JPH03106432A - Method and device for degassing vacuum apparatus - Google Patents

Method and device for degassing vacuum apparatus

Info

Publication number
JPH03106432A
JPH03106432A JP24222989A JP24222989A JPH03106432A JP H03106432 A JPH03106432 A JP H03106432A JP 24222989 A JP24222989 A JP 24222989A JP 24222989 A JP24222989 A JP 24222989A JP H03106432 A JPH03106432 A JP H03106432A
Authority
JP
Japan
Prior art keywords
gas
temperature
degassing
piping
heating device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24222989A
Other languages
Japanese (ja)
Other versions
JP2708569B2 (en
Inventor
Shinjiro Ueda
上田 新次郎
Toshiaki Kobari
利明 小針
Akiko Kagatsume
明子 加賀爪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP24222989A priority Critical patent/JP2708569B2/en
Publication of JPH03106432A publication Critical patent/JPH03106432A/en
Application granted granted Critical
Publication of JP2708569B2 publication Critical patent/JP2708569B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To bring a vacuum apparatus to a high vacuum state by a method wherein gas controlled in its temp. corresponding to the temp. in the vacuum apparatus is introduced into the apparatus to heat the inner surface thereof and the gas molecule adsorbed on the inner surface is released to be diffused into the high temp. gas. CONSTITUTION:Gas (e.g. nitrogen gas) controlled in its temp. corresponding to the inner temp. of a vacuum apparatus 1 is introduced into the apparatus to heat the inner surface thereof and the gas molecule adsorbed on the inner surface is released to be diffused in the introduced high temp. gas and removed to the outside of the apparatus along with the discharged gas. As a result, the gas molecule adsorbed on the inner surface of the vacuum apparatus or gas piping can be effectively and lightly within a short time.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、真空装置の真空容器あるいはガス配管などが
内表面に吸着しているガスを除去する脱ガス方怯及び脱
ガス装置に係り、特に超高真空装置や超高純度ガス配管
の主たる不純物ガスである水分の除去に好適な脱ガス方
法及び脱ガス装匿に関する. 〔従来の技術〕 従来の装置では、例えば真空装置では、容器を真空ポン
プで排気しながら、容器全体をヒータ等で加熱して内表
面の水分を中心とした吸着ガスを脱離させて排気除去す
るベーキングという手法がとられていた(例えば特開0
160−87840号、及び『真空技術』(堀越源一著
,東大出版会)の第119 −ページ). また,半導体製造装置で用いられるガス配管系では、ガ
ス中の不純物,特に水分の除去のため,年に及ぶオーダ
のガスパージが実施されていた(例えば『超クリーン化
技術』の第2章ガス系設計(大見忠弘署,日経マイクロ
デバイス)).〔発明が解決しようとするilM〕 上記従来技術のうち、まず真空装置の場合は、ベーキン
グという操作が脱ガスのためには確かに効果的で,現在
も広く用いられている.しかしながらベーキング加熱の
ためには装置にヒータを巻きつけて断熱カバーで覆うな
どの作業が必要であり、装置が複雑になったり、大型に
なったりするとこの作業の手間とコストがぼう大になる
などの問題があった。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a degassing device and a degassing device for removing gas adsorbed on the inner surface of a vacuum container or gas piping of a vacuum device. In particular, it relates to degassing methods and degassing equipment suitable for removing water, which is the main impurity gas in ultra-high vacuum equipment and ultra-high purity gas piping. [Conventional technology] In conventional equipment, for example, in a vacuum device, while the container is evacuated by a vacuum pump, the entire container is heated with a heater, etc., and adsorbed gas, mainly moisture, on the inner surface is desorbed and removed by exhaust gas. A method called baking was used (for example, in Japanese Patent Application Laid-Open No.
No. 160-87840, and page 119 of ``Vacuum Technology'' (by Genichi Horikoshi, University of Tokyo Press). In addition, in gas piping systems used in semiconductor manufacturing equipment, gas purging was performed on the order of years in order to remove impurities in the gas, especially moisture (for example, see Chapter 2 of ``Ultra Clean Technology'') Design (Omi Tadahiro Police Station, Nikkei Micro Devices)). [ILM to be solved by the invention] Among the above-mentioned conventional techniques, first of all, in the case of vacuum equipment, the operation called baking is certainly effective for degassing, and is still widely used today. However, baking heating requires work such as wrapping a heater around the device and covering it with an insulating cover, and if the device becomes complex or large, the effort and cost of this work will increase. There was a problem.

また、超高純度が要求されるガス配管では、不純物とし
ての水分を除去するためにパージガスを流すという操作
に頼ると、ぼう大な時間を要すること、また高純度化に
限界があるなどの問題があった. 本発明の目的は,真空装置やガス配管などの内表面に吸
着しているガス分子を効果的で手軽に、かつ短い時間で
除去するのに好適な真空装置の脱ガス方法及び脱ガス装
置を提供することにある。
In addition, in gas piping that requires ultra-high purity, relying on the operation of flowing purge gas to remove moisture as an impurity requires a huge amount of time and there are limits to achieving high purity. was there. An object of the present invention is to provide a degassing method and degassing device for vacuum equipment suitable for effectively, easily, and in a short time removing gas molecules adsorbed on the inner surfaces of vacuum equipment, gas piping, etc. It is about providing.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は,超高純度が要求される真空装置あるいはガ
ス配管系に、水分の含有量の少ない超高純度の窒素ガス
あるいは不活性ガスあるいはM;+3ガスを高温に加熱
して導入口から導入し、容器壁と熱交換して加熱しなが
ら内部を通過させ、排気口から外部に排出することによ
り、達成される.また,上記目的は装置内部のガスを排
気する1゛(空ポンプを備え、装置内を脱ガスする装置
において、装置内にガスを導入する配管と、この配管に
接続され,配管内にガスを但給するガス源と前記配管を
加熱する加熱装置とを設けることによって達成される. 〔作用〕 真空装置あるいはガス配管系に導入された+To nA
.に加熱されたガスは、導入口から容器内部を通過する
過程で容合内峨を加熱しながら出口へ向かって流れ,排
気口から外部へ流出する.加熱された内壁面からは、吸
着していたガスが加熱されることにより、気相中へ脱離
する. 吸着しているガス分子の平均吸着時間は、一般に次の式
であらわされる。
The above purpose is to heat ultra-high purity nitrogen gas with low moisture content, inert gas, or M; This is accomplished by exchanging heat with the container wall, heating it as it passes through the interior, and exhausting it to the outside through the exhaust port. In addition, the above purpose is to exhaust the gas inside the device (in a device that is equipped with an empty pump and degass the inside of the device, there is a pipe that introduces gas into the device, and a pipe that is connected to this pipe and that injects gas into the pipe). This is achieved by providing a gas source to be supplied and a heating device that heats the piping. [Operation] +TonA introduced into a vacuum device or gas piping system.
.. The heated gas flows toward the outlet while heating the inner volume of the container as it passes through the interior of the container from the inlet, and then flows out from the exhaust port. From the heated inner wall surface, the adsorbed gas is heated and desorbed into the gas phase. The average adsorption time of adsorbed gas molecules is generally expressed by the following formula.

