WO2017002176A1 - Vacuum device and analysis device provided with same - Google Patents

Vacuum device and analysis device provided with same Download PDF

Info

Publication number
WO2017002176A1
WO2017002176A1 PCT/JP2015/068704 JP2015068704W WO2017002176A1 WO 2017002176 A1 WO2017002176 A1 WO 2017002176A1 JP 2015068704 W JP2015068704 W JP 2015068704W WO 2017002176 A1 WO2017002176 A1 WO 2017002176A1
Authority
WO
WIPO (PCT)
Prior art keywords
vacuum
gas
vacuum vessel
heater
temperature
Prior art date
Application number
PCT/JP2015/068704
Other languages
French (fr)
Japanese (ja)
Inventor
佐藤 和久
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to PCT/JP2015/068704 priority Critical patent/WO2017002176A1/en
Priority to JP2017525705A priority patent/JP6583412B2/en
Publication of WO2017002176A1 publication Critical patent/WO2017002176A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/24Vacuum systems, e.g. maintaining desired pressures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes
    • H01J49/34Dynamic spectrometers
    • H01J49/40Time-of-flight spectrometers

Definitions

  • the present invention relates to a vacuum apparatus including a vacuum container that accommodates a part to be heated, and an analysis apparatus including the vacuum apparatus.
  • a vacuum apparatus provided with a vacuum vessel that accommodates components therein is known.
  • internal components are used in a state where the inside of the vacuum vessel is in a vacuum atmosphere.
  • an ionized sample is introduced into a vacuum chamber in a vacuum atmosphere.
  • the ions are ejected by an accelerator attached to the flight tube and fly in the flight tube. At this time, the ions reach the detector in the flight tube with a flight time corresponding to the mass.
  • a mass spectrum is created based on the detection signal obtained continuously.
  • the sample is usually analyzed while keeping the flight tube as a part at a constant temperature. Thereby, the expansion or contraction of the flight tube is suppressed, and the occurrence of errors in the analysis is suppressed.
  • the vacuum tube is evacuated and then the flight tube is heated to reach a certain temperature.
  • the thermal conductivity in the vacuum vessel decreases. Therefore, there is a problem that the heat transfer speed to the flight tube becomes slow, and the time until the temperature of the flight tube reaches a certain temperature becomes long. As a result, there is a problem that the time for starting the analysis process is delayed and the entire processing time is increased.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a vacuum apparatus capable of increasing the temperature of components in a vacuum vessel in a short time, and an analyzer equipped with the same.
  • a vacuum apparatus includes a vacuum vessel, a vacuum pump, a gas introduction unit, and a control unit.
  • the vacuum container accommodates components therein, and a gas inlet and a gas outlet are formed.
  • the vacuum pump sucks the gas in the vacuum container and creates a vacuum atmosphere in the vacuum container.
  • the gas introduction unit introduces a heated gas into the vacuum vessel from the gas inlet.
  • the controller is configured to discharge the heated gas from the gas outlet while allowing the heated gas to be introduced into the vacuum container from the gas inlet by the gas introduction unit.
  • the introduction of gas by the gas introduction unit is stopped, and then the inside of the vacuum vessel is made a vacuum atmosphere by the vacuum pump.
  • the vacuum device in the vacuum device, after the temperature of the components in the vacuum container becomes high, the inside of the vacuum container becomes a vacuum atmosphere. Therefore, the temperature of the component can be increased in a short time as compared with the case where the temperature of the component is increased after the inside of the vacuum vessel is evacuated. As a result, when an analysis process is performed using this vacuum apparatus, the start time of the analysis process can be advanced, and the entire process time can be shortened.
  • the said gas introduction part may be formed with the flow path through which gas passes.
  • the vacuum apparatus may further include a heater.
  • the heater heats the vacuum container and heats the gas passing through the flow path.
  • the heater that heats the vacuum vessel also serves as the heater that heats the gas passing through the flow path of the gas introduction unit. Therefore, an increase in the number of parts can be suppressed in the vacuum apparatus. As a result, the vacuum device can be reduced in size.
  • the said gas introduction part may be formed with the flow path which introduces again the gas discharged
  • the vacuum apparatus may further include a heater. The heater heats gas passing through the flow path.
  • the gas discharged from the gas discharge port passes through the flow path of the gas introduction unit and is again introduced into the vacuum vessel. Further, the gas is heated by the heater when passing through the flow path of the gas introduction part. Therefore, it can be introduced into the vacuum vessel while circulating a high-temperature gas. As a result, the heat generated from the heater can be efficiently used to increase the temperature of the component.
  • the said heater may be arrange
  • the heater that heats the gas circulating in the flow path of the gas introduction unit also serves as the heater that heats the vacuum vessel. Therefore, an increase in the number of parts can be suppressed in the vacuum apparatus. As a result, the vacuum device can be reduced in size.
  • the analyzer according to the present invention includes the vacuum device.
  • the analysis device analyzes the sample by introducing the sample into the vacuum vessel. Therefore, the start time of the analysis process can be advanced, and the entire processing time can be shortened.
  • the inside of the vacuum vessel becomes a vacuum atmosphere, so that the temperature of the parts can be raised in a short time.
  • FIG. 1 is a schematic view showing a configuration example of a vacuum apparatus 1 according to the first embodiment of the present invention.
  • the vacuum apparatus 1 is an apparatus used for, for example, a time-of-flight mass spectrometer (TOF-MS), and includes a vacuum vessel 2, a flight tube 3, a gas introduction unit 4, a heater 5, and a gas discharge unit 6. And a vacuum pump 7 and a temperature sensor 8.
  • the vacuum vessel 2 is formed in an elongated hollow shape.
  • a gas inlet 21 and a gas outlet 22 are formed in the vacuum container 2.
  • the gas inlet 21 is disposed at one end in the longitudinal direction of the vacuum vessel 2.
  • the gas inlet 21 passes through the outer wall of the vacuum vessel 2.
  • the gas discharge port 22 is disposed at the other end in the longitudinal direction of the vacuum vessel 2. That is, the gas discharge port 22 is arranged on the opposite side of the gas inlet 21 in the longitudinal direction of the vacuum vessel 2. The gas discharge port 22 penetrates the outer wall of the vacuum vessel 2.
  • the flight tube 3 is accommodated in the vacuum vessel 2.
  • the flight tube 3 is formed in an elongated hollow shape.
  • the internal space of the flight tube 3 is formed as a flight space 31.
  • the gas introduction unit 4 is configured to introduce a gas (for example, N 2 gas) into the vacuum vessel 2.
  • the gas introduction unit 4 includes an inflow pipe 41, a blower 42, and a first valve 43.
  • a mechanism for changing the inside of the vacuum vessel 2 from a vacuum state to an atmospheric pressure state can be used.
  • the inflow pipe 41 is connected to the vacuum vessel 2 so that one end thereof covers the gas inlet 21. Thereby, the internal space of the inflow piping 41 and the internal space of the vacuum vessel 2 are connected via the gas inflow port 21. Moreover, the internal space of the inflow piping 41 is formed as a flow path through which gas passes. The other end of the inflow pipe 41 communicates with a gas supply unit (not shown).
  • the blower 42 is attached to the inflow pipe 41.
  • the blower 42 is configured by, for example, a fan or a blower.
  • the first valve 43 is attached to the inflow pipe 41 and is disposed between the blower 42 and the vacuum vessel 2.
  • gas flows into the vacuum vessel 2 through the inflow pipe 41.
  • the heater 5 is attached to the outer surface of the inflow pipe 41.
  • the heater 5 is disposed between the blower 42 and the first valve 43.
  • the gas discharge unit 6 is configured to discharge the gas in the vacuum vessel 2.
  • the gas discharge unit 6 includes a discharge pipe 61 and a second valve 62.
  • the exhaust pipe 61 is connected to the vacuum vessel 2 so that one end thereof covers the gas exhaust port 22. Thereby, the internal space of the discharge pipe 61 and the internal space of the vacuum vessel 2 communicate with each other via the gas discharge port 22.
  • the internal space of the discharge pipe 61 is formed as a flow path through which gas passes.
  • the second valve 62 is attached to the discharge pipe 61.
  • the gas flows into the vacuum vessel 2 with the second valve 62 opened, the gas flows through the vacuum vessel 2 and is then discharged out of the vacuum vessel 2 via the discharge pipe 61.
  • the vacuum pump 7 is attached to the vacuum vessel 2.
  • the vacuum pump 7 constitutes a pressure reducing mechanism that sucks the gas (gas) in the vacuum vessel 2 and places the vacuum vessel 2 in a vacuum atmosphere.
  • the temperature sensor 8 is disposed in the vacuum vessel 2 and detects the temperature of the flight tube 3.
  • FIG. 2 is a block diagram showing a specific configuration of the mass spectrometer 11 using the vacuum apparatus 1.
  • the vacuum device 1 described above is included in the mass spectrometer 11.
  • the mass spectrometer 11 includes the heater 5, the vacuum pump 7, the temperature sensor 8, the blower 42, the first valve 43 and the second valve 62, and further includes the temperature control unit 12, the detector 13, and the control. Part 14.
  • the temperature control unit 12 is configured to keep the temperature of the vacuum vessel 2 (see FIG. 1) at a constant temperature.
  • the detector 13 is disposed in the flight tube 3 (see FIG. 1).
  • the detector 13 is configured to detect ions flying in the flight space 31 (see FIG. 1).
  • the detector 13 outputs a detection signal corresponding to the detected ions.
  • the control unit 14 includes, for example, a CPU (Central Processing Unit).
  • the control unit 14 receives the detection signal from the detector 13 and the detection signal from the temperature sensor 8, and at the same time, the heater 5, the vacuum pump 7, the blower 42, the first valve 43, the second valve 62, and the temperature adjustment unit 12. To control.
