WO2017002264A1 - Solid oxide fuel cell and method for manufacturing same - Google Patents

Solid oxide fuel cell and method for manufacturing same Download PDF

Info

Publication number
WO2017002264A1
WO2017002264A1 PCT/JP2015/069152 JP2015069152W WO2017002264A1 WO 2017002264 A1 WO2017002264 A1 WO 2017002264A1 JP 2015069152 W JP2015069152 W JP 2015069152W WO 2017002264 A1 WO2017002264 A1 WO 2017002264A1
Authority
WO
WIPO (PCT)
Prior art keywords
current collector
air electrode
fuel cell
electrode
solid oxide
Prior art date
Application number
PCT/JP2015/069152
Other languages
French (fr)
Japanese (ja)
Inventor
矢島 健太郎
隆夫 和泉
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to PCT/JP2015/069152 priority Critical patent/WO2017002264A1/en
Publication of WO2017002264A1 publication Critical patent/WO2017002264A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a solid oxide fuel cell and a method for manufacturing the same. More specifically, the present invention relates to a solid oxide fuel cell with reduced current collecting resistance between an air electrode and a current collector and a method for producing the solid oxide fuel cell.
  • a fuel cell is a device that converts chemical energy into electrical energy through an electrochemical reaction.
  • SOFC solid oxide fuel cell
  • a solid oxide fuel cell has a three-layer structure in which a fuel electrode, a solid electrolyte layer, and an air electrode are stacked, and this is used as a power generation unit of the fuel cell.
  • a fuel gas such as hydrogen or hydrocarbon is supplied to the fuel electrode, and an oxidant gas such as air is supplied to the air electrode to generate electricity.
  • current collectors are arranged on the air electrode and the fuel electrode, respectively.
  • a solid oxide fuel cell conventionally, a flat unit cell in which a fuel electrode and an air electrode are arranged so as to sandwich a solid electrolyte layer, and a separator are alternately stacked, and a separator and a fuel electrode
  • a flat-type solid electrolyte fuel cell having a heat-resistant wire mesh sandwiched therebetween is disclosed (for example, see Patent Document 1). It is also disclosed that the wire mesh is made of nickel. With such a configuration, the fuel electrode and the wire mesh are in close contact with each other, thereby increasing the current collection efficiency.
  • the present invention has been made in view of such problems of the conventional technology. And the objective of this invention is providing the manufacturing method of the solid oxide fuel cell which can reduce the current collection resistance between an electrode and a collector, and the said solid oxide fuel cell. is there.
  • a solid oxide fuel cell includes a current collector and an air electrode. Further, the fuel cell includes a current collector member that exists between the air electrode and the current collector and has a convex portion formed on the surface on the air electrode side. And between the air electrode and the convex part of the current collector part, a thin metal layer having a yield stress smaller than that of the current collector part and having a plastically deformed plastic region is provided.
  • the metal thin layer is plastically deformed by providing a metal having a low yield stress as a metal thin layer between the convex portion of the current collector and the air electrode. Therefore, even if the pressing load between the current collector part and the air electrode is not excessively increased, the contact rate between them is improved, so that the current collecting resistance can be reduced.
  • FIG. 1 is a perspective view showing an exploded state of a solid oxide fuel cell according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram showing a cross section of the air electrode current collector, the current collector part, the metal thin layer, and the air electrode in the solid oxide fuel cell shown in FIG.
  • FIG. 3 shows the effect of reducing current collection resistance by a structure having a convex portion on the surface.
  • (A) shows a method for measuring electrical resistance between hastelloy rods
  • (b) shows a rod in the case where the hastelloy rods are brought into direct contact with each other and a platinum mesh is interposed between the rods. It is a graph which shows the relationship between the surface pressure in between and current collection resistance.
  • FIG. 1 is a perspective view showing an exploded state of a solid oxide fuel cell according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram showing a cross section of the air electrode current collector, the current collector part, the metal thin layer, and the air electrode in the
  • FIG. 4A is a schematic diagram showing a state of deformation of the structure at the interface between the rod and the structure when a pressing load is applied to the nickel-based alloy structure.
  • FIG. 4B is a schematic view showing a state of deformation of the structure at the interface between the rod and the structure when a pressing load is applied to the platinum structure.
  • FIG. 5 is a graph showing the relationship between the pressing load on the mesh and the contact area between the rod and the mesh in a mesh made of platinum and a mesh made of a nickel-based alloy.
  • FIG. 6 is a graph showing the relationship between the total contact area between the rod and the mesh in the mesh made of platinum and the mesh made of nickel-based alloy and the area of the contact surface of the plastic region in the mesh.
  • FIG. 7 is a schematic cross-sectional view showing a state of deformation of the metal thin layer and the current collector part at the interface between the electrode and the current collector part when a pressing load is applied to the current collector part and the metal thin layer according to the present embodiment.
  • FIG. FIG. 8 is a schematic cross-sectional view showing an arrangement example of the metal thin layer with respect to the current collector portion.
  • FIG. 9 is a schematic diagram illustrating an example of a cross-sectional shape of the current collector portion.
  • FIG. 10 is a schematic diagram for explaining a manufacturing process of the solid oxide fuel cell of Example 1.
  • FIG. 11 is a schematic diagram for explaining a production process of the solid oxide fuel cell of Example 2.
  • FIG. 12 is a schematic diagram for explaining a manufacturing process of the solid oxide fuel cell of Example 3.
  • FIG. 13 is a schematic diagram for explaining a method for evaluating the solid oxide fuel cells of Example 1 and Comparative Example.
  • FIG. 14 is a graph showing measurement results of current collection resistance in the solid oxide fuel cells of Example
  • the solid oxide fuel cell 1 As shown in FIG. 1, the solid oxide fuel cell 1 according to this embodiment includes a single electrode including an air electrode 11 and a fuel electrode 12, and a solid electrolyte layer 13 sandwiched between the air electrode 11 and the fuel electrode 12. It has a cell 10. The single cell 10 is sandwiched between the air electrode current collector 14 and the fuel electrode current collector 15.
  • the air electrode current collector 14 includes a plurality of oxidant gas channels 14a
  • the fuel electrode current collector 15 includes a plurality of fuel gas channels 15a.
  • the oxidant gas flow path 14a and the fuel gas flow path 15a are a large number of linear flow paths (parallel flow paths) arranged in parallel to each other.
  • the cross-sectional shapes of the flow paths (oxidant gas flow path 14a, fuel gas flow path 15a) provided in the fuel electrode current collector 15 and the air electrode current collector 14 are convex portions called ribs, and concave portions called channels. Consists of.
  • the rib of the air electrode current collector 14 is electrically connected to the air electrode 11, whereby electrons are conducted between the air electrode current collector 14 and the air electrode 11. Further, when the rib of the fuel electrode current collector 15 is electrically connected to the fuel electrode 12, electrons are conducted between the fuel electrode current collector 15 and the fuel electrode 12.
  • the solid oxide fuel cell 1 includes a current collector 20 between the air electrode 11 and the air electrode current collector 14 as shown in FIGS. 1 and 2.
  • the current collector member 20 is composed of a structure in which convex portions 23 are formed on a surface such as a metal mesh. By providing such a current collector member 20, it is possible to suppress the current collection resistance between the air electrode 11 and the air electrode current collector 14.
  • a pressing load is usually applied to a contact portion between the current collector (the air electrode current collector 14 and the fuel electrode current collector 15) and the air electrode 11 and the fuel electrode 12 in order to ensure electrical connection. Is added. Further, it is generally known that increasing the pressing load increases the contact interface between the current collector and the electrode and reduces the current collection resistance (ASR). However, in order to increase the pressing load of the current collector and the electrode, it is necessary to employ a large-diameter bolt for increasing the surface pressure during assembly. Therefore, the weight of the fuel cell stack increases due to the increase in the weight of the bolt, and the output per unit volume decreases due to the increase in the volume of the bolt. Therefore, it is necessary to reduce the current collection resistance between the current collector and the electrode without increasing the pressing load on the current collector and the electrode.
  • FIG. 3 shows the effect of reducing current collection resistance by a structure having a convex portion on the surface.
  • FIG. 3A the current and voltage between the rods when the surface pressure between the rods is increased by using a rod made of Hastelloy (registered trademark) which is a nickel-based alloy. Measured and the change in current collecting resistance was measured. At this time, the change in current collecting resistance was measured with and without a platinum mesh between the rods.
  • Hastelloy registered trademark
  • 3B shows the relationship between the surface pressure between the rods and the current collecting resistance when the Hastelloy rods are in direct contact with each other and a platinum mesh is interposed between the rods. As shown in FIG.3 (b), it turns out that current collection resistance falls as the surface pressure between rods increases. And when a platinum mesh is interposed, it turns out that current collection resistance falls compared with the case where a platinum mesh is not interposed.
  • the effect of reducing the current collecting resistance between the rods varies greatly depending on the material of the structure having the convex portions on the surface.
  • such an effect of reducing the current collecting resistance is caused by a contact surface in the plastic region being formed on the convex portion of the structure at the contact surface between the rod and the structure provided with the convex portion on the surface.
  • Hastelloy which is a nickel-based alloy
  • has a high yield stress which is a stress in the vicinity of transition from elastic deformation to plastic deformation. Therefore, when a structure (mesh) made of Hastelloy is used, even if the pressing load on the structure is increased, as shown in FIG. 4A, at the contact interface between the rod and the convex portion 23 of the structure.
  • a large number of elastic contact surfaces 21 formed by elastic deformation of the convex portions 23 of the structure are generated.
  • a plastic contact surface 22 formed by plastic deformation of the convex portion 23 of the structure is generated, but even in that case, the elastic contact surface 21 is dominant.
  • platinum has a low yield stress. Therefore, in the case of using a structure (mesh) made of platinum, by increasing the pressing load on the structure, as shown in FIG. 4B, the structure is formed at the contact interface between the rod and the convex portion 23 of the structure. Many contact surfaces 22 in the plastic region formed by plastic deformation of the convex portions 23 of the body are generated. Thus, when the yield stress of the material which comprises a structure differs, even if the load concerning a structure is the same, the area of the plastic zone produced
  • FIG. 5 shows the relationship between the pressing load on the mesh and the contact area between the rod and the mesh in the mesh made of platinum and the mesh made of nickel-based alloy (Hastelloy).
  • symbol A relates to all contact surfaces of the platinum mesh
  • symbol B relates to the contact surface of the plastic region of the platinum mesh
  • symbol C relates to all the contact surfaces of the nickel base alloy mesh
  • symbol D denotes the nickel base alloy. It relates to the contact surface of the plastic region of the mesh.
  • FIG. 6 shows the relationship between the total contact area between the rod and the mesh in the mesh made of platinum and the mesh made of nickel-based alloy (Hastelloy) and the area of the contact surface of the plastic region in the mesh.
  • symbol E relates to a platinum mesh
  • symbol F relates to a nickel-based alloy mesh.
  • the solid oxide fuel cell 1 of the present embodiment is an application of the effect that the current collection resistance is reduced without increasing the pressing load by increasing the contact surface in such a plastic region.
  • current collection resistance reduction effect in a plastic region is referred to as “current collection resistance reduction effect in a plastic region”.
  • Table 1 shows Young's modulus and yield stress of platinum, nickel, nickel-based alloy (Hastelloy) and ferritic stainless steel (Crofer22APU).
  • platinum or nickel which has a low yield stress
  • the current collection resistance between the current collector and the electrode can be reduced due to the current collection resistance reduction effect in the plastic region. It is estimated that it can be reduced.
  • platinum is very expensive and the cost is greatly increased.
  • nickel base alloys such as Hastelloy and stainless steels such as Crofer 22APU have high oxidation resistance but high yield stress, and therefore it is difficult to obtain the current collecting resistance reduction effect in the plastic region.
  • the metal thin layer 24 which consists of a material whose yield stress is smaller than the current collection material part 20 and the air electrode 11 on the surface of the current collection material part 20 at the air electrode side.
  • a plastic contact surface 22 is formed by the thin metal layer 24 between the current collector 20 and the air electrode 11. Since the metal thin layer 24 has a lower yield stress than the current collector 20 and the air electrode 11, the plastic contact area 22 is generated more than the elastic contact area 21. Therefore, the current collection resistance between the current collector member 20 and the air electrode 11 can be reduced without increasing the pressing load due to the effect of reducing the current collection resistance in the plastic region.
  • the current collector 20 is preferably made of an oxidation-resistant metal as will be described later, and many of such oxidation-resistant metals have a high yield stress. Therefore, in the current collector member 20, more elastic region 25 is generated than plastic region 26.
  • the contact surface 22 in the plastic region is generated by providing the metal thin layer 24, the current collection resistance reduction effect in the plastic region can be achieved without increasing the pressing load of the current collector member 20. Can be obtained.
  • the thickness t1 of the thin metal layer 24 is preferably 0.01 ⁇ m or more. That is, as shown in FIG. 7, it is preferable that the thickness t1 of the thin metal layer 24 after the current collector member 20 provided with the thin metal layer 24 is pressed against the air electrode 11 is 0.01 ⁇ m or more.
  • the thickness t1 of the metal thin layer 24 is 0.01 ⁇ m or more, a large number of contact surfaces 22 in the plastic region are generated, and it becomes possible to further enhance the current collection resistance reduction effect in the plastic region.
  • the metal thin layer 24 can be made thinner to reduce the material cost.
  • the upper limit of the thickness t1 of the thin metal layer 24 is not particularly limited, but can be, for example, 100 ⁇ m or less.
  • the thickness t1 of the thin metal layer 24 can be obtained by observing the cross section of the thin metal layer 24 with a scanning electron microscope (SEM).
  • the material constituting the metal thin layer 24 is not particularly limited as long as it has a lower yield stress than the current collector 20 and the air electrode 11.
  • the metal thin layer 24 is preferably made of at least one selected from the group consisting of silver, platinum and gold.
  • the thin metal layer 24 is preferably made of an alloy containing at least one of silver, platinum and gold and at least one of palladium, ruthenium and cobalt. Since these materials have low yield stress and excellent oxidation resistance at high temperatures, it is possible to reduce electrical resistance even when used on the air electrode side.
  • the current collector member 20 is preferably made of an oxidation resistant metal. Therefore, the current collector member 20 is preferably made of an alloy containing at least one of chromium and iron as a main component. That is, it is preferable to use an alloy containing 50 mass% or more of at least one of chromium and iron for the current collector part 20. By using such an alloy as the current collector 20, it becomes possible to eliminate the influence of oxidation of the current collector 20 and suppress an increase in current collection resistance.
  • At least one of stainless steel and a chromium-based alloy can be used as the alloy constituting the current collector portion 20.
  • the stainless steel include ferritic stainless steel, martensitic stainless steel, and austenitic stainless steel.
  • ferritic stainless steel include SUS430, SUS434, and SUS405.
  • martensitic stainless steel include SUS403, SUS410, and SUS431.
  • austenitic stainless steel include SUS201, SUS301, and SUS305.
  • Examples of the chromium-based alloy include Ducrloy CRF (94Cr5Fe1Y 2 O 3 ), Crofer 22 alloy, and ZMG232L.
  • the current collector 20 is also preferably made of an alloy containing nickel as a main component. That is, it is also preferable to use a nickel-based alloy containing 50 mass% or more of nickel for the current collector member 20.
  • nickel-based alloy examples include Inconel (registered trademark) and Hastelloy (registered trademark).
  • the current collector member 20 it is preferable to use a structure having a convex portion 23 formed on the surface, for example, a structure such as a mesh (metal mesh). That is, the current collector part 20 may be a structure formed by assembling wires made of the above materials, or may be a structure formed by knitting the wires. The method for knitting the wire is not particularly limited, and for example, methods such as plain weaving, twill weaving, and tatami weaving can be employed. Moreover, the convex part 23 formed in the surface of the current collection material part 20 can be formed in dotted line shape, linear form, a grid
