WO2017000406A1 - 频偏相偏处理方法及装置、存储介质 - Google Patents

频偏相偏处理方法及装置、存储介质 Download PDF

Info

Publication number
WO2017000406A1
WO2017000406A1 PCT/CN2015/091142 CN2015091142W WO2017000406A1 WO 2017000406 A1 WO2017000406 A1 WO 2017000406A1 CN 2015091142 W CN2015091142 W CN 2015091142W WO 2017000406 A1 WO2017000406 A1 WO 2017000406A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
frequency offset
phase
polarization signal
polarization
Prior art date
Application number
PCT/CN2015/091142
Other languages
English (en)
French (fr)
Inventor
芦秋雁
Original Assignee
深圳市中兴微电子技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市中兴微电子技术有限公司 filed Critical 深圳市中兴微电子技术有限公司
Publication of WO2017000406A1 publication Critical patent/WO2017000406A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2507Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion

Definitions

  • the invention relates to a frequency offset phase offset technology in the communication field, in particular to a frequency offset phase offset processing method and device and a storage medium in an optical transmission network.
  • optical fiber In the development of transmission technology, optical fiber has proved to be an indispensable medium. How to transmit the most abundant information with the least amount of optical fiber. For this kind of exploration, the development of optical transmission has basically gone through the following stages: Space Division Multiplexing (SDM), Time Division Multiplexing (TDM, Time) Division Multiplexing) Phase and Wavelength Division Multiplexing (WDM) phase.
  • SDM Space Division Multiplexing
  • TDM Time Division Multiplexing
  • WDM Wavelength Division Multiplexing
  • the method of frequency offset and phase offset processing leads to prolonged processing, large resource consumption, and large power consumption, resulting in slow convergence speed and poor stability of the communication system, which is not optimal for resources and performance.
  • an embodiment of the present invention provides a frequency offset phase offset processing method and apparatus, and a storage medium.
  • the fifth polarized signal and the sixth polarized signal are divided into two paths, and the fourth-order frequency offset estimation is performed by using the first-channel signal to obtain a frequency offset compensation value; and the intermediate data of the fourth-order square frequency offset estimation is used to perform the fourth power.
  • Phase estimation obtaining a phase compensation value; for the second channel signal, performing phase compensation on the fifth polarization signal and the sixth polarization signal by using the phase compensation value to obtain a phase-compensated seventh polarization signal and an eighth polarization signal ;
  • the seventh polarization signal and the eighth polarization signal in the polar coordinate system are respectively converted into a ninth polarization signal and a tenth polarization signal in a Cartesian coordinate system.
  • the frequency offset compensation is performed on the third polarization signal and the fourth polarization signal respectively, and the fifth polarization signal and the sixth polarization signal after the frequency offset compensation are obtained, including:
  • the angle value of the third polarization signal is added to the estimated frequency offset compensation value to obtain a fifth polarization signal after the frequency offset compensation;
  • the angle value of the fourth polarization signal is added to the estimated frequency offset compensation value to obtain a sixth polarization signal after the frequency offset compensation;
  • the frequency offset compensation value is an angle value.
  • the fourth-order frequency offset estimation is performed by using the first path signal to obtain a frequency offset compensation value; and the fourth-order phase estimation is performed by using the intermediate data of the fourth-order square frequency offset estimation to obtain a phase compensation value, including :
  • Four-phase phase estimation is performed using the intermediate data of the fourth-order square frequency offset estimation to obtain phase compensation a value to phase compensate the fifth polarized signal and the sixth polarized signal.
  • the first polarized signal and the second polarized signal are orthogonal two-way polarized signals.
  • the ninth polarized signal and the tenth polarized signal are orthogonal two-way polarized signals, and the ninth polarized signal is subjected to frequency offset phase offset compensation processing on the first polarized signal.
  • the signal, the tenth polarization signal is a signal obtained by performing frequency offset phase offset compensation processing on the second polarization signal.
  • the fifth polarized signal and the sixth polarized signal are divided into two paths, including:
  • One fifth polarization signal and one sixth polarization signal are used as the first road signal, and the other fifth polarization signal and the other sixth polarization signal are used as the second road signal.
  • a first coordinate conversion unit configured to convert the first polarization signal and the second polarization signal in the Cartesian coordinate system into a third polarization signal and a fourth polarization signal in a polar coordinate system, respectively;
  • a frequency offset compensation unit configured to perform frequency offset compensation on the third polarization signal and the fourth polarization signal, respectively, to obtain a fifth polarization signal and a sixth polarization signal after frequency offset compensation
  • the fourth-order square frequency offset estimation unit is configured to divide the fifth polarization signal and the sixth polarization signal into two paths, and perform fourth-order square frequency offset estimation by using the first road signal to obtain a frequency offset compensation value;
  • the fourth power phase estimation unit is configured to perform fourth-order phase estimation by using intermediate data of the fourth-order square frequency offset estimation to obtain a phase compensation value
  • phase compensation unit configured to perform phase compensation on the fifth polarization signal and the sixth polarization signal by using the phase compensation value to obtain a phase-compensated seventh polarization signal and an eighth polarization signal;
  • a second coordinate conversion unit configured to convert the seventh polarization signal and the eighth polarization in a polar coordinate system
  • the signals are respectively converted into a ninth polarized signal and a tenth polarized signal in a Cartesian coordinate system.
  • the frequency offset compensation unit includes:
  • the first frequency offset compensation sub-unit is configured to add the angle value of the third polarization signal to the estimated frequency offset compensation value in a polar coordinate system to obtain a fifth polarization signal after the frequency offset compensation;
  • the second frequency offset compensation sub-unit is configured to add the angle value of the fourth polarization signal to the estimated frequency offset compensation value in a polar coordinate system to obtain a sixth polarization signal after the frequency offset compensation;
  • the frequency offset compensation value is an angle value.
  • the fourth-order square frequency offset estimation unit is further configured to perform fourth-order square frequency offset estimation by using the first path signal to obtain a frequency offset compensation value, for the third polarization signal and the fourth polarization.
  • the signal is subjected to frequency offset compensation;
  • the fourth power phase estimation unit is further configured to perform fourth-order phase estimation by using intermediate data of the fourth-order square frequency offset estimation to obtain a phase compensation value for phase compensation of the fifth polarization signal and the sixth polarization signal.
  • the first polarized signal and the second polarized signal are orthogonal two-way polarized signals.
  • the ninth polarized signal and the tenth polarized signal are orthogonal two-way polarized signals, and the ninth polarized signal is subjected to frequency offset phase offset compensation processing on the first polarized signal.
  • the signal, the tenth polarization signal is a signal obtained by performing frequency offset phase offset compensation processing on the second polarization signal.
  • the fourth power frequency offset estimation unit is further configured to divide the fifth polarization signal into two paths, and divide the sixth polarization signal into two paths; and to use one fifth polarization signal.
  • a sixth polarized signal is used as the first signal, and the other fifth polarized signal and the other sixth polarized signal are used as the second signal.
  • a storage medium storing a computer program configured to perform the aforementioned frequency offset phase shift processing method.
  • the two are analyzed, the frequency offset compensation and the phase compensation are compensation of the data and the angle value; the frequency offset estimation and the phase estimation are adopted.
  • the four-way estimate requires a fourth-order processing of the data.
  • the two polarization states of the signal are coordinate-converted, and the signal is converted from the Cartesian coordinate system to the polar coordinate system so that it is at the same latitude as the compensated angle value, thus transforming the multiplication operation into an addition operation, from the resource Optimized for power consumption and speed.
  • the embodiment of the present invention extracts the fourth power estimate as a common part.
  • the fourth power also uses the polar coordinate system, that is, simply four times the angle of the angle, so that the fourth power operation (three multiplications and one addition) is transformed into a shift processing.