t ocaxp( E m/ R T )      
    − (1)ここで、τは平均吸清時間pEaは
脱離の活性化エネルギー,Rはガス定数、Tは絶対温度
である.この式からわかるように,ガス分子の吸着時間
は,ガスと器壁の種類(E−とR)及び、温度で決まる
.すなわち加熱により温度を上げることが吸着ガスの脱
離に対して非常に効果的である.加熱により表画から脱
離したガス分子は、流れている高温ガス中に拡散する.
再び別の表面に当たって吸着される場合もあるが、壁面
はどこも加熱されて高温になっているので,容易に再脱
離し,高温ガス中に拡散する.導入した高温ガス自身に
ついては,水分などを充分除去し,純度を上げておけば
、内部に含まれている不純物ガスが、内漿に吸着して汚
染する割合は無視できる.脱離したガス分子は、高温ガ
ス中に混入し、容合や配管内を流れ,排気口から装置外
へ徘帛される. 以上のような操作、すなわち高純度の高温ガスによる装
置の加熱,温度上昇した壁面からの吸着ガス分子の脱離
,脱離したガス分子のA’l温ガスへの混入、高温ガス
の装置外への排出によって、容器内やガス管内表面の脱
ガスが効果的に行われる.〔実施例〕 以下,本発明の一実施例を第1図により説明する. 図で、1は脱ガスが行われる真空容器で、内部に部品が
あってもよい.2はターボ分子ポンプ,3はロータリポ
ンプで、この2つより真空排気系が構成されている.真
空容器1には,バルブ12と13を介して、ガス配管5
より窄素ガスが償給されるようになっている.本実施例
で゛はガス供給口は2ケ所であるが、もつと多くてもよ
い.京素ガスは、液体窒素デュワ6から配管16を通っ
て取り出された液体窒素をヒータ8で気化させ、さらに
ヒータ9で加熱されたものが用いられる.脱ガスのため
の操作方法は次の通りである.真空ポンプは停止状態で
,真空容器1も含めて,全体が大気圧状態にあるとする
.バルブ11,12,13.14及びゲートバルブ17
を開とし,バルプ15だけ閉とする.圧力調整バルプ1
0を調整して、ボンベ17中の窒素ガスをデュワ6中に
導いてデュワ内を加圧し、液体*素を配管16中に送り
出す.同時に、ヒータ8とヒータ9を作動状態にし、液
体窒素を気化させると共に、加熱し,ヒータ9の出口で
は150℃以上の高温になるようにする.液体窒素から
配管内で気化させた室索ガスには水分はほとんど含まれ
ておらず、その純度はきわめて高い.このような高純度
でかつ高温の窒素ガスを配管5を介して,真空容器1の
内部に導入する.真空容器1内で高温窒素ガスは図中示
したように内部を流れながら容器壁や内部部品を加熱す
る.真空容器1は断熱材4で覆われているため. K&
温窒素ガスにより容易に温度が上昇する.高温窒素ガス
は容器などと熱交換すると共に、脱離したガスをその内
部に取り込みながら容器内を流れ,ゲートバルブ17,
ターボ分子ボンプ2を通り,相引配管18とバルプ14
を通って外部へ放出される.ターボ分子ポンプ2の内部
部品や粗引配管18も高温窄索ガスによって加熱される
.バルブ15は閉としているので,ロータリポンプ3へ
は窒素ガスは行かない.真空容器1や内部部品、ターボ
分子ポンプ2などは熱容量を有しているため、その奄面
はすぐには心温にならないが、断熱材4で断熱しておけ
ば、比較的短時間で容易に温度が上昇する.高温にしす
ぎると内部部品に悪影響を及ぼすので、通常は真空容器
1の温度を熱電対19で検出し、温調器20でヒータ9
 tton−off制御,あるいはパワー制御すること
により,容器の温度が例えば150℃程度で一定になる
ようにする.加熱された器漿からは吸着していた水分な
どのガス成分が気相中に脱離する.先に(1)式で説明
したように,平均吸着時間τは温度Tの逆数の指数関数
に比例するので、吸着ガスの脱離促進するには温度を上
げることが非常に有効である.水分を中心とする吸着ガ
スの脱離には100℃以下では効果が少な<,loo’
c以上が必要でできれば150℃以上にすることが望ま
しい.本実施例によれば,ヒータ9の制御と、断熱材4
により,容器1を容易に150℃程度に加熱できる.脱
離した水分などのガス分子は流れている高温・品純度の
室別ガス中に拡散して運び去られる.一部のガス分子は
再び器ら!に付着するが,高温であるためすぐに気相中
に再脱離する.窒素ガス自体は、もともと器壁に吸着し
に<<(別の言い方をすれば、(1)式で脱離の活性化
エネルギが小さいため,平均吸着時間が極めて短かい)
,さらに高温であるため器壁にはほとんど吸着しない.
導入した窒素ガス中にもともと含まれていた不純物とし
ての水分などが器壁に吸着することもあるが,液体窒素
から気化した窒素ガスではその割合はPPb以下で極め
て少なく、影轡されることはない. このようにして、器壁から脱離したガス分子は流し続け
ている窒素ガスと共に、ポンプ,配管を通り、バルブ1
4から外部へ排出される.この時ゲートバルブ17や,
ターボ分子ポンプ2の内部も,容器lと同様に脱ガスが
促進される.150℃稈度の温度で数時間以上本操作が
続けられれば、容器内部はきれいに脱ガスされている.
その後、窒素ガス導入をやめてバルブ12.13及び1
4を閉じ,バルブ15を開いて、ロータリポンプ3とタ
ーボ分子ポンプ2を作動させれば、脱ガスは十分に行わ
れているので、真空容器1では容易に超高真空が得られ
る. 通常、真空容器1の脱ガスはポンプ2,3で真空排気を
行いながら,容器をヒータ等で外部から加熱するベーキ
ングという方法により,行われる.しかしながら、装置
が複雑になれば、ヒータを使えなかったり,加熱できな
い部分が生じたりする・。
tocaxp(E m/ R T )
- (1) Here, τ is the average absorption time pEa is the activation energy of desorption, R is the gas constant, and T is the absolute temperature. As can be seen from this equation, the adsorption time of gas molecules is determined by the gas, the type of vessel wall (E- and R), and the temperature. In other words, increasing the temperature by heating is very effective for desorption of adsorbed gas. Gas molecules released from the surface due to heating diffuse into the flowing high-temperature gas.
It may hit another surface and be adsorbed again, but since all walls are heated to high temperatures, it is easily desorbed again and diffused into the high-temperature gas. As long as the introduced high-temperature gas itself is sufficiently purified to remove moisture, etc., the rate of contamination caused by impurity gases contained inside the gas by adsorption to the internal plasma can be ignored. The desorbed gas molecules mix into the high-temperature gas, flow through the container and piping, and wander out of the device through the exhaust port. The above-mentioned operations include heating the device with high-purity high-temperature gas, desorption of adsorbed gas molecules from the heated wall surface, mixing of the desorbed gas molecules into A'l hot gas, and heating of the high-temperature gas outside the device. This effectively degasses the inside of the container and the inner surface of the gas pipe. [Example] An example of the present invention will be explained below with reference to FIG. In the figure, 1 is a vacuum container in which degassing is performed, and there may be parts inside. 2 is a turbo molecular pump, and 3 is a rotary pump, and these two constitute a vacuum pumping system. A gas pipe 5 is connected to the vacuum vessel 1 via valves 12 and 13.
More nitrogen gas is being compensated. In this embodiment, there are two gas supply ports, but there may be more. The Kyoso gas is obtained by vaporizing liquid nitrogen taken out from the liquid nitrogen dewar 6 through a pipe 16 with a heater 8 and then heating it with a heater 9. The operating method for degassing is as follows. Assume that the vacuum pump is stopped and the entire system, including vacuum container 1, is at atmospheric pressure. Valves 11, 12, 13.14 and gate valve 17