  • a mesh metal mesh
  • the thin metal layer 24 only needs to be interposed at least between the electrically conductive surfaces of the air electrode 11 and the air electrode current collector 14. Therefore, as shown in FIG. 8A, the metal thin layer 24 is provided on the entire surface of the air electrode 11, and the convex portion 23 formed on the surface of the current collector 20 is brought into contact with the metal thin layer 24. be able to. Moreover, as shown in FIG.8 (b), it can be set as the structure which provides the metal thin layer 24 only in the surface where the current collection material part 20 and the air electrode 11 oppose. Furthermore, as shown in FIG. 8C, the air electrode 11 and the air electrode current collector 14 can be brought into contact with each other after the metal thin layer 24 is provided over the entire circumference of the current collector member 20. .
  • the thin metal layer 24 can be provided only on the surface where the current collector 20 and the air electrode 11 face each other and the periphery thereof.
  • the metal thin layer 24 only needs to be interposed between the air electrode 11 and the air electrode current collector 14, from the viewpoint of reducing the cost by reducing the number of metals constituting the metal thin layer 24, FIG.
  • the configuration shown in FIG. 8B and FIG. 8D is more preferable.
  • the cross-sectional shape of the wire is not particularly limited. That is, as shown in FIGS. 7 and 8, the current collector member 20 has a substantially circular cross-sectional shape along the stacking direction Y of the air electrode 11, the current collector member 20, and the air electrode current collector 14. it can. However, as shown in FIG. 9, the current collector member 20 has a triangular, semicircular or trapezoidal cross-sectional shape along the stacking direction Y of the air electrode 11, the current collector member 20 and the air electrode current collector 14. Preferably there is.
  • the current collector part 20 has a cross-sectional area (XZ plane) perpendicular to the stacking direction Y that decreases from the air electrode current collector 14 toward the air electrode 11. Since the cross section of the current collector 20 is triangular, semicircular or trapezoidal, when a pressing load is applied to the current collector 20, the tip of the current collector 20 (the convex portion 23 on the surface) is crushed. Thus, the area of the surface facing the air electrode 11 increases. Therefore, the conductivity between the current collector 20 and the air electrode 11 can be increased via the thin metal layer 24.
  • the current collector portion may have an elliptical cross-sectional shape along the stacking direction Y.
  • the solid oxide fuel cell 1 is provided with the air electrode current collector 14 and the fuel electrode current collector 15 that are electrically connected to the air electrode 11 and the fuel electrode 12, respectively.
  • the current collectors (air electrode current collector 14 and fuel electrode current collector 15) function as a separator that separates the current collecting function from the electrodes (air electrode 11 and fuel electrode 12) from the oxidant gas and the fuel gas. It has the function of. In this specification, it is assumed that the current collector member 20 cannot be distinguished from those that are separate from the current collector and those that are part of the structure of the current collector.
  • the materials constituting the air electrode current collector 14 and the fuel electrode current collector 15 are not particularly limited.
  • an alloy material having excellent oxidation resistance and conductivity can be used.
  • ferritic stainless steel, Inconel, Hastelloy, or the like can be used.
  • the flow of the oxidant gas flowing through the oxidant gas flow path 14a and the flow of the fuel gas flowing through the fuel gas flow path 15a are orthogonal flows in which the fuel gas and the oxidant gas flow in directions orthogonal to each other within the plane of the single cell 10.
  • the flow of the fuel gas and the oxidant gas may be a counter flow that flows in the plane of the single cell 10 and flows in the same direction in the plane of the single cell 10 (coflow).
  • the flow of the fuel gas and the oxidant gas may be a return flow that changes the direction of the reaction gas entering from the inlet in the plane of the single cell 10 and flows in the reverse direction.
  • Serpentine flow may be used in which the flow direction of the reaction gas is changed several times in the opposite direction.
  • the air electrode 11 one that is strong in an oxidizing atmosphere, permeates the oxidant gas, has high electrical conductivity, and has a catalytic action for converting oxygen molecules into oxide ions can be suitably used.
  • the air electrode 11 may be made of an electrode catalyst or a cermet of an electrode catalyst and an electrolyte material.
  • a metal such as silver (Ag) or platinum (Pt) may be used as the electrode catalyst, but lanthanum strontium cobaltite (La 1-x Sr x CoO 3 : LSC) or lanthanum strontium cobalt ferrite ( La 1-x Sr x Co 1 -y Fe y O 3: LSCF), samarium strontium cobaltite (Sm x Sr 1-x CoO 3: SSC), lanthanum strontium manganite (La 1-x Sr x MnO 3: LSM It is preferable to apply a perovskite oxide such as However, it is not limited to these, and conventionally known air electrode materials can be applied.
  • examples of the electrolyte material include, but are not limited to, cerium oxide (CeO 2 ), zirconium oxide (ZrO 2 ), titanium oxide (TiO 2 ), and lanthanum oxide (La 2 O 3 ). It is not a thing, but the mixture with oxides, such as various stabilized zirconia and a ceria solid solution, can be used suitably.
  • the fuel electrode 12 one that is strong in a reducing atmosphere, permeates the fuel gas, has high electrical conductivity, and has a catalytic action for converting hydrogen molecules into protons can be suitably used.
  • a constituent material of the fuel electrode for example, metals such as nickel (Ni), cobalt (Co) and platinum (Pt) may be applied alone, but oxygen represented by yttria stabilized zirconia (YSZ) may be used. It is preferable to apply a cermet mixed with an ionic conductor. By using such a material, the reaction area increases and the electrode performance can be improved.
  • a ceria solid solution such as samaria doped ceria (SDC) or gadria doped ceria (GDC) can be applied instead of yttria stabilized zirconia (YSZ).
  • a layer having gas impermeability and a capability of passing oxygen ions without passing electrons can be suitably used.
  • a constituent material of the solid electrolyte layer for example, yttria (Y 2 O 3 ), neodymium oxide (Nd 2 O 3 ), samaria (Sm 2 O 3 ), gadria (Gd 2 O 3 ), scandia (Sc 2 O 3). ) Or the like can be applied as stabilized zirconia.
  • ceria solid solutions such as samaria doped ceria (SDC), yttria doped ceria (YDC), gadria doped ceria (GDC), bismuth oxide (Bi 2 O 3 ), lanthanum gallate (LaGaO 3 ), lanthanum strontium magnesium gallate (La 1-x Sr x Ga 1-y Mg y O 3: LSMG) or the like may be applied.
  • SDC samaria doped ceria
  • YDC yttria doped ceria
  • GDC gadria doped ceria
  • Bi 2 O 3 bismuth oxide
  • LaGaO 3 lanthanum gallate
  • La 1-x Sr x Ga 1-y Mg y O 3: LSMG lanthanum strontium magnesium gallate
  • an oxidant gas such as oxygen or air is introduced into the oxidant gas passage 14a, and hydrogen, hydrocarbons, or various liquid fuels are reformed into the fuel gas passage 15a.
  • Fuel gas such as reformed gas obtained is introduced.
  • oxygen gas molecules are decomposed into oxygen ions and electrons at the three-phase interface serving as an active point, and the oxygen ions are transmitted through the solid electrolyte layer 13 and conducted to the fuel electrode 12.
  • oxygen ions conducted from the solid electrolyte layer 13 react with fuel gas molecules and electrons at the three-phase interface that is also the active point. Electrical energy can be obtained by electrically connecting the air electrode 11 and the fuel electrode 12 through the air electrode current collector 14 and the fuel electrode current collector 15.
  • the solid oxide fuel cell 1 of this embodiment includes a fuel electrode 12 and an air electrode 11, a solid electrolyte layer 13 sandwiched between the fuel electrode 12 and the air electrode 11, and a current collector disposed on the air electrode 11 side. (Air electrode current collector 14). Further, the solid oxide fuel cell 1 includes a current collector member 20 that exists between the air electrode 11 and the current collector and has a convex portion 23 formed on the surface on the air electrode side. And between the air electrode 11 and the convex part 23 of the current collection material part 20, the metal thin layer 24 in which the yield stress was smaller than the current collection material part 20, and the plastic region deformed plastically was formed is provided. .
  • the current collector member 20 can use an oxidation-resistant metal, even when it is used on the air electrode 11 side, it is possible to suppress oxidation at a high temperature and prevent a decrease in current collecting resistance.
  • the thin metal layer 24 is first formed on the surface of the current collector member 20.
  • the formation method of the metal thin layer 24 is not specifically limited, For example, physical vapor deposition method (PVD method), powder jet deposition method (PJD method), thermal spraying method, plating method, electroless plating method, chemical vapor deposition method (CVD method) Etc. can be used.
  • the thin metal layer 24 may be formed on the entire surface of the current collector 20. However, the metal thin layer 24 should just be provided at least between the current collector part 20 and the air electrode 11. For this reason, masking or the like may be performed on portions other than between the current collector member 20 and the air electrode 11 so that the thin metal layer 24 is not formed. Thereby, the material of the metal thin layer 24 can be reduced.
  • the air electrode current collector 14, the current collector member 20 provided with the metal thin layer 24, and the air electrode 11 are laminated in this order, and a pressing load is applied to the metal thin layer 24.
  • the metal thin layer 24 is plastically deformed, and the contact surface 22 in the plastic region is obtained.
  • the air electrode current collector 14, the current collector member 20 provided with the thin metal layer 24, the air electrode 11, the solid electrolyte layer 13, and the fuel electrode 12 are laminated in this order, and a pressing load is collectively applied. May be. In this way, the solid oxide fuel cell 1 can be obtained.
  • a thin metal layer 24 is formed on the surface of the air electrode 11.
  • the formation method of the metal thin layer 24 is not specifically limited, The above-mentioned method can be used.
  • masking or the like may be performed except for between the current collector member 20 and the air electrode 11 so that the thin metal layer 24 is not formed.
  • the air electrode current collector 14, the current collector member 20, and the air electrode 11 provided with the metal thin layer 24 are laminated in this order, and a pressing load is applied to the metal thin layer 24, whereby A solid oxide fuel cell can be obtained.
  • the thin metal layer 24 may be formed after the air electrode current collector 14 and the current collector 20 are welded.
  • the air electrode current collector 14 and the current collector member 20 are welded.
  • the electrical resistance between the air electrode current collector 14 and the current collector member 20 is reduced, and the output of the fuel cell is reduced. It becomes possible to raise more.
  • a current collector was obtained by molding a ferrite plate material (ferritic stainless steel SUS430) having a thickness of 0.01 mm by a pressing method. Further, a mesh (# 100) made of a ferrite material (ferritic stainless steel SUS430) was prepared as a current collector part, and the current collector and the current collector part were previously integrated by welding.
  • a ferrite plate material ferritic stainless steel SUS430
  • a mesh (# 100) made of a ferrite material (ferritic stainless steel SUS430) was prepared as a current collector part, and the current collector and the current collector part were previously integrated by welding.
  • an air electrode (lanthanum strontium cobalt ferrite: LSCF), a solid electrolyte layer (yttria stabilized zirconia: YSZ), a fuel electrode (cermet of Ni and YSZ particles: Ni—YSZ) and a metal support are laminated in this order.
  • a power generation cell was also prepared.
  • the metal support is a support made of a porous metal in contact with the surface of the fuel electrode opposite to the solid electrolyte layer.
  • the surface of the current collector 20 other than the surface in contact with the air electrode 11 was coated with a resin layer.
  • a resin solution in which a polypropylene resin was dissolved in an organic solvent was prepared and sprayed on the Kapton tape 31 by spraying.
  • the resin layer 32 was formed by performing the drying process for 24 hours or more at normal temperature.
  • the resin layer 32 was formed by peeling the Kapton tape 31.
  • a thin metal layer was formed on the obtained resin layer 32.
  • the power generation cell on which the resin layer 32 was formed was installed in a magnetron sputtering apparatus, and an Ag target was installed in the apparatus. Then, the temperature in the apparatus was controlled from room temperature to a predetermined temperature at an output of 1200 W, and film formation was performed for 60 minutes. As a result, as shown in FIG. 10D, a thin metal layer 24 (silver thin film) having a thickness of about 1 to 2 ⁇ m was formed on the air electrode 11 and the resin layer 32.
  • the stack was assembled by pressing the projection 23 of the current collector 20 against the thin metal layer 24 on the air electrode 11.
  • a specified surface pressure about 0.3 MPa
  • the fuel electrode 12 side was sealed with an inert gas, and only the air electrode 11 side was fired at 800 ° C. in the atmosphere.
  • the resin layer 32 disappeared, and the thin metal layer where the current collector 20 and the air electrode 11 were not in contact with each other was peeled off.
  • Example 2 a current collector was obtained by molding a ferrite plate material (ferritic stainless steel SUS430) by a press method in the same manner as in Example 1. Further, a mesh (# 100) made of a ferrite material (ferritic stainless steel SUS430) is prepared as the current collector part, and the air electrode current collector 14 and the current collector part 20 are welded in advance as shown in FIG. And integrated. A power generation cell similar to that in Example 1 was also prepared.
  • the air electrode current collector 14 and the current collector part 20 are previously integrated by welding, and the other parts than the current collector part 20 are covered with a Kapton sheet and masked, and the thin metal layer 24 is formed on the current collector part 20.
  • the masked current collector 20 was installed in a magnetron sputtering apparatus, and an Ag target was installed in the apparatus. Then, the temperature in the apparatus was controlled from room temperature to a predetermined temperature at an output of 1200 W, and film formation was performed for 60 minutes. As a result, as shown in FIG. 11B, a thin metal layer 24 (silver thin film) having a thickness of about 1 to 2 ⁇ m was formed on the current collector 20.
  • the stack was assembled by pressing the convex portion 23 of the current collector 20 onto the air electrode 11. At that time, a specified surface pressure (about 0.3 MPa) was applied so that the convex portion 23 of the current collector member 20 was plastically deformed. Thus, the fuel cell of this embodiment was obtained.
  • Example 3 a current collector was obtained by molding a ferrite plate material (ferritic stainless steel SUS430) by a press method in the same manner as in Example 1. Further, a mesh (# 100) made of a ferrite material (ferritic stainless steel SUS430) is prepared as a current collector portion, and the air electrode current collector 14 and the current collector portion 20 are welded in advance as shown in FIG. And integrated. A power generation cell similar to that in Example 1 was also prepared.
  • a thin metal layer was formed on the current collector part 20 partially masked with the resin layer 32.
  • the masked current collector 20 was installed in a magnetron sputtering apparatus, and an Ag target was installed in the apparatus. Then, the temperature in the apparatus was controlled from room temperature to a predetermined temperature at an output of 1200 W, and film formation was performed for 60 minutes. As a result, as shown in FIG. 12D, a metal thin layer 24 (silver thin film) having a film thickness of about 1 to 2 ⁇ m was formed on the current collector 20 and the resin layer 32.
  • the current collector part 20 on which the thin metal layer 24 was formed and the air electrode current collector 14 were integrated and fired at 800 ° C. in the atmosphere.
  • the resin layer 32 disappeared, and the metal thin layer 24 at the portion masked by the current collector 20 and the resin layer 32 was peeled off.
  • the thin metal layer 24 that has been peeled off is removed by applying an air flow, and the Kapton sheet that covers a portion other than the current collector 20 is further peeled off, thereby forming the thin metal layer 24 as shown in FIG. (Silver thin film) was formed only on the air electrode side of the current collector 20.
  • the stack was assembled by pressing the convex portion 23 of the current collector portion 20 onto the air electrode 11. At that time, a specified surface pressure (about 0.3 MPa) was applied so that the convex portion 23 of the current collector member 20 was plastically deformed. Thus, the fuel cell of this embodiment was obtained.
  • a current collector was obtained by molding a ferrite plate material (ferritic stainless steel SUS430) having a thickness of 0.01 mm by a pressing method. Further, a mesh (# 100) made of a ferrite material (ferritic stainless steel SUS430) was prepared as a current collector part, and the current collector and the current collector part were previously integrated by welding. A power generation cell similar to that in Example 1 was also prepared.
  • the stack was assembled by pressing the convex part of the current collector part onto the air electrode. At that time, a specified surface pressure (about 0.3 MPa) was applied so that the convex portion of the current collector portion was plastically deformed.
  • a specified surface pressure about 0.3 MPa
  • the fuel cell of this embodiment was obtained. That is, the fuel cell of the present embodiment is one in which a thin metal layer is not provided with respect to the fuel cell of Example 1.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

