WO2017000548A1 - 一种语音数据动态延迟调度方法及基站 - Google Patents

一种语音数据动态延迟调度方法及基站 Download PDF

Info

Publication number
WO2017000548A1
WO2017000548A1 PCT/CN2016/071792 CN2016071792W WO2017000548A1 WO 2017000548 A1 WO2017000548 A1 WO 2017000548A1 CN 2016071792 W CN2016071792 W CN 2016071792W WO 2017000548 A1 WO2017000548 A1 WO 2017000548A1
Authority
WO
WIPO (PCT)
Prior art keywords
scheduling
voice data
semi
dynamic delay
dynamic
Prior art date
Application number
PCT/CN2016/071792
Other languages
English (en)
French (fr)
Inventor
王桂英
曹思萌
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Priority to US15/740,000 priority Critical patent/US10342025B2/en
Priority to EP16816913.4A priority patent/EP3319386B1/en
Priority to JP2017568106A priority patent/JP6482689B2/ja
Priority to KR1020187002968A priority patent/KR101892503B1/ko
Publication of WO2017000548A1 publication Critical patent/WO2017000548A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0268Traffic management, e.g. flow control or congestion control using specific QoS parameters for wireless networks, e.g. QoS class identifier [QCI] or guaranteed bit rate [GBR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • the invention relates to a voice data dynamic delay scheduling method and a base station, and belongs to the technical field of communication.
  • LTE Long Term Evolution
  • PRB Physical Source Block
  • Semi-persistent scheduling is a scheduling method that can reduce signaling overhead and increase system capacity for real-time services such as VoLTE.
  • the output rules of voice packets are shown in Figure 1.
  • no voice packets need to be scheduled.
  • dynamic scheduling of other data services can be performed, for example, data uploading protocol (FTP) or user datagram protocol (UDP); during the call phase, when the user talks, A sample packet will be generated every 20ms. Therefore, the generation of user voice messages is predictable.
  • semi-persistent scheduling can be adopted to avoid dynamic scheduling every time, so that about 20% of the voice transmission capability can be obtained.
  • In the intermittent phase of the call theoretically every 160 ms. A background sound symbol is generated once, and no voice data is scheduled.
  • the dynamic scheduling mode is used to determine whether the switch of the semi-persistent scheduling mode is enabled, and whether the user equipment (User Equipment, abbreviated as UE) supports the semi-persistent scheduling mode, if the switch of the semi-persistent scheduling mode is turned on.
  • the UE supports a semi-persistent scheduling mode. Then, the UE is configured to perform scheduling in a semi-persistent scheduling manner; otherwise, the dynamic scheduling mode is used for scheduling.
  • the dynamic scheduling of the uplink and downlink modulation and coding scheme (MCS) is in the range of 0 to 28, and the downlink control information (Downlink Control Information, abbreviated as DCI) is sent for each scheduling.
  • MCS uplink and downlink modulation and coding scheme
  • DCI Downlink Control Information
  • the physical downlink control channel (Physical Downlink Control Channel, abbreviated as PDCCH) has a large resource overhead.
  • the MCS level of the semi-persistent scheduling is in the range of 0 to 15.
  • the DCI is sent only when the semi-persistent scheduling is activated or released.
  • the PDCCH overhead is small.
  • the dynamic scheduling level is 28, and the resource block size scheduled is 11064.
  • the semi-persistent scheduling MCS level is 15, the scheduled resource block size is 4264, and the dynamically scheduled resource block size is almost 2.5 times that of semi-persistent scheduling. It can be seen that both dynamic scheduling and semi-persistent scheduling have advantages and disadvantages.
  • Dynamic scheduling can schedule higher modulation coding levels, but PDCCH resource overhead is large, semi-persistent scheduling has minimum PDCCH resource overhead, but the highest MCS level of scheduling is 15.
  • Both the dynamic scheduling mode and the semi-persistent scheduling mode are simple to implement, but the flexibility is poor, and the advantages of the semi-persistent scheduling mode and the dynamic scheduling mode cannot be utilized at the same time, and the PDCCH resources are not allocated reasonably, and the overall capacity of the base station is reduced.
  • the technical problem to be solved by the present invention is how to improve the throughput of the base station while reducing the control channel resource overhead.
  • the present invention provides a voice data dynamic delay scheduling method and a base station with a higher modulation coding level and a smaller PDCCH resource overhead.
  • the present invention provides a voice data dynamic delay scheduling method, including the following steps:
  • the scheduling is performed in a semi-persistent scheduling manner
  • the semi-persistent scheduling mode is not enabled or the UE does not support the semi-persistent scheduling mode, then the judgment is made. Whether the dynamic delay scheduling mode is enabled, if yes, two consecutive voice data packets are bundled in a dynamic delay scheduling manner for scheduling; otherwise, scheduling is performed in a dynamic scheduling manner.
  • the bundling of two consecutive voice data packets in a dynamic delay scheduling manner for scheduling includes:
  • the two voice data packets are scheduled in the reserved buffer footprint.
  • the attribute information of the voice data packet includes:
  • the size of the voice packet, whether the voice packet has header compression, and the encoding format of the voice packet is the size of the voice packet, whether the voice packet has header compression, and the encoding format of the voice packet.
  • the scheduling the two voice data packets in the reserved buffer footprint includes:
  • the uplink dynamic delay scheduling it is determined whether there is uplink data with an LCG equal to 1, and if so, the uplink data is inserted into the uplink scheduling queue, and the buffer reserved space reserved for the uplink is registered;
  • the downlink dynamic delay scheduling it is determined whether there is downlink data with a QCI equal to 1, and if so, the downlink data is inserted into the downlink scheduling queue, and the buffer reserved space reserved for the downlink is registered.
  • the method further includes:
  • the MAC schedules the voice data packet by using a dynamic scheduling manner.
  • the present invention also provides a base station, including:
  • the judging module determines whether the semi-persistent scheduling mode is enabled, and whether the UE supports the semi-persistent scheduling mode;
  • Semi-persistent scheduling module for semi-persistent scheduling mode and UE supporting semi-persistent scheduling In the mode, the scheduling is performed in a semi-persistent scheduling manner;
  • the dynamic delay scheduling module is configured to determine whether the dynamic delay scheduling mode is enabled when the semi-persistent scheduling mode is not enabled or the UE does not support the semi-persistent scheduling mode; if yes, the two consecutive voice data packets are bundled in a dynamic delay manner for scheduling; otherwise , scheduling in dynamic scheduling mode.
  • the dynamic delay scheduling module comprises:
  • a first acquiring submodule configured to acquire two voice data packets that arrive consecutively within a preset time interval
  • a second obtaining submodule configured to obtain attribute information of the voice data packet from the two voice data packets obtained by the first acquiring submodule and transmit the attribute information to the MAC;
  • the attribute information of the voice data packet obtained by the second obtaining sub-module is reserved in the cache for a buffer space of a certain size
  • a scheduling submodule configured to schedule the two voice data packets in the reserved buffer footprint.
  • the scheduling submodule comprises:
  • the uplink dynamic delay scheduling sub-module is configured to determine whether there is uplink data with an LCG equal to 1 in the uplink dynamic delay scheduling, and if yes, insert the uplink data into the uplink scheduling queue, and register the buffer reserved space of the uplink reservation. ;
  • the downlink dynamic delay scheduling sub-module is configured to determine whether there is downlink data with a QCI equal to 1 during downlink dynamic delay scheduling, and if yes, insert the downlink data into a downlink scheduling queue, and register a downlink reserved buffer. take up space.
  • the attribute information of the voice data packet includes:
  • the size of the voice packet, whether the voice packet has header compression, and the encoding format of the voice packet is the size of the voice packet, whether the voice packet has header compression, and the encoding format of the voice packet.
  • the base station further includes:
  • the dynamic scheduling module the MAC schedules the voice data packet by using a dynamic scheduling manner.
  • the two voice data packets that are continuously arrived are bundled as a set of voice data and are scheduled by one PDCCH, which not only reduces the overhead of half of the PDCCH resources, but also maintains a high level. Modulation coding level.
  • the invention improves the flexibility of voice service scheduling, facilitates reasonable allocation of PDCCH resources, and improves user capacity of the base station.
  • FIG. 1 is a schematic diagram showing an output rule of a voice data packet in the prior art
  • 2(a) to 2(c) are schematic flowcharts showing a dynamic delay scheduling method of the first embodiment
  • FIG. 3 is a schematic structural diagram of a dynamic delay scheduling base station according to Embodiment 2.
  • the present invention relates to a voice data dynamic delay scheduling method, including:
  • step S1 determining whether the semi-persistent scheduling mode is enabled, whether the UE supports the semi-persistent scheduling mode; if yes, executing step S2 in sequence; otherwise, jumping to step S3;
  • step S3 determining whether the dynamic delay scheduling mode is enabled, if so, executing step S4 sequentially; otherwise, jumping to step S5;
  • S5 Scheduling in a dynamic scheduling manner.
  • the semi-persistent scheduling mode is used for scheduling; otherwise, The dynamic delay scheduling mode is adopted; if the dynamic delay scheduling mode is not enabled, the dynamic scheduling mode is used for scheduling.
  • the dynamic delay scheduling mode is used for scheduling, the two voice packets that are consecutively arrived are bundled as a set of voice data for scheduling, and scheduling by one PDCCH not only reduces the overhead of half of the PDCCH resources, but also maintains a high level. Modulation coding level.
  • step S4 specifically includes:
  • S401 Acquire two voice data packets that arrive consecutively within a preset time interval
  • S402 Acquire attribute information of two voice data packets and transmit the information to a medium access control layer (Media Access Control, abbreviated as MAC);
  • Media Access Control abbreviated as MAC
  • S403 Reserve a buffer of a certain size in the cache according to the attribute information of the two voice data packets;
  • the Packet Data Convergence Protocol acquires attribute information of two voice data packets.
  • the attribute information includes: the size of the voice data packet, whether the voice data packet has header compression, and the encoding format of the voice data packet.
  • the attribute information of a voice data packet is transmitted through the IPV4 protocol, and the header compressed data encoding format is narrowband transmission; the attribute information of another voice data packet is transmitted through the IPV6 protocol, and the headless compressed data encoding format is broadband transmission. .
  • the preset time interval is preferably 40 ms. Since the sampling time of one voice data packet is 20 ms, the method bundles two consecutive voice packets in time, so the preset time interval is 40 ms.
  • the voice data packet obtained by the voice data dynamic delay scheduling method in this embodiment does not exceed two voice data packets at a time, because more than two will cause the voice data packet delay to be too large, which affects the voice service perception.
  • step S404 includes:
  • S4041 In the uplink dynamic delay scheduling, it is determined whether there is uplink data with an LCG (Logical Channel Group) equal to 1, and if yes, the uplink number is According to the insertion into the uplink scheduling queue, and register the buffer reserved space of the uplink reservation;
  • LCG Logical Channel Group
  • S4042 In the downlink dynamic delay scheduling, determine whether there is downlink data with a QCI (QoS Class Service) equal to 1, and if yes, insert the downlink data into the downlink scheduling queue, and register the buffer of the downlink reservation. take up space.
  • QCI QoS Class Service
  • the dynamic delay scheduling is divided into uplink dynamic delay scheduling and downlink dynamic delay scheduling.
  • the uplink dynamic delay scheduling process since the scheduled voice data packet is used, when the uplink dynamic delay scheduling voice is in an active state, it is determined whether The uplink data with the LCG equal to 1 indicates that the data type of the uplink channel transmission is the voice data type, and the buffer space is registered once, which is the size of two voice data packets, used to schedule the bundled two voice data packets;
  • the QCI of the downlink dynamic delay scheduled voice data packet is set to 1, indicating that the data type of the downlink channel transmission is a voice data type.
  • step S1 the method further includes:
  • the MAC uses a dynamic scheduling manner to schedule voice data packets, which are not shown in the figure.
  • the sent voice data packet adopts a dynamic scheduling manner.
  • the voice data dynamic delay scheduling method provided by the present invention, two consecutive voice data packets are bundled as a set of voice data for scheduling, and scheduling is performed through one PDCCH, and a high modulation code is maintained. In the case of a tier, the overhead of PDCCH resources is reduced by half.
  • the invention improves the flexibility of voice service scheduling, facilitates the reasonable allocation of channel resources, and improves the user capacity of the base station.
  • the invention also provides a base station, as shown in FIG. 3, comprising:
  • the judging module determines whether the semi-persistent scheduling mode is enabled, and whether the UE supports the semi-persistent scheduling mode;
  • Semi-persistent scheduling module for semi-persistent scheduling mode and UE supporting semi-persistent scheduling In the mode, the scheduling is performed in a semi-persistent scheduling manner;
  • the dynamic delay scheduling module is configured to determine whether the dynamic delay scheduling mode is enabled when the semi-persistent scheduling mode is not enabled. If yes, the two consecutive voice data packets are bundled in a dynamic delay scheduling manner for scheduling; otherwise, scheduling is performed in a dynamic scheduling manner. .
  • the semi-persistent scheduling mode is used for scheduling only when the semi-persistent scheduling mode is enabled, and the UE supports the semi-persistent scheduling mode; otherwise, the dynamic delay scheduling mode is adopted; if the dynamic delay scheduling mode is not When enabled, scheduling is performed using dynamic scheduling.
  • the dynamic delay scheduling mode is used for scheduling, the two voice packets that are consecutively arrived are bundled as a set of voice data for scheduling, and scheduling by one PDCCH not only reduces the overhead of half of the PDCCH resources, but also maintains a high level. Modulation coding level.
  • the dynamic delay scheduling module includes:
  • a first acquiring submodule configured to acquire two voice data packets that arrive consecutively within a preset time interval
  • a second obtaining submodule configured to obtain attribute information of the voice data packet from the two voice data packets obtained by the first acquiring submodule and transmit the attribute information to the MAC;
  • the attribute information of the voice data packet obtained by the second obtaining sub-module is reserved in the cache for a buffer space of a certain size
  • a scheduling submodule configured to schedule the two voice data packets in the reserved buffer footprint.
  • the Packet Data Convergence Protocol acquires attribute information of two voice data packets.
  • the attribute information includes: the size of the voice data packet, whether the voice data packet has header compression, and the encoding format of the voice data packet. In order to reserve a buffer space of a certain size according to the attribute information of the voice data packet.
  • the preset time interval is 40 ms, and since the sampling time of one voice data packet is 20 ms, the method bundles two consecutive voice packets in time. The scheduling is performed, so the preset time interval is 40ms.
  • the voice data packet obtained by the voice data dynamic delay scheduling method in this embodiment does not exceed two voice data packets at a time, because more than two will cause the voice data packet delay to be too large, which affects the voice service perception.
  • the scheduling submodule includes:
  • the uplink dynamic delay scheduling sub-module is configured to determine whether there is uplink data with an LCG equal to 1 in the uplink dynamic delay scheduling, and if yes, insert the uplink data into the uplink scheduling queue, and register the buffer reserved space of the uplink reservation. ;
  • the downlink dynamic delay scheduling sub-module is configured to determine whether there is downlink data with a QCI equal to 1 in the downlink dynamic delay scheduling, and if yes, insert the downlink data into the downlink scheduling queue, and register the buffer reserved space of the downlink reservation. .
  • the dynamic delay scheduling is divided into an uplink dynamic delay scheduling and a downlink dynamic delay scheduling.
  • the uplink dynamic delay scheduling process since the scheduled voice data packet is used, when the uplink dynamic delay scheduling voice is in an active state, it is determined whether there is The uplink data of the LCG is equal to 1, indicating that the data type of the uplink channel transmission is a voice data type, and then registering the buffer space for two voice data packet sizes to schedule the bundled two voice data packets;
  • the QCI of the downlink dynamic delay scheduled voice data packet is set to 1, indicating that the data type of the downlink channel transmission is a voice data type.
  • Dynamic scheduling module uses dynamic scheduling to schedule voice packets.
  • the sent voice data packet adopts a dynamic scheduling manner.
  • the voice data dynamic delay scheduling method and the base station bundle the two consecutive voice data packets as a set of voice data for scheduling, and perform scheduling through one PDCCH, while maintaining a high modulation and coding level.
  • the cost of PDCCH resources is reduced by half.
  • the invention improves the flexibility of voice service scheduling, facilitates the reasonable allocation of channel resources, and improves the user capacity of the base station.
  • embodiments of the present application can be provided as a method, system, or computer program product.
  • the present application can take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment in combination of software and hardware.
  • the application can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.
  • the orientation or positional relationship of the terms “upper”, “lower” and the like is based on the orientation or positional relationship shown in the drawings, and is merely for the convenience of the description of the invention and the simplified description, rather than indicating or implying that the device or component referred to must be It is to be understood that the invention is not limited by the specific orientation and construction and operation.
  • the terms “mounted,” “connected,” and “connected” are used in a broad sense, and may be, for example, a fixed connection, a detachable connection, or an integral connection; it may be a mechanical connection, It can also be an electrical connection; it can be directly connected, or it can be connected indirectly through an intermediate medium, which can be the internal connection of two components.
  • the specific meanings of the above terms in the present invention can be understood on a case-by-case basis.
  • the voice data dynamic delay scheduling method and the base station provided by the present invention bundle two consecutive voice data packets as a set of voice data for scheduling, and perform scheduling by using one PDCCH, while maintaining a high modulation and coding level,
  • the overhead of PDCCH resources is reduced by half.
  • the invention improves the flexibility of voice service scheduling, is beneficial to the reasonable allocation of channel resources, improves the user capacity of the base station, and has industrial applicability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明涉及一种语音数据动态延迟调度方法及基站,其中,该动态延迟调度调度方法包括如下步骤:判断半持续调度方式是否开启、UE是否支持半持续调度方式;若半持续调度方式开启且UE支持半持续调度方式,则以半持续调度方式进行调度;若半持续调度方式未开启或者UE不支持半持续调度方式,则判断动态延迟调度方式是否开启,若是,则以动态延迟调度方式捆绑两个连续的语音数据包进行调度;否则,以动态调度方式进行调度。通过采用本发明提供的动态延迟调度方法及基站,减少一半的PDCCH资源的开销,同时保持了较高的调制编码等级,而且提高了语音业务调度的灵活性,有利于信道资源的合理分配,提高基站的用户容量。

Description

一种语音数据动态延迟调度方法及基站 技术领域
本发明涉及一种语音数据动态延迟调度方法及基站,属于通信技术领域。
背景技术
长期演进(Long Term Evolution,缩写为LTE)是一种基于全IP的无线通信技术,以其高速的上下行数据传输速率、灵活的带宽配置、简化的网络体系结构,成为4G标准最强有力的竞争者。LTE无线接口的资源是共享的,信令和数据同时竞争这些共享的资源来进行传输。目前可能用于LTE语音(Voice over LTE,缩写为VoLTE)业务的无线资源调度方案有动态调度、半持续调度和组调度等。动态调度是一种通用的调度方法,对每一个无线资源调度的基本单位物理资源块(Physical Source Block,缩写为PRB),调度器都根据用户设备的资源请求来分配资源。半持续调度是一种针对VoLTE等实时业务能减小信令开销、增大系统容量的调度方法。
语音数据包的输出规则如图1所示。在无通话阶段,没有语音包需要调度,此时可进行其他数据业务的动态调度,例如,文件上传协议(FTP)或用户数据报协议(UDP)等数据业务;在通话阶段,用户通话时,会每20ms产生一个采样包。所以用户语音报文的产生是可预测的,此时可以采用半持续调度,避免每次都进行动态调度,从而大概可以获得20%左右的语音传输能力提升;在通话间歇阶段,理论上每160ms产生一次背景音符号,没有语音数据调度。语音业务开始时,采用动态调度方式进行调度,判断半持续调度方式的开关是否为打开,且用户终端(User Equipment,缩写为UE)是否支持半持续调度方式,若半持续调度方式的开关打开且UE支持半持续调度方式, 则配置UE以半持续调度方式进行调度;否则采用动态调度方式进行调度。根据3GPP协议,动态调度的上下行调制与编码策略(Modulation and Coding Scheme,缩写为MCS)等级范围为0~28,每次调度都要下发下行控制信息(Downlink Control Information,缩写为DCI),物理下行控制信道(Physical Downlink Control Channel,缩写为PDCCH)资源开销大。半持续调度的MCS等级范围为0~15,只需在每次半持续调度激活或释放时下发DCI,PDCCH开销较小。在信道条件极好时,同样调度15个PRB,动态调度等级为28,其所调度的资源块大小为11064。而半持续调度的MCS等级为15,调度的资源块大小为4264,动态调度的资源块大小几乎是半持续调度的2.5倍。可见,动态调度与半持续调度各有优劣,动态调度可以调度更高的调制编码等级,但是PDCCH资源开销大,半持续调度有最小的PDCCH资源开销,但是调度的最高MCS等级为15。无论是动态调度方式还是半持续调度方式均实现简单,但灵活性差,无法同时发挥半持续调度方式和动态调度方式的优势,对PDCCH资源未作出合理分配,降低了基站的总体容量。
发明内容
本发明所要解决的技术问题是如何在减少控制信道资源开销的同时,提高基站的吞吐量。
为实现上述的发明目的,本发明提出了一种调制编码等级较高,而PDCCH资源开销较小的语音数据动态延迟调度方法及基站。
一方面,本发明提供一种语音数据动态延迟调度方法,包括如下步骤:
判断半持续调度方式是否开启、UE是否支持半持续调度方式;
若半持续调度方式开启且UE支持半持续调度方式,则以半持续调度方式进行调度;
若半持续调度方式未开启或者UE不支持半持续调度方式,则判断 动态延迟调度方式是否开启,若是,则以动态延迟调度方式捆绑两个连续的语音数据包进行调度;否则,以动态调度方式进行调度。
优选地,所述以动态延迟调度方式捆绑两个连续的语音数据包进行调度包括:
获取预设时间间隔内连续到达的两个语音数据包;
获取所述两个语音数据包的属性信息并传输至MAC;
按两个语音数据包的属性信息在缓存中预留一定大小的缓冲区占用空间;
在所述预留的缓冲区占用空间中调度所述两个语音数据包。
优选地,所述语音数据包的属性信息包括:
语音数据包的大小、语音数据包是否有头压缩和语音数据包的编码格式。
优选地,所述在所述预留的缓冲区占用空间中调度所述两个语音数据包包括:
在上行动态延迟调度时,判断是否有LCG等于1的上行数据,若有,则将上行数据插入到上行调度队列中,并注册上行预留的缓冲区占用空间;
在下行动态延迟调度时,判断是否有QCI等于1的下行数据,若有,则将所述下行数据插入到下行调度队列中,并注册下行预留的缓冲区占用空间。
优选地,所述判断半持续调度方式是否开启、UE是否支持半持续调度方式之前还包括:
所述MAC采用动态调度方式调度所述语音数据包。
另一方面,本发明还提供一种基站,包括:
判断模块,判断半持续调度方式是否开启、UE是否支持半持续调度方式;
半持续调度模块,用于半持续调度方式开启且UE支持半持续调度 方式时,以半持续调度方式进行调度;
动态延迟调度模块,用于半持续调度方式未开启或者UE不支持半持续调度方式时,判断动态延迟调度方式是否开启,若是,则以动态延迟方式捆绑两个连续的语音数据包进行调度;否则,以动态调度方式进行调度。
优选地,所述动态延迟调度模块包括:
第一获取子模块,用于获取预设时间间隔内连续到达的两个语音数据包;
第二获取子模块,用于从第一获取子模块得到的两个语音数据包中获取语音数据包的属性信息并传输至MAC;
预留子模块,用于第二获取子模块得到的语音数据包的属性信息在缓存中预留一定大小的缓冲区占用空间;
调度子模块,用于在所述预留的缓冲区占用空间中调度所述两个语音数据包。
优选地,所述调度子模块包括:
上行动态延迟调度子模块,用于在上行动态延迟调度时,判断是否有LCG等于1的上行数据,若有,则将上行数据插入到上行调度队列中,并注册上行预留的缓冲区占用空间;
下行动态延迟调度子模块,用于在下行动态延迟调度时,判断是否有QCI等于1的下行数据,若有,则将所述下行数据插入到下行调度队列中,并注册下行预留的缓冲区占用空间。
优选地,所述语音数据包的属性信息包括:
语音数据包的大小、语音数据包是否有头压缩和语音数据包的编码格式。
优选地,所述基站还包括:
动态调度模块,所述MAC采用动态调度方式调度所述语音数据包。
通过采用本发明提供的动态延迟调度方法及基站,将连续到达的两个语音数据包捆绑作为一组语音数据通过一个PDCCH进行调度,不但减少了一半的PDCCH资源的开销,同时还保持了较高的调制编码等级。本发明提高了语音业务调度的灵活性,有利于PDCCH资源的合理分配,提高了基站的用户容量。
附图说明
通过参考附图会更加清楚的理解本发明的特征和优点,附图是示意性的而不应理解为对本发明进行任何限制,在附图中:
图1示出了现有技术中的语音数据包的输出规则示意图;
图2(a)-图2(c)示出了实施例一的动态延迟调度方法的流程示意图;
图3示出了实施例二的动态延迟调度基站的结构示意图。
具体实施方式
下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。以下实施例用于说明本发明,但并非用来限制本发明的范围。
实施例一
如图2(a)所示,本发明涉及一种语音数据动态延迟调度方法,包括:
S1:判断半持续调度方式是否开启、UE是否支持半持续调度方式;若是,则顺序执行步骤S2;否则,跳转执步骤S3;
S2:以半持续调度方式进行调度;
S3:判断动态延迟调度方式是否开启,若是,则顺序执行步骤S4;否则,跳转执行步骤S5;
S4:以动态延迟方式捆绑两个连续的语音数据包进行调度;
S5:以动态调度方式进行调度。
在本实施例中,仅当半持续调度方式开启,以及UE同时支持半持续调度方式的情况下,才采用半持续调度方式进行调度;否则,采 用动态延迟调度方式;若动态延迟调度方式也没有开启,则采用动态调度方式进行调度。在采用动态延迟调度方式进行调度时,将连续到达的两个语音数据包捆绑作为一组语音数据进行调度,通过一个PDCCH进行调度,不但减少了一半的PDCCH资源的开销,同时还保持了较高的调制编码等级。
在具体实施时,如图2(b)所示,步骤S4具体包括:
S401:获取预设时间间隔内连续到达的两个语音数据包;
S402:获取两个语音数据包的属性信息并传输至介质访问控制层(Media Access Control,缩写为MAC);
S403:按两个语音数据包的属性信息在缓存中预留一定大小的缓冲区占用空间;
S404:在预留的缓冲区占用空间中调度两个语音数据包。
进一步地,分组数据汇聚协议(Packet Data Convergence Protocol,缩写为PDCP)获取两个语音数据包的属性信息。属性信息包括:语音数据包的大小、语音数据包是否有头压缩和语音数据包的编码格式。以便根据语音数据包的属性信息预留一定大小的缓冲区占用空间。例如:一种语音数据包的属性信息为通过IPV4协议传输,有头压缩数据编码格式为窄带传输;另一种语音数据包的属性信息为通过IPV6协议传输,无头压缩数据编码格式为宽带传输。
进一步地,这里预设时间间隔为优选为40ms,由于一个语音数据包的采样时间为20ms,本方法将两个时间上相连续的语音数据包相捆绑进行调度,所以预设时间间隔为40ms。本实施例的语音数据动态延迟调度方法中获取的语音数据包一次不超过两个语音数据包,因为超过两个会导致语音数据包时延过大,影响语音业务感知。
在具体实施时,如图2(c)所示,步骤S404包括:
S4041:在上行动态延迟调度时,判断是否有LCG(Logical Channel Group,逻辑信道组)等于1的上行数据,若有,则将上行数 据插入到上行调度队列中,并注册上行预留的缓冲区占用空间;
S4042:在下行动态延迟调度时,判断是否有QCI(QoS Class Service,QoS类别标识)等于1的下行数据,若有,则将下行数据插入到下行调度队列中,并注册下行预留的缓冲区占用空间。
进一步地,动态延迟调度分为上行动态延迟调度和下行动态延迟调度,在上行动态延迟调度过程中,由于调度的是语音数据包,所以上行动态延迟调度的语音为激活状态时,判断断是否有LCG等于1的上行数据,表示上行信道传输的数据类型为语音数据类型,再注册一次缓冲区占用空间,为两个语音数据包大小,以用来调度捆绑的两个语音数据包;在下行动态延迟调度过程中,将下行动态延迟调度的语音数据包的QCI设置为1,表示下行信道传输的数据类型为语音数据类型。
在本实施例中,在步骤S1之前还包括:
S101:MAC采用动态调度方式进行调度语音数据包,图中未示出。
在具体实施时,在未判断半持续调度方式是否开启、UE是否支持半持续调度方式之前,发来的语音数据包采用动态调度的方式。
综上所述,通过采用本发明提供的语音数据动态延迟调度方法,将连续到达的两个语音数据包捆绑作为一组语音数据进行调度,通过一个PDCCH进行调度,在保持了较高的调制编码等级的情况下,减少了一半的PDCCH资源的开销。本发明提高了语音业务调度的灵活性,有利于信道资源的合理分配,提高了基站的用户容量。
实施例二
本发明还提供一种基站,如图3所示,包括:
判断模块,判断半持续调度方式是否开启、UE是否支持半持续调度方式;
半持续调度模块,用于半持续调度方式开启且UE支持半持续调度 方式时,以半持续调度方式进行调度;
动态延迟调度模块,用于半持续调度方式未开启时,判断动态延迟调度方式是否开启,若是,则以动态延迟调度方式捆绑两个连续的语音数据包进行调度;否则,以动态调度方式进行调度。
在本实施例中,仅当半持续调度方式开启,以及UE同时支持半持续调度方式的情况下,才采用半持续调度方式进行调度;否则,采用动态延迟调度方式;若动态延迟调度方式也没有开启,则采用动态调度方式进行调度。在采用动态延迟调度方式进行调度时,将连续到达的两个语音数据包捆绑作为一组语音数据进行调度,通过一个PDCCH进行调度,不但减少了一半的PDCCH资源的开销,同时还保持了较高的调制编码等级。
在具体实施时,动态延迟调度模块包括:
第一获取子模块,用于获取预设时间间隔内连续到达的两个语音数据包;
第二获取子模块,用于从第一获取子模块得到的两个语音数据包中获取语音数据包的属性信息并传输至MAC;
预留子模块,用于第二获取子模块得到的语音数据包的属性信息在缓存中预留一定大小的缓冲区占用空间;
调度子模块,用于在所述预留的缓冲区占用空间中调度所述两个语音数据包。
进一步地,分组数据汇聚协议(Packet Data Convergence Protocol,缩写为PDCP)获取两个语音数据包的属性信息。属性信息包括:语音数据包的大小、语音数据包是否有头压缩和语音数据包的编码格式。以便根据语音数据包的属性信息预留一定大小的缓冲区占用空间。
进一步地,这里预设时间间隔为40ms,由于一个语音数据包的采样时间为20ms,本方法将两个时间上相连续的语音数据包相捆绑 进行调度,所以预设时间间隔为40ms。本实施例的语音数据动态延迟调度方法中获取的语音数据包一次不超过两个语音数据包,因为超过两个会导致语音数据包时延过大,影响语音业务感知。
在具体实施时,调度子模块包括:
上行动态延迟调度子模块,用于在上行动态延迟调度时,判断是否有LCG等于1的上行数据,若有,则将上行数据插入到上行调度队列中,并注册上行预留的缓冲区占用空间;
下行动态延迟调度子模块,用于在下行动态延迟调度时,判断是否有QCI等于1的下行数据,若有,则将下行数据插入到下行调度队列中,并注册下行预留的缓冲区占用空间。
进一步地,动态延迟调度分为上行动态延迟调度和下行动态延迟调度,在上行动态延迟调度过程中,由于调度的是语音数据包,所以上行动态延迟调度的语音为激活状态时,判断是否有LCG等于1的上行数据,表示上行信道传输的数据类型为语音数据类型,再注册一次缓冲区占用空间,为两个语音数据包大小,以用来调度捆绑的两个语音数据包;在下行动态延迟调度过程中,将下行动态延迟调度的语音数据包的QCI设置为1,表示下行信道传输的数据类型为语音数据类型。
本实施例的基站还包括:
动态调度模块,MAC采用动态调度方式进行调度语音数据包。
在具体实施时,在未判断半持续调度方式是否开启、UE是否支持半持续调度方式之前,发来的语音数据包采用动态调度的方式。
综上所述,通过语音数据动态延迟调度方法及基站,将连续到达的两个语音数据包捆绑作为一组语音数据进行调度,通过一个PDCCH进行调度,在保持了较高的调制编码等级的情况下,减少了一半的PDCCH资源的开销。本发明提高了语音业务调度的灵活性,有利于信道资源的合理分配,提高了基站的用户容量。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
最后,还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关 系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。术语“上”、“下”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
本发明的说明书中,说明了大量具体细节。然而能够理解的是,本发明的实施例可以在没有这些具体细节的情况下实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。类似地,应当理解,为了精简本发明公开并帮助理解各个发明方面中的一个或多个,在上面对本发明的示例性实施例的描述中,本发明的各个特征有时被一起分组到单个实施例、图、或者对其的描述中。然而,并不应将该公开的方法解释呈反映如下意图:即所要求保护的本发明要求比在每个权利要求中所明确记载的特征更多的特征。更确切地说,如权利要求书所反映的那样,发明方面在于少于前面公开的单个实施例的所有特征。因此,遵循具体实施方式的权利要求书由此明确地并入该具体实施方式,其中每个权利要求本身都作为本发明的单独实施例。
以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围,其均应涵盖在本发明的权利要求和说明书的范围当中。
工业实用性
本发明提供的语音数据动态延迟调度方法及基站,将连续到达的两个语音数据包捆绑作为一组语音数据进行调度,通过一个PDCCH进行调度,在保持了较高的调制编码等级的情况下,减少了一半的PDCCH资源的开销。本发明提高了语音业务调度的灵活性,有利于信道资源的合理分配,提高了基站的用户容量,具备工业实用性。

Claims (10)

  1. 一种语音数据动态延迟调度方法,其特征在于,包括如下步骤:
    判断半持续调度方式是否开启、UE是否支持半持续调度方式;
    若半持续调度方式开启且UE支持半持续调度方式,则以半持续调度方式进行调度;
    若半持续调度方式未开启或者UE不支持半持续调度方式,则判断动态延迟调度方式是否开启,若是,则以动态延迟调度方式捆绑两个连续的语音数据包进行调度;否则,以动态调度方式进行调度。
  2. 根据权利要求1所述的语音数据动态延迟调度方法,其特征在于,所述以动态延迟调度方式捆绑两个连续的语音数据包进行调度包括:
    获取预设时间间隔内连续到达的两个语音数据包;
    获取所述两个语音数据包的属性信息并传输至MAC;
    按两个语音数据包的属性信息在缓存中预留一定大小的缓冲区占用空间;
    在所述预留的缓冲区占用空间中调度所述两个语音数据包。
  3. 根据权利要求2所述的语音数据动态延迟调度方法,其特征在于,所述语音数据包的属性信息包括:
    语音数据包的大小、语音数据包是否有头压缩和语音数据包的编码格式。
  4. 根据权利要求2所述的语音数据动态延迟调度方法,其特征在于,所述在所述预留的缓冲区占用空间中调度所述两个语音数据包包括:
    在上行动态延迟调度时,判断是否有LCG等于1的上行数据,若有,则将上行数据插入到上行调度队列中,并注册上行预留的缓冲区占用空间;
    在下行动态延迟调度时,判断是否有QCI等于1的下行数据,若有,则将所述下行数据插入到下行调度队列中,并注册下行预留的缓冲区占用空间。
  5. 根据权利要求1所述的语音数据动态延迟调度方法,其特征在于,所述判断半持续调度方式是否开启、UE是否支持半持续调度方式之前还包括:
    所述MAC采用动态调度方式调度所述语音数据包。
  6. 一种基站,其特征在于,包括:
    判断模块,判断半持续调度方式是否开启、UE是否支持半持续调度方式;
    半持续调度模块,用于半持续调度方式开启且UE支持半持续调度方式时,以半持续调度方式进行调度;
    动态延迟调度模块,用于半持续调度方式未开启或者UE不支持半持续调度方式时,判断动态延迟调度方式是否开启,若是,则以动态延迟调度方式捆绑两个连续的语音数据包进行调度;否则,以动态调度方式进行调度。
  7. 根据权利要求6所述的基站,其特征在于,所述动态延迟调度模块包括:
    第一获取子模块,用于获取预设时间间隔内连续到达的两个语音数据包;
    第二获取子模块,用于从第一获取子模块得到的两个语音数据包中获取语音数据包的属性信息并传输至MAC;
    预留子模块,用于第二获取子模块得到的语音数据包的属性信息在缓存中预留一定大小的缓冲区占用空间;
    调度子模块,用于在所述预留的缓冲区占用空间中调度所述两个语音数据包。
  8. 根据权利要求7所述的基站,其特征在于,所述调度子模块 包括:
    上行动态延迟调度子模块,用于在上行动态延迟调度时,判断是否有LCG等于1的上行数据,若有,则将上行数据插入到上行调度队列中,并注册上行预留的缓冲区占用空间;
    下行动态延迟调度子模块,用于在下行动态延迟调度时,判断是否有QCI等于1的下行数据,若有,则将所述下行数据插入到下行调度队列中,并注册下行预留的缓冲区占用空间。
  9. 根据权利要求6所述的基站,其特征在于,所述语音数据包的属性信息包括:
    语音数据包的大小、语音数据包是否有头压缩和语音数据包的编码格式。
  10. 根据权利要求6所述的基站,其特征在于,还包括:
    动态调度模块,所述MAC采用动态调度方式调度所述语音数据包。
PCT/CN2016/071792 2015-06-30 2016-01-22 一种语音数据动态延迟调度方法及基站 WO2017000548A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/740,000 US10342025B2 (en) 2015-06-30 2016-01-22 Dynamic delay scheduling method and base station for voice data
EP16816913.4A EP3319386B1 (en) 2015-06-30 2016-01-22 Dynamic delay scheduling method and base station for voice data
JP2017568106A JP6482689B2 (ja) 2015-06-30 2016-01-22 音声データのダイナミック・ディレイ・スケジューリング方法及び基地局
KR1020187002968A KR101892503B1 (ko) 2015-06-30 2016-01-22 음성 데이터의 다이나믹 스케줄링 지연 방법 및 기지국

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510377761.3A CN105142220B (zh) 2015-06-30 2015-06-30 一种语音数据动态延迟调度方法及基站
CN201510377761.3 2015-06-30

Publications (1)

Publication Number Publication Date
WO2017000548A1 true WO2017000548A1 (zh) 2017-01-05

Family

ID=54727390

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/071792 WO2017000548A1 (zh) 2015-06-30 2016-01-22 一种语音数据动态延迟调度方法及基站

Country Status (6)

Country Link
US (1) US10342025B2 (zh)
EP (1) EP3319386B1 (zh)
JP (1) JP6482689B2 (zh)
KR (1) KR101892503B1 (zh)
CN (1) CN105142220B (zh)
WO (1) WO2017000548A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105142220B (zh) * 2015-06-30 2018-05-22 大唐移动通信设备有限公司 一种语音数据动态延迟调度方法及基站
CN107295678B (zh) * 2016-04-01 2022-05-13 夏普株式会社 基站、用户设备和相关方法
CN109479267B (zh) * 2016-08-12 2021-06-15 华为技术有限公司 半静态传输方法及装置
CN106358310B (zh) * 2016-08-29 2019-11-08 吉林大学 基于DRX周期的VoLTE业务上行动态调度优化方法
CN109302750A (zh) * 2017-07-24 2019-02-01 中国移动通信集团广东有限公司 自适应汇聚调度功能的调整方法、装置、设备及存储介质
WO2022151149A1 (en) * 2021-01-14 2022-07-21 Apple Inc. Dynamic measurement gap operation

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110188463A1 (en) * 2010-02-01 2011-08-04 Yong-Seok Kim Uplink scheduling method and apparatus based on semi-persistent resource allocation scheme in mobile communication system
CN102647718A (zh) * 2012-04-16 2012-08-22 北京大学 一种对VoIP业务进行混合资源分配的方法
US20140161083A1 (en) * 2011-07-14 2014-06-12 Nec Corporation Resource allocation method, wireless communication system, base station, and program
CN104244424A (zh) * 2014-09-30 2014-12-24 大唐移动通信设备有限公司 一种半持续调度资源的分配方法及基站
CN105142220A (zh) * 2015-06-30 2015-12-09 大唐移动通信设备有限公司 一种语音数据动态延迟调度方法及基站

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7142563B1 (en) * 2001-02-20 2006-11-28 At&T Corp. Service interface for QoS-driven HPNA networks
FR2893765A1 (fr) * 2005-11-21 2007-05-25 St Microelectronics Sa Circuit integre photosensible muni d'une couche reflective et procede de fabrication correspondant
JP2007243239A (ja) * 2006-03-03 2007-09-20 Sony Corp 通信装置及び通信方法
EP1999719B1 (en) * 2006-03-29 2018-11-21 Casio Computer Co., Ltd. Server apparatus of computer system
GB2452013A (en) * 2007-06-19 2009-02-25 Nec Corp Buffer status reporting from a mobile communications device
EP2028890B1 (en) * 2007-08-12 2019-01-02 LG Electronics Inc. Handover method with link failure recovery, wireless device and base station for implementing such method
KR101473008B1 (ko) * 2007-08-13 2014-12-17 엘지전자 주식회사 VoIP 패킷을 전송하는 방법
US8081606B2 (en) * 2008-01-31 2011-12-20 Research In Motion Limited Method and apparatus for allocation of an uplink resource
US8483146B2 (en) * 2008-02-01 2013-07-09 Lg Electronics Inc. Method for performing efficient BSR procedure using SPS resource
US8532032B2 (en) * 2008-03-18 2013-09-10 Blackberry Limited Dynamic scheduling overwriting of semi-persistent allocation in an uplink
US8582514B2 (en) * 2008-03-21 2013-11-12 Telefonaktiebolaget L M Ericsson (Publ) Prohibiting unnecessary scheduling requests for uplink grants
US20090268693A1 (en) * 2008-04-25 2009-10-29 Nokia Corporation Signaling part of semi-persistent configuration via downlink control channel
CN102308616B (zh) * 2009-02-03 2015-07-08 联想集团有限公司 按服务质量类别指标测量活动用户装置的方法和设备
EP2237633A1 (en) * 2009-04-03 2010-10-06 Panasonic Corporation Buffer status reporting in a mobile communication system
CN102014508B (zh) * 2009-09-04 2013-08-07 中兴通讯股份有限公司 一种半静态调度重激活的方法及基站
CN102244932B (zh) * 2010-05-12 2014-09-24 电信科学技术研究院 一种资源分配的方法、系统和装置
CN102651662B (zh) * 2011-02-23 2015-04-08 华为技术有限公司 信息传输的方法和装置
CN102264039B (zh) * 2011-04-29 2013-12-11 电信科学技术研究院 一种实现半持续调度传输的方法及装置
JP5779053B2 (ja) 2011-09-09 2015-09-16 株式会社Nttドコモ 基地局、ネットワーク装置及び通信制御方法
EP2621242A1 (en) * 2012-01-26 2013-07-31 Panasonic Corporation Improved discontinuous reception operation with additional wake up opportunities
US10219216B2 (en) * 2014-01-30 2019-02-26 Telefonaktiebolaget Lm Ericsson (Publ) Redundant scheduling information for direct communication
CN104581970B (zh) * 2014-12-05 2018-05-29 大唐移动通信设备有限公司 一种自适应调度方法和设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110188463A1 (en) * 2010-02-01 2011-08-04 Yong-Seok Kim Uplink scheduling method and apparatus based on semi-persistent resource allocation scheme in mobile communication system
US20140161083A1 (en) * 2011-07-14 2014-06-12 Nec Corporation Resource allocation method, wireless communication system, base station, and program
CN102647718A (zh) * 2012-04-16 2012-08-22 北京大学 一种对VoIP业务进行混合资源分配的方法
CN104244424A (zh) * 2014-09-30 2014-12-24 大唐移动通信设备有限公司 一种半持续调度资源的分配方法及基站
CN105142220A (zh) * 2015-06-30 2015-12-09 大唐移动通信设备有限公司 一种语音数据动态延迟调度方法及基站

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3319386A4 *

Also Published As

Publication number Publication date
CN105142220A (zh) 2015-12-09
EP3319386A4 (en) 2018-06-20
EP3319386A1 (en) 2018-05-09
KR20180018820A (ko) 2018-02-21
US20180192427A1 (en) 2018-07-05
KR101892503B1 (ko) 2018-08-28
CN105142220B (zh) 2018-05-22
EP3319386B1 (en) 2020-07-08
JP2018527783A (ja) 2018-09-20
US10342025B2 (en) 2019-07-02
JP6482689B2 (ja) 2019-03-13

Similar Documents

Publication Publication Date Title
WO2017000548A1 (zh) 一种语音数据动态延迟调度方法及基站
JP5568143B2 (ja) 無線リソースのスケジューリング方法、アクセスネットワーク要素及び端末
KR101087118B1 (ko) 버퍼 상태 리포트를 유발하기 위한 타이머를 핸들링하는 방법 및 장치
US11071094B2 (en) Data transmission method, user equipment, and radio access device
CN112567661A (zh) 用于以不同可靠性传递数据的方法、系统和设备
US8619617B2 (en) Data transmission method, system and device in multi-carrier system
JP6479040B2 (ja) 電力設定方法、ユーザ装置、及び基地局
WO2012079517A1 (zh) 一种资源调度的方法、装置和基站
CN102625459B (zh) VoLTE业务的半持续调度方法、装置和系统
WO2018141244A1 (zh) 一种资源调度方法、装置及系统
JP6469831B2 (ja) 媒体又はチャネル検知に基づくスケジューリング
KR101698953B1 (ko) 스케줄링 방법 및 기지국
US20180279322A1 (en) Service Data Packet Processing Method And Apparatus
WO2020114237A1 (zh) 数据传输方法与通信装置
KR20190005995A (ko) 무선 디바이스에 자원들의 할당
WO2016082452A1 (zh) 一种资源调度的方法和装置
US10645717B2 (en) Multi-cell uplink coordinated communication method and base station
WO2012147479A1 (ja) 移動通信システムにおける基地局及びリソース割当方法
US20230269036A1 (en) Communication method and apparatus
CN108322939B (zh) 支持多种物理层方法的无线通信系统的方法和设备
CN111316755B (zh) 使能同时使用多种蜂窝网络技术
WO2014040268A1 (zh) 一种传输方法、系统和终端
CN108141843B (zh) 数据发送方法、用户设备和网络设备
WO2024168869A1 (en) Wireless communication method and related devices
WO2023138622A1 (zh) 资源配置方法与装置、网络设备和终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16816913

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017568106

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187002968

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2016816913

Country of ref document: EP