WO2017000824A1 - 一种非授权载波上图样的管理方法和装置 - Google Patents

一种非授权载波上图样的管理方法和装置 Download PDF

Info

Publication number
WO2017000824A1
WO2017000824A1 PCT/CN2016/086761 CN2016086761W WO2017000824A1 WO 2017000824 A1 WO2017000824 A1 WO 2017000824A1 CN 2016086761 W CN2016086761 W CN 2016086761W WO 2017000824 A1 WO2017000824 A1 WO 2017000824A1
Authority
WO
WIPO (PCT)
Prior art keywords
cca
pattern
frequency domain
cca detection
detection
Prior art date
Application number
PCT/CN2016/086761
Other languages
English (en)
French (fr)
Inventor
杨玲
苟伟
赵亚军
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP16817188.2A priority Critical patent/EP3319356B1/en
Priority to US15/740,385 priority patent/US10813128B2/en
Publication of WO2017000824A1 publication Critical patent/WO2017000824A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • H04W74/0816Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA] with collision avoidance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1215Wireless traffic scheduling for collaboration of different radio technologies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]

Definitions

  • This document relates to, but is not limited to, the field of communications, and in particular, to a method and apparatus for managing a pattern on an unlicensed carrier.
  • LTE Long Term Evolution
  • authorized carriers will no longer be able to withstand such a huge amount of data. Therefore, deploying LTE on an unlicensed carrier and sharing the amount of data in the authorized carrier through an unlicensed carrier has become an important direction for the development of LTE.
  • the LTE Rel-13 version has started to study the important issue of using the unlicensed carrier in the LTE system in September 2014. This technology will enable LTE systems to use existing unlicensed carriers, greatly increasing the potential frequency domain resources of LTE systems, enabling LTE systems to achieve lower frequency domain costs.
  • an unlicensed carrier has the following features:
  • Free/low cost no need to purchase unlicensed frequency domain, frequency domain resources are zero cost
  • the available bandwidth is large (5GHz, 2.4GHz unlicensed frequency band can be used);
  • Machine-to-Machine M2M
  • Vehicle-to-Vehicle V2V
  • the unlicensed carrier obtains the right to use the LTE system through opportunistic competition, how to improve the frequency efficiency of the unlicensed carrier resource becomes an urgent problem to be solved.
  • the Clear Channel Assessment (CCA) detection is performed according to the related art (ie, the CCA detection is energy detection over the entire system bandwidth)
  • the base station and/or the UE need to be used before using the unlicensed carrier.
  • the CCA detection is performed on the system bandwidth. After detecting that the channel is idle, the base station or the UE can use the carrier resource. For a base station or a UE with a small traffic, this may cause a great waste of resources.
  • the base station or the UE in the same system or the same carrier continues to perform CCA detection, it is found that the channel is occupied, and the same cell or the same operator or the same system node is occupied and cannot be used, thereby causing The frequency domain utilization efficiency is low and the system performance is poor.
  • the embodiment of the invention provides a method and a device for managing a pattern on an unlicensed carrier, which can solve the problem that the system performance is poor due to low frequency domain utilization efficiency in the related art.
  • a method for managing a pattern on an unlicensed carrier comprising:
  • the transport node generates and interacts with a CCA pattern Pattern;
  • the CCA Pattern includes: a pattern used in performing different stages of the idle channel assessment CCA detection, a pattern used for data transmission, and a CCA detection pattern;
  • the transmission node includes one or more of the following : System level node, cell level node, user equipment UE level node.
  • the different stages of performing the CCA detection include at least one of the following phases:
  • the Pattern used for CCA detection during the non-occupied period includes one of the following:
  • the frequency domain is equally spaced, and the granularity of the minimum resource is the CCA detection pattern of the resource block RB;
  • the frequency domain is not equally spaced, and the granularity of the minimum resource is the CCA detection pattern of the RB;
  • the frequency domain is equally spaced, and the granularity of the minimum resource is the CCA detection pattern of the resource element RE;
  • the frequency domain is not equally spaced, and the granularity of the minimum resource is the CCA detection pattern of the RE;
  • the sub-band CCA detects the Pattern.
  • the Pattern used for CCA detection during the reserved signal period includes one of the following:
  • the frequency domain resource corresponding to the CCA detection pattern is reserved, and the node used for multiplexing performs CCA Pattern detection in the reserved signal period;
  • the transmission pattern of the reserved signal is used as a pattern used by the multiplexed node for CCA detection during the reserved signal period.
  • the reserved signal sent by the reserved signal period includes one of the following:
  • Channel sounding reference signal SRS preamble, primary and secondary synchronization sequence PSS/SSS and predetermined identification.
  • the SRS signal is used as a reserved signal of the reserved annunciator, the SRS signal is sent before the uplink data is sent.
  • the multiplexed node performs CCA detection during the reserved signal period to determine that the CCA detection is successful according to one of the following manners:
  • Manner 2 The case that the reserved signal is sent on the frequency domain resource corresponding to the CCA detection pattern one by one, and the system bandwidth is sent by the multiple nodes by means of frequency division multiplexing, and the nodes are in their respective corresponding CCAs. If the channel is busy on the resources of the frequency domain, and the channel is also busy on other resources in the frequency domain, the node detects whether the channel is idle on the preset RE of the frequency domain of the CCA, and if the channel is idle, the channel is considered to be available;
  • Mode 3 For the reserved signal to be sent over the entire bandwidth, and reserved for the CPA detection pattern In the case of a one-to-one corresponding frequency domain resource, if the channel is detected to be idle on the resource of the corresponding CCA frequency domain pattern, and the channel is busy detected on other resources in the frequency domain, the channel is considered to be available.
  • the Pattern used for CCA detection during the data transmission period includes one of the following:
  • the frequency domain resources corresponding to the CCA detection pattern are reserved, and the nodes used for multiplexing perform CCA Pattern detection during the data transmission period;
  • the data transmission is over the entire bandwidth, and the preset RE on the frequency domain resource corresponding to the CCA detection pattern is reserved, or the preset frequency domain RE is reserved during the data transmission period, and the node used for multiplexing is CCA Pattern detection during data transmission;
  • the data transmission is transmitted according to the frequency domain resource corresponding to the CCA detection pattern one by one, and the data transmission pattern is used as a pattern used by the multiplexed node for performing CCA detection in the reserved signal period.
  • the multiplexed node performs CCA detection during the data transmission period to determine that the CCA detection is successful according to one of the following manners:
  • Manner 1 When data is transmitted over the entire system bandwidth and frequency domain resources corresponding to the CCA detection pattern are reserved, if the channel is idle on the resources of the corresponding reserved CCA frequency domain Pattern, other resources in the frequency domain are detected. After detecting that the channel is busy, it is determined that the channel is available;
  • Manner 2 When data transmission is performed by means of frequency division multiplexing on the entire system bandwidth, the channel is busy on the resource of the CCA frequency domain Pattern corresponding to the transmission data, and the channel is also busy on other frequency domain resources.
  • the node detects whether the channel is idle on the reserved idle RE on the data transmission resource corresponding to the CCA frequency domain pattern, and if the idle state, considers that the channel is available;
  • Manner 3 transmitting data over the entire bandwidth, and puncturing the preset RE on the frequency domain resource, and the node used for multiplexing performs channel identification during the data transmission period, if in the corresponding CCA frequency domain Pattern If the channel is busy on the resource, and the channel is also busy on other resources in the frequency domain, continue to detect whether it is idle on the reserved RE of the frequency domain of the CCA or on the RE reserved on the frequency domain resource. If idle, the channel is considered available.
  • the pattern used by the data transmission includes:
  • Data is transmitted over the entire system bandwidth, and a pair of CPA detection patterns is reserved.
  • the frequency domain resources should not be transmitted;
  • the data is transmitted on the entire system bandwidth, and the preset RE resources in the frequency domain resources corresponding to the CCA detection pattern are reserved for data transmission;
  • the data is transmitted on a frequency domain resource corresponding to the CCA detection pattern.
  • the location of the CCA detection pattern used by the data transmission is a location of a frequency domain resource on a symbol in a subsequent subframe, where the location of the frequency domain resource and the frequency domain location of the CPA detection pattern are one-to-one corresponding to the resource.
  • the CCA detects the RE resource in the frequency domain resource corresponding to the Pattern, or is the preset RE resource in the frequency domain.
  • the symbol in the subsequent subframe is the first symbol or the first few symbols in the subframe; and the location of the orthogonal frequency division multiplexing OFDM symbol or the frequency domain corresponding to the symbol
  • the punctured position of the RE of the resource is a position other than the position where the reference signal and the channel are used.
  • the used reference signal and channel include one or more of the following: an uplink channel quality measurement signal DMRS, an SRS, a physical downlink control channel PDCCH, a physical uplink control channel PUCCH, a cell-specific reference signal CRS, and
  • the channel state indicates the reference signal CSI-RS.
  • the system level node includes one or more of the following: an auxiliary authorized access to all nodes in the LAA system, or all nodes in the operator network, wherein the system level node uses the same CCA Pattern for CCA detection. ;
  • the cell-level node includes one or more of the following: intra-cell nodes, different cells, and nodes in different cells, where intra-cell nodes use a unified CCA Pattern for CCA detection; nodes in different cells or in different cells use Different CCA patterns for CCA testing;
  • the UE-level node includes one or more of the following: different UEs, different UE group groups, or UEs in the same UE group, where different CCA patterns are used for CCA detection between different UEs or different UE groups; the same UEs in the UE group use the same CCA Pattern for CCA detection.
  • the system level node uses the same CCA Pattern for CCA detection, including one of the following:
  • the system level node performs CCA detection using the same RE level CCA Pattern
  • the system level node performs CCA detection using the same RB level CCA Pattern
  • the system level nodes use the same subband level CCA Pattern for CCA detection.
  • the system level node uses the same CCA Pattern for CCA detection, including one of the following:
  • All nodes in the carrier network use the same RB-level CCA Pattern for CCA detection;
  • All nodes in the carrier network use the same sub-band CCA Pattern for CCA detection.
  • the intra-cell node uses the same CCA Pattern for CCA detection, including one of the following:
  • the nodes in the cell use the same sub-band CCA Pattern for CCA detection.
  • the nodes in the different cells or in different cells use different CCA patterns for CCA detection, including one of the following:
  • Nodes in different cells or in different cells use different CCA patterns of RE level to perform CCA detection on their respective resources;
  • Nodes in different cells or in different cells use different RB-level CCA Patterns to perform CCA detection on their respective resources;
  • Nodes between different cells or in different cells use different sub-band CCA Patterns to perform CCA detection on their respective resources.
  • the UE in the UE group performs CCA detection using the same CCA Pattern, including one of the following:
  • UEs in the UE group use the same RE level CCA Pattern for CCA detection
  • UEs in the UE group use the same RB-level CCA Pattern for CCA detection;
  • UEs in the UE group use the same sub-band CCA Pattern for CCA detection.
  • different CCA patterns are used between the different UEs or between different UE groups for CCA detection, including one of the following:
  • CCA detection is performed on the respective resources using CCA Patterns of different sub-band levels between different UEs or between different UE groups.
  • the CCA Pattern used by the system level or cell level or UE level node is contracted or obtained by high layer signaling.
  • the transmitting node is a base station
  • the interaction CCA Pattern includes the following three manners:
  • Manner 1 The base stations exchange information of their respective CCA Patterns through the X2 port; after obtaining the information of the CCA Patterns of other base stations, the neighboring base stations start a random backoff counter; the random backoff value is first reduced to The base station of 0 shifts a fixed value on the basis of the received CCA Pattern, maintains a list of CCA Patterns, and notifies the neighboring base stations until the predetermined number of reusable nodes is reached in the list, and the information interaction operation is stopped;
  • the base station informs the neighboring base station of the CCA pattern used by the neighboring base station to perform CCA detection through the X2 port, and after the neighboring base station receives the information of the CCA Pattern, the non-occupied period, the reserved signal period, and the data transmission of the channel are performed.
  • the period uses the frequency domain location information of the pattern included in the received CCA Pattern information;
  • Manner 3 The base station notifies the adjacent base station of the information of the CCA Pattern through the X2 port, and the neighboring base station sends the feedback information to the CCA Pattern after receiving the information of the CCA Pattern.
  • Each of the plurality of base stations generates a random number, and each determines an offset of its own CCA Pattern according to the random number size;
  • a primary base station is selected and the CCA Pattern assigned by the primary base station to the remaining base stations is received.
  • the interaction CCA Pattern includes:
  • the UE receives the CCA Pattern broadcasted by the base station for performing CCA detection;
  • the UE receives high layer signaling, where the high layer signaling includes a CCA Pattern for the CCA detection by the UE.
  • the CCA pattern is determined by one or more of a frequency domain start position, a frequency domain offset, a continuous length of the resource, a size of the cluster cluster, a period T, a frequency domain bandwidth, and a number of clusters. .
  • determining the starting position of the frequency domain of different nodes is calculated as follows:
  • k is the starting position of the frequency domain
  • f is the number of resources continuously occupied by one node
  • v shift is the frequency domain offset
  • N is the total number of multiplexing nodes
  • N resource is the total number of resources. Indicates the ID of the cell.
  • An apparatus for managing an unlicensed carrier is applied to a transmission node, where the transmission node includes one or more of the following: a system level node, a cell level node, and a user equipment UE level node; the apparatus includes:
  • the management module is configured to generate and interact with the CCA pattern Pattern;
  • the CCA Pattern includes: a pattern Pattern used in different stages of performing CCA detection, a Pattern used for data transmission, and a CCA detection Pattern.
  • the different stages of performing the CCA detection include at least one of the following phases:
  • the Pattern used for CCA detection during the non-occupied period includes one of the following:
  • the frequency domain is equally spaced, and the granularity of the minimum resource is the CCA detection pattern of the resource block RB;
  • the frequency domain is not equally spaced, and the granularity of the minimum resource is the CCA detection pattern of the RB;
  • the frequency domain is equally spaced, and the granularity of the minimum resource is the CCA detection pattern of the resource element RE;
  • the frequency domain is not equally spaced, and the granularity of the minimum resource is the CCA detection pattern of the RE;
  • the sub-band CCA detects the Pattern.
  • the Pattern used for CCA detection during the reserved signal period includes one of the following:
  • the frequency domain resource corresponding to the CCA detection pattern is reserved, and the node used for multiplexing performs CCA Pattern detection in the reserved signal period;
  • the transmission pattern of the reserved signal is used as a pattern used by the multiplexed node for CCA detection during the reserved signal period.
  • the reserved signal sent by the reserved signal period includes one of the following:
  • Channel sounding reference signal SRS preamble, primary and secondary synchronization sequence PSS/SSS and predetermined identification.
  • the SRS signal is used as a reserved signal of the reserved annunciator, the SRS signal is sent before the uplink data is sent.
  • the multiplexed node performs CCA detection during the reserved signal period to determine that the CCA detection is successful according to one of the following manners:
  • Manner 2 The case that the reserved signal is sent on the frequency domain resource corresponding to the CCA detection pattern one by one, and the system bandwidth is sent by the multiple nodes by means of frequency division multiplexing, and the nodes are in their respective corresponding CCAs. If the channel is busy on the resources of the frequency domain, and the channel is also busy on other resources in the frequency domain, the node detects whether the channel is idle on the preset RE of the frequency domain of the CCA, and if the channel is idle, the channel is considered to be available;
  • the Pattern used for CCA detection during the data transmission period includes one of the following:
  • the frequency domain resources corresponding to the CCA detection pattern are reserved, and the nodes used for multiplexing perform CCA Pattern detection during the data transmission period;
  • the data transmission is over the entire bandwidth, and the preset RE on the frequency domain resource corresponding to the CCA detection pattern is reserved, or the preset frequency domain RE is reserved during the data transmission period, and the node used for multiplexing is CCA Pattern detection during data transmission;
  • the data transmission is transmitted according to the frequency domain resource corresponding to the CCA detection pattern one by one, and the data transmission pattern is used as a pattern used by the multiplexed node for performing CCA detection in the reserved signal period.
  • the multiplexed node performs CCA detection during the data transmission period to determine that the CCA detection is successful according to one of the following manners:
  • Manner 1 When data is transmitted over the entire system bandwidth and frequency domain resources corresponding to the CCA detection pattern are reserved, if the channel is idle on the resources of the corresponding reserved CCA frequency domain Pattern, other resources in the frequency domain are detected. After detecting that the channel is busy, it is determined that the channel is available;
  • Manner 2 When data transmission is performed by means of frequency division multiplexing on the entire system bandwidth, the channel is busy on the resource of the CCA frequency domain Pattern corresponding to the transmission data, and the channel is also busy on other frequency domain resources.
  • the node detects whether the channel is idle on the reserved idle RE on the data transmission resource corresponding to the CCA frequency domain pattern, and if the idle state, considers that the channel is available;
  • Manner 3 transmitting data over the entire bandwidth, and puncturing the preset RE on the frequency domain resource, and the node used for multiplexing performs channel identification during the data transmission period, if in the corresponding CCA frequency domain Pattern If the channel is busy on the resource, and the channel is also busy on other resources in the frequency domain, continue to detect whether it is idle on the reserved RE of the frequency domain of the CCA or on the RE reserved on the frequency domain resource. If idle, the channel is considered available.
  • the pattern used by the data transmission includes:
  • the data is transmitted over the entire system bandwidth, and the frequency domain resources corresponding to the CCA detection pattern are reserved for data transmission;
  • the data is transmitted on the entire system bandwidth, and the preset RE resources in the frequency domain resources corresponding to the CCA detection pattern are reserved for data transmission;
  • the data is transmitted on the frequency domain resources corresponding to the CCA detection pattern one by one.
  • the location of the CCA detection pattern used by the data transmission is a location of a frequency domain resource on a symbol in a subsequent subframe, where the location of the frequency domain resource and the frequency domain location of the CPA detection pattern are one-to-one corresponding to the resource.
  • the CCA detects the RE resource in the frequency domain resource corresponding to the Pattern, or is the preset RE resource in the frequency domain.
  • the symbol in the subsequent subframe is the first symbol or the first few symbols in the subframe; and the location of the orthogonal frequency division multiplexing OFDM symbol or the frequency domain corresponding to the symbol
  • the punctured position of the RE of the resource is a position other than the position where the reference signal and the channel are used.
  • the used reference signal and channel include one or more of the following: an uplink channel quality measurement signal DMRS, an SRS, a physical downlink control channel PDCCH, a physical uplink control channel PUCCH, a cell-specific reference signal CRS, and
  • the channel state indicates the reference signal CSI-RS.
  • the system level node includes one or more of the following: all nodes in the LAA system, or all nodes in the operator network, where the system level nodes use the same CCA Pattern for CCA detection;
  • the cell-level node includes one or more of the following: a node in a cell, a different cell, and a node in a different cell, where nodes in the cell use a unified CCA Pattern for CCA detection; nodes in different cells or in different cells Use different CCA Patterns for CCA testing;
  • the UE level includes one or more of the following: different UEs, different UE group groups, or UEs in the same UE group, where different CCA patterns are used for CCA detection between different UEs or different UE groups; the same UE UEs in the group use the same CCA Pattern for CCA detection.
  • the system level node uses the same CCA Pattern for CCA detection, including one of the following:
  • the system level node performs CCA detection using the same RE level CCA Pattern
  • the system level node performs CCA detection using the same RB level CCA Pattern
  • the system level nodes use the same subband level CCA Pattern for CCA detection.
  • the system level node uses the same CCA Pattern for CCA detection, including one of the following:
  • All nodes in the carrier network use the same RB-level CCA Pattern for CCA detection;
  • All nodes in the carrier network use the same sub-band CCA Pattern for CCA detection.
  • the intra-cell node uses the same CCA Pattern for CCA detection, including one of the following:
  • the nodes in the cell use the same sub-band CCA Pattern for CCA detection.
  • the nodes in the different cells or in different cells use different CCA patterns for CCA detection, including one of the following:
  • Nodes in different cells or in different cells use different CCA patterns of RE level to perform CCA detection on their respective resources;
  • Nodes in different cells or in different cells use different RB-level CCA Patterns to perform CCA detection on their respective resources;
  • Nodes between different cells or in different cells use different sub-band CCA Patterns to perform CCA detection on their respective resources.
  • the UE in the UE group performs CCA detection using the same CCA Pattern, including one of the following:
  • UEs in the UE group use the same RE level CCA Pattern for CCA detection
  • UEs in the UE group use the same RB-level CCA Pattern for CCA detection;
  • UEs in the UE group use the same sub-band CCA Pattern for CCA detection.
  • different CCA patterns are used between the different UEs or between different UE groups for CCA detection, including one of the following:
  • CCA detection is performed on the respective resources using CCA Patterns of different sub-band levels between different UEs or between different UE groups.
  • the CCA Pattern used by the system level or cell level or UE level node is obtained by agreement or by higher layer signaling.
  • the management module when the management module is applied to the base station, the management module interacts with the CCA Pattern and includes the following three methods:
  • Manner 1 The management modules exchange information of the CCA Patterns of the respective base stations through the X2 port; after obtaining the information of the CCA Patterns of other base stations, the management module starts a random backoff counter; the first value of the random backoff value is reduced.
  • the management module to 0 shifts a fixed value based on the received CCA Pattern, maintains a list of CCA Patterns, and notifies the management module of the adjacent base station until the predetermined number of reusable nodes is reached in the list. Stop information interaction;
  • the management module notifies the CCA Pattern used by the management module of the neighboring base station to perform CCA detection through the X2 port; after receiving the information of the CCA Patterns of other base stations, the management module reserves the non-occupied period of the channel. Both the signal period and the data transmission period use the pattern frequency domain location information contained in the received information of the CCA Pattern;
  • Manner 3 The management module notifies the information of the CCA Pattern to the management module of the adjacent base station through the X2 port, and the management module sends the feedback information to the CCA Pattern after receiving the information of the CCA Pattern of the other base station.
  • the management module of the multiple base stations simultaneously reduces the random backoff value to 0, perform any of the following operations:
  • the management modules of the multiple base stations generate a random number, which are sequentially in accordance with the random number size Determine the offset of your own CCA Pattern;
  • a primary base station is selected and the CCA Pattern assigned by the management module of the primary base station to the remaining base stations is received.
  • the management module interacting with the CCA Pattern includes:
  • the high layer signaling includes a CCA Pattern for the CCA detection by the UE.
  • determining that the CCA pattern is determined by one or more of a frequency domain start position, a frequency domain offset, a continuous length of the resource, a size of the cluster cluster, a period T, a frequency domain bandwidth, and a number of clusters. of.
  • determining the starting position of the frequency domain of different base stations is calculated as follows:
  • k is the starting position of the frequency domain
  • f is the number of resources continuously occupied by one node
  • v shift is the frequency domain offset
  • N is the total number of multiplexing nodes
  • N resource is the total number of resources. Indicates the ID of the cell.
  • a computer readable storage medium storing computer executable instructions for performing the above method.
  • the embodiments of the present invention can increase the efficiency of frequency multiplexing and frequency division multiplexing of a base station/base station group or a UE/UE group on an unlicensed carrier, and reduce the complexity of the node identification resources multiplexed with the operator or the same cell. In addition, it can reduce interference between adjacent nodes and improve system performance to some extent.
  • FIG. 1 is a schematic diagram of a method for managing a pattern on an unlicensed carrier according to an embodiment of the present invention
  • FIG. 2 is a schematic flowchart of a CCA Pattern used when performing inter-site interactions for performing CCA detection according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a node performing transmission and transmission from performing CCA detection according to a specific CCA Pattern according to an embodiment of the present invention
  • 4(a) is a schematic diagram of a pattern used in a non-occupied period, a reserved signal period, and a data transmission period according to an embodiment of the present invention
  • FIG. 4(b) is a schematic diagram of a pattern used in a non-occupied period and a data transmission period according to an embodiment of the present invention.