is open, and only valve 15 is closed. Pressure adjustment valve 1
0, the nitrogen gas in the cylinder 17 is introduced into the dewar 6, the inside of the dewar is pressurized, and the liquid element is sent into the pipe 16. At the same time, the heaters 8 and 9 are activated to vaporize and heat the liquid nitrogen, so that the temperature at the outlet of the heater 9 is 150° C. or higher. The indoor gas, which is vaporized from liquid nitrogen inside the pipes, contains almost no moisture and is extremely pure. Such high-purity and high-temperature nitrogen gas is introduced into the vacuum vessel 1 via the pipe 5. As shown in the figure, high-temperature nitrogen gas flows inside the vacuum container 1 and heats the container walls and internal parts. This is because the vacuum container 1 is covered with a heat insulating material 4. K&
Temperature rises easily with warm nitrogen gas. The high-temperature nitrogen gas exchanges heat with the container, etc., and flows through the container while taking in the desorbed gas, and the gate valve 17,
Passing through the turbo molecular pump 2, the subtraction pipe 18 and the valve 14
It is released to the outside through. The internal parts of the turbomolecular pump 2 and the rough piping 18 are also heated by the high-temperature constriction gas. Since valve 15 is closed, nitrogen gas does not go to rotary pump 3. Since the vacuum container 1, internal parts, turbo molecular pump 2, etc. have heat capacity, their surfaces will not reach the heart temperature immediately, but if they are insulated with the insulation material 4, they can be easily heated in a relatively short time. The temperature rises. If the temperature is too high, it will adversely affect the internal parts, so normally the temperature of the vacuum container 1 is detected with a thermocouple 19, and the temperature controller 20 is used to control the temperature of the heater 9.
The temperature of the container is kept constant at, for example, about 150°C by tton-off control or power control. Gas components such as moisture that had been adsorbed from the heated fluid are desorbed into the gas phase. As explained above using equation (1), the average adsorption time τ is proportional to the exponential function of the reciprocal of the temperature T, so increasing the temperature is very effective in promoting the desorption of the adsorbed gas. The desorption of adsorbed gases, mainly moisture, is less effective at temperatures below 100°C.
℃ or higher, preferably 150℃ or higher. According to this embodiment, the control of the heater 9 and the heat insulating material 4
This allows container 1 to be easily heated to about 150°C. The desorbed gas molecules, such as moisture, diffuse into the flowing, high-temperature, high-purity gas in the chamber and are carried away. Some gas molecules are back! However, due to the high temperature, it quickly re-desorbs into the gas phase. Nitrogen gas itself is originally adsorbed on the vessel wall.
Furthermore, due to the high temperature, almost no adsorption occurs on the vessel wall.
Moisture and other impurities originally contained in the introduced nitrogen gas may be adsorbed on the vessel walls, but in the case of nitrogen gas vaporized from liquid nitrogen, the proportion of this is extremely small, below PPb, and will not cause any adverse effects. do not have. In this way, the gas molecules desorbed from the vessel wall pass through the pump and piping together with the nitrogen gas that continues to flow, and pass through the valve 1.
It is discharged to the outside from 4. At this time, the gate valve 17,
Degassing is promoted inside the turbomolecular pump 2 as well as in the container 1. If this operation continues for several hours at a temperature of 150°C, the inside of the container will be completely degassed.
After that, stop introducing nitrogen gas and close valves 12, 13 and 1.
4 is closed, valve 15 is opened, and rotary pump 3 and turbomolecular pump 2 are operated. Since sufficient degassing has occurred, an ultra-high vacuum can be easily obtained in vacuum vessel 1. Normally, the vacuum container 1 is degassed by a method called baking, in which the container is heated from the outside with a heater or the like while pumps 2 and 3 are used to evacuate the container. However, if the equipment becomes complicated, the heater may not be usable or there may be parts that cannot be heated.

