WO2016208679A1 - Electrode manufacturing method and electrode - Google Patents

Electrode manufacturing method and electrode Download PDF

Info

Publication number
WO2016208679A1
WO2016208679A1 PCT/JP2016/068698 JP2016068698W WO2016208679A1 WO 2016208679 A1 WO2016208679 A1 WO 2016208679A1 JP 2016068698 W JP2016068698 W JP 2016068698W WO 2016208679 A1 WO2016208679 A1 WO 2016208679A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
cutting
active material
strip
material layer
Prior art date
Application number
PCT/JP2016/068698
Other languages
French (fr)
Japanese (ja)
Inventor
合田 泰之
真也 浅井
寛恭 西原
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Priority to JP2017524974A priority Critical patent/JP6819586B2/en
Publication of WO2016208679A1 publication Critical patent/WO2016208679A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • An aspect of the present invention relates to an electrode manufacturing method and an electrode.
  • an electrode is punched out from a band-shaped electrode in which an active material layer is formed on a band-shaped metal foil using a cutting tool, and the position of the end of the electrode is detected for use in a subsequent lamination process or the like. To do.
  • image recognition using an image obtained by imaging an electrode with an imaging device is generally used (see, for example, Patent Document 1).
  • a predetermined amount of light is required, so illumination is applied. Therefore, in the case of a white electrode (for example, an electrode in which an active material layer made of a white active material is formed, or an electrode having a protective layer made of a white ceramic covering the active material layer), an image obtained by imaging this electrode Then, the contrast between the electrode and the background decreases. Therefore, in the image recognition using this image, the recognition accuracy of the end portion of the electrode is lowered.
  • a white electrode for example, an electrode in which an active material layer made of a white active material is formed, or an electrode having a protective layer made of a white ceramic covering the active material layer
  • an object of one aspect of the present invention is to propose an electrode manufacturing method and an electrode that improve the image recognition accuracy of the end portion of the electrode.
  • An electrode manufacturing method is an electrode manufacturing method in which an active material layer is formed on a metal foil, and the band-shaped electrode in which an active material layer is formed on a band-shaped metal foil is laser-formed for each electrode.
  • the end portion of the electrode is cut by cutting the strip electrode by laser light. Change color.
  • the individual electrodes are cut from the strip electrode by melting by heat.
  • the cut surface (end part) of the electrode undergoes evaporation of the surface material due to, for example, heat, and the hue changes (discolors) due to the change in the surface state associated therewith.
  • an area in which the hue has changed (discolored) is defined as an altered part.
  • the altered portion is altered by burning or evaporation depending on the surface material. For example, in the case of an active material layer, it may be burned, and in the case of a protective layer described later, it may be evaporated.
  • the end of the electrode is detected by image recognition, the contrast between the end of the electrode and the background in the image is increased, and the image recognition accuracy of the end of the electrode is improved.
  • the strip electrode may be cut by continuous wave laser light.
  • a continuous wave laser beam by continuously applying a predetermined amount of energy to the strip electrode, a thick active material layer can be cut in a short time by melting by heat and the cut surface of the active material layer is heated. Can change the color.
  • a protective layer covering the active material layer may be formed on the strip electrode. Even in the case of an electrode having a protective layer, since the protective layer at the end of the electrode is melted by the heat of the laser beam, the contrast between the end of the electrode and the background in the image does not decrease.
  • the dimension of the discolored region at the end in the direction intersecting the extending direction of the end may be 100 ⁇ m or more.
  • the end portion in the image recognition step, is detected by image recognition with respect to the image captured by the camera, and the size of the discolored region of the end portion in the direction intersecting the extending direction of the end portion May be more than the size of three pixels of the camera.
  • the end of the electrode can be stably recognized in the image recognition process.
  • An electrode manufacturing method is a method for manufacturing an electrode in which an active material layer is formed on a metal foil, and the band-shaped electrode in which an active material layer is formed on a band-shaped metal foil is cut with a laser beam for each electrode. Including a cutting step, in which the end of the electrode is discolored by cutting the strip-like electrode with laser light, and the size of the discolored region of the end in the direction intersecting the extending direction of the end is 100 ⁇ m or more It is.
  • An electrode according to an embodiment is an electrode in which an active material layer is formed on a metal foil, and is manufactured by cutting a band electrode in which an active material layer is formed on a band-shaped metal foil. Is formed with a discolored region, and the size of the discolored region at the end in the direction intersecting the extending direction of the end is 100 ⁇ m or more.
  • the electrode of one embodiment may be manufactured by cutting the strip electrode with laser light.
  • the laser beam may be a continuous wave laser beam.
  • the image recognition accuracy at the end of the electrode is improved.
  • FIG. 1 It is a figure which shows typically a part of electrode manufacturing line with which the manufacturing method of the electrode which concerns on one Embodiment is applied.
  • (A) is a plan view of the strip electrode before cutting
  • (b) is a cross-sectional view taken along line II-II of the strip electrode of (a)
  • (c) is a plan view of the electrode after cutting. is there. It is an expanded sectional view of the edge part of the electrode after cutting.
  • (A) is a figure which shows typically the state by which the positive electrode was set
  • (b) is a figure which shows typically the state by which the positive electrode was wrapped with two separators. It is a schematic diagram of the electrode cut
  • the present invention is applied to an electrode manufacturing method including a cutting step of cutting an electrode from a strip electrode with a laser beam, and an image recognition step of detecting an edge of the electrode for each cut electrode by image recognition.
  • the cutting process and the image recognition process are incorporated in a part of the electrode production line.
  • a mounting process for mounting the positive electrode on a strip-shaped separator which is one of the processes for producing a positive electrode (electrode) wrapped in a bag-shaped separator, is illustrated. To do.
  • This post-process is incorporated after the image recognition process in the production line.
  • the manufactured electrode is used for a power storage device such as a secondary battery or an electric double layer capacitor.
  • the secondary battery is, for example, a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery. In this embodiment, it is assumed that an electrode used for a lithium ion secondary battery is manufactured.
  • FIG. 1 is a diagram schematically illustrating a part of an electrode manufacturing line to which an electrode manufacturing method according to an embodiment is applied.
  • 2 (a) is a plan view of the strip electrode before cutting
  • FIG. 2 (b) is a cross-sectional view taken along the line II-II in the strip electrode of FIG. 2 (a)
  • FIG. It is a top view of the electrode after a cutting
  • FIG. 3 is an enlarged cross-sectional view of the end portion of the electrode after cutting.
  • 4A is a diagram schematically showing a state in which the positive electrode is placed on a strip-shaped separator
  • FIG. 4B is a diagram schematically showing a state in which the positive electrode is wrapped with two separators. is there.
  • an electrode paste is applied to at least one surface of a metal foil to form an active material layer, and a protective paste is applied to cover the active material layer to form a protective layer.
  • the protective layer is a layer that protects the active material layer, and ensures insulation, heat resistance, and the like of the active material layer.
  • the protective layer is a thin layer compared to the active material layer.
  • the electrode has a tab on which an active material layer is not formed at the end of the metal foil.
  • the metal foil is, for example, an aluminum foil in the case of the positive electrode, and a copper foil or a nickel foil in the case of the negative electrode.
  • the electrode paste is in the form of a slurry having a predetermined viscosity and includes an active material, a binder, a solvent, and the like.
  • the active material is a positive electrode active material or a negative electrode active material.
  • the positive electrode active material is, for example, a composite oxide or a sulfur-based material.
  • the composite oxide includes at least one of manganese, nickel, cobalt, and aluminum and lithium.
  • the negative electrode active material examples include graphite, highly oriented graphite, carbon such as mesocarbon microbeads, hard carbon, and soft carbon, alkali metals such as lithium and sodium, metal compounds, and SiOx (0.5 ⁇ x ⁇ 1.5). ) And the like, and boron-added carbon.
  • the binder is, for example, a fluorine-containing resin such as polyvinylidene fluoride, polytetrafluoroethylene, or fluororubber, a thermoplastic resin such as polypropylene or polyethylene, an imide resin such as polyimide or polyamideimide, or an alkoxysilyl group-containing resin.
  • the solvent examples include organic solvents such as NMP (N-methylpyrrolidone), methanol, and methyl isobutyl ketone.
  • the electrode paste may contain a conductive auxiliary such as carbon black, graphite, acetylene black, and ketjen black (registered trademark).
  • the electrode paste may contain a thickening agent such as carboxymethylcellulose (CMC).
  • Protective paste is in the form of a slurry having a predetermined viscosity and contains ceramic, binder, and solvent.
  • the ceramic may be excellent in insulation and heat resistance, for example, aluminum oxide (alumina).
  • the color of aluminum oxide is white.
  • the binder is exemplified as a binder for electrode paste, for example.
  • Examples of the solvent include those exemplified as the solvent for the electrode paste.
  • the separator separates the positive electrode and the negative electrode and allows lithium ions to pass while preventing a short circuit due to contact between the two electrodes.
  • a bag-like separator is obtained in which the end portions of the two separators are joined by welding.
  • the separator has a substantially rectangular shape.
  • the separator is, for example, a porous film made of a polyolefin resin such as polyethylene (PE) or polypropylene (PP), a woven fabric or a nonwoven fabric made of polypropylene, polyethylene terephthalate (PET), methylcellulose or the like.
  • a step of applying an electrode paste to a strip-shaped metal foil and a step of drying the coated electrode paste are performed, and an active material layer is formed on the strip-shaped metal foil.
  • a step of applying a protective paste so as to cover the entire active material layer and a step of drying the applied protective paste are performed to form a protective layer covering the active material layer .
  • an active material layer A is formed on the strip-shaped metal foil M, and a strip-shaped electrode ZE is formed in which a protective layer P covering the active material layer A is formed. Is done.
  • a strip electrode ZE in which an active material layer A and a protective layer P are formed by continuous coating on both surfaces of a metal foil M, and two strips in which two electrodes are arranged in the width direction of the strip electrode ZE.
  • the electrode E shown in FIG. 2C is cut from the strip electrode ZE.
  • the image recognition step the position and inclination of the end of the cut electrode E are detected by image recognition.
  • the strip-shaped electrode ZE is composed of a portion made of only the metal foil M, a portion made of the metal foil M and the protective layer P, a metal foil M, the active material layer A, and the protective layer P. And have a part.
  • the thickness of the metal foil M is, for example, several tens of ⁇ m.
  • the thickness of the active material layer A is, for example, several hundred ⁇ m.
  • the thickness of the protective layer P is, for example, several tens of ⁇ m. Therefore, the part which consists of metal foil M, the active material layer A, and the protective layer P is thick compared with another part.
  • belt-shaped electrode ZE shown to Fig.2 (a) has shown the line CL cut
  • This cutting line CL is an imaginary line, and no line is actually drawn.
  • the production line 1 will be described.
  • the belt-like electrode ZE being conveyed is cut for each electrode E by the cutting device 10 (cutting process), and the position and inclination of the end of the electrode E are detected for each electrode E by the image recognition device 20 (image). Recognition step), and the electrode E (positive electrode) is placed on the strip-shaped separator S (placement step).
  • transfer devices 30, 40, and 50 are provided for each process, and transfer devices 60 and 70 are provided between the processes. Each of these devices 10, 20, 30, 40, 50, 60, 70 is controlled by a control device (not shown) of the production line 1 or the like.
  • the cutting device 10 is a device that cuts the strip electrode ZE using a laser beam.
  • the cutting device 10 irradiates the laser beam L from above the belt-like electrode ZE being conveyed. Further, the cutting device 10 irradiates the laser beam L by moving the center of the spot of the laser beam L along a cutting line CL corresponding to the outer shape of the electrode E.
  • the cutting device 10 includes a laser light oscillator 11 and a scanner 12.
  • the laser beam oscillator 11 is an oscillator that oscillates a continuous wave laser beam L.
  • the laser beam oscillator 11 outputs the oscillated laser beam L to the scanner 12.
  • the wavelength of the laser beam L is, for example, 1000 to 1100 nm.
  • the output of the laser light L is, for example, 500W. In the laser light oscillator 11, the output can be changed within a predetermined range.
  • the scanner 12 is a device that moves the laser light L along a cutting line CL corresponding to the outer shape of the electrode E with respect to the belt-like electrode ZE being conveyed.
  • the scanner 12 is disposed above the strip electrode ZE transported by the transport device 30 and irradiates the laser beam L toward the strip electrode ZE below.
  • the scanner 12 includes, for example, two mirrors, two drive devices that change the three-dimensional angle of each mirror (that is, each mirror is three-dimensionally rotated), and a condensing lens. Yes.
  • the angle of each mirror is changed by each driving device, and the laser beam L is reflected by the two mirrors to change the irradiation direction.
  • the cutting speed by the laser light L changes according to the speed at which the angle of each mirror is changed by each driving device.
  • the cutting speed is, for example, 20 to 50 m / min.
  • the cutting speed is set independently of the transport speed of the strip electrode ZE transported by the transport device 30.
  • the pattern for changing the angle of each mirror and the changing speed in each driving device are preset for each conveying speed and stored in the scanner 12.
  • the laser light L reflected by the two mirrors is incident on the condensing lens, and the laser light L condensed by the condensing lens is irradiated toward the belt-shaped electrode ZE being conveyed.
  • the spot diameter of the laser beam L is, for example, 100 ⁇ m.
  • the assist gas may be sprayed to the portions where the laser beam L is irradiated onto the strip electrode ZE.
  • the cutting device 10 may be other than continuous wave laser light, for example, pulsed laser light.
  • the image recognition device 20 is a device that detects the position and inclination (angle) of the end portion of the electrode E by image recognition for each electrode E.
  • a reference position BC and a reference line BL are stored in advance, and a corner C (active material layer A is formed as the position of the end of the electrode E. Is a corner portion of the electrode E, which may be a chamfered shape) relative to the reference position BC, and an end portion (a portion where the active material layer A is formed) as an inclination of the end portion of the electrode E
  • the relative angle of the line EL with respect to the reference line BL is detected.
  • the reference position BC and the reference line BL are set based on the position where the electrode E is placed on the strip-shaped separator S.
  • the image recognition device 20 includes a camera 21 and an image processing unit 22.
  • the camera 21 is a camera that images the electrode E.
  • the camera 21 is disposed above the electrode E transported by the transport device 40 and images the lower electrode E.
  • the transport of the electrode E by the transport device 40 is temporarily stopped.
  • the camera 21 outputs the captured image to the image processing unit 22. Since an appropriate amount of light is required when taking an image with the camera 21, illumination is applied to a location where the camera 21 takes an image of the electrode E.