A solid oxide fuel cell (1) is provided with a fuel electrode (12) and an air electrode (11), as well as a solid electrolyte layer (13) sandwiched between the fuel electrode and the air electrode. The solid oxide fuel cell is further provided with a current collector (14) placed on the air-electrode side and a current-collecting material part (20) that is disposed between the air electrode and the current collector and that has a protrusion (23) formed on a surface on the air-electrode side. Then, a thin metal layer (24) on which is formed a plastic region that has a smaller yield stress than the current-collecting material part and the air electrode and that has been subjected to plastic deformation is provided between the air electrode and the protrusion of the current-collecting material part.

Description

固体酸化物形燃料電池及びその製造方法Solid oxide fuel cell and method for producing the same
 本発明は、固体酸化物形燃料電池及びその製造方法に関する。詳細には本発明は、空気極と集電体との間の集電抵抗を低減した固体酸化物形燃料電池及び当該固体酸化物形燃料電池の製造方法に関する。 The present invention relates to a solid oxide fuel cell and a method for manufacturing the same. More specifically, the present invention relates to a solid oxide fuel cell with reduced current collecting resistance between an air electrode and a current collector and a method for producing the solid oxide fuel cell.
 地球環境問題への関心の高まりから、近年、各種燃料電池の自動車への利用が検討されている。燃料電池は、化学エネルギーを電気化学的な反応により電気エネルギーに変換する装置である。そして、各種燃料電池の中でも固体酸化物形燃料電池(SOFC)は効率が高く、自動車用電源として注目されている。 In recent years, the use of various fuel cells for automobiles has been studied due to the growing interest in global environmental issues. A fuel cell is a device that converts chemical energy into electrical energy through an electrochemical reaction. Among the various fuel cells, the solid oxide fuel cell (SOFC) has high efficiency and has attracted attention as a power source for automobiles.
 固体酸化物形燃料電池(SOFC)は、燃料極、固体電解質層及び空気極の各層を積層した三層構造を成し、これを燃料電池の発電部としている。そして、燃料極には水素や炭化水素等の燃料ガスを供給し、空気極には空気等の酸化剤ガスを供給して電気を発生させる仕組みとなっている。また、空気極及び燃料極にはそれぞれ集電体(セパレータ)が配置されている。 A solid oxide fuel cell (SOFC) has a three-layer structure in which a fuel electrode, a solid electrolyte layer, and an air electrode are stacked, and this is used as a power generation unit of the fuel cell. A fuel gas such as hydrogen or hydrocarbon is supplied to the fuel electrode, and an oxidant gas such as air is supplied to the air electrode to generate electricity. In addition, current collectors (separators) are arranged on the air electrode and the fuel electrode, respectively.
 このような固体酸化物形燃料電池として、従来、固体電解質層を挟むように燃料極と空気極を配置してなる平板型単電池と、セパレータとを交互に積層し、セパレータと燃料極との間に耐熱性金網を挟持した平板型固体電解質燃料電池が開示されている(例えば、特許文献1参照)。さらに、金網がニッケルからなることも開示されている。このような構成により燃料極と金網とが密接するため、集電効率を高めている。 As such a solid oxide fuel cell, conventionally, a flat unit cell in which a fuel electrode and an air electrode are arranged so as to sandwich a solid electrolyte layer, and a separator are alternately stacked, and a separator and a fuel electrode A flat-type solid electrolyte fuel cell having a heat-resistant wire mesh sandwiched therebetween is disclosed (for example, see Patent Document 1). It is also disclosed that the wire mesh is made of nickel. With such a configuration, the fuel electrode and the wire mesh are in close contact with each other, thereby increasing the current collection efficiency.
特開平8-45516号公報JP-A-8-45516
 しかしながら、特許文献1におけるニッケル製の金網を空気極で使用した場合、ニッケルは高温で容易に酸化するため、結果として集電抵抗が上昇してしまうという問題があった。 However, when the nickel wire net in Patent Document 1 is used at the air electrode, nickel easily oxidizes at a high temperature, resulting in a problem that current collecting resistance increases.
 本発明は、このような従来技術の有する課題に鑑みてなされたものである。そして、本発明の目的は、電極と集電体との間の集電抵抗を低減することが可能な固体酸化物形燃料電池、及び当該固体酸化物形燃料電池の製造方法を提供することにある。 The present invention has been made in view of such problems of the conventional technology. And the objective of this invention is providing the manufacturing method of the solid oxide fuel cell which can reduce the current collection resistance between an electrode and a collector, and the said solid oxide fuel cell. is there.
 上記課題を解決するために、本発明の態様に係る固体酸化物形燃料電池は、集電体と空気極とを備えている。さらに当該燃料電池は、空気極と集電体との間に存在し、空気極側の表面に凸部が形成された集電材部を備えている。そして、空気極と集電材部の凸部との間には、集電材部よりも降伏応力が小さく、塑性変形された塑性域が形成された金属薄層が設けられている。 In order to solve the above problems, a solid oxide fuel cell according to an aspect of the present invention includes a current collector and an air electrode. Further, the fuel cell includes a current collector member that exists between the air electrode and the current collector and has a convex portion formed on the surface on the air electrode side. And between the air electrode and the convex part of the current collector part, a thin metal layer having a yield stress smaller than that of the current collector part and having a plastically deformed plastic region is provided.
 集電材部の凸部と空気極との間に、降伏応力が小さい金属を金属薄層として設けることにより、金属薄層が塑性変形する。そのため、集電材部と空気極との間の押付荷重を過度に高めなくても、これらの間の接触率が向上するため、集電抵抗を低減することが可能となる。 The metal thin layer is plastically deformed by providing a metal having a low yield stress as a metal thin layer between the convex portion of the current collector and the air electrode. Therefore, even if the pressing load between the current collector part and the air electrode is not excessively increased, the contact rate between them is improved, so that the current collecting resistance can be reduced.
図1は、本発明の実施形態に係る固体酸化物形燃料電池を分解した状態を示す斜視図である。FIG. 1 is a perspective view showing an exploded state of a solid oxide fuel cell according to an embodiment of the present invention. 図2は、図1に示す固体酸化物形燃料電池における空気極集電体、集電材部、金属薄層及び空気極の断面を示す概略図である。FIG. 2 is a schematic diagram showing a cross section of the air electrode current collector, the current collector part, the metal thin layer, and the air electrode in the solid oxide fuel cell shown in FIG. 図3は、表面に凸部を設けた構造体による集電抵抗の低減効果を示す。(a)は、ハステロイロッド間の電気抵抗を測定する方法を示し、(b)は、ハステロイロッド同士を直接接触させた場合と、当該ロッド同士の間に白金メッシュを介在させた場合における、ロッド間の面圧と集電抵抗との関係を示すグラフである。FIG. 3 shows the effect of reducing current collection resistance by a structure having a convex portion on the surface. (A) shows a method for measuring electrical resistance between hastelloy rods, and (b) shows a rod in the case where the hastelloy rods are brought into direct contact with each other and a platinum mesh is interposed between the rods. It is a graph which shows the relationship between the surface pressure in between and current collection resistance. 図4(a)は、ニッケル基合金製構造体に押付荷重をかけた場合における、ロッドと構造体との界面での構造体の変形の様子を示す概略図である。図4(b)は、白金製構造体に押付荷重をかけた場合における、ロッドと構造体との界面での構造体の変形の様子を示す概略図である。FIG. 4A is a schematic diagram showing a state of deformation of the structure at the interface between the rod and the structure when a pressing load is applied to the nickel-based alloy structure. FIG. 4B is a schematic view showing a state of deformation of the structure at the interface between the rod and the structure when a pressing load is applied to the platinum structure. 図5は、白金からなるメッシュとニッケル基合金からなるメッシュにおいて、メッシュに対する押付荷重と、ロッドとメッシュとの間の接触面積との関係を示すグラフである。FIG. 5 is a graph showing the relationship between the pressing load on the mesh and the contact area between the rod and the mesh in a mesh made of platinum and a mesh made of a nickel-based alloy. 図6は、白金からなるメッシュとニッケル基合金からなるメッシュにおいて、ロッドとメッシュとの間の全接触面積と、メッシュにおける塑性域の接触面の面積との関係を示すグラフである。FIG. 6 is a graph showing the relationship between the total contact area between the rod and the mesh in the mesh made of platinum and the mesh made of nickel-based alloy and the area of the contact surface of the plastic region in the mesh. 図7は、本実施形態に係る集電材部及び金属薄層に押付荷重をかけた場合における、電極と集電材部との界面での金属薄層及び集電材部の変形の様子を示す概略断面図である。FIG. 7 is a schematic cross-sectional view showing a state of deformation of the metal thin layer and the current collector part at the interface between the electrode and the current collector part when a pressing load is applied to the current collector part and the metal thin layer according to the present embodiment. FIG. 図8は、集電材部に対する金属薄層の配置例を示す概略断面図である。FIG. 8 is a schematic cross-sectional view showing an arrangement example of the metal thin layer with respect to the current collector portion. 図9は、集電材部の断面形状の例を示す概略図である。FIG. 9 is a schematic diagram illustrating an example of a cross-sectional shape of the current collector portion. 図10は、実施例1の固体酸化物形燃料電池の製造工程を説明する概略図である。FIG. 10 is a schematic diagram for explaining a manufacturing process of the solid oxide fuel cell of Example 1. 図11は、実施例2の固体酸化物形燃料電池の製造工程を説明する概略図である。FIG. 11 is a schematic diagram for explaining a production process of the solid oxide fuel cell of Example 2. 図12は、実施例3の固体酸化物形燃料電池の製造工程を説明する概略図である。FIG. 12 is a schematic diagram for explaining a manufacturing process of the solid oxide fuel cell of Example 3. 図13は、実施例1及び比較例の固体酸化物形燃料電池の評価方法を説明するための概略図である。FIG. 13 is a schematic diagram for explaining a method for evaluating the solid oxide fuel cells of Example 1 and Comparative Example. 図14は、実施例1及び比較例の固体酸化物形燃料電池における集電抵抗の測定結果を示すグラフである。FIG. 14 is a graph showing measurement results of current collection resistance in the solid oxide fuel cells of Example 1 and Comparative Example.
 以下、本発明の実施形態に係る固体酸化物形燃料電池及びその製造方法について詳細に説明する。なお、図面の寸法比率は説明の都合上誇張されており、実際の比率とは異なる場合がある。 Hereinafter, a solid oxide fuel cell and a manufacturing method thereof according to an embodiment of the present invention will be described in detail. In addition, the dimension ratio of drawing is exaggerated on account of description, and may differ from an actual ratio.
[固体酸化物形燃料電池]
 本実施形態に係る固体酸化物形燃料電池1は、図1に示すように、空気極11及び燃料極12と、空気極11及び燃料極12により挟持される固体電解質層13とを備えた単セル10を有している。そして、単セル10は、空気極集電体14と、燃料極集電体15とにより挟持されている。
[Solid oxide fuel cell]
As shown in FIG. 1, the solid oxide fuel cell 1 according to this embodiment includes a single electrode including an air electrode 11 and a fuel electrode 12, and a solid electrolyte layer 13 sandwiched between the air electrode 11 and the fuel electrode 12. It has a cell 10. The single cell 10 is sandwiched between the air electrode current collector 14 and the fuel electrode current collector 15.
 図1に示すように、空気極集電体14は複数の酸化剤ガス流路14aを備え、燃料極集電体15は複数の燃料ガス流路15aを備えている。酸化剤ガス流路14a及び燃料ガス流路15aは、互いに並行して配置された多数の直線状の流路(パラレル型流路)となっている。燃料極集電体15及び空気極集電体14に設けられた流路(酸化剤ガス流路14a、燃料ガス流路15a)の断面形状は、リブと呼ばれる凸部と、チャネルと呼ばれる凹部とからなる。このうち、空気極集電体14のリブが空気極11と電気的に接続することにより、空気極集電体14と空気極11との間で電子が導通する。また、燃料極集電体15のリブが燃料極12と電気的に接続することにより、燃料極集電体15と燃料極12との間で電子が導通する。 As shown in FIG. 1, the air electrode current collector 14 includes a plurality of oxidant gas channels 14a, and the fuel electrode current collector 15 includes a plurality of fuel gas channels 15a. The oxidant gas flow path 14a and the fuel gas flow path 15a are a large number of linear flow paths (parallel flow paths) arranged in parallel to each other. The cross-sectional shapes of the flow paths (oxidant gas flow path 14a, fuel gas flow path 15a) provided in the fuel electrode current collector 15 and the air electrode current collector 14 are convex portions called ribs, and concave portions called channels. Consists of. Among these, the rib of the air electrode current collector 14 is electrically connected to the air electrode 11, whereby electrons are conducted between the air electrode current collector 14 and the air electrode 11. Further, when the rib of the fuel electrode current collector 15 is electrically connected to the fuel electrode 12, electrons are conducted between the fuel electrode current collector 15 and the fuel electrode 12.
 そして、固体酸化物形燃料電池1は、図1及び図2に示すように、空気極11と空気極集電体14との間に集電材部20を備えている。集電材部20は、後述するように、金属製のメッシュのような表面に凸部23が形成された構造体で構成されている。このような集電材部20を設けることで、空気極11と空気極集電体14との間の集電抵抗を抑制することが可能となる。 The solid oxide fuel cell 1 includes a current collector 20 between the air electrode 11 and the air electrode current collector 14 as shown in FIGS. 1 and 2. As will be described later, the current collector member 20 is composed of a structure in which convex portions 23 are formed on a surface such as a metal mesh. By providing such a current collector member 20, it is possible to suppress the current collection resistance between the air electrode 11 and the air electrode current collector 14.
 詳細に説明すると、通常、集電体(空気極集電体14及び燃料極集電体15)と空気極11及び燃料極12との接触部には、電気的接続を担保するために押付荷重が付加されている。また、押付荷重を大きくすることにより、集電体と電極との接触界面が増加し、集電抵抗(ASR)が低減することが一般的に知られている。しかしながら、集電体及び電極の押付荷重を大きくするためには、組付け時の面圧を増加させるための大径ボルトを採用する必要がある。そのため、ボルトの重量の増加によって燃料電池スタックの重量が増え、さらにボルトの体積の増加によって単位体積当たりの出力が低下することになる。したがって、集電体及び電極への押付荷重を増やすことなく、集電体と電極との間の集電抵抗を低減する必要がある。 More specifically, a pressing load is usually applied to a contact portion between the current collector (the air electrode current collector 14 and the fuel electrode current collector 15) and the air electrode 11 and the fuel electrode 12 in order to ensure electrical connection. Is added. Further, it is generally known that increasing the pressing load increases the contact interface between the current collector and the electrode and reduces the current collection resistance (ASR). However, in order to increase the pressing load of the current collector and the electrode, it is necessary to employ a large-diameter bolt for increasing the surface pressure during assembly. Therefore, the weight of the fuel cell stack increases due to the increase in the weight of the bolt, and the output per unit volume decreases due to the increase in the volume of the bolt. Therefore, it is necessary to reduce the current collection resistance between the current collector and the electrode without increasing the pressing load on the current collector and the electrode.
 本発明者による鋭意検討の結果、押付荷重を増加させずに集電抵抗を低減する方法として、メッシュのような、表面に凸部が形成された構造体を用いることで、集電抵抗の低減効果が得られることを見いだした。図3では、表面に凸部が形成された構造体による集電抵抗の低減効果を示している。具体的には、図3(a)に示すように、ニッケル基合金であるハステロイ(登録商標)製のロッドを用いて、ロッド間の面圧を増加させた場合におけるロッド間の電流と電圧を測定し、集電抵抗の変化を測定した。この際、ロッド間に白金製のメッシュを介在させた場合と介在させない場合で集電抵抗の変化を測定した。図3(b)では、ハステロイロッド同士を直接接触させた場合と、当該ロッド同士の間に白金メッシュを介在させた場合における、ロッド間の面圧と集電抵抗との関係を示す。図3(b)に示すように、集電抵抗は、ロッド間の面圧が増加するにつれて低下することが分かる。そして、白金メッシュを介在させた場合には、白金メッシュを介在させない場合に比べて集電抵抗が低下することが分かる。 As a result of intensive studies by the inventor, as a method of reducing the current collecting resistance without increasing the pressing load, the current collecting resistance is reduced by using a structure having a convex portion on the surface, such as a mesh. I found that it was effective. FIG. 3 shows the effect of reducing current collection resistance by a structure having a convex portion on the surface. Specifically, as shown in FIG. 3A, the current and voltage between the rods when the surface pressure between the rods is increased by using a rod made of Hastelloy (registered trademark) which is a nickel-based alloy. Measured and the change in current collecting resistance was measured. At this time, the change in current collecting resistance was measured with and without a platinum mesh between the rods. FIG. 3B shows the relationship between the surface pressure between the rods and the current collecting resistance when the Hastelloy rods are in direct contact with each other and a platinum mesh is interposed between the rods. As shown in FIG.3 (b), it turns out that current collection resistance falls as the surface pressure between rods increases. And when a platinum mesh is interposed, it turns out that current collection resistance falls compared with the case where a platinum mesh is not interposed.
