WO2016208552A1 - Platinum alloy target - Google Patents

Platinum alloy target Download PDF

Info

Publication number
WO2016208552A1
WO2016208552A1 PCT/JP2016/068326 JP2016068326W WO2016208552A1 WO 2016208552 A1 WO2016208552 A1 WO 2016208552A1 JP 2016068326 W JP2016068326 W JP 2016068326W WO 2016208552 A1 WO2016208552 A1 WO 2016208552A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy
silicide
pthf
powder
sputtering target
Prior art date
Application number
PCT/JP2016/068326
Other languages
French (fr)
Japanese (ja)
Inventor
政広 泰
恭伸 渡邉
豊和 江口
Original Assignee
田中貴金属工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 田中貴金属工業株式会社 filed Critical 田中貴金属工業株式会社
Publication of WO2016208552A1 publication Critical patent/WO2016208552A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/04Alloys based on a platinum group metal
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C28/00Alloys based on a metal not provided for in groups C22C5/00 - C22C27/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation

Definitions

  • the present invention relates to a sputtering target made of a PtHf alloy. Specifically, the present invention relates to a sputtering target made of a PtHf alloy, which is a novel alloy for forming a silicide film applied to a source / drain electrode of a MOSFET, and a manufacturing method thereof.
  • a layer made of a compound of a metal and a semiconductor is formed on a semiconductor substrate, and the metal is generally joined thereto.
  • a metal film is deposited on a source / drain region on a Si substrate, and heat treatment is performed to form a diffusion layer made of the metal Si compound (silicide).
  • silicide titanium silicide (C54 TiSi 2 ) and cobalt silicide (CoSi 2 ) have been generally known.
  • these silicides are disilicides in which two Si atoms are bonded to one metal atom, and are silicides that consume a relatively large amount of Si.
  • semiconductor devices such as MOSFETs
  • it has been studied to make the junction depth in the source / drain region extremely shallow. In order to meet this demand, it is considered to be effective to use silicide with a small amount of Si consumption during silicidation.
  • Nickel silicide is a monosilicide that consumes a small amount of Si during its formation and has the advantage of low specific resistance, and is therefore most expected as a suitable silicide.
  • the metal thin film for forming silicide such as NiSi is usually manufactured by sputtering.
  • Various sputtering targets are also disclosed regarding the formation of NiSi.
  • NiSi which is currently most useful as a silicide, is not without any problems. That is, NiSi has inferior heat resistance, and there is a problem that it is easily transferred to NiSi 2 which is a more stable phase at high temperatures.
  • the phase transition to NiSi 2 has problems that the Si consumption increases and that the resistance of the silicide region is increased and the interface roughness is deteriorated. Therefore, it is necessary to severely manage the heat treatment conditions during silicidation, which affects the production efficiency.
  • the present invention has been made based on the above background, and it is an object of the present invention to clarify the structure of silicide capable of exhibiting characteristics corresponding to NiSi and to provide a sputtering target for forming such silicide.
  • the present inventors examined the development of a silicide based on platinum silicide (PtSi) as a silicide that has excellent heat resistance without phase transition even at high temperatures and can replace conventional NiSi.
  • PtSi is monosilicide similar to NiSi and consumes less Si.
  • PtNi has the advantage that it has excellent heat resistance due to the high heat resistance of Pt, and the phase structure does not change even at high temperatures.
  • the silicide preferably has a work function close to that of Si (n-Si or p-Si) constituting the substrate and a small barrier height. Therefore, it is preferable to have a work function near midgap with respect to Si.
  • the work function of Si is 4.05 eV for n-Si and 5.12 eV for p-Si.
  • the silicide (PtSi) is considered to have a high barrier height against n-Si.
  • hafnium hafnium
  • Si silicon having high heat resistance and having a midgap work function with respect to Si (n, p).
  • Hf hafnium
  • a sputtering target made of a PtHf alloy was developed as a precursor material for forming a silicide made of this Hf-added PtSi.
  • the present invention is a platinum alloy sputtering target made of a PtHf alloy
  • the PtHf alloy is a platinum alloy sputtering target having an Hf content of 10% by mass to 90% by mass.
  • the present invention is a sputtering target composed of a PtHf alloy, and the Hf content in the composition range is 10 mass% or more and 90 mass% or less.
  • Hf has the effect
  • the work function of Hf is 3.9 eV, the work function is lowered by using Hf added to PtSi and can be adjusted to a suitable range.
  • the Hf content of the PtHf alloy constituting the target is 10% by mass or more and 90% by mass or less.
  • the Hf content can be freely set in consideration of the silicide formation process performed after the thin film is formed. For example, in the case where an n-Si region and a p-Si region are formed on a substrate, respectively, in a process in which silicide can be separately formed on the substrate, the Hf content is adjusted to be suitable for each.
  • Targets can be prepared and used individually.
  • silicide is simultaneously formed in both the n-Si region and the p-Si region, one target whose Hf content is adjusted so as to have a work function (preferably around 4.7 eV) serving as a midgap thereof. Can be used.
  • the PtHf alloy sputtering target according to the present invention preferably has a zirconium content of 2.0% by mass or less.
  • Zr is an element that easily forms an oxide, and may cause an oxide to form in the formed thin film. Therefore, Zr is an element to be regulated.
  • Zr is an element that belongs to the same group as Hf (group 4 element), and may be an element that is difficult to remove. Therefore, Zr is an element that should be regulated at the target stage before the thin film is formed.
  • the PtHf alloy sputtering target according to the present invention is preferably such that the total concentration of gas components is 1.0 mass% or less. This is for suppressing gas generation during sputtering and preventing contamination of the thin film.
  • the gas component specifically indicates various elements of oxygen, nitrogen, and carbon. And it is preferable that especially oxygen content shall be 1.0 mass% or less.
  • An example of the production of a sputtering target made of the PtHf alloy of the present invention is a powder metallurgy method.
  • a powder metallurgy method Depending on the composition of the PtHf alloy, solidification cracking or cracking due to the formation of intermetallic compounds may occur during melt casting. If a large-diameter target is to be manufactured, the powder sintering method is preferably applied.
  • a target can be efficiently produced using Pt fine powder, Hf fine powder, or PtHf alloy fine powder without fear of the occurrence of cracks.
  • the fine powder used as a raw material in the powder metallurgy method the fine powder of the PtHf alloy having the composition and purity described above can be applied. Moreover, you may use the metal fine powder which mixed Pt fine powder and Hf fine powder so that it might become the said composition.
  • the average particle size of the powder is preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less.
  • the particle size of the fine powder is preferably miniaturized.
  • the particle size difference is smaller in the mixed fine powder. This is because if the particle size difference is large, uniform sintering becomes difficult.
  • Pt fine powder and Hf fine powder As a method for producing Pt fine powder and Hf fine powder, general powder production methods such as chemical methods such as atomizing method, melt spinning method, rotating electrode method, and precipitation method can be applied. It is also possible to obtain a fine powder by mechanically pulverizing an ingot of Pt and Hf with a ball mill or the like.
