WO2017167066A1 - 随机接入的子帧的发送方法、装置及计算机存储介质 - Google Patents

随机接入的子帧的发送方法、装置及计算机存储介质 Download PDF

Info

Publication number
WO2017167066A1
WO2017167066A1 PCT/CN2017/077457 CN2017077457W WO2017167066A1 WO 2017167066 A1 WO2017167066 A1 WO 2017167066A1 CN 2017077457 W CN2017077457 W CN 2017077457W WO 2017167066 A1 WO2017167066 A1 WO 2017167066A1
Authority
WO
WIPO (PCT)
Prior art keywords
random access
subframe
samples
access sequence
cyclic prefix
Prior art date
Application number
PCT/CN2017/077457
Other languages
English (en)
French (fr)
Inventor
苟伟
彭佛才
赵亚军
毕峰
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2017167066A1 publication Critical patent/WO2017167066A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access

Definitions

  • the present disclosure relates to the field of communications, and in particular, to a method, an apparatus, and a computer storage medium for transmitting a randomly accessed subframe.
  • LTE Long-Term Evolution
  • some companies have proposed "recommended to study the problem of LTE deployed in unlicensed carriers.” For example, Qualcomm in the United States believes that with the rapid growth of data services, in the near future, authorized carriers will not be able to withstand the huge amount of data brought by rapid business growth.
  • the data volume pressure brought by the service growth can be solved.
  • the unlicensed carrier has the following characteristics: on the one hand, since the unlicensed carrier does not need to be purchased, or the carrier resource is zero cost, the unlicensed carrier is free or low-cost; on the other hand, since the individual and the enterprise can participate in the deployment, the device The quotient equipment is also available, so the admission requirements of the unlicensed carrier are low; in addition, the unlicensed carrier is shared, and some sharing can be considered when multiple different systems are operating at the same time or when different operators of the same system operate. The way resources are used to improve carrier efficiency.
  • LTE deployment has obvious advantages in unlicensed carriers, there are still problems in the process of deployment; among them, there are many wireless access technologies (cross-communication standards, difficult collaboration, and diverse network topologies) ) and many wireless access sites (large number of users, difficult collaboration, centralized management overhead). Due to the large number of wireless access technologies, there will be various wireless systems in the unlicensed carrier, which are difficult to coordinate with each other and have serious interference. Therefore, for LTE deployment in unlicensed carriers, there is still a need to support the regulation of unlicensed carriers. Most countries require the system to support the Listen Before Talk (LBT) mechanism when deployed in unlicensed carriers. By listening to the mechanism first, it is possible to avoid interference caused by the simultaneous use of unlicensed carriers between adjacent systems.
  • LBT Listen Before Talk
  • the competition back-off mechanism is further introduced, that is, the neighboring system sites (generally the neighboring transmission nodes of the same system) can avoid the interference caused by the neighboring transmission nodes of the same system simultaneously using the unlicensed carriers through the contention back-off mechanism.
  • the regulation stipulates that devices that use unlicensed carriers (including base stations and user equipments (UEs)) need to perform a pre-listening mechanism (ie, Clear Channel Assessment (CCA), also known as LBT, before transmission. ), when the channel is idle, the device can use the unlicensed carrier channel for data transmission.
  • CCA Clear Channel Assessment
  • the random access design in the existing LTE system needs to be modified in order to satisfy the LTE system operation in the unlicensed carrier.
  • FIG. 1 is a schematic diagram of a composition of a subframe for uplink random access according to the related art of the present disclosure.
  • a cyclic prefix (CP) and a random access sequence (Tseq) are included in an actual implementation.
  • GT guard interval
  • the sub-frame includes CP, Tseq and GT in turn, and the sum between the three is the duration of one subframe (1 ms or 30720 samples).
  • the UE establishes a connection with the cell through a random access procedure and obtains uplink synchronization. Only when uplink synchronization is obtained can the UE perform uplink transmission.
  • the main purposes of random access are: 1) obtaining uplink synchronization; 2) assigning a unique identifier to the UE - Cell Radio Network Temporary Identity (C-RNTI).
  • C-RNTI Cell Radio Network Temporary Identity
  • the random access procedure is usually triggered by one of the following six types of events: (see section 10.1.5 of 36.300)
  • the uplink is in the "unsynchronized" state or there is no available PUCCH resource for the SR transmission (the UE that allows the uplink synchronization at this time uses the RACH) To replace SR);
  • TA Timing Advance
  • the random access procedure also has a special purpose: if no dedicated SR resources are configured on the PUCCH, the random access can also be used as an SR.
  • one subframe has a duration of 1 ms, and includes 14 equal-length orthogonal frequency division multiplexing (OFDM) symbols in the standard cyclic prefix (including 12 equal-length OFDM symbols when the CP is extended).
  • OFDM orthogonal frequency division multiplexing
  • the design of random access in the LTE system is:
  • format 0 and format 4 are suitable for scenes covered by small areas. Not given in Table 1
  • the specific GT length (this is because after the start of the CP and the length of the random sequence are specified, the GT length can be derived according to the end position of the subframe, and the GT does not need to transmit a signal), but can be according to a related protocol, for example, 36.211.
  • the provisions are directly derived from the length of the GT.
  • LAA Assisted Access
  • embodiments of the present disclosure provide a method, an apparatus, and a computer storage medium for transmitting a randomly accessed subframe.
  • a method for transmitting a randomly accessed subframe including:
  • the subframe of the uplink random access is sent on the unlicensed carrier, where the manner of setting the subframe of the uplink random access includes at least one of the following:
  • the CP that sets the random access sequence starts to send from the second OFDM symbol of the subframe, and after sending the CP, sends the random access sequence, including: in the second The OFDM symbols start to be transmitted to start transmission at the 2193th sample in the subframe, and the length of the CP is 3168 samples.
  • the sending station a random access sequence, the length of the random access sequence is 24576 samples, and after the random access sequence is sent, the subframe is removed from the CCA, the random access sequence, and the The time after the CP is set to GT, and the length of the GT is 784 samples, wherein the length of the subframe is 30720 samples;
  • the CP that sets the random access sequence is sent from the second OFDM symbol of the subframe, and after the CP is sent, sends the random access sequence, including: the first 2192 in the subframe.
  • a sample point is used for the CCA, 2072 samples after the CCA are used for the CP, and 24576 samples after the CP are used for the random access sequence, and the subframe is removed.
  • a CCA, the random access sequence, and samples remaining after the CP are used for the GT, and the GT is 1880 samples;
  • the CP that sets the random access sequence is sent from the second OFDM symbol of the subframe, and after the CP is sent, sends the random access sequence, including: the first 2192 in the subframe.
  • a sample point is used for the CCA, 976 samples after the CCA are used for the CP, and 24576 samples after the CP are used for the random access sequence, and the subframe is removed.
  • the CCA, the random access sequence, and the samples remaining after the CP are used for the GT, which is 2976 samples.
  • the CCA is set to be located in a first OFDM symbol in the subframe, where the CCA is detected as a single CCA detection, and when the duration is t, the CCA is always located in the first The end of the OFDM symbol is within t duration.
  • the CCA is located in the first OFDM symbol in the subframe, where the CCA is detected as a single CCA detection and the duration is t, the CCA is located in the first OFDM symbol. Any position, after the CCA detection successfully obtains the unlicensed carrier usage right, sends an occupation signal until the CP starts to send the sample of the random access sequence.
  • the occupation signal is a CP of an extended random access sequence.
  • the random access sequence and the CP corresponding to the random access sequence are sent.
  • the subcarrier spacing used is 1.25 KHz.
  • the CCA is located before the first OFDM symbol.
  • a duration of t microseconds a sample point after the duration of the t microsecond is a starting point of the CP, and the length of the CP and the random access sequence are 3168 samples and 24576 samples, respectively. The sample remaining after the sub-frame is removed from the CCA, the random access sequence, and the CP is GT.
  • the first K samples are used for CCA detection in the subframe of the uplink random access, and the K+1 sample is fixed as the CP starting sample of the random access sequence, and The length of the CP is 3168 samples, and the sample after the CP is a sample of a random access sequence, and the length of the random access sequence is 24576 samples, where K is an uplink random access corresponding The duration of a single CCA test.
  • the first H samples are used for CCA detection in the subframe of uplink random access, and the H+1 sample is fixed to the CP starting sample of the random access sequence.
  • the CP is followed by the random access sequence, the length of the random access sequence is 24576 samples, the CP is followed by GT, and the length of the GT is 2976 samples, where H is uplink random access Enter the length of the corresponding single CCA test.
  • the subframe in the subframe in which uplink random access is set, includes: The order of the end of the sub-frame is: GT, random access sequence, CP.
  • the length of the GT is Q1 samples
  • the length of the random access sequence is 24576 samples
  • the length of the CP is Q2 samples
  • the subframe removes the GT
  • the After the random access sequence and the CP, the remaining samples of the subframe are CCA execution intervals.
  • the CP starting sample corresponding to the random access sequence is fixed as the Q3+1 sample point, and the CP is followed by the random access sequence.
  • the length of the CP is Q4 samples
  • the length of the random access sequence is 24576 samples
  • the CCA, the random access sequence, and the CP are removed from the samples of the subframe.
  • the remaining sample after that is GT, where Q3 is determined according to the length of time reserved for the CCA execution location.
  • Q4 takes a value of 288, and the CCA is placed at the front of the subframe, and the duration of the CCA execution position is 5568 samples, and Q3 is 5568.
  • the CP starting sample corresponding to the random access sequence is fixed to the Q5+1, and the CP is followed by the random access sequence, where The length of the CP is Q6 samples, and the length of the random access sequence is 24576 samples.
  • the random access sequence, and the CP the remaining samples are GT.
  • the GT is 576 samples
  • the CCA is located in the first 2400 samples in the subframe
  • the value of Q5 is 2400
  • the value of Q6 is 3168.
  • a device for transmitting a randomly accessed subframe including:
  • the sending module is configured to send the uplink random access subframe on the unlicensed carrier, where the uplink random access subframe is set in at least one of the following manners:
  • the setting module is configured to:
  • the second OFDM symbol is initially transmitted to start transmission at the 2193th sample in the subframe, and the length of the CP is 3168 samples.
  • the random is sent.
  • An access sequence the length of the random access sequence is 24576 samples, and after the random access sequence is sent, the subframe is removed from the CCA, the random access sequence, and the CP
  • the time is set to GT, the length of the GT is 784 samples, wherein the length of the subframe is 30720 samples;
  • the first 2192 samples in the subframe are used for the CCA, 2072 samples after the CCA are used for the CP, and 24576 samples after the CP are used for the random access sequence,
  • the subframe is removed from the CCA, the random access sequence, and samples remaining after the CP are used for the GT, and the GT is 1880 samples;
  • the first 2192 samples in the subframe are used for the CCA, 976 samples after the CCA are used for the CP, and 24576 samples after the CP are used for the random access sequence,
  • the subframe is removed from the CCA, the random access sequence, and the remaining samples after the CP are used for the GT, and the GT is 2976 samples.
  • the setting module is configured to set a cyclic prefix corresponding to the random access sequence.
  • the starting position is a fixed sample and is located in the first orthogonal frequency division multiplexing symbol of the subframe
  • the idle channel is evaluated in the first t microsecond of the first orthogonal frequency division multiplexing symbol.
  • the duration of the period of t microseconds is the starting point of the cyclic prefix
  • the lengths of the cyclic prefix and the random access sequence are 3168 samples and 24576 samples, respectively.
  • the subframe is removed from the idle channel evaluation, the random access sequence, and the remaining samples after the cyclic prefix is a guard interval.
  • the CCA when the setting module is set to be a fixed sample point of the CP corresponding to the random access sequence, and is located in the first OFDM symbol of the subframe, the CCA is located at the first The length of the first t microseconds of the OFDM symbols, the sample point after the duration of the t microsecond is the starting point of the CP, and the length of the CP and the random access sequence are 3168 samples and 24576 samples, the subframes after the CCA, the random access sequence, and the remaining samples after the CP are GT.
  • the setting module is set in the subframe of the uplink random access, and the first K samples are used for CCA detection, and the K+1 sample is fixed to the CP starting of the random access sequence.
  • a sample, and the length of the CP is 3168 samples
  • the sample after the CP is a sample of a random access sequence
  • the length of the random access sequence is 24576 samples
  • K is an uplink The duration of a single CCA detection corresponding to random access.
  • the setting module is set in the subframe of the uplink random access, and the first H samples are used for CCA detection, and the H+1 sample is fixed to the CP start of the random access sequence.
  • a sample the CP is followed by the random access sequence, the length of the random access sequence is 24576 samples, the CP is followed by GT, and the length of the GT is 2976 samples, wherein, H The duration of a single CCA detection corresponding to uplink random access.
  • the setting module sets the subframe in which the random access is uplinked, and the CP starting sample corresponding to the random access sequence is the Q3+1 sample, and the CP is followed by the random An access sequence, wherein the length of the CP is Q4 samples, and the random access sequence
  • the length is 24576 samples, and the CCA, the random access sequence, and the remaining samples after the CP are removed from the sample of the subframe, where Q3 is reserved according to the location reserved for the CCA. The length of time to determine.
  • a computer storage medium comprising a set of instructions that, when executed, cause at least one processor to perform the random access subframe described above The method of sending.
  • the subframe of the uplink random access is sent on the unlicensed carrier, where the setting manner of the subframe of the uplink random access includes at least one of the following: the CCA is set in the subframe of the random access. Within the first OFDM symbol of the subframe, or the CCA is located in N consecutive OFDM symbols before the subframe, where N is less than or equal to 3; the CP setting the random access sequence is from the second of the subframe.
  • the OFDM symbol starts to transmit, and after the CP is sent, the random access sequence is sent, or the CP starts transmitting from a fixed sample, where the fixed sample is located in the first M OFDM symbols, where M is A positive integer solves the problem that the uplink random access in the LAA system is still not perfect, and improves the uplink random access in the LAA system.
  • FIG. 1 is a schematic diagram of a composition of a subframe of uplink random access according to the related art of the present disclosure
  • FIG. 2 is a flowchart of transmission of a randomly accessed subframe according to an embodiment of the present disclosure
  • FIG. 3 is a structural block diagram of a transmitting apparatus of a randomly accessed subframe according to an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram 1 of a subframe structure of uplink random access designed by an LAA system according to an embodiment of the present disclosure
  • FIG. 5 is a subframe of uplink random access designed by an LAA system according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram 3 of a subframe structure of uplink random access designed by an LAA system according to an embodiment of the present disclosure
  • FIG. 7 is a fourth structural diagram of a subframe structure of uplink random access designed by an LAA system according to an embodiment of the present disclosure
  • FIG. 8 is a schematic diagram 5 of a subframe structure of uplink random access designed by an LAA system according to an embodiment of the present disclosure
  • FIG. 9 is a schematic diagram 6 of a subframe structure of uplink random access designed by an LAA system according to an embodiment of the present disclosure
  • FIG. 10 is a schematic diagram 7 of a subframe structure of uplink random access designed by an LAA system according to an embodiment of the present disclosure
  • FIG. 11 is a first schematic diagram of an uplink-downlink timing relationship according to an embodiment of the present disclosure.
  • FIG. 12 is a second schematic diagram of an uplink-downlink timing relationship according to an embodiment of the present disclosure.
  • FIG. 2 is a flowchart of sending a randomly accessed subframe according to an embodiment of the present disclosure. Including the following steps:
  • the setting manner of the subframe for setting the uplink random access includes at least one of the following: the CCA in the random access subframe is located in the first OFDM symbol of the subframe, or the CCA is located in the subframe.
  • the CP that sets the random access starts transmitting from the second OFDM symbol of the subframe, and is transmitting
  • the random access sequence is sent, or the CP starts transmitting from a fixed sample, where the fixed sample is located in the first M OFDM symbols, and M is a positive integer;
  • Step S204 Send a subframe of the uplink random access on the unlicensed carrier.
  • the subframe of the uplink random access is sent on the unlicensed carrier by using the foregoing steps, where the setting manner of the subframe for the uplink random access includes at least one of the following: setting the CCA in the subframe of the random access in the subframe Within the first OFDM symbol, or the CCA is located in N consecutive OFDM symbols before the subframe, where N is less than or equal to 3; setting the CP of the random access sequence from the second OFDM symbol of the subframe Start transmitting, and after transmitting the CP, send the random access sequence, or the CP starts transmitting from a fixed sample, where the fixed sample is located in the first M OFDM symbols, and M is a positive integer It solves the problem that the uplink random access in the LAA system is still not perfect, and improves the uplink random access in the LAA system.
  • the CP that sets the random access sequence starts to send from the second OFDM symbol of the subframe, and after sending the CP, sends the random access sequence, including: The second OFDM symbol starts to be sent to start transmission at the 2193th sample in the subframe, and the length of the CP is 3168 samples.
  • the random connection is sent.
  • the random access sequence has a length of 24576 samples, and after the random access sequence is sent, the subframe is removed from the CCA, the random access sequence, and after the CP
  • the time is set to GT, and the length of the GT is 784 samples, wherein the length of the subframe is 30720 samples;
  • the CP that sets the random access sequence is sent from the second OFDM symbol of the subframe, and after the CP is sent, sends the random access sequence, including: the first 2192 in the subframe.
  • a sample point is used for the CCA, 2072 samples after the CCA are used for the CP, and 24576 samples after the CP are used for the random access sequence, and the subframe is removed.
  • the CCA, the random access sequence, and the samples remaining after the CP are used for the GT, which is 1880 samples.
  • the CP that sets the random access sequence is sent from the second OFDM symbol of the subframe, and after the CP is sent, sends the random access sequence, including: the first 2192 in the subframe.
  • a sample point is used for the CCA, 976 samples after the CCA are used for the CP, and 24576 samples after the CP are used for the random access sequence, and the subframe is removed.
  • the CCA, the random access sequence, and the samples remaining after the CP are used for the GT, which is 2976 samples.
  • the CCA is set to be located in a first OFDM symbol in the subframe, where the CCA is detected as a single CCA detection, and when the duration is t, the CCA is always located in the Within the last t duration of the first OFDM symbol.
  • the CCA is located in a first OFDM symbol in the subframe, where the CCA is detected as a single CCA detection and the duration is t, the CCA is located in the first Any position within the OFDM symbol, after the CCA detects that the unlicensed carrier usage right is successfully obtained, the occupied signal is sent until the CP start transmission sample of the random access sequence.
  • the occupancy signal is a CP of an extended random access sequence.
  • the subcarrier spacing used is 1.25 KHz.
  • the CCA when the CP start position corresponding to the random access sequence is set to be a fixed sample, and the first OFDM symbol is located in the subframe, the CCA is located in the first The duration of the first t microseconds of the OFDM symbol, the sample point after the duration of the t microsecond is the starting point of the CP, and the length of the CP and the random access sequence are 3168 samples and 24576 respectively And the sample point remaining after the CCA, the random access sequence, and the CP is the GT.
  • the CCA when the CP that sets the sequence of the random access is sent from a fixed sample as a starting point, when the CCA performs a successful acquisition of the unlicensed carrier usage right, When there is an interval from the starting point of the CP, an occupancy signal is transmitted at the interval.
  • the first K samples are used for CCA detection, and the K+1 sample is fixed to the CP starting sample of the random access sequence. Point, and the length of the CP is 3168 samples, the sample after the CP is a sample of a random access sequence, and the length of the random access sequence is 24576 samples, where K is uplink random The length of time to access the corresponding single CCA detection.
  • the GT of the subframe is 2208 samples.
  • the first H samples are used for CCA detection in the subframe of uplink random access, and the H+1 sample is fixed to the CP start of the random access sequence.
  • a sample the CP is followed by the random access sequence, the length of the random access sequence is 24576 samples, the CP is followed by GT, and the length of the GT is 2976 samples, wherein, H The duration of a single CCA detection corresponding to uplink random access.
  • the length of the CP is 2400 samples.
  • the structure of the subframe includes: GT from the end of the subframe, a random access sequence, and a CP, where The length of the GT is Q1 samples, the length of the random access sequence is 24576 samples, the length of the CP is Q2 samples, and the subframe removes the GT, the random access sequence. And after the CP, the remaining samples of the subframe are CCA execution intervals.
  • the value of Q1 is 288, and the value of Q2 is 288.
  • the CCA execution interval is:
  • the CP start sample corresponding to the random access sequence is fixed as the Q3+1 sample point, and the CP is followed by the random An access sequence, where the length of the CP is Q4 samples, the length of the random access sequence is 24576 samples, and the CCA and the random access sequence are removed from the samples of the subframe. And the remaining samples after the CP are GT, wherein Q3 is determined according to the length of time reserved for the CCA execution location.
  • Q4 takes a value of 288, and the CCA is placed at the front of the subframe, and the duration of the CCA execution position is 5568 samples, and Q3 is 5568.
  • the CP starting sample corresponding to the random access sequence is fixed to the Q5+1, and the CP is followed by the random access.
  • the GT is 576 samples
  • the CCA is located in the first 2400 samples in the subframe
  • the value of Q5 is 2400
  • the value of Q6 is 3168.
  • a device for transmitting a randomly accessed subframe is further provided, and the device is configured to implement the foregoing embodiments and specific implementation manners, and details are not described herein.
  • the term "module” may implement a combination of software and/or hardware of a predetermined function.
  • the apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • FIG. 3 is a structural block diagram of a sending apparatus of a randomly accessed subframe according to an embodiment of the present disclosure. As shown in FIG. 3, the apparatus includes:
  • the setting module 32 is configured to set the uplink random access subframe to include at least one of the following: the CCA in the random access subframe is located in the first OFDM symbol of the subframe, or the CCA Located in N consecutive OFDM symbols before the subframe, where N is less than or equal to 3; the CP that sets the random access starts transmitting from the second OFDM symbol of the subframe, and after sending the CP, sends Random access sequence, or, the CP is fixed The transmission starts at a sample point, where the fixed sample is located in the first M OFDM symbols, and M is a positive integer;
  • the sending module 34 is configured to send the subframe of the uplink random access on the unlicensed carrier.
  • the setting module 32 is configured to set the uplink random access subframe to include at least one of the following: the CCA in the random access subframe is located in the first OFDM symbol of the subframe, Or the CCA is located in N consecutive OFDM symbols before the subframe, where N is less than or equal to 3; the CP that sets the random access starts to send from the second OFDM symbol of the subframe, and after sending the After the CP, the random access sequence is sent, or the CP starts transmitting from a fixed sample, where the fixed sample is located in the first M OFDM symbols, M is a positive integer, and the sending module 34 is configured to be unauthorized.
  • the uplink random access subframe is transmitted on the carrier, which solves the problem that the uplink random access in the LAA system is still not perfect, and improves the uplink random access in the LAA system.
  • the setting module 32 is configured to:
  • the second OFDM symbol is initially transmitted to start transmission at the 2193th sample in the subframe, and the length of the CP is 3168 samples.
  • the random is sent.
  • An access sequence the length of the random access sequence is 24576 samples, and after the random access sequence is sent, the subframe is removed from the CCA, the random access sequence, and the CP
  • the time is set to GT, the length of the GT is 784 samples, wherein the length of the subframe is 30720 samples;
  • the first 2192 samples in the subframe are used for the CCA, 2072 samples after the CCA are used for the CP, and 24576 samples after the CP are used for the random access sequence,
  • the subframe is removed from the CCA, the random access sequence, and samples remaining after the CP are used for the GT, and the GT is 1880 samples;
  • the first 2192 samples in the subframe are used for the CCA, 976 samples after the CCA are used for the CP, and 24576 samples after the CP are used for the random access sequence,
  • the subframe is removed from the CCA, the random access sequence, and the remaining samples after the CP are used for the GT, and the GT is 2976 samples.
  • the setting module 32 is configured to set a cyclic prefix starting position corresponding to the random access sequence to be a fixed sample, and is located in the first orthogonal frequency division multiplexing symbol of the subframe. And determining, by the idle channel, a duration of a first t microsecond of the first orthogonal frequency division multiplexing symbol, a sample point after the duration of the t microsecond is a starting point of the cyclic prefix, and
  • the cyclic prefix and the random access sequence have lengths of 3168 samples and 24576 samples, respectively, and the subframes are protected by the idle channel evaluation, the random access sequence, and the remaining samples after the cyclic prefix. interval.
  • the setting module 32 when the setting module 32 is set to a fixed sample point of the CP corresponding to the random access sequence, and is located in the first OFDM symbol of the subframe, the CCA a duration of the first t microseconds of the first OFDM symbol, a sample point after the duration of the t microsecond is a starting point of the CP, and the length of the CP and the random access sequence are respectively 3168 Samples and 24576 samples, the subframes except the CCA, the random access sequence, and the samples remaining after the CP are GT.
  • the setting module 32 is configured in the subframe of uplink random access, the first K samples are used for CCA detection, and the K+1 sample is fixed to the random access sequence.
  • the CP starts a sample, and the length of the CP is 3168 samples.
  • the sample after the CP is a sample of a random access sequence, and the length of the random access sequence is 24576 samples.
  • K is the duration of a single CCA detection corresponding to the uplink random access.
  • the setting module 32 is configured in the subframe of uplink random access, and the first H samples are used for CCA detection, and the H+1 samples are fixed to the random access sequence.
  • the CP starts a sample, and the CP is followed by the random access sequence, and the length of the random access sequence is 24576 samples, the CP is followed by GT, and the length of the GT is 2976 samples, where H is the duration of the single CCA detection corresponding to the uplink random access.
  • the setting module 32 sets the subframe in which the random access sequence is fixed, and the CP starting sample corresponding to the random access sequence is the Q3+1 sample point, and the CP is followed by The random access sequence, wherein the length of the CP is Q4 samples, the length of the random access sequence is 24576 samples, the CCA of the subframe is removed, the random The access sequence and the remaining samples after the CP are GT, wherein Q3 is determined according to the length of time reserved for the CCA execution location.
  • the setting module 32 may be a processor (such as a central processing unit (CPU), a microprocessor (Micro Control Unit, MCU), a digital device in a transmitting device of a randomly accessed subframe.
  • a processor such as a central processing unit (CPU), a microprocessor (Micro Control Unit, MCU), a digital device in a transmitting device of a randomly accessed subframe.
  • DSP Signal Processor
  • FPGA Field-Programmable Gate Array
  • the structure of the uplink random access with the CCA mechanism and the corresponding subframe structure are illustrated.
  • the CCA is limited to the first symbol of the subframe in which the random access sequence is transmitted, and the CCA mode can perform a single CCA or a random back-off window with a small value range.
  • the CCA such as the random back-off window maximum plus the first single-shot CCA (delay-cycle CCA detection) does not exceed the total duration of one OFDM symbol.
  • the subframe structure consists of (also representing a chronological order): CCA (Cap may have Gap before), CP (Tseq sequence) The corresponding CP), Tseq, and GT are composed, and the total duration is one subframe duration.
  • the CP starts mapping from the second symbol.
  • the single CCA at this time has the following implementations, and one of them can be selected:
  • the specific position of the CCA is not limited in the first symbol, as long as it is in the first symbol.
  • FIG. 5 is a second schematic diagram of a subframe structure of uplink random access designed by the LAA system according to an embodiment of the present disclosure, as illustrated in FIG. 5 .
  • the starting point of the CCA is moved forward by a time t, where t is the time required for the device to change from the receiving state to the transmitting state.
  • the CP length at this time maintains the CP length of the random access format 0 in LTE, for example, the duration of the CP is 3168 samples (T s ), and the Tseq is 24576 samples.
  • T s is defined with reference to the T s duration of the LTE system.
  • the duration of each OFDM symbol is 1/14 ms, and the corresponding number of samples is defined as 2192 samples.
  • the CP always starts transmitting from the second symbol, then Tseq, and uses a subcarrier spacing of 1.25Khz.
  • the scheme of FIG. 4 may also be described as: in the uplink random access subframe, the starting moment of the uplink random access sequence (including the corresponding CP) is calculated from the end of the subframe. For example, 784+24576+3168 samples are forwarded from the end of the subframe as the transmission start sample of the uplink random access sequence.
  • the undeclared part is referred to the design of the existing LTE system (for example, the Release 13 version).
  • Embodiment 1 is advantageous for determining the starting sample of the uplink random access sequence, because it is located at the symbol boundary, which is advantageous for implementation. At the same time, the whole process is completed in one subframe, and the number of samples reserved for the GT is large enough to meet the coverage requirement of the LAA as a small cell.
  • FIG. 6 is a third schematic diagram of a subframe structure of uplink random access designed by an LAA system according to an embodiment of the present disclosure.
  • the CCA is limited to the first symbol of the subframe in which the random access sequence is transmitted, and the CCA mode can perform a single CCA, or has a small value range.
  • the CCA of the random back-off window such as the maximum value of the random back-off window plus the first single-time CCA (CCA detection of the delay period) does not exceed the total duration of one OFDM symbol.
  • the subframe structure in FIG. 6 includes (also represents chronological order) CCA, CP (CP corresponding to the Tseq sequence), Tseq, and GT, and the total duration is one subframe duration.
  • the CP performs transmission after the success of the CCA, or the transmission of the CP is at a fixed sample point.
  • the device determines that the uplink random access needs to be performed, and the uplink random access subframe arrives, the device sequentially performs the corresponding operations of the different functions according to the sequence of the sub-frame structure, so that the random access sequence is not authorized. Transmission in the carrier.
  • the CCA detects that it is idle, the device sends an uplink random access sequence, otherwise it cannot send.
  • the single CCA at this time has the following implementations, and one of them can be selected:
  • the specific location of the CCA is not limited within the first symbol, as long as it is within the first symbol and before the specified CP start point.
  • the restriction CCA is always at the beginning of the first OFDM symbol, such as the first 25us of the beginning.
  • the CCA detected for the uplink random access is a single CCA of 25 ⁇ s (corresponding to 768 samples)
  • it can be fixed to the first 25 ⁇ s of the first symbol of the uplink random access subframe.
  • a time length of more than 25 ⁇ s can be slightly allocated, for example 34 ⁇ s, the base station only needs to perform 25 ⁇ s of CCA detection therein, and idle is enough), so that the starting point of the CP can be determined ( The position of the sample) starts to send the CP after 25, that is, the starting sample of the CP is 768+1.
  • FIG. 7 is a fourth structural diagram of a subframe structure of uplink random access designed by an LAA system according to an embodiment of the present disclosure.
  • the starting sample of the fixed CP is reserved for the CCA detection between the start of the subframe and the starting sample of the CP (the time period has a large redundancy duration, which is larger.
  • the duration of the device is beneficial to the device to continue to perform the next CCA after the first CCA fails, and actually increases the preemption opportunity of the device.
  • the device completes the CCA detection before the fixed CP starting point, and the channel is found to be idle, the device needs to be
  • the transmit occupancy signal occupies the channel until a fixed CP start point begins to transmit CP, Tseq, and the like.
  • the occupied signal at this time is an extended CP, that is, the CP corresponding to the Tseq is intercepted and repeated as the occupied signal, which is equivalent to the increase of the length of the CP, which is advantageous for extending the coverage.
  • sufficient equipment is reserved to perform the duration of multiple CCAs, for example 2 times, ie 50 ⁇ s, after which the starting sample of the CP is fixed.
  • the duration of each OFDM symbol is 1/14 ms, and the corresponding number of samples is defined as 2192 samples.
  • the CP always starts transmitting from the second symbol, then Tseq, and uses a subcarrier spacing of 1.25Khz.
  • the undeclared part is referred to the design of the existing LTE system (for example, the Release 13 version).
  • FIG. 8 is a schematic diagram 5 of a subframe structure of uplink random access designed by an LAA system according to an embodiment of the present disclosure.
  • the CCA is limited to the first symbol of the subframe in which the random access sequence is transmitted, and the CCA mode can perform a single CCA, or has a small value range.
  • the CCA of the random back-off window such as the maximum value of the random back-off window plus the first single-time CCA (CCA detection of the delay period) does not exceed one The total duration of OFDM symbols.
  • the subframe structure in FIG. 8 includes (also represents chronological order) CCA, CP (CP corresponding to the Tseq sequence), Tseq, and GT, and the total duration is one subframe duration.
  • the CP performs transmission after the success of the CCA, or the transmission of the CP is at a fixed sample point.
  • the device determines that the uplink random access needs to be performed, and the uplink random access subframe arrives, the device sequentially performs the corresponding operations of the different functions according to the sequence of the sub-frame structure, so that the random access sequence is not authorized. Transmission in the carrier.
  • the CCA detects that it is idle, the device sends an uplink random access sequence, otherwise it cannot send.
  • a single CCA at this time is specifically performed in the following manner:
  • the reserved device performs the duration of multiple CCAs, for example, 4 times, that is, 100 ⁇ s, and then fixes the starting sample of the CP.
  • the starting sample of the CP corresponding to the fixed Tseq at this time is the 5568+1th sample in the subframe.
  • the duration of performing CCA detection reserved in the subframe can be determined according to the GT and CP determined in advance.
  • This example also gives a way to determine the length of CCA execution in a sub-frame.
  • the occupancy signal needs to be sent.
  • the occupancy signal can be an extended CP.
  • the duration of each OFDM symbol is 1/14 ms, and the corresponding number of samples is defined as 2192 samples.
  • the CP always starts from the second symbol, then Tseq, and uses 1.25Khz Subcarrier spacing.
  • the undeclared part is referred to the design of the existing LTE system (for example, the Release 13 version).
  • FIG. 9 is a schematic diagram 6 of a subframe structure of uplink random access designed by an LAA system according to an embodiment of the present disclosure. As illustrated in FIG. 9, this approach is based on minimizing the modification of the format 0 of the existing LTE uplink random access, so that it is better combined with the CCA to suit the requirements of the unlicensed carrier.
  • the length of the given GT is b samples (for example, considering the actual coverage requirement) It can be set to 18.7 ⁇ s or 576 samples per month, covering a radius of about 2.8 kilometers).
  • the UE starts the CP transmission of the random access sequence according to the starting sample of the agreed CP (the same is true in the above embodiment), and then the base station considers the CP of the random access sequence that the UE starts to transmit from 2400+1 samples. .
  • the execution interval of the subframe CCA is 0 to 2400 samples, and the specific CCA execution position may be restricted in the interval, and the UE may need to determine the start of the CP when the CCA detects that the channel is idle. Whether the sample arrives, if it arrives, it sends the CP directly. Otherwise, the UE needs to send the occupancy signal to occupy the channel until the starting sample of the CP arrives.
  • the duration of each OFDM symbol is 1/14 ms, and the corresponding number of samples is defined as 2192 samples.
  • the CP always starts transmitting from the second symbol, then Tseq, and uses a subcarrier spacing of 1.25Khz.
  • the undeclared part is referred to the design of the existing LTE system (for example, the Release 13 version).
  • FIG. 10 is a LAA system in accordance with an embodiment of the present disclosure. Schematic diagram of the subframe structure of uplink random access designed by the system. As illustrated in FIG. 10, this approach is based on minimizing the modification of the format 0 of the existing LTE uplink random access, so that it is better combined with the CCA to suit the requirements of the unlicensed carrier.
  • a random access subframe structure is: a location interval for CCA execution is given, according to a sequence executed by the CCA, for example, a single CCA detection and a duration of 25 ⁇ s, corresponding to 768 samples (other values are also Yes, just do something similar.)
  • the CP then sends it immediately, but the length of the CP is reduced by 768 samples, which is 2400 samples. Then follow the sequence of machine access, which is 24576 samples, followed by GT, which is 2976 samples.
  • the CP minimum is 288 samples (this is based on the LAA cell). If the coverage radius is determined, if other types of cells correspond to other values, then if you need to further increase the CCA execution interval, you need to reduce the GT time. GT is also related to coverage. The minimum is 288 (same CP). .
  • the interval for CCA execution is increased, and the device can try multiple CCA opportunities in the interval. If any CCA detection is successful, the uplink random access can be sent.
  • the duration of each OFDM symbol is 1/14 ms, and the corresponding number of samples is defined as 2192 samples.
  • the CP always starts transmitting from the second symbol, then Tseq, and uses a subcarrier spacing of 1.25Khz.
  • the undeclared part is referred to the design of the existing LTE system (for example, the Release 13 version).
  • Table 2 the following is a table form (including but not limited to) the specific random access subframe structure in this application, the length of the uplink random access CP and the random access sequence of the LAA system. The number of samples in a sub-frame is described:
  • the CCA interval is always in front of the subframe.
  • the meaning of the CCA execution interval is: for example, 2192 ⁇ T s indicates that the first sample to the 2192th sample in the sub-frame are all CCA execution intervals.
  • the GT is always at the end of the sub-frame, for example, the GT length is 2208Ts, indicating that the last 2208 samples in the sub-frame are GT.
  • the subcarrier spacing is 1.25 KHz, including the CP corresponding to the uplink random sequence. If the device performs CCA success in the first OFDM symbol in the subframe, the device starts to send the extended CP from the CCA success time to the starting point of the CP corresponding to the specified random access sequence, and then starts sending the corresponding CP. Both use 1.25KHz subcarrier spacing.
  • the extended CP may be considered to be an extension or repetition of the corresponding CP in the time domain.
  • FIG. 1 is a schematic diagram of the uplink-downlink timing relationship of the embodiment, and the related parameters of FIG. 11 refer to the 36.211 vd00 protocol.
  • the sequence of the actual uplink random access and the CP transmission time point have an interval N TAFS3 with respect to the start boundary of the subframe (the actual transmission random access sequence in the subframe)
  • the corresponding CP (excluding the extended CP or the possession signal) is a sample point from the time point of the start of the sub-frame. Then, when calculating N TA , the base station needs to subtract 2*N TAFS3 (or subtract N TAFS3 ) after the existing measured N TA value.
  • Embodiment 8 provides a PRACH subframe determining method in an unlicensed carrier due to arbitrarily configured UL/DL subframes.
  • the PRACH radio frame and subframe configuration in the existing LTE are used, for example, a subframe configuration table (for example, Table 5.7.1-2 in 36.211 vd00) that follows the existing FDD mode, and only the table and the table are used here. Format 0 related configuration.
  • the specific PRACH subframe is determined as:
  • the UE When the UE receives the DCI signaling of the PDCCH that triggers the PRACH sent by the base station, the UE (or the base station) follows one or more of the following:
  • Subframes can be used for PRACH sequence transmission (or reception).
  • the subframe When it is determined that the subframe is configured as a PRACH resource subframe, but has been configured as a downlink subframe by the base station (during occupied transmission), the subframe is determined to be a downlink subframe, and is not used for PRACH sequence transmission (or reception) ).
  • the downlink subframe includes a subframe in which the PDSCH is transmitted, or a subframe in which the downlink discovery signal DRS is transmitted (or a plurality of candidate subframes in a period in which the DRS is transmitted), or a partial downlink subframe (for Format 0).
  • the UE determines according to the following manner Whether the subframe is used for transmitting the PRACH: the UE receives the DCI signaling that triggers the PRACH, and if the last downlink subframe is determined to be a partial subframe, and the number of remaining symbols exceeds 2, the UE considers the subframe
  • the transmission of PRACH format 4 is configured.
  • FIG. 12 is a second schematic diagram of an uplink-downlink timing relationship according to an embodiment of the present disclosure.
  • an example is an unlicensed carrier, and the CCA is located in the first symbol of the random access subframe, and the uplink is random.
  • each of the above modules may be implemented by software or hardware.
  • the foregoing may be implemented by, but not limited to, the foregoing modules are all located in the same processor; or, the modules are located in multiple In the processor.
  • Embodiments of the present disclosure also provide a computer storage medium.
  • the above computer storage medium may be configured to store program code for performing the following steps:
  • Set the subframe of the uplink random access where the setting manner includes at least one of the following: Setting the CCA in the subframe of the random access in the first orthogonal frequency division multiplexing OFDM symbol of the subframe, or the CCA is located in the N consecutive OFDM symbols before the subframe, where N is less than or Equal to 3; setting a cyclic prefix CP for random access to start from the second OFDM symbol of the subframe, and after transmitting the CP, sending a random access sequence, or the CP starts from a fixed sample Transmit, wherein the fixed sample is located in the first M OFDM symbols, and M is a positive integer;
  • the computer storage medium is further arranged to store program code for performing the method steps of the above-described embodiments.
  • an embodiment of the present disclosure further provides a computer storage medium, the computer storage medium comprising a set of instructions that, when executed, cause at least one processor to perform the random connection of the above-described embodiments of the present disclosure.
  • the method of sending the incoming subframe is not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not limited to, the incoming subframe.
  • the foregoing computer storage medium may include, but is not limited to, a U disk, a ROM, a RAM, a mobile hard disk, a magnetic disk, or an optical disk, and the like, which can store program codes.
  • the processor performs the method steps of the foregoing embodiments according to the stored program code in the computer storage medium.
  • modules or steps of the present disclosure described above can be implemented by a general-purpose computing device that can be centralized on a single computing device or distributed across a network of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein. Perform the steps shown or described, or separate them into individual integrated circuit modules, or multiple of them Blocks or steps are made in a single integrated circuit module. As such, the disclosure is not limited to any specific combination of hardware and software.
  • the subframe of the uplink random access is sent on the unlicensed carrier, where the setting manner of the subframe of the uplink random access includes at least one of the following: the CCA is set in the subframe of the random access. Within the first OFDM symbol of the subframe, or the CCA is located in N consecutive OFDM symbols before the subframe, where N is less than or equal to 3; the CP setting the random access sequence is from the second of the subframe.
  • the OFDM symbol starts to transmit, and after the CP is sent, the random access sequence is sent, or the CP starts transmitting from a fixed sample, where the fixed sample is located in the first M OFDM symbols, where M is A positive integer completes the uplink random access in the LAA system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供了一种随机接入的子帧的发送方法、装置及计算机存储介质,其中,该方法包括:在非授权载波上发送上行随机接入的子帧,其中,该上行随机接入的子帧的设置方式包括以下至少之一:随机接入的子帧中设置空闲信道评估(CCA)位于该子帧的第一个正交频分复用(OFDM)符号内,或者,该CCA位于该子帧前N个连续的OFDM符号内,其中,N小于或者等于3;设置随机接入序列的循环前缀(CP)从该子帧的第二个OFDM符号开始进行发送,并在发送完该CP之后,发送该随机接入序列,或者,该CP从固定的样点处开始发送。

Description

随机接入的子帧的发送方法、装置及计算机存储介质 技术领域
本公开涉及通信领域,具体而言,涉及一种随机接入的子帧的发送方法、装置及计算机存储介质。
背景技术
目前,长期演进技术(Long-Term Evolution,LTE)的通信网络都是部署在授权载波中运营的,随着LTE的发展,一些公司提出了“建议研究LTE部署在非授权载波中的课题”,例如美国的高通公司认为:随着数据业务的快速增长,在不久的将来,授权载波将不能承受快速业务增长带来的巨大的数据量。考虑通过在非授权载波中部署LTE,以此来分担授权载波中的数据流量,可以解决业务增长带来的数据量压力。同时,非授权载波具有以下特点:一方面,由于非授权载波不需要购买,或者载波资源为零成本,因此非授权载波免费或低费用;另一方面,由于个人、企业都可以参与部署,设备商的设备也可以,因此非授权载波的准入要求低;再者,非授权载波具有共享性,通过多个不同系统都运营其中时或者同一系统的不同运营商运营其中时,可以考虑一些共享资源的方式,以提高载波效率。
综上所述,虽然LTE部署在非授权载波中具有明显的优势,但是,在部署的过程中,依然存在问题;其中,无线接入技术多(跨不同的通信标准,协作难,网络拓扑多样)和无线接入站点多(用户数量大,协作难度大,集中式管理开销大)。由于无线接入技术多,非授权载波中将存在各种各样的无线系统,彼此之间难于协调,干扰严重。因此,针对LTE部署在非授权载波中,仍然需要支持非授权载波的管制,多数国家要求系统在非授权载波中部署时,需要支持先听后说(Listen Before Talk,LBT)机制。 通过先听后说机制可以避免相邻系统之间同时使用非授权载波而为彼此带来的干扰。并且进一步引入竞争回退机制,即邻近的系统站点(一般是同一系统的邻近传输节点),通过竞争回退机制后可以避免相同系统的邻近传输节点同时使用非授权载波时带来的干扰。并且,管制中规定,使用非授权载波的设备(包括基站和用户设备(UE))在发送之前都是需要进行先听后说机制(即空闲信道评估(Clear Channel Assessment,CCA),也称LBT),当信道空闲时,设备才能使用非授权载波信道进行数据发送。
非授权载波由于引入了LBT机制,那么现有的LTE系统中的随机接入设计就需要被修改为了满足LTE系统运营在非授权载波中。
LTE中,图1是根据本公开相关技术中的上行随机接入的子帧的组成示意图,如图1所示,包括循环前缀(CP)和随机接入的序列(Tseq),在实际实现中随机接入的序列之后还存在一个保护间隔(GT,即信道保持空闲,执行随机接入的设备不发送信号)。也就是说,子帧中依次包括CP、Tseq和GT,三者之间之和为一个子帧的时长(1ms或30720个样点)。
UE通过随机接入过程(Random Access Procedure)与cell建立连接并取得上行同步。只有取得上行同步,UE才能进行上行传输。
随机接入的主要目的:1)获得上行同步;2)为UE分配一个唯一的标识-小区无线网络临时标识(C-RNTI)。
随机接入过程通常由以下6类事件之一触发:(见36.300的10.1.5节)
1)初始接入时建立无线连接(UE从RRC_IDLE态到RRC_CONNECTED态);
2)RRC连接重建过程(RRC Connection Re-establishment procedure);
3)切换(handover);
4)RRC_CONNECTED态下,下行数据到达(此时需要回复ACK/NACK)时,上行处于“不同步”状态;
5)RRC_CONNECTED态下,上行数据到达(例:需要上报测量报告或发送用户数据)时,上行处于“不同步”状态或没有可用的PUCCH资源用于SR传输(此时允许上行同步的UE使用RACH来替代SR);
6)RRC_CONNECTED态下,为了定位UE,需要时间提前量(TA,Timing Advance)。
随机接入过程还有一个特殊的用途:如果PUCCH上没有配置专用的SR资源时,随机接入还可作为一个SR来使用。
随机接入过程有两种不同的方式:
(1)基于竞争(Contention based):应用于之前介绍的前5种事件;
(2)基于非竞争(Non-Contention based或Contention-Free based):只应用于之前介绍的3)、4)、6)三种事件。
LTE系统中,一个子帧持续时长为1ms,在标准循环前缀时包括14个等长的正交频分复用(OFDM)符号(扩展CP时包括12个等长的OFDM符号)。
在LTE系统中随机接入的设计为:
随机接入的格式以及对应的参数见表1。
表1
Figure PCTCN2017077457-appb-000001
其中,格式0和格式4适合小范围覆盖的场景使用。表1中没有给出 具体的GT长度(这是因为规定了CP的起始和随机序列的长度后,根据子帧的结束位置可以推导出来GT长度,且GT不需要发送信号),但是可以根据相关协议,例如36.211中的规定,直接推导出来GT的长度。
显然,相关技术中的随机接入机制不能直接被使用,因为缺少LBT机制。
针对相关技术中,辅助授权接入(License Assisted Access,LAA)系统中的上行随机接入还不完善的问题,目前还没有有效的解决方案。
公开内容
为解决现有存在的技术问题,本公开实施例提供了一种随机接入的子帧的发送方法、装置及计算机存储介质。
根据本公开实施例的一个方面,提供了一种随机接入的子帧的发送方法,包括:
在非授权载波上发送上行随机接入的子帧,其中,所述上行随机接入的子帧的设置方式包括以下至少之一:
随机接入的子帧中设置CCA位于所述子帧的第一个OFDM符号内,或者,所述CCA位于所述子帧前N个连续的OFDM符号内,其中,N小于或者等于3;
设置随机接入序列的CP从所述子帧的第二个OFDM符号开始进行发送,并在发送完所述CP之后,发送所述随机接入序列,或者,所述CP从固定的样点处开始发送,其中,所述固定样点位于前M个OFDM符号内,M为正整数。
上述方案中,设置随机接入序列的CP从所述子帧的第二个OFDM符号开始进行发送,并在发送完所述CP之后,发送所述随机接入序列,包括:在所述第二个OFDM符号开始进行发送为在所述子帧内的第2193样点开始发送,且所述CP的长度为3168个样点,在发送完所述CP之后,发送所 述随机接入序列,所述随机接入序列的长度为24576个样点,并且发送完所述随机接入序列之后,将所述子帧除去所述CCA、所述随机接入序列以及所述CP之后的时间设置为GT,所述GT的长度为784个样点,其中,所述子帧的长度为30720个样点;
或者,设置随机接入序列的CP从所述子帧的第二个OFDM符号开始进行发送,并在发送完所述CP之后,发送所述随机接入序列,包括:所述子帧中前2192个样点用于所述CCA,所述CCA之后的2072个样点用于所述CP,所述CP之后的24576个样点用于所述随机接入序列,将所述子帧除去所述CCA、所述随机接入序列以及所述CP之后剩余的样点用于GT,所述GT为1880个样点;
或者,设置随机接入序列的CP从所述子帧的第二个OFDM符号开始进行发送,并在发送完所述CP之后,发送所述随机接入序列,包括:所述子帧中前2192个样点用于所述CCA,所述CCA之后的976个样点用于所述CP,所述CP之后的24576个样点用于所述随机接入序列,将所述子帧除去所述CCA、所述随机接入序列以及所述CP之后剩余的样点用于GT,所述GT为2976个样点。
上述方案中,设置所述CCA位于所述子帧中第一个OFDM符号中,其中,所述CCA检测为单次CCA检测,且时长为t时,所述CCA总是位于所述第一个OFDM符号的末尾t时长内。
上述方案中,设置所述CCA位于所述子帧中第一个OFDM符号中,其中,所述CCA检测为单次CCA检测且时长为t时,所述CCA位于所述第一个OFDM符号内的任意位置,当所述CCA检测成功获得非授权载波使用权后,发送占用信号直至所述随机接入序列的CP起始发送样点处。
上述方案中,所述占用信号为延长的随机接入序列的CP。
上述方案中,所述随机接入序列和所述随机接入序列对应的CP发送 时,采用的子载波间隔为1.25KHz。
上述方案中,在设置所述随机接入序列对应的CP起始位置为固定的样点,且位于所述子帧的第一个OFDM符号内时,所述CCA位于第一个OFDM符号的前t微秒的时长,在所述t微秒的时长之后的样点为所述CP的起始点,且所述CP和所述随机接入序列的长度分别为3168样点和24576样点,所述子帧除去所述CCA、所述随机接入序列以及所述CP之后剩余的样点为GT。
上述方案中,当设置所述随机接入的序列的CP从固定的样点作为起始点发送时,当所述CCA执行成功获得非授权载波使用权的时刻点距离所述CP的起始点存在间隔时,在所述间隔发送占用信号。
上述方案中,设置在上行随机接入的所述子帧中,前K个样点用于CCA检测,从第K+1样点固定为所述随机接入序列的CP起始样点,且所述CP的长度为3168个样点,所述CP之后的样点为随机接入序列的样点,所述随机接入序列的长度为24576个样点,其中,K为上行随机接入对应的单次CCA检测的时长。
上述方案中,在K取值为768的情况下,所述子帧的GT为2208个样点。
上述方案中,设置在上行随机接入的所述子帧中,前H个样点用于CCA检测,从第H+1样点固定为所述随机接入序列的CP起始样点,所述CP之后为所述随机接入序列,所述随机接入序列的长度为24576个样点,所述CP之后是GT,所述GT的长度为2976个样点,其中,H为上行随机接入对应的单次CCA检测的时长。
上述方案中,在H取值为768的情况下,所述CP的长度为2400个样点。
上述方案中,设置上行随机接入的所述子帧中,所述子帧包括:从所 述子帧末尾向前依次为:GT,随机接入序列,CP。
上述方案中,所述GT的长度为Q1个样点,所述随机接入序列的长度为24576个样点,所述CP长度为Q2个样点,所述子帧除去所述GT、所述随机接入序列以及所述CP之后,所述子帧的剩余样点为CCA执行区间。
上述方案中,Q1取值为288,Q2取值为288,所述CCA执行区间为:
30720-288-288-24576=5568个样点。
上述方案中,设置上行随机接入的所述子帧中,固定所述随机接入序列对应的CP起始样点为第Q3+1样点,所述CP之后为所述随机接入序列,其中,所述CP的长度为Q4个样点,所述随机接入序列的长度为24576个样点,所述子帧的样点中除去所述CCA、所述随机接入序列以及所述CP之后的剩余样点为GT,其中,Q3根据预留给所述CCA执行位置的时长来确定。
上述方案中,Q4取值为288,所述CCA放置在所述子帧的前部,所述CCA执行位置的时长为5568个样点,Q3为5568。
上述方案中,设置上行随机接入的所述子帧中,固定所述随机接入序列对应的CP起始样点为第Q5+1,所述CP之后为所述随机接入序列,其中,所述CP的长度为Q6个样点,所述随机接入序列的长度为24576个样点,所述子帧除去所述CCA、所述随机接入序列以及所述CP之后,剩余样点为GT。
上述方案中,所述GT为576个样点,所述CCA位于所述子帧中前2400个样点,Q5取值为2400,Q6取值为3168。
根据本公开实施例的另一个方面,还提供了一种随机接入的子帧的发送装置,包括:
发送模块,配置为在非授权载波上发送上行随机接入的子帧,其中,所述上行随机接入的子帧的设置方式包括以下至少之一:
随机接入的子帧中设置CCA位于所述子帧的第一个OFDM符号内,或者,所述CCA位于所述子帧前N个连续的OFDM符号内,其中,N小于或者等于3;
设置随机接入序列的CP从所述子帧的第二个OFDM符号开始进行发送,并在发送完所述CP之后,发送所述随机接入序列,或者,所述CP从固定的样点处开始发送,其中,所述固定样点位于前M个OFDM符号内,M为正整数。
上述方案中,所述设置模块,配置为:
在所述第二个OFDM符号开始进行发送为在所述子帧内的第2193样点开始发送,且所述CP的长度为3168个样点,在发送完所述CP之后,发送所述随机接入序列,所述随机接入序列的长度为24576个样点,并且发送完所述随机接入序列之后,将所述子帧除去所述CCA、所述随机接入序列以及所述CP之后的时间设置为GT,所述GT的长度为784个样点,其中,所述子帧的长度为30720个样点;
或者,
所述子帧中前2192个样点用于所述CCA,所述CCA之后的2072个样点用于所述CP,所述CP之后的24576个样点用于所述随机接入序列,将所述子帧除去所述CCA、所述随机接入序列以及所述CP之后剩余的样点用于GT,所述GT为1880个样点;
或者,
所述子帧中前2192个样点用于所述CCA,所述CCA之后的976个样点用于所述CP,所述CP之后的24576个样点用于所述随机接入序列,将所述子帧除去所述CCA、所述随机接入序列以及所述CP之后剩余的样点用于GT,所述GT为2976个样点。
上述方案中,所述设置模块在设置所述随机接入序列对应的循环前缀 起始位置为固定的样点,且位于所述子帧的第一个正交频分复用符号内时,所述空闲信道评估位于第一个正交频分复用符号的前t微秒的时长,在所述t微秒的时长之后的样点为所述循环前缀的起始点,且所述循环前缀和所述随机接入序列的长度分别为3168样点和24576样点,所述子帧除去所述空闲信道评估、所述随机接入序列以及所述循环前缀之后剩余的样点为保护间隔。
上述方案中,当所述设置模块设置在所述随机接入序列对应的CP起始位置为固定的样点,且位于所述子帧的第一个OFDM符号内时,所述CCA位于第一个OFDM符号的前t微秒的时长,在所述t微秒的时长之后的样点为所述CP的起始点,且所述CP和所述随机接入序列的长度分别为3168样点和24576样点,所述子帧除去所述CCA、所述随机接入序列以及所述CP之后剩余的样点为GT。
上述方案中,所述设置模块设置在上行随机接入的所述子帧中,前K个样点用于CCA检测,从第K+1样点固定为所述随机接入序列的CP起始样点,且所述CP的长度为3168个样点,所述CP之后的样点为随机接入序列的样点,所述随机接入序列的长度为24576个样点,其中,K为上行随机接入对应的单次CCA检测的时长。
上述方案中,所述设置模块设置在上行随机接入的所述子帧中,前H个样点用于CCA检测,从第H+1样点固定为所述随机接入序列的CP起始样点,所述CP之后为所述随机接入序列,所述随机接入序列的长度为24576个样点,所述CP之后是GT,所述GT的长度为2976个样点,其中,H为上行随机接入对应的单次CCA检测的时长。
上述方案中,所述设置模块设置上行随机接入的所述子帧中,固定所述随机接入序列对应的CP起始样点为第Q3+1样点,所述CP之后为所述随机接入序列,其中,所述CP的长度为Q4个样点,所述随机接入序列的 长度为24576个样点,所述子帧的样点中除去所述CCA、所述随机接入序列以及所述CP之后的剩余样点为GT,其中,Q3根据预留给所述CCA执行位置的时长来确定。
根据本公开实施例的另一个方面,还提供了一种计算机存储介质,所述计算机存储介质包括一组指令,当执行所述指令时,引起至少一个处理器执行上述的随机接入的子帧的发送方法。
通过本公开实施例,在非授权载波上发送上行随机接入的子帧,其中,该上行随机接入的子帧的设置方式包括以下至少之一:随机接入的子帧中设置CCA位于该子帧的第一个OFDM符号内,或者,该CCA位于该子帧前N个连续的OFDM符号内,其中,N小于或者等于3;设置随机接入序列的CP从该子帧的第二个OFDM符号开始进行发送,并在发送完该CP之后,发送该随机接入序列,或者,该CP从固定的样点处开始发送,其中,该固定样点位于前M个OFDM符号内,M为正整数,解决了LAA系统中的上行随机接入还不完善的问题,完善了LAA系统中的上行随机接入。
附图说明
此处所说明的附图用来提供对本公开的进一步理解,构成本申请的一部分,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1是根据本公开相关技术中的上行随机接入的子帧的组成示意图;
图2是根据本公开实施例的一种随机接入的子帧的发送的流程图;
图3是根据本公开实施例的一种随机接入的子帧的发送装置的结构框图;
图4是根据本公开具体实施例的LAA系统设计的上行随机接入的子帧结构示意图一;
图5是根据本公开具体实施例的LAA系统设计的上行随机接入的子帧 结构示意图二;
图6是根据本公开具体实施例的LAA系统设计的上行随机接入的子帧结构示意图三;
图7是根据本公开具体实施例的LAA系统设计的上行随机接入的子帧结构示意图四;
图8是根据本公开具体实施例的LAA系统设计的上行随机接入的子帧结构示意图五;
图9是根据本公开具体实施例的LAA系统设计的上行随机接入的子帧结构示意图六;
图10是根据本公开具体实施例的LAA系统设计的上行随机接入的子帧结构示意图七;
图11是根据本公开具体实施例的的上行-下行定时关系示意图一;
图12是根据本公开具体实施例的的上行-下行定时关系示意图二。
具体实施方式
下文中将参考附图并结合实施例来详细说明本公开。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本公开中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
在本实施例中提供了一种随机接入的子帧的发送方法,图2是根据本公开实施例的一种随机接入的子帧的发送的流程图,如图2所示,该流程包括如下步骤:
步骤S202,设置该上行随机接入的子帧的设置方式包括以下至少之一:该随机接入的子帧中设置CCA位于该子帧的第一个OFDM符号内,或者,该CCA位于该子帧前N个连续的OFDM符号内,其中,N小于或者等于3;设置随机接入的CP从该子帧的第二个OFDM符号开始进行发送,并在发 送完该CP之后,发送随机接入序列,或者,该CP从固定的样点处开始发送,其中,该固定样点位于前M个OFDM符号内,M为正整数;
步骤S204,在非授权载波上发送上行随机接入的子帧。
通过上述步骤,在非授权载波上发送上行随机接入的子帧,其中,该上行随机接入的子帧的设置方式包括以下至少之一:随机接入的子帧中设置CCA位于该子帧的第一个OFDM符号内,或者,该CCA位于该子帧前N个连续的OFDM符号内,其中,N小于或者等于3;设置随机接入序列的CP从该子帧的第二个OFDM符号开始进行发送,并在发送完该CP之后,发送该随机接入序列,或者,该CP从固定的样点处开始发送,其中,该固定样点位于前M个OFDM符号内,M为正整数,解决了LAA系统中的上行随机接入还不完善的问题,完善了LAA系统中的上行随机接入。
在本公开的实施例中,设置随机接入序列的CP从所述子帧的第二个OFDM符号开始进行发送,并在发送完所述CP之后,发送所述随机接入序列,包括:在所述第二个OFDM符号开始进行发送为在所述子帧内的第2193样点开始发送,且所述CP的长度为3168个样点,在发送完所述CP之后,发送所述随机接入序列,所述随机接入序列的长度为24576个样点,并且发送完所述随机接入序列之后,将所述子帧除去所述CCA、所述随机接入序列以及所述CP之后的时间设置为GT,所述GT的长度为784个样点,其中,所述子帧的长度为30720个样点;
或者,设置随机接入序列的CP从所述子帧的第二个OFDM符号开始进行发送,并在发送完所述CP之后,发送所述随机接入序列,包括:所述子帧中前2192个样点用于所述CCA,所述CCA之后的2072个样点用于所述CP,所述CP之后的24576个样点用于所述随机接入序列,将所述子帧除去所述CCA、所述随机接入序列以及所述CP之后剩余的样点用于GT,所述GT为1880个样点。
或者,设置随机接入序列的CP从所述子帧的第二个OFDM符号开始进行发送,并在发送完所述CP之后,发送所述随机接入序列,包括:所述子帧中前2192个样点用于所述CCA,所述CCA之后的976个样点用于所述CP,所述CP之后的24576个样点用于所述随机接入序列,将所述子帧除去所述CCA、所述随机接入序列以及所述CP之后剩余的样点用于GT,所述GT为2976个样点。
在本公开的实施例中,设置所述CCA位于所述子帧中第一个OFDM符号中,其中,所述CCA检测为单次CCA检测,且时长为t时,所述CCA总是位于所述第一个OFDM符号的末尾t时长内。
在本公开的实施例中,设置所述CCA位于所述子帧中第一个OFDM符号中,其中,所述CCA检测为单次CCA检测且时长为t时,所述CCA位于所述第一个OFDM符号内的任意位置,当所述CCA检测成功获得非授权载波使用权后,发送占用信号直至所述随机接入序列的CP起始发送样点处。
在本公开的实施例中,所述占用信号为延长的随机接入序列的CP。
在本公开的实施例中,所述随机接入序列和所述随机接入序列对应的CP发送时,采用的子载波间隔为1.25KHz。
在本公开的实施例中,在设置所述随机接入序列对应的CP起始位置为固定的样点,且位于所述子帧的第一个OFDM符号内时,所述CCA位于第一个OFDM符号的前t微秒的时长,在所述t微秒的时长之后的样点为所述CP的起始点,且所述CP和所述随机接入序列的长度分别为3168样点和24576样点,所述子帧除去所述CCA、所述随机接入序列以及所述CP之后剩余的样点为GT。
在本公开的实施例中,当设置所述随机接入的序列的CP从固定的样点作为起始点发送时,当所述CCA执行成功获得非授权载波使用权的时刻点 距离所述CP的起始点存在间隔时,在所述间隔发送占用信号。
在本公开的实施例中,在上行随机接入的所述子帧中,前K个样点用于CCA检测,从第K+1样点固定为所述随机接入序列的CP起始样点,且所述CP的长度为3168个样点,所述CP之后的样点为随机接入序列的样点,所述随机接入序列的长度为24576个样点,其中,K为上行随机接入对应的单次CCA检测的时长。
在本公开的实施例中,在K取值为768的情况下,所述子帧的GT为2208个样点。
在本公开的实施例中,设置在上行随机接入的所述子帧中,前H个样点用于CCA检测,从第H+1样点固定为所述随机接入序列的CP起始样点,所述CP之后为所述随机接入序列,所述随机接入序列的长度为24576个样点,所述CP之后是GT,所述GT的长度为2976个样点,其中,H为上行随机接入对应的单次CCA检测的时长。
在本公开的实施例中,在H取值为768的情况下,所述CP的长度为2400个样点。
在本公开的实施例中,设置上行随机接入的所述子帧中,所述子帧的结构包括:从所述子帧末尾向前依次为:GT,随机接入序列,CP,其中,所述GT的长度为Q1个样点,所述随机接入序列的长度为24576个样点,所述CP长度为Q2个样点,所述子帧除去所述GT、所述随机接入序列以及所述CP之后,所述子帧的剩余样点为CCA执行区间。
在本公开的实施例中,Q1取值为288,Q2取值为288,所述CCA执行区间为:
30720-288-288-24576=5568个样点。
在本公开的实施例中,设置上行随机接入的所述子帧中,固定所述随机接入序列对应的CP起始样点为第Q3+1样点,所述CP之后为所述随机 接入序列,其中,所述CP的长度为Q4个样点,所述随机接入序列的长度为24576个样点,所述子帧的样点中除去所述CCA、所述随机接入序列以及所述CP之后的剩余样点为GT,其中,Q3根据预留给所述CCA执行位置的时长来确定。
在本公开的实施例中,Q4取值为288,所述CCA放置在所述子帧的前部,所述CCA执行位置的时长为5568个样点,Q3为5568。
在本公开的实施例中,设置上行随机接入的所述子帧中,固定所述随机接入序列对应的CP起始样点为第Q5+1,所述CP之后为所述随机接入序列,其中,所述CP的长度为Q6个样点,所述随机接入序列的长度为24576个样点,所述子帧除去所述CCA、所述随机接入序列以及所述CP之后,剩余样点为GT。
在本公开的实施例中,所述GT为576个样点,所述CCA位于所述子帧中前2400个样点,Q5取值为2400,Q6取值为3168。
在本实施例中还提供了一种随机接入的子帧的发送装置,该装置配置为实现上述实施例及具体实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图3是根据本公开实施例的一种随机接入的子帧的发送装置的结构框图,如图3所示,该装置包括:
设置模块32,配置为设置该上行随机接入的子帧的设置方式包括以下至少之一:该随机接入的子帧中设置CCA位于该子帧的第一个OFDM符号内,或者,该CCA位于该子帧前N个连续的OFDM符号内,其中,N小于或者等于3;设置随机接入的CP从该子帧的第二个OFDM符号开始进行发送,并在发送完该CP之后,发送随机接入序列,或者,该CP从固定 的样点处开始发送,其中,该固定样点位于前M个OFDM符号内,M为正整数;
发送模块34,配置为在非授权载波上发送上行随机接入的子帧。
通过上述装置,设置模块32,配置为设置该上行随机接入的子帧的设置方式包括以下至少之一:该随机接入的子帧中设置CCA位于该子帧的第一个OFDM符号内,或者,该CCA位于该子帧前N个连续的OFDM符号内,其中,N小于或者等于3;设置随机接入的CP从该子帧的第二个OFDM符号开始进行发送,并在发送完该CP之后,发送随机接入序列,或者,该CP从固定的样点处开始发送,其中,该固定样点位于前M个OFDM符号内,M为正整数,发送模块34,配置为在非授权载波上发送上行随机接入的子帧,解决了LAA系统中的上行随机接入还不完善的问题,完善了LAA系统中的上行随机接入。
在一实施例中,所述设置模块32,配置为:
在所述第二个OFDM符号开始进行发送为在所述子帧内的第2193样点开始发送,且所述CP的长度为3168个样点,在发送完所述CP之后,发送所述随机接入序列,所述随机接入序列的长度为24576个样点,并且发送完所述随机接入序列之后,将所述子帧除去所述CCA、所述随机接入序列以及所述CP之后的时间设置为GT,所述GT的长度为784个样点,其中,所述子帧的长度为30720个样点;
或者,
所述子帧中前2192个样点用于所述CCA,所述CCA之后的2072个样点用于所述CP,所述CP之后的24576个样点用于所述随机接入序列,将所述子帧除去所述CCA、所述随机接入序列以及所述CP之后剩余的样点用于GT,所述GT为1880个样点;
或者,
所述子帧中前2192个样点用于所述CCA,所述CCA之后的976个样点用于所述CP,所述CP之后的24576个样点用于所述随机接入序列,将所述子帧除去所述CCA、所述随机接入序列以及所述CP之后剩余的样点用于GT,所述GT为2976个样点。
在一实施例中,所述设置模块32在设置所述随机接入序列对应的循环前缀起始位置为固定的样点,且位于所述子帧的第一个正交频分复用符号内时,所述空闲信道评估位于第一个正交频分复用符号的前t微秒的时长,在所述t微秒的时长之后的样点为所述循环前缀的起始点,且所述循环前缀和所述随机接入序列的长度分别为3168样点和24576样点,所述子帧除去所述空闲信道评估、所述随机接入序列以及所述循环前缀之后剩余的样点为保护间隔。
在一实施例中,当所述设置模块32设置在所述随机接入序列对应的CP起始位置为固定的样点,且位于所述子帧的第一个OFDM符号内时,所述CCA位于第一个OFDM符号的前t微秒的时长,在所述t微秒的时长之后的样点为所述CP的起始点,且所述CP和所述随机接入序列的长度分别为3168样点和24576样点,所述子帧除去所述CCA、所述随机接入序列以及所述CP之后剩余的样点为GT。
在一实施例中,所述设置模块32设置在上行随机接入的所述子帧中,前K个样点用于CCA检测,从第K+1样点固定为所述随机接入序列的CP起始样点,且所述CP的长度为3168个样点,所述CP之后的样点为随机接入序列的样点,所述随机接入序列的长度为24576个样点,其中,K为上行随机接入对应的单次CCA检测的时长。
在一实施例中,所述设置模块32设置在上行随机接入的所述子帧中,前H个样点用于CCA检测,从第H+1样点固定为所述随机接入序列的CP起始样点,所述CP之后为所述随机接入序列,所述随机接入序列的长度为 24576个样点,所述CP之后是GT,所述GT的长度为2976个样点,其中,H为上行随机接入对应的单次CCA检测的时长。
在一实施例中,所述设置模块32设置上行随机接入的所述子帧中,固定所述随机接入序列对应的CP起始样点为第Q3+1样点,所述CP之后为所述随机接入序列,其中,所述CP的长度为Q4个样点,所述随机接入序列的长度为24576个样点,所述子帧的样点中除去所述CCA、所述随机接入序列以及所述CP之后的剩余样点为GT,其中,Q3根据预留给所述CCA执行位置的时长来确定。
其中,实际应用时,所述设置模块32可由随机接入的子帧的发送装置中的处理器(比如中央处理器(Central Processing Unit,CPU)、微处理器(Micro Control Unit,MCU)、数字信号处理器(Digital Signal Processor,DSP)或可编程逻辑阵列(Field-Programmable Gate Array,FPGA)等)实现,所述发送模块34可由随机接入的子帧的发送装置中的通信器实现。
下面结合具体实施例和实施方式对本公开进行详细说明。
实施例1
一个实施例,带有CCA机制的上行随机接入的结构与对应的子帧结构被示意。此时,CCA被限制在执行随机接入序列发送的子帧的第一个符号内,且此时CCA的方式可以执行单次的CCA,或者带有取值范围很小的随机回退窗的CCA,例如随机回退窗最大值加上首次的单次CCA(延迟周期的CCA检测)不超过一个OFDM符号的总时长。
图4是根据本公开具体实施例的LAA系统设计的上行随机接入的子帧结构示意图一,子帧结构组成包括(也是代表时间顺序):CCA(CCA之前可以有Gap)、CP(Tseq序列对应的CP)、Tseq和GT组成,总共时长为一个子帧时长。CP从第二个符号开始映射。设备在确定需要执行上行随机接入时,且上行随机接入的子帧到达时,设备根据上述的子帧结构组成顺序, 依次执行不同功能的对应操作,从而完成上述随机接入序列在非授权载波中的发送。当CCA检测为空闲时,设备发送上行随机接入序列,否则不能发送。
如果单次CCA被执行,例如执行单次CCA的时长为25μs,那么此时的单次CCA具体存在下面几种实施方式,可以选择之一执行:
1)在第一个符号内不限制CCA的具体位置,只要在第一个符号就可以。
2)限制CCA总是位于第一个OFDM符号的末尾,例如末尾的25μs。图5是根据本公开具体实施例的LAA系统设计的上行随机接入的子帧结构示意图二,如图5示意的。(具体实现时,如果设备在执行CCA结束之后不能理解由接收状态转为发送状态,那么此时CCA的起点前移一个时间t,t为设备由接收状态转为发送状态需要的时间。)
图4中,此时的CP长度维持目前LTE中随机接入格式0的CP长度,例如CP为3168个样点(Ts)的时长,Tseq为24576个样点。Ts为参考LTE系统的Ts时长定义。然后,1ms(对应30720个样点)的时长中减去第一个符号的时长、CP时长、Tseq时长,剩余的时长为GT的时长(对应的样点数为:30720-2192-3168-24576=784,即这些样点内站点不发送数据)。每一个OFDM符号对应的时长为1/14ms,对应的样点数规定为2192个样点。CP总是从第二个符号开始传输,然后是Tseq,并且采用1.25Khz的子载波间隔。
或者,图4的方案也可以描述为,在上行随机接入的子帧中,从子帧末尾向前计算上行随机接入序列(包括对应的CP)发送的起点时刻。例如从子帧末尾向前推算784+24576+3168个样点,作为上行随机接入序列的发送起始样点。
未声明部分,参考现有LTE系统的设计进行(例如Release 13版本)。
上述实施例1的设计,有利于上行随机接入序列的起始样点确定,因为恰好位于符号边界,利于实现。同时整个过程都在一个子帧内完成,且为GT预留的样点数足够大,可以满足LAA作为小小区的覆盖要求。
实施例2
在另一个具体的实施例中,图6是根据本公开具体实施例的LAA系统设计的上行随机接入的子帧结构示意图三。如图6所示,此时,CCA被限制在执行随机接入序列发送的子帧的第一个符号内,且此时CCA的方式可以执行单次的CCA,或者带有取值范围很小的随机回退窗的CCA,例如随机回退窗最大值加上首次的单次CCA(延迟周期的CCA检测)不超过一个OFDM符号的总时长。
图6中的子帧结构包括(也是代表时间顺序)CCA、CP(Tseq序列对应的CP)、Tseq和GT组成,总共时长为一个子帧时长。CP从CCA成功之后即执行发送,或者CP的发送为固定样点处。设备在确定需要执行上行随机接入时,且上行随机接入的子帧到达时,设备根据上述的子帧结构组成顺序,依次执行不同功能的对应操作,从而完成上述随机接入序列在非授权载波中的发送。当CCA检测为空闲时,设备发送上行随机接入序列,否则不能发送。
如果单次CCA被执行,例如执行单次CCA的时长为25μs,那么此时的单次CCA具体存在下面几种实施方式,可以选择之一执行:
1)在第一个符号内不限制CCA的具体位置,只要在第一个符号内且在规定的CP起始点之前。
2)限制CCA总是位于第一个OFDM符号的开始处,例如开始的前25us。
假设为上行随机接入确定的CCA检测为单次CCA为25μs(对应768个样点),那么可以将其固定在上行随机接入的子帧的第一个符号的前25μs 内(为了考虑到时间方向上一定时间误差,可以略微分配多于25μs的时长,例如34μs,基站只需要在其中执行25μs的CCA检测,且空闲就可以了),这样可以确定CP的起始点(样点)的位置,即为25之后开始发送CP,也就是CP的起始样点为768+1。
在另一实施例中,图7是根据本公开具体实施例的LAA系统设计的上行随机接入的子帧结构示意图四。如图7示意的,固定CP的起始样点,在子帧开始点到CP起始样点之间是预留给CCA检测的时间(该时间段留有较大的冗余时长,较大的时长有利于设备在第一CCA检测失败后,继续执行下一个CCA,实际上增加了设备的抢占机会),当设备在固定CP起始点之前完成了CCA检测,且发现信道为空闲,设备需要发送占用信号占住信道,直到固定的CP起始点开始发送CP、Tseq等。此时的占用信号,可是延长的CP,即把Tseq对应的CP截取一部进行重复作为占用信号,这样相当于CP的长度增加了,有利于扩展覆盖。
在第一个符号内,预留足够设备执行多次CCA的时长,例如2次,即50μs,之后固定CP的起始样点。
每一个OFDM符号对应的时长为1/14ms,对应的样点数规定为2192个样点。CP总是从第二个符号开始传输,然后是Tseq,并且采用1.25Khz的子载波间隔。
未声明部分,参考现有LTE系统的设计进行(例如Release 13版本)。
实施例3
在另一个具体的实施例中,图8是根据本公开具体实施例的LAA系统设计的上行随机接入的子帧结构示意图五。如图8示意的,此时,CCA被限制在执行随机接入序列发送的子帧的第一个符号内,且此时CCA的方式可以执行单次的CCA,或者带有取值范围很小的随机回退窗的CCA,例如随机回退窗最大值加上首次的单次CCA(延迟周期的CCA检测)不超过一 个OFDM符号的总时长。
图8中的子帧结构包括(也是代表时间顺序)CCA、CP(Tseq序列对应的CP)、Tseq和GT组成,总共时长为一个子帧时长。CP从CCA成功之后即执行发送,或者CP的发送为固定样点处。设备在确定需要执行上行随机接入时,且上行随机接入的子帧到达时,设备根据上述的子帧结构组成顺序,依次执行不同功能的对应操作,从而完成上述随机接入序列在非授权载波中的发送。当CCA检测为空闲时,设备发送上行随机接入序列,否则不能发送。
如果单次CCA被执行,例如执行单次CCA的时长为25μs,那么此时的单次CCA具体存在下面方式执行:
参考图8,子帧中前几个符号内,预留设备执行多次CCA的时长,例如4次,即100μs,之后固定CP的起始样点。此时子帧内剩余的时长:需要足够Tseq的时长(本文中均为LTE系统随机接入格式0的Tseq)以及CP和GT的时长(该CP、GT各自的时长至少满足覆盖1.4km的半径,换算为样点约至少288个样点)。也就是说留给设备执行CCA检测的时长最大为:181.25μs(约30720-288-288-24576=5568个样点)。181.25μs大于允许设备执行7次的CCA检测,也就是说为设备连续提供了7次竞争机会,有利于上行随机接入序列的发送。基于这里的例子,此时固定Tseq对应的CP的起始样点为子帧中第5568+1个样点。
显然,可以根据事先确定的GT、CP来确定在子帧中预留的执行CCA检测的时长。这个例子也给出了确定子帧中CCA执行时长的方法。这个例子中如果CCA成功且结束点举例固定的CP起始点存在间隔,需要发送占用信号。占用信号可以是延长的CP。
每一个OFDM符号对应的时长为1/14ms,对应的样点数规定为2192个样点。CP总是从第二个符号开始传输,然后是Tseq,并且采用1.25Khz 的子载波间隔。
未声明部分,参考现有LTE系统的设计进行(例如Release 13版本)。
实施例4
在另一个具体的实施例中,图9是根据本公开具体实施例的LAA系统设计的上行随机接入的子帧结构示意图六。如图9示意的,这种方式是基于对于现有的LTE上行随机接入的格式0进行最小化修改,使得其更好的和CCA结合,以适合非授权载波的需求。
图9中,仅仅修改现有上行随机接入的格式0中的GT长度,该长度为根据LAA小区的覆盖要求推算获得的,例如给定GT的长度为b个样点(例如考虑实际覆盖要求,可以设置为月18.7μs即576个样点,覆盖半径约2.8千米)。Tseq序列、CP保持现有格式0的长度,然后从子帧末尾向前计算CP的起始样点,以上述例子中的程度为例,此时,子帧内剩余的样点数为30720-576-24576-3168=2400,那么CP的起始样点为2400+1。UE都按照约定的CP的起始样点处开始随机接入序列的CP发送(以上实施例也是如此),然后基站从2400+1个样点处认为是UE开始发送的随机接入序列的CP。此时子帧CCA的执行区间为0至2400个样点,在该区间内可以限制具体的CCA执行位置,也可以不做限制,当UE执行CCA检测到信道空闲时UE需要确定CP的起始样点是否到达,如果到达则直接发送CP,否则,UE需要发送占用信号来占住信道直到CP的起始样点到达。
每一个OFDM符号对应的时长为1/14ms,对应的样点数规定为2192个样点。CP总是从第二个符号开始传输,然后是Tseq,并且采用1.25Khz的子载波间隔。
未声明部分,参考现有LTE系统的设计进行(例如Release 13版本)。
实施例5
在另一个具体的实施例中,图10是根据本公开具体实施例的LAA系 统设计的上行随机接入的子帧结构示意图七。如图10示意的,这种方式是基于对于现有的LTE上行随机接入的格式0进行最小化修改,使得其更好的和CCA结合,以适合非授权载波的需求。
图10中,一个随机接入的子帧结构为:CCA执行的位置区间被给定,根据CCA执行的序列,例如,单次CCA检测且时长为25μs时,对应768个样点(其他数值也可以,只需要做类似推算)。然后CP紧跟其后发送,但CP的长度被减少了768个样点,此时为2400个样点。然后紧跟随机接入的序列,为24576个样点,之后紧跟GT,为2976个样点。
如果进一步改变CCA执行位置区间的大小,例如变大,提供2次以上的CCA机会,那么CP的样点就需要进一步缩小,但是考虑到覆盖,CP最小为288个样点(这是根据LAA小区覆盖半径确定的,如果其他类型的小区,对应其他数值即可);之后如果还需要进一步增加CCA执行的区间,就需要再减少GT的时间,GT也与覆盖相关,最小为288(同CP)。增加了CCA执行的区间,设备就可以在该区间尝试多次CCA机会,任意一次CCA检测成功,就可以发送上行随机接入。
每一个OFDM符号对应的时长为1/14ms,对应的样点数规定为2192个样点。CP总是从第二个符号开始传输,然后是Tseq,并且采用1.25Khz的子载波间隔。
未声明部分,参考现有LTE系统的设计进行(例如Release 13版本)。
实施例6
如表2所示,下面以表格的形式给出(包括但不限于此)本申请中具体的随机接入子帧结构,LAA系统的上行随机接入的CP、随机接入序列的长度。一个子帧的样点数来描述:
表2
Figure PCTCN2017077457-appb-000002
Figure PCTCN2017077457-appb-000003
说明:CCA区间总是位于子帧的前面。且CCA执行区间的含义为:例如2192·Ts表示从子帧内第1个样点至第2192个样点都是CCA执行区间。GT总是位于子帧的末尾,例如GT长度为2208Ts,表示子帧中最后2208个样点为GT。
上述各个实施例未特殊说明,均认为采用与LTE 36.211中上行随机接入格式0相同的序列以及发送方式,例如子载波间隔为1.25KHz,包括上行随机序列对应的CP。如果设备在子帧内第一个OFDM符号内执行CCA成功后,设备从CCA成功时刻处开始发送延长的CP直到指定的随机接入的序列对应的CP的起始点,再开始发送该对应的CP,都是采用1.25KHz子载波间隔。延长的CP可以是认为是将该对应的CP的在时域扩展或重复。
实施例7
在相关技术中的LTE中,上行随机接入的序列和CP是从子帧边界开始发送的,计算对应的NTA(现有LTE中的定义,参考36.211vd00),图11是根据本公开具体实施例的的上行-下行定时关系示意图一,该图11的相关参数参考36.211vd00协议。
但是,考虑由于CCA位于子帧的第一个符号内,导致实际的上行随机接入的序列和CP发送时刻点相对于子帧起始边界存在间隔NTAFS3(子帧中实际发送随机接入序列对应的CP(不包括延长CP或占有信号)时刻点距离该子帧起始时刻点的样点数)个样点。那么在计算NTA时,基站需要在现有测量得到的NTA值后,再减去2*NTAFS3(或再减去NTAFS3)。
实施例8
实施例8提供一种非授权载波中由于UL/DL子帧时任意配置的带来的PRACH子帧确定方法。
在LAA系统中,沿用现有的LTE中的PRACH无线帧和子帧配置,例如沿用现有的FDD模式的子帧配置表格(例如36.211vd00中的Table5.7.1-2),这里只采用表格中与格式0相关的配置。
具体的PRACH子帧的确定为:
当UE接收到基站发的触发PRACH的PDCCH的DCI信令时,UE(或基站)按照下面之一或多个:
1)System frame number,如果非授权载波中不能确定帧号,则使用非授权载波对应的Pcell的帧号确定。如果LAA载波中有确定的帧号信令发送时,使用非授权中的帧号确定。
2)在非授权载波中,按照所述表格当确定某一子帧被配置为PRACH资源子帧时,并且该子帧未被基站(在占用的传输期间)配置为下行子帧时,则该子帧能被用于PRACH序列发送(或接收)。
当确定该子帧被配置为PRACH资源子帧,但已经被基站(在占用的传输期间)配置为下行子帧时,则该子帧被确定为下行子帧,不用于PRACH序列发送(或接收)。
其中,下行子帧包括发送PDSCH的子帧,或发送下行发现信号DRS的子帧(或发送DRS的周期中的多个候选子帧),或部分下行子帧(针对 格式0)。
3)在非授权载波中,按照所述表格当确定某一子帧被配置为PRACH资源子帧时,并且该子帧为基站占用的传输期间的最后一个下行子帧时,UE根据下面方式确定该子帧是否用于发送PRACH:UE接收到触发PRACH的DCI信令,如果确定所述最后一个下行子帧为部分子帧时,并且剩余的符号数超过2个时,则UE认为该子帧配置了PRACH格式4的发送。
图12是根据本公开具体实施例的的上行-下行定时关系示意图二,如图12所示,是一个例子为非授权载波,且CCA位于随机接入子帧的第一个符号中,上行随机接入的序列和CP从CCA成功之后的固定样点处开始发送时的上行-下行定时关系。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本公开的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如只读存储器(ROM,Read-Only Memory)/随机存取存储器(RAM,Random Access Memory)、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本公开各个实施例该的方法。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述模块分别位于多个处理器中。
本公开的实施例还提供了一种计算机存储介质。可选地,在本实施例中,上述计算机存储介质可以被设置为存储用于执行以下步骤的程序代码:
S1,设置该上行随机接入的子帧,其中,设置方式包括以下至少之一: 该随机接入的子帧中设置CCA位于该子帧的第一个正交频分复用OFDM符号内,或者,该CCA位于该子帧前N个连续的OFDM符号内,其中,N小于或者等于3;设置随机接入的循环前缀CP从该子帧的第二个OFDM符号开始进行发送,并在发送完该CP之后,发送随机接入序列,或者,该CP从固定的样点处开始发送,其中,该固定样点位于前M个OFDM符号内,M为正整数;
S2,在非授权载波上发送上行随机接入的子帧。
可选地,计算机存储介质还被设置为存储用于执行上述实施例的方法步骤的程序代码。
也就是说,本公开实施例还提供了一种计算机存储介质,所述所述计算机存储介质包括一组指令,当执行所述指令时,引起至少一个处理器执行上述本公开实施例的随机接入的子帧的发送方法。
可选地,在本实施例中,上述计算机存储介质可以包括但不限于:U盘、ROM、RAM、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
可选地,在本实施例中,处理器根据计算机存储介质中已存储的程序代码执行上述实施例的方法步骤。
可选地,本实施例中的具体示例可以参考上述实施例及可选实施方式中所描述的示例,本实施例在此不再赘述。
显然,本领域的技术人员应该明白,上述的本公开的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模 块或步骤制作成单个集成电路模块来实现。这样,本公开不限制于任何特定的硬件和软件结合。
以上所述仅为本公开的优选实施例而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。
工业实用性
通过本公开实施例,在非授权载波上发送上行随机接入的子帧,其中,该上行随机接入的子帧的设置方式包括以下至少之一:随机接入的子帧中设置CCA位于该子帧的第一个OFDM符号内,或者,该CCA位于该子帧前N个连续的OFDM符号内,其中,N小于或者等于3;设置随机接入序列的CP从该子帧的第二个OFDM符号开始进行发送,并在发送完该CP之后,发送该随机接入序列,或者,该CP从固定的样点处开始发送,其中,该固定样点位于前M个OFDM符号内,M为正整数,完善了LAA系统中的上行随机接入。

Claims (26)

  1. 一种随机接入的子帧的发送方法,包括:
    在非授权载波上发送上行随机接入的子帧,其中,所述上行随机接入的子帧的设置方式包括以下至少之一:
    随机接入的子帧中设置空闲信道评估位于所述子帧的第一个正交频分复用符号内,或者,所述空闲信道评估位于所述子帧前N个连续的正交频分复用符号内,其中,N小于或者等于3;
    设置随机接入序列的循环前缀从所述子帧的第二个正交频分复用符号开始进行发送,并在发送完所述循环前缀之后,发送所述随机接入序列,或者,所述循环前缀从固定的样点处开始发送,其中,所述固定样点位于前M个正交频分复用符号内,M为正整数。
  2. 根据权利要求1所述的方法,其中,所述设置随机接入序列的循环前缀从所述子帧的第二个正交频分复用符号开始进行发送,并在发送完所述循环前缀之后,发送所述随机接入序列,包括:在所述第二个正交频分复用符号开始进行发送为在所述子帧内的第2193样点开始发送,且所述循环前缀的长度为3168个样点,在发送完所述循环前缀之后,发送所述随机接入序列,所述随机接入序列的长度为24576个样点,并且发送完所述随机接入序列之后,将所述子帧除去所述空闲信道评估、所述随机接入序列以及所述循环前缀之后的时间设置为保护间隔,所述保护间隔的长度为784个样点,其中,所述子帧的长度为30720个样点;
    或者,
    所述设置随机接入序列的循环前缀从所述子帧的第二个正交频分复用符号开始进行发送,并在发送完所述循环前缀之后,发送所述随机接入序列,包括:所述子帧中前2192个样点用于所述空闲信道评估,所述空闲信道评估之后的2072个样点用于所述循环前缀,所述循环前缀之后的24576 个样点用于所述随机接入序列,将所述子帧除去所述空闲信道评估、所述随机接入序列以及所述循环前缀之后剩余的样点用于保护间隔,所述保护间隔为1880个样点;
    或者,所述设置随机接入序列的循环前缀从所述子帧的第二个正交频分复用符号开始进行发送,并在发送完所述循环前缀之后,发送所述随机接入序列,包括:所述子帧中前2192个样点用于所述空闲信道评估,所述空闲信道评估之后的976个样点用于所述循环前缀,所述循环前缀之后的24576个样点用于所述随机接入序列,将所述子帧除去所述空闲信道评估、所述随机接入序列以及所述循环前缀之后剩余的样点用于保护间隔,所述保护间隔为2976个样点。
  3. 根据权利要求2所述的方法,其中,
    设置所述空闲信道评估位于所述子帧中第一个正交频分复用符号中,其中,所述空闲信道评估检测为单次空闲信道评估检测,且时长为t时,所述空闲信道评估总是位于所述第一个正交频分复用符号的末尾t时长内。
  4. 根据权利要求2所述的方法,其中,
    设置所述空闲信道评估位于所述子帧中第一个正交频分复用符号中,其中,所述空闲信道评估检测为单次空闲信道评估检测且时长为t时,所述空闲信道评估位于所述第一个正交频分复用符号内的任意位置,当所述空闲信道评估检测成功获得非授权载波使用权后,发送占用信号直至所述随机接入序列的循环前缀起始发送样点处。
  5. 根据权利要求4所述的方法,其中,
    所述占用信号为延长的随机接入序列的循环前缀。
  6. 根据权利要求1所述的方法,其中,
    所述随机接入序列和所述随机接入序列对应的循环前缀发送时,采用的子载波间隔为1.25KHz。
  7. 根据权利要求1所述的方法,其中,
    在设置所述随机接入序列对应的循环前缀起始位置为固定的样点,且位于所述子帧的第一个正交频分复用符号内时,所述空闲信道评估位于第一个正交频分复用符号的前t微秒的时长,在所述t微秒的时长之后的样点为所述循环前缀的起始点,且所述循环前缀和所述随机接入序列的长度分别为3168样点和24576样点,所述子帧除去所述空闲信道评估、所述随机接入序列以及所述循环前缀之后剩余的样点为保护间隔。
  8. 根据权利要求1所述的方法,其中,
    当设置所述随机接入的序列的循环前缀从固定的样点作为起始点发送时,当所述空闲信道评估执行成功获得非授权载波使用权的时刻点距离所述循环前缀的起始点存在间隔时,在所述间隔发送占用信号。
  9. 根据权利要求1所述的方法,其中,
    设置在上行随机接入的所述子帧中,前K个样点用于空闲信道评估检测,从第K+1样点固定为所述随机接入序列的循环前缀起始样点,且所述循环前缀的长度为3168个样点,所述循环前缀之后的样点为随机接入序列的样点,所述随机接入序列的长度为24576个样点,其中,K为上行随机接入对应的单次空闲信道评估检测的时长。
  10. 根据权利要求9所述的方法,其中,
    在K取值为768的情况下,所述子帧的保护间隔为2208个样点。
  11. 根据权利要求1所述的方法,其中,
    设置在上行随机接入的所述子帧中,前H个样点用于空闲信道评估检测,从第H+1样点固定为所述随机接入序列的循环前缀起始样点,所述循环前缀之后为所述随机接入序列,所述随机接入序列的长度为24576个样点,所述循环前缀之后是保护间隔,所述保护间隔的长度为2976个样点,其中,H为上行随机接入对应的单次空闲信道评估检测的时长。
  12. 根据权利要求11所述的方法,其中,
    在H取值为768的情况下,所述循环前缀的长度为2400个样点。
  13. 根据权利要求1所述的方法,其中,
    设置上行随机接入的所述子帧中,所述子帧包括:从所述子帧末尾向前依次为:保护间隔,随机接入序列,循环前缀。
  14. 根据权利要求13所述的方法,其中,所述保护间隔的长度为Q1个样点,所述随机接入序列的长度为24576个样点,所述循环前缀长度为Q2个样点,所述子帧除去所述保护间隔、所述随机接入序列以及所述循环前缀之后,所述子帧的剩余样点为空闲信道评估执行区间。
  15. 根据权利要求14述的方法,其中,
    Q1取值为288,Q2取值为288,所述空闲信道评估执行区间为:
    30720-288-288-24576=5568个样点。
  16. 根据权利要求1所述的方法,其中,
    设置上行随机接入的所述子帧中,固定所述随机接入序列对应的循环前缀起始样点为第Q3+1样点,所述循环前缀之后为所述随机接入序列,其中,所述循环前缀的长度为Q4个样点,所述随机接入序列的长度为24576个样点,所述子帧的样点中除去所述空闲信道评估、所述随机接入序列以及所述循环前缀之后的剩余样点为保护间隔,其中,Q3根据预留给所述空闲信道评估执行位置的时长来确定。
  17. 根据权利要求16所述的方法,其中,
    Q4取值为288,所述空闲信道评估放置在所述子帧的前部,所述空闲信道评估执行位置的时长为5568个样点,Q3为5568。
  18. 根据权利要求1所述的方法,其中,
    设置上行随机接入的所述子帧中,固定所述随机接入序列对应的循环前缀起始样点为第Q5+1,所述循环前缀之后为所述随机接入序列,其中, 所述循环前缀的长度为Q6个样点,所述随机接入序列的长度为24576个样点,所述子帧除去所述空闲信道评估、所述随机接入序列以及所述循环前缀之后,剩余样点为保护间隔。
  19. 根据权利要求18所述的方法,其中,
    所述保护间隔为576个样点,所述空闲信道评估位于所述子帧中前2400个样点,Q5取值为2400,Q6取值为3168。
  20. 一种随机接入的子帧的发送装置,包括:
    发送模块,配置为在非授权载波上发送上行随机接入的子帧,其中,所述上行随机接入的子帧的设置方式包括以下至少之一:
    随机接入的子帧中设置空闲信道评估位于所述子帧的第一个正交频分复用符号内,或者,所述空闲信道评估位于所述子帧前N个连续的正交频分复用符号内,其中,N小于或者等于3;
    设置随机接入序列的循环前缀从所述子帧的第二个正交频分复用符号开始进行发送,并在发送完所述循环前缀之后,发送所述随机接入序列,或者,所述循环前缀从固定的样点处开始发送,其中,所述固定样点位于前M个正交频分复用符号内,M为正整数。
  21. 根据权利要求20所述的装置,其中,所述设置模块,配置为:
    在所述第二个正交频分复用符号开始进行发送为在所述子帧内的第2193样点开始发送,且所述循环前缀的长度为3168个样点,在发送完所述循环前缀之后,发送所述随机接入序列,所述随机接入序列的长度为24576个样点,并且发送完所述随机接入序列之后,将所述子帧除去所述空闲信道评估、所述随机接入序列以及所述循环前缀之后的时间设置为保护间隔,所述保护间隔的长度为784个样点,其中,所述子帧的长度为30720个样点;
    或者,
    所述子帧中前2192个样点用于所述空闲信道评估,所述空闲信道评估之后的2072个样点用于所述循环前缀,所述循环前缀之后的24576个样点用于所述随机接入序列,将所述子帧除去所述空闲信道评估、所述随机接入序列以及所述循环前缀之后剩余的样点用于保护间隔,所述保护间隔为1880个样点;
    或者,
    所述子帧中前2192个样点用于所述空闲信道评估,所述空闲信道评估之后的976个样点用于所述循环前缀,所述循环前缀之后的24576个样点用于所述随机接入序列,将所述子帧除去所述空闲信道评估、所述随机接入序列以及所述循环前缀之后剩余的样点用于保护间隔,所述保护间隔为2976个样点。
  22. 根据权利要求20所述的装置,其中,所述设置模块在设置所述随机接入序列对应的循环前缀起始位置为固定的样点,且位于所述子帧的第一个正交频分复用符号内时,所述空闲信道评估位于第一个正交频分复用符号的前t微秒的时长,在所述t微秒的时长之后的样点为所述循环前缀的起始点,且所述循环前缀和所述随机接入序列的长度分别为3168样点和24576样点,所述子帧除去所述空闲信道评估、所述随机接入序列以及所述循环前缀之后剩余的样点为保护间隔。
  23. 根据权利要求20所述的装置,其中,所述设置模块设置在上行随机接入的所述子帧中,前K个样点用于空闲信道评估检测,从第K+1样点固定为所述随机接入序列的循环前缀起始样点,且所述循环前缀的长度为3168个样点,所述循环前缀之后的样点为随机接入序列的样点,所述随机接入序列的长度为24576个样点,其中,K为上行随机接入对应的单次空闲信道评估检测的时长。
  24. 根据权利要求20所述的装置,其中,所述设置模块设置在上行随 机接入的所述子帧中,前H个样点用于空闲信道评估检测,从第H+1样点固定为所述随机接入序列的循环前缀起始样点,所述循环前缀之后为所述随机接入序列,所述随机接入序列的长度为24576个样点,所述循环前缀之后是保护间隔,所述保护间隔的长度为2976个样点,其中,H为上行随机接入对应的单次空闲信道评估检测的时长。
  25. 根据权利要求20所述的装置,其中,所述设置模块设置上行随机接入的所述子帧中,固定所述随机接入序列对应的循环前缀起始样点为第Q3+1样点,所述循环前缀之后为所述随机接入序列,其中,所述循环前缀的长度为Q4个样点,所述随机接入序列的长度为24576个样点,所述子帧的样点中除去所述空闲信道评估、所述随机接入序列以及所述循环前缀之后的剩余样点为保护间隔,其中,Q3根据预留给所述空闲信道评估执行位置的时长来确定。
  26. 一种计算机存储介质,所述计算机存储介质包括一组指令,当执行所述指令时,引起至少一个处理器执行如权利要求1至19任一项所述的随机接入的子帧的发送方法。
PCT/CN2017/077457 2016-03-30 2017-03-21 随机接入的子帧的发送方法、装置及计算机存储介质 WO2017167066A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610194904.1 2016-03-30
CN201610194904.1A CN107294671B (zh) 2016-03-30 2016-03-30 随机接入的子帧的发送方法及装置

Publications (1)

Publication Number Publication Date
WO2017167066A1 true WO2017167066A1 (zh) 2017-10-05

Family

ID=59962603

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/077457 WO2017167066A1 (zh) 2016-03-30 2017-03-21 随机接入的子帧的发送方法、装置及计算机存储介质

Country Status (2)

Country Link
CN (1) CN107294671B (zh)
WO (1) WO2017167066A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111818645B (zh) * 2019-07-24 2023-09-22 维沃移动通信有限公司 一种信息传输方法、网络设备及终端
CN114501670A (zh) * 2020-11-12 2022-05-13 中国联合网络通信集团有限公司 免调度资源使用方法、装置及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101299873A (zh) * 2007-04-30 2008-11-05 北京三星通信技术研究有限公司 配置随机接入信道的方法
US20130051323A1 (en) * 2011-08-24 2013-02-28 Electronics And Telecommunications Research Institute Method for collision avoidance in wireless networks and apparatus for the same
CN103026774A (zh) * 2010-07-28 2013-04-03 Abb研究有限公司 使用冲突避免协议的无线通信方法和系统
US20150049712A1 (en) * 2013-08-16 2015-02-19 Qualcomm Incorporated Uplink Procedures For LTE/LTE-A Communication Systems With Unlicensed Spectrum

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8917159B2 (en) * 2005-08-19 2014-12-23 CLARKE William McALLISTER Fully secure item-level tagging
CN101141187B (zh) * 2007-10-12 2013-01-16 中兴通讯股份有限公司 时分双工模式下正交频分复用技术的帧的生成方法
CN105162508B (zh) * 2010-04-01 2018-05-29 Lg电子株式会社 在无线接入系统中收发信道状态信息报告的方法和装置
ES2797449T3 (es) * 2011-11-01 2020-12-02 Lg Electronics Inc Método y aparato para recibir ACK/NACK en sistema de comunicación inalámbrica
US9713035B2 (en) * 2013-05-20 2017-07-18 Qualcomm Incorporated Beacon transmission over unlicensed spectrum

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101299873A (zh) * 2007-04-30 2008-11-05 北京三星通信技术研究有限公司 配置随机接入信道的方法
CN103026774A (zh) * 2010-07-28 2013-04-03 Abb研究有限公司 使用冲突避免协议的无线通信方法和系统
US20130051323A1 (en) * 2011-08-24 2013-02-28 Electronics And Telecommunications Research Institute Method for collision avoidance in wireless networks and apparatus for the same
US20150049712A1 (en) * 2013-08-16 2015-02-19 Qualcomm Incorporated Uplink Procedures For LTE/LTE-A Communication Systems With Unlicensed Spectrum

Also Published As

Publication number Publication date
CN107294671A (zh) 2017-10-24
CN107294671B (zh) 2021-07-30

Similar Documents

Publication Publication Date Title
US10536973B2 (en) Preamble transmission method and apparatus
US11711846B2 (en) Multiple starting and ending positions for scheduled downlink transmission on unlicensed spectrum
US10917916B2 (en) Method and device for transmitting PRACH signals in unauthorized spectrum
US10772135B2 (en) Two-step contention-based random access over radio resources in LAA
EP2294887B1 (en) Determining preamble sequences for random access
WO2018127223A1 (zh) 一种数据传输方法、装置及系统
US11963233B2 (en) Method and device for transmitting a random access message, and a storage medium
WO2017024988A1 (zh) 信息处理方法、装置及系统
EP3226638A1 (en) Message transmission method and apparatus
EP3372040B1 (en) Apparatus and method for listen before talk-based random access with partial subframes
WO2017008508A1 (zh) 基于非授权载波执行随机接入的方法及装置
WO2017166255A1 (zh) 发送物理随机接入信道prach的方法、设备及系统
US20190182003A1 (en) Data transmission method on unlicensed spectrum, and device
US9807656B2 (en) Method and UE for performing random access to base station, and method and base station for establishing connection with UE
US11770718B2 (en) Unlicensed channel sharing method and device, storage medium, terminal and base station
JP2019512949A (ja) 信号伝送方法、端末デバイス、アクセスネットワークデバイスおよび信号伝送システム
JP7174859B2 (ja) ランダムアクセス方法、装置、及びシステム
WO2018113570A1 (zh) 一种随机接入方法及设备
WO2017167066A1 (zh) 随机接入的子帧的发送方法、装置及计算机存储介质
US20170127447A1 (en) Station (sta) and method for contention based neighborhood awareness network (nan) communication
KR20210037567A (ko) 랜덤 액세스 신호를 전송하기 위한 방법 및 장치, 그리고 컴퓨터 판독 가능 매체
CN107734565B (zh) 系统信息的处理方法及装置
TW201826868A (zh) 處理隨機存取程序的方法及裝置
WO2017049631A1 (zh) 一种通信信号的处理方法、装置及通信服务器

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17773096

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17773096

Country of ref document: EP

Kind code of ref document: A1