 ただ、このようなロッド間における集電抵抗の低減効果は、表面に凸部を設けた構造体の材質により大きく変化する。つまり、このような集電抵抗の低減効果は、表面に凸部を設けた構造体とロッドとの接触面において、構造体の凸部に塑性域の接触面が生じることで引き起こされる。例えば、ニッケル基合金であるハステロイは、弾性変形から塑性変形に移る近傍の応力である降伏応力が高い。そのため、ハステロイからなる構造体(メッシュ)を用いた場合、構造体への押付荷重を増やしたとしても、図4(a)に示すように、ロッドと構造体の凸部23との接触界面では構造体の凸部23が弾性変形してなる弾性域の接触面21が多く生成する。押付荷重をさらに増やした場合には、構造体の凸部23が塑性変形してなる塑性域の接触面22が生じてくるが、その場合でも弾性域の接触面21が支配的である。 However, the effect of reducing the current collecting resistance between the rods varies greatly depending on the material of the structure having the convex portions on the surface. In other words, such an effect of reducing the current collecting resistance is caused by a contact surface in the plastic region being formed on the convex portion of the structure at the contact surface between the rod and the structure provided with the convex portion on the surface. For example, Hastelloy, which is a nickel-based alloy, has a high yield stress, which is a stress in the vicinity of transition from elastic deformation to plastic deformation. Therefore, when a structure (mesh) made of Hastelloy is used, even if the pressing load on the structure is increased, as shown in FIG. 4A, at the contact interface between the rod and the convex portion 23 of the structure. A large number of elastic contact surfaces 21 formed by elastic deformation of the convex portions 23 of the structure are generated. When the pressing load is further increased, a plastic contact surface 22 formed by plastic deformation of the convex portion 23 of the structure is generated, but even in that case, the elastic contact surface 21 is dominant.
 これに対し、白金は降伏応力が低い。そのため、白金からなる構造体(メッシュ)を用いた場合、構造体への押付荷重を増やすことにより、図4(b)に示すように、ロッドと構造体の凸部23との接触界面では構造体の凸部23が塑性変形してなる塑性域の接触面22が多く生成する。このように、構造体を構成する材料の降伏応力が異なる場合には、構造体にかかる荷重が同じでも、ロッドと構造体の表面の凸部23の接触面において生成する塑性域の面積が異なる。そして、弾性域の接触面21が多い場合には、構造体の凸部23とロッド間の接触面積を高めるために、押付荷重が高い状態を維持する必要がある。これに対し、塑性域の接触面22が多い場合には、構造体の凸部23が塑性変形していることから、押付荷重を増加させなくても構造体の凸部23とロッド間の接触面積を高い状態に維持することができる。 In contrast, platinum has a low yield stress. Therefore, in the case of using a structure (mesh) made of platinum, by increasing the pressing load on the structure, as shown in FIG. 4B, the structure is formed at the contact interface between the rod and the convex portion 23 of the structure. Many contact surfaces 22 in the plastic region formed by plastic deformation of the convex portions 23 of the body are generated. Thus, when the yield stress of the material which comprises a structure differs, even if the load concerning a structure is the same, the area of the plastic zone produced | generated in the contact surface of the convex part 23 of the surface of a rod and a structure differs. . And when there are many contact surfaces 21 of an elastic region, in order to raise the contact area between the convex part 23 of a structure and a rod, it is necessary to maintain a state with a high pressing load. On the other hand, when there are many contact surfaces 22 in the plastic region, since the convex portion 23 of the structure is plastically deformed, the contact between the convex portion 23 of the structural body and the rod can be achieved without increasing the pressing load. The area can be kept high.
 図5では、白金からなるメッシュとニッケル基合金(ハステロイ)からなるメッシュにおいて、メッシュに対する押付荷重と、ロッドとメッシュとの間の接触面積との関係を示している。図5において、符号Aは白金メッシュの全接触面に係り、符号Bは白金メッシュの塑性域の接触面に係り、符号Cはニッケル基合金メッシュの全接触面に係り、符号Dはニッケル基合金メッシュの塑性域の接触面に係る。 FIG. 5 shows the relationship between the pressing load on the mesh and the contact area between the rod and the mesh in the mesh made of platinum and the mesh made of nickel-based alloy (Hastelloy). In FIG. 5, symbol A relates to all contact surfaces of the platinum mesh, symbol B relates to the contact surface of the plastic region of the platinum mesh, symbol C relates to all the contact surfaces of the nickel base alloy mesh, and symbol D denotes the nickel base alloy. It relates to the contact surface of the plastic region of the mesh.
 図5に示すように、白金メッシュの場合には押付荷重が高まるにつれて、白金メッシュの全接触面と塑性域の接触面の面積が増加することが分かる。これに対し、ニッケル基合金メッシュの場合には押付荷重が高まるにつれて、ニッケル基合金メッシュの全接触面の面積は増加するが、塑性域の接触面は大きく増加しない。そのため、ニッケル基合金メッシュを用いた場合には高い接触面積を維持するために、押付荷重を高い状態に維持する必要があることが分かる。 As shown in FIG. 5, in the case of a platinum mesh, it can be seen that as the pressing load increases, the area of all the contact surfaces of the platinum mesh and the contact surface of the plastic region increases. On the other hand, in the case of the nickel-based alloy mesh, as the pressing load increases, the area of the entire contact surface of the nickel-based alloy mesh increases, but the contact surface of the plastic region does not increase greatly. Therefore, when using a nickel base alloy mesh, in order to maintain a high contact area, it turns out that it is necessary to maintain a pressing load in a high state.
 図6では、白金からなるメッシュとニッケル基合金(ハステロイ)からなるメッシュにおいて、ロッドとメッシュとの間の全接触面積と、メッシュにおける塑性域の接触面の面積との関係を示している。図6において、符号Eは白金メッシュに係り、符号Fはニッケル基合金メッシュに係る。 FIG. 6 shows the relationship between the total contact area between the rod and the mesh in the mesh made of platinum and the mesh made of nickel-based alloy (Hastelloy) and the area of the contact surface of the plastic region in the mesh. In FIG. 6, symbol E relates to a platinum mesh, and symbol F relates to a nickel-based alloy mesh.
 図6に示すように、押付荷重が高まるにつれて、白金メッシュ及びニッケル基合金メッシュの両方とも全接触面の面積は増加する。しかし、押付荷重が高まるにつれて、白金メッシュにおける塑性域の接触面は増加するが、ニッケル基合金メッシュにおける塑性域の接触面は大きく増加しない。このことからも、白金メッシュを用いることにより、低い押付荷重で塑性域の接触面が増加し、その結果、高い接触面積を維持できることが分かる。 As shown in FIG. 6, as the pressing load increases, the area of all contact surfaces of both the platinum mesh and the nickel-based alloy mesh increases. However, as the pressing load increases, the contact area of the plastic region in the platinum mesh increases, but the contact surface of the plastic region in the nickel-based alloy mesh does not increase greatly. This also shows that by using a platinum mesh, the contact surface of a plastic region increases with a low pressing load, and as a result, a high contact area can be maintained.
 本実施形態の固体酸化物形燃料電池1は、このような塑性域の接触面が増加することにより、押付荷重を高めなくても集電抵抗が低減する効果を応用したものである。なお、本明細書では、このような効果を「塑性域での集電抵抗低減効果」という。 The solid oxide fuel cell 1 of the present embodiment is an application of the effect that the current collection resistance is reduced without increasing the pressing load by increasing the contact surface in such a plastic region. In the present specification, such an effect is referred to as “current collection resistance reduction effect in a plastic region”.
 ここで、表1には、白金、ニッケル、ニッケル基合金(ハステロイ)及びフェライト系ステンレス鋼(Crofer22APU)のヤング率と降伏応力を示している。例えば、表面に凸部を形成した構造体の材料として降伏応力が低い白金やニッケルを用いることで、塑性域での集電抵抗低減効果により、集電体と電極との間の集電抵抗を低減できると推測される。ただ、白金は非常に高価でありコストが大幅に上昇してしまう。また、ニッケルは、空気極側において高温で容易に酸化するため、結果として集電抵抗が上昇してしまう。これに対し、ハステロイなどのニッケル基合金やCrofer22APUなどのステンレス鋼は耐酸化性は高いが降伏応力が高いため、塑性域での集電抵抗低減効果が得られ難い。 Here, Table 1 shows Young's modulus and yield stress of platinum, nickel, nickel-based alloy (Hastelloy) and ferritic stainless steel (Crofer22APU). For example, by using platinum or nickel, which has a low yield stress, as the material of the structure with convex portions on the surface, the current collection resistance between the current collector and the electrode can be reduced due to the current collection resistance reduction effect in the plastic region. It is estimated that it can be reduced. However, platinum is very expensive and the cost is greatly increased. Moreover, since nickel is easily oxidized at a high temperature on the air electrode side, the current collection resistance increases as a result. On the other hand, nickel base alloys such as Hastelloy and stainless steels such as Crofer 22APU have high oxidation resistance but high yield stress, and therefore it is difficult to obtain the current collecting resistance reduction effect in the plastic region.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 そのため、本実施形態では、図2及び図7に示すように、集電材部20の空気極側の表面に、集電材部20及び空気極11よりも降伏応力が小さい材料からなる金属薄層24が設けられている。このような金属薄層24を設けることにより、集電材部20と空気極11との間に、金属薄層24による塑性域の接触面22が形成される。そして、金属薄層24は、集電材部20及び空気極11よりも降伏応力が小さいため、塑性域の接触面22が弾性域の接触面21よりも多く生成する。そのため、塑性域での集電抵抗低減効果により、押付荷重を高めなくても集電材部20と空気極11との間の集電抵抗を低下させることが可能となる。 Therefore, in this embodiment, as shown in FIG.2 and FIG.7, the metal thin layer 24 which consists of a material whose yield stress is smaller than the current collection material part 20 and the air electrode 11 on the surface of the current collection material part 20 at the air electrode side. Is provided. By providing such a thin metal layer 24, a plastic contact surface 22 is formed by the thin metal layer 24 between the current collector 20 and the air electrode 11. Since the metal thin layer 24 has a lower yield stress than the current collector 20 and the air electrode 11, the plastic contact area 22 is generated more than the elastic contact area 21. Therefore, the current collection resistance between the current collector member 20 and the air electrode 11 can be reduced without increasing the pressing load due to the effect of reducing the current collection resistance in the plastic region.
 なお、図7に示すように、集電材部20の押付荷重を高めることにより、集電材部20の表面の凸部23にも弾性域25及び塑性域26が生成する。しかし、集電材部20は後述するように耐酸化性金属からなることが好ましく、このような耐酸化性金属の多くは降伏応力が高い。そのため、集電材部20では、塑性域26よりも弾性域25の方が多く生成する。しかし、本実施形態では、金属薄層24を設けることで塑性域の接触面22が多く生成することから、集電材部20の押付荷重を高めなくても、塑性域での集電抵抗低減効果を得ることが可能となる。 Note that, as shown in FIG. 7, by increasing the pressing load of the current collector member 20, an elastic region 25 and a plastic region 26 are also generated in the convex portion 23 on the surface of the current collector member 20. However, the current collector 20 is preferably made of an oxidation-resistant metal as will be described later, and many of such oxidation-resistant metals have a high yield stress. Therefore, in the current collector member 20, more elastic region 25 is generated than plastic region 26. However, in the present embodiment, since the contact surface 22 in the plastic region is generated by providing the metal thin layer 24, the current collection resistance reduction effect in the plastic region can be achieved without increasing the pressing load of the current collector member 20. Can be obtained.
 金属薄層24の厚みt1は、0.01μm以上であることが好ましい。つまり、図7に示すように、金属薄層24を設けた集電材部20を空気極11に押圧した後における、金属薄層24の厚みt1は0.01μm以上であることが好ましい。金属薄層24の厚みt1が0.01μm以上であることにより、塑性域の接触面22が多く生成し、塑性域での集電抵抗低減効果をより高めることが可能となる。また、金属薄層24を薄膜化し、材料コストを削減することが可能となる。なお、金属薄層24の厚みt1の上限は特に限定されないが、例えば100μm以下とすることができる。また、金属薄層24の厚みt1は、金属薄層24の断面を走査型電子顕微鏡(SEM)で観察することにより求めることができる。 The thickness t1 of the thin metal layer 24 is preferably 0.01 μm or more. That is, as shown in FIG. 7, it is preferable that the thickness t1 of the thin metal layer 24 after the current collector member 20 provided with the thin metal layer 24 is pressed against the air electrode 11 is 0.01 μm or more. When the thickness t1 of the metal thin layer 24 is 0.01 μm or more, a large number of contact surfaces 22 in the plastic region are generated, and it becomes possible to further enhance the current collection resistance reduction effect in the plastic region. In addition, the metal thin layer 24 can be made thinner to reduce the material cost. The upper limit of the thickness t1 of the thin metal layer 24 is not particularly limited, but can be, for example, 100 μm or less. The thickness t1 of the thin metal layer 24 can be obtained by observing the cross section of the thin metal layer 24 with a scanning electron microscope (SEM).
 金属薄層24を構成する材料は、集電材部20及び空気極11よりも降伏応力が小さい材料であれば特に限定されない。ただ、金属薄層24は、銀、白金及び金からなる群より選ばれる少なくとも一つからなることが好ましい。または、金属薄層24は、銀、白金及び金の少なくとも一つとパラジウム、ルテニウム及びコバルトの少なくとも一つとを含有する合金からなることが好ましい。これらの材料は、降伏応力が低く、高温での耐酸化性に優れるため、空気極側に用いても電気抵抗を低減することが可能となる。 The material constituting the metal thin layer 24 is not particularly limited as long as it has a lower yield stress than the current collector 20 and the air electrode 11. However, the metal thin layer 24 is preferably made of at least one selected from the group consisting of silver, platinum and gold. Alternatively, the thin metal layer 24 is preferably made of an alloy containing at least one of silver, platinum and gold and at least one of palladium, ruthenium and cobalt. Since these materials have low yield stress and excellent oxidation resistance at high temperatures, it is possible to reduce electrical resistance even when used on the air electrode side.
 集電材部20は、耐酸化性金属より構成されていることが好ましい。そのため、集電材部20は、クロム及び鉄の少なくとも一方を主成分とする合金からなることが好ましい。つまり、集電材部20は、クロム及び鉄の少なくとも一方を50質量%以上含有する合金を用いることが好ましい。集電材部20としてこのような合金を用いることにより、集電材部20の酸化の影響を排除して、集電抵抗の増加を抑制することが可能となる。 The current collector member 20 is preferably made of an oxidation resistant metal. Therefore, the current collector member 20 is preferably made of an alloy containing at least one of chromium and iron as a main component. That is, it is preferable to use an alloy containing 50 mass% or more of at least one of chromium and iron for the current collector part 20. By using such an alloy as the current collector 20, it becomes possible to eliminate the influence of oxidation of the current collector 20 and suppress an increase in current collection resistance.
 集電材部20を構成する合金としては、具体的には、ステンレス鋼及びクロム基合金の少なくとも一方を用いることができる。ステンレス鋼としては、フェライト系ステンレス鋼、マルテンサイト系ステンレス鋼、オーステナイト系ステンレス鋼が挙げられる。フェライト系ステンレス鋼としては、SUS430、SUS434、SUS405等が挙げられる。マルテンサイト系ステンレス鋼としては、SUS403、SUS410、SUS431等が挙げられる。オーステナイト系ステンレス鋼としては、SUS201、SUS301、SUS305等が挙げられる。また、クロム基合金としては、Ducrlloy CRF(94Cr5Fe1Y)、Crofer22合金,ZMG232L等が挙げられる。 Specifically, at least one of stainless steel and a chromium-based alloy can be used as the alloy constituting the current collector portion 20. Examples of the stainless steel include ferritic stainless steel, martensitic stainless steel, and austenitic stainless steel. Examples of ferritic stainless steel include SUS430, SUS434, and SUS405. Examples of martensitic stainless steel include SUS403, SUS410, and SUS431. Examples of austenitic stainless steel include SUS201, SUS301, and SUS305. Examples of the chromium-based alloy include Ducrloy CRF (94Cr5Fe1Y 2 O 3 ), Crofer 22 alloy, and ZMG232L.
 また、集電材部20は、ニッケルを主成分とする合金からなることも好ましい。つまり、集電材部20は、ニッケルを50質量%以上含有するニッケル基合金を用いることも好ましい。ニッケル基合金としては、インコネル(登録商標)やハステロイ(登録商標)等が挙げられる。 The current collector 20 is also preferably made of an alloy containing nickel as a main component. That is, it is also preferable to use a nickel-based alloy containing 50 mass% or more of nickel for the current collector member 20. Examples of the nickel-based alloy include Inconel (registered trademark) and Hastelloy (registered trademark).
 集電材部20としては、表面に凸部23が形成された構造体、例えばメッシュ(金網)のような構造体を用いることが好ましい。つまり、集電材部20は、上記材料からなる線材を集合してなる構造体であってもよく、また、当該線材を編んでなる構造体であってもよい。線材の編み方は特に限定されないが、例えば平織、あや織、畳織などの方法を採用することができる。また、集電材部20の表面に形成される凸部23は、例えば点線状、線状、格子状、網目状に形成することができる。さらに、集電材部20は、空気極集電体14と一体とした構成でも構わない。 As the current collector member 20, it is preferable to use a structure having a convex portion 23 formed on the surface, for example, a structure such as a mesh (metal mesh). That is, the current collector part 20 may be a structure formed by assembling wires made of the above materials, or may be a structure formed by knitting the wires. The method for knitting the wire is not particularly limited, and for example, methods such as plain weaving, twill weaving, and tatami weaving can be employed. Moreover, the convex part 23 formed in the surface of the current collection material part 20 can be formed in dotted line shape, linear form, a grid | lattice form, and mesh shape, for example. Further, the current collector member 20 may be integrated with the air electrode current collector 14.
 金属薄層24は、図7に示すように、空気極11及び空気極集電体14における電気的に導通する面の間に少なくとも介在していればよい。そのため、図8(a)に示すように、金属薄層24を空気極11の全面に設け、金属薄層24上に集電材部20の表面に形成された凸部23を接触させる構成とすることができる。また、図8(b)に示すように、金属薄層24を集電材部20と空気極11とが対向する面にのみ設ける構成とすることができる。さらに、図8(c)に示すように、集電材部20の全周に亘って金属薄層24を設けた後、空気極11及び空気極集電体14を接触させる構成とすることができる。さらに、図8(d)に示すように、金属薄層24を、集電材部20と空気極11とが対向する面とその周囲にのみ設ける構成とすることができる。ただ、金属薄層24は、空気極11と空気極集電体14との間に介在していればよいため、金属薄層24を構成する金属を少なくしてコストを削減する観点から、図8(b)及び図8(d)に示す構成がより好ましい。 As shown in FIG. 7, the thin metal layer 24 only needs to be interposed at least between the electrically conductive surfaces of the air electrode 11 and the air electrode current collector 14. Therefore, as shown in FIG. 8A, the metal thin layer 24 is provided on the entire surface of the air electrode 11, and the convex portion 23 formed on the surface of the current collector 20 is brought into contact with the metal thin layer 24. be able to. Moreover, as shown in FIG.8 (b), it can be set as the structure which provides the metal thin layer 24 only in the surface where the current collection material part 20 and the air electrode 11 oppose. Furthermore, as shown in FIG. 8C, the air electrode 11 and the air electrode current collector 14 can be brought into contact with each other after the metal thin layer 24 is provided over the entire circumference of the current collector member 20. . Further, as shown in FIG. 8D, the thin metal layer 24 can be provided only on the surface where the current collector 20 and the air electrode 11 face each other and the periphery thereof. However, since the metal thin layer 24 only needs to be interposed between the air electrode 11 and the air electrode current collector 14, from the viewpoint of reducing the cost by reducing the number of metals constituting the metal thin layer 24, FIG. The configuration shown in FIG. 8B and FIG. 8D is more preferable.
 集電材部20が線材から構成されている場合、線材の断面形状は特に限定されない。つまり、図7及び図8に示すように、集電材部20は、空気極11、集電材部20及び空気極集電体14の積層方向Yに沿う断面の形状が略円状とすることができる。ただ、図9に示すように、集電材部20は、空気極11、集電材部20及び空気極集電体14の積層方向Yに沿う断面の形状が三角形状、半円状又は台形状であることが好ましい。また、集電材部20は、積層方向Yに垂直な断面(XZ面)の面積が空気極集電体14から空気極11に向かうにつれて減少していることが好ましい。集電材部20の断面が三角形状、半円状又は台形状であることにより、集電材部20に押付荷重がかかった場合、集電材部20の先端部(表面の凸部23)が押し潰され、空気極11と対向する面の面積が増加する。そのため、金属薄層24を介して集電材部20と空気極11と間の導電性を高めることが可能となる。なお、集電材部は、積層方向Yに沿う断面の形状が楕円状であってもよい。 When the current collector 20 is made of a wire, the cross-sectional shape of the wire is not particularly limited. That is, as shown in FIGS. 7 and 8, the current collector member 20 has a substantially circular cross-sectional shape along the stacking direction Y of the air electrode 11, the current collector member 20, and the air electrode current collector 14. it can. However, as shown in FIG. 9, the current collector member 20 has a triangular, semicircular or trapezoidal cross-sectional shape along the stacking direction Y of the air electrode 11, the current collector member 20 and the air electrode current collector 14. Preferably there is. Moreover, it is preferable that the current collector part 20 has a cross-sectional area (XZ plane) perpendicular to the stacking direction Y that decreases from the air electrode current collector 14 toward the air electrode 11. Since the cross section of the current collector 20 is triangular, semicircular or trapezoidal, when a pressing load is applied to the current collector 20, the tip of the current collector 20 (the convex portion 23 on the surface) is crushed. Thus, the area of the surface facing the air electrode 11 increases. Therefore, the conductivity between the current collector 20 and the air electrode 11 can be increased via the thin metal layer 24. The current collector portion may have an elliptical cross-sectional shape along the stacking direction Y.
 上述のように、固体酸化物形燃料電池1では、空気極11及び燃料極12と電気的に導通する空気極集電体14及び燃料極集電体15がそれぞれ設けられている。そして、集電体(空気極集電体14、燃料極集電体15)は、電極(空気極11、燃料極12)からの集電機能と、酸化剤ガス及び燃料ガスを分離するセパレータとしての機能とを有するものである。なお、本明細書において、集電材部20は、集電体と別部品であるものと、集電体の一部の構造であるものとの区別はつけないものとする。 As described above, the solid oxide fuel cell 1 is provided with the air electrode current collector 14 and the fuel electrode current collector 15 that are electrically connected to the air electrode 11 and the fuel electrode 12, respectively. The current collectors (air electrode current collector 14 and fuel electrode current collector 15) function as a separator that separates the current collecting function from the electrodes (air electrode 11 and fuel electrode 12) from the oxidant gas and the fuel gas. It has the function of. In this specification, it is assumed that the current collector member 20 cannot be distinguished from those that are separate from the current collector and those that are part of the structure of the current collector.
 空気極集電体14及び燃料極集電体15を構成する材料は特に限定されないが、例えば耐酸化性に優れ、導電性を持つ合金材を使用することができる。具体的には、フェライト系ステンレス鋼やインコネル、ハステロイなどを使用することができる。 The materials constituting the air electrode current collector 14 and the fuel electrode current collector 15 are not particularly limited. For example, an alloy material having excellent oxidation resistance and conductivity can be used. Specifically, ferritic stainless steel, Inconel, Hastelloy, or the like can be used.
 ここで、酸化剤ガス流路14aを流れる酸化剤ガス及び燃料ガス流路15aを流れる燃料ガスの流れは、単セル10の面内で燃料ガスと酸化剤ガスとを直交する方向に流す直交流(クロスフロー)とすることができる。また、燃料ガス及び酸化剤ガスの流れは、単セル10の面内で対向して流れる対向流(カウンターフロー)であってもよく、単セル10の面内で同じ方向に流れる並行流(コーフロー)であってもよい。さらに、燃料ガス及び酸化剤ガスの流れは、単セル10の面内で入口から入った反応ガスの方向を変えて,逆方向に流すリターンフローであってもよく、単セル10の面内で反応ガスの流れ方向を何回か反対方向に変えて流すサーペンタインフローであってもよい。 Here, the flow of the oxidant gas flowing through the oxidant gas flow path 14a and the flow of the fuel gas flowing through the fuel gas flow path 15a are orthogonal flows in which the fuel gas and the oxidant gas flow in directions orthogonal to each other within the plane of the single cell 10. (Cross flow). In addition, the flow of the fuel gas and the oxidant gas may be a counter flow that flows in the plane of the single cell 10 and flows in the same direction in the plane of the single cell 10 (coflow). ). Further, the flow of the fuel gas and the oxidant gas may be a return flow that changes the direction of the reaction gas entering from the inlet in the plane of the single cell 10 and flows in the reverse direction. Serpentine flow may be used in which the flow direction of the reaction gas is changed several times in the opposite direction.
 空気極11としては、酸化雰囲気に強く、酸化剤ガスを透過し、電気伝導度が高く、酸素分子を酸化物イオンに変換する触媒作用を有するものを好適に用いることができる。また、空気極11は、電極触媒からなるものであっても、電極触媒と電解質材料とのサーメットからなるものであってもよい。電極触媒としては、例えば、銀(Ag)や白金(Pt)などの金属が適用される場合もあるが、ランタンストロンチウムコバルタイト(La1-xSrCoO:LSC)やランタンストロンチウムコバルトフェライト(La1-xSrCo1-yFe:LSCF)、サマリウムストロンチウムコバルタイト(SmSr1-xCoO:SSC)、ランタンストロンチウムマンガナイト(La1-xSrMnO:LSM)などのペロブスカイト型酸化物を適用することが好ましい。しかしながら、これらに限定されるものではなく、従来公知の空気極材料を適用することができる。なお、これらは一種を単独で又は複数種を組み合わせて適用することができる。さらに、電解質材料としては、例えば、酸化セリウム(CeO)、酸化ジルコニウム(ZrO)、酸化チタン(TiO)、酸化ランタン(La)などを挙げることができるが、これに限定されるものではなく、各種の安定化ジルコニアやセリア固溶体などの酸化物との混合体を好適に用いることができる。 As the air electrode 11, one that is strong in an oxidizing atmosphere, permeates the oxidant gas, has high electrical conductivity, and has a catalytic action for converting oxygen molecules into oxide ions can be suitably used. The air electrode 11 may be made of an electrode catalyst or a cermet of an electrode catalyst and an electrolyte material. For example, a metal such as silver (Ag) or platinum (Pt) may be used as the electrode catalyst, but lanthanum strontium cobaltite (La 1-x Sr x CoO 3 : LSC) or lanthanum strontium cobalt ferrite ( La 1-x Sr x Co 1 -y Fe y O 3: LSCF), samarium strontium cobaltite (Sm x Sr 1-x CoO 3: SSC), lanthanum strontium manganite (La 1-x Sr x MnO 3: LSM It is preferable to apply a perovskite oxide such as However, it is not limited to these, and conventionally known air electrode materials can be applied. In addition, these can be applied individually by 1 type or in combination of multiple types. Furthermore, examples of the electrolyte material include, but are not limited to, cerium oxide (CeO 2 ), zirconium oxide (ZrO 2 ), titanium oxide (TiO 2 ), and lanthanum oxide (La 2 O 3 ). It is not a thing, but the mixture with oxides, such as various stabilized zirconia and a ceria solid solution, can be used suitably.
 燃料極12としては、還元雰囲気に強く、燃料ガスを透過し、電気伝導度が高く、水素分子をプロトンに変換する触媒作用を有するものを好適に用いることができる。燃料極の構成材料としては、例えば、ニッケル(Ni)、コバルト(Co)及び白金(Pt)などの金属が単独で適用される場合もあるが、イットリア安定化ジルコニア(YSZ)に代表される酸素イオン伝導体を混在させたサーメットを適用することが好ましい。このような材料を用いることによって反応エリアが増加し、電極性能を向上させることができる。なお、イットリア安定化ジルコニア(YSZ)に替えて、サマリアドープセリア(SDC)やガドリアドープセリア(GDC)のようなセリア固溶体を適用することもできる。 As the fuel electrode 12, one that is strong in a reducing atmosphere, permeates the fuel gas, has high electrical conductivity, and has a catalytic action for converting hydrogen molecules into protons can be suitably used. As a constituent material of the fuel electrode, for example, metals such as nickel (Ni), cobalt (Co) and platinum (Pt) may be applied alone, but oxygen represented by yttria stabilized zirconia (YSZ) may be used. It is preferable to apply a cermet mixed with an ionic conductor. By using such a material, the reaction area increases and the electrode performance can be improved. A ceria solid solution such as samaria doped ceria (SDC) or gadria doped ceria (GDC) can be applied instead of yttria stabilized zirconia (YSZ).
 固体電解質層13としては、ガス不透過性と、電子を通さずに酸素イオンを通す性能を有するものを好適に用いることができる。固体電解質層の構成材料としては、例えば、イットリア(Y)や酸化ネオジム(Nd)、サマリア(Sm)、ガドリア(Gd)、スカンジア(Sc)などを固溶した安定化ジルコニアを適用することができる。また、サマリアドープセリア(SDC)やイットリアドープセリア(YDC)、ガドリアドープセリア(GDC)のようなセリア固溶体や、酸化ビスマス(Bi)、ランタンガレート(LaGaO)、ランタンストロンチウムマグネシウムガレート(La1-xSrGa1-yMg:LSMG)などを適用することもできる。 As the solid electrolyte layer 13, a layer having gas impermeability and a capability of passing oxygen ions without passing electrons can be suitably used. As a constituent material of the solid electrolyte layer, for example, yttria (Y 2 O 3 ), neodymium oxide (Nd 2 O 3 ), samaria (Sm 2 O 3 ), gadria (Gd 2 O 3 ), scandia (Sc 2 O 3). ) Or the like can be applied as stabilized zirconia. In addition, ceria solid solutions such as samaria doped ceria (SDC), yttria doped ceria (YDC), gadria doped ceria (GDC), bismuth oxide (Bi 2 O 3 ), lanthanum gallate (LaGaO 3 ), lanthanum strontium magnesium gallate (La 1-x Sr x Ga 1-y Mg y O 3: LSMG) or the like may be applied.
 このような固体酸化物形燃料電池1では、酸化剤ガス流路14aに酸素や空気などの酸化剤ガスを導入し、燃料ガス流路15aに水素や炭化水素、各種液体燃料を改質して得られる改質ガスなどの燃料ガスを導入する。そして、空気極11では、活性点となる三相界面において酸素ガス分子が酸素イオンと電子に分解し、酸素イオンは固体電解質層13を透過して燃料極12に伝導する。さらに燃料極12においては、同じく活性点となる三相界面において、固体電解質層13より伝導してきた酸素イオンと燃料ガス分子及び電子とが反応する。そして、空気極11及び燃料極12を、空気極集電体14及び燃料極集電体15を通じて電気的に接続することにより、電気エネルギーを得ることができる。 In such a solid oxide fuel cell 1, an oxidant gas such as oxygen or air is introduced into the oxidant gas passage 14a, and hydrogen, hydrocarbons, or various liquid fuels are reformed into the fuel gas passage 15a. Fuel gas such as reformed gas obtained is introduced. In the air electrode 11, oxygen gas molecules are decomposed into oxygen ions and electrons at the three-phase interface serving as an active point, and the oxygen ions are transmitted through the solid electrolyte layer 13 and conducted to the fuel electrode 12. Further, in the fuel electrode 12, oxygen ions conducted from the solid electrolyte layer 13 react with fuel gas molecules and electrons at the three-phase interface that is also the active point. Electrical energy can be obtained by electrically connecting the air electrode 11 and the fuel electrode 12 through the air electrode current collector 14 and the fuel electrode current collector 15.
 本実施形態の固体酸化物形燃料電池1は、燃料極12及び空気極11と、燃料極12及び空気極11により挟持される固体電解質層13と、空気極11側に配置される集電体(空気極集電体14)とを備える。さらに固体酸化物形燃料電池1は、空気極11と集電体との間に存在し、空気極側の表面に凸部23が形成された集電材部20を備える。そして、空気極11と集電材部20の凸部23との間には、集電材部20よりも降伏応力が小さく、塑性変形された塑性域が形成された金属薄層24が設けられている。このように、空気極側の表面に凸部23が形成された構造体からなる集電材部20と電極(空気極)との界面に、降伏応力が小さい金属を金属薄層として設けることにより、金属薄層が塑性変形する。そして、空気極11と集電材部20との間で、金属薄層24が塑性変形してなる塑性域が形成されている。そのため、金属薄層を設けない場合と比べて、同じ押付荷重でも集電抵抗の低減効果を高めるができる。その結果、押付荷重を大きくするための大径ボルトを採用する必要がなく、燃料電池スタックの重量や体積の増加を抑制しつつも、電極と集電体との間の集電抵抗を低減することが可能となる。 The solid oxide fuel cell 1 of this embodiment includes a fuel electrode 12 and an air electrode 11, a solid electrolyte layer 13 sandwiched between the fuel electrode 12 and the air electrode 11, and a current collector disposed on the air electrode 11 side. (Air electrode current collector 14). Further, the solid oxide fuel cell 1 includes a current collector member 20 that exists between the air electrode 11 and the current collector and has a convex portion 23 formed on the surface on the air electrode side. And between the air electrode 11 and the convex part 23 of the current collection material part 20, the metal thin layer 24 in which the yield stress was smaller than the current collection material part 20, and the plastic region deformed plastically was formed is provided. . In this way, by providing a metal with a small yield stress as a thin metal layer at the interface between the current collector member 20 and the electrode (air electrode) made of a structure in which the convex portion 23 is formed on the surface on the air electrode side, A thin metal layer undergoes plastic deformation. A plastic region formed by plastic deformation of the thin metal layer 24 is formed between the air electrode 11 and the current collector member 20. Therefore, compared with the case where a thin metal layer is not provided, the current collection resistance reduction effect can be enhanced even with the same pressing load. As a result, it is not necessary to use a large-diameter bolt for increasing the pressing load, and the current collection resistance between the electrode and the current collector is reduced while suppressing an increase in the weight and volume of the fuel cell stack. It becomes possible.
 また、集電材部20は、耐酸化性金属を用いることができるため、空気極11側に用いた場合でも高温時の酸化を抑制し、集電抵抗の低下を防ぐことが可能となる。 In addition, since the current collector member 20 can use an oxidation-resistant metal, even when it is used on the air electrode 11 side, it is possible to suppress oxidation at a high temperature and prevent a decrease in current collecting resistance.
[固体酸化物形燃料電池の製造方法]
 次に、本実施形態に係る固体酸化物形燃料電池1の製造方法について説明する。本実施形態では、まず集電材部20の表面に金属薄層24を形成する。金属薄層24の形成方法は特に限定されないが、例えば物理蒸着法(PVD法)、パウダージェットデポジション法(PJD法)、溶射法、めっき法、無電解めっき法、化学蒸着法(CVD法)などを用いることができる。
[Method for producing solid oxide fuel cell]
Next, a method for manufacturing the solid oxide fuel cell 1 according to this embodiment will be described. In the present embodiment, the thin metal layer 24 is first formed on the surface of the current collector member 20. Although the formation method of the metal thin layer 24 is not specifically limited, For example, physical vapor deposition method (PVD method), powder jet deposition method (PJD method), thermal spraying method, plating method, electroless plating method, chemical vapor deposition method (CVD method) Etc. can be used.
 金属薄層24は、集電材部20の表面全体に形成してもよい。ただ、金属薄層24は、少なくとも集電材部20と空気極11との間に設けられていればよい。そのため、集電材部20と空気極11との間以外については、マスキング等を施し、金属薄層24が形成されないようにしてもよい。これにより、金属薄層24の材料を削減することが可能となる。 The thin metal layer 24 may be formed on the entire surface of the current collector 20. However, the metal thin layer 24 should just be provided at least between the current collector part 20 and the air electrode 11. For this reason, masking or the like may be performed on portions other than between the current collector member 20 and the air electrode 11 so that the thin metal layer 24 is not formed. Thereby, the material of the metal thin layer 24 can be reduced.
 次に、空気極集電体14、金属薄層24を設けた集電材部20、及び空気極11をこの順で積層し、金属薄層24に対し押付荷重を付加する。これにより、金属薄層24が塑性変形し、塑性域の接触面22が得られる。なお、この際、空気極集電体14、金属薄層24を設けた集電材部20、空気極11、固体電解質層13及び燃料極12をこの順で積層し、纏めて押付荷重を付加してもよい。このようにして、固体酸化物形燃料電池1を得ることができる。 Next, the air electrode current collector 14, the current collector member 20 provided with the metal thin layer 24, and the air electrode 11 are laminated in this order, and a pressing load is applied to the metal thin layer 24. Thereby, the metal thin layer 24 is plastically deformed, and the contact surface 22 in the plastic region is obtained. At this time, the air electrode current collector 14, the current collector member 20 provided with the thin metal layer 24, the air electrode 11, the solid electrolyte layer 13, and the fuel electrode 12 are laminated in this order, and a pressing load is collectively applied. May be. In this way, the solid oxide fuel cell 1 can be obtained.