  • Various atomization methods using gas, water, centrifugal force, and plasma can be applied to the production of fine powder by the atomization method.
  • gas atomization, centrifugal atomization, or the like that does not use water as a medium is preferable.
  • gas atomization the thing by inert gas, such as argon and nitrogen, is preferable.
  • PtHf alloy powder can also be manufactured by alloying (mechanical alloying) with a high energy stirring apparatus such as an attritor using Pt fine powder and Hf fine powder.
  • the PtHf alloy fine powder having a predetermined composition or a mixed powder of Pt fine powder and Hf fine powder becomes a sintered body through a heating process for sintering.
  • the heating temperature for the sintering is preferably 1200 ° C. or higher and 1600 ° C. or lower.
  • it is preferable to perform sintering on pressurization conditions and it is preferable to perform pressurization of 50 MPa or more and 250 MPa or less.
  • a hot pressing method, a hot isostatic pressing method (HIP method), a discharge plasma sintering method (SPS method) or the like is preferable.
  • a sintered body obtained by such powder sintering has a density close to that of a bulk body and becomes a sputtering target made of a PtHf alloy having an appropriate composition (Hf content).
  • the manufacturing method of the sputtering target according to the present invention is not limited to the above powder sintering method, and a melt casting method can also be applied.
  • a melt casting method As a condition for applying the melt casting method, an ingot (bar-shaped or granular) alloyed in advance is used as an alloy raw material, and is melted while forming a melted part as wide as possible adjacent to an arc melting apparatus water-cooled copper mold. Furthermore, it is preferable to apply an alloy ingot as a raw material as fine as possible. According to such a measure, a target having a suitable configuration can be manufactured even with a PtHf alloy that easily cracks at a high melting point.
  • the melt casting method is a process capable of producing a complete bulk body having a density of 100%, which cannot be achieved by powder metallurgy, and a high-quality target can be produced by its suitable operation.
  • the present invention is a sputtering target made of a PtHf alloy in which Hf is alloyed with Pt, and is for forming a PtHf alloy thin film.
  • a silicide having a suitable work function is formed when the alloy thin film is silicided.
  • the Hf-added PtSi silicide (Pt x Hf y Si) formed according to the present invention retains the heat resistance of PtSi, and suppresses an increase in resistance and roughness deterioration during the silicidation heat treatment.
  • a sputtering target was manufactured by a powder metallurgy method using a fine powder of a PtHf alloy as a raw material. Then, PtHf alloy thin film formation and silicidation were performed, and the characteristics of the generated silicide were evaluated.
  • the PtHf alloy powder was made by melting and alloying high-purity Pt and Hf ingots by arc melting to produce a button-shaped ingot, which was mechanically pulverized into a powder.
  • a PtHf alloy having an Hf content of 26.8% by mass was manufactured and pulverized.
  • Two types of alloys, a PtHf alloy powder having a particle size of 50 to 100 ⁇ m (average 70 ⁇ m) and a PtHf alloy powder having a particle size of 50 ⁇ m or less (average 5 ⁇ m), are pulverized by a ball mill equipped with zirconia balls as a pulverization medium. A powder was produced.
  • the produced PtHf alloy was sintered to produce a sputtering target.
  • the PtHf alloy powder was sintered with a HIP apparatus under the conditions of 1000 kgf / cm 2 , 1500 ° C., and 1 hour.
  • the manufactured target had a diameter of 76.2 mm and a thickness of 2.0 mm.
  • the PtHf alloy sputtering target manufactured in this embodiment has few impurities. However, the content of Zr was higher than that of other metal elements. This is considered to be because zirconia was used as a grinding medium in the grinding during the production of the alloy powder. Moreover, the target manufactured in this embodiment has few gas components. During casting of the PtHf alloy, each metal is melted, and it is considered that the gas component was removed at this time.
  • the target manufactured from the alloy powder having a particle size of 50 ⁇ m or less had a density ratio of almost 100% with respect to the bulk material of the alloy.
  • targets manufactured from 50-100 ⁇ m (average 70 ⁇ m) alloy powder had a density ratio of about 86%. Therefore, it was confirmed that a dense target can be obtained by using as fine a fine powder as possible.
  • Second Embodiment In this embodiment, a sputtering target was manufactured by a melt casting method.
  • a plurality of button-shaped PtHf alloy ingots were manufactured by melting and alloying high purity Pt and Hf ingots by arc melting.
  • a PtHf alloy ingot having an Hf content of 37.4% by mass was manufactured. And this was made to adjoin on the water-cooled copper mold of an arc melting apparatus, and it welded by arc melting, and manufactured the disk-shaped ingot.
  • the manufactured disk-shaped PtHf alloy was processed by surface grinding and wire electric discharge machining.
  • the manufactured target had a diameter of 76.2 mm and a thickness of 7.0 mm.
  • FIG. 1 shows a device manufacturing process in this embodiment.
  • FIG. 1A after cleaning the Si substrate (n-Si (100)) (FIG. 1A), wet oxidation is performed to form a SiO 2 layer, and etching is performed to perform patterning (FIG. 1B). ). And a PtHf alloy thin film is formed in the inside (FIG.1 (c)).
  • the substrate surface was cleaned by preliminary sputtering (output 100 W, 5 minutes). Thereafter, a PtHf alloy thin film was sputtered using the target of the first embodiment. The conditions at this time were room temperature and an output of 40 W, and an alloy thin film was formed to 20 nm.
  • Ar is used as the gas ion in sputtering (the pressure in the apparatus is 0.7 Pa).
  • silicidation was performed by heat treatment.
  • the silicidation conditions were set at three processing temperatures of 450 ° C., 500 ° C., and 600 ° C.
  • the treatment atmosphere was nitrogen gas, and the treatment time was 5 minutes.
  • Comparative Example As a comparative example for this embodiment, a Pt thin film was formed instead of PtHf, and this was silicided to manufacture a device.
  • the silicidation procedure and conditions are basically the same as in the first embodiment, and a platinum target (purity of about 100%) was used as the target.
  • the electrical characteristics of the semiconductor device manufactured as described above were evaluated.
  • the evaluation test was performed by measuring current density-voltage characteristics (JV characteristics) with a semiconductor parameter analyzer.
  • FIG. 2 shows the JV characteristics of the device (PtHf silicide alloy film) manufactured in this embodiment. From this result, the device manufactured in this embodiment showed a linear increase in current density with respect to both forward and reverse voltage application.
  • the substrate is n-Si and the behavior at a negative potential is particularly important, but it can be said that the present embodiment exhibits good characteristics.
  • the JV characteristics (FIG. 3) in the comparative example did not show an increase in current density when a negative potential was applied.
  • the silicide alloy film (PtHf silicide) according to the present embodiment has a low Schottky barrier height because the work function is appropriately adjusted.
  • the device behavior was suitable at any temperature.
  • the current density was particularly high when treated at 450 ° C.
  • a PtSi-based silicide excellent in heat resistance can be manufactured through the PtHf alloy thin film.
  • This silicide has a work function suitable for Si (n-Si, p-Si) by alloying with Hf.
  • the present invention is suitable for silicide formation in the source / drain regions of Si-based semiconductor elements such as MOSFETs.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Physical Vapour Deposition (AREA)
  • Powder Metallurgy (AREA)