  • the implementation scheme of the embodiment of the invention is simple, the hardware is easy to implement, the robustness of the system is improved, the hardware resource consumption is low, and the power consumption is low.
  • the resource is reduced by 40% compared with the traditional method, the cost is reduced, and the calculation speed is improved. Thereby improving performance.
  • Figure 1 is a block diagram of a conventional frequency offset phase shift processing
  • FIG. 2 is a schematic flow chart of a frequency offset phase offset processing method according to an embodiment of the present invention
  • FIG. 3 is a block diagram of a frequency offset phase offset processing according to an embodiment of the present invention.
  • FIG. 4 is a block diagram of a frequency offset processing module according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of phase estimation and compensation according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a frequency offset phase deviation processing apparatus according to an embodiment of the present invention.
  • the traditional method is to separate the frequency offset and phase offset, that is, the signal first enters the frequency offset processing module, and after frequency offset compensation and estimation, it enters the phase offset processing module to perform phase estimation and compensation.
  • the frequency offset phase offset processing mainly includes frequency offset compensation/frequency offset estimation and phase estimation/phase compensation.
  • the polarization state X input signal and the polarization state Y input signal enter the frequency offset compensation.
  • the polarization-shifted X-ray signal and the polarization-state Y-signal are divided into two paths.
  • the first path enters the quadratic square-frequency offset estimation to perform frequency offset estimation, and then the estimated frequency offset compensation value is output to the frequency offset compensation.
  • the first way enters phase estimation/phase compensation performs phase estimation, and then outputs the estimated phase compensation value to phase compensation; the second path enters phase compensation, and operates with the estimated phase compensation value to obtain a final result output.
  • the signals are in the form of Cartesian coordinates.
  • the fourth-order square frequency offset estimation and the fourth-order square phase estimation it is necessary to perform two quadratic operations separately, and since the signal is in Cartesian coordinates, the power consumption and resource consumption of the fourth power processing are very high. Big.
  • the frequency offset compensation and phase compensation since the signal is in the form of Cartesian coordinates, the operation of Cartesian coordinates and angle values in the processing of such signals also leads to a relatively large resource consumption and a slow operation processing speed.
  • the two are analyzed, the frequency offset compensation and the phase compensation are compensation of the data and the angle value; the frequency offset estimation and the phase estimation are adopted.
  • the four-way estimate requires a fourth-order processing of the data.
  • the two polarization states of the signal are coordinate-converted, and the signal is converted from the Cartesian coordinate system to the polar coordinate system so that it is at the same latitude as the compensated angle value, thus transforming the multiplication operation into an addition operation, from the resource Optimized for power consumption and speed.
  • the embodiment of the present invention extracts the fourth power estimate as a common part.
  • the fourth power also uses the polar coordinate system, that is, simply four times the angle of the angle, so that the fourth power operation (three multiplications and one addition) is transformed into a shift processing.
  • the implementation scheme of the embodiment of the invention is simple, the hardware is easy to implement, the robustness of the system is improved, the hardware resource consumption is low, and the power consumption is low.
  • the resource is reduced by 40% compared with the traditional method, the cost is reduced, and the calculation speed is improved. Thereby improving performance.
  • FIG. 2 is a schematic flowchart of a frequency offset phase offset processing method according to an embodiment of the present invention.
  • the frequency offset phase offset processing method in this example is applied to a frequency offset phase offset processing apparatus, as shown in FIG. 2, the frequency offset phase offset processing.
  • the method includes the following steps:
  • Step 201 Convert the first polarization signal and the second polarization signal in the Cartesian coordinate system into a third polarization signal and a fourth polarization signal in a polar coordinate system, respectively.
  • the first polarized signal and the second polarized signal are orthogonal two-way polarized signals.
  • Step 202 Perform frequency offset compensation on the third polarization signal and the fourth polarization signal, respectively, to obtain a fifth polarization signal and a sixth polarization signal after frequency offset compensation.
  • the angle value of the third polarization signal is added to the estimated frequency offset compensation value to obtain a fifth polarization signal after the frequency offset compensation;
  • the angle value of the fourth polarization signal is added to the estimated frequency offset compensation value to obtain a sixth polarization signal after the frequency offset compensation;
  • the frequency offset compensation value is an angle value.
  • Step 203 The fifth polarization signal and the sixth polarization signal are divided into two paths, and the fourth-order frequency offset estimation is performed by using the first path signal to obtain a frequency offset compensation value; and the intermediate data of the fourth-order square frequency offset estimation is used.
  • the fourth power phase estimate yields a phase compensation value.
  • the fifth polarized signal is divided into two paths, and the sixth polarized signal is divided into two paths; and one fifth polarized signal and one sixth polarized signal are used as the first path signal, The other fifth polarized signal and the other sixth polarized signal are used as the second signal.
  • the fourth-order frequency offset estimation is performed by using the first path signal, and the frequency offset compensation value is obtained to perform frequency offset compensation on the third polarization signal and the fourth polarization signal; and the fourth-order square frequency offset estimation is used.
  • the intermediate data is subjected to quadratic phase estimation to obtain a phase compensation value for phase compensation of the fifth polarized signal and the sixth polarized signal.
  • Step 204 For the second path signal, using the phase compensation value to the fifth polarization signal Phase compensation is performed with the sixth polarization signal to obtain a phase-compensated seventh polarization signal and an eighth polarization signal.
  • Step 205 Convert the seventh polarization signal and the eighth polarization signal in the polar coordinate system into a ninth polarization signal and a tenth polarization signal in a Cartesian coordinate system, respectively.
  • the ninth polarized signal and the tenth polarized signal are orthogonal two-way polarized signals, and the ninth polarized signal is subjected to frequency offset phase offset compensation processing on the first polarized signal.
  • the signal, the tenth polarization signal is a signal obtained by performing frequency offset phase offset compensation processing on the second polarization signal.
  • the polarization state X input signal and the polarization state Y input signal are first subjected to polar coordinate conversion processing, the Cartesian coordinate form is converted into polar coordinate form, and then subjected to frequency offset compensation, and in the frequency offset compensation, the signal is The angle value is directly added to the estimated frequency offset compensation value to obtain a frequency offset compensated signal, which is a polar coordinate representation.
  • the polarization-shifted X-ray signal and the polarization-state Y signal are divided into two paths, one-way into the fourth-order square frequency offset estimation, frequency offset estimation, and then the estimated frequency offset compensation value is output to the frequency offset compensation, and
  • the intermediate data of the four frequency offset estimation is sent to the fourth power phase estimation for data multiplexing, and the fourth power phase estimation directly uses the intermediate data for phase estimation to obtain a phase compensation value; the other phase enters the phase compensation, and the estimated
  • the phase compensation value is calculated, then the coordinate transformation is performed, and the polar coordinates are converted into Cartesian coordinates to obtain the final result output.
  • the input polarization state X and Y signals are coordinate-converted, and the real/imaginary part expression of the complex signal is converted into an amplitude/angle expression mode; and then the frequency offset provided by the quadratic square frequency offset estimation is provided.
  • the compensation value is used to compensate the frequency offset of the signal; the signal after the frequency offset compensation is sent to the quadratic square frequency offset estimation, and the error between the current frequency offset compensation value and the true frequency offset compensation value is calculated; meanwhile, the compensated polarization is calculated.
  • State X/Y signal and fourth power signal (polar form) are sent to the phase offset Processing module.
  • phase-compensating the output signal of the frequency offset compensation and performing coordinate conversion after phase compensation, converting the polar coordinate representation into the real/imaginary representation of the complex signal and then sending it to the subsequent module; Saving resources and improving processing speed, the fourth-order phase estimation multiplexes the fourth-order intermediate calculation result of the quadratic square-frequency offset estimation output, and uses the output signal of the frequency offset compensation to calculate the phase compensation value and output it to the phase compensation module.
  • the frequency offset processing module of the embodiment of the present invention is described in detail below with reference to FIG.
  • the frequency offset compensation is simplified to the angular value of the signal. Add the offset compensation value.
  • the signals after the frequency offset compensation in the X and Y polarization states respectively enter the respective fourth power residual frequency offset estimation modules, and the phase difference values of the four powers of the two signals of the adjacent n positions are calculated, and the obtained continuous values are obtained.
  • the N results are accumulated, and the angle value is divided by four to obtain the residual frequency offset compensation value between the true frequency offset compensation value of the signal and the frequency offset compensation value of the loop output.
  • the frequency offset estimation has two modes of operation and supports register configurability.
  • the n-value adaptively selects 1, 2, 4, 8, ..., nmax, where nmax can take values 1, 2, 4, 8, 16 and supports register configurability. .
  • the value of N is fixed at 2048.
  • the value of n takes 1 and the value of N is 32,768.
  • the residual frequency offset compensation value of the Y polarization state is used as a basis for judging whether the X-polarization residual signal offset compensation value has phase ambiguity.
  • the fourth-order residual frequency offset estimation result of the X-polarization state is sent to the second-order loop filtering.
  • the fourth-order residual frequency offset of the X and Y polarization states is estimated to be the same, taking n as 1 and N as 32,768.
  • the fourth-order residual frequency offset estimation results of the X and Y polarization states are averaged and sent to the loop filtering.
  • the frequency offset compensation angle value of the last loop output plus the frequency offset angle estimation value is the current loop output frequency offset compensation angle value, which is used for the frequency offset compensation of the next signal.
  • phase ⁇ k ⁇ s (k) + ⁇ kT i + ⁇ n + ⁇ ASE of the received signal, where ⁇ s (k) ) indicates the original signal phase, ⁇ kT i represents the frequency offset phase, ⁇ n represents the phase offset phase, and ⁇ ASE represents the noise phase.
  • the frequency offset phase ⁇ kT i is removed by the previous frequency offset estimation, the phase remains: ⁇ s (k) + ⁇ n + ⁇ ASE ; ⁇ s (k) + ⁇ n + ⁇ ASE is processed by the fourth power.
  • V 4 (k) exp ⁇ j4 ⁇ s (k) ⁇ exp ⁇ j4 ⁇ n ⁇ exp ⁇ j4 ⁇ ASE ⁇ , assuming Then V 4 (k) can remove the original signal phase. Then, the noise phase ⁇ ASE (using a plurality of V 4 (k) additions) is removed through a low pass filter (LPF, Low Pass Filter), and then the angle is extracted to obtain the phase deviation phase result. That is, the following formula:
  • the noise is also amplified, and the phase angle noise amplification cannot be avoided, but the amplitude noise amplification can be minimized. Therefore, the above equation can be optimized to:
  • abs(z) represents the absolute value of z.
  • phase compensation value obtained by the phase estimation is input to the phase compensation module for compensation, and the coordinate transformation is performed after the compensation, and converted into Cartesian coordinates to be output to the subsequent module.
  • FIG. 6 A schematic structural diagram of the frequency offset phase shift processing device is shown. As shown in FIG. 6, the frequency offset phase shift processing device includes:
  • the first coordinate conversion unit 61 is configured to convert the first polarization signal and the second polarization signal in the Cartesian coordinate system into a third polarization signal and a fourth polarization signal in a polar coordinate system, respectively;
  • the frequency offset compensation unit 62 is configured to perform frequency offset compensation on the third polarization signal and the fourth polarization signal, respectively, to obtain a fifth polarization signal and a sixth polarization signal after frequency offset compensation;
  • the fourth-order square frequency offset estimation unit 63 is configured to divide the fifth polarization signal and the sixth polarization signal into two paths, and perform fourth-order square frequency offset estimation by using the first road signal to obtain a frequency offset compensation value;
  • the fourth power phase estimation unit 64 is configured to perform fourth-order phase estimation by using intermediate data of the fourth-order square frequency offset estimation to obtain a phase compensation value
  • the phase compensation unit 65 is configured to perform phase compensation on the fifth polarization signal and the sixth polarization signal by using the phase compensation value for the second channel signal to obtain a phase-compensated seventh polarization signal and an eighth polarization signal;
  • the second coordinate conversion unit 66 is configured to convert the seventh polarization signal and the eighth polarization signal in the polar coordinate system into the ninth polarization signal and the tenth polarization signal in the Cartesian coordinate system, respectively.
  • the frequency offset compensation unit 62 includes:
  • the first frequency offset compensation sub-unit 621 is configured to add the angle value of the third polarization signal and the estimated frequency offset compensation value in a polar coordinate system to obtain a fifth polarization signal after frequency offset compensation. ;
  • the second frequency offset compensation sub-unit 622 is configured to add the angle value of the fourth polarization signal and the estimated frequency offset compensation value in a polar coordinate system to obtain a sixth polarization signal after frequency offset compensation. ;
  • the frequency offset compensation value is an angle value.
  • the fourth-order square frequency offset estimation unit 63 is further configured to perform fourth-order frequency offset estimation by using the first path signal to obtain a frequency offset compensation value, to the third polarization signal and the third Four polarization signals are subjected to frequency offset compensation;
  • the fourth power phase estimation unit 64 is further configured to perform fourth-order phase estimation by using intermediate data of the fourth-order square frequency offset estimation to obtain a phase compensation value to phase the fifth polarization signal and the sixth polarization signal. make up.
  • the first polarized signal and the second polarized signal are orthogonal two-way polarized signals.
  • the fourth-order square frequency offset estimating unit 63 is further configured to divide the fifth polarized signal into two paths, and divide the sixth polarized signal into two paths; The signal and one sixth polarized signal are used as the first signal, and the other fifth polarized signal and the other sixth polarized signal are used as the second signal.
  • the ninth polarized signal and the tenth polarized signal are orthogonal two-way polarized signals, and the ninth polarized signal is subjected to frequency offset phase offset compensation processing on the first polarized signal.
  • the signal, the tenth polarization signal is a signal obtained by performing frequency offset phase offset compensation processing on the second polarization signal.
  • the implementation functions of the units in the frequency offset phase shift processing apparatus shown in FIG. 6 can be understood by referring to the related description of the frequency offset phase shift processing method.
  • the functions of the respective units in the frequency offset phase shift processing device shown in FIG. 6 can be realized by a program running on the processor, or can be realized by a specific logic circuit.
  • the embodiment of the invention further describes a storage medium in which a computer program is stored, the computer program being configured to perform the frequency offset phase offset processing method of the foregoing embodiments.
  • the disclosed method and smart device may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner such as: multiple units or components may be combined, or Can be integrated into another system, or some features can be ignored or not executed.
  • the coupling, or direct coupling, or communication connection of the components shown or discussed may be indirect coupling or communication connection through some interfaces, devices or units, and may be electrical, mechanical or other forms. of.
  • the units described above as separate components may or may not be physically separated, and the components displayed as the unit may or may not be physical units, that is, may be located in one place or distributed to multiple network units; Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one second processing unit, or each unit may be separately used as one unit, or two or more units may be integrated into one unit;
  • the above integrated unit can be implemented in the form of hardware or in the form of hardware plus software functional units.
  • the present invention extracts the fourth power estimate as a common part.
  • the fourth power also uses the polar coordinate system, that is, simply four times the angle of the angle, so that the fourth power operation (three multiplications and one addition) is transformed into a shift processing. Therefore, the technical solution is simple to implement, the hardware is easy to implement, and the robustness of the system is improved.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Optical Communication System (AREA)

Abstract

本发明实施例公开了一种频偏相偏处理方法及装置、存储介质,所述方法包括:将第一偏振信号和第二偏振信号分别转换为极坐标系下的第三偏振信号和第四偏振信号;分别对第三偏振信号和第四偏振信号进行频偏补偿,得到频偏补偿后的第五偏振信号和第六偏振信号;将第五偏振信号和第六偏振信号分为两路,利用第一路信号进行四次方频偏估计,得到频偏补偿值;利用四次方频偏估计的中间数据进行四次方相位估计,得到相位补偿值;针对第二路信号,利用相位补偿值对第五偏振信号和第六偏振信号进行相位补偿,得到相位补偿后的第七偏振信号和第八偏振信号;将极坐标系下的第七偏振信号和第八偏振信号分别转换为笛卡尔坐标系下的第九偏振信号和第十偏振信号。

Description

频偏相偏处理方法及装置、存储介质 技术领域
本发明涉及通信领域中的频偏相偏技术,尤其涉及一种光传输网络中的频偏相偏处理方法及装置、存储介质。
背景技术
在传输技术的发展中,光纤被证明是一种不可或缺的媒介。如何用最少量的光纤传输最丰富的信息,出于这种探索,光传输的发展基本经历了以下几个阶段:空分复用(SDM,Space Division Multiplexing)阶段、时分复用(TDM,Time Division Multiplexing)阶段和波分复用(WDM,Wavelength Division Multiplexing)阶段。
时至今日有线传输依然以波分复用系统为主。随着通信技术的发展,目前商用的40G波分传输逐渐演变到100G、400G传输,与此同时,在数据传输距离上也在不断的拓展。这样,波分复用系统在传输过程中会带来色度色散、偏振膜色散、频偏相偏、强滤波效应等诸多问题需要解决,这些问题的解决需要用数字信号处理的方法,称之为100G数字信号处理(DSP,Digital Signal Processing)处理。
传统的光传输网络中频偏相偏处理的方法,会导致处理时延长、资源消耗大、功耗大,从而导致通信系统收敛速度慢、稳定性能差,达不到资源与性能上的最优。
发明内容
为解决上述技术问题,本发明实施例提供了一种频偏相偏处理方法及装置、存储介质。
本发明实施例提供的频偏相偏处理方法包括:
将笛卡尔坐标系下的第一偏振信号和第二偏振信号分别转换为极坐标系下的第三偏振信号和第四偏振信号;
分别对所述第三偏振信号和第四偏振信号进行频偏补偿,得到频偏补偿后的第五偏振信号和第六偏振信号;
将所述第五偏振信号和第六偏振信号分为两路,利用第一路信号进行四次方频偏估计,得到频偏补偿值;利用四次方频偏估计的中间数据进行四次方相位估计,得到相位补偿值;针对第二路信号,利用所述相位补偿值对所述第五偏振信号和第六偏振信号进行相位补偿,得到相位补偿后的第七偏振信号和第八偏振信号;
将极坐标系下的第七偏振信号和第八偏振信号分别转换为笛卡尔坐标系下的第九偏振信号和第十偏振信号。
本发明实施例中,所述分别对所述第三偏振信号和第四偏振信号进行频偏补偿,得到频偏补偿后的第五偏振信号和第六偏振信号,包括:
在极坐标系下,将所述第三偏振信号的角度值与估计得到的频偏补偿值进行相加处理,得到频偏补偿后的第五偏振信号;
在极坐标系下,将所述第四偏振信号的角度值与估计得到的频偏补偿值进行相加处理,得到频偏补偿后的第六偏振信号;
其中,所述频偏补偿值为角度值。
本发明实施例中,所述利用第一路信号进行四次方频偏估计,得到频偏补偿值;利用四次方频偏估计的中间数据进行四次方相位估计,得到相位补偿值,包括:
利用第一路信号进行四次方频偏估计,得到频偏补偿值,以对所述第三偏振信号和第四偏振信号进行频偏补偿;
利用四次方频偏估计的中间数据进行四次方相位估计,得到相位补偿 值,以对所述第五偏振信号和第六偏振信号进行相位补偿。
本发明实施例中,所述第一偏振信号和第二偏振信号为正交的两路偏振信号。
本发明实施例中,所述第九偏振信号和第十偏振信号为正交的两路偏振信号,且所述第九偏振信号为对所述第一偏振信号进行频偏相偏补偿处理后的信号,所述第十偏振信号为对所述第二偏振信号进行频偏相偏补偿处理后的信号。
本发明实施例中,将所述第五偏振信号和第六偏振信号分为两路,包括:
将所述第五偏振信号分为两路,以及将所述第六偏振信号分为两路;
将一路第五偏振信号与一路第六偏振信号作为第一路信号,将另一路第五偏振信号与另一路第六偏振信号作为第二路信号。
本发明实施例提供的频偏相偏处理装置包括:
第一坐标转换单元,配置为将笛卡尔坐标系下的第一偏振信号和第二偏振信号分别转换为极坐标系下的第三偏振信号和第四偏振信号;
频偏补偿单元,配置为分别对所述第三偏振信号和第四偏振信号进行频偏补偿,得到频偏补偿后的第五偏振信号和第六偏振信号;
四次方频偏估计单元,配置为将所述第五偏振信号和第六偏振信号分为两路,利用第一路信号进行四次方频偏估计,得到频偏补偿值;
四次方相位估计单元,配置为利用四次方频偏估计的中间数据进行四次方相位估计,得到相位补偿值;
相位补偿单元,配置为针对第二路信号,利用所述相位补偿值对所述第五偏振信号和第六偏振信号进行相位补偿,得到相位补偿后的第七偏振信号和第八偏振信号;
第二坐标转换单元,配置为将极坐标系下的第七偏振信号和第八偏振 信号分别转换为笛卡尔坐标系下的第九偏振信号和第十偏振信号。
本发明实施例中,所述频偏补偿单元包括:
第一频偏补偿子单元,配置为在极坐标系下,将所述第三偏振信号的角度值与估计得到的频偏补偿值进行相加处理,得到频偏补偿后的第五偏振信号;
第二频偏补偿子单元,配置为在极坐标系下,将所述第四偏振信号的角度值与估计得到的频偏补偿值进行相加处理,得到频偏补偿后的第六偏振信号;
其中,所述频偏补偿值为角度值。
本发明实施例中,所述四次方频偏估计单元,还配置为利用第一路信号进行四次方频偏估计,得到频偏补偿值,以对所述第三偏振信号和第四偏振信号进行频偏补偿;
所述四次方相位估计单元,还配置为利用四次方频偏估计的中间数据进行四次方相位估计,得到相位补偿值,以对所述第五偏振信号和第六偏振信号进行相位补偿。
本发明实施例中,所述第一偏振信号和第二偏振信号为正交的两路偏振信号。
本发明实施例中,所述第九偏振信号和第十偏振信号为正交的两路偏振信号,且所述第九偏振信号为对所述第一偏振信号进行频偏相偏补偿处理后的信号,所述第十偏振信号为对所述第二偏振信号进行频偏相偏补偿处理后的信号。
本发明实施例中,所述四次方频偏估计单元,还配置为将所述第五偏振信号分为两路,以及将所述第六偏振信号分为两路;将一路第五偏振信号与一路第六偏振信号作为第一路信号,将另一路第五偏振信号与另一路第六偏振信号作为第二路信号。
一种存储介质,所述存储介质中存储有计算机程序,所述计算机程序配置为执行前述的频偏相偏处理方法。