  • An embodiment of the present invention provides a method for managing a pattern on an unlicensed carrier. As shown in FIG. 1 , the method includes the following steps:
  • the transmission node generates and interacts with a CCA pattern.
  • the CCA Pattern includes: a Pattern used in different stages of performing CCA detection, a Pattern used for data transmission, and a CCA detection Pattern.
  • the transmission node includes one or more of the following: A system-level node, a cell-level node, and a user equipment (User Equipment, UE for short) node.
  • the method relates to a pattern of patterns used by system level or cell level or user equipment UE level nodes for performing CCA detection at different stages, a pattern used for data transmission, and a generation and interaction of CCA detection patterns.
  • the different stages of performing the CCA detection include at least one of the following phases:
  • the Pattern used for CCA detection during the non-occupied period includes one of the following:
  • the frequency domain is equally spaced, and the granularity of the minimum resource is the CCA detection pattern of the resource block RB;
  • the frequency domain is not equally spaced, and the granularity of the minimum resource is the CCA detection pattern of the RB;
  • the frequency domain is equally spaced, and the granularity of the minimum resource is the CCA detection pattern of the resource element RE;
  • the frequency domain is not equally spaced, and the granularity of the minimum resource is the CCA detection pattern of the RE;
  • the sub-band CCA detects the Pattern.
  • the Pattern used for CCA detection during the reserved signal period includes one of the following:
  • the frequency domain resource corresponding to the CCA detection pattern is reserved, and the node used for multiplexing performs CCA Pattern detection in the reserved signal period;
  • the transmission pattern of the reserved signal is used as a pattern used by the multiplexed node for CCA detection during the reserved signal period.
  • the reserved signal sent by the reserved signal period includes one of the following:
  • the Sounding Reference Signal (SRS), the preamble, the PSS/SSS, and the predetermined identifier.
  • the SRS signal is used as a reserved signal of the reserved annunciator, the SRS signal is sent before the uplink data is sent.
  • the multiplexed node performs CCA detection during the reserved signal period to determine that the CCA detection is successful according to one of the following manners:
  • Manner 2 The case that the reserved signal is sent on the frequency domain resource corresponding to the CCA detection pattern one by one, and the system bandwidth is sent by the multiple nodes by means of frequency division multiplexing, and the nodes are in their respective corresponding CCAs. If the channel is busy on the resources of the frequency domain, and the channel is also busy on other resources in the frequency domain, the node detects whether the channel is idle on the preset RE of the frequency domain of the CCA, and if the channel is idle, the channel is considered to be available;
  • the Pattern used for CCA detection during the data transmission period includes one of the following:
  • the frequency domain resources corresponding to the CCA detection pattern are reserved, and the nodes used for multiplexing perform CCA Pattern detection during the data transmission period;
  • the data transmission is over the entire bandwidth, and the preset RE on the frequency domain resource corresponding to the CCA detection pattern is reserved, or the preset frequency domain RE is reserved during the data transmission period, and the node used for multiplexing is CCA Pattern detection during data transmission;
  • the data transmission is transmitted according to the frequency domain resource corresponding to the CCA detection pattern one by one, and the data transmission pattern is used as a pattern used by the multiplexed node for performing CCA detection in the reserved signal period.
  • the multiplexed node performs CCA detection during the data transmission period to determine that the CCA detection is successful according to one of the following manners:
  • Manner 1 When data is transmitted over the entire system bandwidth and frequency domain resources corresponding to the CCA detection pattern are reserved, if the channel is idle on the resources of the corresponding reserved CCA frequency domain Pattern, other resources in the frequency domain are detected. After detecting that the channel is busy, it is determined that the channel is available;
  • Manner 2 When data transmission is performed by means of frequency division multiplexing on the entire system bandwidth, the channel is busy on the resource of the CCA frequency domain Pattern corresponding to the transmission data, and the channel is also busy on other frequency domain resources.
  • the node detects whether the channel is idle on the reserved idle RE on the data transmission resource corresponding to the CCA frequency domain pattern, and if the idle state, considers that the channel is available;
  • Manner 3 transmitting data over the entire bandwidth, and puncturing the preset RE on the frequency domain resource, and the node used for multiplexing performs channel identification during the data transmission period, if in the corresponding CCA frequency domain Pattern If the channel is busy on the resource, and the channel is also busy on other resources in the frequency domain, continue to detect whether it is idle on the reserved RE of the frequency domain of the CCA or on the RE reserved on the frequency domain resource. If idle, the channel is considered available.
  • the pattern used by the data transmission includes:
  • the data is transmitted over the entire system bandwidth, and the frequency domain resources corresponding to the CCA detection pattern are reserved for data transmission;
  • the data is transmitted on the entire system bandwidth, and the preset RE resources in the frequency domain resources corresponding to the CCA detection pattern are reserved for data transmission;
  • the data is transmitted on a frequency domain resource corresponding to the CCA detection pattern.
  • the location of the CCA detection pattern used by the data transmission is a location of a frequency domain resource on a symbol in a subsequent subframe, where the location of the frequency domain resource and the frequency domain location of the CPA detection pattern are one-to-one corresponding to the resource.
  • the CCA detects the RE resource in the frequency domain resource corresponding to the Pattern, or is the preset RE resource in the frequency domain.
  • the symbol in the subsequent subframe is the first symbol or the first few symbols in the subframe; and the location of the orthogonal frequency division multiplexing OFDM symbol or the frequency domain corresponding to the symbol
  • the punctured position of the RE of the resource is a position other than the position where the reference signal and the channel are used.
  • the used reference signal and channel include one or more of the following: an uplink channel quality measurement signal DMRS, an SRS, a physical downlink control channel PDCCH, a physical uplink control channel PUCCH, a cell-specific reference signal CRS, and
  • the channel state indicates the reference signal CSI-RS.
  • the system level node includes one or more of the following: an auxiliary authorized access to all nodes in the LAA system, or all nodes in the operator network, wherein the system level node uses the same CCA Pattern for CCA detection. ;
  • the cell-level node includes one or more of the following: intra-cell nodes, different cells, and nodes in different cells, where intra-cell nodes use a unified CCA Pattern for CCA detection; nodes in different cells or in different cells use Different CCA patterns for CCA testing;
  • the UE-level node includes one or more of the following: different UEs, different UE group groups, or UEs in the same UE group, where different CCA patterns are used for CCA detection between different UEs or different UE groups; the same UEs in the UE group use the same CCA Pattern for CCA detection.
  • the system level node uses the same CCA Pattern for CCA detection, including one of the following:
  • the system level node performs CCA detection using the same RE level CCA Pattern
  • the system level node performs CCA detection using the same RB level CCA Pattern
  • the system level nodes use the same subband level CCA Pattern for CCA detection.
  • the system level node uses the same CCA Pattern for CCA detection, including one of the following:
  • All nodes in the carrier network use the same RB-level CCA Pattern for CCA detection;
  • All nodes in the carrier network use the same sub-band CCA Pattern for CCA detection.
  • the intra-cell node uses the same CCA Pattern for CCA detection, including one of the following:
  • the nodes in the cell use the same sub-band CCA Pattern for CCA detection.
  • the nodes in the different cells or in different cells use different CCA patterns for CCA detection, including one of the following:
  • Nodes in different cells or in different cells use different CCA patterns of RE level to perform CCA detection on their respective resources;
  • Nodes in different cells or in different cells use different RB-level CCA Patterns to perform CCA detection on their respective resources;
  • Nodes between different cells or in different cells use different sub-band CCA Patterns to perform CCA detection on their respective resources.
  • the UE in the UE group performs CCA detection using the same CCA Pattern, including one of the following:
  • UEs in the UE group use the same RE level CCA Pattern for CCA detection
  • UEs in the UE group use the same RB-level CCA Pattern for CCA detection;
  • UEs in the UE group use the same sub-band CCA Pattern for CCA detection.
  • different CCA patterns are used between the different UEs or between different UE groups for CCA detection, including one of the following:
  • CCA detection is performed on the respective resources using CCA Patterns of different sub-band levels between different UEs or between different UE groups.
  • the CCA Pattern used by the system level or cell level or UE level node is contracted or obtained by high layer signaling.
  • the transmitting node is a base station
  • the interaction CCA Pattern includes the following three manners:
  • Manner 1 The base stations exchange information of their respective CCA Patterns through the X2 port; after obtaining the information of the CCA Patterns of other base stations, the neighboring base stations start a random backoff counter; the random backoff value is first reduced to The base station of 0 shifts a fixed value on the basis of the received CCA Pattern, maintains a list of CCA Patterns, and notifies the neighboring base stations until the predetermined number of reusable nodes is reached in the list, and the information interaction operation is stopped;
  • the base station informs the neighboring base station of the CCA pattern used by the neighboring base station to perform CCA detection through the X2 port, and after the neighboring base station receives the information of the CCA Pattern, the non-occupied period, the reserved signal period, and the data transmission of the channel are performed.
  • the period uses the frequency domain location information of the pattern included in the received CCA Pattern information;
  • Manner 3 The base station notifies the adjacent base station of the information of the CCA Pattern through the X2 port, and the neighboring base station sends the feedback information to the CCA Pattern after receiving the information of the CCA Pattern.
  • Each of the plurality of base stations generates a random number, and each determines an offset of its own CCA Pattern according to the random number size;
  • a primary base station is selected and the CCA Pattern assigned by the primary base station to the remaining base stations is received.
  • the interaction CCA Pattern includes:
  • the UE receives the CCA Pattern broadcasted by the base station for performing CCA detection;
  • the UE receives high layer signaling, where the high layer signaling includes a CCA Pattern for the CCA detection by the UE.
  • the CCA pattern is determined by one or more of a frequency domain start position, a frequency domain offset, a continuous length of the resource, a size of the cluster cluster, a period T, a frequency domain bandwidth, and a number of clusters. .
  • determining the starting position of the frequency domain of different nodes is calculated as follows:
  • k is the starting position of the frequency domain
  • f is the number of resources continuously occupied by one node
  • v shift is the frequency domain offset
  • N is the total number of multiplexing nodes
  • N resource is the total number of resources. Indicates the ID of the cell.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • This embodiment is used to explain the flow of the CCA Pattern used when the CCA detection is performed between the transmission nodes.
  • the transit node is a site;
  • the CCA Pattern between sites is as follows:
  • Manner 1 The station notifies its neighboring base station (or surrounding base station, neighboring base station) through the X2 port, and the base station that receives the pattern information acquires its own CCA Pattern according to the process shown in FIG. Finally, the CCA Pattern used by each adjacent base station is obtained.
  • Manner 2 The station informs the neighboring base station of its specific CCA Pattern information through the X2 port.
  • Manner 3 The transmitting base station notifies the information of the CCA pattern to the adjacent base station through the X2 port, adjacent The base station receives the information of the CCA pattern and determines its used CCA pattern according to its surroundings and feeds back a message to the transmitting base station.
  • the number of stations performing resource multiplexing on a specific unlicensed carrier is 3, which are eNB1, eNB2, and eNB3, respectively. If the three sites belong to the same carrier, they use the same pattern for CCA detection. For the three operators belonging to different operators, in order to reduce the interference between adjacent sites, different sites use different CCA Patterns for CCA detection to avoid inter-site interference, thereby improving system throughput. the goal of.
  • the base station eNB1 first informs neighboring base stations (such as eNB2 and eNB3) of its own CCA Pattern information through the X2 port, such as: frequency domain bandwidth, minimum granularity of resources (such as resource block (Resource Block, referred to as resource block). RB) or Resource Element (RE), the number of clusters, the size of each cluster, the starting position of the cluster, or the frequency domain offset and period relative to the starting point of the frequency domain. Information such as the number of Ts and multiplexed nodes, and the CCA Pattern of the frequency domain can be known based on one or more of the above information.
  • neighboring base stations such as eNB2 and eNB3
  • CCA Pattern information such as resource block (Resource Block, referred to as resource block).
  • the neighboring base stations After receiving the CCA Pattern information sent from the eNB1, the neighboring base stations (eNB2 and eNB3) know that the CCA detection pattern itself is unusable, and immediately starts a random backoff counter.
  • eNB2 generates a random backoff value of 4
  • eNB3 generates a random backoff value of 2.
  • the counter of the eNB3 in the neighboring base station is first reduced to 0.
  • the eNB3 performs a fixed offset on the received CCA Pattern of the eNB1, and the offset can be Is the size of a Cluster (label: Cluster size can be RB level, but also can be RE size).
  • the eNB 3 obtains the CCA Pattern to be used by the CCA detection on the unlicensed carrier, updates the multiplexed CCA Pattern list maintained between the base stations, and notifies the eNB 2 and the eNB 1 of the new CCA Pattern that are still performing random backoff.
  • eNB1 only needs to update its own CCA Pattern list, and after receiving the new CCA Pattern list and the random backoff value is 0, eNB2 adopts the same eNB3 method and performs a fixed on the basis of the received new CCA Pattern. Offset and notify the updated CCA Pattern.
  • the site that receives the updated CCA Pattern list determines if the list is full. If the judgment is full, the CCA Pattern interaction is stopped.
  • the judgment list is Whether to fill the method, for example, by judging whether the number of linked list nodes is the same as the number of multiplexed sites, or whether the last information of the linked list is empty or the like.
  • the station informs the neighboring base station of its specific CCA Pattern information through the X2 port.
  • eNB1 notifies eNB2 and eNB3 of the detection pattern used for CCA detection through the X2 port.
  • the specific unlicensed carrier resources can be multiplexed with each other.
  • the CCA pattern notified by eNB1, eNB2 and eNB3 consider that they can use this pattern for CCA detection.
  • eNB1, eNB2, and eNB3 are base stations belonging to different operators, eNB2 and eNB3 receive CCA detection according to the received pattern in the CCA detection period after receiving the specific CCA pattern sent by eNB1.
  • the transmitting base station notifies the adjacent base station of the information of the CCA pattern through the X2 port, and the neighboring base station receives the information and determines the CCA pattern used by the base station according to the surrounding conditions and feeds back a message to the transmitting base station.
  • the eNB1 determines the pattern used by the CCA detection according to the CCA pattern used by its surrounding base stations, and notifies the eNB2 that there are two possibilities:
  • the second type: eNB1 notifies the eNB2 through the X2 port of the detection pattern to be used in the CCA detection. However, when eNB2 receives the information of this pattern, it finds that this pattern is adjacent to the base station adjacent to the base station. The pattern used in the CCA test conflicts. At this time, eNB2 feeds back a message to eNB1, optionally for requesting eNB1 to designate a new available pattern again, and can also be used to inform itself of the information of the CCA pattern that is not available around, or to determine a neighboring base station. The base station notifies the eNB1 of the new CCA pattern without collision.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • This embodiment is used to explain which parameters are passed through the X2 port to determine the CCA pattern.
  • the parameters notified through the X2 port may be the frequency domain bandwidth, the minimum granularity (RB or RE) of the resource, the number of clusters, the size of each cluster, the starting position of the cluster, and the relative position.
  • the information of the offset of the frequency domain starting point, the period T, and the number of multiplexed nodes can be used to obtain the CCA Pattern of the frequency domain according to one or more of the above information.
  • the size of the cluster is 2 physical resource blocks (PRBs), and the initial position of the cluster is 0 for the frequency domain RBs.
  • PRBs physical resource blocks
  • These parameters can determine the frequency domain locations of the base station CCA patterns as [RB0, RB1], [RB6, RB7], [RB12, RB13], [RB18, RB19].
  • the starting position of the cluster notified by the X2 port is 0, the index value of the frequency domain RB is 0, the frequency domain bandwidth is 5 MHz, the size of the cluster is 2 PRBs, and the period in which the cluster appears is 6 PRBs.
  • the frequency domain positions of the base station CCA patterns that can be determined are [RB0, RB1], [RB6, RB7], [RB12, RB13], [RB18, RB19].
  • the starting position of the cluster notified through the X2 port is that the index value of the frequency domain RB is 0, the frequency domain bandwidth is 5 MHz, the size of the cluster is 2 PRBs, and the multiplexed node is 3, and the above CCA detection is also obtained.
  • the frequency domain location of the pattern is that the index value of the frequency domain RB is 0, the frequency domain bandwidth is 5 MHz, the size of the cluster is 2 PRBs, and the multiplexed node is 3, and the above CCA detection is also obtained.
  • the base station can be determined to perform CCA detection by using these parameters.
  • the frequency domain subcarrier positions used are [C0, C23], [C72, C95], [C144, C167], [C216, C230].
  • the starting position of the cluster is the frequency domain subcarrier index 0, the frequency domain bandwidth is 5 MHz, the size of the cluster is 24 subcarriers, the period in which the cluster appears is 72 subcarriers, or the starting position of the cluster is The frequency domain subcarrier index is 0, the frequency domain bandwidth is 5 MHz, the size of the cluster is 24 subcarriers, and the multiplexed node is 3, which can also be obtained.
  • the frequency domain subcarrier level patterns used by the base station for CCA detection are [C0, C23], [C72, C95], [C144, C167], [C216, C230].
  • the frequency domain bandwidth is 5 MHz
  • the size of the cluster is 2 PRBs
  • the period in which the cluster appears is 6 PRBs.
  • the parameter can determine the frequency domain location of the base station CCA pattern as [RB1, RB2], [RB7, RB8], [RB13, RB14], [RB19, RB20].
  • the bandwidth corresponding to the frequency domain is 10 MHz, 15 MHz, and 20 MHz
  • the number of clusters, the size of each cluster, the starting position of the cluster, the period T, and the number of multiplexed nodes may be used. One or more of them to obtain the corresponding CCA pattern.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • This embodiment mainly describes a resource pattern of a corresponding transmission data after the base station or the UE performs CCA detection according to a specific CCA Pattern and detects that the channel is idle.
  • the reserved signal period is identified by a dashed line. This is because the node detects that the channel is idle at the time of the symbol boundary or the data transmission supports part of the frame transmission. In this case, it is not necessary to transmit the Orthogonal Frequency Division Multiplexing (OFDM). ) Reserved signal in the symbol. Conversely, it is necessary to transmit a reserved signal occupying channel in a non-complete OFDM symbol.
  • OFDM Orthogonal Frequency Division Multiplexing
  • each node performs CCA detection according to its own CCA Pattern during the non-occupied period, and when the node detects that the channel is idle, it directly enters. The data transmission period, and each node sends data on the corresponding data resource.
  • Case 1 The node performs data transmission on the frequency domain resources corresponding to the CCA detection pattern one by one.
  • Case 2 The node transmits data over the entire bandwidth, but reserves the frequency domain resources of the CCA pattern.
  • Case 3 The node performs data transmission on the entire bandwidth, but the preset RE on the frequency domain resource that reserves the CCA pattern or the preset RE on the reserved frequency domain resource does not perform data transmission.
  • Case 4 The node transmits data over the entire bandwidth.
  • each node performs CCA detection according to its own CCA Pattern during the non-occupied period.
  • the node detects that the channel is idle, the node does not immediately perform data transmission, but enters the reserved signal period.
  • the reserved signal in the non-complete OFDM symbol needs to be transmitted.
  • the reserved signal in the complete OFDM symbol needs to be transmitted for channel occupation until the data transmission period arrives. The node immediately sends the data on the data resource. Based on this, there are several other situations:
  • Case 1 The reserved signal pattern used in the reserved signal period corresponds to the CCA pattern of the non-occupied period, and in the data transmission period, the pattern of the transmitted data also corresponds to the CCA pattern of the non-occupied period.
  • Case 2 The reserved signal pattern used in the reserved signal period does not correspond to the CCA pattern of the non-occupied period, and the reserved signal can be transmitted over the entire bandwidth.
  • the pattern of the transmitted data is in one-to-one correspondence with the CCA pattern of the non-occupied period.
  • Case 3 The reserved signal pattern used in the reserved signal period does not correspond to the CCA pattern in the non-occupied period, that is, the reserved signal is transmitted at both ends of the entire frequency domain bandwidth (the reserved signal is on the frequency domain resources at both ends). The energy reaches more than 80% of the total bandwidth energy). In the data transmission period, the pattern of the transmitted data is in one-to-one correspondence with the CCA pattern of the non-occupied period.
  • Case 4 The reserved signal pattern used in the reserved signal period does not correspond to the CCA pattern in the non-occupied period, that is, the reserved signal is transmitted on more than 80% of the resources in the middle of the entire frequency domain bandwidth.
  • the pattern of the transmitted data is in one-to-one correspondence with the CCA pattern of the non-occupied period.
  • Case 5 The reserved signal pattern used in the reserved signal period corresponds to the CCA pattern of the non-occupied period, and in the data transmission period, the pattern of the transmitted data does not correspond to the CCA pattern of the non-occupied period, that is, the data is in Sent on the entire system bandwidth.
  • Case 6 The reserved signal pattern used in the reserved signal period corresponds to the CCA pattern of the non-occupied period, and in the data transmission period, the pattern of the transmitted data does not correspond to the CCA pattern of the non-occupied period, that is, throughout Data transmission is performed on the bandwidth, but the corresponding frequency domain resources of the CCA pattern are reserved in subsequent subframes.
  • Case 7 The reserved signal pattern used in the reserved signal period is not the same as the CCA pattern in the non-occupied period. Correspondingly, the reserved signal can be transmitted over the entire bandwidth. In the data transmission period, the pattern of the transmitted data does not correspond to the CCA pattern of the non-occupied period, that is, the data is transmitted over the entire system bandwidth.
  • Case 8 The reserved signal pattern used in the reserved signal period does not correspond to the CCA pattern of the non-occupied period, and the reserved signal can be transmitted over the entire bandwidth.
  • the pattern of the transmitted data does not correspond to the CCA pattern of the non-occupied period, that is, the data transmission is performed on the entire bandwidth, but the corresponding frequency domain resources of the CCA pattern are reserved in the subsequent subframe.
  • Case 9 The reserved signal pattern used in the reserved signal period does not correspond to the CCA pattern in the non-occupied period, that is, the reserved signal is transmitted at both ends of the entire frequency domain bandwidth (the reserved signal is on the frequency domain resources at both ends). The energy reaches more than 80% of the total bandwidth energy).
  • the pattern of the transmitted data does not correspond to the CCA pattern of the non-occupied period, that is, the data is transmitted over the entire system bandwidth.
  • Case 10 The reserved signal pattern used in the reserved signal period does not correspond to the CCA pattern in the non-occupied period, that is, the reserved signal is transmitted at both ends of the entire frequency domain bandwidth (the reserved signal is on the frequency domain resources at both ends). The energy reaches more than 80% of the total bandwidth energy).
  • the pattern of the transmitted data does not correspond to the CCA pattern of the non-occupied period, that is, the data transmission is performed on the entire bandwidth, but the corresponding frequency domain resources of the CCA pattern are reserved in the subsequent subframe.
  • Case 11 The reserved signal pattern used in the reserved signal period does not correspond to the CCA pattern in the non-occupied period, that is, the reserved signal is transmitted on more than 80% of the resources in the middle of the entire frequency domain bandwidth.
  • the pattern of the transmitted data does not correspond to the CCA pattern of the non-occupied period, that is, the data is transmitted over the entire system bandwidth.
  • Case 12 The reserved signal pattern used in the reserved signal period does not correspond to the CCA pattern in the non-occupied period, that is, the reserved signal is transmitted on more than 80% of the resources in the middle of the entire frequency domain bandwidth.
  • the pattern of the transmitted data does not correspond to the CCA pattern of the non-occupied period, that is, the data transmission is performed on the entire bandwidth, but the corresponding frequency domain resources of the CCA pattern are reserved in the subsequent subframe.
  • the reserved signal transmitted in the reserved signal period may be an SRS, a preamble, a primary and secondary synchronization sequence (PSS/SSS, a predetermined identifier, etc., wherein the SRS signal transmitted according to the pattern of the reserved signal can be used not only for other multiplexing.
  • the node performs CCA detection, and transmits the SRS signal before the uplink data transmission, and also enables the base station to obtain channel measurement information at a faster speed.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • This embodiment mainly describes a process for performing CCA detection and data transmission using the same CCA Pattern for a node.
  • the same CCA Pattern is used when the CCA detection is performed during the non-occupied period.
  • the CCA Pattern can be configured through higher layer signaling or by pre-agreed.
  • the base station and/or the UE in the LAA system or the base station and/or the UE of the same carrier or the UE in the cell do not align the time of performing CCA, some nodes may compete successfully while other nodes detect that the channel is busy. happening. For nodes that have successfully detected the channel idle, if the time when their CCA detection succeeds has not reached an OFDM symbol boundary, the reserved signals in the non-complete OFDM symbols need to be transmitted, and if their CCA detection succeeds, the timing is just to the symbol boundary. However, when the data transmission time is not reached, the reserved signal of the complete OFDM symbol needs to be transmitted.