Abstract

The present invention is a platinum alloy sputtering target which is constituted of a Pt-Hf alloy, the Pt-Hf alloy having an Hf content of 10-90 mass%. In the present invention, electrical properties were improved by adding Hf from the standpoint of work function while directing attention to Pt as a metal which forms a high-heat-resistant silicide. The present invention makes it possible to efficiently produce a thin Pt-Hf film. This thin Pt-Hf film can be made to exhibit properties equivalent to those of NiSi by silicidation.

Description

白金合金ターゲットPlatinum alloy target
 本発明は、PtHf合金からなるスパッタリングターゲットに関する。詳しくは、MOSFETのソース/ドレイン電極等に適用されるシリサイド膜を形成するための新規な合金である、PtHf合金からなるスパッタリングターゲット及びその製造方法に関する。 The present invention relates to a sputtering target made of a PtHf alloy. Specifically, the present invention relates to a sputtering target made of a PtHf alloy, which is a novel alloy for forming a silicide film applied to a source / drain electrode of a MOSFET, and a manufacturing method thereof.
 半導体集積回路において金属/半導体接合を形成するため、半導体基板に金属と半導体との化合物からなる層を形成し、ここに金属を接合することが一般に行われている。例えば、MOSFET等のSi系半導体素子においては、Si基板上のソース/ドレイン領域に金属膜を蒸着し、熱処理をすることで前記金属のSi化合物(シリサイド)からなる拡散層を形成する。 In order to form a metal / semiconductor junction in a semiconductor integrated circuit, a layer made of a compound of a metal and a semiconductor is formed on a semiconductor substrate, and the metal is generally joined thereto. For example, in a Si-based semiconductor element such as a MOSFET, a metal film is deposited on a source / drain region on a Si substrate, and heat treatment is performed to form a diffusion layer made of the metal Si compound (silicide).
 このシリサイドとしては、かつてはチタンシリサイド(C54 TiSi)やコバルトシリサイド(CoSi)が一般に知られていた。しかし、これらのシリサイドは、1の金属原子に対して2つのSi原子が結合するダイシリサイドであり、Si消費量が比較的多いシリサイドである。近年、MOSFET等の半導体素子においては、更なる微細化、薄型化に対応するため、ソース/ドレイン領域における接合深さの極浅化が検討されている。この要求に対応するため、シリサイド化の際のSi消費量の少ないシリサイドの適用が有力とされている。 As this silicide, titanium silicide (C54 TiSi 2 ) and cobalt silicide (CoSi 2 ) have been generally known. However, these silicides are disilicides in which two Si atoms are bonded to one metal atom, and are silicides that consume a relatively large amount of Si. In recent years, in semiconductor devices such as MOSFETs, in order to cope with further miniaturization and thinning, it has been studied to make the junction depth in the source / drain region extremely shallow. In order to meet this demand, it is considered to be effective to use silicide with a small amount of Si consumption during silicidation.
 ニッケルシリサイド(NiSi)は、その形成時のSi消費量が少ないモノシリサイドであり、比抵抗が低いという利点があることから、好適なシリサイドとして最も期待されている。ここで、NiSi等のシリサイド形成のための金属薄膜は、スパッタリングによって製造されるのが通常である。NiSiの形成に関しても、各種のスパッタリングターゲットが開示されている。 Nickel silicide (NiSi) is a monosilicide that consumes a small amount of Si during its formation and has the advantage of low specific resistance, and is therefore most expected as a suitable silicide. Here, the metal thin film for forming silicide such as NiSi is usually manufactured by sputtering. Various sputtering targets are also disclosed regarding the formation of NiSi.
特許第4409572号明細書Japanese Patent No. 4409572
 上記の通り、シリサイドとして現在最も有用性が認められているNiSiであるが、問題が全く無いわけではない。即ち、NiSiは耐熱性に劣る面があり、高温域でより安定な相であるNiSiへ転移し易いという問題がある。NiSiへの相転移はSi消費量が増大することに加え、シリサイド領域の高抵抗化や界面ラフネスを悪化させるという問題がある。そのためシリサイド化の際の熱処理条件をシビアに管理する必要があり、製造効率に影響を及ぼす。 As described above, NiSi, which is currently most useful as a silicide, is not without any problems. That is, NiSi has inferior heat resistance, and there is a problem that it is easily transferred to NiSi 2 which is a more stable phase at high temperatures. The phase transition to NiSi 2 has problems that the Si consumption increases and that the resistance of the silicide region is increased and the interface roughness is deteriorated. Therefore, it is necessary to severely manage the heat treatment conditions during silicidation, which affects the production efficiency.
 本発明は、上記背景の元になされたものであり、NiSiに相当する特性を発揮し得るシリサイドの構成を明らかにし、かかるシリサイドを形成するためのスパッタリングターゲットを提供することを目的とする。 The present invention has been made based on the above background, and it is an object of the present invention to clarify the structure of silicide capable of exhibiting characteristics corresponding to NiSi and to provide a sputtering target for forming such silicide.
 本発明者等は、高温でも相転移のない耐熱性に優れたシリサイドであって、従来のNiSiに替わり得るものとして、白金シリサイド(PtSi)をベースとしたシリサイドの開発を検討した。PtSiは、NiSiと同様のモノシリサイドでありSi消費量が少ない。そして、PtNiは、Ptの高耐熱性に起因して耐熱性に優れ高温下でも相構造に変化が生じないという利点がある。 The present inventors examined the development of a silicide based on platinum silicide (PtSi) as a silicide that has excellent heat resistance without phase transition even at high temperatures and can replace conventional NiSi. PtSi is monosilicide similar to NiSi and consumes less Si. PtNi has the advantage that it has excellent heat resistance due to the high heat resistance of Pt, and the phase structure does not change even at high temperatures.
 もっとも、PtSiもそのままシリサイド電極として使用することは好適ではない。シリサイドは、寄生抵抗を抑制するために、基板を構成するSi(n-Si又はp-Si)に対して仕事関数が近く障壁高さが小さいものが好ましい。従って、Siに対してmidgap付近の仕事関数を有することが好ましい。ここで、Siの仕事関数は、n-Siで4.05eVでありp-Siで5.12eVである。一方、Ptの仕事関数は5.65eVであるのでそのシリサイド(PtSi)はn-Siに対する障壁高さが高いと考えられる。 However, it is not preferable to use PtSi as a silicide electrode as it is. In order to suppress parasitic resistance, the silicide preferably has a work function close to that of Si (n-Si or p-Si) constituting the substrate and a small barrier height. Therefore, it is preferable to have a work function near midgap with respect to Si. Here, the work function of Si is 4.05 eV for n-Si and 5.12 eV for p-Si. On the other hand, since the work function of Pt is 5.65 eV, the silicide (PtSi) is considered to have a high barrier height against n-Si.
 そこで本発明者等は鋭意検討を行い、耐熱性の高いPtSiをベースとし、Si(n,p)に対してmidgapの仕事関数を有し得るシリサイドを製造する手法として、ハフニウム(Hf)を添加することに想到した。そして、このHf添加PtSiからなるシリサイドを形成するための前駆材料として、PtHf合金からなるスパッタリングターゲットを開発した。 Therefore, the present inventors have intensively studied and added hafnium (Hf) as a technique for producing silicide based on PtSi having high heat resistance and having a midgap work function with respect to Si (n, p). I came up with the idea. Then, a sputtering target made of a PtHf alloy was developed as a precursor material for forming a silicide made of this Hf-added PtSi.
 即ち、本発明は、PtHf合金からなる白金合金スパッタリングターゲットであって、前記PtHf合金は、Hf含有量が10質量%以上90質量%以下である白金合金スパッタリングターゲットである。 That is, the present invention is a platinum alloy sputtering target made of a PtHf alloy, and the PtHf alloy is a platinum alloy sputtering target having an Hf content of 10% by mass to 90% by mass.
 上記の通り、本発明は、PtHf合金で構成されたスパッタリングターゲットであり、その組成範囲としてHfの含有量を10質量%以上90質量%以下とする。 As described above, the present invention is a sputtering target composed of a PtHf alloy, and the Hf content in the composition range is 10 mass% or more and 90 mass% or less.
 Ptは、形成されるシリサイドの構成元素として重要なものであり、上記の通り耐熱性に優れたシリサイドを形成する。そして、Hfは、形成されるシリサイドの仕事関数をSiに対してmidgap付近に調整する作用を有する。ここで、Hfの仕事関数は、3.9eVであることから、PtSiにHfを添加するシリサイドにすることでその仕事関数が低下し、好適な範囲に調整することができる。 Pt is important as a constituent element of the formed silicide, and forms silicide having excellent heat resistance as described above. And Hf has the effect | action which adjusts the work function of the silicide formed in the midgap vicinity with respect to Si. Here, since the work function of Hf is 3.9 eV, the work function is lowered by using Hf added to PtSi and can be adjusted to a suitable range.
 ターゲットを構成するPtHf合金のHfの含有量は、10質量%以上90質量%以下とする。このHfの含有量は、薄膜形成後に行うシリサイド形成のプロセスを考慮して自由に設定できる。例えば、基板上にn-Siの領域とp-Siの領域がそれぞれ形成されている場合において、それらに別々にシリサイドを形成できるプロセスでは、それぞれにとって好適となるようにHf含有量が調整されたターゲットを個別に用意して使用することができる。また、n-Si領域とp-Si領域の双方に同時にシリサイドを形成する場合、それらのmidgapとなる仕事関数(4.7eV前後が好ましい)となるようにHf含有量が調整された一つのターゲットを使用することができる。 The Hf content of the PtHf alloy constituting the target is 10% by mass or more and 90% by mass or less. The Hf content can be freely set in consideration of the silicide formation process performed after the thin film is formed. For example, in the case where an n-Si region and a p-Si region are formed on a substrate, respectively, in a process in which silicide can be separately formed on the substrate, the Hf content is adjusted to be suitable for each. Targets can be prepared and used individually. In addition, when silicide is simultaneously formed in both the n-Si region and the p-Si region, one target whose Hf content is adjusted so as to have a work function (preferably around 4.7 eV) serving as a midgap thereof. Can be used.
 ここで、本発明に係るPtHf合金スパッタリングターゲットは、ジルコニウム含有量が2.0質量%以下であるものが好ましい。Zrは酸化物を形成しやすい元素であり、形成された薄膜中に酸化物を生じさせるおそれがある。そのため、Zrは規制されるべき元素である。また、Zrは、Hfと同族元素(第4族元素)であり、除去し難い元素であることもあるので、薄膜形成前のターゲットの段階で規制されるべき元素である。 Here, the PtHf alloy sputtering target according to the present invention preferably has a zirconium content of 2.0% by mass or less. Zr is an element that easily forms an oxide, and may cause an oxide to form in the formed thin film. Therefore, Zr is an element to be regulated. Zr is an element that belongs to the same group as Hf (group 4 element), and may be an element that is difficult to remove. Therefore, Zr is an element that should be regulated at the target stage before the thin film is formed.
 また、本発明に係るPtHf合金スパッタリングターゲットは、ガス成分の合計濃度が1.0質量%以下であるものが好ましい。スパッタリングの際のガス発生を抑制し、薄膜の汚染を防止するためである。ここで、ガス成分とは、具体的には、酸素、窒素、炭素の各種元素を示す。そして、特に、酸素含有量が1.0質量%以下とすることが好ましい。 In addition, the PtHf alloy sputtering target according to the present invention is preferably such that the total concentration of gas components is 1.0 mass% or less. This is for suppressing gas generation during sputtering and preventing contamination of the thin film. Here, the gas component specifically indicates various elements of oxygen, nitrogen, and carbon. And it is preferable that especially oxygen content shall be 1.0 mass% or less.
 次に、本発明に係るスパッタリングターゲットの製造方法について説明する。本発明のPtHf合金からなるスパッタリングターゲット製造の一態様としては、粉末冶金法が挙げられる。PtHf合金はその組成にもよるが、溶解鋳造の際、凝固割れや金属間化合物生成による割れが生じる場合がある。大径のターゲットを製造しようとするならば、粉末焼結法の適用が好ましい。粉末冶金法は、Pt微粉末、Hf微粉末、若しくは、PtHf合金の微粉末を利用して、前記した割れ発生の懸念なく効率的にターゲットを製造することができる。 Next, a method for manufacturing a sputtering target according to the present invention will be described. An example of the production of a sputtering target made of the PtHf alloy of the present invention is a powder metallurgy method. Depending on the composition of the PtHf alloy, solidification cracking or cracking due to the formation of intermetallic compounds may occur during melt casting. If a large-diameter target is to be manufactured, the powder sintering method is preferably applied. In the powder metallurgy method, a target can be efficiently produced using Pt fine powder, Hf fine powder, or PtHf alloy fine powder without fear of the occurrence of cracks.
 粉末冶金法において原料となる金属微粉末としては、上記した組成・純度のPtHf合金の微粉末が適用できる。また、Pt微粉末、Hf微粉末を上記組成となるように混合した金属微粉末を使用しても良い。 As the metal fine powder used as a raw material in the powder metallurgy method, the fine powder of the PtHf alloy having the composition and purity described above can be applied. Moreover, you may use the metal fine powder which mixed Pt fine powder and Hf fine powder so that it might become the said composition.
 PtHf合金微粉末、混合金属微粉末のいずれを使用する場合においても、粉末の平均粒径は100μm以下のものが好ましく、50μm以下のものがより好ましい。粗大な粉末を使用した場合、緻密なターゲットを製造し難い。微粉末の粒径は、微細化されてあることが好ましい。更に、混合微粉末において粒径差が小さい方が好ましい。粒径差が大きいと均一な焼結ができにくくなるためである。 When using either PtHf alloy fine powder or mixed metal fine powder, the average particle size of the powder is preferably 100 μm or less, more preferably 50 μm or less. When coarse powder is used, it is difficult to produce a dense target. The particle size of the fine powder is preferably miniaturized. Furthermore, it is preferable that the particle size difference is smaller in the mixed fine powder. This is because if the particle size difference is large, uniform sintering becomes difficult.
 Pt微粉末、Hf微粉末の製造方法としては、アトマイズ法、メルトスピニング法、回転電極法、沈殿法等の化学的方法等の一般的な粉末製造法が適用できる。また、Pt、Hfのインゴットをボールミル等で機械的に粉砕して微粉末を得ることも可能である。アトマイズ法による微粉末製造は、ガス、水、遠心力、プラズマを適用する各種アトマイズ法が適用できる。好ましくは、媒体に水を使用しないガスアトマイズ、遠心アトマイズ等が好ましい。ガスアトマイズについては、アルゴン、窒素等の不活性ガスによるものが好ましい。 As a method for producing Pt fine powder and Hf fine powder, general powder production methods such as chemical methods such as atomizing method, melt spinning method, rotating electrode method, and precipitation method can be applied. It is also possible to obtain a fine powder by mechanically pulverizing an ingot of Pt and Hf with a ball mill or the like. Various atomization methods using gas, water, centrifugal force, and plasma can be applied to the production of fine powder by the atomization method. Preferably, gas atomization, centrifugal atomization, or the like that does not use water as a medium is preferable. About gas atomization, the thing by inert gas, such as argon and nitrogen, is preferable.
 PtHf合金微粉末の製造方法も上記したPt微粉末、Hf微粉末の製造方法と同様の粉体製造プロセスが適用できる。また、Pt微粉末とHf微粉末を使用してアトライタ等の高エネルギー攪拌装置による合金化(メカニカルアロイング)でPtHf合金粉末を製造することもできる。 A powder production process similar to the above-described production method of Pt fine powder and Hf fine powder can be applied to the production method of PtHf alloy fine powder. Moreover, PtHf alloy powder can also be manufactured by alloying (mechanical alloying) with a high energy stirring apparatus such as an attritor using Pt fine powder and Hf fine powder.