本发明实施例的技术方案中,根据频偏处理和相偏处理的特点,对两者进行分析,频偏补偿和相位补偿均是数据与角度值的补偿;频偏估计及相位估计均是采用四次方估计的做法,均需要对数据进行四次方的处理。为此,将两路偏振态的信号进行坐标转换,将信号从笛卡尔坐标系转化到极坐标系,使其与补偿的角度值处于同一纬度,这样就将乘法运算转变为加法运算,从资源、功耗和速度上达到了优化。并且,本发明实施例将四次方估计提取出来,作为一个公共的部分。同时,四次方也采用极坐标系,即:单纯对于角度做一个四倍的处理,这样,将四次方的运算(三个乘法及一个加法)转变成了移位处理。本发明实施例实现方案简单,硬件容易实现,提高了系统的健壮性;硬件资源消耗低,功耗低,实际实现中,较传统方法降低40%的资源,降低了成本;提高了计算速度,从而提高性能。
附图说明
图1为现有频偏相偏处理框图;
图2为本发明实施例的频偏相偏处理方法的流程示意图;
图3为本发明实施例的频偏相偏处理框图;
图4对本发明实施例的频偏处理模块的框图;
图5为本发明实施例的相位估计与补偿的示意图;
图6为本发明实施例的频偏相偏处理装置的结构组成示意图。
具体实施方式
为了能够更加详尽地了解本发明实施例的特点与技术内容,下面结合附图对本发明实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本发明实施例。
目前传统做法为频偏相偏分开处理,即信号先进入频偏处理模块,进行频偏补偿与估计之后,再进入到相偏处理模块,进行相位估计与补偿。参照图1,由图中可以看出,频偏相偏处理主要包括频偏补偿/频偏估计及相位估计/相位补偿两部分组成。偏振态X输入信号和偏振态Y输入信号进入到频偏补偿。经过频偏补偿的偏振态X信号和偏振态Y信号,分为两路,第一路进入到四次方频偏估计,进行频偏估计,而后将估计的频偏补偿值输出到频偏补偿;第一路进入相位估计/相位补偿,进行相位估计,而后将估计的相位补偿值输出到相位补偿;第二路进入到相位补偿,与估计的相位补偿值进行运算,得到最终结果输出。
在上述的处理中,信号均采用笛卡尔坐标形式。这样,在四次方频偏估计及四次方相位估计中,需要分别进行两次四次方的运算处理,由于信号为笛卡尔坐标形式,四次方处理的功耗和资源的消耗都很大。在频偏补偿及相位补偿中,由于信号为笛卡尔坐标形式,这种信号的处理中,笛卡尔坐标与角度值的运算,也导致资源消耗比较大,运算处理速度较慢。
本发明实施例的技术方案中,根据频偏处理和相偏处理的特点,对两者进行分析,频偏补偿和相位补偿均是数据与角度值的补偿;频偏估计及相位估计均是采用四次方估计的做法,均需要对数据进行四次方的处理。为此,将两路偏振态的信号进行坐标转换,将信号从笛卡尔坐标系转化到极坐标系,使其与补偿的角度值处于同一纬度,这样就将乘法运算转变为加法运算,从资源、功耗和速度上达到了优化。并且,本发明实施例将四次方估计提取出来,作为一个公共的部分。同时,四次方也采用极坐标系,即:单纯对于角度做一个四倍的处理,这样,将四次方的运算(三个乘法及一个加法)转变成了移位处理。本发明实施例实现方案简单,硬件容易实现,提高了系统的健壮性;硬件资源消耗低,功耗低,实际实现中,较传统方法降低40%的资源,降低了成本;提高了计算速度,从而提高性能。
图2为本发明实施例的频偏相偏处理方法的流程示意图,本示例中的频偏相偏处理方法应用于频偏相偏处理装置,如图2所示,所述频偏相偏处理方法包括以下步骤:
步骤201:将笛卡尔坐标系下的第一偏振信号和第二偏振信号分别转换为极坐标系下的第三偏振信号和第四偏振信号。
本发明实施例中,所述第一偏振信号和第二偏振信号为正交的两路偏振信号。
步骤202:分别对所述第三偏振信号和第四偏振信号进行频偏补偿,得到频偏补偿后的第五偏振信号和第六偏振信号。
本发明实施例中,在极坐标系下,将所述第三偏振信号的角度值与估计得到的频偏补偿值进行相加处理,得到频偏补偿后的第五偏振信号;
在极坐标系下,将所述第四偏振信号的角度值与估计得到的频偏补偿值进行相加处理,得到频偏补偿后的第六偏振信号;
其中,所述频偏补偿值为角度值。
步骤203:将所述第五偏振信号和第六偏振信号分为两路,利用第一路信号进行四次方频偏估计,得到频偏补偿值;利用四次方频偏估计的中间数据进行四次方相位估计,得到相位补偿值。
本发明实施例中,将所述第五偏振信号分为两路,以及将所述第六偏振信号分为两路;将一路第五偏振信号与一路第六偏振信号作为第一路信号,将另一路第五偏振信号与另一路第六偏振信号作为第二路信号。
本发明实施例中,利用第一路信号进行四次方频偏估计,得到频偏补偿值,以对所述第三偏振信号和第四偏振信号进行频偏补偿;利用四次方频偏估计的中间数据进行四次方相位估计,得到相位补偿值,以对所述第五偏振信号和第六偏振信号进行相位补偿。
步骤204:针对第二路信号,利用所述相位补偿值对所述第五偏振信号 和第六偏振信号进行相位补偿,得到相位补偿后的第七偏振信号和第八偏振信号。
步骤205:将极坐标系下的第七偏振信号和第八偏振信号分别转换为笛卡尔坐标系下的第九偏振信号和第十偏振信号。
本发明实施例中,所述第九偏振信号和第十偏振信号为正交的两路偏振信号,且所述第九偏振信号为对所述第一偏振信号进行频偏相偏补偿处理后的信号,所述第十偏振信号为对所述第二偏振信号进行频偏相偏补偿处理后的信号。
下面结合图3所示的频偏相偏处理框图对本发明实施例的频偏相偏处理方法做进一步详细阐述。
如图3所示,偏振态X输入信号和偏振态Y输入信号,先进行极坐标转换处理,将笛卡尔坐标形式转换为极坐标形式,然后送入频偏补偿,在频偏补偿时,信号的角度值与估计的频偏补偿值直接进行相加处理,得到频偏补偿后的信号,此时为极坐标表示形式。经过频偏补偿的偏振态X信号和偏振态Y信号,分为两路,一路进入到四次方频偏估计,进行频偏估计,而后将估计的频偏补偿值输出到频偏补偿,并且将四次频偏估计的中间数据送入四次方相位估计进行数据复用,四次方相位估计直接用此中间数据进行相位估计,得到相位补偿值;另一路进入到相位补偿,与估计的相位补偿值进行运算,然后进行坐标转换,将极坐标转化为笛卡尔坐标,得到最终结果输出。
在频偏处理模块,对输入的偏振态X与Y信号进行坐标转换,将复数信号的实部/虚部表达方式转换为幅度/角度表达方式;再根据四次方频偏估计提供的频偏补偿值,对信号进行频偏补偿;进行频偏补偿后的信号再送给四次方频偏估计,计算当前频偏补偿值与真实频偏补偿值之间的误差;同时,将补偿后的偏振态X/Y信号及四次方信号(极坐标形式)送给相偏 处理模块。
在相偏处理模块,对频偏补偿的输出信号进行相位补偿,并在相位补偿后进行坐标转换,将极坐标表示方式转换成复数信号的实部/虚部表达方式后送给后续模块;为节省资源及提高处理速度,四次方相位估计复用四次方频偏估计输出的四次方计算中间结果,并且利用频偏补偿的输出信号,计算得出相位补偿值后输出给相位补偿模块。
下面结合图4对本发明实施例的频偏处理模块进行详细阐述。如图4所示,利用Cordic函数,将X与Y偏振态上的负数信号从实部/虚部的表示转化为幅度/角度的极坐标表示方式后,那么频偏补偿就简化为信号的角度值和频偏补偿值相加。X与Y偏振态上频偏补偿后的信号分别进入各自四次方剩余频偏估计模块,通过计算相邻n个位置的两个信号的四次方结果的相位差值,再将得到的连续N个结果累加,求角度值后再除四,得到由信号的真实频偏补偿值和环路输出的频偏补偿值之间的剩余频偏补偿值。
