WO2016208750A1 - Drug administration mechanism and method for producing pump unit for drug administration mechanism - Google Patents

Drug administration mechanism and method for producing pump unit for drug administration mechanism Download PDF

Info

Publication number
WO2016208750A1
WO2016208750A1 PCT/JP2016/068910 JP2016068910W WO2016208750A1 WO 2016208750 A1 WO2016208750 A1 WO 2016208750A1 JP 2016068910 W JP2016068910 W JP 2016068910W WO 2016208750 A1 WO2016208750 A1 WO 2016208750A1
Authority
WO
WIPO (PCT)
Prior art keywords
pump
unit
characteristic data
pump unit
main body
Prior art date
Application number
PCT/JP2016/068910
Other languages
French (fr)
Japanese (ja)
Inventor
道 水谷
憲彦 岡本
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to JP2017525461A priority Critical patent/JP6821270B2/en
Publication of WO2016208750A1 publication Critical patent/WO2016208750A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/142Pressure infusion, e.g. using pumps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/168Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body

Definitions

  • the present invention relates to a dosing mechanism for administering a liquid medicine filled in a medicine container to a patient, and a method for manufacturing a pump unit for the dosing mechanism.
  • an infusion pump device described in Patent Document 1 as a dosing mechanism for administering a liquid medicine (medical solution) filled in a medicine container to a patient.
  • This infusion pump device is configured such that a pump unit can be attached to and detached from a main body ("power supply unit" in Patent Document 1) that drives the pump.
  • a pump having a piezoelectric element like the “micro diaphragm pump” described in Patent Document 2.
  • a pump including this piezoelectric element is configured to move a diaphragm with a driving force generated by applying a voltage to the piezoelectric element to suck and discharge a fluid.
  • the piezoelectric constant of the piezoelectric element is not constant for each individual, if it is used as it is, the individual will vary in the relationship between the drive frequency input to the pump and the discharge flow rate. For this reason, in order to perform accurate drug administration to a patient, when a pump having a piezoelectric element is used in the dosing mechanism, it is necessary to suppress variations in the discharge flow rate as much as possible. Therefore, it is necessary to correct the control so that the discharge flow rate is as controlled. In other words, a trial run of a pump actually used for drug administration is performed, and the relationship between the drive frequency and the actual discharge flow rate is grasped, and then the pump control is corrected based on the relationship between the drive frequency and the discharge flow rate obtained in the trial run. There is a need to.
  • an object of the present invention is to provide a dosing mechanism that can easily correct the control when a pump including a piezoelectric element is used and the pump is replaced, and a method for manufacturing a pump unit for the dosing mechanism.
  • the present invention comprises a drug container, a main body, and a pump unit attached to the main body, a dosing mechanism for administering a liquid drug filled in the drug container to a patient
  • the pump unit comprises: A pump driven by a piezoelectric element; and a characteristic data holding unit that holds characteristic data relating to input / output of the pump in a readable manner, and the main body reads the characteristic data held in the characteristic data holding unit A reading unit; a correction unit that determines a control correction value based on the characteristic data read by the reading unit; and a pump control unit that controls the pump based on the determined control correction value.
  • This is a dosing mechanism.
  • the characteristic data is data regarding a relationship between a driving frequency input to the pump and a discharge flow rate of the pump, and the pump control unit sets the driving frequency input to the pump to the control correction value.
  • the pump can be controlled correspondingly.
  • the characteristic data holding unit may be a means for presenting information in one direction to the reading unit.
  • a method of manufacturing a pump unit for a dosing mechanism comprising: a pump driven by a piezoelectric element; and a characteristic data holding unit for holding characteristic data relating to input / output of the pump in a readable manner.
  • a plurality of actual measurement data indicating the relationship between the discharge flow rate with respect to a plurality of drive frequencies by performing a trial operation using the pump unit actually with respect to the relationship between the drive frequency input to the pump and the discharge flow rate for the pump unit.
  • a method for manufacturing a pump unit for a dosing mechanism comprising: a pump driven by a piezoelectric element; and a characteristic data holding unit for holding characteristic data relating to input / output of the pump in a readable manner.
  • FIG. 2B is a longitudinal sectional view taken along the line AA in FIG. 2A showing the main body and the pump unit with the lid portion removed according to the present embodiment. It is a rear view which shows the main body and pump unit of the state of this embodiment in the state which removed the cover part. It is a block diagram of the principal part in the medication mechanism of this embodiment.
  • the medication mechanism 1 of this embodiment includes a main body 2 and a pump unit 3 that can be attached to and detached from the main body 2. As shown in FIG. 1, the dosing mechanism 1 is attached in the middle of a dosing route F from a drug container F1 such as an infusion bag to a patient P.
  • a drug container F1 such as an infusion bag
  • the main body 2 is a part for holding the pump unit 3 and performing various detections, controls, and managements.
  • a drug container side tube F2 and a patient side tube F5 are connected to the pump unit 3 held by the main body 2.
  • the cover part which can be opened and closed is provided in the front side of the main body 2.
  • FIG. The lid portion comes into contact with the side surfaces of the suction side tube 33 and the discharge side tube 34 of the pump unit 3 when closed.
  • the upper side shown in FIGS. 2A to 2D is the drug container F1 side (suction side) when the medication mechanism 1 is used, and the lower side is the patient P side (discharge side) when used.
  • the main body 2 is provided with a pump unit arrangement recess 22 which is a recess into which the pump unit 3 can be fitted. Although a specific shape is not shown, a main body side electrical contact 2P (see FIG. 3) is provided on the bottom surface of the pump unit arrangement recess 22. When the pump unit 3 is fitted in the pump unit arrangement recess 22, electric power for driving the pump 31 can be supplied from the main body side electrical contact 2 ⁇ / b> P to the pump unit 3.
  • the pump unit arrangement recess 22 is provided with a reading unit 27 (see FIG. 3) for reading the characteristic data held in the characteristic data holding unit 38 provided in the pump unit 3.
  • the reading unit 27 uses a CCD camera when a bar code or the like is used as the characteristic data holding unit 38, and uses an electromagnetic coil when an IC chip or the like is used.
  • tube arrangement grooves 23 for arranging the suction side tube 33 and the discharge side tube 34 of the pump unit 3 are formed above and below the pump unit arrangement recess 22.
  • the main body 2 is provided with a sensor capable of detecting the liquid feeding status of the pump unit 3.
  • a pressure sensor 24 and a bubble sensor 25 are provided as this sensor.
  • the pressure sensors 24 are provided at two locations on the main body 2 on the drug container F1 side and the patient P side. However, it can be provided only at one place on the medicine container F1 side or the patient P side.
  • Each pressure sensor 24 is provided at a position corresponding to the suction side tube 33 and the discharge side tube 34 in the pump unit 3 attached to the main body 2.
  • This pressure sensor 24 utilizes a phenomenon in which the tube expands when the pressure in the tube increases, and the tube diameter expands, and when the pressure in the tube decreases, the tube contracts when the tube pressure decreases. Then, a change in pressure in each of the tubes 33 and 34 is detected by a change in the diameter of the suction side tube 33 and the discharge side tube 34.
  • each pressure sensor 24 is provided with a movable block 241 having a groove into which the tubes 33 and 34 are fitted so as to be movable between the front side and the back side. .
  • an element 242 that can output a voltage by reference to the received load is disposed in contact with the movable block 241.
  • the tubes 33 and 34 are restricted from moving to the front side by a lid (not shown) of the main body 2. For this reason, the movable block 241 moves according to the expansion / contraction of the tubes 33, 34, and the voltage output from the element 242 changes according to the load applied to the element 242. Can detect pressure changes.
  • the pump in the upstream side of the pump 31 in the pump unit 3 keeps the drug solution from flowing from the drug container F1 side. Since 31 performs suction, the suction side tube 33 contracts as the inside of the pump 31 continues to be driven to a negative pressure.
  • the pump 31 discharges in a state in which the drug solution does not easily flow to the patient P side, so that the internal pressure becomes positive and the discharge side tube 34 expands by continuing to drive the pump 31. To do. For this reason, the occurrence of the blockage can be grasped by the detection of the pressure sensor 24.
  • a bypass pipe 35 and a bypass opening / closing valve 36 are provided in the pump unit 3 as a relief flow path for releasing excess chemical liquid generated at the time of closure so that no inconvenience occurs after the closure is released. May be.
  • the main body 2 includes, for example, a control unit 261 that performs pump control of the pump unit 3 and processing and storage of detection results of each sensor, an internal power supply unit 262 in which a battery is disposed, an external power input jack 263, a medicine container A flow rate jack 264 for inputting a detection value of a flow rate sensor for detecting a drip amount and the like attached to a drip tube (not shown) located on the patient P side from F1, communication for outputting medication history data and sensor detection results, etc.
  • a jack 265 may be provided.
  • a display portion 266 having a liquid crystal display or the like that can display various information, and an input portion 267 (see FIG. 3) having operation buttons and the like can be provided.
  • wearing the main body 2 to the patient's P body, the part for attaching to the drip stand etc. which are used in a medical institution can also be provided.
  • the control unit 261 controls the pump 31 based on the correction unit 2611 that determines the control correction value based on the characteristic data of the pump 31 in the pump unit 3 read by the reading unit 27 and the determined control correction value.
  • the pump unit 3 includes a pump 31, a free flow prevention valve 32, a suction side tube (suction side piping) 33, a discharge side tube (discharge side piping) 34, and the like.
  • the pump 31 and the free flow prevention valve 32 are housed in a case 37 (see FIGS. 2A and 2C) and integrated. For this reason, the pump unit 3 can be easily attached to and detached from the main body 2.
  • connectors 331 and 341 that can be connected to the drug containers F1 or the tubes F2 and F5 extending from the patient P are provided.
  • a pump unit side electrical contact 3P (see FIG. 3) that can be connected to the main body side electrical contact 2P is formed on the back surface of the case 37. Therefore, the pump 31 is made by making the back surface of the case 37 coincide with the bottom surface of the pump unit arrangement recess 22 of the main body 2 and electrically connecting the main body side electric contact 2P and the pump unit side electric contact 3P (see FIG. 3). It can be made into a state which can be driven by energizing.
  • the pump unit 3 includes a characteristic data holding unit 38 that holds the characteristic data related to the input / output of the pump 31 in a readable manner.
  • the characteristic data is different for each individual pump 31.
  • the characteristic data is data about the relationship between the drive frequency input to the pump 31 and the discharge flow rate that is the output of the pump 31.
  • the characteristic data varies among the individual pumps 31 because the piezoelectric constants of the piezoelectric elements incorporated in the pump 31 are not constant for each individual, so that the operation (vibration) of the diaphragm by the piezoelectric elements is uniform for all the individual elements. It is thought that one factor is not. In addition to the above factors, other factors may have a combined effect.
  • This characteristic data is obtained for a plurality of (six points in this embodiment) by actually using the pump unit 3 for a trial operation of the relationship between the driving frequency input to the pump 31 and the discharge flow rate for each pump unit 3.