 所定組成のPtHf合金微粉末又はPt微粉末とHf微粉末との混合粉末は、焼結のための加熱工程を経て焼結体となる。この焼結のための加熱温度は、1200℃以上1600℃以下とするのが好ましい。また、焼結は加圧条件で行うことが好ましく、50MPa以上250MPa以下の加圧を行うことが好ましい。具体的な焼結プロセスとしては、ホットプレス法、熱間等方圧プレス法(HIP法)、放電プラズマ焼結法(SPS法)等によるものが好ましい。 The PtHf alloy fine powder having a predetermined composition or a mixed powder of Pt fine powder and Hf fine powder becomes a sintered body through a heating process for sintering. The heating temperature for the sintering is preferably 1200 ° C. or higher and 1600 ° C. or lower. Moreover, it is preferable to perform sintering on pressurization conditions, and it is preferable to perform pressurization of 50 MPa or more and 250 MPa or less. As a specific sintering process, a hot pressing method, a hot isostatic pressing method (HIP method), a discharge plasma sintering method (SPS method) or the like is preferable.
 このような粉末焼結で得られる焼結体は、バルク体に近い密度を有し、適切な組成(Hf含有量)のPtHf合金からなるスパッタリングターゲットとなる。 A sintered body obtained by such powder sintering has a density close to that of a bulk body and becomes a sputtering target made of a PtHf alloy having an appropriate composition (Hf content).
 また、本発明に係るスパッタリングターゲットの製造方法は、上記の粉末焼結法に限定されるものではなく、溶解鋳造法も適用できる。溶解鋳造法適用の条件としては、予め、合金したインゴット(棒状、若しくは粒状)を合金原材料として、アーク溶解装置水冷銅鋳型上に隣接し、出来る限り広範囲で溶融部を形成しながら溶解する。更には、この原材料となる合金インゴットは、できる限り細かいものを適用するのが好ましい。このような対応によれば、高融点で割れが生じやすいPtHf合金であっても、好適な構成のターゲットを製造することができる。溶解鋳造法は粉末冶金法では達成できない密度100%の完全なバルク体を製造することができるプロセスであり、その好適な運用により高品質なターゲットを製造することができる。 Further, the manufacturing method of the sputtering target according to the present invention is not limited to the above powder sintering method, and a melt casting method can also be applied. As a condition for applying the melt casting method, an ingot (bar-shaped or granular) alloyed in advance is used as an alloy raw material, and is melted while forming a melted part as wide as possible adjacent to an arc melting apparatus water-cooled copper mold. Furthermore, it is preferable to apply an alloy ingot as a raw material as fine as possible. According to such a measure, a target having a suitable configuration can be manufactured even with a PtHf alloy that easily cracks at a high melting point. The melt casting method is a process capable of producing a complete bulk body having a density of 100%, which cannot be achieved by powder metallurgy, and a high-quality target can be produced by its suitable operation.
 本発明はPtにHfを合金化したPtHf合金からなるスパッタリングターゲットであり、PtHf合金薄膜を形成するためのものである。Hfの合金化により、合金薄膜をシリサイド化したとき好適な仕事関数のシリサイドが形成される。本発明により形成されるHf添加PtSiシリサイド(PtHfSi)は、PtSiが有する耐熱性を保持しており、シリサイド化の熱処理の際に抵抗上昇やラフネス悪化も抑制されている。 The present invention is a sputtering target made of a PtHf alloy in which Hf is alloyed with Pt, and is for forming a PtHf alloy thin film. By alloying Hf, a silicide having a suitable work function is formed when the alloy thin film is silicided. The Hf-added PtSi silicide (Pt x Hf y Si) formed according to the present invention retains the heat resistance of PtSi, and suppresses an increase in resistance and roughness deterioration during the silicidation heat treatment.
本実施形態に係るPtHfターゲットを用いたデバイス製造工程を説明する図。The figure explaining the device manufacturing process using the PtHf target concerning this embodiment. 本実施形態で製造したデバイスのJ-V特性を示す図。The figure which shows the JV characteristic of the device manufactured by this embodiment. 比較例で製造したデバイスのJ-V特性を示す図。The figure which shows the JV characteristic of the device manufactured by the comparative example.
 以下、本発明の実施形態について説明する。 Hereinafter, embodiments of the present invention will be described.
第1実施形態:本実施形態では、PtHf合金の微粉末を原料とし、粉末冶金法によりスパッタリングターゲットを製造した。そして、PtHf合金薄膜形成及びシリサイド化を行い、生成するシリサイドの特性を評価した。 First Embodiment : In this embodiment, a sputtering target was manufactured by a powder metallurgy method using a fine powder of a PtHf alloy as a raw material. Then, PtHf alloy thin film formation and silicidation were performed, and the characteristics of the generated silicide were evaluated.
 PtHf合金粉末は、高純度のPt及びHfの地金をアーク溶解で溶融・合金化しボタン状のインゴットを製造し、これを機械粉砕して粉末とした。本実施形態では、Hf含有量26.8質量%のPtHf合金を製造しこれを微粉末化した。粉砕媒体としてジルコニアボールを備えるボールミルで粉砕を行い、篩で分級し、粒径50~100μm(平均70μm)のPtHf合金粉末と、粒径50μm以下(平均5μm)のPtHf合金粉末の2種類の合金粉末を製造した。 The PtHf alloy powder was made by melting and alloying high-purity Pt and Hf ingots by arc melting to produce a button-shaped ingot, which was mechanically pulverized into a powder. In this embodiment, a PtHf alloy having an Hf content of 26.8% by mass was manufactured and pulverized. Two types of alloys, a PtHf alloy powder having a particle size of 50 to 100 μm (average 70 μm) and a PtHf alloy powder having a particle size of 50 μm or less (average 5 μm), are pulverized by a ball mill equipped with zirconia balls as a pulverization medium. A powder was produced.
 次に、製造したPtHf合金を焼結してスパッタリングターゲットを製造した。PtHf合金粉末をHIP装置にて、1000kgf/cm、1500℃、1時間の条件で焼結した。製造されたターゲットの寸法は、直径76.2mm、厚さ2.0mmであった。 Next, the produced PtHf alloy was sintered to produce a sputtering target. The PtHf alloy powder was sintered with a HIP apparatus under the conditions of 1000 kgf / cm 2 , 1500 ° C., and 1 hour. The manufactured target had a diameter of 76.2 mm and a thickness of 2.0 mm.
 製造したターゲットについて、不純物元素の分析及び密度測定を行った。元素分析はICP分析と、ガス成分をON分析、CS分析を行った。表1に、分析結果を示す。 For the manufactured target, impurity element analysis and density measurement were performed. For elemental analysis, ICP analysis, gas component ON analysis, and CS analysis were performed. Table 1 shows the analysis results.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 本実施形態で製造したPtHf合金スパッタリングターゲットは、不純物が少ないことが分かる。もっとも、Zrの含有量が他の金属元素よりも多かった。これは合金粉末製造の際の粉砕で粉砕媒体としてジルコニアを使用したためと考えられる。また、本実施形態で製造したターゲットは、ガス成分は少ない。PtHf合金の鋳造の際、各金属を溶融することになるが、この際にガス成分が除去されたものと考えられる。 It can be seen that the PtHf alloy sputtering target manufactured in this embodiment has few impurities. However, the content of Zr was higher than that of other metal elements. This is considered to be because zirconia was used as a grinding medium in the grinding during the production of the alloy powder. Moreover, the target manufactured in this embodiment has few gas components. During casting of the PtHf alloy, each metal is melted, and it is considered that the gas component was removed at this time.
 また、密度に関して、50μm以下(平均5μm)の粒径の合金粉末から製造したターゲットは、合金のバルク材に対してほぼ100%の密度比であった。これに対して、50~100μm(平均70μm)の合金粉末から製造したターゲットは、約86%の密度比であった。よって、できるだけ微細な微粉末を使用することで緻密なターゲットを得ることができることが確認された。 Moreover, regarding the density, the target manufactured from the alloy powder having a particle size of 50 μm or less (average of 5 μm) had a density ratio of almost 100% with respect to the bulk material of the alloy. In contrast, targets manufactured from 50-100 μm (average 70 μm) alloy powder had a density ratio of about 86%. Therefore, it was confirmed that a dense target can be obtained by using as fine a fine powder as possible.
第2実施形態:本実施形態は、溶解鋳造法でスパッタリングターゲットを製造した。 Second Embodiment : In this embodiment, a sputtering target was manufactured by a melt casting method.