  • the reserved signal if the reserved signal is sent over the entire bandwidth, the reserved signal needs to carry an identifier for identifying another multiplexable node, where the identifier may be a cell ID or an operator identifier or a group identifier. Etc., thereby achieving frequency reuse.
  • the reserved signal may also be a channel sounding reference signal SRS, a preamble, a primary and secondary synchronization sequence PSS/SSS, a predetermined identifier, and the like.
  • the SRS signal sent according to the pattern of the reserved signal can be used not only for other multiplexed nodes for CCA detection, but also for transmitting the SRS signal before uplink data transmission, and also enables the base station to obtain the node at a faster speed.
  • Channel measurement information On the other hand, if the reserved signal is sent according to the pattern corresponding to the CCA Pattern, other nodes that continue to perform CCA detection and can be multiplexed need to judge that the channel on the corresponding CCA pattern location is busy, and the other frequency domain resources are on the channel. If it is idle, the channel is considered to be usable.
  • the base station/UE in the LAA system and the base station/UE in the carrier start to reuse the competing resources together.
  • the multiplexed node may perform data transmission on the entire bandwidth; or, perform data transmission on the frequency domain resource corresponding to the CCA detection pattern.
  • the data transmission is performed on the entire bandwidth, and the CCA detection resource is reserved in the frequency domain location corresponding to the CCA pattern on the symbol frequency domain resource in the subsequent subframe of the data transmission period, as shown in FIG. 4 (a As shown, it is convenient for the nodes that continue to perform CCA to perform detection, which can improve system performance.
  • the multiplexed nodes can transmit data over the entire bandwidth.
  • data transmission or data may be performed on the frequency domain resources corresponding to the CCA detection pattern during the data transmission period. The transmission is over the entire bandwidth, and the preset RE on the frequency domain resource corresponding to the CCA detection pattern is reserved, or the RE of the preset frequency domain reserved during the data transmission period is not transmitted.
  • data transmission may also be performed on the entire bandwidth, and the frequency domain location corresponding to the CCA detection pattern is punctured on the symbol frequency domain resource in the subsequent subframe of the data transmission period, and used for node identification and multiplexing.
  • Data transmission is performed together with the same system or resources that the operator has already competed with, as shown in Figure 4(b).
  • Embodiment 5 is a diagrammatic representation of Embodiment 5:
  • This embodiment is mainly used to detail the details of puncturing on the corresponding resources for the purpose of implementing frequency division multiplexing and/or frequency multiplexing.
  • the patterns are complementary in the frequency domain.
  • frequency domain complementation for example, node 1 occupies a resource corresponding to an odd-numbered resource index number, and node 2 occupies a resource corresponding to an even-numbered frequency domain resource index number, and a corresponding frequency domain resource pattern of each of nodes 1 and 2 It is equal to the entire bandwidth.
  • the channel When it is detected that the channel is idle, and the detection success time has not reached the subframe boundary, they may send the reserved signal on the frequency domain resource corresponding to the CCA detection pattern one by one. At this time, for the node that is performing CCA detection in the reserved signal period, the channel is detected to be busy on its own corresponding pattern, and the idle channel is detected as idle in the remaining frequency domain resources, and is considered to be the same system or the same operator. The node occupies the channel.
  • both the multiplexed nodes send the reserved signal on the corresponding pattern, they detect that the channel is busy at the location of the corresponding pattern resource, and the channel is still busy on the remaining resources, at which time they are not sure whether The same cell or the same system or the node of the same carrier occupies the channel.
  • Punching is performed on subsequent symbols of the reserved signal period, and is used for identifying other multiplexing nodes using the detection pattern during the reserved signal period.
  • the puncturing may be performed by puncturing at the beginning or the middle or the last one or several REs of each RB of the corresponding frequency domain pattern in the subsequent one or more OFDM symbols.
  • the multiplexed node 1 finds that the channel corresponding to the pattern resource and other resources is busy, it needs to detect whether it is idle on the specific RE in the corresponding pattern, and if it is idle, it can determine that the channel can be use.
  • the multiplexed node 2 can also perform puncturing on some REs in the corresponding pattern in the same way as the multiplexed node 1 to achieve multiplexing with the same system or with the operator's node.
  • puncturing on the OFDM symbols in subsequent subframes in the data transmission period is performed for the multiplexable nodes that are performing CCA detection for pattern recognition, optionally, Punching is performed on corresponding frequency domain resources on one or more OFDM symbols in subsequent subframes.
  • the time-frequency resource location of the puncturing is a location other than the used reference signal and the location of the channel, for example, a De Modulation Reference Signal (DMRS), SRS, and physical downlink.
  • DMRS De Modulation Reference Signal
  • SRS Signal
  • physical downlink physical downlink
  • PDCCH Physical Downlink Control Channel
  • PUCCH Physical Uplink Control CHannel
  • CRS Cell Reference Signal
  • Channel Channel State Information Reference Signal
  • CSI-RS State Information Reference Signal
  • the node For the data transmission period, the node performs data transmission on the frequency domain resource corresponding to the corresponding CCA detection pattern. At this time, other resources in the frequency domain are also occupied by other frequency division multiplexed nodes for data transmission. In this way, other nodes in the same system or the same carrier cannot detect whether the resources are available because they detect that the channels are busy. Therefore, it is necessary to perform puncturing on some REs in the data transmission pattern to implement the same system or It is the identification and reuse of nodes with the same operator or the same group.
  • the same RE muting pattern needs to avoid the position of the reference signal or channel such as DMRS, SRS, PDCCH, PUCCH, CRS, CSI-RS.
  • the data is transmitted over the entire bandwidth, and the frequency domain position corresponding to the CCA detection pattern is punctured on the symbol frequency domain resource in the subsequent subframe of the data transmission period.
  • the punctured position is punctured on the corresponding frequency domain resource on one or more OFDM symbols in the subsequent subframe. It is also possible to perform puncturing on some REs on the corresponding CCA detection pattern resources without deleting the resources corresponding to the entire CCA detection pattern to realize the recognition function, which can reduce the waste of resources to a certain extent.
  • the deleted resource location needs to avoid the location of the reference signal or channel where the DMRS, SRS, PDCCH, PUCCH, CRS, CSI-RS, etc. are located.
  • the location of the puncturing may be in the frequency domain position on the first three OFDM of the subframe;
  • the resources of the second and third RE locations in some RBs may be removed for the multiplexed node to perform pattern recognition, and the corresponding If the RE is idle, it is considered that this resource can be reused for data transmission.
  • the CCA Patterns may be notified by the higher layer signaling between different cells or between different carrier networks, and the method for obtaining the CCA Pattern through interaction between the base stations as described in Embodiment 1 may also be used.
  • the CCA Pattern of the UE can also be obtained by means of base station notification.
  • the same cell or the node in the same carrier network uses the same CCA Pattern for CCA detection, and the method of multiplexing the competing resources for data transmission is the same as that in the fourth embodiment.
  • the CCA Pattern used for CCA detection in each cell or UE in the cell is the RB resource index number corresponding to the system bandwidth or the subcarrier resource index number and the number of cells.
  • UEs in three cells or three cells perform CCA detection according to their respective CCA Pattern patterns, according to whether the cells are synchronized or not. As follows:
  • the UE in the cell or the cell can perform data transmission together, thereby achieving frequency multiplexing.
  • the node that detects the channel is idle, either sends a reservation signal or directly transmits data.
  • a node that detects that the signal is idle needs to send a reserved signal pattern corresponding to the CCA Pattern one by one or needs to transmit a reserved signal over the entire bandwidth, but reserves a frequency corresponding to the CCA Pattern one-to-one.
  • the domain resource is convenient for the nodes in the cell to continue to perform CCA detection to identify the reserved signals sent by other UEs in the same cell or the same cell.
  • the transmitted reserved signal may be an SRS signal, which can help the base station obtain channel information as soon as possible, and can allow other multiplexing nodes to perform pattern recognition.
  • the channel is available by:
  • Manner 2 The reserved signal is transmitted on the frequency domain resource corresponding to the CCA detection pattern, and the system bandwidth is reserved by multiple nodes through frequency division multiplexing, and the nodes are in respective corresponding CCA frequencies. If the channel is busy on the resources of the domain pattern, and the channel is also busy on other resources in the frequency domain, the node needs to detect whether it is idle on the preset RE of the CCA frequency domain pattern. If it is idle, the channel is considered to be available. .
  • Manner 3 The reserved signal is transmitted in the entire bandwidth, and the frequency domain resource corresponding to the CCA detection pattern is reserved. If the channel is idle on the resource of the corresponding CCA frequency domain pattern, other resources in the frequency domain are detected. When the channel is detected to be busy, the channel is considered to be available.
  • the CCA detection flag is added to the data transmission resource for prompting the non-occupied period and/or reserved.
  • the node that misses the CCA detection opportunity during the signal period performs the CCA pattern identification again to ensure that the unlicensed carrier resources are multiplexed together for data transmission during the data transmission period.
  • the specific RE resource on a symbol in the subframe in the data transmission resource is destroyed.
  • the nodes in different cells or different operators or different cells improve the performance of the entire system during the CCA detection period, the reserved signal period and the data transmission period adopt different CCA patterns and reserved signal patterns.
  • Different cells use different frequency domain location resources, which also reduces interference between cells, not only realizes frequency division multiplexing of resources between cells, but also implements frequency reuse in cells.
  • This embodiment is mainly for uplink data transmission. It is assumed that different CCA patterns are used between different UEs or different UE groups, and each UE/UE group acquires a corresponding CCA pattern, wherein the CCA pattern can pass a high-level letter. Let the direct notice be obtained, or be notified by the base station, or a pre-agreed pattern.
  • the method for performing CCA detection and data transmission is similar to the method in Embodiment 6, in short, the CCA Pattern used for CCA detection between different UEs or different UE groups may be two edges in the pre-scheduled resource. Or equally spaced RBs or subcarrier resources.
  • the SRS signal can be immediately transmitted on the contending resources, for notifying the base station that the unlicensed carrier has been successfully occupied, and requesting channel measurement,
  • the SRS signal can also be sent with the data.
  • Different UEs adopt different CCA patterns, which can achieve frequency division multiplexing between UEs, improve frequency diversity gain, and improve uplink throughput.
  • different UE groups adopt different CCA patterns, which not only realize intra-group frequency reuse, but also implement frequency division multiplexing between groups, thereby greatly improving uplink frequency domain utilization. .
  • each UE or UE group can send its own SRS letter.
  • No. (SRS signal can be sent as a reserved signal, or it can be transmitted together with the data.
  • the pattern sent by the SRS can be consistent with the CCA detection pattern, or it can be inconsistent). It is used for base station to perform channel estimation, so as to deliver appropriate modulation. And the Modulation and Coding Scheme (MCS) improves the uplink transmission quality.
  • MCS Modulation and Coding Scheme
  • the CCA pattern may be determined by a frequency domain start position, a frequency domain offset, a continuous length of a resource, a size of a cluster, and a period T (a period may be determined by the number of multiplexed nodes* consecutively occupied resources), and the frequency One or more of the domain bandwidth and the number of cluster clusters to determine the frequency domain pattern.
  • k is the starting position of the frequency domain
  • f is the number of resources continuously occupied by one node
  • v shift is the frequency domain offset
  • N resource is the total number of resources. Indicates the ID of the cell, and N indicates the number of multiplexed nodes.
  • the period T is the number of multiplexed nodes* the number of consecutively occupied resources, and an offset is obtained according to the multiplexed cell ID, and the starting frequency domain location of the cell is determined according to the offset.
  • the continuous length f of the available resources is 2 RBs
  • the system bandwidth 25 RBs
  • the cell IDs are 195, 196 respectively.
  • the frequency domain offset (determined by the modulo of the cell ID and the number of multiplexed nodes) to determine a RB level CCA pattern.
  • the v shift is different because the cell ID is different.
  • v 0,1.
  • the RB pattern calculation process of the third node is the same, and is not repeated here.
  • the position of the first node in the frequency domain subcarrier level pattern in one RB is: [C0, C1], [C6, C7].
  • the v shift is different because the cell ID is different.
  • v 0,1.
  • the calculation process of the RB pattern of the third node is the same, and is not repeated here.
  • the embodiment of the present invention further provides an apparatus for managing an unlicensed carrier pattern, which is applied to a transmission node.
  • the transmission node includes one or more of the following: a system level node, a cell level node, and a UE level node, where the apparatus includes :
  • the management module is configured to generate and interact with the CCA pattern Pattern;
  • the CCA Pattern includes: a pattern Pattern used in different stages of performing CCA detection, a Pattern used for data transmission, and a CCA detection Pattern.
  • the management module is responsible for the pattern Pattern used in the CCA detection at different stages, the Pattern used for data transmission, and the generation and interaction of the CCA detection Pattern.
  • the management module can include:
  • the CCA Pattern includes: a pattern Pattern used in different stages of performing CCA detection, a Pattern used for data transmission, and a CCA detection Pattern;
  • the interaction module is configured to interact with the CCA pattern Pattern;
  • the CCA Pattern includes: a pattern Pattern used in different stages of performing CCA detection, a Pattern used for data transmission, and a CCA detection Pattern.
  • the different stages of performing the CCA detection include at least one of the following phases:
  • the Pattern used for CCA detection during the non-occupied period includes one of the following:
  • the frequency domain is equally spaced, and the granularity of the minimum resource is the CCA detection pattern of the resource block RB;
  • the frequency domain is not equally spaced, and the granularity of the minimum resource is the CCA detection pattern of the RB;
  • the frequency domain is equally spaced, and the granularity of the minimum resource is the CCA detection pattern of the resource element RE;
  • the frequency domain is not equally spaced, and the granularity of the minimum resource is the CCA detection pattern of the RE;
  • the sub-band CCA detects the Pattern.
  • the Pattern used for CCA detection during the reserved signal period includes one of the following:
  • the frequency domain resource corresponding to the CCA detection pattern is reserved, and the node used for multiplexing performs CCA Pattern detection in the reserved signal period;
  • the transmission pattern of the reserved signal is used as a pattern used by the multiplexed node for CCA detection during the reserved signal period.
  • the reserved signal sent by the reserved signal period may include one of the following:
  • Channel sounding reference signal SRS preamble, primary and secondary synchronization sequence PSS/SSS and predetermined identification.
  • the SRS signal is used as a reserved signal of the reserved annunciator, the SRS signal is sent before the uplink data is sent.
  • the multiplexed node performs CCA detection during the reserved signal period to determine that the CCA detection is successful according to one of the following manners:
  • Manner 2 The case that the reserved signal is sent on the frequency domain resource corresponding to the CCA detection pattern, and the system bandwidth is sent by the multiple nodes through frequency division multiplexing, and the nodes are in their respective CCAs. If the channel is busy on the resources of the frequency domain pattern and the channel is busy on other resources in the frequency domain, the node needs to continue to detect whether it is idle on the preset RE of the CCA frequency domain pattern. If it is idle, the channel is considered to be idle. Available.
  • the Pattern used for CCA detection during the data transmission period includes one of the following:
  • the frequency domain resources corresponding to the CCA detection pattern are reserved, and the nodes used for multiplexing perform CCA Pattern detection during the data transmission period;
  • the data transmission is over the entire bandwidth, and a preset RE on the frequency domain resource corresponding to the CCA detection pattern is reserved, or a preset frequency domain RE is reserved during the data transmission period, and the node used for multiplexing is CCA Pattern detection during data transmission;
  • the data transmission is transmitted according to the frequency domain resource corresponding to the CCA detection pattern, and the data transmission pattern can be used as the Pattern used by the multiplexed node for CCA detection during the reserved signal period.
  • the multiplexed node performs CCA detection during the data transmission period to determine that the CCA detection is successful according to one of the following manners:
  • Manner 1 When data is transmitted over the entire system bandwidth and a frequency domain resource corresponding to the CCA detection pattern is reserved, if the channel is idle on the resource corresponding to the reserved CCA detection frequency domain pattern, the other is in the frequency domain. If the channel is busy on the resource, it is determined that the channel is available;
  • Manner 3 transmitting data over the entire bandwidth, and puncturing the preset RE on the frequency domain resource, and the multiplexed node performs channel available identification during the data transmission period, if the corresponding CCA frequency domain pattern is If the channel is busy on the resource, and the channel is also busy on other resources in the frequency domain, continue to detect whether it is idle on the reserved RE of the CCA frequency domain pattern or on the RE reserved on the frequency domain resource. If idle, the channel is considered available.
  • the pattern used by the data transmission includes:
  • the data is transmitted over the entire system bandwidth, and the frequency domain resources corresponding to the CCA detection pattern are reserved for data transmission;
  • the data is transmitted on the entire system bandwidth, and the preset RE resources in the frequency domain resources corresponding to the CCA detection pattern are reserved for data transmission;
  • the data is transmitted on the frequency domain resources corresponding to the CCA detection pattern one by one.
  • the location of the CCA detection pattern used by the data transmission is a location of a frequency domain resource on a symbol in a subsequent subframe, where the location of the frequency domain resource corresponds to a frequency domain location of the CCA detection pattern.
  • the RE resource in the frequency domain resource corresponding to the CCA detection pattern or is the preset RE resource in the frequency domain.
  • the symbol in the subsequent subframe is the first symbol or the first few symbols in the subframe; and the location of the orthogonal frequency division multiplexing OFDM symbol or the frequency domain corresponding to the symbol
  • the punctured position of the RE of the resource is a position other than the position where the reference signal and the channel are used.
  • the used reference signal and channel include one or more of the following: DMRS, SRS, PDCCH, PUCCH, CRS, and CSI-RS.
  • the system level node includes one or more of the following: all nodes in the LAA system, or all nodes in the operator network, where the system level nodes use the same CCA Pattern for CCA detection;
  • the cell-level node includes one or more of the following: a node in a cell, a different cell, and a node in a different cell, where nodes in the cell use a unified CCA Pattern for CCA detection; nodes in different cells or in different cells Use different CCA Patterns for CCA testing;
  • the UE level includes one or more of the following: different UEs, different UE group groups, or UEs in the same UE group, where different CCA patterns are used for CCA detection between different UEs or different UE groups; the same UE UEs in the group use the same CCA Pattern for CCA detection.
  • the system level node uses the same CCA Pattern for CCA detection, including one of the following:
  • the system level node performs CCA detection using the same RE level CCA Pattern
  • the system level node performs CCA detection using the same RB level CCA Pattern
  • the system level nodes use the same subband level CCA Pattern for CCA detection.
  • the system level node uses the same CCA Pattern for CCA detection, including one of the following:
  • All nodes in the carrier network use the same RB-level CCA Pattern for CCA detection;
  • All nodes in the carrier network use the same sub-band CCA Pattern for CCA detection.
  • the intra-cell node uses the same CCA Pattern for CCA detection, including one of the following:
  • the nodes in the different cells or in different cells use different CCA patterns for CCA detection, including one of the following:
  • Nodes in different cells or in different cells use different CCA patterns of RE level to perform CCA detection on their respective resources;
  • Nodes in different cells or in different cells use different RB-level CCA Patterns to perform CCA detection on their respective resources;
  • Nodes between different cells or in different cells use different sub-band CCA Patterns to perform CCA detection on their respective resources.
  • the UE in the UE group performs CCA detection using the same CCA Pattern, including one of the following:
  • UEs in the UE group use the same RE level CCA Pattern for CCA detection
  • UEs in the UE group use the same RB-level CCA Pattern for CCA detection;
  • UEs in the UE group use the same sub-band CCA Pattern for CCA detection.
  • different CCA patterns are used between the different UEs or between different UE groups for CCA detection, including one of the following:
  • CCA detection is performed on the respective resources using CCA Patterns of different sub-band levels between different UEs or between different UE groups.
  • the CCA Pattern used by the system level or cell level or UE level node is obtained by agreement or by higher layer signaling.
  • the management module when the management module is applied to the base station, the management module interacts with the CCA Pattern, and includes the following three methods:
  • Manner 1 The management modules exchange information of the CCA Patterns of the respective base stations through the X2 port; after obtaining the information of the CCA Patterns of other base stations, the management module starts a random backoff counter; the first value of the random backoff value is reduced.
  • the management module to 0 frequency shifts a fixed value based on the received CCA Pattern, maintains a CCA Pattern list, and notifies the management module of the surrounding base station until the predetermined reusable number of nodes is reached in the list (may be It is the number of reusable nodes that have been specified in the related art), and the information interaction operation is stopped;
  • the management module notifies the CCA Pattern used by the management module of the adjacent base station to perform CCA detection through the X2 port; after receiving the information of the CCA pattern of the other base station, the management module reserves the non-occupied period of the channel. Both the signal period and the data transmission period use the pattern frequency domain location information contained in the information of the received CCA pattern;
  • the management module notifies the information of the CCA pattern to the management module of the adjacent base station through the X2 port, and after receiving the information of the CCA pattern of the other base station, the management module sends the feedback information to the CCA pattern.
  • a management module of multiple base stations simultaneously randomly returns a value to 0 perform any of the following operations:
  • the management modules of the multiple base stations each generate a random number, and each determines a pattern offset of the CCA according to the random number size;
  • a primary base station is selected, and a CCA pattern allocated by the management module of the primary base station to the remaining base stations is received.
  • the management module when the management module is applied to the UE, the management module interacts with the CCA Pattern includes:
  • the high layer signaling includes a CCA Pattern for the CCA detection by the UE.
  • determining that the CCA pattern is one or more of a frequency domain start position, a frequency domain offset, a continuous length of the resource, a size of the cluster cluster, a period T, a frequency domain bandwidth, and a number of clusters. Determined.
  • determining the starting position of the frequency domain of different base stations is calculated as follows:
  • k is the starting position of the frequency domain
  • f is the number of resources continuously occupied by one node
  • v shift is the frequency domain offset
  • N is the total number of multiplexing nodes. Indicates the ID of the cell.
  • the device provided by the embodiment of the invention can increase the efficiency of frequency multiplexing and frequency division multiplexing of a base station/base station group or a UE/UE group on an unlicensed carrier, and reduce node identification resources multiplexed with an operator or a same cell.
  • the complexity available in addition, it can reduce interference between adjacent nodes and improve system performance to some extent.
  • the embodiment of the invention further provides a computer readable storage medium storing computer executable instructions for performing the method of the above embodiments.
  • all or part of the steps of the above embodiments may also be implemented by using an integrated circuit. These steps may be separately fabricated into individual integrated circuit modules, or multiple modules or steps may be fabricated into a single integrated circuit module. achieve. Thus, embodiments of the invention are not limited to any specific combination of hardware and software.
  • the devices/function modules/functional units in the above embodiments may be implemented by a general-purpose computing device, which may be centralized on a single computing device or distributed over a network of multiple computing devices.
  • the device/function module/functional unit in the above embodiment When the device/function module/functional unit in the above embodiment is implemented in the form of a software function module and sold or used as a stand-alone product, it can be stored in a computer readable storage medium.
  • the above mentioned computer readable storage medium may be a read only memory, a magnetic disk or an optical disk or the like.
  • the embodiments of the present invention can increase the efficiency of frequency multiplexing and frequency division multiplexing of a base station/base station group or a UE/UE group on an unlicensed carrier, and reduce the complexity of the node identification resources multiplexed with the operator or the same cell. In addition, it can reduce interference between adjacent nodes and improve system performance to some extent.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种非授权载波上图样的管理方法和装置;所述方法,包括:传输节点生成和交互CCA图样Pattern;所述CCA Pattern包括:在进行空闲信道评估CCA检测的不同阶段使用的Pattern、数据传输使用的Pattern以及CCA检测Pattern;所述传输节点包括以下一种或多种:系统级节点、小区级节点、UE级节点。

Description

一种非授权载波上图样的管理方法和装置 技术领域
本文涉及但不限于通信领域,尤其涉及一种非授权载波上图样的管理方法和装置。
背景技术
截止目前,众所周知长期演进(Long Term Evolution,简称为LTE)是部署在授权载波中进行运营的。但是,随着数据业务的快速增长,在不久的将来,授权载波将不能再承受下如此巨大的数据量。因此,在非授权载波上部署LTE,通过非授权载波来分担授权载波中的数据量,已经成为LTE发展的一个重要方向。基于此,LTE Rel-13版本已在2014年9月份开始立项研究LTE系统使用非授权载波工作这一重要议题。这项技术将使得LTE系统能够使用目前存在的非授权载波,大大提升LTE系统的潜在频域资源,使得LTE系统能够获得更低的频域成本。
众所周知的,非授权载波具有下面的特征:
1、免费/低费用(不需要购买非授权频域,频域资源为零成本);
2、准入要求低,成本低(个人、企业都可以参与部署,设备商的设备可以任意部署);
3、可用带宽大(5GHz、2.4GHz的非授权频段都可以使用);
4、共享资源(多个不同系统都运营其中时或者同一系统的不同运营商运营其中时,可以考虑一些共享资源的方式,提高频域效率);
5、无线接入技术多(跨不同的通信标准,协作难,网络拓扑多样);
6、无线接入站点多(用户数量大,协作难度大,集中式管理开销大);
7、应用多(多业务被提及可以在其中运营,例如机器到机器(Machine-to-Machine,简称为M2M)、车辆到车辆(Vehicle-to-Vehicle,简称为V2V))。
但是,由于非授权载波对于LTE系统是通过机会性竞争获得其使用权,因此,如何提升非授权载波资源的频率效率成为一个急需解决的问题。如果按照相关技术中的空闲信道评估(Clear Channel Assessment,简称为CCA)检测(即CCA检测是在整个系统带宽上进行能量检测的),基站和/或UE在使用非授权载波之前,需要在整个系统带宽上执行CCA检测,检测到信道空闲后,该基站或是UE才能使用该载波资源,而对于业务量小的基站或是UE,这样就可能会造成资源的极大浪费。另外,对于同系统或是同运营商下的基站或是UE在继续执行CCA检测时,发现信道被占,且是同小区或是同运营商或是同系统的节点占用而不能使用,从而造成频域利用效率低以及系统性能差。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本发明实施例提供一种非授权载波上图样的管理方法和装置,可以解决相关技术中频域利用效率低造成系统性能差的问题。
本发明实施例采用如下技术方案。
一种非授权载波上图样的管理方法,包括:
传输节点生成和交互CCA图样Pattern;所述CCA Pattern包括:在进行空闲信道评估CCA检测的不同阶段使用的Pattern、数据传输使用的Pattern以及CCA检测Pattern;所述传输节点包括以下一种或多种:系统级节点、小区级节点、用户设备UE级节点。
可选地,所述进行CCA检测的不同阶段,包括下述至少一个阶段:
非占用期;
预留信号期;
数据传输期。
可选地,在所述非占用期进行CCA检测使用的Pattern,包括下述之一:
频域等间隔的,最小资源的颗粒度为资源块RB的CCA检测Pattern;
频域不等间隔的,最小资源的颗粒度为RB的CCA检测Pattern;
频域等间隔的,最小资源的颗粒度为资源元素RE的CCA检测Pattern;
频域不等间隔的,最小资源的颗粒度为RE的CCA检测Pattern;
频域等间隔的,子带级的CCA检测Pattern;
频域不等间隔的,子带级的CCA检测Pattern。
可选地,在所述预留信号期进行CCA检测使用的Pattern,包括下述之一:
如果预留信号在整个带宽发送,无CCA检测Pattern;
如果预留信号在整个带宽发送,则预留出与CCA检测Pattern一一对应的频域资源,用于复用的节点在所述预留信号期进行CCA Pattern检测;
如果预留信号按照与CCA检测Pattern一一对应的频域资源进行发送,则将预留信号的发送Pattern作为复用的节点在所述预留信号期进行CCA检测使用的Pattern。
可选地,所述预留信号期发送的预留信号包括下述之一:
信道探测参考信号SRS、前导码、主辅同步序列PSS/SSS和预定标识。
可选地,当SRS信号作为预留信号器的预留信号时,所述SRS信号是在发送上行数据之前发送的。
可选地,所述复用的节点在预留信号期进行CCA检测是按照下述方式之一确定CCA检测成功:
方式一:对于预留信号在与CCA检测Pattern一一对应的频域资源上发送的情况,如果在CCA频域Pattern的资源上检测到信道忙,在频域其他资源上检测到信道空闲,则认为信道可用;
方式二:对于预留信号在与CCA检测Pattern一一对应的频域资源上发送的情况,且系统带宽被多个节点通过频分复用的方式进行预留信号发送,节点在各自对应的CCA频域Pattern的资源上检测到信道忙,且在频域其他资源上检测到信道也为忙,则节点在CCA频域Pattern的预设的RE上检测是否空闲,如果空闲,则认为信道可用;
方式三:对于预留信号在整个带宽发送,且预留出与CCA检测Pattern 一一对应的频域资源的情况,如果在对应的CCA频域Pattern的资源上检测到信道空闲,在频域其他资源上检测到信道忙,则认为信道可用。
可选地,在所述数据传输期进行CCA检测使用的Pattern,包括下述之一:
数据传输在整个带宽上,无CCA检测Pattern;
数据传输在整个带宽上,预留出与CCA检测Pattern一一对应的频域资源,用于复用的节点在数据传输期进行CCA Pattern检测;
数据传输在整个带宽上,预留出与CCA检测Pattern一一对应的频域资源上的预设RE,或者,预留出数据传输期内的预设频域RE,用于复用的节点在数据传输期进行CCA Pattern检测;
数据传输按照与CCA检测Pattern一一对应的频域资源进行发送,数据传输Pattern作为复用的节点在预留信号期进行CCA检测使用的Pattern。
可选地,所述复用的节点在数据传输期进行CCA检测是按照下述方式之一确定CCA检测成功:
方式一:在整个系统带宽上传输数据且预留出与CCA检测Pattern一一对应的频域资源时,如果在对应预留的CCA频域Pattern的资源上检测到信道空闲,在频域其他资源上检测到信道忙,则确定信道可用;
方式二:当整个系统带宽上通过频分复用的方式进行数据传输时,在对应传输数据的CCA频域Pattern的资源上检测到信道忙,在其他频域资源上检测到信道也忙,则节点在对应CCA频域Pattern的数据传输资源上的预留空闲的RE上检测信道是否空闲,如果空闲,则认为信道可用;
方式三:在整个带宽上传输数据,且在频域资源上的预设的RE上打孔,用于复用的节点在数据传输期进行信道可用的识别,如果在对应的CCA频域Pattern的资源上检测到信道忙,而在频域其他资源上检测到信道也为忙,则继续在CCA频域Pattern的预留的RE上或者在频域资源上预留的RE上检测是否空闲,如果空闲,则认为信道可用。
可选地,所述数据传输使用的Pattern,包括:
数据在整个系统带宽上进行传输;
数据在整个系统带宽上进行传输,且预留出与CCA检测Pattern一一对 应的频域资源不进行数据传输;
数据在整个系统带宽上进行传输,且预留出与CCA检测Pattern一一对应的频域资源中的预设的RE资源不进行数据传输;
数据在与CCA检测Pattern一一对应的频域资源上进行传输。
可选地,所述数据传输使用的CCA检测Pattern的位置,是后续子帧中的符号上的频域资源的位置,其中频域资源的位置与CCA检测Pattern的频域位置一一对应的资源,或者,是CCA检测Pattern对应的频域资源中的RE资源,或者,是频域上的预设的RE资源。
可选地,所述后续子帧中的符号是该子帧中的第一个符号或是前几个符号;且,所述正交频分复用OFDM符号的位置或是符号对应的频域资源的RE的打孔位置是除已使用的参考信号和信道所在的位置之外的位置。
可选地,所述已使用的参考信号和信道包括以下一种或多种:上行信道质量测量信号DMRS、SRS、物理下行控制信道PDCCH、物理上行链路控制信道PUCCH、小区专用参考信号CRS和信道状态指示参考信号CSI-RS。
可选地,所述系统级节点包括以下一种或多种:辅助授权接入LAA系统内的所有节点,或者运营商网络内的所有节点,其中,系统级节点使用相同的CCA Pattern进行CCA检测;
所述小区级节点包括以下一种或多种:小区内节点、不同小区、不同小区内的节点,其中,小区内节点使用统一的CCA Pattern进行CCA检测;不同小区之间或不同小区内的节点使用不同的CCA Pattern进行CCA检测;
所述UE级节点包括以下一种或多种:不同UE、不同UE组group或者相同UE group中的UE,其中,不同UE之间或不同UE group之间使用不同的CCA Pattern进行CCA检测;相同的UE group内的UE使用相同的CCA Pattern进行CCA检测。
可选地,所述系统级节点使用相同的CCA Pattern进行CCA检测,包括下述之一:
所述系统级节点使用相同的RE级的CCA Pattern进行CCA检测;
所述系统级节点使用相同的RB级的CCA Pattern进行CCA检测;
所述系统级节点使用相同的子带级的CCA Pattern进行CCA检测。
可选地,所述系统级节点包括运营商网络内的所有节点时,所述系统级节点使用相同的CCA Pattern进行CCA检测,包括下述之一:
运营商网络内的所有节点使用相同的RE级的CCA Pattern进行CCA检测;
运营商网络内的所有节点使用相同的RB级的CCA Pattern进行CCA检测;
运营商网络内的所有节点使用相同的子带级的CCA Pattern进行CCA检测。
可选地,所述小区内节点使用相同的CCA Pattern进行CCA检测,包括下述之一:
小区内节点使用相同的RE级的CCA Pattern进行CCA检测;
小区内节点使用相同的RB级的CCA Pattern进行CCA检测;
小区内节点使用相同的子带级的CCA Pattern进行CCA检测。
可选地,所述不同小区间或不同小区内的节点使用不同的CCA Pattern进行CCA检测,包括下述之一:
不同小区间或不同小区内的节点使用不同的RE级的CCA Pattern在各自的资源上进行CCA检测;
不同小区间或不同小区内的节点使用不同的RB级的CCA Pattern在各自的资源上进行CCA检测;
不同小区间或不同小区内的节点使用不同的子带级的CCA Pattern在各自的资源上进行CCA检测。
可选地,所述UE group内的UE使用相同的CCA Pattern进行CCA检测,包括下述之一:
UE group内的UE使用相同的RE级的CCA Pattern进行CCA检测;
UE group内的UE使用相同的RB级的CCA Pattern进行CCA检测;
UE group内的UE使用相同的子带级的CCA Pattern进行CCA检测。
可选地,所述不同UE之间或不同UE group之间使用不同的CCA Pattern进行CCA检测,包括下述之一:
不同UE之间或不同UE group之间使用不同的RE级的CCA Pattern在各自的资源上进行CCA检测;
不同UE之间或不同UE group之间使用不同的RB级的CCA Pattern在各自的资源上进行CCA检测;
不同UE之间或不同UE group之间使用不同的子带级的CCA Pattern在各自的资源上进行CCA检测。
可选地,系统级或小区级或UE级节点使用的CCA Pattern是约定的,或者,由高层信令通知来获得的。
可选地,所述传输节点为基站是,所述交互CCA Pattern包括如下三种方式:
方式一:基站之间通过X2口交互各自的CCA Pattern的信息;相邻的基站在获取到其他基站的CCA Pattern的信息后,均启动一个随机回退计数器;随机回退值第一个减到0的基站在收到的CCA Pattern的基础上频移一个固定值,维护一个CCA Pattern列表,并通知给相邻的基站,直到列表中达到预定的可复用的节点数目,停止信息交互操作;
方式二:基站通过X2口通知相邻的基站执行CCA检测时所使用的CCA Pattern,相邻的基站收到CCA Pattern的信息后,在所述信道的非占用期、预留信号期和数据传输期均使用收到的CCA Pattern信息中包含的图样频域位置信息;
方式三:基站通过X2口通知CCA Pattern的信息给相邻的基站,相邻的基站在接收到CCA Pattern的信息后,发送对CCA Pattern的反馈信息。
可选地,在方式一中,如果多个基站同时随机回退值减到0,则执行如下任一操作:
所述多个基站均产生一个随机数,各自按照随机数大小依次确定自己的CCA Pattern的偏移量;
重新进行一次随机回退机制;
选择一个主基站,并接收所述主基站为剩余基站分配的CCA Pattern。
可选地,所述传输节点为UE时,所述交互CCA Pattern包括:
UE接收基站广播的进行CCA检测的CCA Pattern;或者,
UE接收高层信令,其中所述高层信令包括所述UE进行CCA检测的CCA Pattern。
可选地,CCA Pattern是通过频域起始位置、频域偏移量、资源的连续长度、簇Cluster的大小、周期T、频域带宽、Cluster的个数中的一个或是多个确定的。
可选地,确定不同节点的频域起始位置的计算方式如下:
k=(v+fvshift)mod Nresource
Figure PCTCN2016086761-appb-000001
其中,k表示频域起始位置,f为一个节点连续占用的资源数,vshift表示频域偏移量,N表示复用节点的总数,Nresource表示资源总数,
Figure PCTCN2016086761-appb-000002
表示小区的标识ID。
一种非授权载波上图样的管理装置,应用在传输节点,所述传输节点包括以下一种或多种:系统级节点、小区级节点、用户设备UE级节点;所述装置包括:
管理模块,设置成生成和交互CCA图样Pattern;所述CCA Pattern包括:在进行CCA检测的不同阶段使用的图样Pattern、数据传输使用的Pattern以及CCA检测Pattern。
可选地,所述进行CCA检测的不同阶段,包括下述至少一个阶段:
非占用期;
预留信号期;
数据传输期。
可选地,在所述非占用期进行CCA检测使用的Pattern,包括下述之一:
频域等间隔的,最小资源的颗粒度为资源块RB的CCA检测Pattern;
频域不等间隔的,最小资源的颗粒度为RB的CCA检测Pattern;
频域等间隔的,最小资源的颗粒度为资源元素RE的CCA检测Pattern;
频域不等间隔的,最小资源的颗粒度为RE的CCA检测Pattern;
频域等间隔的,子带级的CCA检测Pattern;
频域不等间隔的,子带级的CCA检测Pattern。
可选地,在所述预留信号期进行CCA检测使用的Pattern,包括下述之一:
如果预留信号在整个带宽发送,无CCA检测Pattern;
如果预留信号在整个带宽发送,则预留出与CCA检测Pattern一一对应的频域资源,用于复用的节点在所述预留信号期进行CCA Pattern检测;
如果预留信号按照与CCA检测Pattern一一对应的频域资源进行发送,则将预留信号的发送Pattern作为复用的节点在所述预留信号期进行CCA检测使用的Pattern。
可选地,所述预留信号期发送的预留信号包括下述之一:
信道探测参考信号SRS、前导码、主辅同步序列PSS/SSS和预定标识。
可选地,当SRS信号作为预留信号器的预留信号时,所述SRS信号是在发送上行数据之前发送的。
可选地,所述复用的节点在预留信号期进行CCA检测是按照下述方式之一确定CCA检测成功:
方式一:对于预留信号在与CCA检测Pattern一一对应的频域资源上发送的情况,如果在CCA频域Pattern的资源上检测到信道忙,在频域其他资源上检测到信道空闲,则认为信道可用;
方式二:对于预留信号在与CCA检测Pattern一一对应的频域资源上发送的情况,且系统带宽被多个节点通过频分复用的方式进行预留信号发送,节点在各自对应的CCA频域Pattern的资源上检测到信道忙,且在频域其他资源上检测到信道也为忙,则节点在CCA频域Pattern的预设的RE上检测是否空闲,如果空闲,则认为信道可用;
方式三:对于预留信号在整个带宽发送,且预留出与CCA检测Pattern一一对应的频域资源的情况,如果在对应的CCA频域Pattern的资源上检测到信道空闲,在频域其他资源上检测到信道忙,则认为信道可用。
可选地,在所述数据传输期进行CCA检测使用的Pattern,包括下述之一:
数据传输在整个带宽上,无CCA检测Pattern;
数据传输在整个带宽上,预留出与CCA检测Pattern一一对应的频域资源,用于复用的节点在数据传输期进行CCA Pattern检测;
数据传输在整个带宽上,预留出与CCA检测Pattern一一对应的频域资源上的预设RE,或者,预留出数据传输期内的预设频域RE,用于复用的节点在数据传输期进行CCA Pattern检测;
数据传输按照与CCA检测Pattern一一对应的频域资源进行发送,数据传输Pattern作为复用的节点在预留信号期进行CCA检测使用的Pattern。
可选地,所述复用的节点在数据传输期进行CCA检测是按照下述方式之一确定CCA检测成功:
方式一:在整个系统带宽上传输数据且预留出与CCA检测Pattern一一对应的频域资源时,如果在对应预留的CCA频域Pattern的资源上检测到信道空闲,在频域其他资源上检测到信道忙,则确定信道可用;
方式二:当整个系统带宽上通过频分复用的方式进行数据传输时,在对应传输数据的CCA频域Pattern的资源上检测到信道忙,在其他频域资源上检测到信道也忙,则节点在对应CCA频域Pattern的数据传输资源上的预留空闲的RE上检测信道是否空闲,如果空闲,则认为信道可用;
方式三:在整个带宽上传输数据,且在频域资源上的预设的RE上打孔,用于复用的节点在数据传输期进行信道可用的识别,如果在对应的CCA频域Pattern的资源上检测到信道忙,而在频域其他资源上检测到信道也为忙,则继续在CCA频域Pattern的预留的RE上或者在频域资源上预留的RE上检测是否空闲,如果空闲,则认为信道可用。
可选地,所述数据传输使用的Pattern,包括:
数据在整个系统带宽上进行传输;
数据在整个系统带宽上进行传输,且预留出与CCA检测Pattern一一对应的频域资源不进行数据传输;
数据在整个系统带宽上进行传输,且预留出与CCA检测Pattern一一对应的频域资源中的预设的RE资源不进行数据传输;
数据在与CCA检测Pattern一一对应的频域资源上进行数据传输。
可选地,所述数据传输使用的CCA检测Pattern的位置,是后续子帧中的符号上的频域资源的位置,其中频域资源的位置与CCA检测Pattern的频域位置一一对应的资源,或者,是CCA检测Pattern对应的频域资源中的RE资源,或者,是频域上的预设的RE资源。
可选地,所述后续子帧中的符号是该子帧中的第一个符号或是前几个符号;且,所述正交频分复用OFDM符号的位置或是符号对应的频域资源的RE的打孔位置是除已使用的参考信号和信道所在的位置之外的位置。
可选地,所述已使用的参考信号和信道包括以下一种或多种:上行信道质量测量信号DMRS、SRS、物理下行控制信道PDCCH、物理上行链路控制信道PUCCH、小区专用参考信号CRS和信道状态指示参考信号CSI-RS。
可选地,所述系统级节点包括以下一种或多种:LAA系统内的所有节点,或者运营商网络内的所有节点,其中,系统级节点使用相同的CCA Pattern进行CCA检测;
所述小区级节点包括以下一种或多种:小区内节点、不同小区、不同小区内的节点,其中,小区内的节点使用统一的CCA Pattern进行CCA检测;不同小区之间或不同小区内的节点使用不同的CCA Pattern进行CCA检测;
所述UE级包括以下一种或多种:不同UE、不同UE组group或者相同UE group中的UE,其中,不同UE之间或不同UE group之间使用不同的CCA Pattern进行CCA检测;相同的UE group内的UE使用相同的CCA Pattern进行CCA检测。
可选地,所述系统级节点使用相同的CCA Pattern进行CCA检测,包括下述之一:
所述系统级节点使用相同的RE级的CCA Pattern进行CCA检测;
所述系统级节点使用相同的RB级的CCA Pattern进行CCA检测;
所述系统级节点使用相同的子带级的CCA Pattern进行CCA检测。
可选地,所述系统级节点包括运营商网络内的所有节点时,所述系统级节点使用相同的CCA Pattern进行CCA检测,包括下述之一:
运营商网络内的所有节点使用相同的RE级的CCA Pattern进行CCA检测;
运营商网络内的所有节点使用相同的RB级的CCA Pattern进行CCA检测;
运营商网络内的所有节点使用相同的子带级的CCA Pattern进行CCA检测。
可选地,所述小区内节点使用相同的CCA Pattern进行CCA检测,包括下述之一:
小区内节点使用相同的RE级的CCA Pattern进行CCA检测;
小区内节点使用相同的RB级的CCA Pattern进行CCA检测;
小区内节点使用相同的子带级的CCA Pattern进行CCA检测。
可选地,所述不同小区间或不同小区内的节点使用不同的CCA Pattern进行CCA检测,包括下述之一:
不同小区间或不同小区内的节点使用不同的RE级的CCA Pattern在各自的资源上进行CCA检测;
不同小区间或不同小区内的节点使用不同的RB级的CCA Pattern在各自的资源上进行CCA检测;
不同小区间或不同小区内的节点使用不同的子带级的CCA Pattern在各自的资源上进行CCA检测。
可选地,所述UE group内的UE使用相同的CCA Pattern进行CCA检测,包括下述之一:
UE group内的UE使用相同的RE级的CCA Pattern进行CCA检测;
UE group内的UE使用相同的RB级的CCA Pattern进行CCA检测;
UE group内的UE使用相同的子带级的CCA Pattern进行CCA检测。
可选地,所述不同UE之间或不同UE group之间使用不同的CCA Pattern进行CCA检测,包括下述之一:
不同UE之间或不同UE group之间使用不同的RE级的CCA Pattern在各自的资源上进行CCA检测;
不同UE之间或不同UE group之间使用不同的RB级的CCA Pattern在各自的资源上进行CCA检测;
不同UE之间或不同UE group之间使用不同的子带级的CCA Pattern在各自的资源上进行CCA检测。
可选地,系统级或小区级或UE级节点使用的CCA Pattern是按照约定的,或者,由高层信令通知来获得的。
可选地,当所述管理模块应用在基站时,所述管理模块交互所述CCA Pattern包括如下三种方式:
方式一:管理模块之间通过X2口交互各自所在基站的CCA Pattern的信息;管理模块在获取到其他基站的CCA Pattern的信息后,均启动一个随机回退计数器;随机回退值第一个减到0的管理模块在收到的CCA Pattern的基础上频移一个固定值,维护一个CCA Pattern列表,并通知给相邻的基站的管理模块,直到列表中达到预定的可复用的节点数目,停止信息交互操作;
方式二:管理模块通过X2口通知相邻的基站的管理模块执行CCA检测时所使用的CCA Pattern;管理模块收到其它基站的CCA Pattern的信息后,在所述信道的非占用期、预留信号期和数据传输期均使用收到的CCA Pattern的信息中包含的图样频域位置信息;
方式三:管理模块通过X2口通知CCA Pattern的信息给相邻的基站的管理模块,管理模块在接收到其它基站的CCA Pattern的信息后,发送对CCA Pattern的反馈信息。
可选地,在方式一中,如果多个基站的管理模块同时随机回退值减到0,则执行如下任一操作:
所述多个基站的管理模块均产生一个随机数,各自按照随机数大小依次 确定自己的CCA Pattern的偏移量;
重新进行一次随机回退机制;
选择一个主基站,并接收所述主基站的管理模块为剩余基站分配的CCA Pattern。
可选地,当所述管理模块应用在UE时,所述管理模块交互CCA Pattern包括:
接收基站广播的进行CCA检测的CCA Pattern;或者,
接收高层信令,所述高层信令包括所述UE进行CCA检测的CCA Pattern。
可选地,确定CCA Pattern是通过频域起始位置、频域偏移量、资源的连续长度、簇Cluster的大小、周期T、频域带宽、Cluster的个数中的一个或是多个确定的。
可选地,确定不同基站频域起始位置的计算方式如下:
k=(v+fvshift)mod Nresource
Figure PCTCN2016086761-appb-000003
其中,k表示频域起始位置,f为一个节点连续占用的资源数,vshift表示频域偏移量,N表示复用节点的总数,Nresource表示资源总数,
Figure PCTCN2016086761-appb-000004
表示小区的标识ID。
一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行上述方法。
本发明实施例能增加非授权载波上基站/基站组或UE/UE group的频率复用和频分复用的效率,减小同运营商或同小区中复用的节点识别资源可用的复杂度;此外,还能减少邻近节点间的干扰,在一定程度上提升了系统性能。
在阅读并理解了附图和详细描述后,可以明白其它方面。
附图概述
图1为本发明实施例的非授权载波上图样的管理方法的示意图;
图2为本发明实施例的站点间交互各自执行CCA检测时采用的CCA Pattern的流程示意图;
图3为本发明实施例的节点从按照特定CCA Pattern执行CCA检测到进行传输发送的示意图;
图4(a)为本发明实施例的非占用期、预留信号期和数据传输期使用的Pattern示意图;
图4(b)为本发明实施例的非占用期和数据传输期采用的图样示意图。
本发明的实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
本发明实施例提供一种非授权载波上图样的管理方法,如图1所示,包括步骤S110:
S110、传输节点生成和交互CCA图样(Pattern);所述CCA Pattern包括:在进行CCA检测的不同阶段使用的Pattern、数据传输使用的Pattern以及CCA检测Pattern;所述传输节点包括以下一种或多种:系统级节点、小区级节点、用户设备(User Equipment,简称为UE)级节点。
即所述方法涉及系统级或小区级或用户设备UE级节点在不同阶段进行CCA检测时使用的图样Pattern、数据传输使用的Pattern以及CCA检测Pattern的生成和交互。
可选地,所述进行CCA检测的不同阶段,包括下述至少一个阶段:
非占用期;
预留信号期;
数据传输期。
可选地,在所述非占用期进行CCA检测使用的Pattern,包括下述之一:
频域等间隔的,最小资源的颗粒度为资源块RB的CCA检测Pattern;
频域不等间隔的,最小资源的颗粒度为RB的CCA检测Pattern;
频域等间隔的,最小资源的颗粒度为资源元素RE的CCA检测Pattern;
频域不等间隔的,最小资源的颗粒度为RE的CCA检测Pattern;
频域等间隔的,子带级的CCA检测Pattern;
频域不等间隔的,子带级的CCA检测Pattern。
可选地,在所述预留信号期进行CCA检测使用的Pattern,包括下述之一:
如果预留信号在整个带宽发送,无CCA检测Pattern;
如果预留信号在整个带宽发送,则预留出与CCA检测Pattern一一对应的频域资源,用于复用的节点在所述预留信号期进行CCA Pattern检测;
如果预留信号按照与CCA检测Pattern一一对应的频域资源进行发送,则将预留信号的发送Pattern作为复用的节点在所述预留信号期进行CCA检测使用的Pattern。
可选地,所述预留信号期发送的预留信号包括下述之一:
信道探测参考信号(Sounding Reference Signal,简称为SRS)、前导码、主辅同步序列PSS/SSS和预定标识。
可选地,当SRS信号作为预留信号器的预留信号时,所述SRS信号是在发送上行数据之前发送的。
可选地,所述复用的节点在预留信号期进行CCA检测是按照下述方式之一确定CCA检测成功:
方式一:对于预留信号在与CCA检测Pattern一一对应的频域资源上发送的情况,如果在CCA频域Pattern的资源上检测到信道忙,在频域其他资源上检测到信道空闲,则认为信道可用;
方式二:对于预留信号在与CCA检测Pattern一一对应的频域资源上发送的情况,且系统带宽被多个节点通过频分复用的方式进行预留信号发送,节点在各自对应的CCA频域Pattern的资源上检测到信道忙,且在频域其他资源上检测到信道也为忙,则节点在CCA频域Pattern的预设的RE上检测是否空闲,如果空闲,则认为信道可用;
方式三:对于预留信号在整个带宽发送,且预留出与CCA检测Pattern一一对应的频域资源的情况,如果在对应的CCA频域Pattern的资源上检测到信道空闲,在频域其他资源上检测到信道忙,则认为信道可用。
可选地,在所述数据传输期进行CCA检测使用的Pattern,包括下述之一:
数据传输在整个带宽上,无CCA检测Pattern;
数据传输在整个带宽上,预留出与CCA检测Pattern一一对应的频域资源,用于复用的节点在数据传输期进行CCA Pattern检测;
数据传输在整个带宽上,预留出与CCA检测Pattern一一对应的频域资源上的预设RE,或者,预留出数据传输期内的预设频域RE,用于复用的节点在数据传输期进行CCA Pattern检测;
数据传输按照与CCA检测Pattern一一对应的频域资源进行发送,数据传输Pattern作为复用的节点在预留信号期进行CCA检测使用的Pattern。
可选地,所述复用的节点在数据传输期进行CCA检测是按照下述方式之一确定CCA检测成功:
方式一:在整个系统带宽上传输数据且预留出与CCA检测Pattern一一对应的频域资源时,如果在对应预留的CCA频域Pattern的资源上检测到信道空闲,在频域其他资源上检测到信道忙,则确定信道可用;
方式二:当整个系统带宽上通过频分复用的方式进行数据传输时,在对应传输数据的CCA频域Pattern的资源上检测到信道忙,在其他频域资源上检测到信道也忙,则节点在对应CCA频域Pattern的数据传输资源上的预留空闲的RE上检测信道是否空闲,如果空闲,则认为信道可用;
方式三:在整个带宽上传输数据,且在频域资源上的预设的RE上打孔,用于复用的节点在数据传输期进行信道可用的识别,如果在对应的CCA频域Pattern的资源上检测到信道忙,而在频域其他资源上检测到信道也为忙,则继续在CCA频域Pattern的预留的RE上或者在频域资源上预留的RE上检测是否空闲,如果空闲,则认为信道可用。
可选地,所述数据传输使用的Pattern,包括:
数据在整个系统带宽上进行传输;
数据在整个系统带宽上进行传输,且预留出与CCA检测Pattern一一对应的频域资源不进行数据传输;
数据在整个系统带宽上进行传输,且预留出与CCA检测Pattern一一对应的频域资源中的预设的RE资源不进行数据传输;
数据在与CCA检测Pattern一一对应的频域资源上进行传输。
可选地,所述数据传输使用的CCA检测Pattern的位置,是后续子帧中的符号上的频域资源的位置,其中频域资源的位置与CCA检测Pattern的频域位置一一对应的资源,或者,是CCA检测Pattern对应的频域资源中的RE资源,或者,是频域上的预设的RE资源。
可选地,所述后续子帧中的符号是该子帧中的第一个符号或是前几个符号;且,所述正交频分复用OFDM符号的位置或是符号对应的频域资源的RE的打孔位置是除已使用的参考信号和信道所在的位置之外的位置。
可选地,所述已使用的参考信号和信道包括以下一种或多种:上行信道质量测量信号DMRS、SRS、物理下行控制信道PDCCH、物理上行链路控制信道PUCCH、小区专用参考信号CRS和信道状态指示参考信号CSI-RS。
可选地,所述系统级节点包括以下一种或多种:辅助授权接入LAA系统内的所有节点,或者运营商网络内的所有节点,其中,系统级节点使用相同的CCA Pattern进行CCA检测;
所述小区级节点包括以下一种或多种:小区内节点、不同小区、不同小区内的节点,其中,小区内节点使用统一的CCA Pattern进行CCA检测;不同小区之间或不同小区内的节点使用不同的CCA Pattern进行CCA检测;
所述UE级节点包括以下一种或多种:不同UE、不同UE组group或者相同UE group中的UE,其中,不同UE之间或不同UE group之间使用不同的CCA Pattern进行CCA检测;相同的UE group内的UE使用相同的CCA Pattern进行CCA检测。
可选地,所述系统级节点使用相同的CCA Pattern进行CCA检测,包括下述之一:
所述系统级节点使用相同的RE级的CCA Pattern进行CCA检测;
所述系统级节点使用相同的RB级的CCA Pattern进行CCA检测;
所述系统级节点使用相同的子带级的CCA Pattern进行CCA检测。
可选地,所述系统级节点包括运营商网络内的所有节点时,所述系统级节点使用相同的CCA Pattern进行CCA检测,包括下述之一:
运营商网络内的所有节点使用相同的RE级的CCA Pattern进行CCA检测;
运营商网络内的所有节点使用相同的RB级的CCA Pattern进行CCA检测;
运营商网络内的所有节点使用相同的子带级的CCA Pattern进行CCA检测。
可选地,所述小区内节点使用相同的CCA Pattern进行CCA检测,包括下述之一:
小区内节点使用相同的RE级的CCA Pattern进行CCA检测;
小区内节点使用相同的RB级的CCA Pattern进行CCA检测;
小区内节点使用相同的子带级的CCA Pattern进行CCA检测。
可选地,所述不同小区间或不同小区内的节点使用不同的CCA Pattern进行CCA检测,包括下述之一:
不同小区间或不同小区内的节点使用不同的RE级的CCA Pattern在各自的资源上进行CCA检测;
不同小区间或不同小区内的节点使用不同的RB级的CCA Pattern在各自的资源上进行CCA检测;
不同小区间或不同小区内的节点使用不同的子带级的CCA Pattern在各自的资源上进行CCA检测。
可选地,所述UE group内的UE使用相同的CCA Pattern进行CCA检测,包括下述之一:
UE group内的UE使用相同的RE级的CCA Pattern进行CCA检测;
UE group内的UE使用相同的RB级的CCA Pattern进行CCA检测;
UE group内的UE使用相同的子带级的CCA Pattern进行CCA检测。
可选地,所述不同UE之间或不同UE group之间使用不同的CCA Pattern进行CCA检测,包括下述之一:
不同UE之间或不同UE group之间使用不同的RE级的CCA Pattern在各自的资源上进行CCA检测;
不同UE之间或不同UE group之间使用不同的RB级的CCA Pattern在各自的资源上进行CCA检测;
不同UE之间或不同UE group之间使用不同的子带级的CCA Pattern在各自的资源上进行CCA检测。
可选地,系统级或小区级或UE级节点使用的CCA Pattern是约定的,或者,由高层信令通知来获得的。
可选地,所述传输节点为基站是,所述交互CCA Pattern包括如下三种方式:
方式一:基站之间通过X2口交互各自的CCA Pattern的信息;相邻的基站在获取到其他基站的CCA Pattern的信息后,均启动一个随机回退计数器;随机回退值第一个减到0的基站在收到的CCA Pattern的基础上频移一个固定值,维护一个CCA Pattern列表,并通知给相邻的基站,直到列表中达到预定的可复用的节点数目,停止信息交互操作;
方式二:基站通过X2口通知相邻的基站执行CCA检测时所使用的CCA Pattern,相邻的基站收到CCA Pattern的信息后,在所述信道的非占用期、预留信号期和数据传输期均使用收到的CCA Pattern信息中包含的图样频域位置信息;
方式三:基站通过X2口通知CCA Pattern的信息给相邻的基站,相邻的基站在接收到CCA Pattern的信息后,发送对CCA Pattern的反馈信息。
可选地,在方式一中,如果多个基站同时随机回退值减到0,则执行如下任一操作:
所述多个基站均产生一个随机数,各自按照随机数大小依次确定自己的CCA Pattern的偏移量;
重新进行一次随机回退机制;
选择一个主基站,并接收所述主基站为剩余基站分配的CCA Pattern。
可选地,所述传输节点为UE时,所述交互CCA Pattern包括:
UE接收基站广播的进行CCA检测的CCA Pattern;或者,
UE接收高层信令,其中所述高层信令包括所述UE进行CCA检测的CCA Pattern。
可选地,CCA Pattern是通过频域起始位置、频域偏移量、资源的连续长度、簇Cluster的大小、周期T、频域带宽、Cluster的个数中的一个或是多个确定的。
可选地,确定不同节点的频域起始位置的计算方式如下:
k=(v+fvshift)mod Nresource
Figure PCTCN2016086761-appb-000005
其中,k表示频域起始位置,f为一个节点连续占用的资源数,vshift表示频域偏移量,N表示复用节点的总数,Nresource表示资源总数,
Figure PCTCN2016086761-appb-000006
表示小区的标识ID。
下面用八个实施例说明上述方法。
实施例一:
本实施例用于说明传输节点间交互各自进行CCA检测时采用的CCA Pattern的流程。
可选地,在本实施例中,所述传输节点为站点;站点间交互CCA Pattern有如下方式:
方式一:站点通过X2口通知自身的CCA Pattern给相邻的基站(或称为周围的基站、邻近的基站),收到图样信息的基站按照图1所示的流程获取自身的CCA Pattern,并最终获取相邻的每个基站所用的CCA Pattern。
方式二:站点通过X2口给相邻的基站通知其特定的CCA Pattern信息。
方式三:发送基站通过X2口通知CCA图样的信息给相邻的基站,相邻 的基站接收到CCA图样的信息并根据其周围情况确定其所用CCA图样并反馈给发送基站一个信息。
假定在某特定非授权载波上进行资源复用的站点数为3,分别为eNB1、eNB2和eNB3。如果这三个站点是属于同运营商,则它们使用相同的图样进行CCA检测。而对于这三个站点分别属于不同的运营商情况,为了能减少相邻站点之间的干扰,不同站点使用不同的CCA Pattern来进行CCA检测,以实现规避站点间干扰,从而达到提高系统吞吐量的目的。
下面将结合图2所示流程详细描述方式一中基站间如何实现CCA Pattern信息交互的过程:
如图2所示,基站eNB1首先通过X2口向邻近的基站(如eNB2和eNB3)通知自身的CCA Pattern的信息,如:频域带宽、资源的最小颗粒度(比如资源块(Resource Block,简称为RB)或资源单元(Resource Element,简称为RE))、簇(Cluster)的个数、每个Cluster簇的大小,簇的起始位置或相对于频域起点的频域偏移量、周期T和复用的节点的个数等信息,根据上述信息中的一个或是多个即可获知频域的CCA Pattern。
邻近的基站(eNB2和eNB3)接收到来自于eNB1发送的CCA Pattern信息后,获知该CCA检测图样自身不可使用,并且立刻启动一个随机回退计数器。假如:eNB2产生的随机回退值为4,而eNB3则产生了一个数值为2的随机回退值。此时可知,邻近基站中eNB3的计数器最先减到0,当eNB3的计数器减到0时,则eNB3在收到的eNB1的CCA Pattern基础上进行一个固定偏移,这个偏移量的大小可以是一个Cluster的大小(标注:Cluster大小可以是RB级,也可以是RE级大小)。从而,eNB3获得自身后续在非授权载波上进行CCA检测时所要使用的CCA Pattern,更新复用的基站间维护的CCA Pattern列表并通知仍然在进行随机回退的eNB2以及eNB1新的CCA Pattern。此时,eNB1仅需要更新自身CCA Pattern列表,而eNB2在收到新的CCA Pattern列表以及随机回退值为0后,采用同eNB3的方法,在收到的新CCA Pattern的基础上进行一个固定偏移,并通知更新的CCA Pattern。收到更新的CCA Pattern列表的站点,判断列表是否填满,如果判断填满,则停止CCA Pattern交互。如果判断未填满,则继续上述的操作。这里判断列表是 否填满的方法,如:通过判断链表节点数是否与复用的站点数目相同,或是判断链表最后一个信息是否为空等。
如果出现多个站点同时随机回退到0的情况,则这些站点间可以相互再产生一个随机数,按照随机数大小依次确定自己的CCA图样偏移量;或再进行一次随机回退机制。
下面对方式二提供的实现方式进行说明:
站点通过X2口给邻近的基站通知其特定的CCA Pattern信息。
对于方式二来说,eNB1通过X2口通知eNB2和eNB3进行CCA检测时所采用的检测图样。同样的,如果eNB1、eNB2和eNB3是同一运营商下的基站,可以相互复用特定非授权载波资源,这里eNB2和eNB3收到eNB1通知的CCA图样后,就认为自己可以使用此图样进行CCA检测。而如果eNB1、eNB2和eNB3是属于不同运营商下的基站时,eNB2和eNB3收到eNB1发送的特定的CCA图样后,在CCA检测期就直接按照各自接收到的图样进行CCA检测。
最后,对方式三提供的实现方式进行说明:
发送基站通过X2口通知CCA图样的信息给相邻的基站,相邻的基站接收到信息并根据其周围情况确定本基站所用的CCA图样并反馈给发送基站一个信息。
假如eNB1周围的基站有eNB2、eNB3和eNB4,而eNB2周围的基站有eNB5和eNB6。eNB1根据自身周围基站使用的CCA图样确定了自己在CCA检测时所采用的图样,并通知给eNB2,这里有两种可能:
第一种:eNB1通过X2口通知给eNB2自身的CCA检测图样,且需要eNB2也使用同样的图样进行CCA检测,但当eNB2收到这个图样的信息后,却发现这个图样与本基站邻近的基站进行CCA检测使用的图样出现冲突。此时,eNB2会向eNB1反馈一个信息,或是确定一个与eNB1图样不同且也与本基站邻近的基站无冲突的新CCA图样通知给eNB1。
第二种:eNB1通过X2口通知eNB2在CCA检测时所要采用的检测图样。但当eNB2收到这个图样的信息后,却发现这个图样与本基站邻近的基站进 行CCA检测时使用的图样出现冲突。此时,eNB2会向eNB1反馈一个信息,可选的,用于请求eNB1再次指定一个新的可用图样,也可用于告知自己周围不可用的CCA图样的信息,或是自己确定一个与本基站邻近的基站无冲突的新CCA图样通知给eNB1。
实施例二:
本实施例用于说明通过X2口传递哪些参数来确定CCA图样。
由实施例一中可以看出,通过X2口通知的参数可以为频域带宽、资源的最小颗粒度(RB或RE)、Cluster的个数、每个Cluster的大小、Cluster的起始位置、相对于频域起点的偏移量、周期T和复用的节点个数等信息,根据上述信息中的一个或是多个即可获知频域的CCA Pattern。
假如通过X2口通知的Cluster的个数为4,Cluster的大小为2个物理资源块PRB(Physical Resource Block,简称为PRB),Cluster的起始位置为频域RB的索引值为0,则通过这些参数,可以确定出的基站CCA图样的频域位置为[RB0,RB1]、[RB6,RB7]、[RB12,RB13]、[RB18,RB19]。
假如通过X2口通知的簇的起始位置为频域RB的索引值为0,频域带宽为5MHz,Cluster的大小为2个PRB,Cluster出现的周期为6个PRB,则通过这些参数,同样可以确定出的基站CCA图样的频域位置为[RB0,RB1]、[RB6,RB7]、[RB12,RB13]、[RB18,RB19]。
同理,通过X2口通知的Cluster的起始位置为频域RB的索引值为0,频域带宽为5MHz,Cluster的大小为2个PRB,复用的节点为3,同样也获得上述CCA检测图样的频域位置。
假如通过X2口通知的Cluster的个数为4,Cluster的大小为24个子载波,Cluster的起始位置为频域子载波的索引值为0,则通过这些参数,可以确定出的基站进行CCA检测使用的频域子载波位置为[C0,C23]、[C72,C95]、[C144,C167]、[C216,C230]。同理,通过上述Cluster的起始位置为频域子载波索引0,频域带宽为5MHz,Cluster的大小为24个子载波,Cluster出现的周期为72个子载波,或是通过Cluster的起始位置为频域子载波索引0,频域带宽为5MHz,Cluster的大小为24个子载波,复用的节点为3,也可以得到 基站进行CCA检测使用的频域子载波级图样为[C0,C23]、[C72,C95]、[C144,C167]、[C216,C230]。
假如通过X2口通知第一个Cluster的频域偏移量对应的RB的索引值为1,频域带宽为5MHz,Cluster的大小为2个PRB,Cluster出现的周期为6个PRB,则通过这些参数可以确定出的基站CCA图样的频域位置为[RB1,RB2]、[RB7,RB8]、[RB13,RB14]、[RB19,RB20]。
采用上述类似的方法,对应于频域带宽为10MHz,15MHz,20MHz,也可以根据设置Cluster的个数、每个Cluster的大小、Cluster的起始位置,周期T和复用的节点个数等信息中的一个或是多个来获得相应的CCA图样。
实施例三:
本实施例主要描述基站或是UE按照特定的CCA Pattern进行CCA检测,以及检测到信道空闲后,对应的传输数据的资源图样。可选的,以及相应的预留信号发送图样等。
如图3所示,预留信号期是用虚线来标识的。这是因为,节点检测到信道空闲的时刻有可能恰好在符号的边界或数据传输支持部分帧传输等,此时可以不用发送非完整的正交频分复用(Orthogonal Frequency Division Multiplexing,简称为OFDM)符号中的预留信号。反之,需要发送非完整OFDM符号中的预留信号占用信道。
而对于CCA检测在子帧末尾一个OFDM符号,可能存在不用发送预留信号的情况,这里假定每个节点按照自身的CCA Pattern在非占用期执行CCA检测,当节点检测到信道空闲后,直接进入数据传输期,且每个节点在相应的数据资源上发送数据。
在数据传输期,进行数据传输有如下四种情况:
情况一:节点按照与CCA检测图样一一对应的频域资源上进行数据传输。
情况二:节点在整个带宽上进行数据传输,但预留CCA图样的频域资源。
情况三:节点在整个带宽上进行数据传输,但预留CCA图样的频域资源上的预设RE或是预留频域资源上的预设RE不进行数据发送。
情况四:节点在整个带宽上进行数据传输。
对于有预留信号期的情况,假定每个节点按照自身的CCA Pattern在非占用期执行CCA检测,当节点检测到信道空闲后,节点不是立刻进行数据传输,而是进入预留信号期,对于CCA检测成功时刻不到一个OFDM符号边界的,需要发送非完整的OFDM符号中的预留信号。而对于CCA检测成功时刻恰好到一个OFDM符号的边界但不到一个子帧的边界,则此时需要发送完整的OFDM符号中的预留信号,用于进行信道占用,直到数据传输期时刻到来,则节点立刻在数据资源上发送数据。基于此,又有几种情况:
情况一:预留信号期使用的预留信号图样与非占用期的CCA图样一一对应,而在数据传输期时,发送数据的图样也与非占用期的CCA图样一一对应。
情况二:预留信号期使用的预留信号图样与非占用期的CCA图样不一一对应,可以在整个带宽上发送预留信号。而在数据传输期时,发送数据的图样是与非占用期的CCA图样一一对应。
情况三:预留信号期使用的预留信号图样与非占用期的CCA图样不一一对应,即在整个频域带宽的两端发送预留信号(预留信号在这两端频域资源上的能量达到整个带宽能量的80%以上)。而在数据传输期时,发送数据的图样是与非占用期的CCA图样一一对应。
情况四:预留信号期使用的预留信号图样与非占用期的CCA图样不一一对应,即在整个频域带宽的中间80%以上资源上发送预留信号。而在数据传输期时,发送数据的图样是与非占用期的CCA图样一一对应。
情况五:预留信号期使用的预留信号图样与非占用期的CCA图样一一对应,而在数据传输期时,发送数据的图样与非占用期的CCA图样不一一对应,即数据在整个系统带宽上发送。
情况六:预留信号期使用的预留信号图样与非占用期的CCA图样一一对应,而在数据传输期时,发送数据的图样与非占用期的CCA图样不一一对应,即在整个带宽上进行数据传输,但在后续子帧中预留CCA图样的对应的频域资源。
情况七:预留信号期使用的预留信号图样与非占用期的CCA图样不一一 对应,可以在整个带宽上发送预留信号。而在数据传输期时,发送数据的图样与非占用期的CCA图样不一一对应,即数据在整个系统带宽上发送。
情况八:预留信号期使用的预留信号图样与非占用期的CCA图样不一一对应,可以在整个带宽上发送预留信号。而在数据传输期时,发送数据的图样与非占用期的CCA图样不一一对应,即在整个带宽上进行数据传输,但在后续子帧中预留CCA图样的对应的频域资源。
情况九:预留信号期使用的预留信号图样与非占用期的CCA图样不一一对应,即在整个频域带宽的两端发送预留信号(预留信号在这两端频域资源上的能量达到整个带宽能量的80%以上)。而在数据传输期时,发送数据的图样与非占用期的CCA图样不一一对应,即数据在整个系统带宽上发送。
情况十:预留信号期使用的预留信号图样与非占用期的CCA图样不一一对应,即在整个频域带宽的两端发送预留信号(预留信号在这两端频域资源上的能量达到整个带宽能量的80%以上)。而在数据传输期时,发送数据的图样与非占用期的CCA图样不一一对应,即在整个带宽上进行数据传输,但在后续子帧中预留CCA图样的对应的频域资源。
情况十一:预留信号期使用的预留信号图样与非占用期的CCA图样不一一对应,即在整个频域带宽的中间80%以上资源上发送预留信号。而在数据传输期时,发送数据的图样与非占用期的CCA图样不一一对应,即数据在整个系统带宽上发送。
情况十二:预留信号期使用的预留信号图样与非占用期的CCA图样不一一对应,即在整个频域带宽的中间80%以上资源上发送预留信号。而在数据传输期时,发送数据的图样与非占用期的CCA图样不一一对应,即在整个带宽上进行数据传输,但在后续子帧中预留CCA图样的对应的频域资源。
预留信号期发送的预留信号可以是SRS、前导码、主辅同步序列(PSS/SSS、预定标识等。其中,按照预留信号的图样发送的SRS信号,不仅可以用于其他复用的节点进行CCA检测,在上行数据传输之前发送SRS信号,还可以使基站以更快的速度获得信道测量信息。
实施例四:
本实施例主要描述针对于节点采用相同的CCA Pattern执行CCA检测及数据传输的过程。
也就是说,对于LAA系统内的基站和/或UE,或是同运营商的基站和/或UE,或者是小区内的UE,在非占用期执行CCA检测的时候使用相同的CCA Pattern,此CCA Pattern可以是通过高层信令配置或是按照预先约定获得。
当LAA系统内的基站和/或UE或是同运营商的基站和/或UE,或者是小区内的UE,执行CCA的时刻不对齐时,会出现部分节点竞争成功而其他节点检测信道忙的情况。对于已经成功检测到信道空闲的节点,如果它们CCA检测成功的时刻还没到一个OFDM符号边界,则需要发送非完整OFDM符号中的预留信号,而如果它们CCA检测成功的时刻恰好到符号边界但没到数据传输时刻,则需要发送完整的OFDM符号的预留信号。此时,假如预留信号是整个带宽上发送,则需要在预留信号中携带用于其他可以复用的节点进行识别的标识,其中该标识可以为小区ID或是运营商标识或是组标识等,从而实现频率复用。同时,预留信号也可以是信道探测参考信号SRS、前导码、主辅同步序列PSS/SSS、预定标识等。需要说明的是,按照预留信号的图样发送的SRS信号,不仅可以用于其他复用的节点进行CCA检测,且在上行数据传输之前发送该SRS信号,还可以使基站以更快的速度获得信道测量信息。反之,假如预留信号是按照与CCA Pattern对应的图样发送的,则其他继续执行CCA检测的且可以复用的节点则需要判断其对应CCA图样位置上信道为忙,而其他频域资源上信道为空闲,则认为该信道可以使用。
在数据传输期,LAA系统内的基站/UE、同运营商内的基站/UE开始一起复用竞争到的资源。在数据传输期中,复用的节点可以在整个带宽上进行数据发送;或者,按照与CCA检测图样对应的频域资源上进行数据传输。可选的,在整个带宽上进行数据传输,且在数据传输期的后续子帧中的符号频域资源上与CCA图样一一对应的频域位置上预留CCA检测资源,如图4(a)所示,便于继续执行CCA的节点进行检测,能够提高系统性能。
而对于已经成功检测到信道空闲的节点,且CCA成功时刻恰好到一个子帧的边界,则无需发送预留信号,直接进入数据传输期进行数据传输。此时, 复用的节点可以在整个带宽上进行数据发送。但为了使得同系统或是同运营商中的继续进行CCA检测的节点能够复用竞争到的非授权载波资源,在数据传输期可以按照与CCA检测图样对应的频域资源上进行数据传输或者数据传输在整个带宽上,预留出与CCA检测图样一一对应的频域资源上的预设RE,或者,预留出数据传输期内的预设频域的RE不进行传输。可选的,也可以在整个带宽上进行数据传输,且在数据传输期的后续子帧中的符号频域资源上与CCA检测图样一一对应的频域位置打孔,用于节点识别和复用同系统或同运营商已竞争到的资源一起进行数据传输,如图4(b)所示。
实施例五:
本实施例主要用于详细介绍为实现频分复用和/或频率复用的目的而在相应资源上进行打孔的细节。
假如系统带宽上复用了两个节点且这两个节点进行CCA检测的图样是频域互补的。对于频域互补,举例来说,节点1占用频域资源索引号为奇数对应的资源,而节点2占用频域资源索引号为偶数对应的资源,节点1和2各自对应的频域资源图样合起来等于整个带宽。