  • a plurality of actual measurement data indicating the relationship of the discharge flow rate with respect to the drive frequency is obtained and determined based on the actual measurement data.
  • the characteristic data holding unit 38 a means for presenting information in one direction to the reading unit 27 of the main body 2 can be used.
  • a two-dimensional code such as a barcode or a QR code (registered trademark in Japan) is used. Examples include IC chips that are not written (overwritten), but are not limited to these, and various means can be used.
  • the characteristic data holding unit 38 is formed in the pump unit 3 by being attached to the surface of the case 37 or being embedded in the pump unit 3, for example. Since the means for presenting information in one direction is used as the characteristic data holding unit 38, the reading unit 27 can be configured to only read the characteristic data. Therefore, the configuration of the characteristic data holding unit 38 and the reading unit 27 is simplified. Can be
  • the pump 31 can suck a liquid medicine (medical solution) from the medicine container F1 and discharge it to the patient P.
  • a diaphragm type pump is used.
  • Employing a diaphragm pump as the pump 31 eliminates the need for a motor, so that the pump can be made smaller than a pump that requires a motor. For this reason, since the pump unit 3 can also be reduced in size, the dosing mechanism 1 can be reduced in weight. Therefore, the burden when the patient P carries the medication mechanism 1 is reduced, and the merit is particularly great for the patient P who needs to always administer the drug solution.
  • the diaphragm pump can control the discharge amount of the chemical solution with high accuracy.
  • the pump 31 of the present embodiment is a pump in which a diaphragm is driven by a piezoelectric element (piezo element), specifically, a pump using MEMS technology related to an integrated device.
  • piezoelectric element piezo element
  • MEMS technology related to an integrated device.
  • Japanese Unexamined Patent Publication No. 2013-117211 are used.
  • the free flow prevention valve 32 is provided to prevent an unintended flow passing through the pump 31 from being generated due to the pressure of the chemical liquid generated by gravity when the pump 31 is not driven.
  • the suction side tube 33 is a tube extending from the pump 31 to the medicine container F1 side.
  • the discharge side tube 34 is a tube extending from the pump 31 to the patient P side.
  • These tubes 33 and 34 are made of a soft resin such as silicon rubber, for example. Since changes in the diameters of the tubes 33 and 34 are detected by the pressure sensor 24 of the main body 2, at least a portion arranged in the pressure sensor 24 in advance with respect to material (mixing of resin, density, etc.), tube thickness, and tube diameter. It must be formed within a predetermined error range.
  • a hard pipe can also be used for the pump unit 3 without using a soft tube.
  • the connectors 331 and 341 are provided at the tips of the tubes 33 and 34, respectively.
  • the connectors 331 and 341 are general-purpose products made of hard resin. For example, by screwing, as shown in FIG. 1, the medicine container side tube F2 and the patient side tube F5 (each can be connected to the connectors 331 and 341 of the pump unit 3).
  • the connectors F3 and F4 having the shapes of “male” and “female”.
  • the connectors 331 and 341 allow the pump unit 3 and the drug container side tube F2 to be separated, and the pump unit 3 and the patient side tube F5 can be separated, so that the distance between the drug container F1 and the patient P with respect to the dosing mechanism 1 can be freely set. Can be set. Therefore, when the patient P carries the medication mechanism 1, the tubes F2 and F5 are unlikely to get in the way.
  • the pump unit 3 of this embodiment can be disposable. For this reason, the medication mechanism 1 can be used hygienically and safely. Depending on the type and usage of the medicine, the pump unit 3 is usually replaced in about 3 days, or in about 30 days if it is long. By making the pump unit 3 disposable, it is not necessary to perform a discharge accuracy test performed by a clinical engineer (ME) in a medical institution. Therefore, management of the medication mechanism 1 in a medical institution becomes easy, and in the future, there is a possibility that the medication mechanism 1 can be managed by a nurse or the like on a ward basis without the need of a clinical engineer. In some cases, the pump unit 3 is not disposable and can be reused.
  • ME clinical engineer
  • the method for manufacturing the pump unit 3 includes at least the following three steps.
  • One shows the relationship between the discharge flow rate with respect to a plurality of drive frequencies by performing a trial operation using the pump unit 3 in practice on the relationship between the drive frequency input to the pump 31 and the discharge flow rate that is the output of the pump 31.
  • This is a step of obtaining a plurality of actually measured data.
  • the other is a step of determining characteristic data based on the plurality of actually measured data obtained in the trial operation.
  • the other is a step of holding the predetermined characteristic data in the characteristic data holding unit 38.
  • the present embodiment obtains actual measurement data of the discharge flow rate for six driving frequencies (n1, n2,..., N6) of different sizes. For this reason, the characteristic data of this embodiment includes seven discharge flow rates (0 to n1 (less than), n1 (more than) to n2 (less than),..., N6 (or more) to) divided by the six points. Determined.
  • the property data is stored in the property data holding unit 38.
  • an object formed by printing a barcode, a two-dimensional code or the like is used as the property data holding unit 38, the property data is converted into a code on a sheet-like body. After the printed product is printed, it is affixed to the surface of the case 37, or the code is directly printed on the surface of the case 37. Further, in the case where an object formed by electromagnetic processing such as an IC chip is used as the characteristic data holding unit 38, the characteristic data converted into electromagnetic information is written and then attached to the surface of the case 37. Is made by However, the method is not limited to these exemplified methods, and the characteristic data can be held in the characteristic data holding unit 38 by various methods.
  • the tube F2 extending from the medicine container F1 and the tube F5 extending from the patient P side are connected to the pump unit 3.
  • the pump unit 3 in a state where the tube F2 and the tube F5 are connected to each other is mounted on the main body 2 to obtain the state shown in FIG. If necessary, a drip tube or a flow sensor is attached.
  • air bubbles in the administration route F are removed.
  • the needle F6 is inserted into the patient P.
  • driving of the pump 31 is started. Thereby, a chemical
  • a medical worker such as a nurse sets the pump unit 3 on the main body 2 (step S1). Thereafter, when a medical worker turns on the power of the main body 2, the control unit 261 reads the characteristic data held in the characteristic data holding unit 38 via the reading unit 27 (step S2). Next, the discharge flow rate is set by an input to the input unit 267 by the medical staff (step S3).
  • step S3 when the discharge flow rate set in step S3 exceeds the reference value n1 and is equal to or smaller than the reference value n2 larger than the reference value n1 (steps S4 and S8), the correction unit 2611 applies the coefficients A and B.
  • the determination of the driving frequency is the same as described above.
  • the characteristic data is set for seven sections (the discharge flow rate is set to 0 to n1 (less than), n1 (more) to n2 (less than),..., N6 (more than)), so that the driving frequency is set. This is determined in seven stages as the discharge flow rate set by the medical staff increases.
  • the “determined drive frequency” is a drive in which the drive frequency input to the pump 31 is increased or decreased corresponding to the control correction value so that a desired discharge flow rate is discharged when the pump 31 is actually operated. Is the frequency. Therefore, the pump control unit 2612 controls the pump 31 by increasing or decreasing the drive frequency input to the pump 31 corresponding to the control correction value. Thus, even if the pump unit 3 is replaced with another individual, a desired discharge flow rate can be easily obtained by inputting the increased or decreased drive frequency to the pump 31, so that the characteristic data of the pump unit 3 after replacement can be obtained. Accordingly, the drug solution can be administered to the patient P with a discharge flow rate that is slightly different from the discharge flow rate set by the medical staff.
  • FIG. 5 is a flow diagram obtained by modifying FIG. In the flow of FIG. 5, the blood pressure correction is different from the flow of FIG.
  • a and B are set in the correction unit 2611 (steps S5 and S9), it is determined whether or not blood pressure correction is performed (step S10).
  • the necessity of blood pressure correction can be set in advance by, for example, an input to the input unit 267 by a medical worker. Further, when the medication mechanism 1 is configured to measure the blood pressure of the patient P, the necessity of blood pressure correction can be automatically set with a predetermined blood pressure as a boundary.
  • step S10 If NO in step S10 ("None" in the figure), the flow is exactly the same as in the flow of FIG. On the other hand, in the case of “Yes” (“Yes” in the figure), the drive frequency is fixed (Step S6) after being corrected by the correction coefficient preset in the correction unit 2611 (Step S11), and the control is corrected. Such setting is completed (step S7).
  • the correction coefficient is corrected so that the drive frequency becomes higher when the discharge flow rate setting is the same as the flow in FIG. Thereby, it can suppress that the dosage of the chemical
  • the pump unit 3 holds the characteristic data holding unit 38 so that the reading unit 27 can read it. For this reason, even if the pump unit 3 is replaced, the control correction value is easily determined, and accurate control corresponding to different characteristics for each individual pump 31 can be quickly performed.
  • the actually measured data of the discharge flow rate with respect to the driving frequency of 6 points is obtained.
  • the present invention is not limited to this. You can also.
  • the embodiment includes a medicine container F1, a main body 2, and a pump unit 3 attached to the main body 2, and a dosing mechanism 1 for administering a liquid medicine filled in the medicine container F1 to a patient P.
  • the pump unit 3 includes a pump 31 driven by a piezoelectric element, and a characteristic data holding unit 38 that holds characteristic data relating to input / output of the pump 31 in a readable manner.
  • a reading unit 27 that reads the characteristic data held in the characteristic data holding unit 38, a correction unit 2611 that determines a control correction value based on the characteristic data read by the reading unit 27, and the determined control correction And a pump control unit 2612 that controls the pump 31 based on a value.
  • the pump unit 3 holds the characteristic data holding unit 38 so that the reading unit 27 can read it. For this reason, even if the pump unit 3 is replaced, the control correction value can be easily determined, and accurate control according to different characteristics for each individual pump unit 3 can be quickly performed.
  • the characteristic data is data about the relationship between the drive frequency input to the pump 31 and the discharge flow rate of the pump 31, and the pump control unit 2612 sets the drive frequency input to the pump 31 to the drive frequency.
  • the pump 31 can be controlled by increasing or decreasing in accordance with the control correction value.
  • the target discharge flow rate can be easily obtained by increasing or decreasing the drive frequency.
  • the characteristic data holding unit 38 may be a means for presenting information in one direction to the reading unit 27.
  • the reading unit 27 can be configured to only read the characteristic data, the configuration of the characteristic data holding unit 38 and the reading unit 27 can be simplified.
  • the embodiment also includes a pump unit 3 for a dosing mechanism, which includes a pump 31 driven by a piezoelectric element, and a characteristic data holding unit 38 that holds characteristic data relating to input / output of the pump 31 in a readable manner.
  • a pump unit 3 for a dosing mechanism which includes a pump 31 driven by a piezoelectric element, and a characteristic data holding unit 38 that holds characteristic data relating to input / output of the pump 31 in a readable manner.
  • the characteristic data is determined by a trial operation that actually uses the pump unit 3, the characteristic data can be accurately determined.
  • the control correction value is easily determined even when the pump unit 3 is replaced, and accurate control according to different characteristics for each individual pump unit 3 can be quickly performed. Therefore, when the pump 31 is replaced, the control can be easily corrected.