高純度のPt及びHfの地金をアーク溶解で溶融・合金化しボタン状のPtHf合金インゴットを複数製造した。本実施形態では、Hf含有量37.4質量%のPtHf合金インゴットを製造した。そして、これをアーク溶解装置の水冷銅鋳型上に隣接させ、アーク溶解で溶接し、円盤状のインゴットを製造した。次に、製造した円盤状のPtHf合金を平面研削とワイヤー放電加工により加工した。製造されたターゲットの寸法は、直径76.2mm、厚さ7.0mmであった。 A plurality of button-shaped PtHf alloy ingots were manufactured by melting and alloying high purity Pt and Hf ingots by arc melting. In this embodiment, a PtHf alloy ingot having an Hf content of 37.4% by mass was manufactured. And this was made to adjoin on the water-cooled copper mold of an arc melting apparatus, and it welded by arc melting, and manufactured the disk-shaped ingot. Next, the manufactured disk-shaped PtHf alloy was processed by surface grinding and wire electric discharge machining. The manufactured target had a diameter of 76.2 mm and a thickness of 7.0 mm.
 製造したターゲットについて、不純物元素の分析及び密度測定を行った。元素分析はICP分析と、ガス成分をON分析、CS分析を行った。表2に、分析結果を示す。この第2実施形態で製造したPtHf合金スパッタリングターゲットも不純物が少ないことが確認できる。 For the manufactured target, impurity element analysis and density measurement were performed. For elemental analysis, ICP analysis, gas component ON analysis, and CS analysis were performed. Table 2 shows the analysis results. It can be confirmed that the PtHf alloy sputtering target manufactured in the second embodiment also has few impurities.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
第3実施形態:ここでは、第1実施形態で製造したPtHf合金スパッタリングターゲット(平均粒径5μm以下の合金粉末から製造したもの)を用いて、PtHf合金薄膜の製造及びシリサイド形成を行った。 Third Embodiment : Here, a PtHf alloy thin film and silicide formation were performed using the PtHf alloy sputtering target manufactured in the first embodiment (produced from an alloy powder having an average particle size of 5 μm or less).
 本実施形態では、Si基板にPtHfシリサイド薄膜を形成してショットキーダイオードを製造し、このデバイスの電気特性を評価した。図1に本実施形態におけるデバイス製造工程を示す。本実施形態では、Si基板(n-Si(100))を洗浄した後(図1(a))、ウェット酸化してSiO層を形成しエッチング処理してパターニングを行う(図1(b))。そして、その内部にPtHf合金薄膜を形成する(図1(c))。 In this embodiment, a PtHf silicide thin film was formed on a Si substrate to manufacture a Schottky diode, and the electrical characteristics of this device were evaluated. FIG. 1 shows a device manufacturing process in this embodiment. In the present embodiment, after cleaning the Si substrate (n-Si (100)) (FIG. 1A), wet oxidation is performed to form a SiO 2 layer, and etching is performed to perform patterning (FIG. 1B). ). And a PtHf alloy thin film is formed in the inside (FIG.1 (c)).
 PtHf合金薄膜の形成に際して、まず、基板表面を予備スパッタ(出力100W、5分間)してクリーニングした。その後、第1実施形態のターゲットを用いてPtHf合金薄膜をスパッタリングした。このときの条件は、室温、出力40Wとし、合金薄膜を20nm成膜した。尚、本実施形態ではスパッタリングにおけるガスイオンとして、Arを用いた(装置内の圧力0.7Paとした)。 When forming the PtHf alloy thin film, first, the substrate surface was cleaned by preliminary sputtering (output 100 W, 5 minutes). Thereafter, a PtHf alloy thin film was sputtered using the target of the first embodiment. The conditions at this time were room temperature and an output of 40 W, and an alloy thin film was formed to 20 nm. In this embodiment, Ar is used as the gas ion in sputtering (the pressure in the apparatus is 0.7 Pa).
 PtHf合金薄膜の形成後は、熱処理によりシリサイド化を行った。シリサイド化の条件は、処理温度として450℃、500℃、600℃の3つの条件を設定した。処理雰囲気は窒素ガス中とし、処理時間を5分間とした。 After the PtHf alloy thin film was formed, silicidation was performed by heat treatment. The silicidation conditions were set at three processing temperatures of 450 ° C., 500 ° C., and 600 ° C. The treatment atmosphere was nitrogen gas, and the treatment time was 5 minutes.
 PtHfのシリサイド化後、エッチングにより未反応金属を除去し、Al電極を形成してデバイスとした(図1(d))。エッチングはバッファードフッ酸(BHF)と希釈王水(HCl:HNO:HO=3:2:1、温度40℃)により行った。 After silicidation of PtHf, unreacted metal was removed by etching, and an Al electrode was formed to obtain a device (FIG. 1 (d)). Etching was performed with buffered hydrofluoric acid (BHF) and diluted aqua regia (HCl: HNO 3 : H 2 O = 3: 2: 1, temperature 40 ° C.).
比較例:この実施形態に対する比較例として、PtHfに替えてPt薄膜を形成し、これをシリサイド化してデバイスを製造した。シリサイド化の手順、条件は、基本的に第1実施形態と同様であり、ターゲットとして白金ターゲット(純度約100%)を使用した。 Comparative Example : As a comparative example for this embodiment, a Pt thin film was formed instead of PtHf, and this was silicided to manufacture a device. The silicidation procedure and conditions are basically the same as in the first embodiment, and a platinum target (purity of about 100%) was used as the target.
 以上のようにして製造した半導体デバイスについて電気特性を評価した。評価試験では、半導体パラメータ解析装置により電流密度-電圧特性(J-V特性)を測定することで行った。 The electrical characteristics of the semiconductor device manufactured as described above were evaluated. The evaluation test was performed by measuring current density-voltage characteristics (JV characteristics) with a semiconductor parameter analyzer.
 図2は、本実施形態で製造したデバイス(PtHfシリサイド合金膜)のJ-V特性を示す。この結果から、本実施形態で製造したデバイスは、順方向・逆方向のいずれの電圧印加に対してもリニアな電流密度の上昇が見られた。本実施形態では、基板がn-Siでありマイナス電位における挙動が特に重要であるが、本実施形態は良好な特性を示すといえる。一方、比較例におけるJ-V特性(図3)は、マイナス電位印加における電流密度の増加が見られなかった。 FIG. 2 shows the JV characteristics of the device (PtHf silicide alloy film) manufactured in this embodiment. From this result, the device manufactured in this embodiment showed a linear increase in current density with respect to both forward and reverse voltage application. In the present embodiment, the substrate is n-Si and the behavior at a negative potential is particularly important, but it can be said that the present embodiment exhibits good characteristics. On the other hand, the JV characteristics (FIG. 3) in the comparative example did not show an increase in current density when a negative potential was applied.
 そして、測定されたJ-V特性から、このシリサイド合金膜(シリサイド化処理温度450℃)のショットキー障壁高さを算出すると、本実施形態で0.45eVであるのに対し、比較例のPtシリサイドは、0.85eVであった。本実施形態に係るシリサイド合金膜(PtHfシリサイド)は、仕事関数が適度に調整されていることにより、ショットキー障壁高さが低くなっている。 Then, when the Schottky barrier height of this silicide alloy film (silicidation temperature 450 ° C.) is calculated from the measured JV characteristics, it is 0.45 eV in the present embodiment, whereas Pt of the comparative example Silicide was 0.85 eV. The silicide alloy film (PtHf silicide) according to the present embodiment has a low Schottky barrier height because the work function is appropriately adjusted.
 尚、シリサイド化の温度に関しては、いずれの温度でもデバイスの挙動としては好適なものであった。但し、電流密度は450℃で処理したものが特に高かった。 Incidentally, regarding the silicidation temperature, the device behavior was suitable at any temperature. However, the current density was particularly high when treated at 450 ° C.
 本発明に係るPtHf合金からなるスパッタリングターゲットによれば、PtHf合金薄膜を経て、耐熱性に優れたPtSi系のシリサイドを製造できる。このシリサイドはHfの合金化によりSi(n-Si、p-Si)に対して好適な仕事関数を有する。本発明は、MOSFET等のSi系半導体素子のソース/ドレイン領域におけるシリサイド形成に好適である。 According to the sputtering target made of the PtHf alloy according to the present invention, a PtSi-based silicide excellent in heat resistance can be manufactured through the PtHf alloy thin film. This silicide has a work function suitable for Si (n-Si, p-Si) by alloying with Hf. The present invention is suitable for silicide formation in the source / drain regions of Si-based semiconductor elements such as MOSFETs.

