution Temperature
  • the dehumidifying device 1A of the present embodiment includes a rectangular parallelepiped housing 2.
  • the housing 2 has an intake port 3 having a grid 3a formed on the upper front surface, an exhaust port 4 having a grid 4a formed on the upper rear surface, and a drainage port 4 formed on the lower front side, which will be described later.
  • a drainage tank accommodating portion 5 for accommodating the tank 6 is provided.
  • the housing 2 is made of resin or metal.
  • the shape of the housing 2 is not necessarily limited to a rectangular parallelepiped shape, and may be, for example, another polygonal cylinder shape, a cylindrical shape, an elliptical cylinder shape, or the like.
  • an air flow wall 11 forming an air flow passage 10 is formed in the upper part inside the dehumidifying device 1A.
  • the intake port 3 provided with the grid 3a, the blower fan 13, the intake throttle 12, the moisture absorption unit 20A, and the exhaust port provided with the grid 4a are provided. 4 is provided.
  • a water droplet receiving portion 14 for receiving water droplets dropped from the moisture absorbing unit 20A is formed below the moisture absorbing unit 20A.
  • the lower end of the water drop receiving portion 14 has an opening 14a, and the drainage tank 6 having an opening 6a formed at the upper end is provided below the opening 14a.
  • the intake port 3 is for taking in the air in the room where the dehumidifying device 1A is installed.
  • the intake throttle 12 is provided before the flow of the moisture absorption unit 20A is obtained.
  • the opening on the exhaust side of the intake throttle 12 is formed to be the same as or slightly larger than the arrangement surface of the moisture absorbing material 22 of the moisture absorbing unit 20A.
  • the intake throttle 12 narrows down the moist air flowing in from the intake port 3 so as to hit almost the entire surface of the moisture absorbing material 22. In this way, when the moist air flowing in from the intake port 3 hits the entire surface of the moisture absorbing material 22, the moist air can be efficiently dehumidified by the moisture absorbing material 22.
  • the blower fan 13 is arranged between the intake port 3 and the intake throttle 12 in the housing 2.
  • the blower fan 13 is preferably arranged directly below the intake port 3. Further, it is more preferable that the blower fan 13 is arranged near the moisture absorbing material 22 (upwind) or near the moisture absorbing material 22 via the intake throttle 12.
  • an air passage (which may be long) that also serves as or is added to the intake throttle 12 may be provided, and the blower fan 13 may be arranged at the inlet or inside thereof.
  • the blower fan 13 By arranging the blower fan 13 near the windward side of the moisture absorbing material 22 in this way, the air can be directly pressed against the moisture absorbing material 22 by the blower fan 13 from the intake port 3. That is, the effect of pressurization and positive pressure on the hygroscopic material 22 becomes large, and the hygroscopic material 22 absorbs moisture at high speed. Moreover, since the blower fan 13 is larger than the diameter of the opening on the exhaust side of the intake throttle 12, it is possible to blow more wind toward the intake throttle 12. As a result, more wind is discharged from the opening on the exhaust side of the intake throttle 12, and the pressurization / positive pressure on the moisture absorbing material 22 can be increased.
  • the moisture absorbing unit 20A has the characteristic configuration of the present embodiment, and absorbs the moisture contained in the air flowing into the dehumidifying device 1A and releases it as water droplets. The detailed structure of the moisture absorption unit 20A will be described later.
  • the air flow wall 11 forming the air flow passage 10 is formed so as to have a gap between it and the outer shape of the moisture absorption unit 20A.
  • the moist air flowing in from the intake port 3 hits the entire surface of the hygroscopic material 22 of the hygroscopic unit 20A to be dehumidified, and then moves from both ends of the hygroscopic unit 20A to the air flow passages 10 to flow with the hygroscopic unit 20A. It passes between the wall 11 and exits from the exhaust port 4.
  • the floor of the water droplet receiving portion 14 formed on the lower side of the moisture absorbing material 22 of the air flow wall 11 is formed to have a downward slope toward the opening 14a. As a result, the water droplets dropped from the moisture absorbing material 22 do not collect in the water droplet receiving portion 14.
  • the water droplets discharged from the water droplet receiving portion 14 fall from the opening 14a and collect in the drainage tank 6.
  • the drainage tank 6 can be pulled out from the drainage tank accommodating portion 5, so that the water in the drainage tank 6 can be easily discarded.
  • the front surface of the drainage tank 6 is preferably made of a transparent member such as glass so that the water level of the accumulated water can be confirmed.
  • FIG. 2 is a schematic cross-sectional view of the moisture absorbing unit 20A having the moisture absorbing material 22 of the present embodiment.
  • the moisture absorbing unit 20A of the present embodiment has a rectangular parallelepiped accommodating portion (moisture absorbing material accommodating portion) 21 having an opening 21a having an opening on one side, and a hygroscopic material accommodating in the accommodating portion 21. It is composed of 22 and a heater 23 as a heating portion provided on the back surface of the bottom surface 21b of the accommodating portion 21.
  • the accommodating portion 21 is made of, for example, resin, and the bottom surface 21b is configured to prevent air from passing through.
  • the base material of the accommodating portion 21 is not limited to resin, but may be metal or ceramic. Further, the accommodating portion 21 preferably has a high thermal conductivity. Further, the shape of the accommodating portion 21 is not limited to a rectangular parallelepiped, and may be a cube, a sphere, or the like. Further, the accommodating portion 21 may be a plate-shaped member. In this case, the moisture absorbing material 22 may be fixed to the plate-shaped portion. What is important here is that the accommodating portion 21 is configured so as not to pass through in the direction in which the wind blows (leeward side).
  • the accommodating portion 21 may be formed so as to flow in a direction different from the direction in which the wind hits the moisture absorbing material 22 and then hits the moisture absorbing material 22.
  • the portion of the accommodating portion 21 through which the wind does not pass does not necessarily have to be at a position where the opening 21a, which is a wind introduction hole, faces the bottom surface 21b vertically, and is formed at a position facing the bottom surface 21b with an inclination. You may. That is, in the accommodating portion 21, the wind introduced from the opening 21a may hit the bottom surface 21b from an oblique direction.
  • Air is introduced from the opening 21a with the moisture absorbing material 22 accommodated in the accommodating portion 21 having the above configuration.
  • the air (wind) is blown toward the bottom surface 21b whose surface facing the opening 21a which is the introduction hole for introducing air in the accommodating portion 21 is a member which does not allow air to pass through, the accommodating portion 21. Air stays in 21.
  • the pressure inside the accommodating portion 21 becomes higher than the pressure in front of the opening 21a of the accommodating portion 21.
  • the hygroscopic material 22 increases the hygroscopicity (water absorption amount per unit time) by applying wind pressure to the hygroscopic material 22.
  • the hygroscopic material 22 housed in the accommodating portion 21 is made of a hygroscopic material of a polymer gel, and in the present embodiment, the hygroscopic material 22 is applied, for example, on the bottom surface 21b of the accommodating portion 21.
  • the moisture absorbing material 22 has a first state in which it can absorb water and a second state in which it releases the water absorbed in the first state, and changes from the first state to the second state by an external stimulus. It has the property of changing and returning to the first state when the stimulus disappears. Specifically, the moisture absorbing material 22 has a property of exhibiting hydrophilicity in a temperature range below the temperature sensing point, which is a constant temperature, and exhibiting hydrophobicity in a temperature range exceeding the temperature sensing point.
  • the moisture contained in the air introduced into the moisture absorbing unit 20A is absorbed, while in the temperature range exceeding the temperature sensing point, moisture is absorbed. It is designed to release water as water droplets. Since this phenomenon is a reversible operation, the moisture absorbing unit 20A repeatedly gives a temperature change to absorb the moisture contained in the air at room temperature and release the absorbed moisture as liquid water by heating. Can be repeated.
  • a polymer gel containing, for example, N-isopropylacrylamide as a material of the hygroscopic material 22 (an example of particles in FIG. 2) which is in the form of particles, plates, blocks, or films).
  • the moisture absorbing material 22 has such a configuration, the hydrophilic state as the first state in which water can be absorbed by the stimulus of heat and the hydrophobic state as the second state in which the absorbed water is released are alternately transitioned.
  • the configuration that can be achieved can be easily realized.
  • a polymer hygroscopic material having desired properties by using a temperature-sensitive polymer such as poly N-isopropylacrylamide (pNIPAM) and its derivative, polyvinyl ether and its derivative as a material. Is possible.
  • a temperature-sensitive polymer such as poly N-isopropylacrylamide (pNIPAM) and its derivative, polyvinyl ether and its derivative as a material. Is possible.
  • the temperature-responsive polymer which is the material of the moisture absorbing material 22 for example, poly (N-isopropyl (meth) acrylamide), poly (N-normal propyl (meth) acrylamide), poly (N-). Methyl (meth) acrylamide), poly (N-ethyl (meth) acrylamide), poly (N-normal butyl (meth) acrylamide), poly (N-isobutyl (meth) acrylamide), poly (N-t-butyl (meth) acrylamide), poly (N-t-butyl (meth) acrylamide) ) Poly (N-alkyl (meth) acrylamide) such as acrylamide); poly (N-vinylisopropylamide), poly (N-vinylnormalpropylamide), poly (N-vinylnormalbutylamide), poly (N-vinyl) Poly (N-vinylalkylamide) such as isobutylamide) and poly (N-vinylal
  • the stimulus-responsive polymer and the hydrophilic polymer form a mutually infiltrated polymer network structure or a semi-mutually infiltrated polymer network structure, at least the stimulus-responsive polymer and the hydrophilic polymer are formed. Either is a crosslinked body.
  • such crosslinked product includes, for example, N-isopropyl (meth) acrylamide, N-normalpropyl (meth) acrylamide, N-methyl (meth) acrylamide, and N-ethyl (meth).
  • N-alkyl (meth) acrylamides such as acrylamide, N-normal butyl (meth) acrylamide, N-isobutyl (meth) acrylamide, Nt-butyl (meth) acrylamide; N-vinylisopropylamide, N-vinylnormalpropyl N-vinylalkylamides such as amides, N-vinylnormal butylamides, N-vinylisobutylamides and N-vinyl-t-butylamides; vinylalkyl ethers such as vinylmethyl ethers and vinylethyl ethers; ethylene oxide and propylene oxide; 2 Monomers such as 2-alkyl-2-oxazoline such as -ethyl-2-oxazoline, 2-isopropyl-2-oxazoline, 2-normalpropyl-2-oxazoline, or two or more of these monomers in the presence of a cross-linking agent. Examples of the polymer obtained by
  • cross-linking agent conventionally known ones may be appropriately selected and used.
  • ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, N, N'-methylenebis (meth) acrylamide tri.
  • Crosslinkable monomers having polymerizable functional groups such as range isocyanate, divinylbenzene, polyethylene glycol di (meth) acrylate; glutaaldehyde; polyhydric alcohols; polyvalent amines; polyvalent carboxylic acids; metals such as calcium ions and zinc ions. Ions and the like can be preferably used.
  • These cross-linking agents may be used alone or in combination of two or more.
  • the crosslinked product has a network structure in which an uncrosslinked temperature-responsive polymer, for example, the temperature-responsive polymer exemplified above is reacted with the cross-linking agent. It may be a crosslinked product obtained by forming the above.
  • Examples of the stimulus-responsive polymer whose affinity with water changes reversibly in response to light include photoresponsive polymers whose hydrophilicity or polarity changes with light, such as azobenzene derivatives and spiropyran derivatives. And a copolymer with at least one of a temperature-responsive polymer and a pH-responsive polymer, a crosslinked product of the photoresponsive polymer, or a crosslinked product of the copolymer.
  • photoresponsiveness can be obtained by mixing a material that receives light and generates heat. Materials to be mixed include metal nanoparticles, graphite, carbon nanotubes, carbon black, conductive polymers, iron oxide fine particles, lanthanoid elements such as H Cincinnati and Tb, and polymer complexes.
  • a polymer having a dissociating group such as a carboxyl group, a sulfonic acid group, a phosphoric acid group, or an amino group, or a carboxyl group
  • a polymer having a dissociating group such as a carboxyl group, a sulfonic acid group, a phosphoric acid group, or an amino group, or a carboxyl group
  • examples thereof include a polymer in which a complex is formed by electrostatic interaction, a hydrogen bond, or the like, such as a complex of a containing polymer and an amino group-containing polymer, or a crosslinked product thereof.
  • a polymer having a dissociating group such as a carboxyl group, a sulfonic acid group, a phosphoric acid group, or an amino group, or a carboxyl group
  • a polymer having a dissociating group such as a carboxyl group, a sulfonic acid group, a phosphoric acid group, or an amino group, or a carboxyl group
  • examples thereof include a polymer in which a complex is formed by electrostatic interaction, a hydrogen bond, or the like, such as a complex of a containing polymer and an amino group-containing polymer, or a crosslinked product thereof.
  • the molecular weight of the stimulus-responsive polymer is not particularly limited, but it is preferable that the number average molecular weight determined by gel permeation chromatography (GPC) is 3000 or more.
  • hydrophilic polymer used in the hygroscopic material according to the present invention is hydrophilic other than the stimulus-responsive polymer forming a reciprocally infiltrated polymer network structure or a semi-mutually infiltrated polymer network structure together with the hydrophilic polymer.
  • the polymer is not particularly limited.
  • hydrophilic polymer examples include a polymer having a hydrophilic group such as a hydroxyl group, a carboxyl group, a sulfonic acid group, a phosphoric acid group, and an amino group in a side chain or a main chain.
  • hydrophilic polymer for example, polysaccharides such as alginic acid and hyaluronic acid; chitosan; cellulose derivatives such as carboxymethyl cellulose, methyl cellulose, ethyl cellulose and hydroxyethyl cellulose; poly (meth) acrylic acid and polymaleic acid.
  • Polypolysulfonic acid Polyvinylbenzenesulfonic acid, polyacrylamidealkylsulfonic acid, polydimethylaminopropyl (meth) acrylamide, and (meth) acrylamide, hydroxyethyl (meth) acrylate, (meth) acrylic acid alkyl ester, etc.
  • Polymers composites of polydimethylaminopropyl (meth) acrylamide and polyvinyl alcohol, composites of polyvinyl alcohol and poly (meth) acrylic acid, poly (meth) acrylonitrile, polyallylamine, polyvinyl alcohol, polyethylene glycol, polypropylene glycol , Poly (meth) acrylamide, poly-N, N'-dimethyl (meth) acrylamide, poly-2-hydroxyethyl methacrylate, poly-alkyl (meth) acrylate, polydimethylaminopropyl (meth) acrylamide, poly (meth) acrylonitrile And a copolymer of the above polymer and the like.
  • the hydrophilic polymer is more preferably a crosslinked product of these.
  • the stimulus-responsive polymer and the hydrophilic polymer form a mutually infiltrated polymer network structure or a semi-mutually infiltrated polymer network structure, and therefore at least one of the stimulus-responsive polymer and the hydrophilic polymer. Is a crosslinked body.
  • such crosslinked product includes, for example, (meth) acrylic acid, allylamine, vinyl acetate, (meth) acrylamide, N, N'-dimethyl (meth) acrylamide, 2-hydroxyethyl.
  • Monomers such as methacrylate, alkyl (meth) acrylate, maleic acid, vinyl sulfonic acid, vinyl benzene sulfonic acid, acrylamide alkyl sulfonic acid, dimethylaminopropyl (meth) acrylamide, and (meth) acrylonitrile are polymerized in the presence of a cross-linking agent. Examples of the obtained polymer can be mentioned.
  • cross-linking agent conventionally known ones may be appropriately selected and used.
  • ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, N, N'-methylenebis (meth) acrylamide tri.
  • Crosslinkable monomers having polymerizable functional groups such as range isocyanate, divinylbenzene, polyethylene glycol di (meth) acrylate; glutaaldehyde; polyhydric alcohols; polyvalent amines; polyvalent carboxylic acids; metals such as calcium ions and zinc ions. Ions and the like can be preferably used.
  • These cross-linking agents may be used alone or in combination of two or more.
  • the crosslinked product is the uncrosslinked hydrophilic polymer, for example, a polymer obtained by polymerizing the monomer, or alginic acid, hyaluronic acid, or the like.
  • Polysaccharide; chitosan; a crosslinked product obtained by reacting a cellulose derivative such as carboxymethyl cellulose, methyl cellulose, ethyl cellulose, hydroxyethyl cellulose or the like with the cross-linking agent to form a network structure may be used.
  • the molecular weight of the hydrophilic polymer is not particularly limited, but it is preferable that the number average molecular weight determined by GPC is 3000 or more.
  • a heater 23 is adhered to, for example, the back surface of the bottom surface 21b of the accommodating portion 21. As a result, the moisture absorbing material 22 can be heated via the bottom surface 21b.
  • the heater 23 may be heated to about 100 ° C with a margin. That is, the dehumidifying device 1A may be used in an environment of 40 ° C. or higher in summer. Therefore, since it is sufficient that a temperature of 50 ° C. to 70 ° C. (around 60 ° C.) can be applied to dehydrate the element, the heater capacity may be up to about 100 ° C.
  • the heater 23 of the present embodiment has, for example, a heating wire such as a nichrome wire, or a high resistance exothermic material such as AlN or silicon.
  • the heater 23 needs to quickly release heat when it is not heated. Therefore, it is preferable that the peripheral members of the heater 23 are configured to have high heat transfer properties, or that the heater 23 is provided with cooling fins or fans.
  • the moisture absorbing material of the present embodiment is a photoresponsive polymer
  • a light emitter, a lamp, an LED, or the like is used instead of the heater 23, and the accommodating portion 21 is also a highly light-transmitting material transparent resin or mesh-like metal. Etc., or the issuer can be installed on the side exposed to the wind.
  • the light emitting body (not shown) may be arranged on the side surface or the back side of the moisture absorbing unit 20A in addition to the windward side. In this case, a light-transmitting material is used for the accommodating portion 21.
  • the control circuit (not shown) of the moisture absorbing unit 20A in the dehumidifying device 1A turns on the power supply (not shown) of the blower fan 13 with the power supply (not shown) of the heater 23 turned off.
  • external air flows in from the intake port 3 of the dehumidifying device 1A.
  • the outside air (wet air) is taken in by the blower fan 13 and then narrowed down by the intake throttle 12, and collides with the entire surface of the moisture absorbing material 22 of the moisture absorbing unit 20A.
  • the external moist air that collides with the entire surface of the moisture absorbing material 22 comes into contact with the moisture absorbing material 22 below the temperature sensing point. As a result, the moist air is dehumidified by the moisture absorbing material 22.
  • the dehumidified air moves from both ends of the moisture absorption unit 20A to the air flow passage 10, further moves along the vicinity of the air flow wall 11, becomes dry air, and dehumidifies the dehumidifier 1A from the exhaust port 4 of the housing 2. It is exhausted to the outside.
  • the hygroscopic material 22 in the accommodating portion 21 efficiently absorbs moisture. Can be done.
  • the power of the heater 23 fixed to the back surface of the bottom surface 21b of the accommodating portion 21 is turned on.
  • the bottom surface 21b of the accommodating portion 21 of the heater 23 can be fixed to the back surface by, for example, adhesion, and the heater 23 can be adhered with a frame, a net, or the like so as not to have a gap except when bonding.
  • the electric power supplied to the heater 23 at this time is supplied so as to exceed the temperature sensing point of the moisture absorbing material 22. It should be noted that the detection that sufficient water has accumulated in the moisture absorbing material 22 is performed, for example, when a predetermined time elapses with a timer.
  • the hygroscopic material 22 becomes hydrophobic by being heated to a temperature exceeding the temperature sensing point, and the moisture absorbed from the outside air is released to the hygroscopic material 22.
  • the released water accumulates as water droplets, and the water droplets fall and are stored in the drain tank 6 via the water droplet receiving portion 14.
  • the water collected in the drainage tank 6 can be discarded after the drainage tank 6 is taken out from the housing 2.
  • the moisture absorbing material 22 in the present embodiment can be said to exhibit hydrophilicity as a first state and hydrophobicity as a second state according to the stimulus response level by the stimulation (heating).
  • hydrophilicity as a first state
  • hydrophobicity as a second state according to the stimulus response level by the stimulation (heating).
  • the external stimulus for example, electric field, light, electricity, and pH
  • the moisture absorbing material 22 changes from the first state to the second state and returns to the first state when the stimulation disappears. Therefore, these various stimulating factors can be utilized, and the versatility is increased. In addition, these stimulus factors can easily select different stimulus response levels from each other.
  • the stimulus response level is, for example, a wavelength or intensity in the case of light stimulation,, for example, a voltage or current in the case of electricity, and a pH value in the case of pH.
  • an assist mechanism that applies mechanical force to the hygroscopic material by applying a stimulus such as heating or immediately after that by pressing with a plate material to squeeze it, and collects the released water. Water can also be collected, preferably in contact with a hydrophilic member.
  • FIG. 3 is a diagram showing six arrangement examples of the moisture absorbing material 22.
  • FIG. 4 is a graph showing the hygroscopicity in each arrangement example of the hygroscopic material 22 shown in FIG.
  • FIGS. 3A to 3D and F a granular moisture absorbing material 22 having a diameter of 1 to 2 mm is used, and in FIG. 3E, a plate having a thickness of 1.3 mm is used.
  • the moisture absorbing material 22 was used.
  • the environment in which the hygroscopicity shown in FIG. 4 was obtained was an environmental temperature of 27 ° C., an environmental humidity of 70% RH, and an air volume of about 1 m 3 / min.
  • the white arrows in FIGS. 3A to 3F indicate the direction in which the wind blows.
  • FIG. 3A shows a state in which the moisture absorbing material 22 is dispersed on the bottom surface 21b of the accommodating portion 21, and FIG. 3B shows a resin or metal layer provided on the bottom surface 21b of the accommodating portion 21.
  • FIG. 3C shows a resin or metal layer 21c provided on the bottom surface 21b of the accommodating portion 21.
  • FIG. 3D shows a resin formed on the bottom surface 21b of the accommodating portion 21.
  • FIG. 3 (E) shows a plate-shaped moisture absorbing material 22 placed on the bottom surface 21b of the accommodating portion 21.
  • FIG. 3F shows a state in which the opening 21e is formed on the bottom surface 21b of the hole portion 21d in the state shown in FIG. 3C (wind vent state).
  • the hygroscopicity of the hygroscopic material 22 in the state shown in FIG. 3D is higher than the hygroscopicity of the hygroscopic material 22 in the other state. Further, it was found that the hygroscopicity of the hygroscopic material 22 in the state shown in FIG. 3 (A) and the hygroscopic material 22 in the state shown in FIG. 3 (E) is low.
  • the hygroscopicity of the hygroscopic material 22 in the states shown in FIGS. 3 (B), (C), and (F) is higher than the hygroscopicity of the hygroscopic material 22 in the states shown in FIGS. Although it was high, it was lower than the hygroscopicity of the hygroscopic material 22 in the state shown in FIG. 3D.
  • the accommodating portion 21 has a concave shape having an air introduction hole as an opening. That is, in the hole portion 21d, the pressure due to the blown wind increases in the hole portion 21d, so that the hygroscopicity of the hygroscopic material 22 increases. Therefore, when the hygroscopic material 22 is packed in the hole 21d as shown in FIGS.
  • the wind blown in the hole 21d causes the hygroscopic material 22 to be packed in the hole 21d.
  • the hygroscopicity increases.
  • the hole portion 21d of the resin or metal layer 21c formed on the bottom surface 21b of the accommodating portion 21 has an inverted conical shape.
  • FIGS. 3A and 3E when the hygroscopic material 22 is simply placed on the bottom surface 21b without providing the hole 21d, the blown wind is blown outward along the bottom surface 21b. In order to escape, the pressure does not increase in the vicinity of the moisture absorbing material 22, and the moisture absorption rate of the moisture absorbing material 22 does not increase either.
  • the hygroscopic material 22 is dispersed on the bottom surface 21b of the accommodating portion 21, the hygroscopic material 22 is surrounded by a wall at predetermined ranges to absorb moisture. It is possible to increase the rate. This point will be described in the following modification.
  • FIG. 5 shows a state in which a predetermined number of moisture absorbing materials 22 are surrounded by a wall 21f in a state where the moisture absorbing materials 22 are dispersed on the bottom surface 21b, as shown in FIG.
  • a plan view and (b) show a cross-sectional view taken along the line XX of (a).
  • the internal pressure is increased by the blowing wind. That is, the pressure on the leeward side of the wall 21f is higher than that on the leeward side. Therefore, the hygroscopicity of the hygroscopic material 22 housed in the portion surrounded by each wall 21f can be increased. That is, when the pressure is locally increased in the range surrounded by each wall 21f, the humidity and the vapor pressure also increase, so that the hygroscopicity of the hygroscopic material 22 can be increased.
  • this wall does not have to be square when viewed from the ventilation side, and may be triangular, polygonal, honeycomb-shaped, circular, etc., and can efficiently absorb moisture and accommodates the largest amount of moisture absorbing material. Adopt the optimal shape to do.
  • a predetermined number of moisture-absorbing materials 22 are surrounded by a wall 21f and divided, but the moisture-absorbing material 22 is plate-shaped.
  • the structure is divided into predetermined areas by a partition (same as the wall 21f). That is, by adopting a structure in which a predetermined amount (predetermined number, predetermined area, etc.) of the hygroscopic material 22 is divided by the wall 21f, the pressure is locally increased in the divided region, the humidity and the vapor pressure are increased, and the hygroscopic material is absorbed.
  • the moisture absorption rate of the material 22 can be increased.
  • FIG. 6 is a schematic configuration diagram of the dehumidifying device 1B showing a modified example of the dehumidifying device 1A shown in FIG.
  • the moisture absorbing unit 20A is enlarged, and the opening on the exhaust side of the intake throttle 12 is also enlarged according to the size of the intake unit 20A.
  • the wind from the blower fan 13 is blown to a wider range of the moisture absorbing unit 20A as compared with the case shown in FIG. Therefore, the effect of pressurization / positive pressure on almost all of the hygroscopic material 22 in the hygroscopic unit 20A can be increased.
  • FIG. 7 is a schematic configuration diagram of the dehumidifying device 1C showing a modified example of the dehumidifying device 1A shown in FIG.
  • the size of the entire opening on the exhaust side of the intake throttle 12 is substantially the same as the size of the flat surface of the moisture absorbing unit 20A, similarly to the moisture absorbing device 1B shown in FIG. However, it is divided internally.
  • the effect of pressurization / positive pressure becomes larger than in the case where the effect of pressurization / positive pressure is not divided, and the pressurization range can be expanded by the rotation or lateral movement of the moisture absorption unit.
  • FIG. 8 is a schematic configuration diagram of the dehumidifying device 1D showing a modified example of the dehumidifying device 1A shown in FIG.
  • the opening on the exhaust side of the intake throttle 12 is internally divided as in the moisture absorbing device 1C shown in FIG.
  • the moisture absorbing unit 20B is divided into a plurality of units 20B1.
  • the opening on the exhaust side of the intake throttle 12 corresponds to each unit 20B1.
  • the hygroscopic unit 20B for example, as shown in FIG. 5, it is preferable to use a hygroscopic unit in which a plurality of areas surrounded by the wall 21f are provided in the accommodating portion 21 of the hygroscopic material 22.
  • the wind hits only the moisture absorbing material 22 existing in the area surrounded by the wall 21f, so that the effect of pressurization / positive pressure on the moisture absorbing material 22 in the area surrounded by the wall 21f is further increased. Can be done.
  • these moisture absorbing units have a structure in which an outer wall (not shown) is provided on the side exposed to the wind to promote pressurization as the wind stays.
  • the accommodating portion 21 is fixed in the dehumidifying device 1A, and the air taken in from the intake port 3 by the blower fan 13 is blown to the hygroscopic material 22 accommodated in the accommodating portion 21 from the opening 21a side.
  • the moisture absorption unit 20A of the above was described.
  • the accommodating portion 21 is rotatably provided in the dehumidifying device, and by rotating the accommodating portion 21, wind is taken in from the opening 21a of the accommodating portion 21 and is accommodated in the accommodating portion 21.
  • the moisture absorbing unit 20B having a structure in which wind is blown onto the moisture absorbing material 22 will be described.
  • FIG. 9 is a schematic configuration diagram of the moisture absorbing unit 20B mounted on the dehumidifying device 1E.
  • the moisture absorbing unit 20B has four accommodating portions 21, each of which is fixed to the rotating shaft 30 at equal intervals (90 °). That is, when the rotating shaft 30 is rotated, the four accommodating portions 21 rotate.
  • the direction of rotation is the direction of rotation clockwise.
  • the direction of rotation is not limited to clockwise, and may be a direction of rotation counterclockwise.
  • Each of the four accommodating portions 21 is provided so that the opening 21a comes in the rotation direction. As a result, the accommodating portion 21 rotates clockwise to take in the wind from the opening 21a, and the air absorbing material 22 accommodated in the accommodating portion 21 can be blown with the wind.
  • the opening 21a may be provided with an intake throttle 12 shown in FIG. 6 or the like to enhance the effect.
  • the moisture absorbing material 22 can release water by heating from the back surface of the accommodating portion 21 as in the first embodiment.
  • accommodating portions 21 In the example shown in FIG. 9, an example including four accommodating portions 21 is shown, but the number of accommodating portions 21 is not limited to four, and may be two or more, and is a dehumidifying device. Any number may be used as long as it is within the permissible range from the peripheral structure of.
  • the dehumidifying device 20B having the above configuration a space for rotating the accommodating portion 21 and a driving mechanism for rotating the accommodating portion 21 are required, but the dehumidifying device 1A of the first embodiment is required. Unlike the case of the above case, it is not necessary to provide the blower fan 13 for taking in the outside air.
  • FIG. 10 is a vertical sectional view showing the configuration of the dehumidifying device 1F at the time of moisture absorption when viewed from the side surface.
  • the dehumidifying device 1F has the same basic structure as the dehumidifying device 1A described in the first embodiment, and the difference is the position of the blower fan 13.
  • the blower fan 3 is arranged not at a position close to the intake throttle 12 but at a position close to the exhaust port 4 as in the dehumidifying device 1A. In this way, even when the blower fan 13 is arranged at a position close to the exhaust port 4, it is possible to take in air from the intake port 3 and apply it to the entire surface of the moisture absorbing material 22 of the moisture absorbing unit 20A.
  • the pressure and positive pressure cannot be increased with respect to the moisture absorbing material 22, but the moist air comes into contact with the moisture absorbing material 22 below the temperature sensitive point and is therefore dehumidified. ..
  • the hygroscopic material includes a stimulus-responsive polymer whose affinity with water changes reversibly in response to an external stimulus and a hydrophilic polymer.
  • a hygroscopic material containing a dried polymer gel is used has been described, but the present invention is not limited to this, and any hygroscopic material in which the rate of moisture absorption is improved by increasing the pressurization.
  • any hygroscopic material may be used.
  • the present invention can be applied to other polymer (even those having no stimulus response) -based hygroscopic material, salts, zeolite and the like as a hygroscopic hygroscopic material.
  • the dehumidifying device includes a moisture-absorbing material accommodating portion that accommodates a hygroscopic moisture-absorbing material and has an introduction hole for introducing air from the outside into the contained moisture-absorbing material.
  • the moisture-absorbing material accommodating portion is formed so that the pressure inside the moisture-absorbing material accommodating portion becomes higher than the pressure in front of the introduction hole due to the introduction of air from the introduction hole.
  • a blower fan may be provided in front of the moisture absorbing material housed in the moisture absorbing material accommodating portion.
  • the facing surface of the introduction hole in the moisture absorbing material accommodating portion is blown in the same direction as before after the wind hits the surface of the moisture absorbing material. It may be formed of a member that does not pass through, and may be formed so as to flow in a direction different from the direction in which the wind hits the moisture-absorbing material in the moisture-absorbing material accommodating portion and then hits the moisture-absorbing material.
  • the side surface of the introduction hole in the moisture absorbing material accommodating portion is intended to retain the wind that hits the surface of the moisture absorbing material.
  • the dehumidifying device according to the fifth aspect of the present invention may have a concave shape with the introduction hole as an opening.
  • the dehumidifying device according to the sixth aspect of the present invention may have an inverted conical shape with the introduction hole as an opening.
  • the moisture absorbing material accommodating portion may be formed with a wall surrounding the accommodating moisture absorbing material by a predetermined amount.
  • the dehumidifying method according to the eighth aspect of the present invention is a dehumidifying method using a hygroscopic device that improves the hygroscopic rate by increasing the pressure in the vicinity of the hygroscopic material, and has an introduction hole for introducing air and is introduced. It is characterized in that air is introduced from the introduction hole in a state where the moisture absorbing material is housed in a moisture absorbing material accommodating portion whose surface facing the hole is made of a member that does not allow air to pass through.
  • IPNs interpenetrating polymer networks
  • semi-IPNs made of stimulus-responsive polymers and hydrophilic polymers
  • moisture-absorbing and water-discharging materials using stimulus-responsive polymer gels formed from these copolymers have remarkable significance.