これに対し,本方法は、外部から導入する14ガスに加
熱と脱離ガスの除去という両方の作用を行わせるもので
、複雑な装置にも簡単に適用可能であり、また脱ガスに
重要な均一温度での加熱という点でも有利である. 以上のように、本実施例によれば、真空装置の脱ガスを
容易にできるという効果がある6第2図は他の実施例で
ある.適用対象はやはり真空装置であるが,本実施例で
は導入するガスをバルブ23で61#t,ながらボンベ
22から取り出すようにしている.この場合、ボンベ2
2中のガスは水分など不純物の少ない、高純度ガスを用
いることが必要である.ガスの種類としては窒素の他、
ヘリウムやアルゴンなど不活性ガスを用いてもよい6ま
た.本実施例では,真空容器1へ導入したガスをポンプ
側へ通さず,バルブ24から外へ排出するようにしてい
る.真空ポンプに高温ガスを送り込みたくない場合,本
実施例のような方法をとる.ここの例はボンプ21がク
ライオポンプの場合である.27は真空容器1の粗引用
の配管で,25.26はバルプである.高温高純度ガス
による真空容!a1に対する脱ガスの効果は実施例1の
場合と同様である. 第3図〜第6図は第2図の実施例における高温高純度ガ
スの送り方に関する説明図である.図で,横軸は時間経
過で縦軸はそれぞれ容器入口での偶給ガスの温度,供給
ガス流量,容器温度容器内圧力を示す.例えば第1図の
ような実施例において、バルブ11.12,13,17
.14を開,バルブl5を閉として,圧力調整弁10を
開いてガスをデュワ内に送り込み、液体窒素を配管16
に送り出す.財時にヒータ8,9をonとし、加熱窒素
ガスを容器l内に送り始める.容器1内の圧力は大気圧
7 6 QTorrからやや加圧され,例えば800T
orrとなる(第6図の)。高温ガスの通過により、配
管5等は急速に加熱され,容器入口の温度は急上昇し,
短いlI.v間で200℃程度になる(第3図■).こ
こでヒータが温調器によりon−offを始め、入口供
給ガス温度は200℃一定で制御される.■の時刻で容
器全体の平均温度はまだ低く,温度上昇過程にある(第
5図)。このままの状態を続け、時刻■で容器の平均温
度が目標&( 1 5 0℃に達する(第5図).ここ
で、圧力制御弁10及びバルブ11を絞って,窄索ガス
のO(給縫を減らす(第4図)。図の例では供給ガス流
量を約1/10とし,容器内圧力を約80Torrにし
ている.圧力の測定は例えば配管に取つけた圧力計29
で行う.同時にガスの排出側は、大気に通ずるバルブ1
4を閉じ、バルブ15を開き、ロータリポンプ3を起動
して、負圧になって容器内を排気できるようにする。こ
のように大気圧以下の状態で高温高純度ガスのOIi給
を続け,容器内の脱ガスを行う.数〜数十晴間たって脱
ガスが十分行なわれたところで,ガス供給を停止し、主
真空ポンプを起動する(第6図■〉.この後、容器の温
度が下がり,真空排気が進むと共に、容器内の圧力は急
速に下がり、1 0−”Torr以下の超高真空が容易
に得られる. 本実施例のように途中で供給ガスの流量を絞る利点は次
の通りである.第1は、容器を所定の温度まで加熱した
後は、外部へ逃げる分の熱量のみを供給すればよいので
,密度が小さく熱容量の少ない高温ガスを供給するだけ
で容器温度を一定に保つことができるようになる.すな
わち,窒素ガスの消費量を減らすことができるようにな
ることである.また、供給ガス流量を適切に選び、容器
から逸散する熱量と,導入ガスのもたらす熱量を同一に
すれば,ヒータ9のon−offは不要になり時刻■以
降ヒータ入力を一定にすることもできる.第2は,容器
内の圧力を低くすることにより,ガスの拡散係数が大き
くなるので,容器内の隅の部分など,ガスの気流が及び
にくい部分から脱離したガス分子が主流内に拡散し易く
なることである.つまり、容器内全体でみると脱ガスの
進行が均一化してくることである. 第7図は更に他の実施例で、S O R装置など加速器
のビームダクトに本脱ガス法を適用した例である.加速
器の場合、真空ダクトであるビームダクト50は偏向部
電磁石51やビーム制御川の4極や6極の電磁石群52
に覆われていて,加熱用ヒータを設置するのに大変な手
間を要している.また構造上の制約からヒータを置けず
、ベーキングに必要な均一加熱ができない場合もある.
またヒータによる局所的加熱によって、マグネットを損
う危険もある.本実施例では,長大なビームダクトを所
定長さにゲートバルブ53.54で区切り,一方の端5
5から高温高純度の窒素ガス56を導入し、ビームダク
ト50を加熱しながら流し,他の端の出口57から排出
させるもので,これによってビームダクト内壁の脱ガス
が行われる.本実施例によれば、ビームダクトには断熱
カバーを巻いておくだけでヒータを設置する必要がなく
なる。またJ,,3所的に高温になるヒータがないので
,マグネットを損傷する心配がない.ダクトの加熱は内
面からガスによって行われるので,均一に加熱され、効
果的な脱ガスが行われる.全周を1度に高温高純度ガス
で脱ガスしてもよいが,装置の大きさによっては、本実
施例のようにゲートバルブで部分的に区切り、分割して
脱ガスした方がよい場合もある。このように、加速器の
ビームダクトに本方法を適用すれば、簡便で信頼度が高
く、しかも効果的な脱ガスが可能となる. 第8図は更に他の実施例で、半導体製造工場などのガス
配管の脱ガスに用いた例である.原料ガスボンベ31か
ら高純度のガスが,半導体製造装置32ヘガス配管33
を通して送られる.ガス配管33は長大で、配管内表面
に吸着している水分を除去することが原料ガスの純度を
維持する上で非常に重要である.第8図では、原料ガス
供給口のすぐ近くに分岐した配管を設け、窒素ガスボン
ベ36から導いた高純度窒素ガスをガス配管33の数だ
け分岐し、ヒータ40で150℃以上に加熱し、パルブ
38を通してガス配管33に導く.原料ガスボンベ34
側は閉じておく.装置側では、バルブ35を閉じ、バル
ブ39を開にして外部へ排出する.導入した高温高純一
度の室索ガスは,ガス配管33を加熱すると共に吸着し
ていた水分など不純物ガスを脱離させ,配管外に運び去
る.従来、配管33を施行後、配管33に吸着している
ガスの除去はパージガスを流し続けることによって行わ
れ、水分を数PPbレベルまで下げるのにl年以上を要
する例もあったが,このように高温に加熱した窒素ガス
を用いることで、脱ガスの時間を大IIIに短縮するこ
とができる.仇給する室索ガスの純度もPPbレベルで
あることが望ましい.また窒素ガスの温度も100℃以
上にすることで、脱ガス効果が苦しくなる.ガス配管だ
けでなく半導体製造装置の内部の脱ガスキノ同時に行う
場合は,バルプ39を閉じ、バルブ35を開として高温
高純度窒讃ガスを導入し,排気ダクト41へ排出してや
ればよい. このように本実施例によれば,ガス配管の水分の除去を
中心とする脱ガスの効果がある.さらに半導体製造装誼
の内部の打ガスに対しても効果がある. 第8図で、半導体製造装置が複数ある場合は,それぞれ
の装置までつながっているガス配管を個別に上記方法で
脱ガスすることも11能であるし、ガス配管だけまとめ
て高温高純度窒素ガスを流して脱ガスを行うことも可能
である. 第8図で、高純度窒素ボンベ36からバルブ37のヒー
タ、バルブ38及びその間の配管までを一体にし,これ
を台車などに乗せて可搬式の脱ガス装置とすることもで
きる.この場合,ガス源として第1図のような液体窒素
デュワも一諸にして,可搬式にすることも可能である. 〔発明の効果〕 本発明によれば5密閉された容器,配管あるいはその内
部に設置された部品類の表面に吸着しているガス分子を
容易に脱離,除去できるので,装置の高真空化や高純度
化の効果がある.
In contrast, this method uses 14 gases introduced from the outside to perform both the heating and removal of degassed gases, and can be easily applied to complex equipment, as well as to remove the degassed gas. It is also advantageous in terms of heating at a uniform temperature. As described above, according to this embodiment, the vacuum apparatus can be easily degassed.6 FIG. 2 shows another embodiment. Although the application target is a vacuum device, in this embodiment, the introduced gas is taken out from the cylinder 22 while being introduced by the valve 23 at 61 #t. In this case, cylinder 2
It is necessary to use a high-purity gas with little impurities such as moisture as the gas in step 2. In addition to nitrogen, the types of gas include
An inert gas such as helium or argon may also be used6. In this embodiment, the gas introduced into the vacuum container 1 is discharged from the valve 24 without passing through to the pump side. If you do not want to send high-temperature gas to the vacuum pump, use the method shown in this example. In this example, the pump 21 is a cryopump. 27 is the rough piping for vacuum vessel 1, and 25 and 26 are valves. Vacuum capacity with high-temperature, high-purity gas! The effect of degassing on a1 is the same as in Example 1. Figures 3 to 6 are explanatory diagrams regarding how to send high-temperature, high-purity gas in the embodiment shown in Figure 2. In the figure, the horizontal axis shows the passage of time, and the vertical axis shows the temperature of the supplied gas at the inlet of the container, the flow rate of the supplied gas, and the temperature and pressure inside the container, respectively. For example, in the embodiment shown in FIG.