Claims (4)

  1.  PtHf合金からなる白金合金スパッタリングターゲットであって、前記PtHf合金は、Hf含有量が10質量%以上90質量%以下である白金合金スパッタリングターゲット。 A platinum alloy sputtering target made of a PtHf alloy, wherein the PtHf alloy has a Hf content of 10 mass% to 90 mass%.
  2.  ジルコニウム含有量が2.0質量%以下である請求項1記載の白金合金スパッタリングターゲット。 The platinum alloy sputtering target according to claim 1, wherein the zirconium content is 2.0 mass% or less.
  3.  ガス成分の合計濃度が1.0質量%以下である請求項1又は請求項2記載の白金合金スパッタリングターゲット。 The platinum alloy sputtering target according to claim 1 or 2, wherein the total concentration of the gas components is 1.0 mass% or less.
  4.  酸素含有量が1.0質量%以下である請求項1~請求項3のいずれかに記載の白金合金スパッタリングターゲット。 The platinum alloy sputtering target according to any one of claims 1 to 3, wherein the oxygen content is 1.0 mass% or less.
PCT/JP2016/068326 2015-06-26 2016-06-21 Platinum alloy target WO2016208552A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015128771A JP6126648B2 (en) 2015-06-26 2015-06-26 Platinum alloy target
JP2015-128771 2015-06-26