 また、固体酸化物形燃料電池1の他の製造方法としては、まず、空気極11の表面に金属薄層24を形成する。金属薄層24の形成方法は特に限定されないが、上述の方法を用いることができる。この際、上述と同様に、集電材部20と空気極11との間以外については、マスキング等を施し、金属薄層24が形成されないようにしてもよい。そして、空気極集電体14、集電材部20、及び金属薄層24を設けた空気極11をこの順で積層し、金属薄層24に対し押付荷重を付加することにより、本実施形態の固体酸化物形燃料電池を得ることができる。 As another manufacturing method of the solid oxide fuel cell 1, first, a thin metal layer 24 is formed on the surface of the air electrode 11. Although the formation method of the metal thin layer 24 is not specifically limited, The above-mentioned method can be used. At this time, similarly to the above, masking or the like may be performed except for between the current collector member 20 and the air electrode 11 so that the thin metal layer 24 is not formed. Then, the air electrode current collector 14, the current collector member 20, and the air electrode 11 provided with the metal thin layer 24 are laminated in this order, and a pressing load is applied to the metal thin layer 24, whereby A solid oxide fuel cell can be obtained.
 なお、本実施形態では、空気極集電体14と集電材部20とを溶接した後に、金属薄層24を形成してもよい。空気極集電体14と集電材部20とを溶接して溶接部27を設けることにより、空気極集電体14と集電材部20との間の電気抵抗を低減し、燃料電池の出力をより高めることが可能となる。 In the present embodiment, the thin metal layer 24 may be formed after the air electrode current collector 14 and the current collector 20 are welded. By welding the air electrode current collector 14 and the current collector member 20 to provide a welded portion 27, the electrical resistance between the air electrode current collector 14 and the current collector member 20 is reduced, and the output of the fuel cell is reduced. It becomes possible to raise more.
 以下、本発明を実施例によりさらに詳細に説明するが、本発明はこれら実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
[実施例1]
 まず、厚みが0.01mmのフェライト板材(フェライト系ステンレス鋼SUS430)をプレス法によって成型することにより、集電体を得た。さらに集電材部として、フェライト材(フェライト系ステンレス鋼SUS430)から成るメッシュ(♯100)を用意し、予め集電体と集電材部を溶接して一体化した。
[Example 1]
First, a current collector was obtained by molding a ferrite plate material (ferritic stainless steel SUS430) having a thickness of 0.01 mm by a pressing method. Further, a mesh (# 100) made of a ferrite material (ferritic stainless steel SUS430) was prepared as a current collector part, and the current collector and the current collector part were previously integrated by welding.
 また、空気極(ランタンストロンチウムコバルトフェライト:LSCF)、固体電解質層(イットリア安定化ジルコニア:YSZ)、燃料極(NiとYSZ粒子のサーメット:Ni-YSZ)及びメタルサポートをこの順で積層してなる発電用セルも準備した。なお、メタルサポートは燃料極における固体電解質層と反対側の面に接触し、多孔質な金属からなる支持体である。 In addition, an air electrode (lanthanum strontium cobalt ferrite: LSCF), a solid electrolyte layer (yttria stabilized zirconia: YSZ), a fuel electrode (cermet of Ni and YSZ particles: Ni—YSZ) and a metal support are laminated in this order. A power generation cell was also prepared. The metal support is a support made of a porous metal in contact with the surface of the fuel electrode opposite to the solid electrolyte layer.
 次に、集電材部20が空気極11と接触する面以外を樹脂層でコーティングした。具体的には、まず、図10(a)に示すように、集電材部20が空気極11と接触する面をカプトン(登録商標)テープ31を用いてコーティングした。次に、図10(b)に示すように、ポリプロピレン樹脂を有機溶媒に溶かした樹脂溶液を作成し、カプトンテープ31上にスプレーで噴霧した。その後、常温で24時間以上の乾燥処理を施すことにより、樹脂層32を形成した。そして、図10(c)に示すように、カプトンテープ31を剥がすことにより、樹脂層32を形成した。 Next, the surface of the current collector 20 other than the surface in contact with the air electrode 11 was coated with a resin layer. Specifically, first, as shown in FIG. 10A, the surface where the current collector 20 contacts the air electrode 11 was coated using a Kapton (registered trademark) tape 31. Next, as shown in FIG. 10B, a resin solution in which a polypropylene resin was dissolved in an organic solvent was prepared and sprayed on the Kapton tape 31 by spraying. Then, the resin layer 32 was formed by performing the drying process for 24 hours or more at normal temperature. And as shown in FIG.10 (c), the resin layer 32 was formed by peeling the Kapton tape 31. FIG.
 そして、得られた樹脂層32上に、金属薄層を形成した。具体的には、樹脂層32を形成した発電用セルをマグネトロンスパッタ装置内に設置し、さらに当該装置内にAgターゲットを設置した。そして、出力1200Wで室温から所定温度に装置内の温度を制御し、60分間成膜を実施した。その結果、図10(d)に示すように、膜厚が1~2μm程度の金属薄層24(銀薄膜)を、空気極11及び樹脂層32上に形成した。 Then, a thin metal layer was formed on the obtained resin layer 32. Specifically, the power generation cell on which the resin layer 32 was formed was installed in a magnetron sputtering apparatus, and an Ag target was installed in the apparatus. Then, the temperature in the apparatus was controlled from room temperature to a predetermined temperature at an output of 1200 W, and film formation was performed for 60 minutes. As a result, as shown in FIG. 10D, a thin metal layer 24 (silver thin film) having a thickness of about 1 to 2 μm was formed on the air electrode 11 and the resin layer 32.
 次に、図10(e)に示すように、集電材部20の凸部23を空気極11上の金属薄層24に押し付けることにより、スタックを組み上げた。その際、集電材部20の凸部23が塑性変形するように、規定面圧(0.3MPa程度)の押圧を付与した。そして、スタックを組み上げた後、燃料極12側を不活性ガスで封止して、空気極11側のみを大気中800℃で焼成した。これにより樹脂層32を消失させ、集電材部20と空気極11とが接触していない箇所の金属薄層を剥離した。 Next, as shown in FIG. 10 (e), the stack was assembled by pressing the projection 23 of the current collector 20 against the thin metal layer 24 on the air electrode 11. At that time, a specified surface pressure (about 0.3 MPa) was applied so that the convex portion 23 of the current collector member 20 was plastically deformed. After assembling the stack, the fuel electrode 12 side was sealed with an inert gas, and only the air electrode 11 side was fired at 800 ° C. in the atmosphere. As a result, the resin layer 32 disappeared, and the thin metal layer where the current collector 20 and the air electrode 11 were not in contact with each other was peeled off.
 そして、空気極側の流路にパージガス(空気)を一定の流速を持たせて供給することにより、余剰の金属薄層をスタック外に噴出させて回収した。このようにして、図10(f)に示すような、本実施形態の燃料電池を得た。 Then, by supplying a purge gas (air) with a constant flow rate to the flow path on the air electrode side, an excessive thin metal layer was ejected out of the stack and recovered. Thus, the fuel cell of this embodiment as shown in FIG.
[実施例2]
 まず、実施例1と同様にフェライト板材(フェライト系ステンレス鋼SUS430)をプレス法によって成型することにより、集電体を得た。さらに集電材部として、フェライト材(フェライト系ステンレス鋼SUS430)から成るメッシュ(♯100)を用意し、図11(a)に示すように、予め空気極集電体14と集電材部20を溶接して一体化した。また、実施例1と同様の発電用セルも準備した。
[Example 2]
First, a current collector was obtained by molding a ferrite plate material (ferritic stainless steel SUS430) by a press method in the same manner as in Example 1. Further, a mesh (# 100) made of a ferrite material (ferritic stainless steel SUS430) is prepared as the current collector part, and the air electrode current collector 14 and the current collector part 20 are welded in advance as shown in FIG. And integrated. A power generation cell similar to that in Example 1 was also prepared.
 次に、予め空気極集電体14と集電材部20を溶接して一体化したものに対し、集電材部20以外をカプトンシートで覆ってマスキングし、集電材部20に金属薄層24をコーティングした。具体的には、マスキングした集電材部20をマグネトロンスパッタ装置内に設置し、さらに当該装置内にAgターゲットを設置した。そして、出力1200Wで室温から所定温度に装置内の温度を制御し、60分間成膜を実施した。その結果、図11(b)に示すように、膜厚が1~2μm程度の金属薄層24(銀薄膜)を、集電材部20上に形成した。 Next, the air electrode current collector 14 and the current collector part 20 are previously integrated by welding, and the other parts than the current collector part 20 are covered with a Kapton sheet and masked, and the thin metal layer 24 is formed on the current collector part 20. Coated. Specifically, the masked current collector 20 was installed in a magnetron sputtering apparatus, and an Ag target was installed in the apparatus. Then, the temperature in the apparatus was controlled from room temperature to a predetermined temperature at an output of 1200 W, and film formation was performed for 60 minutes. As a result, as shown in FIG. 11B, a thin metal layer 24 (silver thin film) having a thickness of about 1 to 2 μm was formed on the current collector 20.
 次に、図11(c)に示すように、集電材部20の凸部23を空気極11上に押し付けることにより、スタックを組み上げた。その際、集電材部20の凸部23が塑性変形するように、規定面圧(0.3MPa程度)の押圧を付与した。このようにして、本実施形態の燃料電池を得た。 Next, as shown in FIG. 11 (c), the stack was assembled by pressing the convex portion 23 of the current collector 20 onto the air electrode 11. At that time, a specified surface pressure (about 0.3 MPa) was applied so that the convex portion 23 of the current collector member 20 was plastically deformed. Thus, the fuel cell of this embodiment was obtained.
[実施例3]
 まず、実施例1と同様にフェライト板材(フェライト系ステンレス鋼SUS430)をプレス法によって成型することにより、集電体を得た。さらに集電材部として、フェライト材(フェライト系ステンレス鋼SUS430)から成るメッシュ(♯100)を用意し、図12(a)に示すように、予め空気極集電体14と集電材部20を溶接して一体化した。また、実施例1と同様の発電用セルも準備した。
[Example 3]
First, a current collector was obtained by molding a ferrite plate material (ferritic stainless steel SUS430) by a press method in the same manner as in Example 1. Further, a mesh (# 100) made of a ferrite material (ferritic stainless steel SUS430) is prepared as a current collector portion, and the air electrode current collector 14 and the current collector portion 20 are welded in advance as shown in FIG. And integrated. A power generation cell similar to that in Example 1 was also prepared.
 次に、予め空気極集電体14と集電材部20を溶接して一体化したものに対し、集電材部20の空気極側以外の部分にマスキングを行った。具体的には、まず、空気極集電体14と集電材部20を溶接して一体化したものに対し、集電材部20以外の部分をカプトンシートで覆った。次に、図12(b)に示すように、ポリプロピレン樹脂を有機溶媒に溶かした樹脂溶液を作成し、集電材部20上にスプレーで噴霧した。その後、常温で24時間以上の乾燥処理を施すことにより、樹脂層32を形成した。そして、図12(c)に示すように、樹脂層32の空気極11側に対し、スプレー噴霧法を用いたブラスト処理を実施して、樹脂層32の一部を剥離した。 Next, masking was performed on portions other than the air electrode side of the current collector part 20 with respect to the one in which the air electrode current collector 14 and the current collector part 20 were previously integrated. Specifically, first, the air electrode current collector 14 and the current collector part 20 were welded and integrated, and portions other than the current collector part 20 were covered with a Kapton sheet. Next, as shown in FIG. 12B, a resin solution in which a polypropylene resin was dissolved in an organic solvent was prepared and sprayed on the current collector 20 by spraying. Then, the resin layer 32 was formed by performing the drying process for 24 hours or more at normal temperature. And as shown in FIG.12 (c), the blasting process using the spray spraying method was implemented with respect to the air electrode 11 side of the resin layer 32, and a part of resin layer 32 was peeled.
 そして、樹脂層32で部分的にマスキングされた集電材部20に対し、金属薄層を形成した。具体的には、マスキングされた集電材部20をマグネトロンスパッタ装置内に設置し、さらに当該装置内にAgターゲットを設置した。そして、出力1200Wで室温から所定温度に装置内の温度を制御し、60分間成膜を実施した。その結果、図12(d)に示すように、膜厚が1~2μm程度の金属薄層24(銀薄膜)を、集電材部20及び樹脂層32上に形成した。 Then, a thin metal layer was formed on the current collector part 20 partially masked with the resin layer 32. Specifically, the masked current collector 20 was installed in a magnetron sputtering apparatus, and an Ag target was installed in the apparatus. Then, the temperature in the apparatus was controlled from room temperature to a predetermined temperature at an output of 1200 W, and film formation was performed for 60 minutes. As a result, as shown in FIG. 12D, a metal thin layer 24 (silver thin film) having a film thickness of about 1 to 2 μm was formed on the current collector 20 and the resin layer 32.
 金属薄層24が形成された集電材部20及び空気極集電体14を一体化したものを、大気中800℃で焼成した。これにより樹脂層32を消失させ、集電材部20と樹脂層32でマスキングされた箇所の金属薄層24を剥離した。そして、空気流を当てることにより剥離した金属薄層24を除去し、さらに集電材部20以外の部分を覆ったカプトンシートを剥がすことにより、図12(e)に示すように、金属薄層24(銀薄膜)を、集電材部20の空気極側のみに形成した。 The current collector part 20 on which the thin metal layer 24 was formed and the air electrode current collector 14 were integrated and fired at 800 ° C. in the atmosphere. As a result, the resin layer 32 disappeared, and the metal thin layer 24 at the portion masked by the current collector 20 and the resin layer 32 was peeled off. Then, the thin metal layer 24 that has been peeled off is removed by applying an air flow, and the Kapton sheet that covers a portion other than the current collector 20 is further peeled off, thereby forming the thin metal layer 24 as shown in FIG. (Silver thin film) was formed only on the air electrode side of the current collector 20.
 次に、図12(f)に示すように、集電材部20の凸部23を空気極11上に押し付けることにより、スタックを組み上げた。その際、集電材部20の凸部23が塑性変形するように、規定面圧(0.3MPa程度)の押圧を付与した。このようにして、本実施形態の燃料電池を得た。 Next, as shown in FIG. 12 (f), the stack was assembled by pressing the convex portion 23 of the current collector portion 20 onto the air electrode 11. At that time, a specified surface pressure (about 0.3 MPa) was applied so that the convex portion 23 of the current collector member 20 was plastically deformed. Thus, the fuel cell of this embodiment was obtained.
[比較例]
 まず、厚みが0.01mmのフェライト板材(フェライト系ステンレス鋼SUS430)をプレス法によって成型することにより、集電体を得た。さらに集電材部として、フェライト材(フェライト系ステンレス鋼SUS430)から成るメッシュ(♯100)を用意し、予め集電体と集電材部を溶接して一体化した。また、実施例1と同様の発電用セルも準備した。
[Comparative example]
First, a current collector was obtained by molding a ferrite plate material (ferritic stainless steel SUS430) having a thickness of 0.01 mm by a pressing method. Further, a mesh (# 100) made of a ferrite material (ferritic stainless steel SUS430) was prepared as a current collector part, and the current collector and the current collector part were previously integrated by welding. A power generation cell similar to that in Example 1 was also prepared.
 次に、集電材部の凸部を空気極上に押し付けることにより、スタックを組み上げた。その際、集電材部の凸部が塑性変形するように、規定面圧(0.3MPa程度)の押圧を付与した。このようにして、本実施形態の燃料電池を得た。つまり、本実施形態の燃料電池は、実施例1の燃料電池に対して金属薄層を設けていないものである。 Next, the stack was assembled by pressing the convex part of the current collector part onto the air electrode. At that time, a specified surface pressure (about 0.3 MPa) was applied so that the convex portion of the current collector portion was plastically deformed. Thus, the fuel cell of this embodiment was obtained. That is, the fuel cell of the present embodiment is one in which a thin metal layer is not provided with respect to the fuel cell of Example 1.
 なお、実施例1乃至3及び比較例の燃料電池において、数式1に示すセパレータ接触率は20%となるように調整した。
 [数1]
[セパレータ接触率](%)=[金属薄層又は集電材部と、空気極との接触面の面積]/[空気極における集電体と対向する面の面積]×100
In the fuel cells of Examples 1 to 3 and the comparative example, the separator contact ratio shown in Formula 1 was adjusted to 20%.
[Equation 1]
[Separator contact ratio] (%) = [Area of contact surface between thin metal layer or current collector part and air electrode] / [Area of surface facing current collector in air electrode] × 100
[評価]
 実施例1及び比較例で得られた燃料電池に対し、図13に示すように、空気極集電体14における集電材部20と反対側の面に金属板からなるメタル層40を積層した。そして、メタル層40と燃料極12に積層したメタルサポートとの間の集電抵抗(ASR)を測定した。なお、集電抵抗の測定は、メタル層40とメタルサポートと間の電圧を4Vとし、一定の電圧を負荷した状態において電流を最大1Aまで変化させることにより測定した。なお、集電抵抗を測定する際の温度は750℃とした。
[Evaluation]
With respect to the fuel cells obtained in Example 1 and the comparative example, as shown in FIG. 13, a metal layer 40 made of a metal plate was laminated on the surface of the air electrode current collector 14 opposite to the current collector part 20. And the current collection resistance (ASR) between the metal layer 40 and the metal support laminated | stacked on the fuel electrode 12 was measured. The current collecting resistance was measured by setting the voltage between the metal layer 40 and the metal support to 4 V and changing the current up to 1 A under a constant voltage load. In addition, the temperature at the time of measuring current collection resistance was 750 degreeC.
 図14に示すように、実施例1の燃料電池は集電抵抗は2.07×10-2Ωcm程度であるのに対し、比較例の燃料電池は集電抵抗は2.27×10-2Ωcm程度であった。このように、集電材部及び空気極よりも降伏応力が小さい金属薄層(銀薄膜)を設けることにより、集電抵抗が一割程度低下し、発電性能を向上できることが分かる。 As shown in FIG. 14, while the fuel cell of Example 1 is the collector resistance is about 2.07 × 10 -2 Ωcm 2, the fuel cell of Comparative Example collector resistance 2.27 × 10 - It was about 2 Ωcm 2 . Thus, it can be seen that by providing a metal thin layer (silver thin film) having a yield stress smaller than that of the current collector part and the air electrode, the current collection resistance is reduced by about 10% and the power generation performance can be improved.
 以上、複数の実施形態に沿って本発明の内容を説明したが、本発明はこれらの記載に限定されるものではなく、種々の変形及び改良が可能であることは、当業者には自明である。 As described above, the contents of the present invention have been described along a plurality of embodiments. However, the present invention is not limited to these descriptions, and it is obvious to those skilled in the art that various modifications and improvements can be made. is there.
 1 固体酸化物形燃料電池
 10 単セル
 11 空気極
 12 燃料極
 13 固体電解質層
 14 空気極集電体
 20 集電材部
 23 凸部
 24 金属薄層
DESCRIPTION OF SYMBOLS 1 Solid oxide fuel cell 10 Single cell 11 Air electrode 12 Fuel electrode 13 Solid electrolyte layer 14 Air electrode current collector 20 Current collector part 23 Convex part 24 Metal thin layer