  • an illumination device is incorporated in the transport device 40 and illumination is applied from below the electrode E. Therefore, the location where the camera 21 images the electrode E is bright and whitish. Note that this inspection (for example, imaging of the electrode E) may be performed while transporting the electrode E without stopping the transport of the electrode E.
  • the image processing unit 22 is an image processing unit that detects the position and inclination of the end of the electrode E by image recognition on the image captured by the camera 21.
  • An example of an image recognition method in the image processing unit 22 will be described.
  • First, an edge is detected from the luminance difference between the pixels using the luminance value of each pixel of the image, thereby detecting a line along the end portion (cut surface) of the electrode E and acquiring the outline of the electrode E. .
  • the line EL along the corner C and the end of the detection target is extracted from the outline of the electrode E, the relative position of the corner C with respect to the reference position BC is obtained, and the line EL along the end with respect to the reference line BL is obtained.
  • Find the relative angle The relative position and the relative angle are used as a correction amount when the electrode E is placed on the strip-shaped separator S.
  • the transport device 30 is a device that transports the strip electrode ZE and the cut electrode E.
  • the transport device 30 continuously transports the strip electrode ZE and the cut electrode E.
  • the scanner 12 of the cutting device 10 is disposed at a predetermined location above the transport device 30. During the conveyance, a predetermined tension (tension) is applied to the belt-like electrode ZE.
  • the transport device 40 is a device that transports the electrode E transferred from the transport device 30.
  • the transport device 40 is disposed on the downstream side of the transport device 30 in the transport direction D.
  • the transport device 40 stops the transport of the electrode E for a predetermined time each time the electrode E reaches just below the camera 21 of the image recognition device 20.
  • a camera 21 is disposed at a predetermined location above the transport device 40.
  • the transport device 50 is a device that transports the strip separator S.
  • the strip-shaped separator S may be transported continuously, or the transport may be temporarily stopped when the electrode E is placed on the strip-shaped separator S. During the conveyance, a predetermined tension (tension) is applied to the strip-shaped separator S.
  • the transfer device 60 is a device that transfers the electrode E on the transfer device 30 onto the transfer device 40.
  • the transfer device 60 includes, for example, a robot arm 61 and a plurality of suction pads 62 attached to one end side of the robot arm 61.
  • the plurality of suction pads 62 are moved above the electrode E transported to one end of the transport device 30 by the robot arm 61, and the electrodes E are sucked by the plurality of suction pads 62.
  • the electrode E sucked by the plurality of suction pads 62 by the robot arm 61 is moved above one end of the transport device 40, and the suction by the plurality of suction pads 62 is stopped and transported.
  • the electrode E is placed on the device 40. In FIG. 1, only a part of the robot arm 61 is shown.
  • the transfer device 70 is a device that transfers the electrode E on the transport device 40 onto the strip-shaped separator S transported by the transport device 50.
  • the transfer device 70 includes, for example, a robot arm 71 and a plurality of suction pads 72 attached to one end side of the robot arm 71, similarly to the transfer device 60.
  • the plurality of suction pads 72 are moved above the electrode E stopped at the other end of the transport device 40 (directly below the camera 21) by the robot arm 71, and the plurality of suction pads 72 are used. Electrode E is adsorbed.
  • the electrode E sucked by the plurality of suction pads 72 by the robot arm 71 is moved above the strip-shaped separator S transported by the transport device 50, and suction by the plurality of suction pads 72 is performed. And the electrode E is placed on the strip-shaped separator S (see FIG. 4). In FIG. 1, only a part of the robot arm 71 is shown.
  • the transfer device 70 when the electrode E is transferred onto the strip-shaped separator S by the robot arm 71, the relative position and the end of the corner C of the electrode E detected by the image recognition device 20 with respect to the reference position BC. Using the relative angle of the line EL along the reference line BL as a correction amount, the position and inclination of the electrode E are corrected and placed on the strip separator S. Thereby, the welding area
  • the transport device 30 transports the strip electrode ZE at a predetermined transport speed.
  • the laser beam oscillator 11 of the cutting device 10 oscillates the laser beam L and outputs the laser beam L to the scanner 12.
  • the angle of each mirror is changed by each driving device in synchronization with the conveyance of the strip electrode ZE.
  • the input laser light L is sequentially reflected by the two mirrors to change the irradiation direction, and the laser light L is condensed by the condenser lens and directed toward the lower strip electrode ZE. Irradiate.
  • the irradiated laser beam L moves on the cutting line CL of the belt-like electrode ZE being conveyed. Thereby, the electrode E is cut
  • High energy is continuously given to the portions of the strip electrode ZE irradiated with the continuous wave laser beam L.
  • the part irradiated with the laser beam L is cut by the heat of high energy given continuously.
  • a part of the protective layer P (ceramic, etc.), the active material layer A (active material, etc.), the metal foil M, etc. is melted by heat and deteriorated.
  • the degree of melting and alteration is increased by increasing the output of the laser beam L or decreasing the cutting speed.
  • FIG. 3 shows a cross section of the cut portion of the electrode E. Since the amount of heat received by the laser beam L increases toward the upper side of the electrode E, the amount of melting of the active material and the like increases. Therefore, as shown in FIG. 3, the cut surface F of the electrode E is greatly chipped toward the upper side, and a part of the upper protective layer P is removed. Further, the cut surface F of the electrode E is altered and becomes blackish. As described above, the cut surface F of the electrode E is partly removed from the white protective layer P and is larger toward the upper side of the active material layer A, so that the active material layer A is exposed as viewed from above. Become. Therefore, when the electrode E is viewed from above, the cut surface F (end portion) of the electrode E looks dark due to the alteration.
  • the active material of the active material layer A is a black material (for example, carbon of the negative electrode active material, composite oxide of the positive electrode active material), the electrode E The cut surface F looks dark.
  • the thick active material layer A can be cut in a short irradiation time. Therefore, the cutting using the continuous wave laser beam L can cut the strip-shaped electrode ZE even if the conveyance speed and the cutting speed are set to high speeds. By increasing the conveyance speed and the cutting speed, the production amount of the electrode E per unit time increases, and the production efficiency increases.
  • the transfer device 60 sucks the electrode E on the transport device 30 with a plurality of suction pads 62.
  • the robot arm 61 moves the electrode E to a predetermined position of the transfer device 40 and places the electrode E on the transfer device 40.
  • the transport device 40 transports the electrode E, and stops it for a predetermined time when the electrode E reaches just below the camera 21 of the image recognition device 20.
  • the camera 21 captures the lower electrode E and outputs the captured image to the image processing unit 22.
  • the image processing unit 22 extracts the outline of the electrode E from the image by image recognition, detects the relative position of the corner C of the electrode E with respect to the reference position BC, and the reference line BL of the line EL along the end of the electrode E. The relative angle with respect to is detected.
  • the cut surface F in particular, the portion where the active material layer A is formed
  • the contrast between the end of the electrode E and the background in the image. (For example, luminance difference) is large. Therefore, in the image recognition device 20, the outline line along the end portion (cut surface F) of the electrode E can be extracted with high accuracy, and the relative position of the corner portion C of the electrode E and the relative angle of the line EL along the end portion can be increased. It can be obtained with accuracy.
  • the transfer device 70 sucks the electrode E on the transport device 40 with the plurality of suction pads 72.
  • the electrode E is transferred by the transfer device 50 while correcting the position and inclination of the electrode E so that the relative position and the relative angle detected by the image recognition device 20 by the robot arm 71 become zero, respectively.
  • the belt-like separator S is moved to a predetermined position, and the electrode E is placed on the belt-like separator S.
  • the electrodes E are sequentially placed on the strip-shaped separator S with a substantially constant interval.
  • the line EL along the end portion of the electrode E placed on the strip-shaped separator S is substantially parallel to the line SL along the end portion of the strip-shaped separator S.
  • the welding head is sequentially moved to the welding region of the separator for each electrode E by a welding device (not shown) to weld the two separators together. Furthermore, for example, it cut
  • the electrode E is cut from the belt-like electrode ZE by the laser beam L, so that the contrast between the end portion (cut surface) of the electrode E and the background in the image obtained by imaging the electrode E is increased.
  • the image recognition accuracy at the end of the electrode E is improved. Therefore, the position and inclination of the end of the electrode E can be acquired with high accuracy.
  • the electrode E can be placed at a predetermined location on the strip-shaped separator S with the positive electrode, which is the electrode E, and an appropriate welding region can be secured. Thereby, when welding two separators, it can prevent that the electrode E (positive electrode) enters into the welding part W.
  • the electrode manufacturing method by using continuous wave laser light L, energy of a predetermined magnitude is continuously given to the strip electrode ZE, so that the thick active material layer A can be melted by heat in a short time.
  • the cut surface F of the active material layer A can be discolored by heat. Since the thick active material layer A can be cut in a short time, the conveyance speed and cutting speed of the strip electrode ZE can be set high, and the production efficiency of the electrode E can be improved.
  • the present invention is applied to an electrode having a protective layer covering the active material layer, but the present invention can also be applied to an electrode without a protective layer.
  • an electrode without a protective layer for example, even an electrode having an active material layer containing a white-based active material (tin oxide of a negative electrode active material), the end portion of the active material layer is turned blackish by being cut by laser light. The image recognition accuracy at the end of the electrode is improved.
  • the process which mounts an electrode (positive electrode) on a separator was shown as an example of the post process which uses the position and inclination of the edge part of an electrode which were detected at the image recognition process,
  • a post process using the position and inclination of the end for example, there are a process of laminating a positive electrode and a negative electrode wrapped in a separator, a structure of laminating only the positive electrode, and a process of laminating only the negative electrode.
  • the position of the corner (relative position with respect to the reference position) and the inclination of the end (angle with respect to the reference line) are detected as the information on the end of the electrode. Either of the inclination and the inclination may be detected, or information on the other end may be detected.
  • FIG. 5 is a schematic view of an electrode cut using a cutting tool.
  • 5A and 5B show a positive electrode Ep and a negative electrode En, respectively, cut by punching using a punching die.
  • (C) and (d) in FIG. 5 are a positive electrode Ep and a negative electrode En cut with a roller cutter, respectively.
  • the active material layer A is exposed on the cut surface F at the end of the electrode E (the positive electrode Ep and the negative electrode En) according to the angle of the blade.
  • a discolored area AR is generated.
  • the dimension (dimension in the direction intersecting the extending direction of the end portion) Wa of the discolored area AR is about 90 ⁇ m or less. That is, when a cutting tool is used, the dimension of the discolored area AR is generally less than 100 ⁇ m. As will be described later, this is small compared to the case where laser light is used.
  • the pixel X for one column is used for recognizing the discolored area AR. It will be. For this reason, it is difficult to stably recognize the end portion (region AR) of the electrode E.
  • the camera 21 having a larger number of pixels such as the dimension Xb of the pixel X is, for example, 30 ⁇ m
  • the pixels X for a plurality of columns are used. Is possible. For this reason, it becomes possible to recognize the edge part of the electrode E stably. However, in this case, the camera 21 becomes expensive.
  • FIG. 7 is a schematic view of an electrode cut using a laser beam.
  • FIGS. 7A and 7B are a positive electrode Ep and a negative electrode En, respectively, cut using a laser beam L that is a continuous wave.
  • (C) of FIG. 7 is the positive electrode Ep and the negative electrode En cut
  • the dimension Wb of the discolored area AR is larger than the dimension Wa when the cutting tool is used, for example, 100 ⁇ m or more.
  • the dimension Wb is 300 ⁇ m or more.
  • region AR) of the electrode E can be recognized stably, and it is not necessary to use an expensive camera with many pixels.
  • the discolored area AR when the laser beam L is used is, as described above, the area where the active material layer A different from the color of the surface layer (for example, the protective layer P) of the electrode E is exposed, and / or the surface layer and This is a region where the active material layer A has been altered.
  • the discolored area AR is relatively small in the electrode E cut using a blade.
  • the pixels X for one column of the camera 21 are used to recognize the end of the electrode E. Therefore, in a place where the electrode E is in focus with the camera 21 (here, the focus is on the transport surface of the transport device 40), the contrast between the end of the electrode E and the background can be sufficiently generated. That is, a signal with a clear contrast can be acquired.
  • the contrast is not sufficiently generated in a place where the electrode E is deviated from the focus of the camera 21 due to the warp of the electrode E or the like.
  • the cutting tool when the cutting tool is used, in one column of pixels X used for recognizing the end portion of the electrode E, there are pixels X whose light intensity I exceeds the predetermined threshold TH and pixels X that do not exceed it. Arise. For this reason, it is difficult to stably recognize the end portion of the electrode E.
  • the discoloration is black
  • the light intensity I exceeding the threshold value TH means that the light intensity I is smaller than the threshold value.
  • the discolored area AR is relatively large.
  • the pixel X for several rows (for example, 4 rows) of the camera 21 is used. Therefore, even if the contrast decreases in the pixels X at both ends of the plurality of columns, a signal with a clear contrast can be acquired in the pixels X in the center column. In this example, even if the contrast is reduced in the two columns of pixels X at both ends of the four columns, a signal having a clear contrast can be acquired in the pixels X in the center. For this reason, the edge part of the electrode E can be reliably recognized using the signal.
  • the extending direction of the end of the electrode E (the extending direction of the cutting line CL)
  • the dimension of the discolored region RA at the end in the direction intersecting with () can be 100 ⁇ m or more.
  • the discolored region RA of the end portion in the direction intersecting with the extending direction of the end portion of the electrode E can be made to be equal to or larger than the size of three pixels of the camera 21.
  • image processing may be applied to an inspection process (for example, a foreign substance inspection process) after alignment using an edge, or a width after slitting an electrode in a long shape like a wound electrode. You may apply to the process of inspecting.
  • an inspection process for example, a foreign substance inspection process
  • an electrode manufacturing method and an electrode with improved image recognition accuracy at the end of the electrode it is possible to provide an electrode manufacturing method and an electrode with improved image recognition accuracy at the end of the electrode.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Laser Beam Processing (AREA)