Landscapes

  • Health & Medical Sciences (AREA)
  • Vascular Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Infusion, Injection, And Reservoir Apparatuses (AREA)

Abstract

This drug administration mechanism is for administering a liquid drug packed in a drug container (F1) to a patient. The drug administration mechanism is provided with the drug container (F1), a main body (2), and a pump unit (3) attached to the main body (2). The pump unit (3) is provided with a pump that is driven by a piezoelectric element and a characteristic data holding unit (38) for readably holding characteristic data relating to the input/output of the pump. The main body (2) is provided with: a reading unit (27) that reads the characteristic data held by the characteristic data holding unit (38); a correction unit (2611) that determines a control correction value on the basis of the characteristic data read by the reading unit (27); and a pump control unit (2612) that controls the pump on the basis of the determined control correction value.

Description

投薬機構、投薬機構用のポンプユニットの製造方法Dosing mechanism and method of manufacturing pump unit for dosing mechanism 関連出願の相互参照Cross-reference of related applications
 本願は、日本国特願2015-128969号に基づく優先権を主張し、引用によって本願明細書の記載に組み込まれる。 This application claims priority based on Japanese Patent Application No. 2015-128969, and is incorporated herein by reference.
 本発明は、薬剤容器に充填された液状の薬剤を患者に投与するための投薬機構、投薬機構用のポンプユニットの製造方法に関するものである。 The present invention relates to a dosing mechanism for administering a liquid medicine filled in a medicine container to a patient, and a method for manufacturing a pump unit for the dosing mechanism.
 薬剤容器に充填された液状の薬剤(薬液)を患者に投与するための投薬機構として、例えば特許文献1に記載の輸液ポンプ装置がある。この輸液ポンプ装置は、ポンプを駆動させる本体(特許文献1では「電源ユニット」)に対してポンプユニットが取り付け・取り外し可能に構成されている。 For example, there is an infusion pump device described in Patent Document 1 as a dosing mechanism for administering a liquid medicine (medical solution) filled in a medicine container to a patient. This infusion pump device is configured such that a pump unit can be attached to and detached from a main body ("power supply unit" in Patent Document 1) that drives the pump.
 ここで、投薬機構をコンパクト化するため、ポンプを特許文献2に記載された「マイクロダイヤフラムポンプ」のように、圧電素子(ピエゾ素子)を備えたポンプを用いることが考えられる。この圧電素子を備えたポンプは、圧電素子に電圧をかけることにより生じる駆動力でダイヤフラムを動かして流体の吸引・吐出を行うよう構成されている。 Here, in order to make the dosing mechanism compact, it is conceivable to use a pump having a piezoelectric element (piezo element) like the “micro diaphragm pump” described in Patent Document 2. A pump including this piezoelectric element is configured to move a diaphragm with a driving force generated by applying a voltage to the piezoelectric element to suck and discharge a fluid.
 しかし、圧電素子は個体ごとに圧電定数が一定でないため、そのまま使用すると、ポンプへ入力される駆動周波数と吐出流量との関係に、個体ごとのばらつきが生じてしまう。このため、患者への正確な薬剤投与を行うためには、投薬機構において圧電素子を備えたポンプを用いる場合、吐出流量のばらつきは極力抑制される必要がある。よって、制御通りの吐出流量となるように制御を補正する必要がある。すなわち、薬剤投与に実際に用いるポンプを試運転し、駆動周波数と実際の吐出流量との関係を把握した上で、前記試運転で得た駆動周波数と吐出流量との関係を基にポンプの制御を補正する必要がある。 However, since the piezoelectric constant of the piezoelectric element is not constant for each individual, if it is used as it is, the individual will vary in the relationship between the drive frequency input to the pump and the discharge flow rate. For this reason, in order to perform accurate drug administration to a patient, when a pump having a piezoelectric element is used in the dosing mechanism, it is necessary to suppress variations in the discharge flow rate as much as possible. Therefore, it is necessary to correct the control so that the discharge flow rate is as controlled. In other words, a trial run of a pump actually used for drug administration is performed, and the relationship between the drive frequency and the actual discharge flow rate is grasped, and then the pump control is corrected based on the relationship between the drive frequency and the discharge flow rate obtained in the trial run. There is a need to.
 ところが、ポンプを別のものに交換する度に前記補正を行うことは煩雑である。特に、ポンプユニットを使い捨てとした場合には、短期間でポンプを交換することになるため前記問題が顕著となり、現実的には対応が困難となる。また、圧電素子の圧電定数の公称値を基にすること等により、ポンプへ入力される駆動周波数と吐出流量との関係を平均値化して、その平均値で一律に制御することも考えられるが、そうすると正確な制御が保証できなくなるので、投薬機構でこのような制御はできない。 However, it is complicated to perform the correction every time the pump is replaced with another one. In particular, when the pump unit is made disposable, the pump is replaced in a short period of time, so that the above problem becomes remarkable and it is difficult to deal with it in practice. It is also possible to average the relationship between the drive frequency input to the pump and the discharge flow rate, for example, based on the nominal value of the piezoelectric constant of the piezoelectric element, and to control uniformly with the average value. Then, since accurate control cannot be guaranteed, such control cannot be performed by the dosing mechanism.
日本国特開2005-168958号公報Japanese Unexamined Patent Publication No. 2005-168958 日本国特開2013-117211号公報Japanese Unexamined Patent Publication No. 2013-117211
 そこで本発明は、圧電素子を備えたポンプを用い、ポンプを交換した場合に制御の補正を容易にできる投薬機構、投薬機構用のポンプユニットの製造方法を提供することを課題とする。 Therefore, an object of the present invention is to provide a dosing mechanism that can easily correct the control when a pump including a piezoelectric element is used and the pump is replaced, and a method for manufacturing a pump unit for the dosing mechanism.
 本発明は、薬剤容器と、本体と、該本体に取り付けられるポンプユニットとを備え、前記薬剤容器に充填された液状の薬剤を患者に投与するための投薬機構であって、前記ポンプユニットが、圧電素子により駆動されるポンプと、該ポンプの入出力に関する特性データを読取可能に保持する特性データ保持部と、を備え、前記本体が、前記特性データ保持部に保持された前記特性データを読み取る読取部と、前記読取部により読み取られた前記特性データを基に制御補正値を決定する補正部と、前記決定された制御補正値を基に前記ポンプを制御するポンプ制御部と、を備えたことを特徴とする投薬機構である。 The present invention comprises a drug container, a main body, and a pump unit attached to the main body, a dosing mechanism for administering a liquid drug filled in the drug container to a patient, wherein the pump unit comprises: A pump driven by a piezoelectric element; and a characteristic data holding unit that holds characteristic data relating to input / output of the pump in a readable manner, and the main body reads the characteristic data held in the characteristic data holding unit A reading unit; a correction unit that determines a control correction value based on the characteristic data read by the reading unit; and a pump control unit that controls the pump based on the determined control correction value. This is a dosing mechanism.
 そして、前記特性データは、前記ポンプに入力される駆動周波数と前記ポンプの吐出流量との関係についてのデータであり、前記ポンプ制御部は、前記ポンプに入力される駆動周波数を前記制御補正値に対応して増減させて前記ポンプを制御することができる。 The characteristic data is data regarding a relationship between a driving frequency input to the pump and a discharge flow rate of the pump, and the pump control unit sets the driving frequency input to the pump to the control correction value. The pump can be controlled correspondingly.
 そして、前記特性データ保持部は、前記読取部に対する一方向の情報提示をなす手段が用いられることができる。 The characteristic data holding unit may be a means for presenting information in one direction to the reading unit.
 また本発明は、圧電素子により駆動されるポンプと、該ポンプの入出力に関する特性データを読取可能に保持する特性データ保持部と、を備えた、投薬機構用のポンプユニットの製造方法であって、前記ポンプユニットにつき、前記ポンプに入力される駆動周波数と吐出流量との関係を、前記ポンプユニットを実際に用いて試運転することで、複数の駆動周波数に対する吐出流量の関係を示す複数の実測データを得る工程と、前記試運転で得られた前記複数の実測データを基に前記特性データを定める工程と、前記定められた特性データを特性データ保持部に保持させる工程と、を有することを特徴とする、投薬機構用のポンプユニットの製造方法である。 According to another aspect of the present invention, there is provided a method of manufacturing a pump unit for a dosing mechanism, comprising: a pump driven by a piezoelectric element; and a characteristic data holding unit for holding characteristic data relating to input / output of the pump in a readable manner. A plurality of actual measurement data indicating the relationship between the discharge flow rate with respect to a plurality of drive frequencies by performing a trial operation using the pump unit actually with respect to the relationship between the drive frequency input to the pump and the discharge flow rate for the pump unit. A step of determining the characteristic data based on the plurality of actually measured data obtained in the trial operation, and a step of holding the determined characteristic data in a characteristic data holding unit. A method for manufacturing a pump unit for a dosing mechanism.