Publications (1)

Publication Number Publication Date
WO2016208552A1 true WO2016208552A1 (en) 2016-12-29

Family

ID=57585012

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/068326 WO2016208552A1 (en) 2015-06-26 2016-06-21 Platinum alloy target

Country Status (3)

Country Link
JP (1) JP6126648B2 (en)
TW (1) TWI615482B (en)
WO (1) WO2016208552A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022102765A1 (en) * 2020-11-16 2022-05-19 国立大学法人東北大学 Platinum-base sputtering target and manufacturing method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101577310A (en) * 2009-06-04 2009-11-11 中国科学院微电子研究所 Resistance transition type memory and manufacturing method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003213407A (en) * 2002-01-24 2003-07-30 Nikko Materials Co Ltd High purity nickel or nickel alloy sputtering target and production method therefor
KR100749653B1 (en) * 2003-07-25 2007-08-14 닛코킨조쿠 가부시키가이샤 Highly pure hafnium material, target thin film comprising the same and method for producing highly pure hafnium
KR101377348B1 (en) * 2006-07-13 2014-03-25 고에키자이단호진 고쿠사이카가쿠 신고우자이단 semiconductor device
US20090028744A1 (en) * 2007-07-23 2009-01-29 Heraeus, Inc. Ultra-high purity NiPt alloys and sputtering targets comprising same
WO2011115259A1 (en) * 2010-03-19 2011-09-22 Jx日鉱日石金属株式会社 NICKEL ALLOY SPUTTERING TARGET, THIN Ni ALLOY FILM, AND NICKEL SILICIDE FILM
US8968537B2 (en) * 2011-02-09 2015-03-03 Applied Materials, Inc. PVD sputtering target with a protected backing plate
JP6490589B2 (en) * 2013-10-29 2019-03-27 田中貴金属工業株式会社 Target for magnetron sputtering

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101577310A (en) * 2009-06-04 2009-11-11 中国科学院微电子研究所 Resistance transition type memory and manufacturing method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIM, ANDY EU-JIN ET AL.: "Metal-Gate Work Function Modulation Using Hafnium Alloys Obtained by the Interdiffusion of Thin Metallic Layers", JOURNAL OF THE ELECTROCHEMICAL SOCIETY, vol. 154, no. 4, 2007, pages H309 - H313, XP055340633 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022102765A1 (en) * 2020-11-16 2022-05-19 国立大学法人東北大学 Platinum-base sputtering target and manufacturing method thereof

Also Published As

Publication number Publication date
TW201712129A (en) 2017-04-01
JP2017014536A (en) 2017-01-19
TWI615482B (en) 2018-02-21
JP6126648B2 (en) 2017-05-10

Similar Documents

Publication Publication Date Title
JP6461543B2 (en) Alloy target of aluminum and rare earth element and method for producing the same
JP4223511B2 (en) Copper alloy sputtering target, method of manufacturing the same, and semiconductor element wiring
JP4388263B2 (en) Iron silicide sputtering target and manufacturing method thereof
TWI523087B (en) Al alloy film for semiconductor devices
JP5979644B2 (en) Lanthanum target for sputtering
JP2011504547A (en) Sputtering target doped with refractory metal
TWI755745B (en) Contact material mainly composed of Ag alloy, contact and electronic equipment using the contact material
JP2011523978A (en) Molybdenum-niobium alloy, sputtering target containing such alloy, method for producing such target, thin film produced therefrom, and use thereof
JP4415303B2 (en) Sputtering target for thin film formation
JP5638697B2 (en) High purity copper chrome alloy sputtering target
TWI572725B (en) Method for producing moti target
JP2009114539A (en) Copper alloy sputtering target and semiconductor element wiring
JP6126648B2 (en) Platinum alloy target
JP6455847B2 (en) Silicide alloy film for semiconductor device electrode and method of manufacturing silicide alloy film
JP2023126262A (en) Method for producing silicon nitride substrate
KR102030875B1 (en) High-purity copper-cobalt alloy sputtering target
JP4921653B2 (en) Sputtering target and manufacturing method thereof
JP2011084754A (en) Method for manufacturing sputtering target
JP5731770B2 (en) Sputtering target manufacturing method and sputtering target
JP2001303240A (en) Sputtering target
He et al. Development of Precious Metal and its Alloy Sputtering Targets with High Performance
JP2011058078A (en) SPUTTERING TARGET, Ta-W ALLOY FILM USING THE SAME, AND LIQUID CRYSTAL DISPLAY DEVICE
JP2005026704A (en) METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE, AND Ti-W MATERIAL FOR MAGNETRON SPUTTERING SYSTEM
JP2010163687A (en) Cr-Cu ALLOY FOR CONDUCTING MEMBER FOR ELECTRONIC COMPONENT, METHOD FOR PRODUCING Cr-Cu ALLOY, LEAD FRAME OR BUS BAR USING THE Cr-Cu ALLOY AND METHOD FOR PRODUCING THE SAME

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16814322

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16814322

Country of ref document: EP

Kind code of ref document: A1