Claims (6)

  1.  燃料極及び空気極と、
     前記燃料極及び前記空気極により挟持される固体電解質層と、
     前記空気極側に配置される集電体と、
     前記空気極と前記集電体との間に存在し、空気極側の表面に凸部が形成された集電材部と、
     を備え、
     前記空気極と前記集電材部の凸部との間には、前記集電材部よりも降伏応力が小さく、塑性変形された塑性域が形成された金属薄層が設けられていることを特徴とする固体酸化物形燃料電池。
    A fuel electrode and an air electrode;
    A solid electrolyte layer sandwiched between the fuel electrode and the air electrode;
    A current collector disposed on the air electrode side;
    A current collector part that exists between the air electrode and the current collector and has a convex part formed on the surface on the air electrode side;
    With
    Between the air electrode and the convex part of the current collector part, a thin metal layer in which a yield stress is smaller than that of the current collector part and a plastic region deformed plastically is formed is provided. Solid oxide fuel cell.
  2.  前記集電材部は、クロム及び鉄の少なくとも一方を主成分とする合金からなることを特徴とする請求項1に記載の固体酸化物形燃料電池。 2. The solid oxide fuel cell according to claim 1, wherein the current collector part is made of an alloy containing at least one of chromium and iron as a main component.
  3.  前記金属薄層の厚みは、0.01μm以上であることを特徴とする請求項1又は2に記載の固体酸化物形燃料電池。 3. The solid oxide fuel cell according to claim 1, wherein the thin metal layer has a thickness of 0.01 μm or more.
  4.  前記金属薄層は、銀、白金及び金からなる群より選ばれる少なくとも一つ、又は銀、白金及び金の少なくとも一つとパラジウム、ルテニウム及びコバルトの少なくとも一つとを含有する合金からなることを特徴とする請求項1乃至3のいずれか一項に記載の固体酸化物形燃料電池。 The thin metal layer is composed of at least one selected from the group consisting of silver, platinum and gold, or an alloy containing at least one of silver, platinum and gold and at least one of palladium, ruthenium and cobalt. The solid oxide fuel cell according to any one of claims 1 to 3.
  5.  前記集電材部は、前記空気極、前記集電材部及び前記集電体の積層方向に沿う断面の形状が三角形状、半円状又は台形状であり、かつ、前記積層方向に垂直な断面の面積が前記集電体から前記空気極に向かうにつれて減少していることを特徴とする請求項1乃至4のいずれか一項に記載の固体酸化物形燃料電池。 The current collector part has a cross-sectional shape along the stacking direction of the air electrode, the current collector part and the current collector that is triangular, semicircular or trapezoidal and has a cross section perpendicular to the stacking direction. 5. The solid oxide fuel cell according to claim 1, wherein the area decreases from the current collector toward the air electrode. 6.
  6.  請求項1乃至5のいずれか一項に記載の固体酸化物形燃料電池の製造方法であって、
     前記集電体と前記集電材部とを溶接した後に、前記金属薄層を形成することを特徴とする固体酸化物形燃料電池の製造方法。
    A method for producing a solid oxide fuel cell according to any one of claims 1 to 5,
    A method for producing a solid oxide fuel cell, comprising forming the metal thin layer after welding the current collector and the current collector portion.
PCT/JP2015/069152 2015-07-02 2015-07-02 Solid oxide fuel cell and method for manufacturing same WO2017002264A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/069152 WO2017002264A1 (en) 2015-07-02 2015-07-02 Solid oxide fuel cell and method for manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/069152 WO2017002264A1 (en) 2015-07-02 2015-07-02 Solid oxide fuel cell and method for manufacturing same