  • a CPU Central Processing Unit
  • the sample is analyzed in the vacuum apparatus 1 in a state where the vacuum vessel 2 is in a vacuum atmosphere.
  • an ionized sample is introduced into the flight tube 3 of the vacuum apparatus 1 and a high voltage is applied in the vacuum apparatus 1, and an electric field is generated in the flight tube 3. Is formed.
  • ions accelerated by the electric field fly in the flight space 31.
  • the ions are temporally separated according to the mass-to-charge ratio while flying in the flight space 31, and are sequentially detected by the detector 13 (see FIG. 2). Thereby, the relationship between the mass-to-charge ratio and the detection intensity in the detector 13 is measured as a spectrum, and mass spectrometry is realized.
  • FIG. 3 is a flowchart illustrating an example of processing by the control unit 14 of the mass spectrometer 11.
  • the first valve 43 and the second valve 62 are initially closed. Further, the temperature of the flight tube 3 of the mass spectrometer 11 (see FIG. 2) is, for example, a room temperature of about 20 ° C. to 30 ° C.
  • the first valve 43 is opened by the control unit 14 (step S101). Further, the heater 5 is activated (step S102), and the blower 42 is activated (step S103). Further, the temperature control unit 12 is activated.
  • the gas flows through the inflow pipe 41 toward the vacuum vessel 2 by the blower 42, and the gas is heated by the heater 5. That is, high temperature gas flows into the vacuum vessel 2.
  • the temperature of the gas flowing into the vacuum vessel 2 is, for example, several tens of degrees Celsius to 100 degrees Celsius.
  • high temperature gas is stored in the vacuum vessel 2 (it is NO at step S104).
  • the second valve 62 is opened (step S105).
  • the high-temperature gas heated by the heater 5 flows through the inflow pipe 41 and is introduced into the vacuum vessel 2 through the gas inlet 21, flows through the vacuum vessel 2, and then passes through the gas outlet 22. Then, it flows through the discharge pipe 61 and is discharged out of the vacuum vessel 2. In this way, the hot gas is forcibly convected in the vacuum vessel 2 and the flight tube 3 is heated.
  • Step S106 When the temperature of the flight tube 3 detected by the temperature sensor 8 reaches a predetermined temperature (for example, 40 ° C.) (YES in Step S106), the operation of the blower 42 is stopped (Step S107), and the operation of the heater 5 is performed. Is stopped (step S108), and the introduction of the high-temperature gas into the vacuum vessel 2 is stopped. Next, each of the first valve 43 and the second valve 62 is closed (step S109). At this time, the temperature control unit 12 is maintained in an activated state. Thereby, the temperature of the vacuum vessel 2 is maintained, and the temperature of the flight tube 3 in the vacuum vessel 2 is maintained. Thereafter, the vacuum pump 7 is operated, and the inside of the vacuum container 2 becomes a vacuum atmosphere (step S110).
  • a predetermined temperature for example, 40 ° C.
  • mass spectrometry is performed in the mass spectrometer 11 in a state where the inside of the vacuum vessel 2 is in a vacuum atmosphere.
  • the control unit 14 is configured to introduce a high-temperature gas heated by the heater 5 into the vacuum vessel 2 through the gas inlet 21. It is discharged from the discharge port 22. That is, the control unit 14 forcibly convects a high-temperature gas in the vacuum vessel 2. Then, after the flight tube 3 in the vacuum vessel 2 is heated to a predetermined temperature, the control unit 14 stops the introduction of the high-temperature gas into the vacuum vessel 2, and the first valve 43 and the second valve 62 is closed. Next, the control unit 14 operates the vacuum pump 7 to make the inside of the vacuum container 2 a vacuum atmosphere.
  • the mass spectrometer 11 after the temperature of the flight tube 3 in the vacuum vessel 2 becomes high, the inside of the vacuum vessel 2 becomes a vacuum atmosphere. As a result, the temperature of the flight tube 3 can be increased in a short time as compared with the case where the temperature of the flight tube 3 is increased after the vacuum chamber 2 is evacuated. Therefore, the start time of the analysis process in the mass spectrometer 11 can be advanced, and the entire processing time can be shortened.
  • the size of the gas inlet 21 and the size of the gas outlet 22 of the vacuum vessel 2 may be the same size or different sizes. .
  • the size of the gas inlet 21 is larger than the size of the gas outlet 22, high-temperature gas can be efficiently stored in the vacuum vessel 2.
  • Second Embodiment A second embodiment of the present invention will be described with reference to FIG. In the following description, the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • (1) Overall Configuration of Vacuum Apparatus the gas introduced into the vacuum vessel 2 is heated by the heater 5 attached to the outer surface of the inflow pipe 41.
  • the gas introduced into the vacuum vessel 2 is heated by a heater 71 attached to the outer surface of the vacuum vessel 2.
  • the vacuum apparatus 1 includes a heater 71 instead of the heater 5 (see FIG. 1), and further includes a heat insulating material 72.
  • the heater 71 is disposed outside the vacuum vessel 2.
  • the heater 71 is formed in a substantially cylindrical shape, and is attached to the outer surface of the vacuum vessel 2 so as to cover the vacuum vessel 2.
  • a part of the inflow pipe 41 is arranged outside the vacuum vessel 2 and the heater 71 so as to be wound around the heater 71.
  • the portion of the inflow pipe 41 between the portion where the blower 42 is attached and the portion where the first valve 43 is attached is wound around the heater 71.
  • the heat insulating material 72 covers the vacuum container 2 and the heater 71 from the outside of the portion where the heater 71 is wound in the inflow pipe 41.
  • the heat insulating material 72 and the heater 71 are included in the temperature control unit 12 (see FIG. 2).
  • the heater 71 is activated and the blower 42 is activated after the first valve 43 is opened prior to mass analysis.
  • the gas passing through the flow path in the inflow pipe 41 is introduced into the vacuum vessel 2 through the gas inlet 21 in a state of being heated to a high temperature by the heater 71.
  • the vacuum apparatus 1 includes a heater 71.
  • the heater 71 heats the gas that passes through the flow path in the inflow pipe 41 while heating the vacuum vessel 2. That is, the gas passing through the flow path in the inflow pipe 41 is heated by using the heater 71 for adjusting the temperature of the vacuum vessel 2. Therefore, in the vacuum apparatus 1, it can suppress that a number of parts increases. As a result, the vacuum device 1 can be reduced in size.
  • the circulation pipe 81 has one end connected to the discharge pipe 61 and the other end connected to the inflow pipe 41. As a result, the internal space of the circulation pipe 81 communicates with the inside of the vacuum vessel 2 via the discharge pipe 61 and the inflow pipe 41.
  • the internal space of the circulation pipe 81 is formed as a flow path through which the gas in the vacuum vessel 2 passes.
  • the blower 82 is attached to the circulation pipe 81.
  • the blower 82 is configured by, for example, a fan or a blower.
  • the vacuum device 1 includes a heater 86 instead of the heater 5 (see FIG. 1), and further includes a heat insulating material 87.
  • the heater 86 is disposed outside the vacuum vessel 2.
  • the heater 86 is formed in a substantially cylindrical shape, and is attached to the outer surface of the vacuum vessel 2 so as to cover the vacuum vessel 2.
  • a part of the circulation pipe 81 is disposed outside the vacuum vessel 2 and the heater 86 so as to be wound around the heater 86. Specifically, a portion of the circulation pipe 81 between the portion where the blower 82 is attached and the portion where the first valve 43 is attached is wound around the heater 86.
  • the heat insulating material 87 covers the vacuum vessel 2 and the heater 86 from the outside of the portion around the heater 86 in the circulation pipe 81.
  • the heat insulating material 87 and the heater 86 are included in the temperature control unit 12 (see FIG. 2).
  • the heater 86 is activated and the blower 82 is activated after the first valve 43 and the second valve 62 are opened prior to mass analysis.
  • the gas in the vacuum vessel 2 passes through the flow path in the circulation pipe 81 via the gas discharge port 22.
  • the gas passing through the flow path in the circulation pipe 81 is introduced into the vacuum vessel 2 through the gas inlet 21 in a state of being heated to a high temperature by the heater 86.
  • the gas discharged out of the vacuum container 2 flows into the vacuum container 2 again through the circulation pipe 81 while being heated by the heater 86.
  • the vacuum apparatus 1 includes a circulation pipe 81 and a heater 86. And the gas discharged
  • the heater 86 heats the vacuum container 2 and heats the gas passing through the flow path in the circulation pipe 81. That is, the gas passing through the flow path in the circulation pipe 81 is heated by using the heater 86 for adjusting the temperature of the vacuum vessel 2. Therefore, in the vacuum apparatus 1, it can suppress that a number of parts increases. As a result, the vacuum device 1 can be reduced in size.
  • the vacuum apparatus 1 has been described as being used in the mass spectrometer 11.
  • the vacuum apparatus 1 can be used in an analyzer other than the mass spectrometer, and various apparatuses other than the analyzer. Can also be used.
  • the part to be heated contained in the vacuum vessel 2 is not limited to the flight tube 3 and may be any part.
  • the vacuum vessel 2 for example, has been described as N 2 gas is introduced, heated gas is introduced into the vacuum container 2 is not limited to the N 2 gas, Other gases such as air may be used.
  • the second valve 62 is opened after a predetermined time has elapsed since the first valve 43 was opened.
  • the timing for opening the second valve 62 is determined here. Not limited. That is, the timing at which the second valve 62 is opened may be when the flight tube 3 reaches a predetermined temperature, or at the same time as when the first valve 43 is opened.
  • the first valve 43 and the second valve 62 are closed after the flight tube 3 reaches the predetermined temperature.
  • the first valve 43 and the second valve 62 are not closed.
  • the timing for closing each is not limited to this. That is, the timing for closing each of the first valve 43 and the second valve 62 may be when a predetermined time has elapsed since the first valve 43 was opened.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