.. 14 is opened, valve l5 is closed, pressure regulating valve 10 is opened to send gas into the dewar, and liquid nitrogen is introduced into pipe 16.
Send it to When the time comes, turn on the heaters 8 and 9 and start sending heated nitrogen gas into the container. The pressure inside the container 1 is slightly increased from the atmospheric pressure of 76 QTorr, for example, 800T.
orr (as shown in Figure 6). Due to the passage of high-temperature gas, piping 5 etc. are rapidly heated, and the temperature at the container inlet rises rapidly.
short lI. The temperature will be about 200℃ between v and 200℃ (Fig. 3 ■). At this point, the heater starts to be turned on and off by the temperature controller, and the inlet supply gas temperature is controlled at a constant 200°C. At time (2), the average temperature of the entire container is still low and the temperature is in the process of rising (Figure 5). Continuing this state, the average temperature of the container reaches the target &( Reduce stitching (Figure 4). In the example shown, the supply gas flow rate is about 1/10 and the pressure inside the container is about 80 Torr. Pressure can be measured, for example, with a pressure gauge 29 attached to the pipe.
Do this. At the same time, the gas discharge side is connected to valve 1, which communicates with the atmosphere.
4 is closed, the valve 15 is opened, and the rotary pump 3 is started to create a negative pressure so that the inside of the container can be evacuated. In this way, OIi supply of high-temperature, high-purity gas is continued under conditions below atmospheric pressure to degas the inside of the container. After several to several tens of days have passed and sufficient degassing has occurred, the gas supply is stopped and the main vacuum pump is started (Fig. The internal pressure drops rapidly, and an ultra-high vacuum of 10-'' Torr or less can be easily obtained.The advantages of restricting the flow rate of the supply gas midway as in this example are as follows.The first is: After heating the container to a specified temperature, it is only necessary to supply the amount of heat that escapes to the outside, so the container temperature can be kept constant simply by supplying high-temperature gas with low density and low heat capacity. In other words, it is possible to reduce the amount of nitrogen gas consumed.Also, if the supply gas flow rate is selected appropriately and the amount of heat dissipated from the container is equal to the amount of heat provided by the introduced gas, the heater 9 is no longer necessary, and the heater input can be kept constant after time ■.Secondly, by lowering the pressure inside the container, the gas diffusion coefficient increases, so it is possible to This means that gas molecules desorbed from areas where the gas flow is difficult to reach, such as parts, become more likely to diffuse into the mainstream.In other words, the progress of degassing becomes more uniform throughout the container. Figure 7 shows yet another embodiment in which this degassing method is applied to the beam duct of an accelerator such as an SOR device. River 4-pole and 6-pole electromagnet group 52
It takes a lot of effort to install a heater. Additionally, due to structural constraints, it may not be possible to install a heater, making it impossible to achieve the uniform heating required for baking.
There is also the risk of damaging the magnet due to localized heating by the heater. In this embodiment, a long beam duct is divided into predetermined lengths by gate valves 53 and 54, and one end
High-temperature, high-purity nitrogen gas 56 is introduced from 5 and flows through the beam duct 50 while heating it, and is discharged from the outlet 57 at the other end, thereby degassing the inner wall of the beam duct. According to this embodiment, it is not necessary to install a heater simply by wrapping a heat insulating cover around the beam duct. Also, since there is no heater that heats up in three places, there is no need to worry about damaging the magnet. The heating of the duct is performed by gas from the inside, so it is heated evenly and degassed effectively. The entire circumference may be degassed with high-temperature, high-purity gas at once, but depending on the size of the device, it may be better to divide the area with a gate valve and degas it in parts, as in this example. There is also. In this way, if this method is applied to the beam duct of an accelerator, it will be possible to perform simple, reliable, and effective degassing. FIG. 8 shows yet another embodiment, in which it is used for degassing gas piping in semiconductor manufacturing factories and the like. High-purity gas is transferred from the raw material gas cylinder 31 to the semiconductor manufacturing equipment 32 and the gas pipe 33