当检测到信道空闲,且检测成功时刻未到子帧边界,则它们可以在与CCA检测图样一一对应的频域资源上发送预留信号。这时,对于在预留信号期正在进行CCA检测的节点来说,在自身对应的图样上检测信道为忙,而在其余频域资源上检测为空闲才认为是同系统或是同运营商的节点占用了信道。此时,由于复用的两个节点都在对应图样上发送了预留信号,他们在对于的图样资源位置检测到信道忙,而在其余的资源上检测信道依然忙,此时他们不确定是否同小区或同系统或同运营商的节点占用了信道。
在预留信号期的后续符号上进行打孔,用于在预留信号期其他采用检测图样的复用节点可以进行识别。
其中,打孔的方式可以为在后续一个或多个OFDM符号中对应的频域图样的每个RB的开头或是中间或是最后的一个或是几个RE上进行打孔。
如果复用的节点1发现对应图样资源和其他资源上信道均为忙,则需要在对应图样中的特定RE上检测是否空闲,如果空闲,则可以确定该信道可 用。复用的节点2也可以采用与复用的节点1同样的方法,在对应的图样中的某些RE上进行打孔来实现同系统或是同运营商的节点的复用。
对于数据传输期,为了提高资源的复用效率,在数据传输期中的后续子帧中的OFDM符号上进行打孔用于哪些正在执行CCA检测的可以复用的节点进行图样识别,可选的,在后续子帧中的一个或是多个OFDM符号上的对应频域资源上进行打孔。其中,打孔的时频资源位置是除已使用的参考信号和信道所在的位置之外的位置,例如需要避开解调的参考信号(De Modulation Reference Signal,简称为DMRS)、SRS、物理下行控制信道(Physical Downlink Control Channel,简称为PDCCH)、物理上行链路控制信道(Physical Uplink Control CHannel,简称为PUCCH)、小区参考信号(Cell Reference Signal,简称为CRS)、信道状态信息参考信号(Channel State Information Reference Signal,简称为CSI-RS)等参考信号或信道的位置。
对于在数据传输期,节点按照与对应的CCA检测图样的频域资源上进行数据传输。此时,频域上的其他资源上也被其他频分复用的节点占用进行数据传输。这样以来,同系统或是同运营商的其他节点由于检测到信道都是忙,而无法判断是否资源可用,所以,需要在数据传输图样中的某些RE上进行打孔用于实现同系统或是同运营商或是同组的节点的识别和复用。同样打掉的RE muting图样需要避开DMRS、SRS、PDCCH、PUCCH、CRS、CSI-RS等参考信号或信道的位置。
对于在数据传输期,数据在整个带宽上进行传输,且在数据传输期的后续子帧中的符号频域资源上与CCA检测图样一一对应的频域位置打孔。其中,打孔的位置为在后续子帧中的一个或是多个OFDM符号上的对应频域资源上进行打孔。也可以在对应的CCA检测图样资源上的某些RE上进行打孔而无需打掉整个CCA检测图样对应的资源来实现识别的功能,这样做在一定程度上可以减少资源的浪费。
同样,打掉的资源位置需要避开DMRS、SRS、PDCCH、PUCCH、CRS、CSI-RS等参考信号或信道所在的位置。包括以下情况:
对于上行数据传输,为了避开PUCCH、DMRS和SRS,因此,打孔的位置可以在子帧的前三个OFDM上的频域位置;
对于下行数据传输,为了避开PDCCH、CRS、CSI-RS等,可以打掉某些RB中的第二个和第三个RE位置的资源用于复用的节点进行图样识别,检测到对应的RE上空闲,则认为可以复用此资源进行数据传输。
实施例六:
本实施例主要是针对于不同小区或是不同运营商使用不同的CCA Pattern进行CCA检测及数据传输的过程的说明:
在本实施例中,不同小区之间或是不同运营商网络之间可以通过高层信令通知各自对应的CCA Pattern,也可以通过如实施例一中介绍的基站间通过交互获知CCA Pattern的方法,其中UE的CCA Pattern也可以通过基站通知的方式来获取。
假定不同小区或是不同运营商知道各自执行CCA检测时的图样信息,也就是说,同小区或是同运营商网络内的节点使用相同的CCA Pattern进行CCA检测,而不同小区间或不同运营商网络间使用的是不同的CCA Pattern进行CCA检测。
同小区或是同运营商网络内的节点使用相同的CCA Pattern进行CCA检测,以及一起复用竞争到的资源进行数据传输的方式同实施例四中的方式相同。
这里需要描述不同小区间或不同运营商网络间采用不同的CCA Pattern进行CCA检测的情况:
假定有三个小区,分别为Cell1、Cell2和Cell3,每个小区或是小区内的UE进行CCA检测时使用的CCA Pattern为系统带宽对应的RB资源索引号或是子载波资源索引号与小区数求模得到的结果;其中:结果为0的RB或子载波索引号对应的资源,认为是Cell1或Cell1内的UE执行CCA检测使用的图样,结果为1和2的资源索引对应的图样分别为Cell2和Cell3执行CCA检测使用的图样,或者,为Cell2和Cell3内的UE执行CCA检测使用的CCA Pattern。
对于Cell1、Cell2和Cell3,在非占用期时,三个小区或三个小区内的UE分别按照各自的CCA Pattern图样进行CCA检测,根据小区间是否同步,说 明如下:
如果小区间是同步的,一旦检测到信道空闲,在数据传输期到来时,小区或是小区内的UE可以一起进行数据传输,从而实现频率复用。
如果小区间是不同步的,检测到信道空闲的节点,要么发送预留信号,要么直接进行数据发送。对于发送预留信号情况,检测到信号空闲的节点需要发送与CCA Pattern一一对应的预留信号图样或是需要在整个带宽上发送预留信号,但预留出于CCA Pattern一一对应的频域资源,便于小区内其他继续进行CCA检测的节点识别是同小区或同小区中的其他UE发送的预留信号。这里,发送的预留信号可以是SRS信号,可以帮助基站尽快的获得信道信息,可以让其他复用节点进行图样识别。
其中,在小区间不同步时,在预留信号期,获知信道是否可用是通过如下方式实现的:
方式一:对于预留信号按照与CCA检测图样一一对应的频域资源上发送情况,如果在CCA频域图样的资源上检测到信道忙,在频域其他资源上检测到信道空闲,则认为信道可用;
方式二:对于预留信号按照与CCA检测图样一一对应的频域资源上发送情况,且系统带宽被多个节点通过频分复用的方式进行预留信号发送,节点在各自对应的CCA频域图样的资源上检测到信道忙,且在频域其他资源上检测到信道也为忙,则节点需要在CCA频域图样的预设的RE上接着检测是否空闲,如果空闲,则认为信道可用。
方式三:对于预留信号在整个带宽发送,且预留出与CCA检测图样一一对应的频域资源情况,如果在对应的CCA频域图样的资源上检测到信道空闲,在频域其他资源上检测到信道忙,则认为信道可用。
其中,对于在预设的RE上见着检测是否空闲的情况,对于数据发送期,在数据发送资源上,在某些符号上增加CCA检测标记,用于提示在非占用期和/或预留信号期中错过CCA检测机会的节点再次进行CCA图样的识别,保证在数据发送期一起复用非授权载波资源进行数据传输。
其中增加CCA检测标记的方式如下:
打掉与CCA pattern一致的频域资源;或者,
打掉与预留信号图样一致的频域资源;或者;
打掉对应图样中的某些RE;或者,
打掉数据传输资源中子帧中的某符号上的特定RE资源。
通过上述方法,不同小区或是不同运营商或不同小区下的节点在CCA检测期,预留信号期和数据传输期采用不同的CCA Pattern、预留信号图样等都提升了整个系统的性能,同时,不同小区使用不同的频域位置资源,也降低了小区间的干扰,不仅实现了小区间的资源频分复用,同时也实现了小区内的频率复用。
实施例七:
本实施例主要是针对与不同的UE之间或者不同的UE group之间采用不同的CCA Pattern执行CCA检测及数据传输的过程进行说明:
本实施例主要是针对于上行数据传输,假定不同的UE之间或不同的UE group之间采用不同的CCA Pattern,则每个UE/UE group获取各自的CCA图样,其中该CCA图样可通过高层信令直接通知得到,或是通过所属基站通知得到,或是,预先约定好的图样。
执行CCA检测和数据发送的方法和实施例六中的方法类似,简而言之就是,不同的UE之间或不同的UE group进行CCA检测所采用的CCA Pattern可以是预调度资源中的两个边缘或是等间隔的RB或是子载波的资源。
对于不同的UE,如果在各自对应的CCA Pattern上检测到信道空闲,则可以立刻在竞争到的资源上发送SRS信号,用于通知基站已成功占用该非授权载波,以及请求进行信道测量,同样SRS信号也可以同数据一起进行发送。使不同的UE采用不同的CCA图样,可以很好的实现UE间的频分复用,提升频率分集增益,也提高了上行吞吐量。
而对于不同的UE group,其类似于实施例六,不同的UE组采用不同的CCA图样,不仅实现组内频率复用还可以实现组间的频分复用,极大提高上行频域利用率。
在CCA检测成功后,而每个UE或UE group都可以发送各自的SRS信 号(SRS信号可以作为预留信号进行发送,也可以和数据一起进行发送,其SRS发送的图样可以和CCA检测图样一致,也可以不一致),用于基站进行信道估计,从而下发适合的调制与编码策略(Modulation and Coding Scheme,简称为MCS),提高上行传输质量。
实施例八:
所述CCA图样可以通过频域起始位置、频域偏移量、资源的连续长度/Cluster的大小、周期T(周期可以通过复用的节点个数*连续占用的资源数来确定)、频域带宽和Cluster簇的个数等信息中的一个或是多个来确定出的频域图样。
下面以一个可选实施例来说明如何获取CCA检测图样的过程,但不限于仅使用下述方法实现。
过程如下:
k=(v+fvshift)mod Nresource
Figure PCTCN2016086761-appb-000007
其中,k表示频域起始位置,f为一个节点连续占用的资源数,vshift表示频域偏移量,Nresource表示资源总数,
Figure PCTCN2016086761-appb-000008
表示小区的标识ID,N表示复用节点数。其中,周期T为复用的节点数*连续占用的资源数,且根据复用的小区ID获取一个偏移量,根据偏移量来确定该小区的起始频域位置。
对于RB级CCA图样:
本实施例中,可以通过资源的连续长度f为2个RB,复用的基站数N为3(周期T=3*2=6),系统带宽=25个RB,小区ID分别为195、196和197,频域偏移量(通过小区ID和复用节点数的模可以确定)来确定出一个RB级CCA图样。示例如下:
对于第一个节点(基站),v=0,1。
Figure PCTCN2016086761-appb-000009
则第一个节点的频域资源起始位置为:v=0时,k=(v+fvshift)mod Nresource=(0+2*0)mod25=0,而当v=1时,k=(v+fvshift)mod Nresource=(1+2*0)mod25=1,则第一个节点在频域上的起始位置为RB资源索引号为0和1的资源,在结合周期T=6可知,第一个节点的频 域RB图样位置为:[RB0,RB1],[RB6,RB7],[RB12,RB13],[RB18,RB19],[RB24]。同理,对于第二个节点,由于小区ID不同,因此vshift不同。对于第二个节点,v=0,1。
Figure PCTCN2016086761-appb-000010
则第二个节点的频域资源起始位置为:v=0时,k=(v+fvshift)mod Nresource=(0+2*1)mod25=2,而当v=1时,k=(v+fvshift)mod Nresource=(1+2*1)mod25=3,则第二个节点在频域上的起始位置为RB资源索引号为2和3的资源,在结合周期T=6可知,第一个节点的频域RB图样位置为:[RB2,RB3],[RB8,RB9],[RB14,RB15],[RB20,RB21]。第三个节点的RB图样计算过程同理,这里不在重复叙述。
对于子载波级CCA图样:
这里仅描述一个RB内的子载波级CCA图样,因为其他RB内子载波图样是一样的。
本实施例中,可以通过资源的连续长度f为2个子载波,复用的基站数N为3(周期T=3*2=6),系统带宽=300个子载波(1个RB中有12个子载波),小区ID分别为195、196和197,频域偏移量(通过小区ID和复用节点数的模可以确定)来确定出一个子载波级的CCA图样。情况如下:
对于第一个节点(基站),v=0,1。
Figure PCTCN2016086761-appb-000011
则第一个节点在一个RB内的的频域资源起始位置为:v=0时,k=(v+fvshift)mod Nresource=(0+2*0)mod300=0,而当v=1时,k=(v+fvshift)mod Nresource=(1+2*0)mod300=1,则第一个节点在一个RB中的频域上的起始位置为一个RB中子载波资源索引号为0和1的资源,在结合周期T=6可知,第一个节点在一个RB内频域子载波级图样位置为:[C0,C1],[C6,C7]。同理,对于第二个节点,由于小区ID不同,因此vshift不同。对于第二个节点,v=0,1。
Figure PCTCN2016086761-appb-000012
则第二个节点在一个RB中的频域资源起始位置为:v=0时,k=(v+fvshift)mod Nresource=(0+2*1)mod300=2,而当v=1时,k=(v+fvshift)mod Nresource=(1+2*1)mod300=3,则第二个节点在一个RB中的频域上的起始位置为一个RB中子载波资源索引号为2和3的资源,在结合周期T=6可知,第二个节点在一个RB内频域子载波级图样位置为:[C2,C3],[C8,C9]。第三个节点的RB图样计算过程同理,这里不在重复 叙述。
本发明实施例还提供一种非授权载波上图样的管理装置,应用在传输节点;所述传输节点包括以下一种或多种:系统级节点、小区级节点、UE级节点,所述装置包括:
管理模块,设置成生成和交互CCA图样Pattern;所述CCA Pattern包括:在进行CCA检测的不同阶段使用的图样Pattern、数据传输使用的Pattern以及CCA检测Pattern。
即所述管理模块负责在不同阶段进行CCA检测时使用的图样Pattern、数据传输使用的Pattern以及CCA检测Pattern的生成和交互。
所述管理模块可以包括:
生成模块,设置成生成CCA图样Pattern;所述CCA Pattern包括:在进行CCA检测的不同阶段使用的图样Pattern、数据传输使用的Pattern以及CCA检测Pattern;
交互模块,设置成交互CCA图样Pattern;所述CCA Pattern包括:在进行CCA检测的不同阶段使用的图样Pattern、数据传输使用的Pattern以及CCA检测Pattern。
可选地,所述进行CCA检测的不同阶段,包括下述至少一个阶段:
非占用期;
预留信号期;
数据传输期。
可选地,在所述非占用期进行CCA检测使用的Pattern,包括下述之一:
频域等间隔的,最小资源的颗粒度为资源块RB的CCA检测Pattern;
频域不等间隔的,最小资源的颗粒度为RB的CCA检测Pattern;
频域等间隔的,最小资源的颗粒度为资源元素RE的CCA检测Pattern;
频域不等间隔的,最小资源的颗粒度为RE的CCA检测Pattern;
频域等间隔的,子带级的CCA检测Pattern;
频域不等间隔的,子带级的CCA检测Pattern。
可选地,在所述预留信号期进行CCA检测使用的Pattern,包括下述之一:
如果预留信号在整个带宽发送,无CCA检测Pattern;
如果预留信号在整个带宽发送,则预留出与CCA检测Pattern一一对应的频域资源,用于复用的节点在所述预留信号期进行CCA Pattern检测;
如果预留信号按照与CCA检测Pattern一一对应的频域资源进行发送,则将预留信号的发送Pattern作为复用的节点在所述预留信号期进行CCA检测使用的Pattern。
可选地,所述预留信号期发送的预留信号可以包括下述之一:
信道探测参考信号SRS、前导码、主辅同步序列PSS/SSS和预定标识。
可选地,当SRS信号作为预留信号器的预留信号时,所述SRS信号是在发送上行数据之前发送的。
可选地,所述复用的节点在预留信号期进行CCA检测是按照下述方式之一确定CCA检测成功:
方式一:对于预留信号在与CCA检测图样一一对应的频域资源上发送的情况,如果在CCA频域图样的资源上检测到信道忙,在频域其他资源上检测到信道空闲,则认为信道可用;
方式二:对于预留信号在与CCA检测图样一一对应的频域资源上发送的情况,且系统带宽被多个节点通过频分复用的方式进行预留信号发送,节点在各自对应的CCA频域图样的资源上检测到信道忙,且在频域其他资源上检测到信道也为忙,则节点需要在CCA频域图样的预设的RE上继续检测是否空闲,如果空闲,则认为信道可用。
方式三:对于预留信号在整个带宽发送,且预留出与CCA检测图样一一对应的频域资源的情况,如果在对应的CCA频域图样的资源上检测到信道空闲,在频域其他资源上检测到信道忙,则认为信道可用。
可选地,在所述数据传输期进行CCA检测使用的Pattern,包括下述之一:
数据传输在整个带宽上,无CCA检测Pattern;
数据传输在整个带宽上,预留出与CCA检测图样一一对应的频域资源,用于复用的节点在数据传输期进行CCA Pattern检测;
数据传输在整个带宽上,预留出与CCA检测图样一一对应的频域资源上的预设RE,或者,预留出数据传输期内的预设频域RE,用于复用的节点在数据传输期进行CCA Pattern检测;
数据传输按照与CCA检测图样一一对应的频域资源进行发送,其数据传输图样即可作为复用的节点在预留信号期进行CCA检测使用的Pattern。
可选地,所述复用的节点在数据传输期进行CCA检测是按照下述方式之一确定CCA检测成功:
方式一:在整个系统带宽上传输数据且预留出与CCA检测图样一一对应的频域资源时,如果在对应预留的CCA检测频域图样的资源上检测到信道空闲,在频域其他资源上检测到信道忙,则确定信道可用;
方式二:当整个系统带宽上通过频分复用的方式进行数据传输时,在对应传输数据的CCA频域图样资源上检测到信道忙,在其他频域资源上检测到信道也忙,则节点在对应CCA频域图样的数据传输资源上的预留空闲的RE上检测信道是否空闲,如果空闲,则认为信道可用;
方式三:在整个带宽上传输数据,且在频域资源上的预设的RE上打孔,用于复用的节点在数据传输期进行信道可用的识别,如果在对应的CCA频域图样的资源上检测到信道忙,而在频域其他资源上检测到信道也为忙,则继续在CCA频域图样的预留的RE上或者在频域资源上预留的RE上检测是否空闲,如果空闲,则认为信道可用。
可选地,所述数据传输使用的Pattern,包括:
数据在整个系统带宽上进行传输;
数据在整个系统带宽上进行传输,且预留出与CCA检测图样一一对应的频域资源不进行数据传输;
数据在整个系统带宽上进行传输,且预留出与CCA检测图样一一对应的频域资源中的预设的RE资源不进行数据传输;
数据在与CCA检测图样一一对应的频域资源上进行数据传输。
可选地,所述数据传输使用的CCA检测图样的位置,是后续子帧中的符号上的频域资源的位置,其中频域资源的位置与CCA检测图样的频域位置一一对应的资源,或者,是CCA检测图样对应的频域资源中的RE资源,或者,是频域上的预设的RE资源。
可选地,所述后续子帧中的符号是该子帧中的第一个符号或是前几个符号;且,所述正交频分复用OFDM符号的位置或是符号对应的频域资源的RE的打孔位置是除已使用的参考信号和信道所在的位置之外的位置。
可选地,所述已使用的参考信号和信道包括以下一种或多种:DMRS、SRS、PDCCH、PUCCH、CRS和CSI-RS。
可选地,所述系统级节点包括以下一种或多种:LAA系统内的所有节点,或者运营商网络内的所有节点,其中,系统级节点使用相同的CCA Pattern进行CCA检测;
所述小区级节点包括以下一种或多种:小区内节点、不同小区、不同小区内的节点,其中,小区内的节点使用统一的CCA Pattern进行CCA检测;不同小区之间或不同小区内的节点使用不同的CCA Pattern进行CCA检测;
所述UE级包括以下一种或多种:不同UE、不同UE组group或者相同UE group中的UE,其中,不同UE之间或不同UE group之间使用不同的CCA Pattern进行CCA检测;相同的UE group内的UE使用相同的CCA Pattern进行CCA检测。
可选地,所述系统级节点使用相同的CCA Pattern进行CCA检测,包括下述之一:
所述系统级节点使用相同的RE级的CCA Pattern进行CCA检测;
所述系统级节点使用相同的RB级的CCA Pattern进行CCA检测;
所述系统级节点使用相同的子带级的CCA Pattern进行CCA检测。
可选地,所述系统级节点包括所述运营商网络内的所有节点时,所述系统级节点使用相同的CCA Pattern进行CCA检测,包括下述之一:
运营商网络内的所有节点使用相同的RE级的CCA Pattern进行CCA检测;
运营商网络内的所有节点使用相同的RB级的CCA Pattern进行CCA检测;
运营商网络内的所有节点使用相同的子带级的CCA Pattern进行CCA检测。
可选地,所述小区内节点使用相同的CCA Pattern进行CCA检测,包括下述之一:
小区内节点使用相同的RE级的CCA Pattern进行CCA检测;
小区内节点使用相同的RB级的CCA Pattern进行CCA检测;
小区内节点使用相同的子带级的CCA Pattern进行CCA检测;
可选地,所述不同小区间或不同小区内的节点使用不同的CCA Pattern进行CCA检测,包括下述之一:
不同小区间或不同小区内的节点使用不同的RE级的CCA Pattern在各自的资源上进行CCA检测;
不同小区间或不同小区内的节点使用不同的RB级的CCA Pattern在各自的资源上进行CCA检测;
不同小区间或不同小区内的节点使用不同的子带级的CCA Pattern在各自的资源上进行CCA检测。
可选地,所述UE group内的UE使用相同的CCA Pattern进行CCA检测,包括下述之一:
UE group内的UE使用相同的RE级的CCA Pattern进行CCA检测;
UE group内的UE使用相同的RB级的CCA Pattern进行CCA检测;
UE group内的UE使用相同的子带级的CCA Pattern进行CCA检测。
可选地,所述不同UE之间或不同UE group之间使用不同的CCA Pattern进行CCA检测,包括下述之一:
不同UE之间或不同UE group之间使用不同的RE级的CCA Pattern在各自的资源上进行CCA检测;
不同UE之间或不同UE group之间使用不同的RB级的CCA Pattern在各 自的资源上进行CCA检测;
不同UE之间或不同UE group之间使用不同的子带级的CCA Pattern在各自的资源上进行CCA检测。
可选地,系统级或小区级或UE级节点使用的CCA Pattern是按照约定的,或者,由高层信令通知来获得的。
可选地,当所述管理模块应用在基站时,所述管理模块交互所述CCA Pattern,包括如下三种方式:
方式一:管理模块之间通过X2口交互各自所在基站的CCA Pattern的信息;管理模块在获取到其他基站的CCA Pattern的信息后,均启动一个随机回退计数器;随机回退值第一个减到0的管理模块在收到的CCA Pattern的基础上频移一个固定值,维护一个CCA Pattern列表,并通知给周围的基站的管理模块,直到列表中达到预定的可复用的节点数目(可以是相关技术中已经规定的可复用的节点数目),停止信息交互操作;
方式二:管理模块通过X2口通知相邻的基站的管理模块执行CCA检测时所使用的CCA Pattern;管理模块收到其它基站的CCA图样的信息后,在所述信道的非占用期、预留信号期和数据传输期均使用收到的CCA图样的信息中包含的图样频域位置信息;
方式三:管理模块通过X2口通知CCA图样的信息给相邻的基站的管理模块,管理模块在接收到其它基站的CCA图样的信息后,发送对CCA图样的反馈信息。
可选地,在方式一中,如果出现多个基站的管理模块同时随机回退值到0,则执行如下任一操作:
所述多个基站的管理模块均产生一个随机数,各自按照随机数大小依次确定自己的CCA的图样偏移量;
重新进行一次随机回退机制;
选择一个主基站,并接收所述主基站的管理模块为剩余基站分配的CCA图样。
可选地,当所述管理模块应用在UE时,所述管理模块交互所述CCA  Pattern包括:
接收基站广播的进行CCA检测的CCA Pattern;或者,
接收高层信令,所述高层信令包括所述UE进行CCA检测的CCA Pattern。
可选地,确定CCA Pattern是通过频域起始位置、频域偏移量、资源的连续长度、簇Cluster的大小、周期T、频域带宽、Cluster的个数中的一个或是多个来确定出的。
可选地,确定不同基站频域起始位置的计算方式如下:
k=(v+fvshift)mod Nresource
Figure PCTCN2016086761-appb-000013
其中,k表示频域起始位置,f为一个节点连续占用的资源数,vshift表示频域偏移量,N表示复用节点的总数,
Figure PCTCN2016086761-appb-000014
表示小区的标识ID。
本发明实施例提供的装置,能增加非授权载波上基站/基站组或UE/UE group的频率复用和频分复用的效率,减小同运营商或同小区中复用的节点识别资源可用的复杂度;此外,还能减少邻近节点间的干扰,在一定程度上提升了系统性能。
本发明实施例还一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行上述实施例的方法。
本领域普通技术人员可以理解上述实施例的全部或部分步骤可以使用计算机程序流程来实现,所述计算机程序可以存储于一计算机可读存储介质中,所述计算机程序在相应的硬件平台上(如系统、设备、装置、器件等)执行,在执行时,包括方法实施例的步骤之一或其组合。
可选地,上述实施例的全部或部分步骤也可以使用集成电路来实现,这些步骤可以被分别制作成一个个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明实施例不限制于任何特定的硬件和软件结合。
上述实施例中的装置/功能模块/功能单元可以采用通用的计算装置来实现,它们可以集中在单个的计算装置上,也可以分布在多个计算装置所组成的网络上。
上述实施例中的装置/功能模块/功能单元以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。上述提到的计算机可读取存储介质可以是只读存储器,磁盘或光盘等。
工业实用性
本发明实施例能增加非授权载波上基站/基站组或UE/UE group的频率复用和频分复用的效率,减小同运营商或同小区中复用的节点识别资源可用的复杂度;此外,还能减少邻近节点间的干扰,在一定程度上提升了系统性能。