Publications (1)

Publication Number Publication Date
WO2017002264A1 true WO2017002264A1 (en) 2017-01-05

Family

ID=57608074

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/069152 WO2017002264A1 (en) 2015-07-02 2015-07-02 Solid oxide fuel cell and method for manufacturing same

Country Status (1)

Country Link
WO (1) WO2017002264A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002216807A (en) * 2000-11-16 2002-08-02 Mitsubishi Materials Corp Air electrode collector for solid electrolyte type fuel cell
JP2006012453A (en) * 2004-06-22 2006-01-12 Nissan Motor Co Ltd Solid oxide fuel cell stack and solid oxide fuel cell
JP2008117737A (en) * 2006-11-08 2008-05-22 Nippon Telegr & Teleph Corp <Ntt> Planar solid oxide fuel cell
JP2008243394A (en) * 2007-03-26 2008-10-09 Toyota Motor Corp Manufacturing method of cell for fuel cell
JP2010073566A (en) * 2008-09-19 2010-04-02 Nissan Motor Co Ltd Solid electrolyte fuel cell and method of manufacturing the same
JP2010236012A (en) * 2009-03-31 2010-10-21 Nisshin Steel Co Ltd High temperature conductive member
JP2013239330A (en) * 2012-05-15 2013-11-28 Ngk Spark Plug Co Ltd Solid oxide fuel cell and manufacturing method thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002216807A (en) * 2000-11-16 2002-08-02 Mitsubishi Materials Corp Air electrode collector for solid electrolyte type fuel cell
JP2006012453A (en) * 2004-06-22 2006-01-12 Nissan Motor Co Ltd Solid oxide fuel cell stack and solid oxide fuel cell
JP2008117737A (en) * 2006-11-08 2008-05-22 Nippon Telegr & Teleph Corp <Ntt> Planar solid oxide fuel cell
JP2008243394A (en) * 2007-03-26 2008-10-09 Toyota Motor Corp Manufacturing method of cell for fuel cell
JP2010073566A (en) * 2008-09-19 2010-04-02 Nissan Motor Co Ltd Solid electrolyte fuel cell and method of manufacturing the same
JP2010236012A (en) * 2009-03-31 2010-10-21 Nisshin Steel Co Ltd High temperature conductive member
JP2013239330A (en) * 2012-05-15 2013-11-28 Ngk Spark Plug Co Ltd Solid oxide fuel cell and manufacturing method thereof

Similar Documents

Publication Publication Date Title
CN108886152B (en) Fuel-cell single-cell
EP3306719B1 (en) Solid oxide fuel cell
TW201117461A (en) Internal reforming anode for solid oxide fuel cells
JP5309487B2 (en) Fuel cell
JP6279519B2 (en) Fuel cell stack and single fuel cell
JP2018037329A (en) Solid oxide fuel battery single cell
US20140178795A1 (en) Solid oxide fuel cell and method of manufacturing interconnector for solid oxide fuel cell
JP2008041303A (en) Separator of flat plate type solid oxide fuel cell
JP6917182B2 (en) Conductive members, electrochemical reaction units, and electrochemical reaction cell stacks
US20110053032A1 (en) Manifold for series connection on fuel cell
US8507145B2 (en) Fuel cell and method of producing the fuel cell
WO2017002264A1 (en) Solid oxide fuel cell and method for manufacturing same
WO2019167437A1 (en) Fuel cell
KR101353788B1 (en) Separator for solid oxide fuel cell, method for manufacturing the same and solid oxide fuel cell comprising the same
US10411267B2 (en) Highly porous cathode catalyst layer structures for flexible solid oxide fuel cell applications in vehicles
JP2009117198A (en) Solid oxide fuel cell and its manufacturing method
US10637070B2 (en) Highly porous anode catalyst layer structures for fuel flexible solid oxide fuel cells
JP5417935B2 (en) Solid oxide fuel cell
US20240178410A1 (en) Solid oxide cell stack
JP2018206693A (en) Conductive member, electrochemical reaction unit and electrochemical reaction cell stack
Haydn et al. A novel manufacturing route for metal supported thin-film solid oxide fuel cells
JP6821613B2 (en) Conductive members, electrochemical reaction units and electrochemical reaction cell stack
US10910662B2 (en) Structured anode for a solid oxide fuel cell
EP2712012A2 (en) A method of manufacturing a fuel cell stack having an electrically conductive interconnect.
JP6311970B2 (en) Electrode for solid oxide fuel cell, production method thereof, and solid oxide fuel cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15897191

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15897191

Country of ref document: EP

Kind code of ref document: A1