Abstract

A dehumidification device (1A) comprises an accommodation part (21) for accommodating a moisture absorbing material (22) having a first state capable of absorbing water and a second state to release water absorbed in the first state. The accommodation part (21) is formed so that a pressure in the accommodation part (21) becomes higher than a pressure in front of an opening (21a) by the introduction of air through the opening (21a). This can increase the water adsorption rate of the moisture absorbing material.

Description

除湿装置及び除湿方法Dehumidifying device and dehumidifying method
 本発明は、除湿装置及び除湿方法に関する。 The present invention relates to a dehumidifying device and a dehumidifying method.
 従来、除湿装置及び調湿装置としては、冷凍サイクル式とゼオライト式との2タイプが一般的である。 Conventionally, two types of dehumidifying devices and humidity control devices, a refrigeration cycle type and a zeolite type, are generally used.
 冷凍サイクル式は、コンプレッサ(圧縮機)を内蔵し、エバポレータ(蒸発器)にて室内空気を冷却することにより空気内の湿分を結露させ除湿する方式である。 The refrigeration cycle type is a method in which a compressor (compressor) is built in and the indoor air is cooled by an evaporator (evaporator) to condense and dehumidify the moisture in the air.
 一方、ゼオライト式は、ゼオライト等の吸湿性多孔質材料をローター状に加工したものを利用する。具体的には、室内の空気中に含まれる水分(水蒸気)をローターに一旦吸湿させる。次いで、吸湿したローターに電気ヒータで作った高温の温風を当て、ローター内の水分を高温・高湿の空気として取り出し、その空気を室内空気で冷却することにより高温・高湿の空気内の湿度を結露させて除湿する。 On the other hand, the zeolite type uses a hygroscopic porous material such as zeolite processed into a rotor shape. Specifically, the rotor temporarily absorbs the moisture (water vapor) contained in the indoor air. Next, the high-temperature warm air created by the electric heater is applied to the moisture-absorbed rotor, the moisture in the rotor is taken out as high-temperature and high-humidity air, and the air is cooled by the indoor air to create the high-temperature and high-humidity air. Dehumidify by condensing humidity.
 前者の冷凍サイクル式の例としては、例えば特許文献1に開示された除湿機が知られている。後者のゼオライト式の例としては、特許文献2に開示された除湿機、及び特許文献3に開示された除湿機が知られている。 As an example of the former refrigeration cycle type, for example, the dehumidifier disclosed in Patent Document 1 is known. As an example of the latter zeolite type, the dehumidifier disclosed in Patent Document 2 and the dehumidifier disclosed in Patent Document 3 are known.
 また、両者の特徴を合わせた例えば特許文献4に開示された除湿装置もある。 There is also a dehumidifying device disclosed in Patent Document 4, for example, which combines the characteristics of both.
 さらに、大規模空調システムとして、吸湿性を有するシリカゲル、活性炭等の吸着剤を用いたゼオライト式による水分の吸脱着を利用して冷房等の空調を行う、いわゆるデシカント空調システムも普及している。デシカント空調システムの例としては、例えば、特許文献5に開示された開放式吸着式空調機が知られている。このデシカント空調システムを含めて、地球環境保護の要請から高効率な調湿システムが現在も盛んに開発されている。 Furthermore, as a large-scale air-conditioning system, a so-called desiccant air-conditioning system that performs air-conditioning such as cooling by utilizing the adsorption and desorption of water by a zeolite type using an adsorbent such as silica gel and activated carbon having hygroscopicity is also widespread. As an example of the desiccant air conditioning system, for example, the open suction type air conditioner disclosed in Patent Document 5 is known. Highly efficient humidity control systems, including this desiccant air conditioning system, are still being actively developed in response to the demand for global environmental protection.
日本国特開2002-310485号公報Japanese Patent Application Laid-Open No. 2002-310485 日本国特開2001-259349号公報Japanese Patent Application Laid-Open No. 2001-259349 日本国特開2003-144833号公報Japanese Patent Application Laid-Open No. 2003-144833 日本国特開2005-34838号公報Japanese Patent Application Laid-Open No. 2005-34838 日本国特開平5-301014号公報Japanese Patent Application Laid-Open No. 5-301014 日本国特許第6159822号公報Japanese Patent No. 6159822 日本国特許第6349556号公報Japanese Patent No. 6349556
 ところで、ゼオライト式除湿装置及びデシカント空調システムに使用される高吸湿材は、ゼオライト、シリカゲルを始めとして複数存在する。吸湿材に刺激応答性材料を使う実用例は少ないが、例えば(特許文献6,7)が挙げられ、ここで使われる熱等による刺激応答性を有する材料も例えばpNIPAM(ポリN-イソプロピルアクリルアミド)やアクリル酸との複合材等複数考えられる。 By the way, there are a plurality of high hygroscopic materials used in zeolite dehumidifiers and desiccant air conditioning systems, including zeolite and silica gel. There are few practical examples of using a stimulus-responsive material as a moisture-absorbing material, but examples thereof include (Patent Documents 6 and 7), and the material having a stimulus-responsive property due to heat or the like used here is also, for example, pNIPAM (poly N-isopropylacrylamide). And multiple materials such as composite materials with acrylic acid can be considered.
 しかしながら、従来の除湿装置及び除湿材では、吸湿速度は十分でなかった。吸湿速度を速めることは除湿の効率化に繋がり、省エネに欠かせない技術課題であると認識して鋭意研究を進める動機となった。 However, the conventional dehumidifying device and dehumidifying material did not have a sufficient moisture absorption rate. Increasing the rate of moisture absorption led to more efficient dehumidification, and it was a motivation to pursue diligent research, recognizing that it is a technical issue indispensable for energy saving.
 本発明は、上記従来の問題点に鑑みなされたものであって、その目的は、刺激応答性ポリマーと親水性ポリマーのIPNやセミIPNからなる刺激応答性吸湿材及びその複合材やアクリル系等の高分子材、ゼオライト、シリカゲル、塩化カルシウム等の吸湿材の吸湿速度を高めることのできる除湿装置及び除湿方法又は気中水分収集方法を提供することにある。 The present invention has been made in view of the above-mentioned conventional problems, and an object of the present invention is a stimulus-responsive hygroscopic material composed of IPN or semi-IPN of a stimulus-responsive polymer and a hydrophilic polymer, a composite material thereof, an acrylic system, or the like. It is an object of the present invention to provide a dehumidifying device and a dehumidifying method or an air moisture collecting method capable of increasing the hygroscopicity rate of a hygroscopic material such as a polymer material, zeolite, silica gel, or calcium chloride.
 上記の課題を解決するために、本発明の一態様に係る除湿装置は、外部刺激に応答して水との親和性が可逆的に変化する刺激応答性高分子と、親水性高分子とを含む高分子ゲルの乾燥体を含有する吸湿材をはじめとした各種の吸湿材粒子や膜、ブロックを収容すると共に、収容した上記吸湿材に外部から空気を導入するための導入孔が形成され吸湿材収容部を備え、上記吸湿材収容部は、当該吸湿材収容部内の圧力(気圧)が、上記導入孔から空気が導入されることにより、当該導入孔手前の圧力(気圧)よりも高くなるように形成されていることを特徴としている。 In order to solve the above problems, the dehumidifying device according to one aspect of the present invention comprises a stimulus-responsive polymer whose affinity with water changes reversibly in response to an external stimulus and a hydrophilic polymer. Various moisture-absorbing material particles, films, and blocks including a moisture-absorbing material containing a dried body of a polymer gel containing the same are accommodated, and an introduction hole for introducing air from the outside is formed in the contained moisture-absorbing material to absorb moisture. The moisture absorbing material accommodating portion is provided with a material accommodating portion, and the pressure (atmospheric pressure) in the moisture absorbing material accommodating portion becomes higher than the pressure (atmospheric pressure) in front of the introduction hole due to the introduction of air from the introduction hole. It is characterized in that it is formed like this.
 また、本発明の一態様に係る除湿方法は、外部刺激に応答して水との親和性が可逆的に変化する刺激応答性高分子と、親水性高分子とを含む高分子ゲルの乾燥体を含有する吸湿材をはじめとした各種の吸湿材粒子や膜、ブロック、特に高分子吸湿系の吸湿材を用いた除湿方法であって、空気を導入する導入孔を有し、且つ、導入孔に対向する面が風を通さない部材で構成された吸湿材収容部に上記吸湿材を収容した状態で、上記導入孔から空気を導入することを特徴としている。 Further, the dehumidifying method according to one aspect of the present invention is a dried product of a polymer gel containing a stimulus-responsive polymer whose affinity with water changes reversibly in response to an external stimulus and a hydrophilic polymer. It is a dehumidifying method using various hygroscopic material particles, films, blocks, especially polymer hygroscopic hygroscopic materials including a hygroscopic material containing, and has an introduction hole for introducing air and an introduction hole. It is characterized in that air is introduced from the introduction hole in a state where the moisture absorbing material is accommodated in the moisture absorbing material accommodating portion whose surface facing the surface is made of a member that does not allow air to pass through.
 本発明の一態様によれば、吸湿材への水分吸着(吸収)速度を高めることができる。 According to one aspect of the present invention, the rate of water adsorption (absorption) to the hygroscopic material can be increased.
本発明の実施形態1に係る除湿装置の概略断面図である。It is the schematic sectional drawing of the dehumidifying apparatus which concerns on Embodiment 1 of this invention. 図1に示す除湿装置が備える吸湿ユニットの概略断面図である。It is the schematic sectional drawing of the moisture absorption unit provided in the dehumidifying apparatus shown in FIG. 吸湿率を調べるための吸湿材の配置位置等の各構成を示す図である。It is a figure which shows each structure such as the arrangement position of the hygroscopic material for checking the hygroscopicity. 図3に示す各構成に対応する吸湿率を示すグラフである。It is a graph which shows the hygroscopicity corresponding to each configuration shown in FIG. 吸湿ユニットの変形例を示し、(a)は平面図、(b)は(a)のXX線矢視断面図である。A modified example of the moisture absorbing unit is shown, where FIG. 3A is a plan view and FIG. 3B is a cross-sectional view taken along the line XX of FIG. 本発明の実施形態2に係る除湿装置の概略構成図である。It is a schematic block diagram of the dehumidifying apparatus which concerns on Embodiment 2 of this invention. 本発明の実施形態3に係る除湿装置の概略構成図である。It is a schematic block diagram of the dehumidifying apparatus which concerns on Embodiment 3 of this invention. 図7に示す除湿装置の変形例を示す概略構成図である。It is a schematic block diagram which shows the modification of the dehumidifying apparatus shown in FIG. 7. 本発明の実施形態2に係る除湿装置の概略構成図である。It is a schematic block diagram of the dehumidifying apparatus which concerns on Embodiment 2 of this invention. 本発明の実施形態2に係る除湿装置の概略構成図である。It is a schematic block diagram of the dehumidifying apparatus which concerns on Embodiment 2 of this invention.
 〔実施形態1〕
 以下、本発明の一実施形態について、詳細に説明する。
[Embodiment 1]
Hereinafter, one embodiment of the present invention will be described in detail.
 (除湿装置の構成)
 本実施形態に係る除湿装置の構成について、図1に基づいて説明する。図1は、除湿装置1Aにおける吸湿時の構成を示す側面方向から見た縦断面図である。尚、除湿装置1Aにおいて用いる吸湿材22としての感温性高分子ゲル乾燥体は、空気中の水分(水蒸気)をその表面に吸着すると共に内部に吸収する。これを収着と呼ぶ。ここで、感温点(LCST:Lower Critical Solution Temperature)まで昇温し、液体の水を出す脱水を生じるのはゲル内部にある水分である。このため、本明細書においては、強調する意味で、吸湿を「水分(水蒸気)の吸収」とし、ゲル表面から液体の水を出す方を「脱水又は水の放出」と定義する。
(Configuration of dehumidifier)
The configuration of the dehumidifying device according to the present embodiment will be described with reference to FIG. FIG. 1 is a vertical cross-sectional view showing the configuration of the dehumidifying device 1A at the time of moisture absorption when viewed from the side surface. The temperature-sensitive polymer gel dried body as the hygroscopic material 22 used in the dehumidifying device 1A adsorbs moisture (water vapor) in the air on its surface and absorbs it inside. This is called settlement. Here, it is the water inside the gel that causes dehydration by raising the temperature to the temperature sensitive point (LCST: Lower Critical Solution Temperature) and producing liquid water. Therefore, in the present specification, in the sense of emphasis, moisture absorption is defined as "absorption of water (water vapor)", and the method of discharging liquid water from the gel surface is defined as "dehydration or release of water".
 本実施の形態の除湿装置1Aは、図1に示すように、直方体形状の筐体2を備えている。この筐体2には、上部前面に形成された格子3aを備えた吸気口3と、上部後面に形成された格子4aを備えた排気口4と、下部の前面側に形成され、後述する排水タンク6を収容する排水タンク収容部5とが備えられている。筐体2は、樹脂又は金属にて形成されている。尚、筐体2の形状は、必ずしも直方体形状に限らず、例えば、他の多角筒形状、円筒形状、楕円筒形状又はその他であってもよい。 As shown in FIG. 1, the dehumidifying device 1A of the present embodiment includes a rectangular parallelepiped housing 2. The housing 2 has an intake port 3 having a grid 3a formed on the upper front surface, an exhaust port 4 having a grid 4a formed on the upper rear surface, and a drainage port 4 formed on the lower front side, which will be described later. A drainage tank accommodating portion 5 for accommodating the tank 6 is provided. The housing 2 is made of resin or metal. The shape of the housing 2 is not necessarily limited to a rectangular parallelepiped shape, and may be, for example, another polygonal cylinder shape, a cylindrical shape, an elliptical cylinder shape, or the like.
 上記除湿装置1Aの内部における上部には、図1に示すように、空気流通路10を形成する空気流通壁11が形成されている。空気流通路10には、筐体2の前面側である入り口側から順に、前記格子3aを備えた吸気口3、送風ファン13、吸気絞り12、吸湿ユニット20A及び前記格子4aを備えた排気口4が設けられている。 As shown in FIG. 1, an air flow wall 11 forming an air flow passage 10 is formed in the upper part inside the dehumidifying device 1A. In the air flow passage 10, in order from the inlet side, which is the front side of the housing 2, the intake port 3 provided with the grid 3a, the blower fan 13, the intake throttle 12, the moisture absorption unit 20A, and the exhaust port provided with the grid 4a are provided. 4 is provided.
 また、空気流通路10を形成する空気流通壁11の下側においては、上記吸湿ユニット20Aの下側に、該吸湿ユニット20Aから落下した水滴を受ける水滴受け部14が形成されている。水滴受け部14の下端は開口14aとなっており、この開口14aの下側には、上端に開口6aが形成された前記排水タンク6が設けられている。 Further, on the lower side of the air flow wall 11 forming the air flow passage 10, a water droplet receiving portion 14 for receiving water droplets dropped from the moisture absorbing unit 20A is formed below the moisture absorbing unit 20A. The lower end of the water drop receiving portion 14 has an opening 14a, and the drainage tank 6 having an opening 6a formed at the upper end is provided below the opening 14a.
 吸気口3は、除湿装置1Aが設置された室内の空気を取り入れるためのものである。 The intake port 3 is for taking in the air in the room where the dehumidifying device 1A is installed.
 吸気絞り12は、吸湿ユニット20Aの流入手前に設けられている。そして、この吸気絞り12の排気側の開口は、吸湿ユニット20Aの吸湿材22の配置面と同じか少し大きく形成されている。この吸気絞り12によって、前記吸気口3から流入した湿潤空気を絞り込んで、吸湿材22の配置面のほぼ全面に当てるようにしている。このように、吸気口3から流入した湿潤空気が吸湿材22の全面に当たることで、当該吸湿材22によって効率的に湿潤空気を除湿することができる。 The intake throttle 12 is provided before the flow of the moisture absorption unit 20A is obtained. The opening on the exhaust side of the intake throttle 12 is formed to be the same as or slightly larger than the arrangement surface of the moisture absorbing material 22 of the moisture absorbing unit 20A. The intake throttle 12 narrows down the moist air flowing in from the intake port 3 so as to hit almost the entire surface of the moisture absorbing material 22. In this way, when the moist air flowing in from the intake port 3 hits the entire surface of the moisture absorbing material 22, the moist air can be efficiently dehumidified by the moisture absorbing material 22.
 送風ファン13は、筐体2内の吸気口3と吸気絞り12との間に配置されている。なお、送風ファン13は、吸気口3の直下に配置されているのが好ましい。さらに送風ファン13は吸湿材22の近く(風上)あるいは吸気絞り12を介して吸湿材22の近傍に配置されていることがより好ましい。近傍への配置だけではなく、吸気絞り12を兼ねた若しくは付加した風路(長い場合もある)を設け、その入口や内部に送風ファン13を配置してもよい。 The blower fan 13 is arranged between the intake port 3 and the intake throttle 12 in the housing 2. The blower fan 13 is preferably arranged directly below the intake port 3. Further, it is more preferable that the blower fan 13 is arranged near the moisture absorbing material 22 (upwind) or near the moisture absorbing material 22 via the intake throttle 12. In addition to the arrangement in the vicinity, an air passage (which may be long) that also serves as or is added to the intake throttle 12 may be provided, and the blower fan 13 may be arranged at the inlet or inside thereof.