Claims (52)

  1. 一种非授权载波上图样的管理方法,包括:
    传输节点生成和交互CCA图样Pattern;所述CCA Pattern包括:在进行空闲信道评估CCA检测的不同阶段使用的Pattern、数据传输使用的Pattern以及CCA检测Pattern;所述传输节点包括以下一种或多种:系统级节点、小区级节点、用户设备UE级节点。
  2. 根据权利要求1所述方法,其中,所述进行CCA检测的不同阶段,包括下述至少一个阶段:
    非占用期;
    预留信号期;
    数据传输期。
  3. 根据权利要求2所述方法,其中,在所述非占用期进行CCA检测使用的Pattern,包括下述之一:
    频域等间隔的,最小资源的颗粒度为资源块RB的CCA检测Pattern;
    频域不等间隔的,最小资源的颗粒度为RB的CCA检测Pattern;
    频域等间隔的,最小资源的颗粒度为资源元素RE的CCA检测Pattern;
    频域不等间隔的,最小资源的颗粒度为RE的CCA检测Pattern;
    频域等间隔的,子带级的CCA检测Pattern;
    频域不等间隔的,子带级的CCA检测Pattern。
  4. 根据权利要求2所述方法,其中,在所述预留信号期进行CCA检测使用的Pattern,包括下述之一:
    如果预留信号在整个带宽发送,无CCA检测Pattern;
    如果预留信号在整个带宽发送,则预留出与CCA检测Pattern一一对应的频域资源,用于复用的节点在所述预留信号期进行CCA Pattern检测;
    如果预留信号按照与CCA检测Pattern一一对应的频域资源进行发送, 则将预留信号的发送Pattern作为复用的节点在所述预留信号期进行CCA检测使用的Pattern。
  5. 根据权利要求4所述的方法,其中,所述预留信号期发送的预留信号包括下述之一:
    信道探测参考信号SRS、前导码、主辅同步序列PSS/SSS和预定标识。
  6. 根据权利要求5所述的方法,其中,当SRS信号作为预留信号器的预留信号时,所述SRS信号是在发送上行数据之前发送的。
  7. 根据权利要求4所述方法,其中,所述复用的节点在预留信号期进行CCA检测是按照下述方式之一确定CCA检测成功:
    方式一:对于预留信号在与CCA检测Pattern一一对应的频域资源上发送的情况,如果在CCA频域Pattern的资源上检测到信道忙,在频域其他资源上检测到信道空闲,则认为信道可用;
    方式二:对于预留信号在与CCA检测Pattern一一对应的频域资源上发送的情况,且系统带宽被多个节点通过频分复用的方式进行预留信号发送,节点在各自对应的CCA频域Pattern的资源上检测到信道忙,且在频域其他资源上检测到信道也为忙,则节点在CCA频域Pattern的预设的RE上检测是否空闲,如果空闲,则认为信道可用;
    方式三:对于预留信号在整个带宽发送,且预留出与CCA检测Pattern一一对应的频域资源的情况,如果在对应的CCA频域Pattern的资源上检测到信道空闲,在频域其他资源上检测到信道忙,则认为信道可用。
  8. 根据权利要求2所述方法,其中,在所述数据传输期进行CCA检测使用的Pattern,包括下述之一:
    数据传输在整个带宽上,无CCA检测Pattern;
    数据传输在整个带宽上,预留出与CCA检测Pattern一一对应的频域资源,用于复用的节点在数据传输期进行CCA Pattern检测;
    数据传输在整个带宽上,预留出与CCA检测Pattern一一对应的频域资源上的预设RE,或者,预留出数据传输期内的预设频域RE,用于复用的节 点在数据传输期进行CCA Pattern检测;
    数据传输按照与CCA检测Pattern一一对应的频域资源进行发送,数据传输Pattern作为复用的节点在预留信号期进行CCA检测使用的Pattern。
  9. 根据权利要求8所述方法,其中,所述复用的节点在数据传输期进行CCA检测是按照下述方式之一确定CCA检测成功:
    方式一:在整个系统带宽上传输数据且预留出与CCA检测Pattern一一对应的频域资源时,如果在对应预留的CCA频域Pattern的资源上检测到信道空闲,在频域其他资源上检测到信道忙,则确定信道可用;
    方式二:当整个系统带宽上通过频分复用的方式进行数据传输时,在对应传输数据的CCA频域Pattern的资源上检测到信道忙,在其他频域资源上检测到信道也忙,则节点在对应CCA频域Pattern的数据传输资源上的预留空闲的RE上检测信道是否空闲,如果空闲,则认为信道可用;
    方式三:在整个带宽上传输数据,且在频域资源上的预设的RE上打孔,用于复用的节点在数据传输期进行信道可用的识别,如果在对应的CCA频域Pattern的资源上检测到信道忙,而在频域其他资源上检测到信道也为忙,则继续在CCA频域Pattern的预留的RE上或者在频域资源上预留的RE上检测是否空闲,如果空闲,则认为信道可用。
  10. 根据权利要求1所述方法,其中,所述数据传输使用的Pattern,包括:
    数据在整个系统带宽上进行传输;
    数据在整个系统带宽上进行传输,且预留出与CCA检测Pattern一一对应的频域资源不进行数据传输;
    数据在整个系统带宽上进行传输,且预留出与CCA检测Pattern一一对应的频域资源中的预设的RE资源不进行数据传输;
    数据在与CCA检测Pattern一一对应的频域资源上进行传输。
  11. 根据权利要求10所述方法,其中,所述数据传输使用的CCA检测Pattern的位置,是后续子帧中的符号上的频域资源的位置,其中频域资源的 位置与CCA检测Pattern的频域位置一一对应的资源,或者,是CCA检测Pattern对应的频域资源中的RE资源,或者,是频域上的预设的RE资源。
  12. 根据权利要求11所述方法,其中,所述后续子帧中的符号是该子帧中的第一个符号或是前几个符号;且,所述正交频分复用OFDM符号的位置或是符号对应的频域资源的RE的打孔位置是除已使用的参考信号和信道所在的位置之外的位置。
  13. 根据权利要求12所述方法,其中,所述已使用的参考信号和信道包括以下一种或多种:上行信道质量测量信号DMRS、SRS、物理下行控制信道PDCCH、物理上行链路控制信道PUCCH、小区专用参考信号CRS和信道状态指示参考信号CSI-RS。
  14. 根据权利要求1所述方法,其中:
    所述系统级节点包括以下一种或多种:辅助授权接入LAA系统内的所有节点,或者运营商网络内的所有节点,其中,系统级节点使用相同的CCA Pattern进行CCA检测;
    所述小区级节点包括以下一种或多种:小区内节点、不同小区、不同小区内的节点,其中,小区内节点使用统一的CCA Pattern进行CCA检测;不同小区之间或不同小区内的节点使用不同的CCA Pattern进行CCA检测;
    所述UE级节点包括以下一种或多种:不同UE、不同UE组group或者相同UE group中的UE,其中,不同UE之间或不同UE group之间使用不同的CCA Pattern进行CCA检测;相同的UE group内的UE使用相同的CCA Pattern进行CCA检测。
  15. 根据权利要求14所述方法,其中,所述系统级节点使用相同的CCA Pattern进行CCA检测,包括下述之一:
    所述系统级节点使用相同的RE级的CCA Pattern进行CCA检测;
    所述系统级节点使用相同的RB级的CCA Pattern进行CCA检测;
    所述系统级节点使用相同的子带级的CCA Pattern进行CCA检测。
  16. 根据权利要求14所述方法,其中,所述系统级节点包括运营商网络内的所有节点时,所述系统级节点使用相同的CCA Pattern进行CCA检测,包括下述之一:
    运营商网络内的所有节点使用相同的RE级的CCA Pattern进行CCA检测;
    运营商网络内的所有节点使用相同的RB级的CCA Pattern进行CCA检测;
    运营商网络内的所有节点使用相同的子带级的CCA Pattern进行CCA检测。
  17. 根据权利要求14所述方法,其中,所述小区内节点使用相同的CCA Pattern进行CCA检测,包括下述之一:
    小区内节点使用相同的RE级的CCA Pattern进行CCA检测;
    小区内节点使用相同的RB级的CCA Pattern进行CCA检测;
    小区内节点使用相同的子带级的CCA Pattern进行CCA检测。
  18. 根据权利要求14所述方法,其中,所述不同小区间或不同小区内的节点使用不同的CCA Pattern进行CCA检测,包括下述之一:
    不同小区间或不同小区内的节点使用不同的RE级的CCA Pattern在各自的资源上进行CCA检测;
    不同小区间或不同小区内的节点使用不同的RB级的CCA Pattern在各自的资源上进行CCA检测;
    不同小区间或不同小区内的节点使用不同的子带级的CCA Pattern在各自的资源上进行CCA检测。
  19. 根据权利要求14所述方法,其中,所述UE group内的UE使用相同的CCA Pattern进行CCA检测,包括下述之一:
    UE group内的UE使用相同的RE级的CCA Pattern进行CCA检测;
    UE group内的UE使用相同的RB级的CCA Pattern进行CCA检测;
    UE group内的UE使用相同的子带级的CCA Pattern进行CCA检测。
  20. 根据权利要求14所述方法,其中,所述不同UE之间或不同UE group之间使用不同的CCA Pattern进行CCA检测,包括下述之一:
    不同UE之间或不同UE group之间使用不同的RE级的CCA Pattern在各自的资源上进行CCA检测;
    不同UE之间或不同UE group之间使用不同的RB级的CCA Pattern在各自的资源上进行CCA检测;
    不同UE之间或不同UE group之间使用不同的子带级的CCA Pattern在各自的资源上进行CCA检测。
  21. 根据权利要求1所述方法,其中,系统级或小区级或UE级节点使用的CCA Pattern是约定的,或者,由高层信令通知来获得的。
  22. 根据权利要求1所述方法,其中,所述传输节点为基站是,所述交互CCA Pattern包括如下三种方式:
    方式一:基站之间通过X2口交互各自的CCA Pattern的信息;相邻的基站在获取到其他基站的CCA Pattern的信息后,均启动一个随机回退计数器;随机回退值第一个减到0的基站在收到的CCA Pattern的基础上频移一个固定值,维护一个CCA Pattern列表,并通知给相邻的基站,直到列表中达到预定的可复用的节点数目,停止信息交互操作;
    方式二:基站通过X2口通知相邻的基站执行CCA检测时所使用的CCA Pattern,相邻的基站收到CCA Pattern的信息后,在所述信道的非占用期、预留信号期和数据传输期均使用收到的CCA Pattern信息中包含的图样频域位置信息;
    方式三:基站通过X2口通知CCA Pattern的信息给相邻的基站,相邻的基站在接收到CCA Pattern的信息后,发送对CCA Pattern的反馈信息。
  23. 根据权利要求22所述方法,其中,在方式一中,如果多个基站同时随机回退值减到0,则执行如下任一操作:
    所述多个基站均产生一个随机数,各自按照随机数大小依次确定自己的CCA Pattern的偏移量;
    重新进行一次随机回退机制;
    选择一个主基站,并接收所述主基站为剩余基站分配的CCA Pattern。
  24. 根据权利要求1所述方法,其中,所述传输节点为UE时,所述交互CCA Pattern包括:
    UE接收基站广播的进行CCA检测的CCA Pattern;或者,
    UE接收高层信令,其中所述高层信令包括所述UE进行CCA检测的CCA Pattern。
  25. 根据权利要求1所述方法,其中,CCA Pattern是通过频域起始位置、频域偏移量、资源的连续长度、簇Cluster的大小、周期T、频域带宽、Cluster的个数中的一个或是多个确定的。
  26. 根据权利要求25所述方法,其中,确定不同节点的频域起始位置的计算方式如下:
    k=(v+fvshift)mod Nresource
    Figure PCTCN2016086761-appb-100001
    其中,k表示频域起始位置,f为一个节点连续占用的资源数,vshift表示频域偏移量,N表示复用节点的总数,Nresource表示资源总数,
    Figure PCTCN2016086761-appb-100002
    表示小区的标识ID。
  27. 一种非授权载波上图样的管理装置,应用在传输节点,所述传输节点包括以下一种或多种:系统级节点、小区级节点、用户设备UE级节点;所述装置包括:
    管理模块,设置成生成和交互CCA图样Pattern;所述CCA Pattern包括:在进行CCA检测的不同阶段使用的图样Pattern、数据传输使用的Pattern以及CCA检测Pattern。
  28. 根据权利要求27所述装置,其中,所述进行CCA检测的不同阶段, 包括下述至少一个阶段:
    非占用期;
    预留信号期;
    数据传输期。
  29. 根据权利要求28所述装置,其中,在所述非占用期进行CCA检测使用的Pattern,包括下述之一:
    频域等间隔的,最小资源的颗粒度为资源块RB的CCA检测Pattern;
    频域不等间隔的,最小资源的颗粒度为RB的CCA检测Pattern;
    频域等间隔的,最小资源的颗粒度为资源元素RE的CCA检测Pattern;
    频域不等间隔的,最小资源的颗粒度为RE的CCA检测Pattern;
    频域等间隔的,子带级的CCA检测Pattern;
    频域不等间隔的,子带级的CCA检测Pattern。
  30. 根据权利要求28所述装置,其中,在所述预留信号期进行CCA检测使用的Pattern,包括下述之一:
    如果预留信号在整个带宽发送,无CCA检测Pattern;
    如果预留信号在整个带宽发送,则预留出与CCA检测Pattern一一对应的频域资源,用于复用的节点在所述预留信号期进行CCA Pattern检测;
    如果预留信号按照与CCA检测Pattern一一对应的频域资源进行发送,则将预留信号的发送Pattern作为复用的节点在所述预留信号期进行CCA检测使用的Pattern。
  31. 根据权利要求30所述的装置,其中,所述预留信号期发送的预留信号包括下述之一:
    信道探测参考信号SRS、前导码、主辅同步序列PSS/SSS和预定标识。
  32. 根据权利要求31所述的装置,其中,当SRS信号作为预留信号器的预留信号时,所述SRS信号是在发送上行数据之前发送的。
  33. 根据权利要求30所述装置,其中,所述复用的节点在预留信号期进行CCA检测是按照下述方式之一确定CCA检测成功:
    方式一:对于预留信号在与CCA检测Pattern一一对应的频域资源上发送的情况,如果在CCA频域Pattern的资源上检测到信道忙,在频域其他资源上检测到信道空闲,则认为信道可用;
    方式二:对于预留信号在与CCA检测Pattern一一对应的频域资源上发送的情况,且系统带宽被多个节点通过频分复用的方式进行预留信号发送,节点在各自对应的CCA频域Pattern的资源上检测到信道忙,且在频域其他资源上检测到信道也为忙,则节点在CCA频域Pattern的预设的RE上检测是否空闲,如果空闲,则认为信道可用;
    方式三:对于预留信号在整个带宽发送,且预留出与CCA检测Pattern一一对应的频域资源的情况,如果在对应的CCA频域Pattern的资源上检测到信道空闲,在频域其他资源上检测到信道忙,则认为信道可用。
  34. 根据权利要求28所述装置,其中,在所述数据传输期进行CCA检测使用的Pattern,包括下述之一:
    数据传输在整个带宽上,无CCA检测Pattern;
    数据传输在整个带宽上,预留出与CCA检测Pattern一一对应的频域资源,用于复用的节点在数据传输期进行CCA Pattern检测;
    数据传输在整个带宽上,预留出与CCA检测Pattern一一对应的频域资源上的预设RE,或者,预留出数据传输期内的预设频域RE,用于复用的节点在数据传输期进行CCA Pattern检测;
    数据传输按照与CCA检测Pattern一一对应的频域资源进行发送,数据传输Pattern作为复用的节点在预留信号期进行CCA检测使用的Pattern。
  35. 根据权利要求34所述装置,其中,所述复用的节点在数据传输期进行CCA检测是按照下述方式之一确定CCA检测成功:
    方式一:在整个系统带宽上传输数据且预留出与CCA检测Pattern一一对应的频域资源时,如果在对应预留的CCA频域Pattern的资源上检测到信 道空闲,在频域其他资源上检测到信道忙,则确定信道可用;
    方式二:当整个系统带宽上通过频分复用的方式进行数据传输时,在对应传输数据的CCA频域Pattern的资源上检测到信道忙,在其他频域资源上检测到信道也忙,则节点在对应CCA频域Pattern的数据传输资源上的预留空闲的RE上检测信道是否空闲,如果空闲,则认为信道可用;
    方式三:在整个带宽上传输数据,且在频域资源上的预设的RE上打孔,用于复用的节点在数据传输期进行信道可用的识别,如果在对应的CCA频域Pattern的资源上检测到信道忙,而在频域其他资源上检测到信道也为忙,则继续在CCA频域Pattern的预留的RE上或者在频域资源上预留的RE上检测是否空闲,如果空闲,则认为信道可用。
  36. 根据权利要求27所述装置,其中,所述数据传输使用的Pattern,包括:
    数据在整个系统带宽上进行传输;
    数据在整个系统带宽上进行传输,且预留出与CCA检测Pattern一一对应的频域资源不进行数据传输;
    数据在整个系统带宽上进行传输,且预留出与CCA检测Pattern一一对应的频域资源中的预设的RE资源不进行数据传输;
    数据在与CCA检测Pattern一一对应的频域资源上进行数据传输。
  37. 根据权利要求36所述装置,其中,所述数据传输使用的CCA检测Pattern的位置,是后续子帧中的符号上的频域资源的位置,其中频域资源的位置与CCA检测Pattern的频域位置一一对应的资源,或者,是CCA检测Pattern对应的频域资源中的RE资源,或者,是频域上的预设的RE资源。
  38. 根据权利要求37所述装置,其中,所述后续子帧中的符号是该子帧中的第一个符号或是前几个符号;且,所述正交频分复用OFDM符号的位置或是符号对应的频域资源的RE的打孔位置是除已使用的参考信号和信道所在的位置之外的位置。
  39. 根据权利要求38所述装置,其中,所述已使用的参考信号和信道包 括以下一种或多种:上行信道质量测量信号DMRS、SRS、物理下行控制信道PDCCH、物理上行链路控制信道PUCCH、小区专用参考信号CRS和信道状态指示参考信号CSI-RS。
  40. 根据权利要求27所述装置,其中:
    所述系统级节点包括以下一种或多种:LAA系统内的所有节点,或者运营商网络内的所有节点,其中,系统级节点使用相同的CCA Pattern进行CCA检测;
    所述小区级节点包括以下一种或多种:小区内节点、不同小区、不同小区内的节点,其中,小区内的节点使用统一的CCA Pattern进行CCA检测;不同小区之间或不同小区内的节点使用不同的CCA Pattern进行CCA检测;
    所述UE级包括以下一种或多种:不同UE、不同UE组group或者相同UE group中的UE,其中,不同UE之间或不同UE group之间使用不同的CCA Pattern进行CCA检测;相同的UE group内的UE使用相同的CCA Pattern进行CCA检测。
  41. 根据权利要求40所述装置,其中,所述系统级节点使用相同的CCA Pattern进行CCA检测,包括下述之一:
    所述系统级节点使用相同的RE级的CCA Pattern进行CCA检测;
    所述系统级节点使用相同的RB级的CCA Pattern进行CCA检测;
    所述系统级节点使用相同的子带级的CCA Pattern进行CCA检测。
  42. 根据权利要求40所述装置,其中,所述系统级节点包括运营商网络内的所有节点时,所述系统级节点使用相同的CCA Pattern进行CCA检测,包括下述之一:
    运营商网络内的所有节点使用相同的RE级的CCA Pattern进行CCA检测;
    运营商网络内的所有节点使用相同的RB级的CCA Pattern进行CCA检测;
    运营商网络内的所有节点使用相同的子带级的CCA Pattern进行CCA检 测。
  43. 根据权利要求40所述装置,其中,所述小区内节点使用相同的CCA Pattern进行CCA检测,包括下述之一:
    小区内节点使用相同的RE级的CCA Pattern进行CCA检测;
    小区内节点使用相同的RB级的CCA Pattern进行CCA检测;
    小区内节点使用相同的子带级的CCA Pattern进行CCA检测。
  44. 根据权利要求40所述装置,其中,所述不同小区间或不同小区内的节点使用不同的CCA Pattern进行CCA检测,包括下述之一:
    不同小区间或不同小区内的节点使用不同的RE级的CCA Pattern在各自的资源上进行CCA检测;
    不同小区间或不同小区内的节点使用不同的RB级的CCA Pattern在各自的资源上进行CCA检测;
    不同小区间或不同小区内的节点使用不同的子带级的CCA Pattern在各自的资源上进行CCA检测。
  45. 根据权利要求40所述装置,其中,所述UE group内的UE使用相同的CCA Pattern进行CCA检测,包括下述之一:
    UE group内的UE使用相同的RE级的CCA Pattern进行CCA检测;
    UE group内的UE使用相同的RB级的CCA Pattern进行CCA检测;
    UE group内的UE使用相同的子带级的CCA Pattern进行CCA检测。
  46. 根据权利要求40所述装置,其中,所述不同UE之间或不同UE group之间使用不同的CCA Pattern进行CCA检测,包括下述之一:
    不同UE之间或不同UE group之间使用不同的RE级的CCA Pattern在各自的资源上进行CCA检测;
    不同UE之间或不同UE group之间使用不同的RB级的CCA Pattern在各自的资源上进行CCA检测;
    不同UE之间或不同UE group之间使用不同的子带级的CCA Pattern在各自的资源上进行CCA检测。
  47. 根据权利要求27所述装置,其中,系统级或小区级或UE级节点使用的CCA Pattern是按照约定的,或者,由高层信令通知来获得的。
  48. 根据权利要求27所述装置,其中,当所述管理模块应用在基站时,所述管理模块交互所述CCA Pattern包括如下三种方式:
    方式一:管理模块之间通过X2口交互各自所在基站的CCA Pattern的信息;管理模块在获取到其他基站的CCA Pattern的信息后,均启动一个随机回退计数器;随机回退值第一个减到0的管理模块在收到的CCA Pattern的基础上频移一个固定值,维护一个CCA Pattern列表,并通知给相邻的基站的管理模块,直到列表中达到预定的可复用的节点数目,停止信息交互操作;
    方式二:管理模块通过X2口通知相邻的基站的管理模块执行CCA检测时所使用的CCA Pattern;管理模块收到其它基站的CCA Pattern的信息后,在所述信道的非占用期、预留信号期和数据传输期均使用收到的CCA Pattern的信息中包含的图样频域位置信息;
    方式三:管理模块通过X2口通知CCA Pattern的信息给相邻的基站的管理模块,管理模块在接收到其它基站的CCA Pattern的信息后,发送对CCA Pattern的反馈信息。
  49. 根据权利要求48所述装置,其中,在方式一中,如果多个基站的管理模块同时随机回退值减到0,则执行如下任一操作:
    所述多个基站的管理模块均产生一个随机数,各自按照随机数大小依次确定自己的CCA Pattern的偏移量;
    重新进行一次随机回退机制;
    选择一个主基站,并接收所述主基站的管理模块为剩余基站分配的CCA Pattern。
  50. 根据权利要求27所述装置,其中,当所述管理模块应用在UE时, 所述管理模块交互CCA Pattern包括:
    接收基站广播的进行CCA检测的CCA Pattern;或者,
    接收高层信令,所述高层信令包括所述UE进行CCA检测的CCA Pattern。
  51. 根据权利要求27所述装置,其中,确定CCA Pattern是通过频域起始位置、频域偏移量、资源的连续长度、簇Cluster的大小、周期T、频域带宽、Cluster的个数中的一个或是多个确定的。
  52. 根据权利要求51所述装置,其中,确定不同基站频域起始位置的计算方式如下:
    k=(v+fvshift)modNresource
    Figure PCTCN2016086761-appb-100003
    其中,k表示频域起始位置,f为一个节点连续占用的资源数,vshift表示频域偏移量,N表示复用节点的总数,Nresource表示资源总数,
    Figure PCTCN2016086761-appb-100004
    表示小区的标识ID。
PCT/CN2016/086761 2015-07-01 2016-06-22 一种非授权载波上图样的管理方法和装置 WO2017000824A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP16817188.2A EP3319356B1 (en) 2015-07-01 2016-06-22 Management method and apparatus for pattern on unlicensed carrier
US15/740,385 US10813128B2 (en) 2015-07-01 2016-06-22 Management method and apparatus for pattern on unlicensed carrier