本発明における一実施形態の投薬経路を示す概略図である。It is the schematic which shows the administration route of one Embodiment in this invention. 本実施形態の、蓋部を除去した状態の本体とポンプユニットを示す正面図である。It is a front view which shows the main body and pump unit of the state of this embodiment in the state which removed the cover part. 本実施形態の、蓋部を除去した状態の本体とポンプユニットを示す右側面図である。It is a right view which shows the main body and pump unit of the state of this embodiment in the state which removed the cover part. 本実施形態の、蓋部を除去した状態の本体とポンプユニットを示す、図2AのA-A矢視の縦断面図である。FIG. 2B is a longitudinal sectional view taken along the line AA in FIG. 2A showing the main body and the pump unit with the lid portion removed according to the present embodiment. 本実施形態の、蓋部を除去した状態の本体とポンプユニットを示す背面図である。It is a rear view which shows the main body and pump unit of the state of this embodiment in the state which removed the cover part. 本実施形態の投薬機構における要部のブロック図である。It is a block diagram of the principal part in the medication mechanism of this embodiment. 本実施形態の投薬機構における制御部でなされる制御の補正に係る設定を示すフロー図である。It is a flowchart which shows the setting which concerns on the correction | amendment of the control performed by the control part in the medication mechanism of this embodiment. 本実施形態の投薬機構における制御部でなされる制御の補正に係る、他の設定を示すフロー図である。It is a flowchart which shows the other setting regarding the correction | amendment of the control performed by the control part in the medication mechanism of this embodiment.
 次に、本発明につき、一実施形態を取り上げて説明を行う。本実施形態の投薬機構1は、本体2と、本体2に着脱できるポンプユニット3とを備える。この投薬機構1は、図1に示すように、輸液バッグ等の薬剤容器F1から患者Pへと至る投薬経路Fの途中に取り付けられる。 Next, the present invention will be described by taking one embodiment. The medication mechanism 1 of this embodiment includes a main body 2 and a pump unit 3 that can be attached to and detached from the main body 2. As shown in FIG. 1, the dosing mechanism 1 is attached in the middle of a dosing route F from a drug container F1 such as an infusion bag to a patient P.
 図2A~図2Dに示すように、本体2はポンプユニット3を保持して、種々の検知、制御、管理を行うための部分である。本体2に保持されたポンプユニット3には、図1に示すように薬剤容器側チューブF2と患者側チューブF5とが接続される。なお、説明の都合上図示を省略しているが、本体2の正面側には開閉可能な蓋部を備えている。この蓋部は、閉じた際にポンプユニット3の吸引側チューブ33及び吐出側チューブ34の側面に当接する。なお、図2A~図2Dに示された上方側が投薬機構1の使用時における薬剤容器F1側(吸引側)であり、同下方側が使用時における患者P側(吐出側)となる。 As shown in FIGS. 2A to 2D, the main body 2 is a part for holding the pump unit 3 and performing various detections, controls, and managements. As shown in FIG. 1, a drug container side tube F2 and a patient side tube F5 are connected to the pump unit 3 held by the main body 2. In addition, although illustration is abbreviate | omitted for convenience of description, the cover part which can be opened and closed is provided in the front side of the main body 2. FIG. The lid portion comes into contact with the side surfaces of the suction side tube 33 and the discharge side tube 34 of the pump unit 3 when closed. The upper side shown in FIGS. 2A to 2D is the drug container F1 side (suction side) when the medication mechanism 1 is used, and the lower side is the patient P side (discharge side) when used.
 本体2は、ポンプユニット3を嵌められる凹部であるポンプユニット配置凹部22を備えている。具体的形状は図示していないが、ポンプユニット配置凹部22の底面には本体側電気接点2P(図3参照)が設けられている。このポンプユニット配置凹部22にポンプユニット3を嵌めた際に、この本体側電気接点2Pからポンプユニット3へと、ポンプ31を駆動するための電力を供給できる。また、ポンプユニット配置凹部22には、ポンプユニット3が備える特性データ保持部38に保持された特性データを読み取る読取部27(図3参照)が設けられている。読取部27は、特性データ保持部38としてバーコード等が用いられる場合はCCDカメラが用いられ、ICチップ等が用いられる場合は電磁コイルが用いられる。図2A~図2Dにおける、ポンプユニット配置凹部22の上下には、ポンプユニット3の吸引側チューブ33及び吐出側チューブ34を配置するチューブ配置溝23が形成されている。 The main body 2 is provided with a pump unit arrangement recess 22 which is a recess into which the pump unit 3 can be fitted. Although a specific shape is not shown, a main body side electrical contact 2P (see FIG. 3) is provided on the bottom surface of the pump unit arrangement recess 22. When the pump unit 3 is fitted in the pump unit arrangement recess 22, electric power for driving the pump 31 can be supplied from the main body side electrical contact 2 </ b> P to the pump unit 3. The pump unit arrangement recess 22 is provided with a reading unit 27 (see FIG. 3) for reading the characteristic data held in the characteristic data holding unit 38 provided in the pump unit 3. The reading unit 27 uses a CCD camera when a bar code or the like is used as the characteristic data holding unit 38, and uses an electromagnetic coil when an IC chip or the like is used. 2A to 2D, tube arrangement grooves 23 for arranging the suction side tube 33 and the discharge side tube 34 of the pump unit 3 are formed above and below the pump unit arrangement recess 22.
 本体2には、ポンプユニット3の送液状況を検知できるセンサが設けられている。このセンサとして本実施形態では、圧力センサ24と気泡センサ25とが設けられている。圧力センサ24は、本体2における薬剤容器F1側と患者P側との2箇所に設けられている。ただし、薬剤容器F1側または患者P側の1箇所にだけ設けられることもできる。 The main body 2 is provided with a sensor capable of detecting the liquid feeding status of the pump unit 3. In this embodiment, a pressure sensor 24 and a bubble sensor 25 are provided as this sensor. The pressure sensors 24 are provided at two locations on the main body 2 on the drug container F1 side and the patient P side. However, it can be provided only at one place on the medicine container F1 side or the patient P side.
 各圧力センサ24は、本体2に取り付けられたポンプユニット3における吸引側チューブ33及び吐出側チューブ34に対応する位置に設けられている。この圧力センサ24は、チューブ内の圧力が上昇するとチューブが膨張することでチューブの径寸法が拡大し、チューブ内の圧力が低下するとチューブが収縮することでチューブの径寸法が縮小する現象を利用し、吸引側チューブ33及び吐出側チューブ34の径寸法変化により各チューブ33,34内の圧力変化を検出するものである。 Each pressure sensor 24 is provided at a position corresponding to the suction side tube 33 and the discharge side tube 34 in the pump unit 3 attached to the main body 2. This pressure sensor 24 utilizes a phenomenon in which the tube expands when the pressure in the tube increases, and the tube diameter expands, and when the pressure in the tube decreases, the tube contracts when the tube pressure decreases. Then, a change in pressure in each of the tubes 33 and 34 is detected by a change in the diameter of the suction side tube 33 and the discharge side tube 34.
 具体的に、各圧力センサ24には、図2A及び図2Cに示すように、チューブ33,34が嵌る溝を有する可動ブロック241が正面側と背面側との間で移動可能に設けられている。この可動ブロック241の背面側には、受けた荷重に引例して電圧を出力できる素子242が、可動ブロック241に当接して配置されている。チューブ33,34は本体2の蓋部(図示しない)により正面側への移動が規制されている。このため、チューブ33,34の拡大・縮小に応じて可動ブロック241が移動し、前記素子242にかかる荷重に応じて前記素子242から出力される電圧が変化することにより、各チューブ33,34内の圧力変化を検出できる。 Specifically, as shown in FIGS. 2A and 2C, each pressure sensor 24 is provided with a movable block 241 having a groove into which the tubes 33 and 34 are fitted so as to be movable between the front side and the back side. . On the back side of the movable block 241, an element 242 that can output a voltage by reference to the received load is disposed in contact with the movable block 241. The tubes 33 and 34 are restricted from moving to the front side by a lid (not shown) of the main body 2. For this reason, the movable block 241 moves according to the expansion / contraction of the tubes 33, 34, and the voltage output from the element 242 changes according to the load applied to the element 242. Can detect pressure changes.
 もし、チューブが折り曲げられたこと等により投薬経路Fの途中区間で閉塞が生じた場合、ポンプユニット3におけるポンプ31よりも上流側の閉塞では、薬剤容器F1側から薬液が流れにくい状態のままポンプ31が吸引を行うため、ポンプ31の駆動の継続により、内部が負圧になって吸引側チューブ33が収縮する。一方、ポンプ31よりも下流側の閉塞では、患者P側に薬液が流れにくい状態でポンプ31が吐出するため、ポンプ31の駆動の継続により、内部が正圧になって吐出側チューブ34が膨張する。このため、圧力センサ24の検知により閉塞発生を把握できる。なお、閉塞解除後に不都合が生じないよう、ポンプユニット3には、閉塞時に生じる過剰薬液を逃がすための逃がし流路として、図1に示すようにバイパス配管35とバイパス開閉弁36とが設けられていてもよい。 If the tube is bent in the middle of the dosing route F due to the tube being bent or the like, the pump in the upstream side of the pump 31 in the pump unit 3 keeps the drug solution from flowing from the drug container F1 side. Since 31 performs suction, the suction side tube 33 contracts as the inside of the pump 31 continues to be driven to a negative pressure. On the other hand, in the occlusion on the downstream side of the pump 31, the pump 31 discharges in a state in which the drug solution does not easily flow to the patient P side, so that the internal pressure becomes positive and the discharge side tube 34 expands by continuing to drive the pump 31. To do. For this reason, the occurrence of the blockage can be grasped by the detection of the pressure sensor 24. As shown in FIG. 1, a bypass pipe 35 and a bypass opening / closing valve 36 are provided in the pump unit 3 as a relief flow path for releasing excess chemical liquid generated at the time of closure so that no inconvenience occurs after the closure is released. May be.
 これらの他、本体2には、例えばポンプユニット3のポンプ制御及び各センサの検知結果の処理及び記憶等を行う制御部261、電池を配置する内部電源部262、外部電源入力ジャック263、薬剤容器F1よりも患者P側に位置する、図示しない点滴筒に取り付けられた、滴下量等を検出する流量センサの検出値を入力する流量ジャック264、投薬履歴データやセンサ検知結果の出力等を行う通信用ジャック265を備えていてもよい。また、種々の情報を表示できる液晶ディスプレイ等を有する表示部266、操作ボタン等を有する入力部267(図3参照)を備えることもできる。また、図示していないが、アラーム音等を発するためのスピーカーやアラーム表示等を行うLEDランプ、蓋部が開放されたことを検知するセンサ、を備えていてもよい。また、患者Pの身体に本体2を装着するためのバンド等を取り付けるための部分、医療機関で用いられる点滴スタンド等に取り付けるための部分を備えることもできる。 In addition to these, the main body 2 includes, for example, a control unit 261 that performs pump control of the pump unit 3 and processing and storage of detection results of each sensor, an internal power supply unit 262 in which a battery is disposed, an external power input jack 263, a medicine container A flow rate jack 264 for inputting a detection value of a flow rate sensor for detecting a drip amount and the like attached to a drip tube (not shown) located on the patient P side from F1, communication for outputting medication history data and sensor detection results, etc. A jack 265 may be provided. Further, a display portion 266 having a liquid crystal display or the like that can display various information, and an input portion 267 (see FIG. 3) having operation buttons and the like can be provided. Moreover, although not shown in figure, you may provide the speaker for emitting an alarm sound etc., the LED lamp which performs an alarm display, etc., and the sensor which detects that the cover part was open | released. Moreover, the part for attaching the band etc. for mounting | wearing the main body 2 to the patient's P body, the part for attaching to the drip stand etc. which are used in a medical institution can also be provided.
 制御部261は、読取部27により読み取られたポンプユニット3におけるポンプ31の特性データを基に制御補正値を決定する補正部2611と、前記決定された制御補正値を基にポンプ31を制御するポンプ制御部2612とを備える。 The control unit 261 controls the pump 31 based on the correction unit 2611 that determines the control correction value based on the characteristic data of the pump 31 in the pump unit 3 read by the reading unit 27 and the determined control correction value. A pump control unit 2612.
 図1に示すように、ポンプユニット3は、ポンプ31、フリーフロー防止弁32、吸引側チューブ(吸引側配管)33、吐出側チューブ(吐出側配管)34等を備える。ポンプ31、フリーフロー防止弁32はケース37(図2A及びC参照)に収められて一体とされている。このため、ポンプユニット3の本体2への着脱が容易である。吸引側チューブ33及び吐出側チューブ34の先端には、薬剤容器F1または患者Pから延びるチューブF2,F5に接続できるコネクタ331,341を備える。 As shown in FIG. 1, the pump unit 3 includes a pump 31, a free flow prevention valve 32, a suction side tube (suction side piping) 33, a discharge side tube (discharge side piping) 34, and the like. The pump 31 and the free flow prevention valve 32 are housed in a case 37 (see FIGS. 2A and 2C) and integrated. For this reason, the pump unit 3 can be easily attached to and detached from the main body 2. At the tips of the suction side tube 33 and the discharge side tube 34, connectors 331 and 341 that can be connected to the drug containers F1 or the tubes F2 and F5 extending from the patient P are provided.
 具体的形状は図示していないが、ケース37の背面には本体側電気接点2Pに接続できるポンプユニット側電気接点3P(図3参照)が形成されている。よって、ケース37の背面を本体2のポンプユニット配置凹部22の底面に一致させ、本体側電気接点2Pとポンプユニット側電気接点3Pとを電気的に接続する(図3参照)ことにより、ポンプ31に通電して駆動可能な状態とできる。 Although a specific shape is not shown, a pump unit side electrical contact 3P (see FIG. 3) that can be connected to the main body side electrical contact 2P is formed on the back surface of the case 37. Therefore, the pump 31 is made by making the back surface of the case 37 coincide with the bottom surface of the pump unit arrangement recess 22 of the main body 2 and electrically connecting the main body side electric contact 2P and the pump unit side electric contact 3P (see FIG. 3). It can be made into a state which can be driven by energizing.
 また、ポンプユニット3は、ポンプ31の入出力に関する特性データを読取可能に保持する特性データ保持部38を備える。前記特性データは、ポンプ31の個体ごとに異なっている。特性データとは、ポンプ31に入力される駆動周波数とポンプ31の出力である吐出流量との関係についてのデータである。特性データにポンプ31の個体ごとのばらつきがあることは、ポンプ31に内蔵された圧電素子の圧電定数が個体ごとに一定でないことにより、圧電素子によるダイヤフラムの動作(振動)が全ての個体で均一にならないことが一つの要因として考えられる。また、前記要因以外に他の要因も複合して影響している可能性がある。 Further, the pump unit 3 includes a characteristic data holding unit 38 that holds the characteristic data related to the input / output of the pump 31 in a readable manner. The characteristic data is different for each individual pump 31. The characteristic data is data about the relationship between the drive frequency input to the pump 31 and the discharge flow rate that is the output of the pump 31. The characteristic data varies among the individual pumps 31 because the piezoelectric constants of the piezoelectric elements incorporated in the pump 31 are not constant for each individual, so that the operation (vibration) of the diaphragm by the piezoelectric elements is uniform for all the individual elements. It is thought that one factor is not. In addition to the above factors, other factors may have a combined effect.
 この特性データは、個々のポンプユニット3につき、ポンプ31に入力される駆動周波数と吐出流量との関係を、ポンプユニット3を実際に用いて試運転することで、複数(本実施形態では6点)の駆動周波数に対する吐出流量の関係を示す複数の実測データを得、この実測データを基に定められる。 This characteristic data is obtained for a plurality of (six points in this embodiment) by actually using the pump unit 3 for a trial operation of the relationship between the driving frequency input to the pump 31 and the discharge flow rate for each pump unit 3. A plurality of actual measurement data indicating the relationship of the discharge flow rate with respect to the drive frequency is obtained and determined based on the actual measurement data.
 特性データ保持部38としては、本体2の読取部27に対する一方向の情報提示をなす手段が用いられることができ、一例としてはバーコード、QRコード(日本国における登録商標)等の2次元コード、ICチップのうち情報書込(上書)がされないもの等が挙げられるが、これらに限定されず、種々の手段を用いることができる。特性データ保持部38は例えばシート状に形成されたもののケース37の表面への貼付、または、ポンプユニット3への埋め込み等により、ポンプユニット3に形成される。特性データ保持部38として一方向の情報提示をなす手段が用いられることにより、読取部27が特性データの読み取りだけを行うように構成できるので、特性データ保持部38と読取部27の構成を簡素化できる。 As the characteristic data holding unit 38, a means for presenting information in one direction to the reading unit 27 of the main body 2 can be used. As an example, a two-dimensional code such as a barcode or a QR code (registered trademark in Japan) is used. Examples include IC chips that are not written (overwritten), but are not limited to these, and various means can be used. The characteristic data holding unit 38 is formed in the pump unit 3 by being attached to the surface of the case 37 or being embedded in the pump unit 3, for example. Since the means for presenting information in one direction is used as the characteristic data holding unit 38, the reading unit 27 can be configured to only read the characteristic data. Therefore, the configuration of the characteristic data holding unit 38 and the reading unit 27 is simplified. Can be
 ポンプ31は、液状の薬剤(薬液)を薬剤容器F1から吸引して患者Pへと吐出することができる。本実施形態ではダイヤフラム式のポンプが用いられている。ポンプ31としてダイヤフラム式のポンプを採用することで、モータが不要になるため、モータが必要なポンプに比べてポンプを小型化できる。このため、ポンプユニット3も小型化できるので投薬機構1を軽量化できる。よって、患者Pが投薬機構1を携帯する際の負担が小さくなり、特に薬液の常時投与が必要な患者Pにとってメリットが大きい。また、ダイヤフラム式のポンプでは薬液吐出量の制御を高精度で行える。本実施形態のポンプ31は圧電素子(ピエゾ素子)によりダイヤフラムが駆動されるポンプ、具体的には、集積化デバイスに関するMEMS技術を利用したポンプであって、例えば日本国特開2013-117211号公報に記載されたマイクロポンプが用いられる。 The pump 31 can suck a liquid medicine (medical solution) from the medicine container F1 and discharge it to the patient P. In this embodiment, a diaphragm type pump is used. Employing a diaphragm pump as the pump 31 eliminates the need for a motor, so that the pump can be made smaller than a pump that requires a motor. For this reason, since the pump unit 3 can also be reduced in size, the dosing mechanism 1 can be reduced in weight. Therefore, the burden when the patient P carries the medication mechanism 1 is reduced, and the merit is particularly great for the patient P who needs to always administer the drug solution. In addition, the diaphragm pump can control the discharge amount of the chemical solution with high accuracy. The pump 31 of the present embodiment is a pump in which a diaphragm is driven by a piezoelectric element (piezo element), specifically, a pump using MEMS technology related to an integrated device. For example, Japanese Unexamined Patent Publication No. 2013-117211 Are used.
 フリーフロー防止弁32は、ポンプ31が駆動していない場合に、重力により生じる薬液の圧力により、ポンプ31を通過する意図しない流れが生じることを防止するため設けられている。 The free flow prevention valve 32 is provided to prevent an unintended flow passing through the pump 31 from being generated due to the pressure of the chemical liquid generated by gravity when the pump 31 is not driven.
 吸引側チューブ33は、ポンプ31から薬剤容器F1側へ延びるチューブである。吐出側チューブ34は、ポンプ31から患者P側へ延びるチューブである。これらチューブ33,34は、例えばシリコンゴム等の軟質樹脂から形成されている。これらチューブ33,34の径寸法変化が本体2の圧力センサ24で検知されるため、材質(樹脂の配合、密度等)、管厚、管径につき、少なくとも圧力センサ24に配置される部分ではあらかじめ定められた誤差範囲内で形成されている必要がある。なお、本実施形態と異なり、配管を用いて圧力変化を検出しない場合には、ポンプユニット3に軟質のチューブを用いずに硬質のパイプを用いることもできる。 The suction side tube 33 is a tube extending from the pump 31 to the medicine container F1 side. The discharge side tube 34 is a tube extending from the pump 31 to the patient P side. These tubes 33 and 34 are made of a soft resin such as silicon rubber, for example. Since changes in the diameters of the tubes 33 and 34 are detected by the pressure sensor 24 of the main body 2, at least a portion arranged in the pressure sensor 24 in advance with respect to material (mixing of resin, density, etc.), tube thickness, and tube diameter. It must be formed within a predetermined error range. In addition, unlike this embodiment, when not detecting a pressure change using piping, a hard pipe can also be used for the pump unit 3 without using a soft tube.
 各チューブ33,34の先端にはコネクタ331,341を備える。コネクタ331,341は硬質樹脂製の汎用品であり、例えばねじ込みにより、図1に示すように、薬剤容器側チューブF2と患者側チューブF5(各々、ポンプユニット3のコネクタ331,341に接続できるような、「オス」「メス」の関係にある形状のコネクタF3,F4を備える)とに接続される。コネクタ331,341により、ポンプユニット3と薬剤容器側チューブF2とを分離でき、かつ、ポンプユニット3と患者側チューブF5とを分離できるので、投薬機構1に対する薬剤容器F1及び患者Pの距離を自由に設定できる。よって、患者Pが投薬機構1を携帯する際にチューブF2,F5が邪魔になりにくい。 The connectors 331 and 341 are provided at the tips of the tubes 33 and 34, respectively. The connectors 331 and 341 are general-purpose products made of hard resin. For example, by screwing, as shown in FIG. 1, the medicine container side tube F2 and the patient side tube F5 (each can be connected to the connectors 331 and 341 of the pump unit 3). The connectors F3 and F4 having the shapes of “male” and “female”. The connectors 331 and 341 allow the pump unit 3 and the drug container side tube F2 to be separated, and the pump unit 3 and the patient side tube F5 can be separated, so that the distance between the drug container F1 and the patient P with respect to the dosing mechanism 1 can be freely set. Can be set. Therefore, when the patient P carries the medication mechanism 1, the tubes F2 and F5 are unlikely to get in the way.
 本実施形態のポンプユニット3は使い捨てすることができる。このため、投薬機構1を衛生的かつ安全に使用できる。薬剤の種類や使用状況にもよるが、ポンプユニット3は通常3日程度、長い場合は30日程度で取り換えられる。ポンプユニット3を使い捨てとすることで、医療機関において臨床工学技士(ME)が行う吐出精度の検査が不要になる。よって、医療機関における投薬機構1の管理が容易になり、将来的には臨床工学技士の手を必要とせず、病棟単位で看護師等により投薬機構1を管理できるようになる可能性がある。なお場合によっては、ポンプユニット3は使い捨てとせず、再使用することもできる。 The pump unit 3 of this embodiment can be disposable. For this reason, the medication mechanism 1 can be used hygienically and safely. Depending on the type and usage of the medicine, the pump unit 3 is usually replaced in about 3 days, or in about 30 days if it is long. By making the pump unit 3 disposable, it is not necessary to perform a discharge accuracy test performed by a clinical engineer (ME) in a medical institution. Therefore, management of the medication mechanism 1 in a medical institution becomes easy, and in the future, there is a possibility that the medication mechanism 1 can be managed by a nurse or the like on a ward basis without the need of a clinical engineer. In some cases, the pump unit 3 is not disposable and can be reused.
 ここで、ポンプユニット3の製造方法について説明する。このポンプユニット3の製造方法は、少なくとも以下の3つの工程を有する。 Here, a manufacturing method of the pump unit 3 will be described. The method for manufacturing the pump unit 3 includes at least the following three steps.
 一つは、ポンプ31に入力される駆動周波数とポンプ31の出力である吐出流量との関係を、ポンプユニット3を実際に用いて試運転することで、複数の駆動周波数に対する吐出流量の関係を示す複数の実測データを得る工程である。もう一つは、前記試運転で得られた前記複数の実測データを基に特性データを定める工程である。更にもう一つは、前記定められた特性データを特性データ保持部38に保持させる工程である。 One shows the relationship between the discharge flow rate with respect to a plurality of drive frequencies by performing a trial operation using the pump unit 3 in practice on the relationship between the drive frequency input to the pump 31 and the discharge flow rate that is the output of the pump 31. This is a step of obtaining a plurality of actually measured data. The other is a step of determining characteristic data based on the plurality of actually measured data obtained in the trial operation. Furthermore, the other is a step of holding the predetermined characteristic data in the characteristic data holding unit 38.
 複数の実測データを得る工程につき、本実施形態では異なる大きさの駆動周波数6点(n1,n2,…,n6)に対する吐出流量の実測データを得ている。このため本実施形態の特性データは、前記6点で区切られた、吐出流量7区間分(0~n1(未満),n1(以上)~n2(未満),…,n6(以上)~)が定められる。 For the process of obtaining a plurality of actual measurement data, the present embodiment obtains actual measurement data of the discharge flow rate for six driving frequencies (n1, n2,..., N6) of different sizes. For this reason, the characteristic data of this embodiment includes seven discharge flow rates (0 to n1 (less than), n1 (more than) to n2 (less than),..., N6 (or more) to) divided by the six points. Determined.
 特性データの特性データ保持部38への保持は、特性データ保持部38としてバーコード、2次元コード等の印刷により形成される物が用いられる場合には、シート状体に特性データをコードに変換したものを印刷後、ケース37の表面に貼付されること、または前記コードをケース37の表面に直接印刷することによりなされる。また、特性データ保持部38としてICチップ等の電磁的な処理により形成される物が用いられる場合には、特性データを電磁的情報に変換したものを書き込み後、ケース37の表面に貼付されることによりなされる。ただし、これら例示した方法に限定されず、種々の方法で特性データを特性データ保持部38に保持させることができる。 The property data is stored in the property data holding unit 38. When an object formed by printing a barcode, a two-dimensional code or the like is used as the property data holding unit 38, the property data is converted into a code on a sheet-like body. After the printed product is printed, it is affixed to the surface of the case 37, or the code is directly printed on the surface of the case 37. Further, in the case where an object formed by electromagnetic processing such as an IC chip is used as the characteristic data holding unit 38, the characteristic data converted into electromagnetic information is written and then attached to the surface of the case 37. Is made by However, the method is not limited to these exemplified methods, and the characteristic data can be held in the characteristic data holding unit 38 by various methods.
 次に、この投薬機構1の使用方法について簡単に述べる。まず、薬剤容器F1から延びるチューブF2と患者P側から延びるチューブF5(針F6が備えられていない場合はチューブF5に取り付けておく)をポンプユニット3に接続する。そして、チューブF2とチューブF5とが接続された状態のポンプユニット3を本体2に装着し、図1に示す状態とする。また必要な場合、点滴筒や流量センサを装着する。次に、投薬経路Fの気泡を抜く。そして針F6を患者Pに刺す。次にポンプ31の駆動を開始させる。これにより、ポンプ31によって薬液が患者Pの体内に送られる。 Next, how to use this medication mechanism 1 will be briefly described. First, the tube F2 extending from the medicine container F1 and the tube F5 extending from the patient P side (attached to the tube F5 when the needle F6 is not provided) are connected to the pump unit 3. Then, the pump unit 3 in a state where the tube F2 and the tube F5 are connected to each other is mounted on the main body 2 to obtain the state shown in FIG. If necessary, a drip tube or a flow sensor is attached. Next, air bubbles in the administration route F are removed. Then, the needle F6 is inserted into the patient P. Next, driving of the pump 31 is started. Thereby, a chemical | medical solution is sent into the patient's P body by the pump 31. FIG.
 そして、ポンプユニット3を交換する場合、つまり、使用済みのポンプユニット3を本体2から取り外して、別の個体であるポンプユニット3を本体2に取り付ける場合の、制御部261でなされる制御の補正に係る設定について、図4のフロー図と共に説明する。 When the pump unit 3 is replaced, that is, when the used pump unit 3 is removed from the main body 2 and another pump unit 3 is attached to the main body 2, the control correction performed by the control unit 261 is performed. This setting will be described with reference to the flowchart of FIG.
 まず、看護師等の医療従事者がポンプユニット3を本体2にセットする(ステップS1)。その後医療従事者が本体2の電源を投入することにより、制御部261は読取部27を介して、特性データ保持部38に保持された特性データを読み込む(ステップS2)。次に、医療従事者による入力部267への入力により吐出流量が設定される(ステップS3)。 First, a medical worker such as a nurse sets the pump unit 3 on the main body 2 (step S1). Thereafter, when a medical worker turns on the power of the main body 2, the control unit 261 reads the characteristic data held in the characteristic data holding unit 38 via the reading unit 27 (step S2). Next, the discharge flow rate is set by an input to the input unit 267 by the medical staff (step S3).
 ステップS3にて設定された吐出流量が基準値n1以下である場合(ステップS4)、補正部2611は係数A,BにつきA=A1、B=B1と設定する(ステップS5)。 When the discharge flow rate set in step S3 is equal to or less than the reference value n1 (step S4), the correction unit 2611 sets A = A1 and B = B1 for the coefficients A and B (step S5).
 駆動周波数(Hz)は、係数A,Bから「A×流量(ml/h)+B」の式により決定される。ステップS5でA=A1、B=B2と設定されるので、前記式にA1とB2とが代入されて、ポンプ31に入力される駆動周波数が確定し(ステップS6)、制御の補正に係る設定が完了する(ステップS7)。 The drive frequency (Hz) is determined from the coefficients A and B according to the formula “A × flow rate (ml / h) + B”. Since A = A1 and B = B2 are set in step S5, A1 and B2 are substituted into the above equation, and the drive frequency input to the pump 31 is determined (step S6), and settings related to control correction are set. Is completed (step S7).
 一方、ステップS3で設定された吐出流量が前記基準値n1を超えており、前記基準値n1よりも大きい基準値n2以下である場合(ステップS4、S8)、補正部2611は係数A,BにつきA=A2、B=B2と設定する(ステップS9)。駆動周波数の確定は前記と同じである。 On the other hand, when the discharge flow rate set in step S3 exceeds the reference value n1 and is equal to or smaller than the reference value n2 larger than the reference value n1 (steps S4 and S8), the correction unit 2611 applies the coefficients A and B. A = A2 and B = B2 are set (step S9). The determination of the driving frequency is the same as described above.
 前述のように本実施形態では特性データが7区間分(吐出流量が0~n1(未満),n1(以上)~n2(未満),…,n6(以上)~)設定されるから、駆動周波数の確定は、医療従事者により設定された吐出流量が大きくなるにつれ7段階でなされることになる。 As described above, in this embodiment, the characteristic data is set for seven sections (the discharge flow rate is set to 0 to n1 (less than), n1 (more) to n2 (less than),..., N6 (more than)), so that the driving frequency is set. This is determined in seven stages as the discharge flow rate set by the medical staff increases.
 前記「確定された駆動周波数」は、ポンプ31を実際に運転した際に所望の吐出流量が吐出されるように、ポンプ31に入力される駆動周波数を制御補正値に対応して増減させた駆動周波数である。よって、ポンプ制御部2612は、ポンプ31に入力される駆動周波数を前記制御補正値に対応して増減させてポンプ31を制御する。これにより、ポンプユニット3を別の個体に交換しても、増減させた駆動周波数をポンプ31に入力することで所望の吐出流量を容易に得られるので、交換後のポンプユニット3の特性データに応じ、医療従事者により設定された吐出流量に対して少ないずれの吐出流量で薬液を患者Pに投与できる。 The “determined drive frequency” is a drive in which the drive frequency input to the pump 31 is increased or decreased corresponding to the control correction value so that a desired discharge flow rate is discharged when the pump 31 is actually operated. Is the frequency. Therefore, the pump control unit 2612 controls the pump 31 by increasing or decreasing the drive frequency input to the pump 31 corresponding to the control correction value. Thus, even if the pump unit 3 is replaced with another individual, a desired discharge flow rate can be easily obtained by inputting the increased or decreased drive frequency to the pump 31, so that the characteristic data of the pump unit 3 after replacement can be obtained. Accordingly, the drug solution can be administered to the patient P with a discharge flow rate that is slightly different from the discharge flow rate set by the medical staff.
 図5は、図4を変形したフロー図である。図5のフローでは血圧補正を行っていることが図4のフローと相違している。補正部2611においてA、Bの設定がされた(ステップS5、S9)後、血圧補正がなされるか否かを判断する(ステップS10)。血圧補正の要否は例えば医療従事者による入力部267への入力により、予め設定されることができる。また、投薬機構1が患者Pの血圧を測定できるように構成されている場合には、所定の血圧を境に血圧補正の要否を自動的に設定することもできる。 FIG. 5 is a flow diagram obtained by modifying FIG. In the flow of FIG. 5, the blood pressure correction is different from the flow of FIG. After A and B are set in the correction unit 2611 (steps S5 and S9), it is determined whether or not blood pressure correction is performed (step S10). The necessity of blood pressure correction can be set in advance by, for example, an input to the input unit 267 by a medical worker. Further, when the medication mechanism 1 is configured to measure the blood pressure of the patient P, the necessity of blood pressure correction can be automatically set with a predetermined blood pressure as a boundary.
 ステップS10にて否(図上「なし」)の場合は図4のフローと全く同じである。一方、是(図上「あり」)の場合は、補正部2611にあらかじめ設定されている補正係数にて補正された(ステップS11)上で駆動周波数が確定され(ステップS6)、制御の補正に係る設定が完了する(ステップS7)。 If NO in step S10 ("None" in the figure), the flow is exactly the same as in the flow of FIG. On the other hand, in the case of “Yes” (“Yes” in the figure), the drive frequency is fixed (Step S6) after being corrected by the correction coefficient preset in the correction unit 2611 (Step S11), and the control is corrected. Such setting is completed (step S7).
 前記補正係数は、吐出流量の設定が図4のフローと同じ場合、駆動周波数が高くなるように補正される。これにより、患者Pへの薬液の投与量が血圧の影響により低下してしまうことを抑制できる。 The correction coefficient is corrected so that the drive frequency becomes higher when the discharge flow rate setting is the same as the flow in FIG. Thereby, it can suppress that the dosage of the chemical | medical solution to the patient P falls by the influence of a blood pressure.
 このように、本実施形態の構成によれば、ポンプユニット3は特性データ保持部38を、読取部27が読取可能なように保持する。このため、ポンプユニット3を取り替えても制御補正値が容易に定まり、ポンプ31の個体ごとに異なる特性に応じた正確な制御を迅速に行うことができる。 Thus, according to the configuration of the present embodiment, the pump unit 3 holds the characteristic data holding unit 38 so that the reading unit 27 can read it. For this reason, even if the pump unit 3 is replaced, the control correction value is easily determined, and accurate control corresponding to different characteristics for each individual pump 31 can be quickly performed.
 このため、ポンプユニット3を使い捨てとし、短期間でポンプ31を交換することになっても問題なく対応できる。また、平均値で一律に制御することに比べて正確な制御を行える。 Therefore, even if the pump unit 3 is made disposable and the pump 31 is replaced in a short period of time, it can be handled without any problem. In addition, accurate control can be performed as compared to uniform control with an average value.
 以上、本発明の実施形態について説明したが、本発明は前記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変更を加えることができる。 As mentioned above, although embodiment of this invention was described, this invention is not limited to the said embodiment, A various change can be added in the range which does not deviate from the summary of this invention.
 例えば複数の実測データを得る工程につき、前記実施形態では駆動周波数6点に対する吐出流量の実測データが得られるものとしたが、これに限定されず、例えば5~12点の任意の点数とすることもできる。 For example, for the process of obtaining a plurality of actually measured data, in the above-described embodiment, the actually measured data of the discharge flow rate with respect to the driving frequency of 6 points is obtained. However, the present invention is not limited to this. You can also.
 最後に、前記実施形態(変形した形態を含む)の構成及び作用についてまとめておく。前記実施形態は、薬剤容器F1と、本体2と、該本体2に取り付けられるポンプユニット3とを備え、前記薬剤容器F1に充填された液状の薬剤を患者Pに投与するための投薬機構1であって、前記ポンプユニット3が、圧電素子により駆動されるポンプ31と、該ポンプ31の入出力に関する特性データを読取可能に保持する特性データ保持部38と、を備え、前記本体2が、前記特性データ保持部38に保持された前記特性データを読み取る読取部27と、前記読取部27により読み取られた前記特性データを基に制御補正値を決定する補正部2611と、前記決定された制御補正値を基に前記ポンプ31を制御するポンプ制御部2612と、を備える投薬機構1である。 Finally, the configuration and operation of the above embodiment (including modified embodiments) will be summarized. The embodiment includes a medicine container F1, a main body 2, and a pump unit 3 attached to the main body 2, and a dosing mechanism 1 for administering a liquid medicine filled in the medicine container F1 to a patient P. The pump unit 3 includes a pump 31 driven by a piezoelectric element, and a characteristic data holding unit 38 that holds characteristic data relating to input / output of the pump 31 in a readable manner. A reading unit 27 that reads the characteristic data held in the characteristic data holding unit 38, a correction unit 2611 that determines a control correction value based on the characteristic data read by the reading unit 27, and the determined control correction And a pump control unit 2612 that controls the pump 31 based on a value.
 これらの構成によれば、ポンプユニット3は特性データ保持部38を、読取部27が読取可能なように保持する。このため、ポンプユニット3を取り替えても制御補正値が容易に定まり、ポンプユニット3の個体ごとに異なる特性に応じた正確な制御を迅速に行うことができる。 According to these configurations, the pump unit 3 holds the characteristic data holding unit 38 so that the reading unit 27 can read it. For this reason, even if the pump unit 3 is replaced, the control correction value can be easily determined, and accurate control according to different characteristics for each individual pump unit 3 can be quickly performed.
 そして、前記特性データは、前記ポンプ31に入力される駆動周波数と前記ポンプ31の吐出流量との関係についてのデータであり、前記ポンプ制御部2612は、前記ポンプ31に入力される駆動周波数を前記制御補正値に対応して増減させて前記ポンプ31を制御することができる。 The characteristic data is data about the relationship between the drive frequency input to the pump 31 and the discharge flow rate of the pump 31, and the pump control unit 2612 sets the drive frequency input to the pump 31 to the drive frequency. The pump 31 can be controlled by increasing or decreasing in accordance with the control correction value.
 この構成によれば、駆動周波数を増減させることで、目的とする吐出流量を容易に得られる。 According to this configuration, the target discharge flow rate can be easily obtained by increasing or decreasing the drive frequency.
 そして、前記特性データ保持部38は、前記読取部27に対する一方向の情報提示をなす手段が用いられることができる。 The characteristic data holding unit 38 may be a means for presenting information in one direction to the reading unit 27.
 この構成によれば、読取部27が特性データの読み取りだけを行うように構成できるので、特性データ保持部38と読取部27の構成を簡素化できる。 According to this configuration, since the reading unit 27 can be configured to only read the characteristic data, the configuration of the characteristic data holding unit 38 and the reading unit 27 can be simplified.
 また前記実施形態は、圧電素子により駆動されるポンプ31と、該ポンプ31の入出力に関する特性データを読取可能に保持する特性データ保持部38と、を備えた、投薬機構用のポンプユニット3の製造方法であって、前記ポンプユニット3につき、前記ポンプ31に入力される駆動周波数と吐出流量との関係を、前記ポンプユニット3を実際に用いて試運転することで、複数の駆動周波数に対する吐出流量の関係を示す複数の実測データを得る工程と、前記試運転で得られた前記複数の実測データを基に前記特性データを定める工程と、前記定められた特性データを特性データ保持部38に保持させる工程と、を有する、投薬機構用のポンプユニット3の製造方法である。 The embodiment also includes a pump unit 3 for a dosing mechanism, which includes a pump 31 driven by a piezoelectric element, and a characteristic data holding unit 38 that holds characteristic data relating to input / output of the pump 31 in a readable manner. In the manufacturing method, for the pump unit 3, the relationship between the drive frequency input to the pump 31 and the discharge flow rate is actually tested using the pump unit 3, so that the discharge flow rate for a plurality of drive frequencies is obtained. A step of obtaining a plurality of actual measurement data indicating the relationship of the above, a step of determining the characteristic data based on the plurality of actual measurement data obtained in the trial operation, and holding the predetermined characteristic data in the characteristic data holding unit 38 A method for manufacturing the pump unit 3 for the dosing mechanism.
 この方法によれば、ポンプユニット3を実際に用いた試運転により特性データを定めるので、特性データを正確に定めることができる。 According to this method, since the characteristic data is determined by a trial operation that actually uses the pump unit 3, the characteristic data can be accurately determined.
 以上、前記実施形態によると、ポンプユニット3を取り替えても制御補正値が容易に定まり、ポンプユニット3の個体ごとに異なる特性に応じた正確な制御を迅速に行うことができる。よって、ポンプ31を交換した場合に制御の補正を容易にできる。 As described above, according to the above-described embodiment, the control correction value is easily determined even when the pump unit 3 is replaced, and accurate control according to different characteristics for each individual pump unit 3 can be quickly performed. Therefore, when the pump 31 is replaced, the control can be easily corrected.
   1     投薬機構
   2     本体
   261   制御部
   2611  補正部
   2612  ポンプ制御部
   27    読取部
   3     ポンプユニット
   31    ポンプ
   38    特性データ保持部
   F1    薬剤容器
   P     患者
 
DESCRIPTION OF SYMBOLS 1 Dosing mechanism 2 Main body 261 Control part 2611 Correction | amendment part 2612 Pump control part 27 Reading part 3 Pump unit 31 Pump 38 Characteristic data holding | maintenance part F1 Drug container P Patient

Claims (4)

  1.  薬剤容器と、本体と、該本体に取り付けられるポンプユニットとを備え、前記薬剤容器に充填された液状の薬剤を患者に投与するための投薬機構であって、
     前記ポンプユニットが、
    圧電素子により駆動されるポンプと、
    該ポンプの入出力に関する特性データを読取可能に保持する特性データ保持部と、を備え、
     前記本体が、
    前記特性データ保持部に保持された前記特性データを読み取る読取部と、
    前記読取部により読み取られた前記特性データを基に制御補正値を決定する補正部と、
    前記決定された制御補正値を基に前記ポンプを制御するポンプ制御部と、を備えたことを特徴とする投薬機構。
    A medication mechanism comprising a drug container, a main body, and a pump unit attached to the main body, for administering a liquid drug filled in the drug container to a patient,
    The pump unit is
    A pump driven by a piezoelectric element;
    A characteristic data holding unit that holds the characteristic data relating to the input / output of the pump in a readable manner,
    The body is
    A reading unit for reading the characteristic data held in the characteristic data holding unit;
    A correction unit that determines a control correction value based on the characteristic data read by the reading unit;
    And a pump control unit that controls the pump based on the determined control correction value.
  2.  前記特性データは、前記ポンプに入力される駆動周波数と前記ポンプの吐出流量との関係についてのデータであり、
     前記ポンプ制御部は、前記ポンプに入力される駆動周波数を前記制御補正値に対応して増減させて前記ポンプを制御する、請求項1に記載の投薬機構。
    The characteristic data is data about a relationship between a driving frequency input to the pump and a discharge flow rate of the pump,
    The medication mechanism according to claim 1, wherein the pump control unit controls the pump by increasing or decreasing a driving frequency input to the pump in accordance with the control correction value.
  3.  前記特性データ保持部は、前記読取部に対する一方向の情報提示をなす手段が用いられる、請求項1に記載の投薬機構。 2. The medication mechanism according to claim 1, wherein the characteristic data holding unit uses means for presenting information in one direction to the reading unit.
  4.  圧電素子により駆動されるポンプと、該ポンプの入出力に関する特性データを読取可能に保持する特性データ保持部と、を備えた、投薬機構用のポンプユニットの製造方法であって、
     前記ポンプユニットにつき、前記ポンプに入力される駆動周波数と吐出流量との関係を、前記ポンプユニットを実際に用いて試運転することで、複数の駆動周波数に対する吐出流量の関係を示す複数の実測データを得る工程と、
     前記試運転で得られた前記複数の実測データを基に前記特性データを定める工程と、
     前記定められた特性データを特性データ保持部に保持させる工程と、を有することを特徴とする、投薬機構用のポンプユニットの製造方法。
     
    A method of manufacturing a pump unit for a dosing mechanism, comprising: a pump driven by a piezoelectric element; and a characteristic data holding unit for holding characteristic data relating to input / output of the pump in a readable manner,
    For the pump unit, by actually performing a trial operation of the relationship between the driving frequency input to the pump and the discharge flow rate using the pump unit, a plurality of measured data indicating the relationship of the discharge flow rate with respect to a plurality of driving frequencies is obtained. Obtaining a step;
    Determining the characteristic data based on the plurality of actual measurement data obtained in the trial operation;
    And a step of holding the defined characteristic data in a characteristic data holding unit.
PCT/JP2016/068910 2015-06-26 2016-06-24 Drug administration mechanism and method for producing pump unit for drug administration mechanism WO2016208750A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017525461A JP6821270B2 (en) 2015-06-26 2016-06-24 Dosing mechanism

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-128969 2015-06-26
JP2015128969 2015-06-26

Publications (1)

Publication Number Publication Date
WO2016208750A1 true WO2016208750A1 (en) 2016-12-29

Family

ID=57585609

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/068910 WO2016208750A1 (en) 2015-06-26 2016-06-24 Drug administration mechanism and method for producing pump unit for drug administration mechanism

Country Status (2)

Country Link
JP (1) JP6821270B2 (en)
WO (1) WO2016208750A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106730130A (en) * 2017-01-17 2017-05-31 深圳市好克医疗仪器股份有限公司 A kind of infusion pump with pressure automatic zero set and checking
CN113058500A (en) * 2020-01-02 2021-07-02 中国石油天然气集团有限公司 Drilling fluid preparation equipment and drilling fluid preparation method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010063767A (en) * 2008-09-12 2010-03-25 K & Y:Kk Infusion pump system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5239319A (en) * 1991-01-23 1993-08-24 Seiko Epson Corporation Micropump supervisory control
JP4005297B2 (en) * 2000-05-08 2007-11-07 セイコーインスツル株式会社 Microvalves and micropumps
JP2004230469A (en) * 2003-01-28 2004-08-19 Fluidware Technologies Kk Micropump driving device
JP2010059792A (en) * 2008-09-01 2010-03-18 Seiko Epson Corp Fluid injection device, fluid injection unit, control device, method of controlling fluid injection device and operating device
JP6307437B2 (en) * 2012-11-14 2018-04-04 アダマンド並木精密宝石株式会社 Tubing pump

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010063767A (en) * 2008-09-12 2010-03-25 K & Y:Kk Infusion pump system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106730130A (en) * 2017-01-17 2017-05-31 深圳市好克医疗仪器股份有限公司 A kind of infusion pump with pressure automatic zero set and checking
CN113058500A (en) * 2020-01-02 2021-07-02 中国石油天然气集团有限公司 Drilling fluid preparation equipment and drilling fluid preparation method
CN113058500B (en) * 2020-01-02 2024-05-31 中国石油天然气集团有限公司 Drilling fluid preparation equipment and drilling fluid preparation method

Also Published As

Publication number Publication date
JPWO2016208750A1 (en) 2018-04-12
JP6821270B2 (en) 2021-01-27

Similar Documents

Publication Publication Date Title
JP5134142B2 (en) Apparatus and method for measuring at least one flow parameter
ES2894873T3 (en) Force sensing resistor for low volume fluid sensing and occlusion detection and methods and apparatus for sensing flow along the fluid path in the fluid delivery device
ES2786398T3 (en) Magnetic pressure sensing system for an infusion pump
US20110185821A1 (en) Flow rate meter incorporating reusable device
US20100160893A1 (en) Method and system for measuring flow at patient utilizing differential force sensor
JP2011520572A (en) Cassette for differential-pressure-based drug administration flow sensor assembly for monitoring drug administration and method for making the same
US20120291540A1 (en) Infusion Apparatus With Flow Detector
JP2020036876A (en) High precision syringe with removable pump unit
WO2016208750A1 (en) Drug administration mechanism and method for producing pump unit for drug administration mechanism
US20130310770A1 (en) Infusion Apparatus With Composition Pulse Flow Sensor
KR102303385B1 (en) Medication mechanism
KR102303384B1 (en) Drug administration mechanism, method for using drug administration mechanism, and pump unit for drug administration mechanism
JP6875583B2 (en) Pumping unit
JP7337466B2 (en) dosing mechanism

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16814519

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017525461

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16814519

Country of ref document: EP

Kind code of ref document: A1