 このように、吸湿材22の風上近傍に送風ファン13を配置することで、吸気口3から風を送風ファン13によって吸湿材22に直接押し当てることができる。すなわち、吸湿材22に対する加圧・陽圧の効果が大きくなり、吸湿材22による吸湿が高速に行われることになる。しかも、送風ファン13は、吸気絞り12の排気側の開口の直径よりも大きいので、吸気絞りの12に向かってより多くの風を吹き付けることが可能となる。これにより、吸気絞り12の排気側の開口からはより多くの風が排出され、吸湿材22に対する加圧・陽圧を高めることができる。 By arranging the blower fan 13 near the windward side of the moisture absorbing material 22 in this way, the air can be directly pressed against the moisture absorbing material 22 by the blower fan 13 from the intake port 3. That is, the effect of pressurization and positive pressure on the hygroscopic material 22 becomes large, and the hygroscopic material 22 absorbs moisture at high speed. Moreover, since the blower fan 13 is larger than the diameter of the opening on the exhaust side of the intake throttle 12, it is possible to blow more wind toward the intake throttle 12. As a result, more wind is discharged from the opening on the exhaust side of the intake throttle 12, and the pressurization / positive pressure on the moisture absorbing material 22 can be increased.
 吸湿ユニット20Aは、本実施の形態の特徴的構成を有するものであり、除湿装置1Aの内部に流入された空気に含まれる水分を吸湿し、水滴として放出するものである。尚、吸湿ユニット20Aの詳細構造については、後述する。 The moisture absorbing unit 20A has the characteristic configuration of the present embodiment, and absorbs the moisture contained in the air flowing into the dehumidifying device 1A and releases it as water droplets. The detailed structure of the moisture absorption unit 20A will be described later.
 空気流通路10を形成する空気流通壁11は、吸湿ユニット20Aの外形との間に隙間を有するように形成されている。これにより、前記吸気口3から流入した湿潤空気は、吸湿ユニット20Aの吸湿材22の全面に当たり除湿された後、吸湿ユニット20Aの両端側から空気流通路10に移動し、吸湿ユニット20Aと空気流通壁11との間を通って、排気口4から抜けて行く。 The air flow wall 11 forming the air flow passage 10 is formed so as to have a gap between it and the outer shape of the moisture absorption unit 20A. As a result, the moist air flowing in from the intake port 3 hits the entire surface of the hygroscopic material 22 of the hygroscopic unit 20A to be dehumidified, and then moves from both ends of the hygroscopic unit 20A to the air flow passages 10 to flow with the hygroscopic unit 20A. It passes between the wall 11 and exits from the exhaust port 4.
 空気流通壁11の吸湿材22の下側に形成された水滴受け部14の床は、開口14aに向かって下り傾斜が形成されている。これにより、吸湿材22から滴下した水滴が、水滴受け部14に溜まることが無い。 The floor of the water droplet receiving portion 14 formed on the lower side of the moisture absorbing material 22 of the air flow wall 11 is formed to have a downward slope toward the opening 14a. As a result, the water droplets dropped from the moisture absorbing material 22 do not collect in the water droplet receiving portion 14.
 上記水滴受け部14から排出された水滴は、開口14aから落下して排水タンク6に溜まる。この排水タンク6に水が満杯になったときには、排水タンク収容部5から排水タンク6を引き出すことができるので、排水タンク6の水を容易に捨てることができる。この結果、本実施の形態では、排水タンク6の前面は、溜まり水の水位が確認できるように、ガラス等の透明部材からなっていることが好ましい。 The water droplets discharged from the water droplet receiving portion 14 fall from the opening 14a and collect in the drainage tank 6. When the drainage tank 6 is full of water, the drainage tank 6 can be pulled out from the drainage tank accommodating portion 5, so that the water in the drainage tank 6 can be easily discarded. As a result, in the present embodiment, the front surface of the drainage tank 6 is preferably made of a transparent member such as glass so that the water level of the accumulated water can be confirmed.
 (吸湿ユニット20A)
 次に、本実施の形態の吸湿ユニット20Aの構成について、図2に基づいて詳述する。図2は、本実施の形態の吸湿材22を有する吸湿ユニット20Aの概略断面図である。
(Moisture absorption unit 20A)
Next, the configuration of the moisture absorption unit 20A of the present embodiment will be described in detail with reference to FIG. FIG. 2 is a schematic cross-sectional view of the moisture absorbing unit 20A having the moisture absorbing material 22 of the present embodiment.
 本実施の形態の吸湿ユニット20Aは、図2に示すように、一面が開口された開口部21aを有する直方体状の収容部(吸湿材収容部)21と、収容部21に収容された吸湿材22と、収容部21の底面21bの裏面に設けられた加熱部としてのヒータ23とからなっている。 As shown in FIG. 2, the moisture absorbing unit 20A of the present embodiment has a rectangular parallelepiped accommodating portion (moisture absorbing material accommodating portion) 21 having an opening 21a having an opening on one side, and a hygroscopic material accommodating in the accommodating portion 21. It is composed of 22 and a heater 23 as a heating portion provided on the back surface of the bottom surface 21b of the accommodating portion 21.
 収容部21は、例えば樹脂からなり、底面21bは風を通さないように構成されている。なお、収容部21の基材は、樹脂に限らず、金属又はセラミックであってもよい。また、収容部21は、熱伝導率が高いものが好ましい。さらに、収容部21の形状は、直方体に限らず、立方体、球体等であってもよい。また、収容部21は、板状の部材であってもよい。この場合、板状部分に吸湿材22を固着するようにすればよい。ここで重要なのは、収容部21において、風が吹き付ける方向(風下側)に通り抜けないように構成されていることである。また、収容部21は、風が吸湿材22に当たった後、当該吸湿材22に当たるまでの方向と異なる方向に流れるように形成されていてもよい。例えば、収容部21において風が通り抜けない部分は、風の導入孔である開口部21aが底面21bと必ずしも垂直に対向する位置でなくてもよく、傾斜を持たせて対向する位置に形成されていてもよい。つまり、収容部21において、開口部21aから導入された風が底面21bに対して斜め方向から当たるようにしてもよい。 The accommodating portion 21 is made of, for example, resin, and the bottom surface 21b is configured to prevent air from passing through. The base material of the accommodating portion 21 is not limited to resin, but may be metal or ceramic. Further, the accommodating portion 21 preferably has a high thermal conductivity. Further, the shape of the accommodating portion 21 is not limited to a rectangular parallelepiped, and may be a cube, a sphere, or the like. Further, the accommodating portion 21 may be a plate-shaped member. In this case, the moisture absorbing material 22 may be fixed to the plate-shaped portion. What is important here is that the accommodating portion 21 is configured so as not to pass through in the direction in which the wind blows (leeward side). Further, the accommodating portion 21 may be formed so as to flow in a direction different from the direction in which the wind hits the moisture absorbing material 22 and then hits the moisture absorbing material 22. For example, the portion of the accommodating portion 21 through which the wind does not pass does not necessarily have to be at a position where the opening 21a, which is a wind introduction hole, faces the bottom surface 21b vertically, and is formed at a position facing the bottom surface 21b with an inclination. You may. That is, in the accommodating portion 21, the wind introduced from the opening 21a may hit the bottom surface 21b from an oblique direction.
 上記構成の収容部21に吸湿材22を収容した状態で、開口部21aから空気を導入する。この場合、収容部21における空気を導入する導入孔となる開口部21aに対向する面が風を通さない部材となる底面21bに向かって空気(風)が吹き付けられることになるので、当該収容部21内に空気が滞留する。これにより、収容部21内の圧力は、当該収容部21の開口部21a手前の圧力よりも高くなる。 Air is introduced from the opening 21a with the moisture absorbing material 22 accommodated in the accommodating portion 21 having the above configuration. In this case, since the air (wind) is blown toward the bottom surface 21b whose surface facing the opening 21a which is the introduction hole for introducing air in the accommodating portion 21 is a member which does not allow air to pass through, the accommodating portion 21. Air stays in 21. As a result, the pressure inside the accommodating portion 21 becomes higher than the pressure in front of the opening 21a of the accommodating portion 21.
 このように、収容部21内で空気が滞留することで、当該収容部21内の圧力が高まるので、湿度若しくは水蒸気圧も上がり、収容された吸湿材22における吸湿速度を向上させることができる。つまり、吸湿材22は、当該吸湿材22に風圧がかかることで、吸湿率(単位時間当たりの吸水量)が高まる。 As the air stays in the accommodating portion 21 in this way, the pressure in the accommodating portion 21 increases, so that the humidity or the vapor pressure also increases, and the moisture absorption rate in the accommodating hygroscopic material 22 can be improved. That is, the hygroscopic material 22 increases the hygroscopicity (water absorption amount per unit time) by applying wind pressure to the hygroscopic material 22.
 (吸湿材22)
 収容部21に収容されている吸湿材22は、高分子ゲルの吸湿材からなっており、本実施の形態では、吸湿材22は当該収容部21の底面21bにおいて例えば塗布されている。
(Moisture absorbent 22)
The hygroscopic material 22 housed in the accommodating portion 21 is made of a hygroscopic material of a polymer gel, and in the present embodiment, the hygroscopic material 22 is applied, for example, on the bottom surface 21b of the accommodating portion 21.
 この吸湿材22は、水分を吸収し得る第1状態と上記第1状態にて吸収した水分を放出する第2状態とを有し、外部からの刺激により上記第1状態から上記第2状態に変化し、上記刺激がなくなったときに上記第1状態に戻る性質を有している。具体的には、吸湿材22は、一定の温度である感温点以下の温度領域では親水性を示し、感温点を超える温度領域では疎水性を示す性質を有している。これによって、感温点以下の温度領域、つまり常温である除湿対象環境の温度領域では、吸湿ユニット20Aに導入した空気に含まれる水分を吸湿する一方、感温点を超える温度領域では、吸湿した水分を水滴として放出するようになっている。この現象は可逆動作であるので、吸湿ユニット20Aは、温度変化を繰り返して与えることによって、常温での空気に含まれる水分の吸湿と、吸湿された水分の加熱での液体の水としての放出とを繰り返して行うことが可能となっている。 The moisture absorbing material 22 has a first state in which it can absorb water and a second state in which it releases the water absorbed in the first state, and changes from the first state to the second state by an external stimulus. It has the property of changing and returning to the first state when the stimulus disappears. Specifically, the moisture absorbing material 22 has a property of exhibiting hydrophilicity in a temperature range below the temperature sensing point, which is a constant temperature, and exhibiting hydrophobicity in a temperature range exceeding the temperature sensing point. As a result, in the temperature range below the temperature sensing point, that is, in the temperature range of the dehumidifying target environment at room temperature, the moisture contained in the air introduced into the moisture absorbing unit 20A is absorbed, while in the temperature range exceeding the temperature sensing point, moisture is absorbed. It is designed to release water as water droplets. Since this phenomenon is a reversible operation, the moisture absorbing unit 20A repeatedly gives a temperature change to absorb the moisture contained in the air at room temperature and release the absorbed moisture as liquid water by heating. Can be repeated.
 ここで、本実施の形態では、粒子状或いは板状、ブロック又は膜状である吸湿材22(図2では粒子状の一例を示す)の材質として、例えば、N-イソプロピルアクリルアミドを含む高分子ゲルを使用している。吸湿材22がこのような構成であれば、熱という刺激によって水分を吸収し得る第1状態としての親水性状態と、吸収した水分を放出する第2状態としての疎水性状態とを交互に遷移することができる構成を容易に実現することができる。当業者であれば、例えばポリN-イソプロピルアクリルアミド(pNIPAM)及びその誘導体やポリビニルエーテル及びその誘導体等の感温性高分子を材料として用いて所望の性質を有する高分子吸湿材を適宜調製することが可能である。 Here, in the present embodiment, a polymer gel containing, for example, N-isopropylacrylamide as a material of the hygroscopic material 22 (an example of particles in FIG. 2) which is in the form of particles, plates, blocks, or films). Is using. If the moisture absorbing material 22 has such a configuration, the hydrophilic state as the first state in which water can be absorbed by the stimulus of heat and the hydrophobic state as the second state in which the absorbed water is released are alternately transitioned. The configuration that can be achieved can be easily realized. Those skilled in the art can appropriately prepare a polymer hygroscopic material having desired properties by using a temperature-sensitive polymer such as poly N-isopropylacrylamide (pNIPAM) and its derivative, polyvinyl ether and its derivative as a material. Is possible.
 前記吸湿材22の材質である温度応答性高分子として、より具体的には、例えば、ポリ(N-イソプロピル(メタ)アクリルアミド)、ポリ(N-ノルマルプロピル(メタ)アクリルアミド)、ポリ(N-メチル(メタ)アクリルアミド)、ポリ(N-エチル(メタ)アクリルアミド)、ポリ(N-ノルマルブチル(メタ)アクリルアミド)、ポリ(N-イソブチル(メタ)アクリルアミド)、ポリ(N-t-ブチル(メタ)アクリルアミド)等のポリ(N-アルキル(メタ)アクリルアミド);ポリ(N-ビニルイソプロピルアミド)、ポリ(N-ビニルノルマルプロピルアミド)、ポリ(N-ビニルノルマルブチルアミド)、ポリ(N-ビニルイソブチルアミド)、ポリ(N-ビニル-t-ブチルアミド)等のポリ(N-ビニルアルキルアミド);ポリ(N-ビニルピロリドン);ポリ(2-エチル-2-オキサゾリン)、ポリ(2-イソプロピル-2-オキサゾリン)、ポリ(2-ノルマルプロピル-2-オキサゾリン)等のポリ(2-アルキル-2-オキサゾリン);ポリビニルメチルエーテル、ポリビニルエチルエーテル等のポリビニルアルキルエーテル;ポリエチレンオキサイドとポリプロピレンオキサイドの共重合体;ポリ(オキシエチレンビニルエーテル);メチルセルロース、エチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース等のセルロース誘導体等、および上記のポリマーの共重合体を挙げることができる。温度応答性高分子は、これらの高分子の架橋体であることがより好ましい。 More specifically, as the temperature-responsive polymer which is the material of the moisture absorbing material 22, for example, poly (N-isopropyl (meth) acrylamide), poly (N-normal propyl (meth) acrylamide), poly (N-). Methyl (meth) acrylamide), poly (N-ethyl (meth) acrylamide), poly (N-normal butyl (meth) acrylamide), poly (N-isobutyl (meth) acrylamide), poly (N-t-butyl (meth) acrylamide), poly (N-t-butyl (meth) acrylamide) ) Poly (N-alkyl (meth) acrylamide) such as acrylamide); poly (N-vinylisopropylamide), poly (N-vinylnormalpropylamide), poly (N-vinylnormalbutylamide), poly (N-vinyl) Poly (N-vinylalkylamide) such as isobutylamide) and poly (N-vinyl-t-butylamide); poly (N-vinylpyrrolidone); poly (2-ethyl-2-oxazoline), poly (2-isopropyl-) Poly (2-alkyl-2-oxazoline) such as 2-oxazoline) and poly (2-normalpropyl-2-oxazoline); polyvinylalkyl ether such as polyvinylmethyl ether and polyvinylethyl ether; copolymerization of polyethylene oxide and polypropylene oxide Combined; Poly (oxyethylene vinyl ether); Cellulous derivatives such as methyl cellulose, ethyl cellulose, hydroxypropyl cellulose, hydroxypropyl methyl cellulose and the like, and copolymers of the above polymers can be mentioned. The temperature-responsive polymer is more preferably a crosslinked product of these polymers.
 なお、本発明では、刺激応答性高分子と親水性高分子とは、相互浸入高分子網目構造またはセミ相互浸入高分子網目構造を形成するので、刺激応答性高分子および親水性高分子の少なくとも何れかは架橋体である。 In the present invention, since the stimulus-responsive polymer and the hydrophilic polymer form a mutually infiltrated polymer network structure or a semi-mutually infiltrated polymer network structure, at least the stimulus-responsive polymer and the hydrophilic polymer are formed. Either is a crosslinked body.
 温度応答性高分子が架橋体である場合、かかる架橋体としては、例えば、N-イソプロピル(メタ)アクリルアミド、N-ノルマルプロピル(メタ)アクリルアミド、N-メチル(メタ)アクリルアミド、N-エチル(メタ)アクリルアミド、N-ノルマルブチル(メタ)アクリルアミド、N-イソブチル(メタ)アクリルアミド、N-t-ブチル(メタ)アクリルアミド等のN-アルキル(メタ)アクリルアミド;N-ビニルイソプロピルアミド、N-ビニルノルマルプロピルアミド、N-ビニルノルマルブチルアミド、N-ビニルイソブチルアミド、N-ビニル-t-ブチルアミド等のN-ビニルアルキルアミド;ビニルメチルエーテル、ビニルエチルエーテル等のビニルアルキルエーテル;エチレンオキサイドとプロピレンオキサイド;2-エチル-2-オキサゾリン、2-イソプロピル-2-オキサゾリン、2-ノルマルプロピル-2-オキサゾリン等の2-アルキル-2-オキサゾリン等のモノマーまたはこれらのモノマーの2種類以上を、架橋剤の存在下で重合して得られる高分子を挙げることができる。 When the temperature-responsive polymer is a crosslinked product, such crosslinked product includes, for example, N-isopropyl (meth) acrylamide, N-normalpropyl (meth) acrylamide, N-methyl (meth) acrylamide, and N-ethyl (meth). ) N-alkyl (meth) acrylamides such as acrylamide, N-normal butyl (meth) acrylamide, N-isobutyl (meth) acrylamide, Nt-butyl (meth) acrylamide; N-vinylisopropylamide, N-vinylnormalpropyl N-vinylalkylamides such as amides, N-vinylnormal butylamides, N-vinylisobutylamides and N-vinyl-t-butylamides; vinylalkyl ethers such as vinylmethyl ethers and vinylethyl ethers; ethylene oxide and propylene oxide; 2 Monomers such as 2-alkyl-2-oxazoline such as -ethyl-2-oxazoline, 2-isopropyl-2-oxazoline, 2-normalpropyl-2-oxazoline, or two or more of these monomers in the presence of a cross-linking agent. Examples of the polymer obtained by polymerization with.