A vacuum device (1) is provided with a vacuum container (2), gas introducing section (4), heater (5), gas discharge section (6), and vacuum pump (7). A gas in an inflow pipe of the gas introducing section (4) is introduced into the vacuum container (2), while being heated by the heater (5). The gas in the vacuum container (2) is discharged from the gas discharge section (6). After a flight tube (3) in the vacuum container (2) is heated to a predetermined temperature, the gas introduction into the vacuum container (2) is stopped, and a first valve (43) and a second valve (62) are closed. Then, the vacuum pump (7) is operated, and the atmosphere inside of the vacuum container (2) becomes vacuum atmosphere. In this manner, in the vacuum device (1), after the temperature of the flight tube (3) in the vacuum container (2) becomes high, the atmosphere inside of the vacuum container (2) becomes the vacuum atmosphere.

Description

真空装置、及び、これを備えた分析装置Vacuum device and analyzer equipped with the same
 本発明は、加熱対象の部品を収容する真空容器を備える真空装置、及び、これを備えた分析装置に関するものである。 The present invention relates to a vacuum apparatus including a vacuum container that accommodates a part to be heated, and an analysis apparatus including the vacuum apparatus.
 従来から、内部に部品を収容する真空容器を備える真空装置が知られている。真空装置では、真空容器内が真空雰囲気にされた状態で、内部の部品が使用される。 Conventionally, a vacuum apparatus provided with a vacuum vessel that accommodates components therein is known. In the vacuum apparatus, internal components are used in a state where the inside of the vacuum vessel is in a vacuum atmosphere.
 この種の真空装置を備えた分析装置として、内部にフライトチューブ(部品)を収容する真空チャンバー(真空容器)を備える質量分析装置が知られている(例えば、下記特許文献1参照)。 As an analyzer equipped with this type of vacuum device, a mass spectrometer equipped with a vacuum chamber (vacuum container) that houses a flight tube (component) is known (for example, see Patent Document 1 below).
 この質量分析装置では、真空雰囲気となった真空チャンバー内にイオン化された試料が導入される。そして、このイオンは、フライトチューブに取り付けられた加速器によって射出され、フライトチューブ内を飛行する。このとき、イオンは、その質量に応じた飛行時間で、フライトチューブ内の検出器に到達する。これにより、質量分析装置において、連続的に得られる検出信号に基づいて、質量スペクトルが作成される。 In this mass spectrometer, an ionized sample is introduced into a vacuum chamber in a vacuum atmosphere. The ions are ejected by an accelerator attached to the flight tube and fly in the flight tube. At this time, the ions reach the detector in the flight tube with a flight time corresponding to the mass. Thereby, in a mass spectrometer, a mass spectrum is created based on the detection signal obtained continuously.
 また、この質量分析装置では、通常、部品であるフライトチューブを一定温度に保ちながら、試料の分析が行われる。これにより、フライトチューブの膨張又は収縮を抑制して、分析において誤差が生じることを抑制している。 In this mass spectrometer, the sample is usually analyzed while keeping the flight tube as a part at a constant temperature. Thereby, the expansion or contraction of the flight tube is suppressed, and the occurrence of errors in the analysis is suppressed.
特許第5505224号公報Japanese Patent No. 5505224
 上記のような従来の質量分析装置では、真空容器内を真空雰囲気にした後、フライトチューブを加熱してその温度を一定温度に到達させている。一方、真空容器内の気体が少なくなるにつれて、真空容器内の熱伝導率は低くなる。そのため、フライトチューブに対する熱の伝達速度が遅くなり、フライトチューブの温度を一定温度に到達させるまでの時間が長くなるという不具合がある。そして、その結果、分析処理を開始する時間が遅くなり、処理時間全体が長くなるという不具合がある。 In the conventional mass spectrometer as described above, the vacuum tube is evacuated and then the flight tube is heated to reach a certain temperature. On the other hand, as the gas in the vacuum vessel decreases, the thermal conductivity in the vacuum vessel decreases. Therefore, there is a problem that the heat transfer speed to the flight tube becomes slow, and the time until the temperature of the flight tube reaches a certain temperature becomes long. As a result, there is a problem that the time for starting the analysis process is delayed and the entire processing time is increased.
 本発明は、上記実情に鑑みてなされたものであり、短時間で真空容器内の部品の温度を高温にできる真空装置、及び、これを備えた分析装置を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a vacuum apparatus capable of increasing the temperature of components in a vacuum vessel in a short time, and an analyzer equipped with the same.
(1)本発明に係る真空装置は、真空容器と、真空ポンプと、ガス導入部と、制御部とを備える。前記真空容器は、内部に部品を収容し、ガス流入口及びガス排出口が形成される。前記真空ポンプは、前記真空容器内の気体を吸引して前記真空容器内を真空雰囲気にする。前記ガス導入部は、前記ガス流入口から前記真空容器内に加熱されたガスを導入する。前記制御部は、加熱されたガスを前記ガス導入部によって前記ガス流入口から前記真空容器内に導入させながら前記ガス排出口から排出させることより、前記真空容器内の部品を加熱した後、前記ガス導入部によるガスの導入を停止し、その後、前記真空ポンプによって前記真空容器内を真空雰囲気にする。 
 このような構成によれば、真空装置では、真空容器内の部品の温度が高温になった後、真空容器内が真空雰囲気になる。
 そのため、真空容器内を真空雰囲気にした後、部品の温度を高温にする場合に比べて、短時間で部品の温度を高温にできる。
 その結果、この真空装置を用いて分析処理を行う場合には、分析処理の開始時間を早めることができ、処理時間全体を短くできる。
(1) A vacuum apparatus according to the present invention includes a vacuum vessel, a vacuum pump, a gas introduction unit, and a control unit. The vacuum container accommodates components therein, and a gas inlet and a gas outlet are formed. The vacuum pump sucks the gas in the vacuum container and creates a vacuum atmosphere in the vacuum container. The gas introduction unit introduces a heated gas into the vacuum vessel from the gas inlet. The controller is configured to discharge the heated gas from the gas outlet while allowing the heated gas to be introduced into the vacuum container from the gas inlet by the gas introduction unit. The introduction of gas by the gas introduction unit is stopped, and then the inside of the vacuum vessel is made a vacuum atmosphere by the vacuum pump.
According to such a configuration, in the vacuum device, after the temperature of the components in the vacuum container becomes high, the inside of the vacuum container becomes a vacuum atmosphere.
Therefore, the temperature of the component can be increased in a short time as compared with the case where the temperature of the component is increased after the inside of the vacuum vessel is evacuated.
As a result, when an analysis process is performed using this vacuum apparatus, the start time of the analysis process can be advanced, and the entire process time can be shortened.
(2)また、前記ガス導入部には、ガスが通過する流路が形成されていてもよい。前記真空装置は、ヒータをさらに備えてもよい。前記ヒータは、前記真空容器を加熱するとともに、前記流路を通過するガスを加熱する。
 このような構成によれば、真空容器を加熱するヒータが、ガス導入部の流路を通過するガスを加熱するヒータを兼ねる。
 そのため、真空装置において、部品点数が増えることを抑制できる。
 その結果、真空装置の小型化を図ることができる。
(2) Moreover, the said gas introduction part may be formed with the flow path through which gas passes. The vacuum apparatus may further include a heater. The heater heats the vacuum container and heats the gas passing through the flow path.
According to such a configuration, the heater that heats the vacuum vessel also serves as the heater that heats the gas passing through the flow path of the gas introduction unit.
Therefore, an increase in the number of parts can be suppressed in the vacuum apparatus.
As a result, the vacuum device can be reduced in size.
(3)また、前記ガス導入部には、前記ガス排出口から排出されたガスを再度真空容器内に導入する流路が形成されていてもよい。前記真空装置は、ヒータをさらに備えてもよい。前記ヒータは、前記流路を通過するガスを加熱する。 (3) Moreover, the said gas introduction part may be formed with the flow path which introduces again the gas discharged | emitted from the said gas discharge port in a vacuum vessel. The vacuum apparatus may further include a heater. The heater heats gas passing through the flow path.
 このような構成によれば、ガス排出口から排出されたガスは、ガス導入部の流路を通過して再度真空容器内に導入される。また、ガスは、ガス導入部の流路を通過する際にヒータによって加熱される。
 そのため、高温のガスを循環させながら、真空容器内に導入できる。
 その結果、ヒータから発せられる熱を効率的に利用して、部品の温度を高温にできる。
According to such a configuration, the gas discharged from the gas discharge port passes through the flow path of the gas introduction unit and is again introduced into the vacuum vessel. Further, the gas is heated by the heater when passing through the flow path of the gas introduction part.
Therefore, it can be introduced into the vacuum vessel while circulating a high-temperature gas.
As a result, the heat generated from the heater can be efficiently used to increase the temperature of the component.
(4)また、前記ヒータは、前記真空容器の外方に配置され、前記真空容器を加熱してもよい。
 このような構成によれば、ガス導入部の流路を循環するガスを加熱するヒータが、真空容器を加熱するヒータを兼ねる。
 そのため、真空装置において、部品点数が増えることを抑制できる。
 その結果、真空装置の小型化を図ることができる。
(4) Moreover, the said heater may be arrange | positioned outside the said vacuum vessel, and may heat the said vacuum vessel.
According to such a configuration, the heater that heats the gas circulating in the flow path of the gas introduction unit also serves as the heater that heats the vacuum vessel.
Therefore, an increase in the number of parts can be suppressed in the vacuum apparatus.
As a result, the vacuum device can be reduced in size.
(5)本発明に係る分析装置は、前記真空装置を備える。前記分析装置は、前記真空容器内に試料を導入することにより、当該試料の分析を行う。
 そのため、分析処理の開始時間を早めることができ、処理時間全体を短くできる。
(5) The analyzer according to the present invention includes the vacuum device. The analysis device analyzes the sample by introducing the sample into the vacuum vessel.
Therefore, the start time of the analysis process can be advanced, and the entire processing time can be shortened.
 本発明によれば、真空容器内の部品の温度が高温になった後、真空容器内が真空雰囲気になるため、短時間で部品の温度を高温にできる。 According to the present invention, after the temperature of the parts in the vacuum vessel becomes high, the inside of the vacuum vessel becomes a vacuum atmosphere, so that the temperature of the parts can be raised in a short time.
本発明の第1実施形態に係る真空装置の構成例を示した概略図である。It is the schematic which showed the structural example of the vacuum apparatus which concerns on 1st Embodiment of this invention. 図1の真空装置を用いた質量分析装置の具体的構成を示したブロック図である。It is the block diagram which showed the specific structure of the mass spectrometer using the vacuum apparatus of FIG. 質量分析装置の制御部による処理の一例を示したフローチャートである。It is the flowchart which showed an example of the process by the control part of a mass spectrometer. 本発明の第2実施形態に係る真空装置の構成例を示した概略図である。It is the schematic which showed the structural example of the vacuum apparatus which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る真空装置の構成例を示した概略図である。It is the schematic which showed the structural example of the vacuum apparatus which concerns on 3rd Embodiment of this invention.