Abstract

This manufacturing method, for an electrode having an active material layer formed on a metal foil, comprises: a cutting step for cutting band-shaped electrodes each having an active material layer formed on a band-shaped metal foil, by using laser light for each electrode; and an image recognition step for detecting, through image recognition, end portions of the electrodes cut at the cutting step, wherein the color of the end portions is changed as a result of being cut using the laser light.

Description

電極の製造方法、及び、電極Electrode manufacturing method and electrode
 本発明の一側面は、電極の製造方法、及び、電極に関する。 An aspect of the present invention relates to an electrode manufacturing method and an electrode.
 従来の電極の製造工程では、帯状の金属箔に活物質層が形成された帯状電極から刃具を用いて電極を打ち抜き、後工程の積層工程等で利用するために電極の端部の位置を検出する。この位置の検出には、一般的に、撮像装置で電極を撮像した画像による画像認識が利用される(例えば、特許文献1参照)。 In the conventional electrode manufacturing process, an electrode is punched out from a band-shaped electrode in which an active material layer is formed on a band-shaped metal foil using a cutting tool, and the position of the end of the electrode is detected for use in a subsequent lamination process or the like. To do. For this position detection, image recognition using an image obtained by imaging an electrode with an imaging device is generally used (see, for example, Patent Document 1).
特開2013-51035号公報JP 2013-51035 A
 撮像装置で電極を撮像する場合、所定の光量が必要となるので、照明が当てられる。そのため、白系の電極の場合(例えば、白系の活物質からなる活物質層が形成されている電極、活物質層を覆う白系のセラミックからなる保護層を有する電極)、この電極が撮像された画像では電極と背景とのコントラストが低下する。そのため、この画像による画像認識では、電極の端部の認識精度が低下する。 When imaging an electrode with an imaging device, a predetermined amount of light is required, so illumination is applied. Therefore, in the case of a white electrode (for example, an electrode in which an active material layer made of a white active material is formed, or an electrode having a protective layer made of a white ceramic covering the active material layer), an image obtained by imaging this electrode Then, the contrast between the electrode and the background decreases. Therefore, in the image recognition using this image, the recognition accuracy of the end portion of the electrode is lowered.
 そこで、本発明の一側面においては、電極の端部の画像認識精度が向上する電極の製造方法、及び、電極を提案することを課題とする。 Therefore, an object of one aspect of the present invention is to propose an electrode manufacturing method and an electrode that improve the image recognition accuracy of the end portion of the electrode.
 本発明の一側面に係る電極の製造方法は、金属箔に活物質層が形成された電極の製造方法であって、帯状の金属箔に活物質層が形成された帯状電極を電極毎にレーザ光によって切断する切断工程と、切断工程で切断された電極の端部を画像認識で検出する画像認識工程とを含み、切断工程では、レーザ光によって帯状電極を切断することで電極の端部を変色させる。 An electrode manufacturing method according to one aspect of the present invention is an electrode manufacturing method in which an active material layer is formed on a metal foil, and the band-shaped electrode in which an active material layer is formed on a band-shaped metal foil is laser-formed for each electrode. A cutting step of cutting by light, and an image recognition step of detecting an end portion of the electrode cut in the cutting step by image recognition. In the cutting step, the end portion of the electrode is cut by cutting the strip electrode by laser light. Change color.
 この電極の製造方法では、レーザ光によるエネルギーを帯状電極に与えることで、熱による溶融で帯状電極から個々の電極を切断する。これにより、電極の切断面(端部)は、例えば熱によって表面物質の蒸発が生じ、それに伴う表面状態の変化で色合いが変化(変色)する。ここで、色合いが変化(変色)した領域を変質した変質部と定義する。変質部は表面の材質に応じて、焦げたり蒸発したりして変質する。例えば、活物質層の場合は、焦げる場合もあり得るし、後述する保護層の場合は蒸発する場合もあり得る。そのため、この電極の製造方法では、画像認識で電極の端部を検出する際に画像における電極の端部と背景とのコントラストが大きくなり、電極の端部の画像認識精度が向上する。 In this electrode manufacturing method, by applying energy by laser light to the strip electrode, the individual electrodes are cut from the strip electrode by melting by heat. Thereby, the cut surface (end part) of the electrode undergoes evaporation of the surface material due to, for example, heat, and the hue changes (discolors) due to the change in the surface state associated therewith. Here, an area in which the hue has changed (discolored) is defined as an altered part. The altered portion is altered by burning or evaporation depending on the surface material. For example, in the case of an active material layer, it may be burned, and in the case of a protective layer described later, it may be evaporated. For this reason, in this electrode manufacturing method, when the end of the electrode is detected by image recognition, the contrast between the end of the electrode and the background in the image is increased, and the image recognition accuracy of the end of the electrode is improved.
 一実施形態の電極の製造方法の切断工程では、連続波のレーザ光によって帯状電極を切断してもよい。連続波のレーザ光を用いた場合、所定の大きさのエネルギーを帯状電極に連続的に与えることで、熱による溶融で厚い活物質層も短い時間で切断できると共に活物質層の切断面を熱で変色させることができる。 In the cutting step of the electrode manufacturing method according to one embodiment, the strip electrode may be cut by continuous wave laser light. When a continuous wave laser beam is used, by continuously applying a predetermined amount of energy to the strip electrode, a thick active material layer can be cut in a short time by melting by heat and the cut surface of the active material layer is heated. Can change the color.
 一実施形態の電極の製造方法では、帯状電極には活物質層を覆う保護層が形成されていてもよい。保護層を有する電極の場合でも、レーザ光による熱で電極の端部の保護層が溶融するので、画像における電極の端部と背景とのコントラストが低下しない。 In the electrode manufacturing method of one embodiment, a protective layer covering the active material layer may be formed on the strip electrode. Even in the case of an electrode having a protective layer, since the protective layer at the end of the electrode is melted by the heat of the laser beam, the contrast between the end of the electrode and the background in the image does not decrease.
 一実施形態の電極の製造方法では、端部の延在方向に交差する方向における端部の変色した領域の寸法は、100μm以上であってもよい。 In the electrode manufacturing method of one embodiment, the dimension of the discolored region at the end in the direction intersecting the extending direction of the end may be 100 μm or more.
 一実施形態の電極の製造方法では、画像認識工程では、カメラで撮像された画像に対する画像認識により端部を検出し、端部の延在方向に交差する方向における端部の変色した領域の寸法は、カメラの3画素分の寸法以上であってもよい。 In the electrode manufacturing method according to one embodiment, in the image recognition step, the end portion is detected by image recognition with respect to the image captured by the camera, and the size of the discolored region of the end portion in the direction intersecting the extending direction of the end portion May be more than the size of three pixels of the camera.
 これらの場合、画像認識工程において、安定して電極の端部を認識することができる。 In these cases, the end of the electrode can be stably recognized in the image recognition process.
 一実施形態の電極製造方法は、金属箔に活物質層が形成された電極の製造方法であって、帯状の金属箔に活物質層が形成された帯状電極を電極毎にレーザ光によって切断する切断工程を含み、切断工程では、レーザ光によって帯状電極を切断することで電極の端部を変色させ、端部の延在方向に交差する方向における端部の変色した領域の寸法は、100μm以上である。 An electrode manufacturing method according to an embodiment is a method for manufacturing an electrode in which an active material layer is formed on a metal foil, and the band-shaped electrode in which an active material layer is formed on a band-shaped metal foil is cut with a laser beam for each electrode. Including a cutting step, in which the end of the electrode is discolored by cutting the strip-like electrode with laser light, and the size of the discolored region of the end in the direction intersecting the extending direction of the end is 100 μm or more It is.
 一実施形態の電極は、金属箔に活物質層が形成された電極であって、帯状の金属箔に活物質層が形成された帯状電極の切断により製造され、切断により形成される端部には、変色した領域が形成されており、端部の延在方向に交差する方向における端部の変色した領域の寸法は、100μm以上である。 An electrode according to an embodiment is an electrode in which an active material layer is formed on a metal foil, and is manufactured by cutting a band electrode in which an active material layer is formed on a band-shaped metal foil. Is formed with a discolored region, and the size of the discolored region at the end in the direction intersecting the extending direction of the end is 100 μm or more.
 一実施形態の電極は、レーザ光によって帯状電極を切断することにより製造されてもよい。また、レーザ光は、連続波のレーザ光であってもよい。 The electrode of one embodiment may be manufactured by cutting the strip electrode with laser light. The laser beam may be a continuous wave laser beam.
 本発明の一側面によれば、電極の端部の画像認識精度が向上する。 According to one aspect of the present invention, the image recognition accuracy at the end of the electrode is improved.
一実施形態に係る電極の製造方法が適用される電極の製造ラインの一部を模式的に示す図である。It is a figure which shows typically a part of electrode manufacturing line with which the manufacturing method of the electrode which concerns on one Embodiment is applied. (a)は切断前の帯状電極の平面図であり、(b)は(a)の帯状電極のII-II線に沿った断面図であり、(c)は切断後の電極の平面図である。(A) is a plan view of the strip electrode before cutting, (b) is a cross-sectional view taken along line II-II of the strip electrode of (a), and (c) is a plan view of the electrode after cutting. is there. 切断後の電極の端部の拡大断面図である。It is an expanded sectional view of the edge part of the electrode after cutting. (a)は帯状のセパレータ上に正極が置かれた状態を模式的に示す図であり、(b)は2枚のセパレータで正極が包まれた状態を模式的に示す図である。(A) is a figure which shows typically the state by which the positive electrode was set | placed on the strip | belt-shaped separator, (b) is a figure which shows typically the state by which the positive electrode was wrapped with two separators. 刃具を用いて切断された電極の模式図である。It is a schematic diagram of the electrode cut | disconnected using the blade. 電極とカメラの画素との関係を示す図である。It is a figure which shows the relationship between an electrode and the pixel of a camera. レーザ光を用いて切断された電極の模式図である。It is a schematic diagram of the electrode cut | disconnected using the laser beam. 電極とカメラの画素との関係を示す図である。It is a figure which shows the relationship between an electrode and the pixel of a camera. 電極とカメラの画素との関係、及び、光強度の関係を示す図である。It is a figure which shows the relationship between an electrode and the pixel of a camera, and the relationship of light intensity.
 以下、図面を参照して、本発明の一側面の実施形態に係る電極の製造方法、及び、電極を説明する。なお、各図において同一又は相当する要素については同一の符号を付し、重複する説明を省略する。 Hereinafter, an electrode manufacturing method and an electrode according to an embodiment of one aspect of the present invention will be described with reference to the drawings. In addition, the same code | symbol is attached | subjected about the element which is the same or it corresponds in each figure, and the overlapping description is abbreviate | omitted.
 一実施形態では、帯状電極から電極をレーザ光によって切断する切断工程、切断された電極毎に電極の端部を画像認識で検出する画像認識工程を含む電極の製造方法に適用する。この切断工程及び画像認識工程は、電極の製造ラインの一部に組み込まれている。電極の端部の情報を利用する後工程として、袋状のセパレータに包まれた正極(電極)を作製する際の一つの工程である帯状のセパレータ上に正極を載置する載置工程を例示する。この後工程は、製造ラインにおける画像認識工程の後に組み込まれている。なお、製造される電極は、例えば、二次電池又は電気二重層キャパシタ等の蓄電装置に用いられる。二次電池としては、例えば、リチウムイオン二次電池等の非水電解質二次電池である。この実施形態では、リチウムイオン二次電池に用いられる電極を製造する場合とする。 In one embodiment, the present invention is applied to an electrode manufacturing method including a cutting step of cutting an electrode from a strip electrode with a laser beam, and an image recognition step of detecting an edge of the electrode for each cut electrode by image recognition. The cutting process and the image recognition process are incorporated in a part of the electrode production line. As a post-process using the information on the end of the electrode, a mounting process for mounting the positive electrode on a strip-shaped separator, which is one of the processes for producing a positive electrode (electrode) wrapped in a bag-shaped separator, is illustrated. To do. This post-process is incorporated after the image recognition process in the production line. The manufactured electrode is used for a power storage device such as a secondary battery or an electric double layer capacitor. The secondary battery is, for example, a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery. In this embodiment, it is assumed that an electrode used for a lithium ion secondary battery is manufactured.
 図1~図4を参照して、一実施形態に係る電極の製造方法が適用されている電極の製造ライン1について説明する。図1は、一実施形態に係る電極の製造方法が適用される電極の製造ラインの一部を模式的に示す図である。図2(a)は切断前の帯状電極の平面図であり、図2(b)は図2(a)の帯状電極におけるII-II線に沿った断面図であり、図2(c)は切断後の電極の平面図である。図3は、切断後の電極の端部の拡大断面図である。図4(a)は帯状のセパレータ上に正極が置かれた状態を模式的に示す図であり、図4(b)は2枚のセパレータで正極が包まれた状態を模式的に示す図である。 With reference to FIGS. 1 to 4, an electrode manufacturing line 1 to which an electrode manufacturing method according to an embodiment is applied will be described. FIG. 1 is a diagram schematically illustrating a part of an electrode manufacturing line to which an electrode manufacturing method according to an embodiment is applied. 2 (a) is a plan view of the strip electrode before cutting, FIG. 2 (b) is a cross-sectional view taken along the line II-II in the strip electrode of FIG. 2 (a), and FIG. It is a top view of the electrode after a cutting | disconnection. FIG. 3 is an enlarged cross-sectional view of the end portion of the electrode after cutting. 4A is a diagram schematically showing a state in which the positive electrode is placed on a strip-shaped separator, and FIG. 4B is a diagram schematically showing a state in which the positive electrode is wrapped with two separators. is there.
 製造ライン1について説明する前に電極について説明しておく。電極は、金属箔の少なくとも一面に電極ペーストが塗工されて活物質層が形成され、この活物質層を覆うように保護ペーストが塗工されて保護層が形成されている。保護層は、活物質層を保護する層であり、活物質層の絶縁性、耐熱性等を確保する。保護層は、活物質層に比べて薄い層である。電極は、金属箔の端部に活物質層が形成されていないタブを有している。 Before explaining the production line 1, the electrodes will be explained. In the electrode, an electrode paste is applied to at least one surface of a metal foil to form an active material layer, and a protective paste is applied to cover the active material layer to form a protective layer. The protective layer is a layer that protects the active material layer, and ensures insulation, heat resistance, and the like of the active material layer. The protective layer is a thin layer compared to the active material layer. The electrode has a tab on which an active material layer is not formed at the end of the metal foil.