 上記架橋剤としては、従来公知のものを適宜選択して用いればよいが、例えば、エチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、N,N’-メチレンビス(メタ)アクリルアミド、トリレンジイソシアネート、ジビニルベンゼン、ポリエチレングリコールジ(メタ)アクリレート等の重合性官能基を有する架橋性モノマー;グルタールアルデヒド;多価アルコール;多価アミン;多価カルボン酸;カルシウムイオン、亜鉛イオン等の金属イオン等を好適に用いることができる。これらの架橋剤は単独で用いてもよく、また2種類以上を組み合わせて用いてもよい。 As the above-mentioned cross-linking agent, conventionally known ones may be appropriately selected and used. For example, ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, N, N'-methylenebis (meth) acrylamide, tri. Crosslinkable monomers having polymerizable functional groups such as range isocyanate, divinylbenzene, polyethylene glycol di (meth) acrylate; glutaaldehyde; polyhydric alcohols; polyvalent amines; polyvalent carboxylic acids; metals such as calcium ions and zinc ions. Ions and the like can be preferably used. These cross-linking agents may be used alone or in combination of two or more.
 或いは、温度応答性高分子が架橋体である場合、かかる架橋体は、架橋されていない温度応答性高分子、例えば上記で例示した温度応答性高分子を、前記架橋剤と反応させて網目構造を形成させることによって得られた架橋体であってもよい。 Alternatively, when the temperature-responsive polymer is a crosslinked product, the crosslinked product has a network structure in which an uncrosslinked temperature-responsive polymer, for example, the temperature-responsive polymer exemplified above is reacted with the cross-linking agent. It may be a crosslinked product obtained by forming the above.
 また、光に応答して水との親和性が可逆的に変化する刺激応答性高分子としては、アゾベンゼン誘導体、スピロピラン誘導体等の、光により親水性または極性が変化する光応答性高分子、それらと温度応答性高分子およびpH応答性高分子の少なくともいずれかとの共重合体、前記光応答性高分子の架橋体、または、前記共重合体の架橋体を挙げることができる。さらには、光を受けて発熱する材料を混入することで光応答性を出すこともできる。混入する材料としては、金属ナノ粒子、グラファイト、カーボンナノチューブ、カーボンブラック、導電性高分子の他、酸化鉄微粒子やHоやTb等のランタノイド元素とポリマー錯体等がある。 Examples of the stimulus-responsive polymer whose affinity with water changes reversibly in response to light include photoresponsive polymers whose hydrophilicity or polarity changes with light, such as azobenzene derivatives and spiropyran derivatives. And a copolymer with at least one of a temperature-responsive polymer and a pH-responsive polymer, a crosslinked product of the photoresponsive polymer, or a crosslinked product of the copolymer. Furthermore, photoresponsiveness can be obtained by mixing a material that receives light and generates heat. Materials to be mixed include metal nanoparticles, graphite, carbon nanotubes, carbon black, conductive polymers, iron oxide fine particles, lanthanoid elements such as Hо and Tb, and polymer complexes.
 また、電場に応答して水との親和性が可逆的に変化する刺激応答性高分子としては、カルボキシル基、スルホン酸基、リン酸基、アミノ基等の解離基を有する高分子、カルボキシル基含有高分子とアミノ基含有高分子との複合体のような静電相互作用や水素結合などによって複合体を形成した高分子、または、これらの架橋体を挙げることができる。 Further, as the stimulus-responsive polymer whose affinity with water changes reversibly in response to an electric field, a polymer having a dissociating group such as a carboxyl group, a sulfonic acid group, a phosphoric acid group, or an amino group, or a carboxyl group Examples thereof include a polymer in which a complex is formed by electrostatic interaction, a hydrogen bond, or the like, such as a complex of a containing polymer and an amino group-containing polymer, or a crosslinked product thereof.
 また、pHに応答して水との親和性が可逆的に変化する刺激応答性高分子としては、カルボキシル基、スルホン酸基、リン酸基、アミノ基等の解離基を有する高分子、カルボキシル基含有高分子とアミノ基含有高分子との複合体のような静電相互作用や水素結合などによって複合体を形成した高分子、または、これらの架橋体を挙げることができる。 Further, as the stimulus-responsive polymer whose affinity with water changes reversibly in response to pH, a polymer having a dissociating group such as a carboxyl group, a sulfonic acid group, a phosphoric acid group, or an amino group, or a carboxyl group Examples thereof include a polymer in which a complex is formed by electrostatic interaction, a hydrogen bond, or the like, such as a complex of a containing polymer and an amino group-containing polymer, or a crosslinked product thereof.
 前記刺激応答性高分子の分子量も特に限定されるものではないが、ゲルパーミエーションクロマトグラフィー(GPC)により決定された数平均分子量が3000以上であることが好ましい。 The molecular weight of the stimulus-responsive polymer is not particularly limited, but it is preferable that the number average molecular weight determined by gel permeation chromatography (GPC) is 3000 or more.
 (親水性高分子)
 本発明に係る吸湿材に用いられる親水性高分子は、当該親水性高分子とともに、相互浸入高分子網目構造またはセミ相互浸入高分子網目構造を形成している刺激応答性高分子以外の親水性の高分子であれば特に限定されるものではない。
(Hydrophilic polymer)
The hydrophilic polymer used in the hygroscopic material according to the present invention is hydrophilic other than the stimulus-responsive polymer forming a reciprocally infiltrated polymer network structure or a semi-mutually infiltrated polymer network structure together with the hydrophilic polymer. The polymer is not particularly limited.
 かかる親水性高分子としては、例えば、水酸基、カルボキシル基、スルホン酸基、リン酸基、アミノ基等の親水性基を側鎖または主鎖に有する高分子を挙げることができる。前記親水性高分子のより具体的な一例としては、例えば、アルギン酸、ヒアルロン酸等の多糖類;キトサン;カルボキシメチルセルロース、メチルセルロース、エチルセルロース、ヒドロキシエチルセルロース等のセルロース誘導体;ポリ(メタ)アクリル酸、ポリマレイン酸、ポリビニルスルホン酸、ポリビニルベンゼンスルホン酸、ポリアクリルアミドアルキルスルホン酸、ポリジメチルアミノプロピル(メタ)アクリルアミド、これらと(メタ)アクリルアミド、ヒドロキシエチル(メタ)アクリレート、(メタ)アクリル酸アルキルエステル等との共重合体、ポリジメチルアミノプロピル(メタ)アクリルアミドとポリビニルアルコールとの複合体、ポリビニルアルコールとポリ(メタ)アクリル酸との複合体、ポリ(メタ)アクリロニトリル、ポリアリルアミン、ポリビニルアルコール、ポリエチレングリコール、ポリプロピレングリコール、ポリ(メタ)アクリルアミド、ポリ-N,N’-ジメチル(メタ)アクリルアミド、ポリ-2-ヒドロキシエチルメタクリレート、ポリ-アルキル(メタ)アクリレート、ポリジメチルアミノプロピル(メタ)アクリルアミド、ポリ(メタ)アクリロニトリルおよび上記ポリマーの共重合体等を挙げることができる。また、親水性高分子は、これらの架橋体であることがより好ましい。 Examples of such a hydrophilic polymer include a polymer having a hydrophilic group such as a hydroxyl group, a carboxyl group, a sulfonic acid group, a phosphoric acid group, and an amino group in a side chain or a main chain. As a more specific example of the hydrophilic polymer, for example, polysaccharides such as alginic acid and hyaluronic acid; chitosan; cellulose derivatives such as carboxymethyl cellulose, methyl cellulose, ethyl cellulose and hydroxyethyl cellulose; poly (meth) acrylic acid and polymaleic acid. , Polypolysulfonic acid, polyvinylbenzenesulfonic acid, polyacrylamidealkylsulfonic acid, polydimethylaminopropyl (meth) acrylamide, and (meth) acrylamide, hydroxyethyl (meth) acrylate, (meth) acrylic acid alkyl ester, etc. Polymers, composites of polydimethylaminopropyl (meth) acrylamide and polyvinyl alcohol, composites of polyvinyl alcohol and poly (meth) acrylic acid, poly (meth) acrylonitrile, polyallylamine, polyvinyl alcohol, polyethylene glycol, polypropylene glycol , Poly (meth) acrylamide, poly-N, N'-dimethyl (meth) acrylamide, poly-2-hydroxyethyl methacrylate, poly-alkyl (meth) acrylate, polydimethylaminopropyl (meth) acrylamide, poly (meth) acrylonitrile And a copolymer of the above polymer and the like. Further, the hydrophilic polymer is more preferably a crosslinked product of these.
 本発明では、刺激応答性高分子と親水性高分子とは、相互浸入高分子網目構造またはセミ相互浸入高分子網目構造を形成するので、刺激応答性高分子および親水性高分子の少なくとも何れかは架橋体である。 In the present invention, the stimulus-responsive polymer and the hydrophilic polymer form a mutually infiltrated polymer network structure or a semi-mutually infiltrated polymer network structure, and therefore at least one of the stimulus-responsive polymer and the hydrophilic polymer. Is a crosslinked body.
 親水性高分子が架橋体である場合、かかる架橋体としては、例えば、(メタ)アクリル酸、アリルアミン、酢酸ビニル、(メタ)アクリルアミド、N,N’-ジメチル(メタ)アクリルアミド、2-ヒドロキシエチルメタクリレート、アルキル(メタ)アクリレート、マレイン酸、ビニルスルホン酸、ビニルベンゼンスルホン酸、アクリルアミドアルキルスルホン酸、ジメチルアミノプロピル(メタ)アクリルアミド、(メタ)アクリロニトリル等のモノマーを、架橋剤の存在下で重合して得られる高分子を挙げることができる。 When the hydrophilic polymer is a crosslinked product, such crosslinked product includes, for example, (meth) acrylic acid, allylamine, vinyl acetate, (meth) acrylamide, N, N'-dimethyl (meth) acrylamide, 2-hydroxyethyl. Monomers such as methacrylate, alkyl (meth) acrylate, maleic acid, vinyl sulfonic acid, vinyl benzene sulfonic acid, acrylamide alkyl sulfonic acid, dimethylaminopropyl (meth) acrylamide, and (meth) acrylonitrile are polymerized in the presence of a cross-linking agent. Examples of the obtained polymer can be mentioned.
 上記架橋剤としては、従来公知のものを適宜選択して用いればよいが、例えば、エチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、N,N’-メチレンビス(メタ)アクリルアミド、トリレンジイソシアネート、ジビニルベンゼン、ポリエチレングリコールジ(メタ)アクリレート等の重合性官能基を有する架橋性モノマー;グルタールアルデヒド;多価アルコール;多価アミン;多価カルボン酸;カルシウムイオン、亜鉛イオン等の金属イオン等を好適に用いることができる。これらの架橋剤は単独で用いてもよく、また2種類以上を組み合わせて用いてもよい。 As the above-mentioned cross-linking agent, conventionally known ones may be appropriately selected and used. For example, ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, N, N'-methylenebis (meth) acrylamide, tri. Crosslinkable monomers having polymerizable functional groups such as range isocyanate, divinylbenzene, polyethylene glycol di (meth) acrylate; glutaaldehyde; polyhydric alcohols; polyvalent amines; polyvalent carboxylic acids; metals such as calcium ions and zinc ions. Ions and the like can be preferably used. These cross-linking agents may be used alone or in combination of two or more.
 或いは、温度応答性高分子が架橋物である場合、かかる架橋物は、架橋されていない前記親水性高分子、例えば、前記モノマーを重合して得られた高分子、または、アルギン酸、ヒアルロン酸等の多糖類;キトサン;カルボキシメチルセルロース、メチルセルロース、エチルセルロース、ヒドロキシエチルセルロース等のセルロース誘導体を、前記架橋剤と反応させて網目構造を形成させることによって得られた架橋体であってもよい。 Alternatively, when the temperature-responsive polymer is a crosslinked product, the crosslinked product is the uncrosslinked hydrophilic polymer, for example, a polymer obtained by polymerizing the monomer, or alginic acid, hyaluronic acid, or the like. Polysaccharide; chitosan; a crosslinked product obtained by reacting a cellulose derivative such as carboxymethyl cellulose, methyl cellulose, ethyl cellulose, hydroxyethyl cellulose or the like with the cross-linking agent to form a network structure may be used.
 前記親水性高分子の分子量も特に限定されるものではないが、GPCにより決定された数平均分子量が3000以上であることが好ましい。 The molecular weight of the hydrophilic polymer is not particularly limited, but it is preferable that the number average molecular weight determined by GPC is 3000 or more.
 上記収容部21の底面21bの裏面には、ヒータ23が例えば接着されている。これにより、吸湿材22を、底面21bを介して加熱可能となっている。 A heater 23 is adhered to, for example, the back surface of the bottom surface 21b of the accommodating portion 21. As a result, the moisture absorbing material 22 can be heated via the bottom surface 21b.
 上記ヒータ23は、余裕をみて100℃程度まで加熱できればよい。すなわち、除湿装置1Aは、夏場は40℃以上の環境で使われる可能性がある。このため、エレメントの脱水には50℃~70℃(60℃前後)の温度をかけることができればよいので、ヒータ能力は100℃ぐらいまで出せるものであればよい。 The heater 23 may be heated to about 100 ° C with a margin. That is, the dehumidifying device 1A may be used in an environment of 40 ° C. or higher in summer. Therefore, since it is sufficient that a temperature of 50 ° C. to 70 ° C. (around 60 ° C.) can be applied to dehydrate the element, the heater capacity may be up to about 100 ° C.
 本実施の形態のヒータ23は、例えばニクロム線等の電熱線、又はAlNやシリコン等の高抵抗発熱材等を有している。尚、ヒータ23は、加熱しないときは速やかに熱を逃がす必要がある。このため、ヒータ23の周辺部材は高伝熱性にて構成されているか、又はヒータ23に冷却用のフィンやファンを設けることが好ましい。 The heater 23 of the present embodiment has, for example, a heating wire such as a nichrome wire, or a high resistance exothermic material such as AlN or silicon. The heater 23 needs to quickly release heat when it is not heated. Therefore, it is preferable that the peripheral members of the heater 23 are configured to have high heat transfer properties, or that the heater 23 is provided with cooling fins or fans.
 本実施の形態の吸湿材を光応答性高分子とした場合には、ヒータ23に代わり、発光体、ランプ、LED等を用い、収容部21も光透過性の高い材料透明樹脂やメッシュ状金属等を用いるか、あるいは風の当たる側に発行体を設置することもできる。図示しない発光体は、風上側の他、吸湿ユニット20Aの側面、裏側に配置されてもよい。この場合、収容部21には光透過性の材料を用いる。 When the moisture absorbing material of the present embodiment is a photoresponsive polymer, a light emitter, a lamp, an LED, or the like is used instead of the heater 23, and the accommodating portion 21 is also a highly light-transmitting material transparent resin or mesh-like metal. Etc., or the issuer can be installed on the side exposed to the wind. The light emitting body (not shown) may be arranged on the side surface or the back side of the moisture absorbing unit 20A in addition to the windward side. In this case, a light-transmitting material is used for the accommodating portion 21.
 (除湿装置1Aの動作)
 上記構成の除湿装置1Aの動作について図1を参照しながら以下に説明する。
(Operation of dehumidifier 1A)
The operation of the dehumidifying device 1A having the above configuration will be described below with reference to FIG.
 まず、除湿装置1Aにおける吸湿ユニット20Aの制御回路(図示せず)は、ヒータ23の電源(図示せず)をオフにした状態で、送風ファン13の電源(図示せず)をオンにする。これにより、除湿装置1Aの吸気口3から外部の空気が流入する。外部の空気(湿潤空気)は、送風ファン13によって取り込まれた後、吸気絞り12によって絞り込まれ、吸湿ユニット20Aの吸湿材22の全面に衝突する。吸湿材22の全面に衝突した外部の湿潤空気は、感温点以下の吸湿材22に触れる。その結果、湿潤空気は吸湿材22にて除湿される。除湿された空気は、吸湿ユニット20Aの両端から空気流通路10に移動し、さらに、空気流通壁11の近傍に沿って移動し、乾燥空気となって筐体2の排気口4から除湿装置1A外に排気される。 First, the control circuit (not shown) of the moisture absorbing unit 20A in the dehumidifying device 1A turns on the power supply (not shown) of the blower fan 13 with the power supply (not shown) of the heater 23 turned off. As a result, external air flows in from the intake port 3 of the dehumidifying device 1A. The outside air (wet air) is taken in by the blower fan 13 and then narrowed down by the intake throttle 12, and collides with the entire surface of the moisture absorbing material 22 of the moisture absorbing unit 20A. The external moist air that collides with the entire surface of the moisture absorbing material 22 comes into contact with the moisture absorbing material 22 below the temperature sensing point. As a result, the moist air is dehumidified by the moisture absorbing material 22. The dehumidified air moves from both ends of the moisture absorption unit 20A to the air flow passage 10, further moves along the vicinity of the air flow wall 11, becomes dry air, and dehumidifies the dehumidifier 1A from the exhaust port 4 of the housing 2. It is exhausted to the outside.
 なお、外部の湿潤空気は、収容部21内の吸湿材22に衝突して、当該収容部21内の圧力を高めることになるため、当該収容部21内の吸湿材22は効率良く吸湿することができる。 Since the external moist air collides with the hygroscopic material 22 in the accommodating portion 21 and increases the pressure in the accommodating portion 21, the hygroscopic material 22 in the accommodating portion 21 efficiently absorbs moisture. Can be done.
 次に、除湿装置1Aにおける吸湿ユニット20Aの吸湿材22に水分が十分に蓄積されたことを見計らって、収容部21の底面21bの裏面に固着されたヒータ23の電源をオンする。尚、ヒータ23の収容部21の底面21bの裏面への固着は、例えば接着にて行うことができる外、例えば、接着する場合以外にも隙間がないように密着させて枠や網等で押える等の方法により固着する方法がある。 Next, after observing that sufficient moisture has accumulated in the hygroscopic material 22 of the hygroscopic unit 20A in the dehumidifying device 1A, the power of the heater 23 fixed to the back surface of the bottom surface 21b of the accommodating portion 21 is turned on. It should be noted that the bottom surface 21b of the accommodating portion 21 of the heater 23 can be fixed to the back surface by, for example, adhesion, and the heater 23 can be adhered with a frame, a net, or the like so as not to have a gap except when bonding. There is a method of fixing by such a method.