1.真空装置の全体構成
 図1は、本発明の第1実施形態に係る真空装置1の構成例を示した概略図である。
1. Overall Configuration of Vacuum Apparatus FIG. 1 is a schematic view showing a configuration example of a vacuum apparatus 1 according to the first embodiment of the present invention.
 真空装置1は、例えば、飛行時間型質量分析装置(TOF-MS)に用いられる装置であって、真空容器2と、フライトチューブ3と、ガス導入部4と、ヒータ5と、ガス排出部6と、真空ポンプ7と、温度センサ8とを備えている。
 真空容器2は、長尺状の中空形状に形成されている。真空容器2には、ガス流入口21と、ガス排出口22とが形成されている。
 ガス流入口21は、真空容器2の長手方向一端部に配置されている。ガス流入口21は、真空容器2の外壁を貫通している。
The vacuum apparatus 1 is an apparatus used for, for example, a time-of-flight mass spectrometer (TOF-MS), and includes a vacuum vessel 2, a flight tube 3, a gas introduction unit 4, a heater 5, and a gas discharge unit 6. And a vacuum pump 7 and a temperature sensor 8.
The vacuum vessel 2 is formed in an elongated hollow shape. A gas inlet 21 and a gas outlet 22 are formed in the vacuum container 2.
The gas inlet 21 is disposed at one end in the longitudinal direction of the vacuum vessel 2. The gas inlet 21 passes through the outer wall of the vacuum vessel 2.
 ガス排出口22は、真空容器2の長手方向他端部に配置されている。すなわち、ガス排出口22は、真空容器2の長手方向において、ガス流入口21と反対側に配置されている。ガス排出口22は、真空容器2の外壁を貫通している。 The gas discharge port 22 is disposed at the other end in the longitudinal direction of the vacuum vessel 2. That is, the gas discharge port 22 is arranged on the opposite side of the gas inlet 21 in the longitudinal direction of the vacuum vessel 2. The gas discharge port 22 penetrates the outer wall of the vacuum vessel 2.
 フライトチューブ3は、真空容器2内に収容されている。フライトチューブ3は、長尺状の中空形状に形成されている。フライトチューブ3の内部空間は、飛行空間31として形成されている。 The flight tube 3 is accommodated in the vacuum vessel 2. The flight tube 3 is formed in an elongated hollow shape. The internal space of the flight tube 3 is formed as a flight space 31.
 ガス導入部4は、真空容器2内にガス(例えば、Nガス)を導入するように構成されている。ガス導入部4は、流入配管41と、送風機42と、第1バルブ43とを備えている。このガス導入部4としては、真空容器2内を真空状態から大気圧状態とするための機構を流用することができる。 The gas introduction unit 4 is configured to introduce a gas (for example, N 2 gas) into the vacuum vessel 2. The gas introduction unit 4 includes an inflow pipe 41, a blower 42, and a first valve 43. As this gas introduction part 4, a mechanism for changing the inside of the vacuum vessel 2 from a vacuum state to an atmospheric pressure state can be used.
 流入配管41は、その一端がガス流入口21を覆うようにして真空容器2に接続されている。これにより、流入配管41の内部空間と、真空容器2の内部空間とは、ガス流入口21を介して連通している。また、流入配管41の内部空間は、ガスが通過する流路として形成されている。流入配管41の他端は、図示しないガス供給部に連通している。
 送風機42は、流入配管41に取り付けられている。送風機42は、例えば、ファン又はブロワなどにより構成されている。
The inflow pipe 41 is connected to the vacuum vessel 2 so that one end thereof covers the gas inlet 21. Thereby, the internal space of the inflow piping 41 and the internal space of the vacuum vessel 2 are connected via the gas inflow port 21. Moreover, the internal space of the inflow piping 41 is formed as a flow path through which gas passes. The other end of the inflow pipe 41 communicates with a gas supply unit (not shown).
The blower 42 is attached to the inflow pipe 41. The blower 42 is configured by, for example, a fan or a blower.
 第1バルブ43は、流入配管41に取り付けられており、かつ、送風機42と、真空容器2との間に配置されている。第1バルブ43が開放された状態で、送風機42が作動すると、流入配管41を介して真空容器2内にガスが流入する。
 ヒータ5は、流入配管41の外面に取り付けられている。ヒータ5は、送風機42と、第1バルブ43との間に配置されている。
 ガス排出部6は、真空容器2内のガスを排出するように構成されている。ガス排出部6は、排出配管61と、第2バルブ62とを備えている。
The first valve 43 is attached to the inflow pipe 41 and is disposed between the blower 42 and the vacuum vessel 2. When the blower 42 is operated with the first valve 43 opened, gas flows into the vacuum vessel 2 through the inflow pipe 41.
The heater 5 is attached to the outer surface of the inflow pipe 41. The heater 5 is disposed between the blower 42 and the first valve 43.
The gas discharge unit 6 is configured to discharge the gas in the vacuum vessel 2. The gas discharge unit 6 includes a discharge pipe 61 and a second valve 62.
 排出配管61は、その一端がガス排出口22を覆うようにして真空容器2に接続されている。これにより、排出配管61の内部空間と、真空容器2の内部空間とは、ガス排出口22を介して連通している。また、排出配管61の内部空間は、ガスが通過する流路として形成されている。 The exhaust pipe 61 is connected to the vacuum vessel 2 so that one end thereof covers the gas exhaust port 22. Thereby, the internal space of the discharge pipe 61 and the internal space of the vacuum vessel 2 communicate with each other via the gas discharge port 22. The internal space of the discharge pipe 61 is formed as a flow path through which gas passes.
 第2バルブ62は、排出配管61に取り付けられている。第2バルブ62が開放された状態で、真空容器2内にガスが流入すると、そのガスは、真空容器2内を流れた後、排出配管61を介して真空容器2外に排出される。 The second valve 62 is attached to the discharge pipe 61. When gas flows into the vacuum vessel 2 with the second valve 62 opened, the gas flows through the vacuum vessel 2 and is then discharged out of the vacuum vessel 2 via the discharge pipe 61.
 真空ポンプ7は、真空容器2に取り付けられている。真空ポンプ7は、真空容器2内の気体(ガス)を吸引して真空容器2内を真空雰囲気にする減圧機構を構成している。 The vacuum pump 7 is attached to the vacuum vessel 2. The vacuum pump 7 constitutes a pressure reducing mechanism that sucks the gas (gas) in the vacuum vessel 2 and places the vacuum vessel 2 in a vacuum atmosphere.
 温度センサ8は、真空容器2内に配置されており、フライトチューブ3の温度を検知する。 The temperature sensor 8 is disposed in the vacuum vessel 2 and detects the temperature of the flight tube 3.
2.分析装置の具体的構成
 図2は、真空装置1を用いた質量分析装置11の具体的構成を示したブロック図である。
 上記した真空装置1は、質量分析装置11に含まれる。
2. FIG. 2 is a block diagram showing a specific configuration of the mass spectrometer 11 using the vacuum apparatus 1.
The vacuum device 1 described above is included in the mass spectrometer 11.
 質量分析装置11は、上記したヒータ5、真空ポンプ7、温度センサ8、送風機42、第1バルブ43及び第2バルブ62を備えており、さらに、温調部12と、検出器13と、制御部14とを備えている。
 温調部12は、真空容器2(図1参照)の温度を一定温度に保つように構成されている。
The mass spectrometer 11 includes the heater 5, the vacuum pump 7, the temperature sensor 8, the blower 42, the first valve 43 and the second valve 62, and further includes the temperature control unit 12, the detector 13, and the control. Part 14.
The temperature control unit 12 is configured to keep the temperature of the vacuum vessel 2 (see FIG. 1) at a constant temperature.
 検出器13は、フライトチューブ3(図1参照)内に配置されている。検出器13は、飛行空間31(図1参照)を飛行するイオンを検出するように構成されている。また、検出器13は、検出したイオンに応じた検出信号を出力する。 The detector 13 is disposed in the flight tube 3 (see FIG. 1). The detector 13 is configured to detect ions flying in the flight space 31 (see FIG. 1). The detector 13 outputs a detection signal corresponding to the detected ions.
 制御部14は、例えば、CPU(Central Processing Unit)を含む構成である。制御部14は、検出器13からの検出信号、及び、温度センサ8からの検出信号を受け取るとともに、ヒータ5、真空ポンプ7、送風機42、第1バルブ43、第2バルブ62及び温調部12を制御する。 The control unit 14 includes, for example, a CPU (Central Processing Unit). The control unit 14 receives the detection signal from the detector 13 and the detection signal from the temperature sensor 8, and at the same time, the heater 5, the vacuum pump 7, the blower 42, the first valve 43, the second valve 62, and the temperature adjustment unit 12. To control.
 質量分析装置11では、図1に示すように、真空装置1において、真空容器2内が真空雰囲気となった状態で、試料の分析が行われる。具体的には、試料を分析する際は、まず、イオン化された試料が真空装置1のフライトチューブ3内に導入されるとともに、真空装置1において高電圧がかけられて、フライトチューブ3内に電場が形成される。フライトチューブ3の飛行空間31においては、電場により加速されたイオンが、飛行空間31内を飛行する。そして、そのイオンが、飛行空間31を飛行する間に質量電荷比に応じて時間的に分離され、検出器13(図2参照)により順次検出される。これにより、質量電荷比と、検出器13における検出強度との関係がスペクトルとして測定され、質量分析が実現される。 In the mass spectrometer 11, as shown in FIG. 1, the sample is analyzed in the vacuum apparatus 1 in a state where the vacuum vessel 2 is in a vacuum atmosphere. Specifically, when analyzing a sample, first, an ionized sample is introduced into the flight tube 3 of the vacuum apparatus 1 and a high voltage is applied in the vacuum apparatus 1, and an electric field is generated in the flight tube 3. Is formed. In the flight space 31 of the flight tube 3, ions accelerated by the electric field fly in the flight space 31. Then, the ions are temporally separated according to the mass-to-charge ratio while flying in the flight space 31, and are sequentially detected by the detector 13 (see FIG. 2). Thereby, the relationship between the mass-to-charge ratio and the detection intensity in the detector 13 is measured as a spectrum, and mass spectrometry is realized.
3.質量分析装置における制御動作
 図3は、質量分析装置11の制御部14による処理の一例を示したフローチャートである。
3. Control Operation in Mass Spectrometer FIG. 3 is a flowchart illustrating an example of processing by the control unit 14 of the mass spectrometer 11.
 この例では、質量分析装置11において、上記した質量分析に先立って、真空容器2内を真空雰囲気にするための処理が行われる。以下、当該処理について詳しく説明する。 In this example, in the mass spectrometer 11, a process for making the inside of the vacuum vessel 2 into a vacuum atmosphere is performed prior to the above-described mass analysis. Hereinafter, the process will be described in detail.
 質量分析装置11では、図1に示すように、当初、第1バルブ43及び第2バルブ62は、それぞれ閉鎖されている。また、質量分析装置11(図2参照)のフライトチューブ3の温度は、例えば、20℃~30℃程度の常温である。 In the mass spectrometer 11, as shown in FIG. 1, the first valve 43 and the second valve 62 are initially closed. Further, the temperature of the flight tube 3 of the mass spectrometer 11 (see FIG. 2) is, for example, a room temperature of about 20 ° C. to 30 ° C.
 この状態から、ユーザが図示しない操作部を操作して分析処理の開始を要求すると、まず、制御部14によって、第1バルブ43が開放される(ステップS101)。
 また、ヒータ5が作動されるとともに(ステップS102)、送風機42が作動される(ステップS103)。さらに、温調部12が作動される。
In this state, when the user operates an operation unit (not shown) to request the start of analysis processing, first, the first valve 43 is opened by the control unit 14 (step S101).
Further, the heater 5 is activated (step S102), and the blower 42 is activated (step S103). Further, the temperature control unit 12 is activated.