 金属箔は、例えば、正極の場合にはアルミニウム箔であり、負極の場合には銅箔、ニッケル箔である。電極ペーストは、所定の粘度を有するスラリ状であり、活物質、バインダ、溶剤等を含んでいる。活物質は、正極活物質又は負極活物質である。正極活物質は、例えば、複合酸化物、硫黄系材料である。複合酸化物は、マンガン、ニッケル、コバルト及びアルミニウムの少なくとも1つとリチウムとを含む。負極活物質は、例えば、黒鉛、高配向性グラファイト、メソカーボンマイクロビーズ、ハードカーボン、ソフトカーボン等のカーボン、リチウム、ナトリウム等のアルカリ金属、金属化合物、SiOx(0.5≦x≦1.5)等の金属酸化物、ホウ素添加炭素である。バインダは、例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、フッ素ゴム等の含フッ素樹脂、ポリプロピレン、ポリエチレン等の熱可塑性樹脂、ポリイミド、ポリアミドイミド等のイミド系樹脂、アルコキシシリル基含有樹脂である。溶剤は、例えば、NMP(N-メチルピロリドン)、メタノール、メチルイソブチルケトン等の有機溶剤である。また、電極ペーストは、カーボンブラック、黒鉛、アセチレンブラック、ケッチェンブラック(登録商標)等の導電助剤を含んでいてもよい。また、電極ペーストは、カルボキシメチルセルロース(CMC)等の増粘剤を含んでいてもよい。 The metal foil is, for example, an aluminum foil in the case of the positive electrode, and a copper foil or a nickel foil in the case of the negative electrode. The electrode paste is in the form of a slurry having a predetermined viscosity and includes an active material, a binder, a solvent, and the like. The active material is a positive electrode active material or a negative electrode active material. The positive electrode active material is, for example, a composite oxide or a sulfur-based material. The composite oxide includes at least one of manganese, nickel, cobalt, and aluminum and lithium. Examples of the negative electrode active material include graphite, highly oriented graphite, carbon such as mesocarbon microbeads, hard carbon, and soft carbon, alkali metals such as lithium and sodium, metal compounds, and SiOx (0.5 ≦ x ≦ 1.5). ) And the like, and boron-added carbon. The binder is, for example, a fluorine-containing resin such as polyvinylidene fluoride, polytetrafluoroethylene, or fluororubber, a thermoplastic resin such as polypropylene or polyethylene, an imide resin such as polyimide or polyamideimide, or an alkoxysilyl group-containing resin. Examples of the solvent include organic solvents such as NMP (N-methylpyrrolidone), methanol, and methyl isobutyl ketone. The electrode paste may contain a conductive auxiliary such as carbon black, graphite, acetylene black, and ketjen black (registered trademark). The electrode paste may contain a thickening agent such as carboxymethylcellulose (CMC).
 保護ペーストは、所定の粘度を有するスラリ状であり、セラミック、バインダ、溶剤を含んでいる。セラミックは、絶縁性及び耐熱性に優れるものでもよく、例えば、酸化アルミニウム(アルミナ)である。酸化アルミニウムの色は、白色系である。バインダは、例えば、電極ペーストのバインダとして例示したものである。溶媒は、例えば、電極ペーストの溶媒として例示したものである。なお、保護層を形成する物質としては、セラミック以外の物質を用いてもよく、絶縁性及び耐熱性に優れる物質でもよい。 Protective paste is in the form of a slurry having a predetermined viscosity and contains ceramic, binder, and solvent. The ceramic may be excellent in insulation and heat resistance, for example, aluminum oxide (alumina). The color of aluminum oxide is white. The binder is exemplified as a binder for electrode paste, for example. Examples of the solvent include those exemplified as the solvent for the electrode paste. In addition, as a substance which forms a protective layer, you may use substances other than a ceramic, and the substance excellent in insulation and heat resistance may be sufficient.
 セパレータは、正極と負極とを隔離し、両極の接触による短絡を防止しつつ、リチウムイオンを通過させるものである。特に、2枚のセパレータによって正極のタブ以外の部分を包み込むために、2枚のセパレータの端部が溶着により接合された袋状のセパレータとなる。セパレータは、略矩形状である。セパレータは、例えば、ポリエチレン(PE)、ポリプロピレン(PP)等のポリオレフィン系樹脂からなる多孔質フィルム、ポリプロピレン、ポリエチレンテレフタレート(PET)、メチルセルロース等からなる織布又は不織布である。 The separator separates the positive electrode and the negative electrode and allows lithium ions to pass while preventing a short circuit due to contact between the two electrodes. In particular, since the portions other than the tab of the positive electrode are wrapped by the two separators, a bag-like separator is obtained in which the end portions of the two separators are joined by welding. The separator has a substantially rectangular shape. The separator is, for example, a porous film made of a polyolefin resin such as polyethylene (PE) or polypropylene (PP), a woven fabric or a nonwoven fabric made of polypropylene, polyethylene terephthalate (PET), methylcellulose or the like.
 電極を製造する場合、電極ペーストを帯状の金属箔に塗工する工程、その塗工された電極ペーストを乾燥する工程が行われ、帯状の金属箔に活物質層が形成される。この活物質層の形成後に、活物質層全体を覆うように保護ペーストを塗工する工程、その塗工された保護ペーストを乾燥する工程が行われ、活物質層を覆う保護層が形成される。これにより、図2(a)、(b)に示すように、帯状の金属箔Mに活物質層Aが形成され、その活物質層Aを覆う保護層Pが形成された帯状電極ZEが生成される。この実施形態では、金属箔Mの両面に連続塗工で活物質層A及び保護層Pが形成された帯状電極ZEとし、帯状電極ZEの幅方向において2個の電極が配置される2条取りとする。切断工程では、帯状電極ZEから、図2(c)に示す電極Eを切断する。画像認識工程では、切断された電極Eの端部の位置及び傾きを画像認識で検出する。電極を製造する場合、上記した各工程の他にもプレス、ベーク、検査等の工程もある。 When manufacturing an electrode, a step of applying an electrode paste to a strip-shaped metal foil and a step of drying the coated electrode paste are performed, and an active material layer is formed on the strip-shaped metal foil. After the formation of the active material layer, a step of applying a protective paste so as to cover the entire active material layer and a step of drying the applied protective paste are performed to form a protective layer covering the active material layer . As a result, as shown in FIGS. 2A and 2B, an active material layer A is formed on the strip-shaped metal foil M, and a strip-shaped electrode ZE is formed in which a protective layer P covering the active material layer A is formed. Is done. In this embodiment, a strip electrode ZE in which an active material layer A and a protective layer P are formed by continuous coating on both surfaces of a metal foil M, and two strips in which two electrodes are arranged in the width direction of the strip electrode ZE. And In the cutting step, the electrode E shown in FIG. 2C is cut from the strip electrode ZE. In the image recognition step, the position and inclination of the end of the cut electrode E are detected by image recognition. When manufacturing an electrode, there are processes such as pressing, baking, and inspection in addition to the above-described processes.
 帯状電極ZEは、図2(b)に示すように、金属箔Mのみからなる部分と、金属箔Mと保護層Pからなる部分と、金属箔Mと活物質層Aと保護層Pからなる部分とを有している。金属箔Mの厚みは、例えば、数10μmである。活物質層Aの厚みは、例えば、数100μmである。保護層Pの厚みは、例えば、数10μmである。したがって、金属箔Mと活物質層Aと保護層Pからなる部分は、他の部分に比べて厚い。画像認識工程では、この金属箔Mと活物質層Aと保護層Pからなる部分の端部を検出する。なお、図2(a)に示す帯状電極ZEには、一点鎖線により切断装置で切断される線CLを示している。この切断線CLは、仮想線であり、実際には線が引かれていない。 As shown in FIG. 2B, the strip-shaped electrode ZE is composed of a portion made of only the metal foil M, a portion made of the metal foil M and the protective layer P, a metal foil M, the active material layer A, and the protective layer P. And have a part. The thickness of the metal foil M is, for example, several tens of μm. The thickness of the active material layer A is, for example, several hundred μm. The thickness of the protective layer P is, for example, several tens of μm. Therefore, the part which consists of metal foil M, the active material layer A, and the protective layer P is thick compared with another part. In the image recognizing step, an end portion of the portion including the metal foil M, the active material layer A, and the protective layer P is detected. In addition, the strip | belt-shaped electrode ZE shown to Fig.2 (a) has shown the line CL cut | disconnected by a cutting device with a dashed-dotted line. This cutting line CL is an imaginary line, and no line is actually drawn.
 それでは、製造ライン1について説明する。製造ライン1では、切断装置10により搬送中の帯状電極ZEを電極E毎に切断し(切断工程)、画像認識装置20により電極E毎に電極Eの端部の位置及び傾きを検出し(画像認識工程)、電極E(正極)を帯状のセパレータS上に載置する(載置工程)。製造ライン1には、各工程に搬送装置30,40,50がそれぞれ設けられ、各工程間に移載装置60,70がそれぞれ設けられている。この各装置10,20,30,40,50,60,70は、製造ライン1の制御装置(図示せず)等で制御される。 Now, the production line 1 will be described. In the production line 1, the belt-like electrode ZE being conveyed is cut for each electrode E by the cutting device 10 (cutting process), and the position and inclination of the end of the electrode E are detected for each electrode E by the image recognition device 20 (image). Recognition step), and the electrode E (positive electrode) is placed on the strip-shaped separator S (placement step). In the production line 1, transfer devices 30, 40, and 50 are provided for each process, and transfer devices 60 and 70 are provided between the processes. Each of these devices 10, 20, 30, 40, 50, 60, 70 is controlled by a control device (not shown) of the production line 1 or the like.
 切断装置10は、レーザ光を用いて帯状電極ZEを切断する装置である。切断装置10は、搬送中の帯状電極ZEの上方からレーザ光Lを照射する。また、切断装置10は、電極Eの外形状に相当する切断線CLに沿ってレーザ光Lのスポットの中心を移動させて照射する。切断装置10は、レーザ光発振器11と、スキャナ12とを備えている。 The cutting device 10 is a device that cuts the strip electrode ZE using a laser beam. The cutting device 10 irradiates the laser beam L from above the belt-like electrode ZE being conveyed. Further, the cutting device 10 irradiates the laser beam L by moving the center of the spot of the laser beam L along a cutting line CL corresponding to the outer shape of the electrode E. The cutting device 10 includes a laser light oscillator 11 and a scanner 12.
 レーザ光発振器11は、連続波のレーザ光Lを発振する発振器である。レーザ光発振器11は、発振したレーザ光Lをスキャナ12に出力する。レーザ光Lの波長は、例えば、1000~1100nmである。レーザ光Lの出力は、例えば、500Wである。レーザ光発振器11では、出力を所定の範囲で変更可能である。 The laser beam oscillator 11 is an oscillator that oscillates a continuous wave laser beam L. The laser beam oscillator 11 outputs the oscillated laser beam L to the scanner 12. The wavelength of the laser beam L is, for example, 1000 to 1100 nm. The output of the laser light L is, for example, 500W. In the laser light oscillator 11, the output can be changed within a predetermined range.
 スキャナ12は、搬送中の帯状電極ZEに対してレーザ光Lを電極Eの外形状に相当する切断線CLに沿って移動させる装置である。スキャナ12は、搬送装置30で搬送される帯状電極ZEの上方に配置され、下方の帯状電極ZEに向けてレーザ光Lを照射する。スキャナ12は、例えば、2枚のミラーと、各ミラーの3次元的な角度を変化(つまり、各ミラーを3次元的に回転)させる2個の駆動装置と、集光レンズとを有している。スキャナ12では、各駆動装置で各ミラーの角度をそれぞれ変化させ、この2枚のミラーでレーザ光Lをそれぞれ反射させて照射方向を変化させる。各駆動装置で各ミラーの角度を変化させる速度に応じて、レーザ光Lによる切断速度が変化する。切断速度は、例えば、20~50m/分である。切断速度は、搬送装置30で搬送される帯状電極ZEの搬送速度とは独立して設定される。各駆動装置での各ミラーの角度を変化させるパターン及び変化させる速度は、搬送速度毎に予め設定され、スキャナ12に記憶されている。スキャナ12では、2枚のミラーで反射されたレーザ光Lを集光レンズに入射させ、集光レンズで集光されたレーザ光Lを搬送中の帯状電極ZEに向けて照射する。レーザ光Lのスポット径は、例えば、100μmである。 The scanner 12 is a device that moves the laser light L along a cutting line CL corresponding to the outer shape of the electrode E with respect to the belt-like electrode ZE being conveyed. The scanner 12 is disposed above the strip electrode ZE transported by the transport device 30 and irradiates the laser beam L toward the strip electrode ZE below. The scanner 12 includes, for example, two mirrors, two drive devices that change the three-dimensional angle of each mirror (that is, each mirror is three-dimensionally rotated), and a condensing lens. Yes. In the scanner 12, the angle of each mirror is changed by each driving device, and the laser beam L is reflected by the two mirrors to change the irradiation direction. The cutting speed by the laser light L changes according to the speed at which the angle of each mirror is changed by each driving device. The cutting speed is, for example, 20 to 50 m / min. The cutting speed is set independently of the transport speed of the strip electrode ZE transported by the transport device 30. The pattern for changing the angle of each mirror and the changing speed in each driving device are preset for each conveying speed and stored in the scanner 12. In the scanner 12, the laser light L reflected by the two mirrors is incident on the condensing lens, and the laser light L condensed by the condensing lens is irradiated toward the belt-shaped electrode ZE being conveyed. The spot diameter of the laser beam L is, for example, 100 μm.
 なお、切断装置10では、帯状電極ZEに対してレーザ光Lが照射される箇所にアシストガスをそれぞれ噴き付けるようにしてもよい。また、切断装置10は、連続波のレーザ光以外でもよく、例えば、パルス波のレーザ光でもよい。 Note that in the cutting device 10, the assist gas may be sprayed to the portions where the laser beam L is irradiated onto the strip electrode ZE. Further, the cutting device 10 may be other than continuous wave laser light, for example, pulsed laser light.
 画像認識装置20は、電極E毎に、画像認識により電極Eの端部の位置及び傾き(角度)を検出する装置である。画像認識装置20では、例えば、図2(c)に示すように、基準位置BCと基準線BLが予め記憶されており、電極Eの端部の位置として角部C(活物質層Aが形成されている部分の角部であり、面取り形状であってもよい)の基準位置BCに対する相対位置を検出し、電極Eの端部の傾きとして端部(活物質層Aが形成されている部分の端部)に沿う線ELの基準線BLに対する相対角度を検出する。基準位置BCと基準線BLは、帯状のセパレータS上に電極Eを載置する位置等に基づいて設定される。画像認識装置20は、カメラ21と、画像処理部22とを備えている。 The image recognition device 20 is a device that detects the position and inclination (angle) of the end portion of the electrode E by image recognition for each electrode E. In the image recognition device 20, for example, as shown in FIG. 2C, a reference position BC and a reference line BL are stored in advance, and a corner C (active material layer A is formed as the position of the end of the electrode E. Is a corner portion of the electrode E, which may be a chamfered shape) relative to the reference position BC, and an end portion (a portion where the active material layer A is formed) as an inclination of the end portion of the electrode E The relative angle of the line EL with respect to the reference line BL is detected. The reference position BC and the reference line BL are set based on the position where the electrode E is placed on the strip-shaped separator S. The image recognition device 20 includes a camera 21 and an image processing unit 22.
 カメラ21は、電極Eを撮像するカメラである。カメラ21は、搬送装置40で搬送された電極Eの上方に配置され、下方の電極Eを撮像する。カメラ21で電極Eを撮像する際に、搬送装置40による電極Eの搬送は一旦停止される。カメラ21は、撮像した画像を画像処理部22に出力する。カメラ21で撮像する場合には適度な光量が必要となるので、カメラ21で電極Eを撮像する箇所には照明が当てられている。例えば、搬送装置40に照明機器が組み込まれ、電極Eの下側から照明が当てられる。そのため、カメラ21で電極Eを撮像する箇所は、明るくて、白っぽい。なお、この検査(例えば電極Eの撮像)は、電極Eの搬送を止めずに、電極Eを搬送しながら行ってもよい。 The camera 21 is a camera that images the electrode E. The camera 21 is disposed above the electrode E transported by the transport device 40 and images the lower electrode E. When the camera 21 images the electrode E, the transport of the electrode E by the transport device 40 is temporarily stopped. The camera 21 outputs the captured image to the image processing unit 22. Since an appropriate amount of light is required when taking an image with the camera 21, illumination is applied to a location where the camera 21 takes an image of the electrode E. For example, an illumination device is incorporated in the transport device 40 and illumination is applied from below the electrode E. Therefore, the location where the camera 21 images the electrode E is bright and whitish. Note that this inspection (for example, imaging of the electrode E) may be performed while transporting the electrode E without stopping the transport of the electrode E.