 このときのヒータ23へ供給する電力は、吸湿材22の感温点を越える温度となるように供給する。尚、吸湿材22に水分が十分に蓄積されたことの検知は、例えば、タイマにて所定時間経過した場合とする。 The electric power supplied to the heater 23 at this time is supplied so as to exceed the temperature sensing point of the moisture absorbing material 22. It should be noted that the detection that sufficient water has accumulated in the moisture absorbing material 22 is performed, for example, when a predetermined time elapses with a timer.
 これにより、吸湿材22が感温点を越える温度に加熱されることによって、疎水性になり、当該吸湿材22に外部空気から吸湿されていた水分が、放出される。放出された水分は、水滴として溜まり、その水滴は、落下し、水滴受け部14介して排水タンク6に貯水される。 As a result, the hygroscopic material 22 becomes hydrophobic by being heated to a temperature exceeding the temperature sensing point, and the moisture absorbed from the outside air is released to the hygroscopic material 22. The released water accumulates as water droplets, and the water droplets fall and are stored in the drain tank 6 via the water droplet receiving portion 14.
 排水タンク6に溜まった水は、筐体2から該排水タンク6を取り出した後、捨てることができる。 The water collected in the drainage tank 6 can be discarded after the drainage tank 6 is taken out from the housing 2.
 なお、本実施の形態における吸湿材22は、前記刺激(加熱)により、刺激応答レベルに伴う第1状態としての親水性と第2状態としての疎水性とを示すとすることができる。この結果、各種の刺激にて、大きな熱量を用いずに、吸湿された水分を効率よく放出し得る吸湿材を提供することができる。 The moisture absorbing material 22 in the present embodiment can be said to exhibit hydrophilicity as a first state and hydrophobicity as a second state according to the stimulus response level by the stimulation (heating). As a result, it is possible to provide a hygroscopic material capable of efficiently releasing the absorbed moisture by various stimuli without using a large amount of heat.
 ここで、外部からの刺激としては、上述した熱以外に、例えば電界、光、電気、pHを採用することが可能である。これにより、吸湿材22が第1状態から第2状態に変化し、刺激がなくなったときに第1状態に戻るために、これら各種の刺激要因を利用することができ、汎用性が高くなる。また、これらの刺激要因は、それぞれ互いに異なる刺激応答レベルを容易に選択することが可能である。尚、刺激応答レベルとして、光刺激の場合は例えば波長や強度であり、電気の場合は例えば電圧や電流であり、pHの場合はpH値である。 Here, as the external stimulus, for example, electric field, light, electricity, and pH can be adopted in addition to the above-mentioned heat. As a result, the moisture absorbing material 22 changes from the first state to the second state and returns to the first state when the stimulation disappears. Therefore, these various stimulating factors can be utilized, and the versatility is increased. In addition, these stimulus factors can easily select different stimulus response levels from each other. The stimulus response level is, for example, a wavelength or intensity in the case of light stimulation,, for example, a voltage or current in the case of electricity, and a pH value in the case of pH.
 また、水を放出する際には、加熱などの刺激を加えるとともに又はその直後に、板材で圧迫するなどの方法で吸湿材に機械的な力を加え搾り取るアシスト機構や、放出した水を集める、好ましくは親水性の部材と接触させて水を収集することもできる。 In addition, when releasing water, an assist mechanism that applies mechanical force to the hygroscopic material by applying a stimulus such as heating or immediately after that by pressing with a plate material to squeeze it, and collects the released water. Water can also be collected, preferably in contact with a hydrophilic member.
 (吸湿材22の吸湿率)
 吸湿材22の吸湿率について、以下に説明する。図3は、吸湿材22の6通りの配置例を示す図である。図4は、図3に示す吸湿材22の各配置例における吸湿率を示すグラフである。
(Hygroscopicity of hygroscopic material 22)
The hygroscopicity of the hygroscopic material 22 will be described below. FIG. 3 is a diagram showing six arrangement examples of the moisture absorbing material 22. FIG. 4 is a graph showing the hygroscopicity in each arrangement example of the hygroscopic material 22 shown in FIG.
 ここで、図3の(A)~(D),(F)では、直径1~2mmの粒状の吸湿材22を使用し、図3の(E)では、厚さ1.3mmの板状の吸湿材22を使用した。図4に示す吸湿率が得られた環境は、環境温度27℃、環境湿度70%RH、風量約1m/minであった。なお、図3の(A)~(F)の白抜きの矢印は、風が吹き付ける方向を示している。 Here, in FIGS. 3A to 3D and F, a granular moisture absorbing material 22 having a diameter of 1 to 2 mm is used, and in FIG. 3E, a plate having a thickness of 1.3 mm is used. The moisture absorbing material 22 was used. The environment in which the hygroscopicity shown in FIG. 4 was obtained was an environmental temperature of 27 ° C., an environmental humidity of 70% RH, and an air volume of about 1 m 3 / min. The white arrows in FIGS. 3A to 3F indicate the direction in which the wind blows.
 図3の(A)は、収容部21の底面21b上に吸湿材22を分散させた状態を示し、図3の(B)は、収容部21の底面21b上に設けられた樹脂又は金属層21cに形成された円筒状の穴部21dに吸湿材22を詰め込んだ状態を示し、図3の(C)は、収容部21の底面21b上に設けられた樹脂又は金属層21cに形成され、図3の(B)の穴部21dよりも浅い円筒状の穴部21dに吸湿材22を詰め込んだ状態を示し、図3の(D)は、収容部21の底面21b上に形成された樹脂又は金属層21cに形成された逆円錐状の穴部21dに吸湿材22を詰め込んだ状態を示し、図3の(E)は、収容部21の底面21b上に板状の吸湿材22を載置した状態を示し、図3の(F)は、図3の(C)に示す状態で、穴部21dの底面21bに開口部21eが形成された状態(風抜け状態)を示している。 FIG. 3A shows a state in which the moisture absorbing material 22 is dispersed on the bottom surface 21b of the accommodating portion 21, and FIG. 3B shows a resin or metal layer provided on the bottom surface 21b of the accommodating portion 21. A state in which the moisture absorbing material 22 is packed in the cylindrical hole portion 21d formed in the 21c is shown, and FIG. 3C is formed in a resin or metal layer 21c provided on the bottom surface 21b of the accommodating portion 21. A state in which the moisture absorbing material 22 is packed in a cylindrical hole 21d shallower than the hole 21d in FIG. 3B, and FIG. 3D shows a resin formed on the bottom surface 21b of the accommodating portion 21. Alternatively, a state in which the moisture absorbing material 22 is packed in the inverted conical hole portion 21d formed in the metal layer 21c is shown, and FIG. 3 (E) shows a plate-shaped moisture absorbing material 22 placed on the bottom surface 21b of the accommodating portion 21. The placed state is shown, and FIG. 3F shows a state in which the opening 21e is formed on the bottom surface 21b of the hole portion 21d in the state shown in FIG. 3C (wind vent state).
 図4に示すグラフから、図3の(D)に示す状態の吸湿材22の吸湿率が他の状態の吸湿材22の吸湿率よりも高いことが分かった。また、図3の(A)に示す状態の吸湿材22,図3の(E)に示す状態の吸湿材22の吸湿率が低いことが分かった。なお、図3の(B)、(C)、(F)に示す状態の吸湿材22の吸湿率は、図3の(A)、(E)に示す状態の吸湿材22の吸湿率よりも高いが、図3の(D)に示す状態の吸湿材22の吸湿率よりも低くなった。 From the graph shown in FIG. 4, it was found that the hygroscopicity of the hygroscopic material 22 in the state shown in FIG. 3D is higher than the hygroscopicity of the hygroscopic material 22 in the other state. Further, it was found that the hygroscopicity of the hygroscopic material 22 in the state shown in FIG. 3 (A) and the hygroscopic material 22 in the state shown in FIG. 3 (E) is low. The hygroscopicity of the hygroscopic material 22 in the states shown in FIGS. 3 (B), (C), and (F) is higher than the hygroscopicity of the hygroscopic material 22 in the states shown in FIGS. Although it was high, it was lower than the hygroscopicity of the hygroscopic material 22 in the state shown in FIG. 3D.
 以上のことから、吸湿材22の吸湿率を高める方法としては、吸湿材22を穴部21dに詰め込み、風を吹き付けるようにすることが好ましいことが分かる。具体的には、収容部21が空気の導入孔を開口部とする凹状であることが好ましい。つまり、穴部21dでは、吹き付けられる風による圧力が当該穴部21d内で高まるようになるため、吸湿材22の吸湿率が高まる。従って、図3の(B)、(C)、(D)、(F)のように、穴部21d内に吸湿材22が詰め込まれている場合、当該穴部21d内では吹き付けられた風により圧力が高まるため、吸湿率が高くなる。なかでも、図3の(D)に示すように、収容部21の底面21b上に形成された樹脂又は金属層21cの穴部21dが逆円錐状であることが好ましい。一方、図3の(A)、(E)のように、穴部21dを設けずに、吸湿材22を底面21bに載置しただけの場合、吹き付けられた風は底面21bに沿って外側に逃げるため、当該吸湿材22の付近で圧力は高まらず、吸湿材22の吸湿率も高くならない。 From the above, it can be seen that as a method of increasing the hygroscopicity of the hygroscopic material 22, it is preferable to stuff the hygroscopic material 22 into the hole 21d and blow the wind. Specifically, it is preferable that the accommodating portion 21 has a concave shape having an air introduction hole as an opening. That is, in the hole portion 21d, the pressure due to the blown wind increases in the hole portion 21d, so that the hygroscopicity of the hygroscopic material 22 increases. Therefore, when the hygroscopic material 22 is packed in the hole 21d as shown in FIGS. 3B, C, D, and F, the wind blown in the hole 21d causes the hygroscopic material 22 to be packed in the hole 21d. As the pressure increases, the hygroscopicity increases. Among them, as shown in FIG. 3D, it is preferable that the hole portion 21d of the resin or metal layer 21c formed on the bottom surface 21b of the accommodating portion 21 has an inverted conical shape. On the other hand, as shown in FIGS. 3A and 3E, when the hygroscopic material 22 is simply placed on the bottom surface 21b without providing the hole 21d, the blown wind is blown outward along the bottom surface 21b. In order to escape, the pressure does not increase in the vicinity of the moisture absorbing material 22, and the moisture absorption rate of the moisture absorbing material 22 does not increase either.
 なお、図3の(A)に示すように、収容部21の底面21b上に吸湿材22を分散させた状態であっても、所定の範囲毎に壁によって囲むことで、吸湿材22の吸湿率を高めることが可能となる。この点について、以下の変形例において説明する。 As shown in FIG. 3A, even when the hygroscopic material 22 is dispersed on the bottom surface 21b of the accommodating portion 21, the hygroscopic material 22 is surrounded by a wall at predetermined ranges to absorb moisture. It is possible to increase the rate. This point will be described in the following modification.
 (変形例1)
 図5は、図3の(A)に示すように、底面21b上に吸湿材22を分散させた状態で、所定個数ずつの吸湿材22を壁21fによって囲んだ状態を示し、(a)は平面図、(b)は(a)のXX線矢視断面図を示す。
(Modification example 1)
FIG. 5 shows a state in which a predetermined number of moisture absorbing materials 22 are surrounded by a wall 21f in a state where the moisture absorbing materials 22 are dispersed on the bottom surface 21b, as shown in FIG. A plan view and (b) show a cross-sectional view taken along the line XX of (a).
 図5の(b)に示すように、各壁21fによって囲まれた部分では、吹き付ける風によって内部の圧力が高まる構成となっている。つまり、壁21fの風上側よりも風下側の圧力が高まる構成となっている。従って、各壁21fによって囲まれた部分に収容されている吸湿材22の吸湿率を高めることができる。つまり、各壁21fで囲まれた範囲において局所的に圧力が高まると湿度及び水蒸気圧も上がるため、吸湿材22の吸湿率を高めることができる。なお、この壁は送風側から見て方形でなければならないことはなく、三角形、多角形、ハニカム形状、円形等であってもよく、効率よく吸湿させることのできるとともに最も多くの吸湿材を収容する最適な形を採用する。 As shown in FIG. 5 (b), in the portion surrounded by each wall 21f, the internal pressure is increased by the blowing wind. That is, the pressure on the leeward side of the wall 21f is higher than that on the leeward side. Therefore, the hygroscopicity of the hygroscopic material 22 housed in the portion surrounded by each wall 21f can be increased. That is, when the pressure is locally increased in the range surrounded by each wall 21f, the humidity and the vapor pressure also increase, so that the hygroscopicity of the hygroscopic material 22 can be increased. It should be noted that this wall does not have to be square when viewed from the ventilation side, and may be triangular, polygonal, honeycomb-shaped, circular, etc., and can efficiently absorb moisture and accommodates the largest amount of moisture absorbing material. Adopt the optimal shape to do.
 なお、上記の例では、吸湿材22として粒子状の吸湿材を想定しているため、所定個数ずつの吸湿材22を壁21fによって囲んで区分けした構造となるが、吸湿材22が板状の吸湿材の場合であれば、仕切り(壁21fと同じ)によって所定面積毎に区分けした構造となる。つまり、吸湿材22を所定量(所定数、所定面積等)ずつを壁21fによって区分けした構造とすることで、区分けした領域内において、局所的に圧力が高まり、湿度及び水蒸気圧が上がり、吸湿材22の吸湿率を高めることができる。 In the above example, since a particle-shaped moisture-absorbing material is assumed as the moisture-absorbing material 22, a predetermined number of moisture-absorbing materials 22 are surrounded by a wall 21f and divided, but the moisture-absorbing material 22 is plate-shaped. In the case of a moisture absorbing material, the structure is divided into predetermined areas by a partition (same as the wall 21f). That is, by adopting a structure in which a predetermined amount (predetermined number, predetermined area, etc.) of the hygroscopic material 22 is divided by the wall 21f, the pressure is locally increased in the divided region, the humidity and the vapor pressure are increased, and the hygroscopic material is absorbed. The moisture absorption rate of the material 22 can be increased.
 また、吸湿材22に対する加圧・陽圧の効果をさらに大きくするための例を、以下の変形例2~4に示す。 Further, examples for further increasing the effect of pressurization / positive pressure on the moisture absorbing material 22 are shown in the following modified examples 2 to 4.
 (変形例2)
 図6は、図1に示す除湿装置1Aの変形例を示す除湿装置1Bの概略構成図である。
(Modification 2)
FIG. 6 is a schematic configuration diagram of the dehumidifying device 1B showing a modified example of the dehumidifying device 1A shown in FIG.
 除湿装置1Bでは、図6に示すように、吸湿ユニット20Aを大きくし、この吸気ユニット20Aの大きさに合わせて吸気絞り12の排気側の開口も大きくしている。これにより、送風ファン13からの風は、図1に示す場合に比べて、吸湿ユニット20Aの広い範囲に吹き付けられることになる。従って、吸湿ユニット20A内の吸湿材22の殆ど全てに対する加圧・陽圧の効果を大きくすることができる。 In the dehumidifying device 1B, as shown in FIG. 6, the moisture absorbing unit 20A is enlarged, and the opening on the exhaust side of the intake throttle 12 is also enlarged according to the size of the intake unit 20A. As a result, the wind from the blower fan 13 is blown to a wider range of the moisture absorbing unit 20A as compared with the case shown in FIG. Therefore, the effect of pressurization / positive pressure on almost all of the hygroscopic material 22 in the hygroscopic unit 20A can be increased.
 (変形例3)
 図7は、図1に示す除湿装置1Aの変形例を示す除湿装置1Cの概略構成図である。
(Modification example 3)
FIG. 7 is a schematic configuration diagram of the dehumidifying device 1C showing a modified example of the dehumidifying device 1A shown in FIG.
 除湿装置1Cでは、図7に示すように、図6に示す吸湿装置1Bと同様に、吸気絞り12の排気側の開口全体の大きさが、吸湿ユニット20Aの平面の大きさとほぼ同じ大きさになっているが、内部で分割されている。これにより、吸湿ユニット20Aにおいて部分的に、加圧・陽圧の効果が分割しない場合より大きくなり、吸湿ユニットの回転や横移動によって加圧範囲を広げることができる。 In the dehumidifying device 1C, as shown in FIG. 7, the size of the entire opening on the exhaust side of the intake throttle 12 is substantially the same as the size of the flat surface of the moisture absorbing unit 20A, similarly to the moisture absorbing device 1B shown in FIG. However, it is divided internally. As a result, in the moisture absorbing unit 20A, the effect of pressurization / positive pressure becomes larger than in the case where the effect of pressurization / positive pressure is not divided, and the pressurization range can be expanded by the rotation or lateral movement of the moisture absorption unit.
 (変形例4)
 図8は、図1に示す除湿装置1Aの変形例を示す除湿装置1Dの概略構成図である。
(Modification example 4)
FIG. 8 is a schematic configuration diagram of the dehumidifying device 1D showing a modified example of the dehumidifying device 1A shown in FIG.
 除湿装置1Dでは、図8に示すように、図7に示す吸湿装置1Cと同様に、吸気絞り12の排気側の開口が内部で分割されている。吸湿装置1Cの場合と異なり、吸湿ユニット20Bが、複数のユニット20B1に分割されている。そして、ユニット20B1毎に、吸気絞り12の排気側の開口が対応するようになっている。これにより、ユニット20B1において、加圧・陽圧の効果が大きくなる。 In the dehumidifying device 1D, as shown in FIG. 8, the opening on the exhaust side of the intake throttle 12 is internally divided as in the moisture absorbing device 1C shown in FIG. Unlike the case of the moisture absorbing device 1C, the moisture absorbing unit 20B is divided into a plurality of units 20B1. The opening on the exhaust side of the intake throttle 12 corresponds to each unit 20B1. As a result, the effect of pressurization / positive pressure is increased in the unit 20B1.