 これにより、送風機42によって、真空容器2に向かうようにガスが流入配管41内を流れるともに、そのガスはヒータ5によって加熱される。すなわち、真空容器2内に高温のガスが流入する。真空容器2内に流入するガスの温度は、例えば、数十℃~100℃である。
 そして、所定時間が経過するまでは、真空容器2内に高温のガスが溜められる(ステップS104でNO)。
 第1バルブ43を開放してから所定時間が経過すると(ステップS104でYES)、第2バルブ62が開放される(ステップS105)。
As a result, the gas flows through the inflow pipe 41 toward the vacuum vessel 2 by the blower 42, and the gas is heated by the heater 5. That is, high temperature gas flows into the vacuum vessel 2. The temperature of the gas flowing into the vacuum vessel 2 is, for example, several tens of degrees Celsius to 100 degrees Celsius.
And until predetermined time passes, high temperature gas is stored in the vacuum vessel 2 (it is NO at step S104).
When a predetermined time elapses after opening the first valve 43 (YES in step S104), the second valve 62 is opened (step S105).
 これにより、ヒータ5によって加熱された高温のガスが、流入配管41を流れてガス流入口21を介して真空容器2内に導入され、真空容器2内を流れた後、ガス排出口22を介して排出配管61を流れて真空容器2外に排出される。
 このようにして、真空容器2内を高温のガスが強制対流されて、フライトチューブ3が加熱される。
As a result, the high-temperature gas heated by the heater 5 flows through the inflow pipe 41 and is introduced into the vacuum vessel 2 through the gas inlet 21, flows through the vacuum vessel 2, and then passes through the gas outlet 22. Then, it flows through the discharge pipe 61 and is discharged out of the vacuum vessel 2.
In this way, the hot gas is forcibly convected in the vacuum vessel 2 and the flight tube 3 is heated.
 そして、温度センサ8が検知するフライトチューブ3の温度が、所定温度(例えば、40℃)になると(ステップS106でYES)、送風機42の作動が停止されるとともに(ステップS107)、ヒータ5の作動が停止されて(ステップS108)、真空容器2内への高温のガスの導入が停止される。
 次いで、第1バルブ43及び第2バルブ62のそれぞれが閉鎖される(ステップS109)。
 なお、このとき、温調部12は、作動される状態が維持される。これにより、真空容器2の温度が保たれ、真空容器2内のフライトチューブ3の温度が保たれる。
 その後、真空ポンプ7が作動されて、真空容器2内が真空雰囲気となる(ステップS110)。
When the temperature of the flight tube 3 detected by the temperature sensor 8 reaches a predetermined temperature (for example, 40 ° C.) (YES in Step S106), the operation of the blower 42 is stopped (Step S107), and the operation of the heater 5 is performed. Is stopped (step S108), and the introduction of the high-temperature gas into the vacuum vessel 2 is stopped.
Next, each of the first valve 43 and the second valve 62 is closed (step S109).
At this time, the temperature control unit 12 is maintained in an activated state. Thereby, the temperature of the vacuum vessel 2 is maintained, and the temperature of the flight tube 3 in the vacuum vessel 2 is maintained.
Thereafter, the vacuum pump 7 is operated, and the inside of the vacuum container 2 becomes a vacuum atmosphere (step S110).
 このように、質量分析装置11では、質量分析に先立って、真空容器2内に高温のガスを強制対流させてフライトチューブ3が所定温度に到達した後、真空容器2内を真空雰囲気にする。
 そして、真空容器2内が真空雰囲気になった状態で、質量分析装置11において、質量分析が行われる。
As described above, in the mass spectrometer 11, prior to mass analysis, a high-temperature gas is forcibly convected in the vacuum container 2 and the flight tube 3 reaches a predetermined temperature, and then the vacuum container 2 is brought into a vacuum atmosphere.
Then, mass spectrometry is performed in the mass spectrometer 11 in a state where the inside of the vacuum vessel 2 is in a vacuum atmosphere.
4.作用効果
 本実施形態では、図1に示すように、質量分析装置11において、制御部14は、ヒータ5によって加熱された高温のガスを、ガス流入口21から真空容器2内に導入させながらガス排出口22から排出させる。すなわち、制御部14は、真空容器2内において高温のガスを強制対流させる。そして、制御部14は、真空容器2内のフライトチューブ3が加熱されて所定温度になった後、真空容器2内への高温のガスの導入を停止して、第1バルブ43及び第2バルブ62を閉鎖する。次いで、制御部14は、真空ポンプ7を作動させて真空容器2内を真空雰囲気にする。
 そのため、質量分析装置11では、真空容器2内のフライトチューブ3の温度が高温になった後、真空容器2内が真空雰囲気になる。
 その結果、真空容器2内を真空雰囲気にした後、フライトチューブ3の温度を高温にする場合に比べて、短時間でフライトチューブ3の温度を高温にできる。
 よって、質量分析装置11における分析処理の開始時間を早めることができ、処理時間全体を短くできる。
4). In this embodiment, as shown in FIG. 1, in the mass spectrometer 11, the control unit 14 is configured to introduce a high-temperature gas heated by the heater 5 into the vacuum vessel 2 through the gas inlet 21. It is discharged from the discharge port 22. That is, the control unit 14 forcibly convects a high-temperature gas in the vacuum vessel 2. Then, after the flight tube 3 in the vacuum vessel 2 is heated to a predetermined temperature, the control unit 14 stops the introduction of the high-temperature gas into the vacuum vessel 2, and the first valve 43 and the second valve 62 is closed. Next, the control unit 14 operates the vacuum pump 7 to make the inside of the vacuum container 2 a vacuum atmosphere.
Therefore, in the mass spectrometer 11, after the temperature of the flight tube 3 in the vacuum vessel 2 becomes high, the inside of the vacuum vessel 2 becomes a vacuum atmosphere.
As a result, the temperature of the flight tube 3 can be increased in a short time as compared with the case where the temperature of the flight tube 3 is increased after the vacuum chamber 2 is evacuated.
Therefore, the start time of the analysis process in the mass spectrometer 11 can be advanced, and the entire processing time can be shortened.
 なお、質量分析装置11において、真空容器2のガス流入口21の大きさ、及び、ガス排出口22の大きさは、互いに同じ大きさであってもよいし、異なる大きさであってもよい。例えば、ガス流入口21の大きさを、ガス排出口22の大きさよりも大きくすれば、真空容器2内に高温のガスを効率よく溜めておくことができる。 In the mass spectrometer 11, the size of the gas inlet 21 and the size of the gas outlet 22 of the vacuum vessel 2 may be the same size or different sizes. . For example, if the size of the gas inlet 21 is larger than the size of the gas outlet 22, high-temperature gas can be efficiently stored in the vacuum vessel 2.
5.第2実施形態
 図4を参照して、本発明の第2実施形態を説明する。なお、以下において、上記した第1実施形態と同様の構成には同様の符号を付し、その説明を省略する。
(1)真空装置の全体構成
 上記した第1実施形態では、真空容器2内に導入されるガスは、流入配管41の外面に取り付けられたヒータ5によって加熱される。
 対して、第2実施形態では、図4に示すように、真空容器2内に導入されるガスは、真空容器2の外面に取り付けられたヒータ71によって加熱される。
 詳しくは、第2実施形態では、真空装置1は、ヒータ5(図1参照)に代えて、ヒータ71を備えおり、さらに、断熱材72を備えている。
5). Second Embodiment A second embodiment of the present invention will be described with reference to FIG. In the following description, the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
(1) Overall Configuration of Vacuum Apparatus In the first embodiment described above, the gas introduced into the vacuum vessel 2 is heated by the heater 5 attached to the outer surface of the inflow pipe 41.
On the other hand, in the second embodiment, as shown in FIG. 4, the gas introduced into the vacuum vessel 2 is heated by a heater 71 attached to the outer surface of the vacuum vessel 2.
Specifically, in the second embodiment, the vacuum apparatus 1 includes a heater 71 instead of the heater 5 (see FIG. 1), and further includes a heat insulating material 72.
 ヒータ71は、真空容器2の外方に配置されている。ヒータ71は、略筒形状に形成されており、真空容器2を覆うようにして、真空容器2の外面に取り付けられている。 The heater 71 is disposed outside the vacuum vessel 2. The heater 71 is formed in a substantially cylindrical shape, and is attached to the outer surface of the vacuum vessel 2 so as to cover the vacuum vessel 2.
 また、第2実施形態において、流入配管41の一部は、ヒータ71の外側に巻かれるようにして、真空容器2及びヒータ71の外方に配置されている。具体的には、流入配管41における送風機42が取り付けられる部分と第1バルブ43が取り付けられる部分との間の部分は、ヒータ71の外側に巻回されている。
 断熱材72は、流入配管41におけるヒータ71を巻回する部分の外方から真空容器2及びヒータ71を覆っている。
 断熱材72及びヒータ71は、温調部12(図2参照)に含まれる。
 質量分析装置11では、質量分析に先立って、第1バルブ43が開放された後に、ヒータ71が作動されるとともに、送風機42が作動される。
In the second embodiment, a part of the inflow pipe 41 is arranged outside the vacuum vessel 2 and the heater 71 so as to be wound around the heater 71. Specifically, the portion of the inflow pipe 41 between the portion where the blower 42 is attached and the portion where the first valve 43 is attached is wound around the heater 71.
The heat insulating material 72 covers the vacuum container 2 and the heater 71 from the outside of the portion where the heater 71 is wound in the inflow pipe 41.
The heat insulating material 72 and the heater 71 are included in the temperature control unit 12 (see FIG. 2).
In the mass spectrometer 11, the heater 71 is activated and the blower 42 is activated after the first valve 43 is opened prior to mass analysis.
 これにより、流入配管41内の流路を通過するガスは、ヒータ71によって加熱されて高温のガスとなった状態で、ガス流入口21を介して真空容器2内に導入される。 Thereby, the gas passing through the flow path in the inflow pipe 41 is introduced into the vacuum vessel 2 through the gas inlet 21 in a state of being heated to a high temperature by the heater 71.
 真空容器2内のフライトチューブ3の温度が所定温度まで加熱されると、真空容器2内へのガスの導入が停止され、第1バルブ43及び第2バルブ62のそれぞれが閉鎖された状態において、ヒータ71の作動は継続される。そして、ヒータ71によって、真空容器2は温調され続ける。
 これにより、ヒータ71及び断熱材72によって、真空容器2の温度が保たれ、真空容器2内のフライトチューブ3の温度が保たれる。
 その後は、上記したように、真空ポンプ7によって真空容器2内が真空雰囲気にされた後、質量分析が行われる。
When the temperature of the flight tube 3 in the vacuum vessel 2 is heated to a predetermined temperature, the introduction of gas into the vacuum vessel 2 is stopped, and each of the first valve 43 and the second valve 62 is closed. The operation of the heater 71 is continued. And the vacuum vessel 2 continues to be temperature-controlled by the heater 71.
Thereby, the temperature of the vacuum vessel 2 is maintained by the heater 71 and the heat insulating material 72, and the temperature of the flight tube 3 in the vacuum vessel 2 is maintained.
Thereafter, as described above, after the inside of the vacuum vessel 2 is evacuated by the vacuum pump 7, mass spectrometry is performed.
(2)第2実施形態の作用効果
 本実施形態によれば、第1実施形態と同様の作用効果を得ることができる。
 また、本実施形態では、図4に示すように、真空装置1は、ヒータ71を備えている。ヒータ71は、真空容器2を加熱するとともに、流入配管41内の流路を通過するガスを加熱する。すなわち、真空容器2を温調するためのヒータ71を用いて、流入配管41内の流路を通過するガスが加熱される。
 そのため、真空装置1において、部品点数が増えることを抑制できる。
 その結果、真空装置1の小型化を図ることができる。
(2) Effects of Second Embodiment According to the present embodiment, the same effects as those of the first embodiment can be obtained.
In the present embodiment, as shown in FIG. 4, the vacuum apparatus 1 includes a heater 71. The heater 71 heats the gas that passes through the flow path in the inflow pipe 41 while heating the vacuum vessel 2. That is, the gas passing through the flow path in the inflow pipe 41 is heated by using the heater 71 for adjusting the temperature of the vacuum vessel 2.