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510377115.7A CN106332091B (zh) 2015-07-01 2015-07-01 一种非授权载波上图案的管理方法和装置
CN201510377115.7 2015-07-01

Publications (1)

Publication Number Publication Date
WO2017000824A1 true WO2017000824A1 (zh) 2017-01-05

Family

ID=57607909

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/086761 WO2017000824A1 (zh) 2015-07-01 2016-06-22 一种非授权载波上图样的管理方法和装置

Country Status (4)

Country Link
US (1) US10813128B2 (zh)
EP (1) EP3319356B1 (zh)
CN (1) CN106332091B (zh)
WO (1) WO2017000824A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107396386B (zh) * 2017-08-30 2021-05-18 宇龙计算机通信科技(深圳)有限公司 信道检测方法及信道检测设备
US10237775B1 (en) * 2017-11-17 2019-03-19 Fairspectrum Oy Method and system for presenting geographical radio resource usage information in user interface
WO2019213941A1 (en) 2018-05-11 2019-11-14 Qualcomm Incorporated Aperiodic channel state information computation for cross-carrier scheduling
CN116017718A (zh) 2018-05-16 2023-04-25 上海朗帛通信技术有限公司 一种被用于无线通信的通信节点中的方法和装置
WO2020034437A1 (en) * 2018-11-02 2020-02-20 Zte Corporation Interference mitigation in wireless systems

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104486013A (zh) * 2014-12-19 2015-04-01 宇龙计算机通信科技(深圳)有限公司 信道检测方法、信道检测系统、终端和基站
CN104539405A (zh) * 2015-01-28 2015-04-22 深圳酷派技术有限公司 信道检测方法、信道检测系统、基站和终端

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006295725A (ja) 2005-04-13 2006-10-26 Ntt Docomo Inc 移動局、基地局および移動通信システム並びに通信制御方法
KR100819120B1 (ko) 2006-10-13 2008-04-04 삼성전자주식회사 멀티-밴드 ofdm 시스템에서 cca 기능을 수행하는방법 및 장치
CN100581145C (zh) 2007-03-29 2010-01-13 华为技术有限公司 占用信令的传递方法、媒体网关、媒体网关控制器和网络
CN102843220B (zh) * 2011-06-21 2014-12-24 华为技术有限公司 错误恢复方法、接入点设备、站点设备及其系统
US9204451B2 (en) 2013-03-06 2015-12-01 Broadcom Corporation Clear channel assessment (CCA) levels within wireless communications
CN103220676B (zh) 2013-04-09 2015-08-19 京信通信系统(中国)有限公司 一种频率复用方法、设备及系统
US9967752B2 (en) * 2013-08-12 2018-05-08 Qualcomm Incorporated Transmission and reception of common channel in an unlicensed or shared spectrum
US9893852B2 (en) * 2013-08-19 2018-02-13 Qualcomm Incorporated Coordination of clear channel assessment across component carriers in an unlicensed or shared spectrum
US9510208B2 (en) * 2013-10-04 2016-11-29 Qualcomm Incorporated Sequence generation for shared spectrum
US9844057B2 (en) * 2013-10-21 2017-12-12 Qualcomm Incorporated Channel usage beacon signal design for cooperative communication systems
US9622252B2 (en) * 2014-02-28 2017-04-11 Uurmi Systems Pvt. Ltd Systems and methods for dynamic wideband channel selection
CN105162562B (zh) 2014-08-25 2019-11-15 中兴通讯股份有限公司 使用非授权载波发送及接收信号的方法和装置
US10271325B2 (en) * 2014-11-17 2019-04-23 Telefonaktiebolaget Lm Ericsson (Publ) Channel access in listen before talk systems

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104486013A (zh) * 2014-12-19 2015-04-01 宇龙计算机通信科技(深圳)有限公司 信道检测方法、信道检测系统、终端和基站
CN104539405A (zh) * 2015-01-28 2015-04-22 深圳酷派技术有限公司 信道检测方法、信道检测系统、基站和终端

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Study on Licensed-Assisted Access to Unlicensed Spectrum (Release 13", 3GPP TR 36.889 V13. 0. 0, 18 June 2015 (2015-06-18), XP055343851 *

Also Published As

Publication number Publication date
US20180192441A1 (en) 2018-07-05
CN106332091B (zh) 2021-06-08
US10813128B2 (en) 2020-10-20
EP3319356B1 (en) 2022-02-23
EP3319356A4 (en) 2018-06-27
EP3319356A1 (en) 2018-05-09
CN106332091A (zh) 2017-01-11

Similar Documents

Publication Publication Date Title
Nabil et al. Performance analysis of sensing-based semi-persistent scheduling in C-V2X networks
US11304180B2 (en) Method and device of resource allocation for sidelink transmission in wireless communication system
WO2017000824A1 (zh) 一种非授权载波上图样的管理方法和装置
WO2015180551A1 (zh) 信息发送方法、信息接收方法、装置及系统
TWI672052B (zh) 電信裝置及方法
US8559382B2 (en) Preamble allocation method and random access method in mobile communication system
WO2016155480A1 (zh) 一种非授权资源的传输方法和装置
US10917916B2 (en) Method and device for transmitting PRACH signals in unauthorized spectrum
EP3076740A1 (en) Method of allocating radio resources in multi-carrier system
US20170311340A1 (en) Message Transmission Method and Apparatus
CN105722222B (zh) 一种非授权载波中资源的管理方法和装置
WO2016045442A1 (zh) 一种设备到设备通信方法、装置及系统
CN108632984B (zh) 公共控制信道的配置及接收方法、装置
CN105684488A (zh) 一种数据传输方法和通信设备
EP3474594B1 (en) Method and device for transmitting data on unlicensed spectrum
WO2016050196A2 (zh) 一种蜂窝通信中的laa传输的基站、ue中的方法和设备
WO2017167078A1 (zh) 一种载波中prb资源分配方法、装置和计算机存储介质
US11395284B2 (en) Method and apparatus of indicating alternative resource at collision of configured grants
JP2016536846A (ja) 情報伝送方法、基地局、およびユーザ機器
Segata et al. A critical assessment of C-V2X resource allocation scheme for platooning applications
WO2017148213A1 (zh) 资源分配控制方法、装置及系统
KR20170093333A (ko) V2x 통신에서 동기화 방법 및 장치
WO2017020761A1 (zh) 数据发送、接收方法及装置
CN106304368B (zh) 一种在基站中用于传输数据的方法与设备
WO2017167066A1 (zh) 随机接入的子帧的发送方法、装置及计算机存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16817188

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016817188

Country of ref document: EP