sent through. The gas pipe 33 is long, and it is very important to remove moisture adsorbed on the inner surface of the pipe in order to maintain the purity of the source gas. In FIG. 8, branched pipes are provided in the immediate vicinity of the raw material gas supply port, and the high-purity nitrogen gas led from the nitrogen gas cylinder 36 is branched as many times as the gas pipes 33, heated to 150°C or higher with a heater 40, and then 38 to the gas pipe 33. Raw material gas cylinder 34
Keep the sides closed. On the equipment side, valve 35 is closed and valve 39 is opened to discharge the water to the outside. The high-temperature, high-purity gas introduced heats the gas pipe 33 and desorbs adsorbed impurity gases such as moisture, and carries them out of the pipe. Conventionally, after installing the piping 33, the gas adsorbed on the piping 33 was removed by continuing to flow purge gas, and in some cases it took more than a year to reduce the moisture to several ppb levels. By using nitrogen gas heated to a high temperature, the degassing time can be reduced to a large degree. It is desirable that the purity of the chamber gas to be supplied be at the PPb level. Furthermore, if the temperature of the nitrogen gas is increased to 100°C or higher, the degassing effect becomes difficult. When degassing not only the gas piping but also the inside of the semiconductor manufacturing equipment, the valve 39 may be closed and the valve 35 opened to introduce high-temperature, high-purity nitrogen gas and discharge it to the exhaust duct 41. As described above, according to this embodiment, there is a degassing effect centered on the removal of moisture from gas piping. It is also effective against gases inside semiconductor manufacturing equipment. In Figure 8, if there are multiple semiconductor manufacturing equipment, it is possible to degas the gas piping connected to each equipment individually using the above method, or to degas the gas piping all at once using high-temperature, high-purity nitrogen gas. It is also possible to degas by flowing . In FIG. 8, the high purity nitrogen cylinder 36, the heater for the valve 37, the valve 38, and the pipes therebetween can be integrated into one unit, and this can be mounted on a trolley or the like to form a portable degassing device. In this case, it is also possible to use a liquid nitrogen dewar as shown in Figure 1 as a gas source and make it portable. [Effects of the Invention] According to the present invention, it is possible to easily desorb and remove gas molecules adsorbed on the surfaces of sealed containers, piping, or parts installed inside them, so that it is possible to increase the vacuum of the device. It also has the effect of increasing purity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の系統図、第2図は同じく他
の実施例の系統図,第3図から第6同は高温,高純度ガ
スの送り方を示す説明図、第7図は加速器のビームダク
トの脱ガスに適用した場合の概略図,第8図は半導体製
造装置のガス配管に適用した場合の系統口である. 1・・・真空容器,2・・・ターボ分子ポンプ、3・・
・ロータリポンプ、4・・・断熱材.5.33・・・ガ
ス配管,6・・・液体窒素デュワ,7,36・・・窒素
ボンベ,8,9,40・・・ヒータ.10.23・・・
圧力調整バルブ、11〜15.24〜27・・・バルブ
、19・・・熱電対、20・・・温調器.21・・・タ
ライオポンプ,22・・・高純度ガスボンベ.50・・
・ビームダクト、51・・・偏向磁石,52・・・制御
用電磁石,55・・・ガス導入口,56・・・高温高純
度ガス源,57・・・ガス排出口、58・・・入射ダク
ト、 59・・・ビームライン、 60・・・ 22〜21=−i′f)で1 声r 力 2 図 24−27−一一バルフ゛ ≠0 vjr関titr) 6 3 口
Fig. 1 is a system diagram of one embodiment of the present invention, Fig. 2 is a system diagram of another embodiment, Figs. The figure is a schematic diagram of the system when it is applied to degassing the beam duct of an accelerator, and Figure 8 shows the system inlet when it is applied to the gas piping of semiconductor manufacturing equipment. 1...vacuum container, 2...turbo molecular pump, 3...
・Rotary pump, 4...insulation material. 5.33... Gas piping, 6... Liquid nitrogen dewar, 7, 36... Nitrogen cylinder, 8, 9, 40... Heater. 10.23...
Pressure adjustment valve, 11-15. 24-27... Valve, 19... Thermocouple, 20... Temperature controller. 21... Talio pump, 22... High purity gas cylinder. 50...
- Beam duct, 51... Deflection magnet, 52... Control electromagnet, 55... Gas inlet, 56... High temperature high purity gas source, 57... Gas outlet, 58... Injection Duct, 59... Beam line, 60... 22-21=-i′f) 1 sound r force 2