Therefore, in the vacuum apparatus 1, it can suppress that a number of parts increases.
As a result, the vacuum device 1 can be reduced in size.
6.第3実施形態
 図5を参照して、本発明の第3実施形態を説明する。なお、以下において、上記した第1実施形態と同様の構成には同様の符号を付し、その説明を省略する。
(1)真空装置の全体構成
 上記した第1実施形態では、真空容器2内にガス流入口21を介してガスが導入されるとともに、真空容器2内を流れたガスは、ガス排出口22を介して真空容器2外に排出される。このように、第1実施形態では、真空容器2内には、常に新しいガスが導入される。
 対して、第3実施形態では、真空容器2内には、循環するガスが導入される。
 詳しくは、第3実施形態では、真空装置1において、ガス導入部4は、循環配管81と、送風機82とを備えている。
6). Third Embodiment A third embodiment of the present invention will be described with reference to FIG. In the following description, the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
(1) Overall Configuration of Vacuum Device In the first embodiment described above, gas is introduced into the vacuum vessel 2 via the gas inlet 21 and the gas flowing in the vacuum vessel 2 is passed through the gas outlet 22. Through the vacuum vessel 2. Thus, in the first embodiment, new gas is always introduced into the vacuum vessel 2.
On the other hand, in the third embodiment, a circulating gas is introduced into the vacuum vessel 2.
Specifically, in the third embodiment, in the vacuum apparatus 1, the gas introduction unit 4 includes a circulation pipe 81 and a blower 82.
 循環配管81は、その一端が排出配管61に接続されるとともに、その他端が流入配管41に接続されている。これにより、循環配管81の内部空間は、排出配管61及び流入配管41を介して、真空容器2内に連通している。循環配管81の内部空間は、真空容器2内のガスが通過する流路として形成されている。
 送風機82は、循環配管81に取り付けられている。送風機82は、例えば、ファン又はブロワなどにより構成されている。
 また、真空装置1は、ヒータ5(図1参照)に代えて、ヒータ86を備えており、さらに、断熱材87を備えている。 
The circulation pipe 81 has one end connected to the discharge pipe 61 and the other end connected to the inflow pipe 41. As a result, the internal space of the circulation pipe 81 communicates with the inside of the vacuum vessel 2 via the discharge pipe 61 and the inflow pipe 41. The internal space of the circulation pipe 81 is formed as a flow path through which the gas in the vacuum vessel 2 passes.
The blower 82 is attached to the circulation pipe 81. The blower 82 is configured by, for example, a fan or a blower.
Further, the vacuum device 1 includes a heater 86 instead of the heater 5 (see FIG. 1), and further includes a heat insulating material 87.
 ヒータ86は、真空容器2の外方に配置されている。ヒータ86は、略筒形状に形成されており、真空容器2を覆うようにして、真空容器2の外面に取り付けられている。 The heater 86 is disposed outside the vacuum vessel 2. The heater 86 is formed in a substantially cylindrical shape, and is attached to the outer surface of the vacuum vessel 2 so as to cover the vacuum vessel 2.
 また、循環配管81の一部は、ヒータ86の外側に巻かれるようにして、真空容器2及びヒータ86の外方に配置されている。具体的には、循環配管81における送風機82が取り付けられる部分と第1バルブ43が取り付けられる部分との間の部分は、ヒータ86の外側に巻回されている。
 断熱材87は、循環配管81におけるヒータ86を巻回する部分の外方から真空容器2及びヒータ86を覆っている。
 断熱材87及びヒータ86は、温調部12(図2参照)に含まれる。
A part of the circulation pipe 81 is disposed outside the vacuum vessel 2 and the heater 86 so as to be wound around the heater 86. Specifically, a portion of the circulation pipe 81 between the portion where the blower 82 is attached and the portion where the first valve 43 is attached is wound around the heater 86.
The heat insulating material 87 covers the vacuum vessel 2 and the heater 86 from the outside of the portion around the heater 86 in the circulation pipe 81.
The heat insulating material 87 and the heater 86 are included in the temperature control unit 12 (see FIG. 2).
 質量分析装置11では、質量分析に先立って、第1バルブ43及び第2バルブ62が開放された後に、ヒータ86が作動されるとともに、送風機82が作動される。 In the mass spectrometer 11, the heater 86 is activated and the blower 82 is activated after the first valve 43 and the second valve 62 are opened prior to mass analysis.
 これにより、真空容器2内のガスが、ガス排出口22を介して循環配管81内の流路を通過する。循環配管81内の流路を通過するガスは、ヒータ86によって加熱されて高温のガスとなった状態で、ガス流入口21を介して真空容器2内に導入される。
 このように、真空装置1では、真空容器2外に排出されたガスが、ヒータ86によって加熱されながら、循環配管81を介して、再度、真空容器2内に流入する。
As a result, the gas in the vacuum vessel 2 passes through the flow path in the circulation pipe 81 via the gas discharge port 22. The gas passing through the flow path in the circulation pipe 81 is introduced into the vacuum vessel 2 through the gas inlet 21 in a state of being heated to a high temperature by the heater 86.
As described above, in the vacuum apparatus 1, the gas discharged out of the vacuum container 2 flows into the vacuum container 2 again through the circulation pipe 81 while being heated by the heater 86.
 真空容器2内のフライトチューブ3の温度が所定温度まで加熱されると、真空容器2内へのガスの導入が停止され、第1バルブ43及び第2バルブ62のそれぞれが閉鎖された状態において、ヒータ86の作動は継続される。そして、ヒータ86によって、真空容器2は温調され続ける。
 これにより、ヒータ86及び断熱材87によって、真空容器2の温度が保たれ、真空容器2内のフライトチューブ3の温度が保たれる。
 その後は、上記したように、真空ポンプ7によって真空容器2内が真空雰囲気にされた後、質量分析が行われる。
When the temperature of the flight tube 3 in the vacuum vessel 2 is heated to a predetermined temperature, the introduction of gas into the vacuum vessel 2 is stopped, and each of the first valve 43 and the second valve 62 is closed. The operation of the heater 86 is continued. Then, the vacuum vessel 2 is continuously temperature-controlled by the heater 86.
Thereby, the temperature of the vacuum vessel 2 is maintained by the heater 86 and the heat insulating material 87, and the temperature of the flight tube 3 in the vacuum vessel 2 is maintained.
Thereafter, as described above, after the inside of the vacuum vessel 2 is evacuated by the vacuum pump 7, mass spectrometry is performed.
(2)第3実施形態の作用効果
 本実施形態によれば、第1実施形態と同様の作用効果を得ることができる。
 また、本実施形態では、図5に示すように、真空装置1は、循環配管81及びヒータ86を備えている。そして、ガス排出口22から真空容器2外に排出されたガスは、循環配管81内の流路を通過して、再度、真空容器2内に導入される。また、循環配管81内の流路を通過するガスは、ヒータ86によって加熱される。
 そのため、高温のガスを循環させながら、真空容器2内に導入できる。
 その結果、ヒータ86から発せられる熱を効率的に利用して、フライトチューブ3の温度を高温にできる。
(2) Effects of Third Embodiment According to the present embodiment, the same effects as those of the first embodiment can be obtained.
In the present embodiment, as shown in FIG. 5, the vacuum apparatus 1 includes a circulation pipe 81 and a heater 86. And the gas discharged | emitted out of the vacuum vessel 2 from the gas discharge port 22 passes through the flow path in the circulation piping 81, and is introduce | transduced in the vacuum vessel 2 again. Further, the gas passing through the flow path in the circulation pipe 81 is heated by the heater 86.
Therefore, it can be introduced into the vacuum vessel 2 while circulating a high-temperature gas.
As a result, the heat generated from the heater 86 can be efficiently used to increase the temperature of the flight tube 3.
 また、本実施形態では、図5に示すように、ヒータ86は、真空容器2を加熱するとともに、循環配管81内の流路を通過するガスを加熱する。すなわち、真空容器2を温調するためのヒータ86を用いて、循環配管81内の流路を通過するガスが加熱される。
 そのため、真空装置1において、部品点数が増えることを抑制できる。
 その結果、真空装置1の小型化を図ることができる。
Further, in the present embodiment, as shown in FIG. 5, the heater 86 heats the vacuum container 2 and heats the gas passing through the flow path in the circulation pipe 81. That is, the gas passing through the flow path in the circulation pipe 81 is heated by using the heater 86 for adjusting the temperature of the vacuum vessel 2.
Therefore, in the vacuum apparatus 1, it can suppress that a number of parts increases.
As a result, the vacuum device 1 can be reduced in size.
7.変形例
 以上の実施形態では、真空装置1は、質量分析装置11に用いられるとして説明したが、真空装置1は、質量分析装置以外の分析装置に用いることもできるし、分析装置以外の各種装置にも用いることができる。この場合、真空容器2内に収容される加熱対象の部品は、フライトチューブ3に限らず、いかなる部品であってもよい。
 また、以上の実施形態では、真空容器2内には、例えば、Nガスが導入されるとして説明したが、真空容器2内に導入される加熱されたガスは、Nガスに限らず、空気などの他のガスであってもよい。
7). Modifications In the above embodiments, the vacuum apparatus 1 has been described as being used in the mass spectrometer 11. However, the vacuum apparatus 1 can be used in an analyzer other than the mass spectrometer, and various apparatuses other than the analyzer. Can also be used. In this case, the part to be heated contained in the vacuum vessel 2 is not limited to the flight tube 3 and may be any part.
In the above embodiments, the vacuum vessel 2, for example, has been described as N 2 gas is introduced, heated gas is introduced into the vacuum container 2 is not limited to the N 2 gas, Other gases such as air may be used.
 また、以上の実施形態では、真空装置1において、第1バルブ43を開放してから所定時間経過した後に第2バルブ62を開放するとして説明したが、第2バルブ62を開放するタイミングはこれに限られない。すなわち、第2バルブ62を開放するタイミングは、フライトチューブ3が所定温度に到達したときであってもよいし、第1バルブ43を開放するときと同時であってもよい。 In the above embodiment, in the vacuum apparatus 1, the second valve 62 is opened after a predetermined time has elapsed since the first valve 43 was opened. However, the timing for opening the second valve 62 is determined here. Not limited. That is, the timing at which the second valve 62 is opened may be when the flight tube 3 reaches a predetermined temperature, or at the same time as when the first valve 43 is opened.
 また、以上の実施形態では、フライトチューブ3の温度が所定温度に到達した後に、第1バルブ43及び第2バルブ62のそれぞれを閉鎖するとして説明したが、第1バルブ43及び第2バルブ62のそれぞれを閉鎖するタイミングはこれに限られない。すなわち、第1バルブ43及び第2バルブ62のそれぞれを閉鎖するタイミングは、第1バルブ43を開放してから所定時間経過したときであってもよい。 In the above embodiment, the first valve 43 and the second valve 62 are closed after the flight tube 3 reaches the predetermined temperature. However, the first valve 43 and the second valve 62 are not closed. The timing for closing each is not limited to this. That is, the timing for closing each of the first valve 43 and the second valve 62 may be when a predetermined time has elapsed since the first valve 43 was opened.
    1  真空装置
    2  真空容器
    3  フライトチューブ
    4  ガス導入部
    7  真空ポンプ
   11  質量分析装置
   14  制御部
   21  ガス流入口
   22  ガス排出口
   71  ヒータ
   86  ヒータ
DESCRIPTION OF SYMBOLS 1 Vacuum apparatus 2 Vacuum vessel 3 Flight tube 4 Gas introduction part 7 Vacuum pump 11 Mass spectrometer 14 Control part 21 Gas inflow port 22 Gas exhaust port 71 Heater 86 Heater

Claims (5)

  1.  内部に部品を収容し、ガス流入口及びガス排出口が形成される真空容器と、
     前記真空容器内の気体を吸引して前記真空容器内を真空雰囲気にする真空ポンプと、
     前記ガス流入口から前記真空容器内に加熱されたガスを導入するガス導入部と、
     加熱されたガスを前記ガス導入部によって前記ガス流入口から前記真空容器内に導入させながら前記ガス排出口から排出させることより、前記真空容器内の部品を加熱した後、前記ガス導入部によるガスの導入を停止し、その後、前記真空ポンプによって前記真空容器内を真空雰囲気にする制御部と、を備えることを特徴とする真空装置。
    A vacuum vessel in which components are housed and a gas inlet and a gas outlet are formed;
    A vacuum pump that sucks the gas in the vacuum vessel and places the vacuum vessel in a vacuum atmosphere;
    A gas introduction part for introducing heated gas into the vacuum vessel from the gas inlet;
    The heated gas is discharged from the gas discharge port while being introduced into the vacuum vessel from the gas inlet by the gas introduction unit, and then the gas in the vacuum vessel is heated after the components in the vacuum vessel are heated. And a control unit for making the inside of the vacuum vessel a vacuum atmosphere by the vacuum pump.
  2.  前記ガス導入部には、ガスが通過する流路が形成されており、
     前記真空容器を加熱するとともに、前記流路を通過するガスを加熱するヒータをさらに備えることを特徴とする請求項1に記載の真空装置。
    In the gas introduction part, a flow path through which gas passes is formed,
    The vacuum apparatus according to claim 1, further comprising a heater that heats the vacuum container and heats the gas passing through the flow path.
  3.  前記ガス導入部には、前記ガス排出口から排出されたガスを再度真空容器内に導入する流路が形成されており、
     前記流路を通過するガスを加熱するヒータをさらに備えることを特徴とする請求項1に記載の真空装置。
    The gas introduction part is formed with a flow path for introducing the gas discharged from the gas discharge port into the vacuum container again,
    The vacuum apparatus according to claim 1, further comprising a heater that heats the gas passing through the flow path.
  4.  前記ヒータは、前記真空容器の外方に配置され、前記真空容器を加熱することを特徴とする請求項3に記載の真空装置。 4. The vacuum apparatus according to claim 3, wherein the heater is disposed outside the vacuum vessel and heats the vacuum vessel.
  5.  請求項1~4のいずれか一項に記載の真空装置を備え、
     前記真空容器内に試料を導入することにより、当該試料の分析を行うことを特徴とする分析装置。
    A vacuum apparatus according to any one of claims 1 to 4,
    An analyzer that analyzes a sample by introducing the sample into the vacuum vessel.
PCT/JP2015/068704 2015-06-29 2015-06-29 Vacuum device and analysis device provided with same WO2017002176A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2015/068704 WO2017002176A1 (en) 2015-06-29 2015-06-29 Vacuum device and analysis device provided with same
JP2017525705A JP6583412B2 (en) 2015-06-29 2015-06-29 Vacuum device and analyzer equipped with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/068704 WO2017002176A1 (en) 2015-06-29 2015-06-29 Vacuum device and analysis device provided with same

Publications (1)

Publication Number Publication Date
WO2017002176A1 true WO2017002176A1 (en) 2017-01-05

Family

ID=57607946

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/068704 WO2017002176A1 (en) 2015-06-29 2015-06-29 Vacuum device and analysis device provided with same

Country Status (2)

Country Link
JP (1) JP6583412B2 (en)
WO (1) WO2017002176A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019220497A1 (en) * 2018-05-14 2019-11-21 株式会社島津製作所 Time-of-flight mass spectrometer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03106432A (en) * 1989-09-20 1991-05-07 Hitachi Ltd Method and device for degassing vacuum apparatus
JPH0658664A (en) * 1992-08-10 1994-03-04 Tousei Denki Kk Vacuum drying device
JPH09273659A (en) * 1996-04-03 1997-10-21 Hitachi Ltd Baking device for vacuum device
JP2003157771A (en) * 2001-09-05 2003-05-30 Nec Kagoshima Ltd Evacuation system of plasma display panel
JP5505224B2 (en) * 2010-09-16 2014-05-28 株式会社島津製作所 Time-of-flight mass spectrometer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03106432A (en) * 1989-09-20 1991-05-07 Hitachi Ltd Method and device for degassing vacuum apparatus
JPH0658664A (en) * 1992-08-10 1994-03-04 Tousei Denki Kk Vacuum drying device
JPH09273659A (en) * 1996-04-03 1997-10-21 Hitachi Ltd Baking device for vacuum device
JP2003157771A (en) * 2001-09-05 2003-05-30 Nec Kagoshima Ltd Evacuation system of plasma display panel
JP5505224B2 (en) * 2010-09-16 2014-05-28 株式会社島津製作所 Time-of-flight mass spectrometer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019220497A1 (en) * 2018-05-14 2019-11-21 株式会社島津製作所 Time-of-flight mass spectrometer
JPWO2019220497A1 (en) * 2018-05-14 2021-02-12 株式会社島津製作所 Time-of-flight mass spectrometer

Also Published As

Publication number Publication date
JPWO2017002176A1 (en) 2018-05-17
JP6583412B2 (en) 2019-10-02

Similar Documents

Publication Publication Date Title
RU2769119C2 (en) Ion transfer method, an interface configured to transfer ions, and a system comprising a source of gaseous ions
JP5491311B2 (en) Temperature-programmed desorption gas analyzer and method
US7180059B2 (en) Apparatus and method for sensor control and feedback
CN210743914U (en) Electrospray ion source and system
JP2015121406A (en) Ionization probe for liquid chromatograph mass spectroscope, and liquid chromatograph mass spectroscope
RU2015141392A (en) ION MODIFICATION
CN106814125B (en) Online testing device and testing method for material radiation-induced outgassing
JP6583412B2 (en) Vacuum device and analyzer equipped with the same
WO2017104053A1 (en) Ion analyzing apparatus
WO2019147748A2 (en) Surface layer disruption and ionization utilizing an extreme ultraviolet radiation source
JP3659216B2 (en) Time-of-flight mass spectrometer
CN205582885U (en) Supplementary surperficial desorption ordinary pressure chemical ionization mass spectrum device of gas heat and ionization source thereof
KR101063089B1 (en) Outgassing device and measuring method
WO2016051554A1 (en) Gas chromatograph mass spectrometry apparatus
JP7111021B2 (en) Analysis system and temperature control system
CN109425648B (en) Sample analysis method and device for rapid thermal desorption sample injection
CN102891062A (en) Film heating and sampling device for mass spectrometer
JP3582213B2 (en) Atmospheric pressure ionization mass spectrometer
JP6288290B2 (en) Optical emission spectrometer
WO2024115893A1 (en) Detector inlet apparatus and method
CN213958905U (en) Vacuum ion trap mass spectrometer
JP2008241533A (en) Sample introduction apparatus and sample introduction method
JP2001357816A (en) Mass spectrometer
JP2005083887A (en) Temperature programmed desorption analyzer and its method
JP2019007927A (en) Gas chromatograph mass spectrometer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15897103

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017525705

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15897103

Country of ref document: EP

Kind code of ref document: A1