频偏估计存在两种工作模式,并且支持寄存器可配置。
模式0:
X偏振态的四次方剩余频偏估计中,n值自适应选取1,2,4,8,……,nmax,其中nmax可取值1,2,4,8,16,支持寄存器可配置。N值固定为2048。
Y偏振态的四次方剩余频偏估计中n值取1,N值为32768。Y偏振态估计的剩余频偏补偿值作为判断X偏振态剩余频偏补偿值是否发生了相位模糊的依据。
通过开关选择,X偏振态的四次方剩余频偏估计结果送去二阶环路滤波。
模式1:
X与Y偏振态的四次方剩余频偏估计相同,都取n值为1,N为32768。
通过开关选择,X与Y偏振态的四次方剩余频偏估计结果平均后送去环路滤波。
环路滤波的输出信号进行积分、限幅操作后,得到频偏角度估计值。上一次环路输出的频偏补偿角度值加上频偏角度估计值,就是当前环路输出频偏补偿角度值,用于下一次的信号的频偏补偿。
图5为本发明实施例的相位估计与补偿的示意图,如图5所示,设接收信号的相位θk=θs(k)+ΔωkTinASE,其中,θs(k)表示原始信号相位,ΔωkTi表示频偏相位,θn表示相偏相位,θASE表示噪声相位。其中频偏相位ΔωkTi经过前面频偏估计去除了,则相位剩下为:θs(k)+θnASE;将θs(k)+θnASE经过四次方处理,得到V4(k)=exp{j4θs(k)}·exp{j4θn}·exp{j4θASE}处理,假设
Figure PCTCN2015091142-appb-000001
则V4(k)可以去掉原始信号相位。然后经过低通滤波器(LPF,Low Pass Filter)去除噪声相位θASE(采用多个V4(k)相加),再提取幅角,可得到相偏相位的结果。即下式所表示的:
Figure PCTCN2015091142-appb-000002
其中,arg(z)表示复数z的幅角。
四次方之后,噪声也被放大了,相角的噪声放大避免不了,但可尽量减小幅度的噪声放大,因此,可以将上式优化为:
Figure PCTCN2015091142-appb-000003
即只对角度进行四次方处理。其中,abs(z)表示z的绝对值。
将相位估计得出的相位补偿值输入给相位补偿模块,进行补偿,补偿后进行坐标转换,转换为笛卡尔坐标的形式输出给后级模块。
本发明实施例的频偏相偏处理装置通过功能性单元实现时,可参照图6 所示的频偏相偏处理装置的结构组成示意图,如图6所示,所述频偏相偏处理装置包括:
第一坐标转换单元61,配置为将笛卡尔坐标系下的第一偏振信号和第二偏振信号分别转换为极坐标系下的第三偏振信号和第四偏振信号;
频偏补偿单元62,配置为分别对所述第三偏振信号和第四偏振信号进行频偏补偿,得到频偏补偿后的第五偏振信号和第六偏振信号;
四次方频偏估计单元63,配置为将所述第五偏振信号和第六偏振信号分为两路,利用第一路信号进行四次方频偏估计,得到频偏补偿值;
四次方相位估计单元64,配置为利用四次方频偏估计的中间数据进行四次方相位估计,得到相位补偿值;
相位补偿单元65,配置为针对第二路信号,利用所述相位补偿值对所述第五偏振信号和第六偏振信号进行相位补偿,得到相位补偿后的第七偏振信号和第八偏振信号;
第二坐标转换单元66,配置为将极坐标系下的第七偏振信号和第八偏振信号分别转换为笛卡尔坐标系下的第九偏振信号和第十偏振信号。
本发明实施例中,所述频偏补偿单元62包括:
第一频偏补偿子单元621,配置为在极坐标系下,将所述第三偏振信号的角度值与估计得到的频偏补偿值进行相加处理,得到频偏补偿后的第五偏振信号;
第二频偏补偿子单元622,配置为在极坐标系下,将所述第四偏振信号的角度值与估计得到的频偏补偿值进行相加处理,得到频偏补偿后的第六偏振信号;
其中,所述频偏补偿值为角度值。
本发明实施例中,所述四次方频偏估计单元63,还配置为利用第一路信号进行四次方频偏估计,得到频偏补偿值,以对所述第三偏振信号和第 四偏振信号进行频偏补偿;
所述四次方相位估计单元64,还用于利用四次方频偏估计的中间数据进行四次方相位估计,得到相位补偿值,以对所述第五偏振信号和第六偏振信号进行相位补偿。
本发明实施例中,所述第一偏振信号和第二偏振信号为正交的两路偏振信号。
本发明实施例中,所述四次方频偏估计单元63,还配置为将所述第五偏振信号分为两路,以及将所述第六偏振信号分为两路;将一路第五偏振信号与一路第六偏振信号作为第一路信号,将另一路第五偏振信号与另一路第六偏振信号作为第二路信号。
本发明实施例中,所述第九偏振信号和第十偏振信号为正交的两路偏振信号,且所述第九偏振信号为对所述第一偏振信号进行频偏相偏补偿处理后的信号,所述第十偏振信号为对所述第二偏振信号进行频偏相偏补偿处理后的信号。
本领域技术人员应当理解,图6所示的频偏相偏处理装置中的各单元的实现功能可参照前述频偏相偏处理方法的相关描述而理解。图6所示的频偏相偏处理装置中的各单元的功能可通过运行于处理器上的程序而实现,也可通过具体的逻辑电路而实现。
本领域技术人员应当理解,本发明实施例的电子设备中的各单元所实现的功能,可参照前述的信息处理方法的相关描述而理解,本发明实施例的电子设备中的各单元,可通过实现本发明实施例所述的功能的模拟电路而实现,也可以通过执行本发明实施例所述的功能的软件在智能终端上的运行而实现。
本发明实施例还记载了一种存储介质,所述存储介质中存储有计算机程序,所述计算机程序配置为执行前述各实施例的频偏相偏处理方法。
本发明实施例所记载的技术方案之间,在不冲突的情况下,可以任意组合。
在本发明所提供的几个实施例中,应该理解到,所揭露的方法和智能设备,可以通过其它的方式实现。以上所描述的设备实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,如:多个单元或组件可以结合,或可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的各组成部分相互之间的耦合、或直接耦合、或通信连接可以是通过一些接口,设备或单元的间接耦合或通信连接,可以是电性的、机械的或其它形式的。
上述作为分离部件说明的单元可以是、或也可以不是物理上分开的,作为单元显示的部件可以是、或也可以不是物理单元,即可以位于一个地方,也可以分布到多个网络单元上;可以根据实际的需要选择其中的部分或全部单元来实现本实施例方案的目的。
另外,在本发明各实施例中的各功能单元可以全部集成在一个第二处理单元中,也可以是各单元分别单独作为一个单元,也可以两个或两个以上单元集成在一个单元中;上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。
工业实用性
本发明通过将四次方估计提取出来,作为一个公共的部分。同时,四次方也采用极坐标系,即:单纯对于角度做一个四倍的处理,这样,将四次方的运算(三个乘法及一个加法)转变成了移位处理。从而使技术方案实现简单,硬件容易实现,提高了系统的健壮性。