 吸湿ユニット20Bとしては、例えば、図5に示すように、吸湿材22の収容部21において壁21fで囲まれた範囲を複数設けた吸湿ユニットを用いるのが好ましい。これにより、壁21fで囲まれた範囲に存在する吸湿材22のみに風が当たるようになるため、壁21fで囲まれた範囲の吸湿材22に対する加圧・陽圧の効果をより大きくすることができる。 As the hygroscopic unit 20B, for example, as shown in FIG. 5, it is preferable to use a hygroscopic unit in which a plurality of areas surrounded by the wall 21f are provided in the accommodating portion 21 of the hygroscopic material 22. As a result, the wind hits only the moisture absorbing material 22 existing in the area surrounded by the wall 21f, so that the effect of pressurization / positive pressure on the moisture absorbing material 22 in the area surrounded by the wall 21f is further increased. Can be done.
 これらの吸湿ユニットは、風が当たる面の側に図示しない外壁を設け、風の滞留と共に加圧を促す構造であることがより好ましい。 It is more preferable that these moisture absorbing units have a structure in which an outer wall (not shown) is provided on the side exposed to the wind to promote pressurization as the wind stays.
 本実施形態1では、収容部21を除湿装置1A内に固定し、送風ファン13によって吸気口3から取り込んだ風を、当該収容部21に収容された吸湿材22に開口部21a側から吹き付ける構造の吸湿ユニット20Aの説明を行った。以下の実施形態では、収容部21を除湿装置内で回転自在に設けて、収容部21を回転させることで、当該収容部21の開口部21aから風を取り込み、当該収容部21に収容された吸湿材22に風を吹き付ける構造の吸湿ユニット20Bについて説明する。 In the first embodiment, the accommodating portion 21 is fixed in the dehumidifying device 1A, and the air taken in from the intake port 3 by the blower fan 13 is blown to the hygroscopic material 22 accommodated in the accommodating portion 21 from the opening 21a side. The moisture absorption unit 20A of the above was described. In the following embodiment, the accommodating portion 21 is rotatably provided in the dehumidifying device, and by rotating the accommodating portion 21, wind is taken in from the opening 21a of the accommodating portion 21 and is accommodated in the accommodating portion 21. The moisture absorbing unit 20B having a structure in which wind is blown onto the moisture absorbing material 22 will be described.
 〔実施形態2〕
 本発明の他の実施形態について、以下に説明する。なお、説明の便宜上、上記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。
[Embodiment 2]
Other embodiments of the present invention will be described below. For convenience of explanation, the same reference numerals will be added to the members having the same functions as the members described in the above embodiment, and the description will not be repeated.
 (除湿装置の構成)
 本実施形態に係る除湿装置の構成について、図9に基づいて説明する。図9は、除湿装置1Eに搭載される吸湿ユニット20Bの概略構成図である。
(Configuration of dehumidifier)
The configuration of the dehumidifying device according to the present embodiment will be described with reference to FIG. FIG. 9 is a schematic configuration diagram of the moisture absorbing unit 20B mounted on the dehumidifying device 1E.
 吸湿ユニット20Bは、4つの収容部21を備え、それぞれを等間隔(90°)で回転軸30に固定した構造となっている。つまり、回転軸30を回転させると、4つの収容部21が回転する構造となっている。なお、本実施形態では、図9に示すように、収容部21は、時計回りに回転する例について説明する。このため、回転方向は、時計回りに回転する方向とする。しかしながら、回転方向については時計回りに限定されるものではなく、反時計回りに回転する方向であってもよい。 The moisture absorbing unit 20B has four accommodating portions 21, each of which is fixed to the rotating shaft 30 at equal intervals (90 °). That is, when the rotating shaft 30 is rotated, the four accommodating portions 21 rotate. In this embodiment, as shown in FIG. 9, an example in which the accommodating portion 21 rotates clockwise will be described. Therefore, the direction of rotation is the direction of rotation clockwise. However, the direction of rotation is not limited to clockwise, and may be a direction of rotation counterclockwise.
 4つの収容部21は、それぞれ回転方向に開口部21aが来るように設けられている。これにより、収容部21が時計回りに回転することで、開口部21aから風を取り込むことになり、当該収容部21に収容された吸湿材22に風を吹き付けることができる。 Each of the four accommodating portions 21 is provided so that the opening 21a comes in the rotation direction. As a result, the accommodating portion 21 rotates clockwise to take in the wind from the opening 21a, and the air absorbing material 22 accommodated in the accommodating portion 21 can be blown with the wind.
 このように、収容部21を回転させることで、当該収容部21内の圧力を高めることが可能となり、当該収容部21内の湿度若しくは水蒸気圧が上がり、吸湿材22の吸湿率を高めることができる。この開口部21aには、図示しないが、図6などに示す吸気絞り12を設けて効果を高めることができる。 By rotating the accommodating portion 21 in this way, the pressure inside the accommodating portion 21 can be increased, the humidity or vapor pressure inside the accommodating portion 21 can be increased, and the hygroscopicity of the hygroscopic material 22 can be increased. it can. Although not shown, the opening 21a may be provided with an intake throttle 12 shown in FIG. 6 or the like to enhance the effect.
 なお、吸湿材22は、前記実施形態1と同様に、収容部21の裏面から加熱することで水を放出することができる。 The moisture absorbing material 22 can release water by heating from the back surface of the accommodating portion 21 as in the first embodiment.
 なお、図9に示す例では、4つの収容部21を備えた例を示しているが、収容部21の数は4つに限定されるものではなく、2つ以上であればよく、除湿装置の周辺構造から許容される範囲内であれば、いくつでもよい。 In the example shown in FIG. 9, an example including four accommodating portions 21 is shown, but the number of accommodating portions 21 is not limited to four, and may be two or more, and is a dehumidifying device. Any number may be used as long as it is within the permissible range from the peripheral structure of.
 (効果)
 壁で囲まれて閉鎖空間となっている収容部21を回転させることで、当該収容部21内の湿度若しくは水蒸気圧が上がり、収容された吸湿材22における吸湿速度を向上させることができる。
(effect)
By rotating the accommodating portion 21 which is surrounded by a wall and is a closed space, the humidity or water vapor pressure in the accommodating portion 21 rises, and the moisture absorption rate of the accommodating hygroscopic material 22 can be improved.
 さらに、上記構成の吸湿ユニット20Bを除湿装置に備えれば、収容部21が回転するための空間、収容部21を回転させるための駆動機構を必要とするものの、前記実施形態1の除湿装置1Aの場合と異なり、外部の空気を取り込むための送風ファン13を設ける必要がない。 Further, if the dehumidifying device 20B having the above configuration is provided, a space for rotating the accommodating portion 21 and a driving mechanism for rotating the accommodating portion 21 are required, but the dehumidifying device 1A of the first embodiment is required. Unlike the case of the above case, it is not necessary to provide the blower fan 13 for taking in the outside air.
 〔実施形態3〕
 本発明の他の実施形態について、以下に説明する。なお、説明の便宜上、上記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。
[Embodiment 3]
Other embodiments of the present invention will be described below. For convenience of explanation, the same reference numerals will be added to the members having the same functions as the members described in the above embodiment, and the description will not be repeated.
 (除湿装置の構成)
 本実施形態に係る除湿装置の構成について、図10に基づいて説明する。図10は、除湿装置1Fにおける吸湿時の構成を示す側面方向から見た縦断面図である。
(Configuration of dehumidifier)
The configuration of the dehumidifying device according to the present embodiment will be described with reference to FIG. FIG. 10 is a vertical sectional view showing the configuration of the dehumidifying device 1F at the time of moisture absorption when viewed from the side surface.
 除湿装置1Fは、図10に示すように、基本的な構造は、前記実施形態1で説明した除湿装置1Aと同じであり、異なるのが、送風ファン13の位置である。除湿装置1Fでは、除湿装置1Aのように、吸気絞り12に近接した位置ではなく、排気口4に近接した位置に送風ファン3が配置されている。このように、送風ファン13を排気口4に近接した位置に配置し場合であっても、吸気口3から吸気され吸湿ユニット20Aの吸湿材22の全面に当てることは可能である。この場合、前記実施形態1の除湿装置1Aのように、吸湿材22に対して加圧・陽圧を高めることはできないものの、湿潤空気は感温点以下の吸湿材22に触れるので除湿される。 As shown in FIG. 10, the dehumidifying device 1F has the same basic structure as the dehumidifying device 1A described in the first embodiment, and the difference is the position of the blower fan 13. In the dehumidifying device 1F, the blower fan 3 is arranged not at a position close to the intake throttle 12 but at a position close to the exhaust port 4 as in the dehumidifying device 1A. In this way, even when the blower fan 13 is arranged at a position close to the exhaust port 4, it is possible to take in air from the intake port 3 and apply it to the entire surface of the moisture absorbing material 22 of the moisture absorbing unit 20A. In this case, unlike the dehumidifying device 1A of the first embodiment, the pressure and positive pressure cannot be increased with respect to the moisture absorbing material 22, but the moist air comes into contact with the moisture absorbing material 22 below the temperature sensitive point and is therefore dehumidified. ..
 なお、前記実施形態1~3では、収着性を有する吸湿材として、外部刺激に応答して水との親和性が可逆的に変化する刺激応答性高分子と、親水性高分子とを含む高分子ゲルの乾燥体を含有する吸湿材を用いた場合について説明したが、本発明は、これに限定されるものではなく、加圧が大きくなることで吸湿の速度が向上する吸湿材であれば、どのような吸湿材であってもよい。さらに、本発明は、収着性を有する吸湿材として、他の高分子(刺激応答のないものも)系吸湿材や塩類、ゼオライト等にも応用できる。
 (まとめ)
 本発明の態様1に係る除湿装置は、収着性を有する吸湿材を収容すると共に、収容した上記吸湿材に外部から空気を導入するための導入孔が形成された吸湿材収容部、を備え、上記吸湿材収容部は、当該吸湿材収容部内の圧力が、上記導入孔から空気が導入されることにより、当該導入孔手前の圧力よりも高くなるように形成されている。
 本発明の態様2に係る除湿装置は、上記態様1において、上記吸湿材収容部に収容された上記吸湿材の手前に送風ファンが設けられていてもよい。
 本発明の態様3に係る除湿装置は、上記態様1または2において、上記吸湿材収容部における上記導入孔の対向面は、上記吸湿材表面に風が当たった後にそれまでと同じ方向に風が通り抜けない部材で形成されており、且つ、風が当該吸湿材収容部内の吸湿材に当たった後、当該吸湿材に当たるまでの方向と異なる方向に流れるように形成されていてもよい。
 本発明の態様4に係る除湿装置は、上記態様1~3の何れか1態様において、上記吸湿材収容部における上記導入孔の側面は、上記吸湿材表面に当たる風を滞留させることを目的に、当該吸湿材表面よりも高くなる壁を設けていてもよい。
 本発明の態様5に係る除湿装置は、上記態様1~4の何れか1態様において、上記吸湿材収容部は、上記導入孔を開口部とする凹状であってもよい。
 本発明の態様6に係る除湿装置は、上記態様1~4の何れか1態様において、上記吸湿材収容部は、上記導入孔を開口部とする逆円錐状であってもよい。
 本発明の態様7に係る除湿装置は、上記態様1~6の何れか1態様において、上記吸湿材収容部は、収容している吸湿材を所定量ずつ囲む壁が形成されていてもよい。
 本発明の態様8に係る除湿方法は、吸湿材近傍の圧力を大きくすることで吸湿速度を向上させる吸湿装置を用いた除湿方法であって、空気を導入する導入孔を有し、且つ、導入孔に対向する面が風を通さない部材で構成された吸湿材収容部に上記吸湿材を収容した状態で、上記導入孔から空気を導入することを特徴としている。特に刺激応答性高分子と親水性高分子よりなる相互侵入高分子ネットワーク(IPN)やセミIPN、さらにはこれらの共重合体より形成される刺激応答性高分子ゲルを用いた吸湿・放水材において空気圧を部分的に高めるこの吸湿促進技術は顕著な有意性を有する。
In the first to third embodiments, the hygroscopic material includes a stimulus-responsive polymer whose affinity with water changes reversibly in response to an external stimulus and a hydrophilic polymer. The case where a hygroscopic material containing a dried polymer gel is used has been described, but the present invention is not limited to this, and any hygroscopic material in which the rate of moisture absorption is improved by increasing the pressurization. For example, any hygroscopic material may be used. Further, the present invention can be applied to other polymer (even those having no stimulus response) -based hygroscopic material, salts, zeolite and the like as a hygroscopic hygroscopic material.
(Summary)
The dehumidifying device according to the first aspect of the present invention includes a moisture-absorbing material accommodating portion that accommodates a hygroscopic moisture-absorbing material and has an introduction hole for introducing air from the outside into the contained moisture-absorbing material. The moisture-absorbing material accommodating portion is formed so that the pressure inside the moisture-absorbing material accommodating portion becomes higher than the pressure in front of the introduction hole due to the introduction of air from the introduction hole.
In the dehumidifying device according to the second aspect of the present invention, in the first aspect, a blower fan may be provided in front of the moisture absorbing material housed in the moisture absorbing material accommodating portion.
In the dehumidifying device according to the third aspect of the present invention, in the first or second aspect, the facing surface of the introduction hole in the moisture absorbing material accommodating portion is blown in the same direction as before after the wind hits the surface of the moisture absorbing material. It may be formed of a member that does not pass through, and may be formed so as to flow in a direction different from the direction in which the wind hits the moisture-absorbing material in the moisture-absorbing material accommodating portion and then hits the moisture-absorbing material.
In the dehumidifying device according to the fourth aspect of the present invention, in any one of the first to third aspects, the side surface of the introduction hole in the moisture absorbing material accommodating portion is intended to retain the wind that hits the surface of the moisture absorbing material. A wall that is higher than the surface of the moisture absorbing material may be provided.
In any one of the above aspects 1 to 4, the dehumidifying device according to the fifth aspect of the present invention may have a concave shape with the introduction hole as an opening.
In any one of the above aspects 1 to 4, the dehumidifying device according to the sixth aspect of the present invention may have an inverted conical shape with the introduction hole as an opening.
In the dehumidifying device according to the seventh aspect of the present invention, in any one of the above aspects 1 to 6, the moisture absorbing material accommodating portion may be formed with a wall surrounding the accommodating moisture absorbing material by a predetermined amount.
The dehumidifying method according to the eighth aspect of the present invention is a dehumidifying method using a hygroscopic device that improves the hygroscopic rate by increasing the pressure in the vicinity of the hygroscopic material, and has an introduction hole for introducing air and is introduced. It is characterized in that air is introduced from the introduction hole in a state where the moisture absorbing material is housed in a moisture absorbing material accommodating portion whose surface facing the hole is made of a member that does not allow air to pass through. In particular, in interpenetrating polymer networks (IPNs) and semi-IPNs made of stimulus-responsive polymers and hydrophilic polymers, and in moisture-absorbing and water-discharging materials using stimulus-responsive polymer gels formed from these copolymers. This moisture absorption promoting technique that partially increases the air pressure has remarkable significance.
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。 The present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the claims, and the embodiments obtained by appropriately combining the technical means disclosed in the different embodiments. Is also included in the technical scope of the present invention. Furthermore, new technical features can be formed by combining the technical means disclosed in each embodiment.
1A、1B、1C、1D、1E、1F 除湿装置
2 筐体
3 吸気口
3a 格子
4 排気口
4a 格子
5 排水タンク収容部
6 排水タンク
6a 開口
10 空気流通路
11 空気流通壁
12 吸気絞り
13 送風ファン
14 水滴受け部
14a 開口
20A 吸湿ユニット
20B 吸湿ユニット
21 収容部(吸湿材収容部)
21a 開口部
21b 底面
21c 樹脂又は金属層
21d 穴部
21e 開口部
21f 壁
22 吸湿材
23 ヒータ
30 回転軸
1A, 1B, 1C, 1D, 1E, 1F Dehumidifier 2 Housing 3 Intake port 3a Grid 4 Exhaust port 4a Grid 5 Drain tank housing 6 Drain tank 6a Opening 10 Air flow passage 11 Air flow wall 12 Intake throttle 13 Blower fan 14 Water drop receiving part 14a Opening 20A Moisture absorbing unit 20B Moisture absorbing unit 21 Accommodating part (moisture absorbing material accommodating part)
21a Opening 21b Bottom surface 21c Resin or metal layer 21d Hole 21e Opening 21f Wall 22 Moisture absorbing material 23 Heater 30 Rotating shaft