 画像処理部22は、カメラ21で撮像された画像に対する画像認識により電極Eの端部の位置及び傾きを検出する画像処理部である。画像処理部22での画像認識方法の一例を説明する。まず、画像の各画素の輝度値を用いて画素間の輝度差からエッジを検出することで、電極Eの端部(切断面)に沿う線を検出して、電極Eの外形線を取得する。そして、この電極Eの外形線から検出対象の角部C及び端部に沿う線ELを抽出し、角部Cの基準位置BCに対する相対位置を求めると共に端部に沿う線ELの基準線BLに対する相対角度を求める。この相対位置及び相対角度は、電極Eを帯状のセパレータS上に載置する際の補正量として用いられる。 The image processing unit 22 is an image processing unit that detects the position and inclination of the end of the electrode E by image recognition on the image captured by the camera 21. An example of an image recognition method in the image processing unit 22 will be described. First, an edge is detected from the luminance difference between the pixels using the luminance value of each pixel of the image, thereby detecting a line along the end portion (cut surface) of the electrode E and acquiring the outline of the electrode E. . Then, the line EL along the corner C and the end of the detection target is extracted from the outline of the electrode E, the relative position of the corner C with respect to the reference position BC is obtained, and the line EL along the end with respect to the reference line BL is obtained. Find the relative angle. The relative position and the relative angle are used as a correction amount when the electrode E is placed on the strip-shaped separator S.
 搬送装置30は、帯状電極ZE及び切断後の電極Eを搬送する装置である。搬送装置30では、帯状電極ZE及び切断後の電極Eを連続的に搬送する。搬送装置30の上方の所定の箇所に、切断装置10のスキャナ12が配置されている。搬送中は、帯状電極ZEに所定のテンション(張力)がかかっている。 The transport device 30 is a device that transports the strip electrode ZE and the cut electrode E. The transport device 30 continuously transports the strip electrode ZE and the cut electrode E. The scanner 12 of the cutting device 10 is disposed at a predetermined location above the transport device 30. During the conveyance, a predetermined tension (tension) is applied to the belt-like electrode ZE.
 搬送装置40は、搬送装置30から移載された電極Eを搬送する装置である。搬送装置40は、搬送方向Dにおける搬送装置30の下流側に配置されている。搬送装置40では、画像認識装置20のカメラ21の直下に電極Eが到達する毎に、電極Eの搬送を所定時間停止させる。搬送装置40の上方の所定の箇所に、カメラ21が配置されている。 The transport device 40 is a device that transports the electrode E transferred from the transport device 30. The transport device 40 is disposed on the downstream side of the transport device 30 in the transport direction D. The transport device 40 stops the transport of the electrode E for a predetermined time each time the electrode E reaches just below the camera 21 of the image recognition device 20. A camera 21 is disposed at a predetermined location above the transport device 40.
 搬送装置50は、帯状のセパレータSを搬送する装置である。搬送装置50では、帯状のセパレータSを連続的に搬送してもよいし、あるいは、帯状のセパレータS上に電極Eを載置する際に搬送を一時停止させてもよい。搬送中は、帯状のセパレータSに所定のテンション(張力)がかかっている。 The transport device 50 is a device that transports the strip separator S. In the transport device 50, the strip-shaped separator S may be transported continuously, or the transport may be temporarily stopped when the electrode E is placed on the strip-shaped separator S. During the conveyance, a predetermined tension (tension) is applied to the strip-shaped separator S.
 移載装置60は、搬送装置30上の電極Eを搬送装置40上に移載する装置である。移載装置60は、例えば、ロボットアーム61と、このロボットアーム61の一端側に取り付けられた複数個の吸着パッド62とを備えている。移載装置60では、ロボットアーム61により複数個の吸着パッド62を搬送装置30の一端部まで搬送された電極Eの上方に移動させ、複数個の吸着パッド62で電極Eを吸着する。そして、移載装置60では、ロボットアーム61により複数個の吸着パッド62に吸着された電極Eを搬送装置40の一端部の上方に移動させ、複数個の吸着パッド62による吸着を停止させて搬送装置40上に電極Eを載置する。なお、図1には、ロボットアーム61の一部分のみ示している。 The transfer device 60 is a device that transfers the electrode E on the transfer device 30 onto the transfer device 40. The transfer device 60 includes, for example, a robot arm 61 and a plurality of suction pads 62 attached to one end side of the robot arm 61. In the transfer device 60, the plurality of suction pads 62 are moved above the electrode E transported to one end of the transport device 30 by the robot arm 61, and the electrodes E are sucked by the plurality of suction pads 62. In the transfer device 60, the electrode E sucked by the plurality of suction pads 62 by the robot arm 61 is moved above one end of the transport device 40, and the suction by the plurality of suction pads 62 is stopped and transported. The electrode E is placed on the device 40. In FIG. 1, only a part of the robot arm 61 is shown.
 移載装置70は、搬送装置40上の電極Eを搬送装置50で搬送される帯状のセパレータS上に移載する装置である。移載装置70は、例えば、移載装置60と同様に、ロボットアーム71と、このロボットアーム71の一端側に取り付けられた複数個の吸着パッド72とを備えている。移載装置70では、ロボットアーム71により複数個の吸着パッド72を搬送装置40の他端部(カメラ21の直下)で停止している電極Eの上方に移動させ、複数個の吸着パッド72で電極Eを吸着する。そして、移載装置70では、ロボットアーム71により複数個の吸着パッド72に吸着された電極Eを搬送装置50で搬送される帯状のセパレータSの上方に移動させ、複数個の吸着パッド72による吸着を停止させて帯状のセパレータS上に電極Eを載置する(図4参照)。なお、図1には、ロボットアーム71の一部分のみ示している。 The transfer device 70 is a device that transfers the electrode E on the transport device 40 onto the strip-shaped separator S transported by the transport device 50. The transfer device 70 includes, for example, a robot arm 71 and a plurality of suction pads 72 attached to one end side of the robot arm 71, similarly to the transfer device 60. In the transfer device 70, the plurality of suction pads 72 are moved above the electrode E stopped at the other end of the transport device 40 (directly below the camera 21) by the robot arm 71, and the plurality of suction pads 72 are used. Electrode E is adsorbed. In the transfer device 70, the electrode E sucked by the plurality of suction pads 72 by the robot arm 71 is moved above the strip-shaped separator S transported by the transport device 50, and suction by the plurality of suction pads 72 is performed. And the electrode E is placed on the strip-shaped separator S (see FIG. 4). In FIG. 1, only a part of the robot arm 71 is shown.
 移載装置70では、ロボットアーム71により帯状のセパレータS上に電極Eを移載するときに、画像認識装置20で検出された電極Eの角部Cの基準位置BCに対する相対位置及び端部に沿う線ELの基準線BLに対する相対角度を補正量として、電極Eの位置及び傾きを補正して帯状のセパレータS上に載置する。これにより、電極Eの周りに適切な幅の溶着領域が確保されて、電極Eが帯状のセパレータS上に載置される。適切な幅の溶着領域が確保されていないと、2枚のセパレータ同士を溶着するときに、電極E(正極)の一部がセパレータと共に溶着される可能性がある。 In the transfer device 70, when the electrode E is transferred onto the strip-shaped separator S by the robot arm 71, the relative position and the end of the corner C of the electrode E detected by the image recognition device 20 with respect to the reference position BC. Using the relative angle of the line EL along the reference line BL as a correction amount, the position and inclination of the electrode E are corrected and placed on the strip separator S. Thereby, the welding area | region of a suitable width | variety is ensured around the electrode E, and the electrode E is mounted on the strip | belt-shaped separator S. FIG. If a welding region having an appropriate width is not secured, a part of the electrode E (positive electrode) may be welded together with the separator when the two separators are welded together.
 製造ライン1で実施される切断工程、画像処理工程、載置工程について説明する。まず、切断工程について説明する。搬送装置30では、所定の搬送速度で帯状電極ZEを搬送する。帯状電極ZEの搬送中、切断装置10のレーザ光発振器11では、レーザ光Lを発振し、レーザ光Lをスキャナ12に出力する。スキャナ12では、帯状電極ZEの搬送に同期させて、各駆動装置で各ミラーの角度をそれぞれ変化させている。そして、スキャナ12では、入力されたレーザ光Lをこの2枚のミラーで順次反射させて照射方向を変化させ、このレーザ光Lを集光レンズで集光して下方の帯状電極ZEに向けて照射する。この照射されたレーザ光Lは、搬送中の帯状電極ZEの切断線CL上を移動する。これにより、帯状電極ZEから電極Eが切断される。 A cutting process, an image processing process, and a mounting process performed in the production line 1 will be described. First, the cutting process will be described. The transport device 30 transports the strip electrode ZE at a predetermined transport speed. During conveyance of the strip electrode ZE, the laser beam oscillator 11 of the cutting device 10 oscillates the laser beam L and outputs the laser beam L to the scanner 12. In the scanner 12, the angle of each mirror is changed by each driving device in synchronization with the conveyance of the strip electrode ZE. In the scanner 12, the input laser light L is sequentially reflected by the two mirrors to change the irradiation direction, and the laser light L is condensed by the condenser lens and directed toward the lower strip electrode ZE. Irradiate. The irradiated laser beam L moves on the cutting line CL of the belt-like electrode ZE being conveyed. Thereby, the electrode E is cut | disconnected from the strip | belt-shaped electrode ZE.
 帯状電極ZEにおいて連続波のレーザ光Lが照射された箇所には、高いエネルギーが連続的に与えられる。これにより、レーザ光Lが照射された箇所は、この連続的に与えられる高いエネルギーの熱によって切断される。この際、保護層P(セラミック等)、活物質層A(活物質等)、金属箔M等の一部が、熱によって溶融すると共に変質する。この溶融の程度や変質の程度は、レーザ光Lの出力を大きくしたりあるいは切断速度を低下させることで、大きくなる。 High energy is continuously given to the portions of the strip electrode ZE irradiated with the continuous wave laser beam L. Thereby, the part irradiated with the laser beam L is cut by the heat of high energy given continuously. At this time, a part of the protective layer P (ceramic, etc.), the active material layer A (active material, etc.), the metal foil M, etc. is melted by heat and deteriorated. The degree of melting and alteration is increased by increasing the output of the laser beam L or decreasing the cutting speed.
 図3には、電極Eの切断された箇所の断面を示している。電極Eの上側ほど、レーザ光Lで受ける熱量が多くなるので、活物質等の溶融量が多くなる。そのため、図3に示すように、電極Eの切断面Fは、上側ほど大きく欠け、上側の保護層Pの一部が除去されている。また、電極Eの切断面Fは、変質して黒っぽくなっている。このように、電極Eの切断面Fは、白系の保護層Pの一部が除去され、活物質層Aの上側ほど大きくかけているので、上方から見て活物質層Aが露出した状態になる。そのため、上方から電極Eを見ると、変質により、電極Eの切断面F(端部)は黒っぽく見える。また、変質部ができていない箇所がある場合でも、活物質層Aの活物質が黒系の材料であると(例えば、負極活物質のカーボン、正極活物質の複合酸化物)、電極Eの切断面Fが黒っぽく見える。 FIG. 3 shows a cross section of the cut portion of the electrode E. Since the amount of heat received by the laser beam L increases toward the upper side of the electrode E, the amount of melting of the active material and the like increases. Therefore, as shown in FIG. 3, the cut surface F of the electrode E is greatly chipped toward the upper side, and a part of the upper protective layer P is removed. Further, the cut surface F of the electrode E is altered and becomes blackish. As described above, the cut surface F of the electrode E is partly removed from the white protective layer P and is larger toward the upper side of the active material layer A, so that the active material layer A is exposed as viewed from above. Become. Therefore, when the electrode E is viewed from above, the cut surface F (end portion) of the electrode E looks dark due to the alteration. Further, even when there is a portion where the altered portion is not formed, if the active material of the active material layer A is a black material (for example, carbon of the negative electrode active material, composite oxide of the positive electrode active material), the electrode E The cut surface F looks dark.
 また、連続波のレーザ光Lを用いた溶融による切断の場合、厚い活物質層Aも短い照射時間で切断できる。そのため、連続波のレーザ光Lを用いた切断は、搬送速度及び切断速度を高い速度に設定しても、帯状電極ZEの切断が可能である。搬送速度及び切断速度を高くすることで、電極Eの単位時間当たりの生産量が増え、生産効率が高くなる。 Further, in the case of cutting by melting using the continuous wave laser beam L, the thick active material layer A can be cut in a short irradiation time. Therefore, the cutting using the continuous wave laser beam L can cut the strip-shaped electrode ZE even if the conveyance speed and the cutting speed are set to high speeds. By increasing the conveyance speed and the cutting speed, the production amount of the electrode E per unit time increases, and the production efficiency increases.
 次に、画像認識工程について説明する。搬送装置30の端部の所定の箇所に電極Eが到達すると、移載装置60では、搬送装置30上の電極Eを複数個の吸着パッド62で吸着する。そして、移載装置60では、ロボットアーム61により電極Eを搬送装置40の所定の箇所まで移動させ、搬送装置40上に電極Eを載置する。搬送装置40では、電極Eを搬送し、電極Eが画像認識装置20のカメラ21の直下に到達すると所定時間停止させる。カメラ21では、下方の電極Eを撮像し、撮像した画像を画像処理部22に出力する。画像処理部22では、画像認識により画像から電極Eの外形線を抽出し、電極Eの角部Cの基準位置BCに対する相対位置を検出すると共に電極Eの端部に沿う線ELの基準線BLに対する相対角度を検出する。 Next, the image recognition process will be described. When the electrode E reaches a predetermined position at the end of the transport device 30, the transfer device 60 sucks the electrode E on the transport device 30 with a plurality of suction pads 62. In the transfer device 60, the robot arm 61 moves the electrode E to a predetermined position of the transfer device 40 and places the electrode E on the transfer device 40. The transport device 40 transports the electrode E, and stops it for a predetermined time when the electrode E reaches just below the camera 21 of the image recognition device 20. The camera 21 captures the lower electrode E and outputs the captured image to the image processing unit 22. The image processing unit 22 extracts the outline of the electrode E from the image by image recognition, detects the relative position of the corner C of the electrode E with respect to the reference position BC, and the reference line BL of the line EL along the end of the electrode E. The relative angle with respect to is detected.
 電極Eの端部となる切断面F(特に、活物質層Aが形成されている部分)は上方から見て黒系であるので、画像に写っている電極Eの端部と背景とのコントラスト(例えば、輝度差)は大きい。そのため、画像認識装置20では、電極Eの端部(切断面F)に沿う外形線を高精度に抽出でき、電極Eの角部Cの相対位置及び端部に沿う線ELの相対角度を高精度に取得できる。 Since the cut surface F (in particular, the portion where the active material layer A is formed) serving as the end of the electrode E is black when viewed from above, the contrast between the end of the electrode E and the background in the image. (For example, luminance difference) is large. Therefore, in the image recognition device 20, the outline line along the end portion (cut surface F) of the electrode E can be extracted with high accuracy, and the relative position of the corner portion C of the electrode E and the relative angle of the line EL along the end portion can be increased. It can be obtained with accuracy.
 最後に、載置工程について説明する。画像認識装置20での電極Eの画像認識が終了すると、移載装置70では、搬送装置40上の電極Eを複数個の吸着パッド72で吸着する。そして、移載装置70では、ロボットアーム71により画像認識装置20で検出しれた相対位置及び相対角度がそれぞれ零になるように電極Eの位置及び傾きを補正しつつ電極Eを搬送装置50で搬送中の帯状のセパレータSの所定の箇所まで移動させ、帯状のセパレータS上に電極Eを載置する。 Finally, the mounting process will be described. When the image recognition of the electrode E in the image recognition device 20 is completed, the transfer device 70 sucks the electrode E on the transport device 40 with the plurality of suction pads 72. In the transfer device 70, the electrode E is transferred by the transfer device 50 while correcting the position and inclination of the electrode E so that the relative position and the relative angle detected by the image recognition device 20 by the robot arm 71 become zero, respectively. The belt-like separator S is moved to a predetermined position, and the electrode E is placed on the belt-like separator S.
 図4(a)に示すように、帯状のセパレータS上には、略一定の間隔をあけて電極Eが順次載置される。帯状のセパレータS上に載置された電極Eの端部に沿う線ELは、帯状のセパレータSの端部に沿う線SLと略平行である。このように各電極Eが帯状のセパレータS上に載置されることで、電極Eの周りに適切な幅の溶着領域が確保される。 As shown in FIG. 4A, the electrodes E are sequentially placed on the strip-shaped separator S with a substantially constant interval. The line EL along the end portion of the electrode E placed on the strip-shaped separator S is substantially parallel to the line SL along the end portion of the strip-shaped separator S. Thus, by placing each electrode E on the strip-shaped separator S, a welding region having an appropriate width is secured around the electrode E.
 なお、帯状のセパレータS上に電極Eが載置された後、その上に別の帯状のセパレータを被せる。そして、例えば、図示しない溶着装置により、電極E毎に溶着ヘッドをセパレータの溶着領域に順次移動させて、2枚のセパレータ同士を溶着する。さらに、例えば、図示しない切断装置により、2枚のセパレータに包まれた電極E毎に切断する。これにより、図4(b)に示す溶着された2枚のセパレータSに包まれた電極E(正極)が作製される。この2枚のセパレータには、タブTの部分を除いて電極Eを囲むように溶着部Wが形成されている。 In addition, after the electrode E is mounted on the strip-shaped separator S, another strip-shaped separator is placed thereon. Then, for example, the welding head is sequentially moved to the welding region of the separator for each electrode E by a welding device (not shown) to weld the two separators together. Furthermore, for example, it cut | disconnects for every electrode E wrapped in the separator of 2 sheets with the cutting device which is not shown in figure. Thereby, an electrode E (positive electrode) wrapped in two welded separators S shown in FIG. 4B is produced. In these two separators, a welded portion W is formed so as to surround the electrode E except for the tab T portion.
 以上の各工程を含む電極の製造方法では、レーザ光Lによって帯状電極ZEから電極Eを切断することにより、電極Eを撮像した画像における電極Eの端部(切断面)と背景とのコントラストが大きくなり、電極Eの端部の画像認識精度が向上する。そのため、電極Eの端部の位置及び傾きを高精度に取得できる。その結果、例えば、電極Eである正極を帯状のセパレータS上の所定の箇所に電極Eを高精度に載置でき、適切な溶着領域を確保できる。これにより、2枚のセパレータ同士を溶着するときに、溶着部W内に電極E(正極)が入るのを防止できる。 In the electrode manufacturing method including the above steps, the electrode E is cut from the belt-like electrode ZE by the laser beam L, so that the contrast between the end portion (cut surface) of the electrode E and the background in the image obtained by imaging the electrode E is increased. The image recognition accuracy at the end of the electrode E is improved. Therefore, the position and inclination of the end of the electrode E can be acquired with high accuracy. As a result, for example, the electrode E can be placed at a predetermined location on the strip-shaped separator S with the positive electrode, which is the electrode E, and an appropriate welding region can be secured. Thereby, when welding two separators, it can prevent that the electrode E (positive electrode) enters into the welding part W. FIG.
 また、電極の製造方法では、連続波のレーザ光Lを用いることにより、所定の大きさのエネルギーを帯状電極ZEに連続的に与えることで、熱による溶融で厚い活物質層Aも短い時間で切断できると共に活物質層Aの切断面Fを熱で変色させることができる。厚い活物質層Aも短い時間で切断できるので、帯状電極ZEの搬送速度及び切断速度を高く設定でき、電極Eの生産効率を向上できる。 Further, in the electrode manufacturing method, by using continuous wave laser light L, energy of a predetermined magnitude is continuously given to the strip electrode ZE, so that the thick active material layer A can be melted by heat in a short time. In addition to being able to cut, the cut surface F of the active material layer A can be discolored by heat. Since the thick active material layer A can be cut in a short time, the conveyance speed and cutting speed of the strip electrode ZE can be set high, and the production efficiency of the electrode E can be improved.
 以上、本発明の一側面の実施形態について説明したが、上記実施形態に限定されることなく様々な形態で実施される。 As mentioned above, although the embodiment of one aspect of the present invention has been described, the present invention is not limited to the above embodiment and can be implemented in various forms.
 例えば、上記実施形態では活物質層を覆う保護層も有する電極に適用したが、保護層がない電極にも適用可能である。保護層のない電極の場合、例えば、白系の活物質(負極活物質の酸化スズ)を含む活物質層を有する電極でも、レーザ光によって切断されることで活物質層の端部が黒っぽく変色し、電極の端部の画像認識精度が向上する。 For example, in the above embodiment, the present invention is applied to an electrode having a protective layer covering the active material layer, but the present invention can also be applied to an electrode without a protective layer. In the case of an electrode without a protective layer, for example, even an electrode having an active material layer containing a white-based active material (tin oxide of a negative electrode active material), the end portion of the active material layer is turned blackish by being cut by laser light. The image recognition accuracy at the end of the electrode is improved.
 また、上記実施形態では画像認識工程で検出した電極の端部の位置及び傾きを用いる後工程の一例としてセパレータ上に電極(正極)を載置する工程を示したが、これ以外にも電極の端部の位置及び傾きを用いる後工程としては、例えば、セパレータに包まれた正極と負極とを積層する工程、正極のみを積層する構成、負極のみを積層する工程がある。 Moreover, in the said embodiment, although the process which mounts an electrode (positive electrode) on a separator was shown as an example of the post process which uses the position and inclination of the edge part of an electrode which were detected at the image recognition process, As a post process using the position and inclination of the end, for example, there are a process of laminating a positive electrode and a negative electrode wrapped in a separator, a structure of laminating only the positive electrode, and a process of laminating only the negative electrode.
 また、上記実施形態では電極の端部の情報として角部の位置(基準位置に対する相対位置)及び端部の傾き(基準線に対する角度)を検出したが、電極の端部の情報としては、位置と傾きの何れか一方を検出してもよいし、それ以外の端部の情報を検出してもよい。 Further, in the above embodiment, the position of the corner (relative position with respect to the reference position) and the inclination of the end (angle with respect to the reference line) are detected as the information on the end of the electrode. Either of the inclination and the inclination may be detected, or information on the other end may be detected.
 ここで、図5は、刃具を用いて切断された電極の模式図である。図5の(a),(b)は、それぞれ、抜き型を用いた打ち抜きにより切断された正極Ep及び負極Enである。図5の(c),(d)は、それぞれ、ローラカッタを用いて切断された正極Ep及び負極Enである。図5に示されるように、刃具を用いた場合であっても、電極E(正極Ep及び負極En)の端部には、刃の角度に応じて切断面Fに活物質層Aが露出し、変色した領域ARが生じる。しかしながら、その変色した領域ARの寸法(端部の延在方向に交差する方向における寸法)Waは、いずれも90μm程度以下である。すなわち、刃具を用いた場合には、変色した領域ARの寸法が、一般に、100μm未満となる。これは、後述するように、レーザ光を用いた場合と比較して小さい。 Here, FIG. 5 is a schematic view of an electrode cut using a cutting tool. 5A and 5B show a positive electrode Ep and a negative electrode En, respectively, cut by punching using a punching die. (C) and (d) in FIG. 5 are a positive electrode Ep and a negative electrode En cut with a roller cutter, respectively. As shown in FIG. 5, even when a cutting tool is used, the active material layer A is exposed on the cut surface F at the end of the electrode E (the positive electrode Ep and the negative electrode En) according to the angle of the blade. A discolored area AR is generated. However, the dimension (dimension in the direction intersecting the extending direction of the end portion) Wa of the discolored area AR is about 90 μm or less. That is, when a cutting tool is used, the dimension of the discolored area AR is generally less than 100 μm. As will be described later, this is small compared to the case where laser light is used.
 このため、図6の(a)に示されるように、例えばカメラ21の画素Xの寸法Xaが50μm程度である場合には、変色した領域ARの認識に対して、一列分の画素Xを用いることになる。このため、電極Eの端部(領域AR)を安定して認識することが困難である。これに対して、図6の(b)に示されるように、画素Xの寸法Xbが例えば30μmであるような、より画素数の多いカメラ21を用いれば、複数列分の画素Xを用いることが可能になる。このため、電極Eの端部を安定して認識することが可能となる。しかしながら、この場合には、カメラ21が高価になってしまう。 Therefore, as shown in FIG. 6A, for example, when the dimension Xa of the pixel X of the camera 21 is about 50 μm, the pixel X for one column is used for recognizing the discolored area AR. It will be. For this reason, it is difficult to stably recognize the end portion (region AR) of the electrode E. On the other hand, as shown in FIG. 6B, if the camera 21 having a larger number of pixels such as the dimension Xb of the pixel X is, for example, 30 μm, the pixels X for a plurality of columns are used. Is possible. For this reason, it becomes possible to recognize the edge part of the electrode E stably. However, in this case, the camera 21 becomes expensive.
 これに対して、本実施形態に係る方法によれば、カメラ21が高価になることを避けつつ安定して電極Eの端部を認識することが可能となる。より具体的に説明する。図7は、レーザ光を用いて切断された電極の模式図である。図7の(a),(b)は、それぞれ、連続波であるレーザ光Lを用いて切断された正極Ep及び負極Enである。図7の(c),(d)は、それぞれ、パルス波であるレーザ光Lを用いて切断された正極Ep及び負極Enである。図7に示されるように、レーザ光Lを用いた場合には、変色した領域ARの寸法Wbが、刃具を用いた場合の寸法Waよりも大きく、例えば100μm以上となる。特に連続波であるレーザ光Lを用いた場合(図7の(a),(b))には、当該寸法Wbが300μm以上となる。 On the other hand, according to the method according to the present embodiment, it is possible to stably recognize the end portion of the electrode E while avoiding that the camera 21 is expensive. This will be described more specifically. FIG. 7 is a schematic view of an electrode cut using a laser beam. FIGS. 7A and 7B are a positive electrode Ep and a negative electrode En, respectively, cut using a laser beam L that is a continuous wave. (C), (d) of FIG. 7 is the positive electrode Ep and the negative electrode En cut | disconnected using the laser beam L which is a pulse wave, respectively. As shown in FIG. 7, when the laser beam L is used, the dimension Wb of the discolored area AR is larger than the dimension Wa when the cutting tool is used, for example, 100 μm or more. In particular, when the laser beam L that is a continuous wave is used (FIGS. 7A and 7B), the dimension Wb is 300 μm or more.
 したがって、図8に示されるように、例えばカメラ21の画素Xの寸法Xaが50μm程度である場合であっても、変色した領域ARの認識に対して、複数列(例えば4列)分の画素Xを用いるが可能となる。このため、電極Eの端部(領域AR)を安定して認識することができ、画素数の多い高価なカメラを利用する必要がない。なお、レーザ光Lを用いた場合の変色した領域ARは、上述したように、電極Eの表層(例えば保護層P)の色と異なる活物質層Aが露出した領域、及び/又は、表層及び活物質層Aの変質が生じた領域である。 Therefore, as shown in FIG. 8, for example, even when the dimension Xa of the pixel X of the camera 21 is about 50 μm, pixels for a plurality of columns (for example, four columns) are recognized for recognizing the discolored area AR. X can be used. For this reason, the edge part (area | region AR) of the electrode E can be recognized stably, and it is not necessary to use an expensive camera with many pixels. Note that the discolored area AR when the laser beam L is used is, as described above, the area where the active material layer A different from the color of the surface layer (for example, the protective layer P) of the electrode E is exposed, and / or the surface layer and This is a region where the active material layer A has been altered.
 この作用・効果について、図9を参照してより詳細に説明する。図9の(a)に示されるように、刃具を用いて切断された電極Eにあっては、変色した領域ARが相対的に小さい。このため、電極Eの端部の認識には、例えばカメラ21の1列分の画素Xが用いられることになる。したがって、電極Eがカメラ21の焦点に合っている(ここでは、焦点は搬送装置40の搬送面に合わされている)場所では、電極Eの端部と背景とのコントラストが十分に生じ得る。すなわち、コントラストが明確な信号が取得できる。一方で、電極Eに反りが生じている等の原因によってカメラ21の焦点から電極Eがずれている場所においては、コントラストが十分に生じない場合がある。 This action / effect will be described in more detail with reference to FIG. As shown in FIG. 9A, the discolored area AR is relatively small in the electrode E cut using a blade. For this reason, for example, the pixels X for one column of the camera 21 are used to recognize the end of the electrode E. Therefore, in a place where the electrode E is in focus with the camera 21 (here, the focus is on the transport surface of the transport device 40), the contrast between the end of the electrode E and the background can be sufficiently generated. That is, a signal with a clear contrast can be acquired. On the other hand, there may be a case where the contrast is not sufficiently generated in a place where the electrode E is deviated from the focus of the camera 21 due to the warp of the electrode E or the like.
 換言すれば、刃具を用いた場合には、電極Eの端部の認識に用いられる1列の画素X内において、光強度Iが所定の閾値THを越える画素Xと、越えない画素Xとが生じる。このため、電極Eの端部の認識を安定して行うことが困難である。なお、変色が黒色系の場合には、光強度Iが閾値THを越えるとは、光強度Iが閾値よりも小さくなることを意味する。 In other words, when the cutting tool is used, in one column of pixels X used for recognizing the end portion of the electrode E, there are pixels X whose light intensity I exceeds the predetermined threshold TH and pixels X that do not exceed it. Arise. For this reason, it is difficult to stably recognize the end portion of the electrode E. When the discoloration is black, the light intensity I exceeding the threshold value TH means that the light intensity I is smaller than the threshold value.
 これに対して、図9の(b)に示されるように、レーザ光Lを用いて切断された電極Eにあっては、変色した領域ARが相対的に大きい。このため、電極Eの端部の認識において、カメラ21の複数列(例えば4列)分の画素Xが用いられることになる。したがって、仮に、複数列のうちの両端の列の画素Xにおいてコントラストが低下しても、中央の列の画素Xにおいてコントラストが明確な信号が取得できる。この例では、4列のうちの両端の2列の画素Xにおいてコントラストが低下しても、中央の2列の画素Xにおいてコントラストが明確な信号が取得できる。このため、その信号を用いて、電極Eの端部を確実に認識することができる。 On the other hand, as shown in FIG. 9B, in the electrode E cut using the laser beam L, the discolored area AR is relatively large. For this reason, in recognition of the edge part of the electrode E, the pixel X for several rows (for example, 4 rows) of the camera 21 is used. Therefore, even if the contrast decreases in the pixels X at both ends of the plurality of columns, a signal with a clear contrast can be acquired in the pixels X in the center column. In this example, even if the contrast is reduced in the two columns of pixels X at both ends of the four columns, a signal having a clear contrast can be acquired in the pixels X in the center. For this reason, the edge part of the electrode E can be reliably recognized using the signal.
 以上の点を勘案すると、切断工程において、レーザ光Lによって帯状電極ZEを切断することで電極Eの端部を変色させるに際して、電極Eの端部の延在方向(切断線CLの延在方向)に交差する方向における当該端部の変色した領域RAの寸法を、100μm以上とすることができる。或いは、切断工程において、レーザ光Lによって帯状電極ZEを切断することで電極Eの端部を変色させるに際して、電極Eの端部の延在方向に交差する方向における当該端部の変色した領域RAの寸法を、カメラ21の3画素分の寸法以上とすることができる。 Considering the above points, in the cutting process, when the end of the electrode E is discolored by cutting the strip electrode ZE with the laser beam L, the extending direction of the end of the electrode E (the extending direction of the cutting line CL) ), The dimension of the discolored region RA at the end in the direction intersecting with () can be 100 μm or more. Alternatively, in the cutting step, when the end portion of the electrode E is discolored by cutting the strip electrode ZE with the laser beam L, the discolored region RA of the end portion in the direction intersecting with the extending direction of the end portion of the electrode E. Can be made to be equal to or larger than the size of three pixels of the camera 21.
 なお、以上の画像処理を、エッジを用いてアライメントした後の検査工程(例えば異物検査の工程等)に適用してもよいし、捲回電極のように長尺状に電極をスリットした後に幅を検査する工程に適用してもよい。 Note that the above image processing may be applied to an inspection process (for example, a foreign substance inspection process) after alignment using an edge, or a width after slitting an electrode in a long shape like a wound electrode. You may apply to the process of inspecting.
 本発明の一側面によれば、電極の端部の画像認識精度が向上する電極の製造方法、及び、電極を提供できる。 According to one aspect of the present invention, it is possible to provide an electrode manufacturing method and an electrode with improved image recognition accuracy at the end of the electrode.
 1…製造ライン、10…切断装置、11…レーザ光発振器、12…スキャナ、20…画像認識装置、21…カメラ、22…画像処理部、30,40,50…搬送装置、60,70…移載装置、61,71…ロボットアーム、62,72…吸着パッド。 DESCRIPTION OF SYMBOLS 1 ... Production line, 10 ... Cutting device, 11 ... Laser light oscillator, 12 ... Scanner, 20 ... Image recognition device, 21 ... Camera, 22 ... Image processing part, 30, 40, 50 ... Conveyance device, 60, 70 ... Transfer Loading device, 61, 71 ... robot arm, 62, 72 ... suction pad.

Claims (9)

  1.  金属箔に活物質層が形成された電極の製造方法であって、
     帯状の金属箔に活物質層が形成された帯状電極を電極毎にレーザ光によって切断する切断工程と、
     前記切断工程で切断された前記電極の端部を画像認識で検出する画像認識工程と、
     を含み、
     前記切断工程では、前記レーザ光によって前記帯状電極を切断することで前記電極の前記端部を変色させる、電極の製造方法。
    A method for producing an electrode in which an active material layer is formed on a metal foil,
    A cutting step of cutting a band-shaped electrode in which an active material layer is formed on a band-shaped metal foil with a laser beam for each electrode;
    An image recognition step of detecting an end of the electrode cut in the cutting step by image recognition;
    Including
    In the cutting step, the end portion of the electrode is discolored by cutting the strip electrode with the laser beam.
  2.  前記切断工程では、連続波のレーザ光によって前記帯状電極を切断する、請求項1に記載の電極の製造方法。 The electrode manufacturing method according to claim 1, wherein in the cutting step, the strip electrode is cut by a continuous wave laser beam.
  3.  前記帯状電極には、前記活物質層を覆う保護層が形成されている、請求項1又は請求項2に記載の電極の製造方法。 The method for producing an electrode according to claim 1, wherein a protective layer covering the active material layer is formed on the strip electrode.
  4.  前記端部の延在方向に交差する方向における前記端部の変色した領域の寸法は、100μm以上である、
     請求項1~3のいずれか一項に記載の電極の製造方法。
    The dimension of the discolored region of the end in a direction intersecting the extending direction of the end is 100 μm or more.
    The method for producing an electrode according to any one of claims 1 to 3.
  5.  前記画像認識工程では、カメラで撮像された画像に対する画像認識により前記端部を検出し、
     前記端部の延在方向に交差する方向における前記端部の変色した領域の寸法は、前記カメラの3画素分の寸法以上である、
     請求項1~4のいずれか一項に記載の電極の製造方法。
    In the image recognition step, the edge is detected by image recognition on an image captured by a camera,
    The size of the discolored region at the end in the direction intersecting the extending direction of the end is equal to or greater than the size of three pixels of the camera
    The method for producing an electrode according to any one of claims 1 to 4.
  6.  金属箔に活物質層が形成された電極の製造方法であって、
     帯状の金属箔に活物質層が形成された帯状電極を電極毎にレーザ光によって切断する切断工程を含み、
     前記切断工程では、前記レーザ光によって前記帯状電極を切断することで前記電極の端部を変色させ、
     前記端部の延在方向に交差する方向における前記端部の変色した領域の寸法は、100μm以上である、
     電極の製造方法。
    A method for producing an electrode in which an active material layer is formed on a metal foil,
    Including a cutting step of cutting a band-shaped electrode in which an active material layer is formed on a band-shaped metal foil with a laser beam for each electrode;
    In the cutting step, the end of the electrode is discolored by cutting the strip electrode by the laser beam,
    The dimension of the discolored region of the end in a direction intersecting the extending direction of the end is 100 μm or more.
    Electrode manufacturing method.
  7.  金属箔に活物質層が形成された電極であって、
     帯状の金属箔に活物質層が形成された帯状電極の切断により製造され、
     前記切断により形成される端部には、変色した領域が形成されており、
     前記端部の延在方向に交差する方向における前記端部の変色した領域の寸法は、100μm以上である、
     電極。
    An electrode in which an active material layer is formed on a metal foil,
    Manufactured by cutting a strip electrode in which an active material layer is formed on a strip metal foil,
    At the end portion formed by the cutting, a discolored region is formed,
    The dimension of the discolored region of the end in a direction intersecting the extending direction of the end is 100 μm or more.
    electrode.
  8.  レーザ光によって前記帯状電極を切断することにより製造される、
     請求項7に記載の電極。
    Manufactured by cutting the strip electrode with laser light,
    The electrode according to claim 7.
  9.  前記レーザ光は、連続波のレーザ光である、
     請求項8に記載の電極。
    The laser beam is a continuous wave laser beam,
    The electrode according to claim 8.
PCT/JP2016/068698 2015-06-24 2016-06-23 Electrode manufacturing method and electrode WO2016208679A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017524974A JP6819586B2 (en) 2015-06-24 2016-06-23 Electrode manufacturing method and electrodes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-126388 2015-06-24
JP2015126388 2015-06-24