Claims (13)

  1. 一种频偏相偏处理方法,所述方法包括:
    将笛卡尔坐标系下的第一偏振信号和第二偏振信号分别转换为极坐标系下的第三偏振信号和第四偏振信号;
    分别对所述第三偏振信号和第四偏振信号进行频偏补偿,得到频偏补偿后的第五偏振信号和第六偏振信号;
    将所述第五偏振信号和第六偏振信号分为两路,利用第一路信号进行四次方频偏估计,得到频偏补偿值;利用四次方频偏估计的中间数据进行四次方相位估计,得到相位补偿值;针对第二路信号,利用所述相位补偿值对所述第五偏振信号和第六偏振信号进行相位补偿,得到相位补偿后的第七偏振信号和第八偏振信号;
    将极坐标系下的第七偏振信号和第八偏振信号分别转换为笛卡尔坐标系下的第九偏振信号和第十偏振信号。
  2. 根据权利要求1所述的频偏相偏处理方法,其中,所述分别对所述第三偏振信号和第四偏振信号进行频偏补偿,得到频偏补偿后的第五偏振信号和第六偏振信号,包括:
    在极坐标系下,将所述第三偏振信号的角度值与估计得到的频偏补偿值进行相加处理,得到频偏补偿后的第五偏振信号;
    在极坐标系下,将所述第四偏振信号的角度值与估计得到的频偏补偿值进行相加处理,得到频偏补偿后的第六偏振信号;
    其中,所述频偏补偿值为角度值。
  3. 根据权利要求1所述的频偏相偏处理方法,其中,所述利用第一路信号进行四次方频偏估计,得到频偏补偿值;利用四次方频偏估计的中间数据进行四次方相位估计,得到相位补偿值,包括:
    利用第一路信号进行四次方频偏估计,得到频偏补偿值,以对所述第 三偏振信号和第四偏振信号进行频偏补偿;
    利用四次方频偏估计的中间数据进行四次方相位估计,得到相位补偿值,以对所述第五偏振信号和第六偏振信号进行相位补偿。
  4. 根据权利要求1至3任一项所述的频偏相偏处理方法,其中,所述第一偏振信号和第二偏振信号为正交的两路偏振信号。
  5. 根据权利要求4所述的频偏相偏处理方法,其中,所述第九偏振信号和第十偏振信号为正交的两路偏振信号,且所述第九偏振信号为对所述第一偏振信号进行频偏相偏补偿处理后的信号,所述第十偏振信号为对所述第二偏振信号进行频偏相偏补偿处理后的信号。
  6. 根据权利要求1所述的频偏相偏处理方法,其中,将所述第五偏振信号和第六偏振信号分为两路,包括:
    将所述第五偏振信号分为两路,以及将所述第六偏振信号分为两路;
    将一路第五偏振信号与一路第六偏振信号作为第一路信号,将另一路第五偏振信号与另一路第六偏振信号作为第二路信号。
  7. 一种频偏相偏处理装置,所述装置包括:
    第一坐标转换单元,配置为将笛卡尔坐标系下的第一偏振信号和第二偏振信号分别转换为极坐标系下的第三偏振信号和第四偏振信号;
    频偏补偿单元,配置为分别对所述第三偏振信号和第四偏振信号进行频偏补偿,得到频偏补偿后的第五偏振信号和第六偏振信号;
    四次方频偏估计单元,配置为将所述第五偏振信号和第六偏振信号分为两路,利用第一路信号进行四次方频偏估计,得到频偏补偿值;
    四次方相位估计单元,配置为利用四次方频偏估计的中间数据进行四次方相位估计,得到相位补偿值;
    相位补偿单元,配置为针对第二路信号,利用所述相位补偿值对所述第五偏振信号和第六偏振信号进行相位补偿,得到相位补偿后的第七偏振 信号和第八偏振信号;
    第二坐标转换单元,配置为将极坐标系下的第七偏振信号和第八偏振信号分别转换为笛卡尔坐标系下的第九偏振信号和第十偏振信号。
  8. 根据权利要求7所述的频偏相偏处理装置,其中,所述频偏补偿单元包括:
    第一频偏补偿子单元,配置为在极坐标系下,将所述第三偏振信号的角度值与估计得到的频偏补偿值进行相加处理,得到频偏补偿后的第五偏振信号;
    第二频偏补偿子单元,配置为在极坐标系下,将所述第四偏振信号的角度值与估计得到的频偏补偿值进行相加处理,得到频偏补偿后的第六偏振信号;
    其中,所述频偏补偿值为角度值。
  9. 根据权利要求7所述的频偏相偏处理装置,其中,所述四次方频偏估计单元,还配置为利用第一路信号进行四次方频偏估计,得到频偏补偿值,以对所述第三偏振信号和第四偏振信号进行频偏补偿;
    所述四次方相位估计单元,还配置为利用四次方频偏估计的中间数据进行四次方相位估计,得到相位补偿值,以对所述第五偏振信号和第六偏振信号进行相位补偿。
  10. 根据权利要求7至9任一项所述的频偏相偏处理装置,其中,所述第一偏振信号和第二偏振信号为正交的两路偏振信号。
  11. 根据权利要求10所述的频偏相偏处理装置,其中,所述第九偏振信号和第十偏振信号为正交的两路偏振信号,且所述第九偏振信号为对所述第一偏振信号进行频偏相偏补偿处理后的信号,所述第十偏振信号为对所述第二偏振信号进行频偏相偏补偿处理后的信号。
  12. 根据权利要求7所述的频偏相偏处理装置,其中,所述四次方频 偏估计单元,还配置为将所述第五偏振信号分为两路,以及将所述第六偏振信号分为两路;将一路第五偏振信号与一路第六偏振信号作为第一路信号,将另一路第五偏振信号与另一路第六偏振信号作为第二路信号。
  13. 一种存储介质,所述存储介质中存储有计算机程序,所述计算机程序配置为执行权利要求1至6任一项所述的频偏相偏处理方法。
PCT/CN2015/091142 2015-06-30 2015-09-29 频偏相偏处理方法及装置、存储介质 WO2017000406A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510373143.1 2015-06-30
CN201510373143.1A CN106330322B (zh) 2015-06-30 2015-06-30 频偏相偏处理方法及装置