Claims (8)

  1.  収着性を有する吸湿材を収容すると共に、収容した上記吸湿材に外部から空気を導入するための導入孔が形成された吸湿材収容部、を備え、
     上記吸湿材収容部は、
     当該吸湿材収容部内の圧力が、上記導入孔から空気が導入されることにより、当該導入孔手前の圧力よりも高くなるように形成されていることを特徴とする除湿装置。
    A moisture-absorbing material accommodating portion, which accommodates a moisture-absorbing material having a cohesive property and has an introduction hole for introducing air from the outside into the accommodated moisture-absorbing material, is provided.
    The above-mentioned moisture absorbing material accommodating part
    A dehumidifying device characterized in that the pressure in the moisture absorbing material accommodating portion is formed to be higher than the pressure in front of the introduction hole by introducing air from the introduction hole.
  2.  上記吸湿材収容部に収容された上記吸湿材の手前に送風ファンが設けられていることを特徴とする請求項1に記載の除湿装置。 The dehumidifying device according to claim 1, wherein a blower fan is provided in front of the moisture absorbing material housed in the moisture absorbing material accommodating portion.
  3.  上記吸湿材収容部における上記導入孔の対向面は、上記吸湿材表面に風が当たった後にそれまでと同じ方向に風が通り抜けない部材で形成されており、且つ、風が当該吸湿材収容部内の吸湿材に当たった後、当該吸湿材に当たるまでの方向と異なる方向に流れるように形成されていることを特徴とする請求項1または2に記載の除湿装置。 The facing surface of the introduction hole in the moisture absorbing material accommodating portion is formed of a member that prevents the wind from passing through in the same direction as before after the wind hits the surface of the moisture absorbing material, and the wind is inside the moisture absorbing material accommodating portion. The dehumidifying device according to claim 1 or 2, wherein the dehumidifying device is formed so as to flow in a direction different from the direction from hitting the moisture absorbing material to hitting the moisture absorbing material.
  4.  上記吸湿材収容部における上記導入孔の側面は、上記吸湿材表面に当たる風を滞留させることを目的に、当該吸湿材表面よりも高くなる壁を設けていることを特徴とする請求項1~3の何れか1項に記載の除湿装置。 Claims 1 to 3 are characterized in that the side surface of the introduction hole in the moisture absorbing material accommodating portion is provided with a wall higher than the surface of the moisture absorbing material for the purpose of retaining the wind hitting the surface of the moisture absorbing material. The dehumidifying device according to any one of the above.
  5.  上記吸湿材収容部は、
     上記導入孔を開口部とする凹状であることを特徴とする請求項1~4の何れか1項に記載の除湿装置。
    The above-mentioned moisture absorbing material accommodating part
    The dehumidifying device according to any one of claims 1 to 4, wherein the dehumidifying device has a concave shape with the introduction hole as an opening.
  6.  上記吸湿材収容部は、
     上記導入孔を開口部とする逆円錐状であることを特徴とする請求項1~4の何れか1項に記載の除湿装置。
    The above-mentioned moisture absorbing material accommodating part
    The dehumidifying device according to any one of claims 1 to 4, wherein the dehumidifying device has an inverted conical shape with the introduction hole as an opening.
  7.  上記吸湿材収容部は、
     収容している吸湿材を所定量ずつ囲む壁が形成されていることを特徴とする請求項1~6のいずれか1項に記載の除湿装置。
    The above-mentioned moisture absorbing material accommodating part
    The dehumidifying device according to any one of claims 1 to 6, wherein a wall surrounding a predetermined amount of the contained moisture absorbing material is formed.
  8.  吸湿材近傍の圧力を大きくすることで吸湿速度を向上させる吸湿装置を用いた除湿方法であって、
     空気を導入する導入孔を有し、且つ、導入孔に対向する面が風を通さない部材で構成された吸湿材収容部に上記吸湿材を収容した状態で、上記導入孔から空気を導入することを特徴とする除湿方法。
    It is a dehumidification method using a hygroscopic device that improves the hygroscopic rate by increasing the pressure near the hygroscopic material.
    Air is introduced from the introduction hole in a state where the moisture absorbing material is accommodated in the moisture absorbing material accommodating portion which has an introduction hole for introducing air and whose surface facing the introduction hole is composed of a member which does not allow air to pass through. A dehumidifying method characterized by that.
PCT/JP2020/044408 2019-12-05 2020-11-30 Dehumidification device and dehumidification method WO2021112025A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021562629A JPWO2021112025A1 (en) 2019-12-05 2020-11-30

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-220469 2019-12-05
JP2019220469 2019-12-05

Publications (1)

Publication Number Publication Date
WO2021112025A1 true WO2021112025A1 (en) 2021-06-10

Family

ID=76221615

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/044408 WO2021112025A1 (en) 2019-12-05 2020-11-30 Dehumidification device and dehumidification method

Country Status (2)

Country Link
JP (1) JPWO2021112025A1 (en)
WO (1) WO2021112025A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50131063U (en) * 1974-04-12 1975-10-28
JP3004516U (en) * 1994-05-24 1994-11-22 株式会社白元 Dehumidifier
JPH1157385A (en) * 1997-08-19 1999-03-02 Japan Service:Kk Electric motor driven dehumidifying device
JPH11197438A (en) * 1998-01-09 1999-07-27 S T Chem Co Ltd Dehumidifier
JP2011069049A (en) * 2009-09-24 2011-04-07 Panasonic Electric Works Co Ltd Humidity control panel
JP2016077967A (en) * 2014-10-16 2016-05-16 シャープ株式会社 Hygroscopic material, dehumidifier, and dehumidification method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50131063U (en) * 1974-04-12 1975-10-28
JP3004516U (en) * 1994-05-24 1994-11-22 株式会社白元 Dehumidifier
JPH1157385A (en) * 1997-08-19 1999-03-02 Japan Service:Kk Electric motor driven dehumidifying device
JPH11197438A (en) * 1998-01-09 1999-07-27 S T Chem Co Ltd Dehumidifier
JP2011069049A (en) * 2009-09-24 2011-04-07 Panasonic Electric Works Co Ltd Humidity control panel
JP2016077967A (en) * 2014-10-16 2016-05-16 シャープ株式会社 Hygroscopic material, dehumidifier, and dehumidification method

Also Published As

Publication number Publication date
JPWO2021112025A1 (en) 2021-06-10

Similar Documents

Publication Publication Date Title
JP6349556B2 (en) Hygroscopic material and dehumidifier using the same
JP6528097B2 (en) Dehumidifying device and dehumidifying method
CN106687199B (en) Moisture-absorbing material, dehumidifying apparatus and dehumidifying method
US20160146479A1 (en) Dehumidification device and dehumidification system
WO2007026023A1 (en) Vapour extraction device
JP2012135759A (en) Hygroscopic agent, method for production thereof, and apparatus using the hygroscopic agent
JP2004069257A (en) Humidity conditioning element and humidity conditioning device
JP6528094B2 (en) Water accumulation device and water accumulation method
WO2008015981A1 (en) Air-conditioning apparatus
JP6595199B2 (en) Humidity control device
WO2017002387A1 (en) Humidifying device, dehumidifying device, and humidifying method
WO2021112025A1 (en) Dehumidification device and dehumidification method
JP7003141B2 (en) Humidity control device
JP3596547B2 (en) Humidity control device
US11819823B2 (en) Super-adsorbing porous thermo-responsive desiccants
WO2005095880A1 (en) Heat exchanger
WO2017160151A1 (en) Dehumidifier using a stimulus responsive polymer
WO2021230052A1 (en) Dryer, drying method, and dehumidifying filter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20896174

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021562629

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20896174

Country of ref document: EP

Kind code of ref document: A1