Claims (1)

【特許請求の範囲】 1、真空装置の内表面に吸着されたガスの脱ガス方法に
おいて、真空装置内部の温度に応じて加熱温度が調整さ
れたガスを内部に導入することにより、装置内表面を加
熱して内表面に吸着しているガス分子を脱離させると共
に導入している高温ガス中に拡散させ、さらに排出され
るガスと一諸に装置外に除去する脱ガス方法。 2、装置内に導入するガスの温度が100℃以上である
ことを特徴とする請求項1記載の脱ガス方法。 3、装置内に導入する高温ガスは窒素ガスあるいは不活
性ガスであることを特徴とする請求項1記載の脱ガス方
法。 4、装置内に導入する高温ガスを、装置の内表面温度が
所定の値になるまでは大気圧以上の圧力とし、所定の温
度になつた後は、高温ガスの圧力を大気圧以下の希薄な
状態とし、真空ポンプで装置外へ排出することを特徴と
する請求項1記載の脱ガス方法。 5、高温にするガスとして、極低温液体窒素から蒸発さ
せた窒素ガスを加熱して使用することを特徴とする請求
項1記載の脱ガス方法。 6、装置内部のガスを排気する真空ポンプを備え、装置
内を脱ガスする装置において、装置内にガスを導入する
配管と、この配管に接続され、配管内にガスを供給する
ガス源と前記配管を加熱する加熱装置とを設けたことを
特徴とする脱ガス装置。 7、装置内部のガス排気する真空ポンプを備え、装置内
を脱ガスする装置において、装置内にガスを導入する配
管と、この配管に接続され、配管内にガスを供給するガ
ス源と、前記配管を加熱する加熱装置と、装置内の温度
を検出する温度検出器と、この温度検出器からの信号に
よつて前記加熱装置の温度を調節する温調器とを設けた
ことを特徴とする脱ガス装置。 8、装置内にガスを導入する配管を装置の複数個所に設
けることを特徴とする請求項7記載の脱ガス装置。 9、装置内部のガスを排気する真空ポンプを備え、装置
内を脱ガスする装置において、装置内にガスを導入する
配管と、この配管は接続され、配管にガスを供給するガ
ス源と、前記配管を加熱する加熱装置とからなり、この
加熱装置は第1の加熱装置と第2の加熱装置とによつて
構成し、前記第1の加熱装置は一定の温度で加熱する加
熱装置とし、前記第2の加熱装置は温度検出器からの信
号によつて温度が調節される加熱装置とすることを特徴
とする脱ガス装置。 10、装置内部のガスを排気する真空ポンプを備え、装
置内を脱ガスする装置において、装置内ガスを導入する
配管と、この配管に接続され、配管とガスを供給するガ
ス源と、前記配管を加熱する加熱装置と、装置内部を排
気するターボ分子ポンプ。 11、ターボ分子ポンプに直列にロータリポンプもしく
はクライオポンプを接続することを特徴とする請求項1
0記載の脱ガス装置。
[Claims] 1. In a method for degassing gas adsorbed on the inner surface of a vacuum device, the inner surface of the vacuum device is A degassing method in which the gas molecules adsorbed on the inner surface are desorbed by heating and diffused into the high-temperature gas being introduced, and then removed from the device together with the exhausted gas. 2. The degassing method according to claim 1, wherein the temperature of the gas introduced into the apparatus is 100° C. or higher. 3. The degassing method according to claim 1, wherein the high temperature gas introduced into the apparatus is nitrogen gas or inert gas. 4. The high-temperature gas introduced into the device is kept at a pressure above atmospheric pressure until the internal surface temperature of the device reaches a predetermined value, and after reaching the predetermined temperature, the pressure of the high-temperature gas is diluted to below atmospheric pressure. 2. The degassing method according to claim 1, wherein the degassing method is carried out in a vacuum pump. 5. The degassing method according to claim 1, characterized in that nitrogen gas evaporated from cryogenic liquid nitrogen is heated and used as the gas to be heated to a high temperature. 6. In an apparatus for degassing the inside of the apparatus, which is equipped with a vacuum pump for exhausting gas inside the apparatus, a pipe for introducing gas into the apparatus, a gas source connected to this pipe and supplying gas into the pipe, and the above-mentioned A degassing device characterized by being provided with a heating device that heats piping. 7. In an apparatus for degassing the inside of the apparatus, which is equipped with a vacuum pump for exhausting gas inside the apparatus, a piping for introducing gas into the apparatus, a gas source connected to this piping and supplying gas into the piping, and the above-mentioned The heating device is characterized by being provided with a heating device that heats the piping, a temperature detector that detects the temperature inside the device, and a temperature controller that adjusts the temperature of the heating device based on a signal from the temperature detector. Degassing equipment. 8. The degassing device according to claim 7, wherein piping for introducing gas into the device is provided at a plurality of locations in the device. 9. In an apparatus for degassing the inside of the apparatus, which is equipped with a vacuum pump for exhausting gas inside the apparatus, a piping for introducing gas into the apparatus, this piping is connected to a gas source for supplying gas to the piping, and the above-mentioned a heating device that heats the piping, the heating device is configured by a first heating device and a second heating device, the first heating device is a heating device that heats at a constant temperature, and the heating device is a heating device that heats the pipe at a constant temperature; A degassing device characterized in that the second heating device is a heating device whose temperature is adjusted by a signal from a temperature detector. 10. In an apparatus for degassing the inside of the apparatus, which is equipped with a vacuum pump for exhausting gas inside the apparatus, a pipe for introducing the gas inside the apparatus, a gas source connected to this pipe and supplying gas to the pipe, and said pipe. A heating device that heats the inside of the device, and a turbo molecular pump that exhausts the inside of the device. 11. Claim 1, characterized in that a rotary pump or a cryopump is connected in series to the turbomolecular pump.
The degassing device according to 0.
JP24222989A 1989-09-20 1989-09-20 Vacuum device degassing method and degassing device Expired - Fee Related JP2708569B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24222989A JP2708569B2 (en) 1989-09-20 1989-09-20 Vacuum device degassing method and degassing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24222989A JP2708569B2 (en) 1989-09-20 1989-09-20 Vacuum device degassing method and degassing device