Publications (1)

Publication Number Publication Date
WO2017000406A1 true WO2017000406A1 (zh) 2017-01-05

Family

ID=57607626

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/091142 WO2017000406A1 (zh) 2015-06-30 2015-09-29 频偏相偏处理方法及装置、存储介质

Country Status (2)

Country Link
CN (1) CN106330322B (zh)
WO (1) WO2017000406A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112018004201T5 (de) 2017-08-16 2020-04-30 Molex, Llc Elektrische Verbinderbaugruppe
CN112600777A (zh) * 2020-12-08 2021-04-02 上海擎昆信息科技有限公司 一种适用于5g-nr接收机的频偏补偿方法和装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113497774A (zh) * 2020-04-07 2021-10-12 深圳市中兴微电子技术有限公司 一种频偏估计方法及装置、电子设备、计算机可读介质
CN113691320B (zh) * 2020-05-19 2022-08-09 华为技术有限公司 一种数字信号处理方法及相关设备
CN113743655B (zh) * 2021-08-12 2024-02-02 中铁资源集团有限公司 一种基于混合总体筛分的资源量估算方法
CN114499691B (zh) * 2022-01-05 2023-09-29 复旦大学 一种基于笛卡尔坐标与极坐标融合的低延迟相偏恢复电路

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1400755A (zh) * 2001-07-27 2003-03-05 三星电子株式会社 使用极坐标系的正交频分复用接收机及其方法
CN102148795A (zh) * 2010-07-14 2011-08-10 华为技术有限公司 一种载波相位估计方法及装置
US8073345B2 (en) * 2006-12-22 2011-12-06 Alcatel Lucent Frequency estimation in an intradyne optical receiver
CN103339883A (zh) * 2011-02-17 2013-10-02 日本电气株式会社 信号处理电路、信号处理方法、光接收器、以及光通信系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8180227B2 (en) * 2009-09-23 2012-05-15 Alcatel Lucent Digital coherent detection of multi-carrier optical signal
US9537578B2 (en) * 2009-12-15 2017-01-03 Multiphy Ltd. Method and system for coherent equalization of chromatic dispersion of optical signals in a fiber
US8804874B2 (en) * 2012-01-20 2014-08-12 Mediatek Inc. Polar transmitter having digital processing block used for adjusting frequency modulating signal for frequency deviation of frequency modulated clock and related method thereof
CN103414674B (zh) * 2013-07-18 2016-08-10 西安空间无线电技术研究所 一种mapsk自适应解调系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1400755A (zh) * 2001-07-27 2003-03-05 三星电子株式会社 使用极坐标系的正交频分复用接收机及其方法
US8073345B2 (en) * 2006-12-22 2011-12-06 Alcatel Lucent Frequency estimation in an intradyne optical receiver
CN102148795A (zh) * 2010-07-14 2011-08-10 华为技术有限公司 一种载波相位估计方法及装置
CN103339883A (zh) * 2011-02-17 2013-10-02 日本电气株式会社 信号处理电路、信号处理方法、光接收器、以及光通信系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112018004201T5 (de) 2017-08-16 2020-04-30 Molex, Llc Elektrische Verbinderbaugruppe
CN112600777A (zh) * 2020-12-08 2021-04-02 上海擎昆信息科技有限公司 一种适用于5g-nr接收机的频偏补偿方法和装置
CN112600777B (zh) * 2020-12-08 2022-11-22 上海擎昆信息科技有限公司 一种适用于5g-nr接收机的频偏补偿方法和装置

Also Published As

Publication number Publication date
CN106330322B (zh) 2019-02-05
CN106330322A (zh) 2017-01-11

Similar Documents

Publication Publication Date Title
WO2017000406A1 (zh) 频偏相偏处理方法及装置、存储介质
JP6301478B2 (ja) 信号を送信及び受信するための方法、並びに対応する装置及びシステム
CN108023643B (zh) 偏振相关损耗的估计装置、方法以及接收机
CN112448750A (zh) 用于为角度域稀疏信道提供信道恢复的系统和方法
WO2020001651A1 (zh) 一种数据恢复方法及装置
US20130223498A1 (en) Techniques for channel estimation in millimeter wave communication systems
CN106301593B (zh) 自适应盲偏振解复用处理方法和装置
JP5696622B2 (ja) 無線送信装置
WO2018054053A1 (zh) 一种相位校正方法和装置、计算机存储介质
CN109714112B (zh) 一种利用移动平台集群的水声通信方法及系统
CN105553529B (zh) 一种少模光纤传输系统及其数字信号恢复方法
KR20200060668A (ko) 단일-접속 안테나 어레이에 대한 아날로그 빔 포밍 시스템 및 방법
Li et al. Decentralized subspace pursuit for joint sparsity pattern recovery
WO2022063001A1 (zh) Aau群时延波动补偿方法、装置、电子设备及存储介质
US10749663B1 (en) Method and apparatus for simultaneous propagation of multiple clockfrequencies in serializer/deserializer (SerDes) Macros
CN103488611A (zh) 基于IEEE802.11.ad协议的FFT处理器
WO2018076219A1 (zh) 接收异步时钟的多发射机数据的方法和接收机
KR101831198B1 (ko) 통신 신호에 대한 감소된 연산량을 가지는 2-단계 tdoa/fdoa 정보 추정 방법
US11901933B2 (en) System and method for providing sub-band whitening in the presence of partial-band interference
CN117135644B (zh) 一种峰值对消处理方法、装置和计算机可读存储介质
KR20220041729A (ko) 심층 학습 기반의 채널 버퍼 압축
CN114285704B (zh) 上行信道估计方法、芯片、系统及存储介质
CN110168967B (zh) 一种光接收机及延时估计方法
US11303497B2 (en) Method and apparatus for generating a quadrature modulated signal near zero frequency for transmission
JP5036658B2 (ja) 光通信帯域分割受信装置及び光通信帯域分割受信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15896936

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15896936

Country of ref document: EP

Kind code of ref document: A1