Publications (1)

Publication Number Publication Date
WO2016208679A1 true WO2016208679A1 (en) 2016-12-29

Family

ID=57586704

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/068698 WO2016208679A1 (en) 2015-06-24 2016-06-23 Electrode manufacturing method and electrode

Country Status (2)

Country Link
JP (1) JP6819586B2 (en)
WO (1) WO2016208679A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018037308A (en) * 2016-08-31 2018-03-08 三洋電機株式会社 Secondary battery electrode and method of manufacturing the same, and secondary battery and method of manufacturing the same
JP2019086509A (en) * 2017-11-02 2019-06-06 株式会社豊田自動織機 Inspection device
JP2019117747A (en) * 2017-12-27 2019-07-18 株式会社豊田自動織機 Electrode manufacturing device, and electrode manufacturing method
JP2022093839A (en) * 2020-12-14 2022-06-24 プライムプラネットエナジー&ソリューションズ株式会社 Method for manufacturing positive electrode plate, method for manufacturing battery and positive electrode original fabric for laser cutting

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010034009A (en) * 2008-07-31 2010-02-12 Nec Tokin Corp Stacked secondary battery and method of manufacturing the same
JP2010225544A (en) * 2009-03-25 2010-10-07 Tdk Corp Electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2012221912A (en) * 2011-04-14 2012-11-12 Nissan Motor Co Ltd Electrode manufacturing method and electrode manufacturing device
JP2012227124A (en) * 2011-04-07 2012-11-15 Nissan Motor Co Ltd Position detection apparatus and position detection method
WO2014041588A1 (en) * 2012-09-14 2014-03-20 オー・エム・シー株式会社 Cutting method for electrode band for electronic component using laser beam and device for same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012101816A1 (en) * 2011-01-28 2012-08-02 トヨタ自動車株式会社 Secondary battery, and electrode sheet cutting apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010034009A (en) * 2008-07-31 2010-02-12 Nec Tokin Corp Stacked secondary battery and method of manufacturing the same
JP2010225544A (en) * 2009-03-25 2010-10-07 Tdk Corp Electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2012227124A (en) * 2011-04-07 2012-11-15 Nissan Motor Co Ltd Position detection apparatus and position detection method
JP2012221912A (en) * 2011-04-14 2012-11-12 Nissan Motor Co Ltd Electrode manufacturing method and electrode manufacturing device
WO2014041588A1 (en) * 2012-09-14 2014-03-20 オー・エム・シー株式会社 Cutting method for electrode band for electronic component using laser beam and device for same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018037308A (en) * 2016-08-31 2018-03-08 三洋電機株式会社 Secondary battery electrode and method of manufacturing the same, and secondary battery and method of manufacturing the same
WO2018043443A1 (en) * 2016-08-31 2018-03-08 三洋電機株式会社 Secondary battery electrode, method for manufacturing same, secondary battery, and method for manufacturing same
US11527744B2 (en) 2016-08-31 2022-12-13 Sanyo Electric Co., Ltd. Secondary-battery electrode and secondary-battery electrode manufacturing method, and secondary battery and method of manufacturing secondary battery
JP2019086509A (en) * 2017-11-02 2019-06-06 株式会社豊田自動織機 Inspection device
JP7119767B2 (en) 2017-11-02 2022-08-17 株式会社豊田自動織機 inspection equipment
JP2019117747A (en) * 2017-12-27 2019-07-18 株式会社豊田自動織機 Electrode manufacturing device, and electrode manufacturing method
JP7027879B2 (en) 2017-12-27 2022-03-02 株式会社豊田自動織機 Electrode manufacturing equipment and electrode manufacturing method
JP2022093839A (en) * 2020-12-14 2022-06-24 プライムプラネットエナジー&ソリューションズ株式会社 Method for manufacturing positive electrode plate, method for manufacturing battery and positive electrode original fabric for laser cutting
JP7262436B2 (en) 2020-12-14 2023-04-21 プライムプラネットエナジー&ソリューションズ株式会社 Positive electrode plate manufacturing method, battery manufacturing method, and positive electrode material for laser cutting

Also Published As

Publication number Publication date
JPWO2016208679A1 (en) 2018-05-24
JP6819586B2 (en) 2021-01-27

Similar Documents

Publication Publication Date Title
WO2016208679A1 (en) Electrode manufacturing method and electrode
JP6597787B2 (en) Electrode assembly and method for manufacturing electrode assembly
TWI660536B (en) Method for detecting the positional deviation of electrode plate in an electrode stacked body and device therefor
JP6806057B2 (en) Cutting device
JP6720516B2 (en) Electrode cutting device and electrode inspection method
KR102155029B1 (en) Welding method of electrode tap and cable-type secondary battery comprising electrode welded by the same
JP2017084691A (en) Method of manufacturing electrode sheet, and electrode sheet
JP6690486B2 (en) Electrode manufacturing equipment
JP6812971B2 (en) Manufacturing method of electrode assembly of lithium ion secondary battery
JP6481258B2 (en) Electric device separator bonding method, electric device separator bonding apparatus, and electric device
WO2012011361A1 (en) Electrochemical device
JP6897571B2 (en) Manufacturing method of power storage device and electrode unit
JP6519383B2 (en) Method and apparatus for manufacturing electrode sheet
CN107078269B (en) Method for manufacturing electrode for improving battery capacity and electrode manufactured thereby
JP2002042881A (en) Device and method for sticking tape
CN113646938A (en) Manufacturing device for laminated electrode body
JP2007265863A (en) Manufacturing method of film sheathed battery
US10601028B2 (en) Method for cutting an electrode of an electrochemical generator
CN113632277A (en) Device and method for manufacturing laminated electrode assembly
JP6717159B2 (en) Electrode manufacturing equipment
JP6295861B2 (en) Electrode body manufacturing method
WO2017169970A1 (en) Battery electrode production method and electrode production device
JP2013127989A (en) Film outer package battery
EP3091595B1 (en) Detection method and detection device
JP2015065178A (en) Method for manufacturing film exterior battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16814448

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017524974

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16814448

Country of ref document: EP

Kind code of ref document: A1