Publications (2)

Publication Number Publication Date
JPH03106432A true JPH03106432A (en) 1991-05-07
JP2708569B2 JP2708569B2 (en) 1998-02-04

Family

ID=17086156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24222989A Expired - Fee Related JP2708569B2 (en) 1989-09-20 1989-09-20 Vacuum device degassing method and degassing device

Country Status (1)

Country Link
JP (1) JP2708569B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001053066A (en) * 1999-05-28 2001-02-23 Tokyo Electron Ltd Ozone processor and ozone processing method
JP2006237360A (en) * 2005-02-25 2006-09-07 Iwate Toshiba Electronics Co Ltd Gas cleaning system of semiconductor manufacturing device
JP4864696B2 (en) * 2003-04-23 2012-02-01 ボルボ エアロ コーポレイション Method and apparatus for reducing contamination of workpieces
WO2013187026A1 (en) * 2012-06-13 2013-12-19 パナソニック株式会社 Method for removing impurities inside vacuum chamber, method of using vacuum device, and method of manufacturing product
JP2014131036A (en) * 2007-08-17 2014-07-10 Semiconductor Energy Lab Co Ltd Deposition apparatus
WO2017002176A1 (en) * 2015-06-29 2017-01-05 株式会社島津製作所 Vacuum device and analysis device provided with same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001053066A (en) * 1999-05-28 2001-02-23 Tokyo Electron Ltd Ozone processor and ozone processing method
JP4864696B2 (en) * 2003-04-23 2012-02-01 ボルボ エアロ コーポレイション Method and apparatus for reducing contamination of workpieces
JP2006237360A (en) * 2005-02-25 2006-09-07 Iwate Toshiba Electronics Co Ltd Gas cleaning system of semiconductor manufacturing device
JP2014131036A (en) * 2007-08-17 2014-07-10 Semiconductor Energy Lab Co Ltd Deposition apparatus
WO2013187026A1 (en) * 2012-06-13 2013-12-19 パナソニック株式会社 Method for removing impurities inside vacuum chamber, method of using vacuum device, and method of manufacturing product
US9595695B2 (en) 2012-06-13 2017-03-14 Joled Inc. Method for removing impurities from inside of vacuum chamber, method for using vacuum apparatus, and method for manufacturing product
WO2017002176A1 (en) * 2015-06-29 2017-01-05 株式会社島津製作所 Vacuum device and analysis device provided with same
JPWO2017002176A1 (en) * 2015-06-29 2018-05-17 株式会社島津製作所 Vacuum device and analyzer equipped with the same

Also Published As

Publication number Publication date
JP2708569B2 (en) 1998-02-04

Similar Documents

Publication Publication Date Title
KR960003788B1 (en) Evacuation system and the method thereof
US5513499A (en) Method and apparatus for cryopump regeneration using turbomolecular pump
JP2574586B2 (en) Method for regenerating a cryopump and a cryopump suitable for performing the method
JPH10508078A (en) In situ getter pump apparatus and method
JPH02245232A (en) High-vacuum apparatus
JPH0460539B2 (en)
JPH01268030A (en) Method and apparatus for plasma etching
JPH0673542A (en) Vacuum treating device
JPH03106432A (en) Method and device for degassing vacuum apparatus
RU2300062C2 (en) Method and device for drying gas pipelines
JPH06346848A (en) Regenerating cryopump method and evacuation system thereof
JPH0729962A (en) Method and device for evacuation
JPS5990784A (en) Vacuum exhausting apparatus
US3457655A (en) Process of and apparatus for the desorption of extraneous molecules
JPS6314866A (en) Device for supplying ultra-high-purity gas
CN111589270B (en) Gas purification device used under vacuum environment and ultrahigh vacuum equipment
WO2023145385A1 (en) Cryopump system and regeneration controller
CN116142637B (en) Workpiece inflation method
JPH05346424A (en) Gas chromatograph
JPH08980A (en) Decaborane gas feeding system
JP7011384B2 (en) Vacuum processing equipment and rare gas recovery equipment
JPH09309588A (en) Transportation container for poisonous gas container
JP2696920B2 (en) Atmosphere treatment equipment
JPH04187873A (en) Evacuation device
JP2616853B2 (en) Heat pipe manufacturing equipment

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees