WO2016208503A1 - Image diagnosing device and method - Google Patents

Image diagnosing device and method Download PDF

Info

Publication number
WO2016208503A1
WO2016208503A1 PCT/JP2016/068059 JP2016068059W WO2016208503A1 WO 2016208503 A1 WO2016208503 A1 WO 2016208503A1 JP 2016068059 W JP2016068059 W JP 2016068059W WO 2016208503 A1 WO2016208503 A1 WO 2016208503A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
processing unit
signal processing
diagnostic
diagnostic imaging
Prior art date
Application number
PCT/JP2016/068059
Other languages
French (fr)
Japanese (ja)
Inventor
昌宏 荻野
喜実 野口
毅倫 村瀬
博幸 望月
高橋 哲彦
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to JP2017524850A priority Critical patent/JP6423094B2/en
Publication of WO2016208503A1 publication Critical patent/WO2016208503A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging

Definitions

  • the present invention relates to a diagnostic imaging apparatus, and more particularly to a technique for generating a high-speed, high-quality image in a magnetic resonance imaging apparatus.
  • Magnetic Resonance Imaging (hereinafter referred to as MRI) equipment observes the intensity distribution of nuclear magnetic resonance (Nuclear , Magnetic Resonance, hereinafter referred to as NMR) of the hydrogen nuclei (protons) in the human body, and displays a contrast image of the human cross section. It is a medical image diagnostic technique to obtain. Compared with CT (Computed Tomography), which obtains cross-sectional images by irradiating X-rays and other radiation, MRI has no radiation exposure and is superior in safety to the human body, mainly in soft tissues such as the brain. It is characterized by excellent drawing.
  • CT Computerputed Tomography
  • the current MRI system displays a confirmation image for confirming the suitability of imaging in a shorter time in contrast-enhanced MRA (Magnetic Resonance Angiography) imaging using the PI (Parallel Imaging) method, which is the mainstream speed-up method.
  • MRA Magnetic Resonance Angiography
  • PI Parallel Imaging
  • An object of the present invention is to solve the above-described problems and provide an image diagnostic apparatus and an image generation method capable of displaying an image for early determination of adaptation / non-adaptation of a captured image in a high-speed imaging system. is there.
  • an image diagnostic apparatus wherein a received signal obtained from a subject is imaged by an image reconstruction technique, and the image quality of the obtained image satisfies a predetermined threshold value.
  • An image diagnostic apparatus having a configuration including a signal processing unit that determines whether or not and an image display unit that displays an image determined to satisfy a predetermined threshold by the signal processing unit for each threshold is configured.
  • an image diagnostic apparatus wherein a received signal obtained from a subject is imaged by an image reconstruction process, and an image is output, and a signal processing unit Constitutes an image diagnostic apparatus configured to include an image display unit that displays an image output from the image processing unit and a storage unit that stores calculation time information of image reconstruction processing in the signal processing unit.
  • an image generation method in an image diagnostic apparatus which is obtained by imaging a received signal obtained from a subject by an image reconstruction method.
  • an image generation method for determining whether or not the image quality satisfies a predetermined threshold and displaying an image determined to satisfy the predetermined threshold on an image display unit for each threshold.
  • an image obtained by image reconstruction processing can be evaluated and judged in advance, and it is possible to know at an early stage whether or not imaging optimal for clinical use has been achieved, thereby improving the examination workflow in the medical field. can do.
  • FIG. 3 is a functional block diagram of a signal processing unit according to the first embodiment.
  • 3 is a flowchart of image reconstruction processing according to the first embodiment. It is a figure for demonstrating the undersampling of K space based on Example 1.
  • FIG. FIG. 6 is a diagram illustrating an example of a flowchart of image reconstruction processing according to the first embodiment.
  • FIG. 10 is a diagram illustrating another example of the flowchart of the image reconstruction process according to the first embodiment.
  • FIG. 3 is an image diagram of image display according to the first embodiment.
  • FIG. 6 is a functional block diagram of an MRI apparatus according to a second embodiment.
  • FIG. 10 is a flowchart of image reconstruction processing according to the second embodiment.
  • FIG. 10 is an image diagram of image display according to the second embodiment.
  • FIG. 10 is a functional block diagram illustrating a signal processing unit according to a modification of the second embodiment.
  • FIG. 10 is an image view of image display according to a modified example of Embodiment 2.
  • FIG. 6 is a functional block diagram of an MRI apparatus according to a third embodiment. It is a figure for demonstrating an example of the database based on Example 3.
  • FIG. FIG. 10 is a diagram for explaining an example of a convergence curve model according to a third embodiment.
  • FIG. 10 is a functional block diagram illustrating a signal processing unit according to a third embodiment.
  • 12 is a flowchart of image reconstruction processing according to the third embodiment.
  • FIG. 10 is a functional block diagram of convergence curve prediction processing according to a third embodiment.
  • FIG. 12 is an image diagram of image display according to a modification example of Example 3.
  • Example 1 is an example of an MRI apparatus as an image diagnostic apparatus.
  • the present embodiment is an image diagnostic apparatus, in which a received signal obtained from a subject is imaged by image reconstruction processing, and signal processing for determining whether or not the image quality of the obtained image satisfies a predetermined threshold value
  • An image diagnostic apparatus configured to include an image display unit configured to display, for each threshold, an image determined to satisfy a predetermined threshold by the signal processing unit, and an image generation method in the image diagnostic apparatus, The diagnostic imaging apparatus images a received signal obtained from a subject by an image reconstruction method, determines whether the image quality of the obtained image satisfies a predetermined threshold, and determines that the predetermined threshold is satisfied.
  • 3 is an example of an image generation method for displaying a displayed image on an image display unit for each threshold value.
  • FIG. 1 is a diagram showing an example of functional blocks of the MRI apparatus of the present embodiment.
  • the MRI apparatus 100 includes a magnet 102 that generates a static magnetic field around a subject 101, a gradient magnetic field coil 103 that generates a gradient magnetic field in a space, and a high-frequency magnetic field in this region.
  • An image display unit 111 that displays an image processed by the unit 110 and a control unit 112 that controls the overall operation are provided.
  • the gradient magnetic field power source 106, the RF transmission unit 107, and the signal detection unit 108 are controlled by the control unit 112 according to a time chart generally called a pulse sequence.
  • the signal processing unit 109 the MR signal detected by the signal detection unit 108 is converted into an image signal.
  • the image processing unit 110 performs three-dimensional (3D) rendering processing, enlargement / reduction processing, and the like on the image signal from the signal processing unit 109.
  • the signal processing unit 109, the image processing unit 110, and the control unit 112 can be realized by programs executed by a central processing unit (CPU) of a normal computer.
  • the signal processing unit 109 may be realized by dedicated hardware instead of executing part or all of it by a program.
  • the image display unit 111 the above-described computer display can be used.
  • FIG. 2 is a diagram illustrating an example of functional blocks showing details of the signal processing unit 109 in the MRI apparatus of the present embodiment.
  • the signal processing unit 109 includes a Fourier inverse transform unit (IFFT) 201 to which the received signal from the signal detection unit 108 is input, an image reconstruction processing unit 202, and Sum Of the reconstructed image for each channel.
  • the image composition processing unit 203 performs square processing and the like, and includes a filtering processing unit 202 such as edge enhancement and noise reduction.
  • a control signal 205 described in the second embodiment is input to the image reconstruction processing unit 202.
  • the image reconstruction processing unit 202 is preferably realized by the above-described program processing by the CPU, and performs a process of increasing the dimension of the data obtained with a low dimension.
  • FIG. 3 shows an example of a high-dimensional program processing flow that constitutes the image reconstruction processing unit 202.
  • the image reconstruction processing unit 202 reconstructs a sharp high-dimensional image by solving the cost minimization problem.
  • any solution can be used as a solution for the cost minimization problem.
  • cost minimization and sequential optimization using the Split-Bregman method Non-Patent Document 2 can be considered.
  • FIG. 3 there are Loop1 that repeats Steps S101 to S106 and Loop2 that repeats Steps S101 to S109.
  • loop 1 will be described for the (k + 1) th time and Loop2 will be described for the (i + 1) th time.
  • S101 is an L2 norm minimizing step for minimizing the square error. Specifically, the following equation (1) is calculated, and an estimation result image u k + 1 is calculated.
  • f i is the K space image updated by the previous iteration (Loop2 i)
  • is the observation process represented by Fourier transform and observation pattern
  • ⁇ T is the inverse transform of ⁇ .
  • the observation pattern is a process of undersampling data in the K space as shown in FIG. 4, for example.
  • the white circle indicates the observation position of the data actually acquired.
  • I N is a unit matrix in which all elements are 1, and is an array of the same size as f i .
  • b c k, b w k is a variation component calculated immediately before (Loop1 k th).
  • is a positive constant as a parameter.
  • S102 is an orthogonal transformation step using Wavelet, DCT, or Curvelet
  • S103 is an L1 norm minimization step for evaluating the sparseness of the coefficient after the orthogonal transformation
  • S104 is an inverse transformation step of the orthogonal basis S102. Specifically, the steps so far are calculated by solving the optimization problems of the following equations (2) and (3).
  • ⁇ c and ⁇ w are Curvelet transform and Wavelet transform, respectively.
  • ⁇ c k + 1 and ⁇ w k + 1 are the Curvelet coefficient and Wavelet coefficient, respectively, and ⁇ c and ⁇ w are constants as parameters.
  • Curvelet transform and Wavelet transform are used as orthogonal transform, but other than this may be used.
  • Equations (2) and (3) any solution may be used, but in this embodiment, the soft shrinkage method is used. That is, by performing the Curvelet inverse transform and Wavelet inverse transform on both sides of Equations (2) and (3), Equations (4) and (5) are obtained below.
  • Equations (4) and (5) ⁇ c T and ⁇ w T are a Curvelet inverse transform and a Wavelet inverse transform, respectively.
  • S c and S w represents the soft shrinkage process.
  • S c and S w the processing shown by the following equations (6) and (7) is performed for all elements.
  • S105 is a fluctuation amount calculating step for calculating a difference from the image calculated in the immediately preceding loop. Specifically, the fluctuation amounts b c k + 1 and b w k + 1 are calculated using the following equations (8) and (9).
  • S106 is a condition step for determining whether or not the sparseness is equal to or higher than a predetermined level.
  • the sparseness may be defined at any level.
  • the fluctuation amount is equal to or lower than a predetermined threshold ( The condition is that there is almost no fluctuation and convergence).
  • S107 is a threshold setting update step in the L2 norm minimizing S101 step and the L1 norm minimizing S103 step. Specifically, the values of the parameters ⁇ and ⁇ are updated.
  • the signal processing unit 109 performs L2 norm minimization, L1 norm minimization, and threshold update in L2 norm minimization and L1 norm minimization as image reconstruction processing.
  • S108 is a step of performing Fourier transform on the estimation result image u k + 1 calculated by the equation (1), updating data other than the actually acquired part based on the equation (10), and generating a reconstructed image. is there.
  • Equation (10) indicates that the pixel value at the observation position (white circle) in the observation pattern shown in Fig. 4 is copied as it is, and the other pixels are updated.
  • S109 is a condition step for determining whether the image quality of the reconstructed image is equal to or higher than a predetermined threshold.
  • the predetermined threshold value may be any value. For example, a condition of whether or not a predetermined number of loops has been turned can be considered. That is, the signal processing unit 109 determines whether or not the image quality of the obtained image satisfies a predetermined threshold value.
  • the predetermined threshold value for example, it is possible to use the number of repetitions of the image reconstruction process.
  • a difference value from the immediately preceding image in the image reconstruction process, an image dispersion value obtained by the signal processing unit 109, or the like can be used.
  • Loop1 corresponds to a process for increasing data sparseness
  • Loop2 corresponds to a process for improving image restoration performance.
  • the number of loops depends largely on the target data, but Loop1 is on the order of ⁇ 10 times and Loop2 is on the order of several hundred times.
  • image reconstruction processing with the processing flow shown in Fig. 3 is performed, depending on the processing platform, it is expected that it will take several minutes to obtain the final estimated image output.
  • the processing flow as shown in FIGS. 5A and 5B is performed, and if the condition is met (Yes), an intermediate image is output, and the image processing unit 110 The intermediate image is displayed on the image display unit 111.
  • 5A and 5B the same processes as those in FIG. 3 are denoted by the same reference numerals as those in FIG.
  • condition 3 for performing another determination in S110 is further added.
  • a predetermined number of loops smaller than the number of loops of S109, a difference value from the previous image, or an estimated image result may be determined using a new evaluation index. Good.
  • this evaluation index threshold determination using a variance value of an estimated image can be considered as described above.
  • another determination condition S111 can be added.
  • threshold determination may be performed based on data sparseness, for example, a number other than 0 of the Curvelet coefficient and Wavelet coefficient. That is, the image when it has a state having only a coefficient equal to or less than a predetermined threshold value is displayed in an intermediate manner.
  • predetermined threshold values in the condition of S111 may be set and displayed step by step.
  • FIG. 6 is a diagram showing a display image of an intermediate image displayed on the image display unit 111 when the predetermined number of loops is set to 1, 10, 30, 50, 100 as the determination condition of S110 in FIG. 5A. . That is, the signal processing unit 109 outputs a plurality of images that satisfy each of the plurality of threshold values, and the image display unit 111 displays the plurality of images on the same screen.
  • the intermediate image is displayed step by step, so that the waiting time until the display to the user can be reduced, and confirmation and determination according to each intermediate image step can be performed. It becomes possible. For example, as shown in FIG.
  • the configuration in which the intermediate image of the image reconstruction process is output reduces the waiting time until the user displays an image, and whether or not the photographing condition is correct is determined at an early stage. It can be recognized and judged, and the inspection workflow can be improved.
  • this embodiment receives a signal from a subject, images the received signal through image reconstruction processing, and determines whether the image quality satisfies a predetermined threshold
  • the signal processing unit includes an image display unit that displays, for each threshold, an image that is determined to satisfy a predetermined threshold by the processing unit, and a user interface unit that enables interactive input from the user.
  • Example of an image diagnostic apparatus configured to set a predetermined area on an image in accordance with an input from a user interface unit with respect to an image displayed on the section, and to perform optimal image processing on the predetermined area set It is.
  • FIG. 7 is a diagram illustrating an example of functional blocks of the MRI apparatus according to the present embodiment.
  • the MRI apparatus 700 according to the present embodiment basically has the same configuration as that of the first embodiment, but further includes a user interface (UI) unit 701 such as a touch panel to enable interactive input from the user.
  • UI user interface
  • a UI unit 701 is an interface that realizes user input such as a touch panel.
  • Information on a region designated on the display image is sent to the image reconstruction processing unit 202 of the signal processing unit 109 via the control unit 112. It is sent as a control signal 205.
  • the functional configuration of the signal processing unit 109 in FIG. 7 is the same as that in FIG.
  • FIG. 8 is a processing flow of the image reconstruction processing unit 202 in the signal processing unit 109.
  • the same processes as those in FIGS. 5A and 5B are denoted by the same reference numerals as those in FIG.
  • the image reconstruction processing unit 202 sets the area according to this designation (S202), Loop1 processing is performed so that the L1 norm of the image area that has been set is minimized.
  • a region setting method for example, a predetermined pixel area around a point designated on the intermediate image by the UI unit 701 is set. That is, the signal processing unit 108 sets a rectangular area for a predetermined pixel centered on a user input point on the touch panel as an area.
  • Steps S101 to S105 after the area specification are changed to processing for solving the optimization problem of the following equations (11) and (12).
  • N is the designated region
  • ⁇ cN and ⁇ wN are the Curvelet coefficient and Wavelet coefficient of the region N, respectively.
  • the signal processing unit 109 performs L1 norm minimization processing in the region as image reconstruction processing suitable for the set region.
  • FIG. 9 is a diagram showing an area designation process and a result image according to the second embodiment.
  • the touch panel may not be assumed as shown in FIG. 9, but may be designated by, for example, a mouse, a keyboard, or a trackball.
  • a rectangular area or the like may be set directly instead of a single point.
  • the reconstruction process is optimal for the area N, the reconstructed image of the other areas is not basically guaranteed.
  • the image quality outside the designated area is shown as the intermediate image quality, but there is no particular reason.
  • FIG. 10 shows a modification of the signal processing unit 109 in the second embodiment.
  • the image reconstruction processing unit 202 is equipped with two reconstruction processes in parallel.
  • an image reconstruction process 1 to 1001 performs an optimum reconstruction process for the designated area designated by the control signal 205 in the second embodiment
  • the image reconstruction process 2 to 1002 is an entire normal image. Perform reconfiguration processing.
  • the output of the image processing reconstruction process 1 is displayed to improve the efficiency of the captured image judgment and the specified area optimization, and the entire image reconstruction process is performed in parallel with the image reconstruction process 2 1002.
  • two designated areas are designated by the control signal 205, and in the image reconstruction process 2 to 1002, optimization of the designated area different from the image reconstruction process 1 to 1001 is performed, and as shown in FIG.
  • a configuration in which a peripheral area 1102 different from the peripheral area 904 is simultaneously displayed by setting different areas 1101 is also conceivable. That is, the signal processing unit 109 can perform image processing for each of a plurality of set areas in parallel.
  • the configuration is not limited to two, and a configuration in which a plurality of designated area optimized images can be displayed by adopting a configuration in which a plurality of image reconstruction processes are operated in parallel is also conceivable.
  • a diagnostic image that makes it possible to predict the time and image quality until image display and provide information to the user based on the tendency of the database and the actual reconstructed image installed in the apparatus in advance. It is a generation device.
  • the present embodiment is an image diagnostic apparatus, in which a received signal obtained from a subject is imaged by image reconstruction processing, and a signal processing unit that outputs an image and an image that displays an image output by the signal processing unit It is an Example of the image diagnostic apparatus of a structure provided with a display part and the memory
  • FIG. 12 is a diagram showing an example of functional blocks of the MRI apparatus of the present embodiment.
  • the MRI apparatus 1200 of the present embodiment basically has the same configuration as that of the first embodiment, but further includes a storage device 1201 such as a memory for holding a database and an HDD.
  • a storage device 1201 such as a memory for holding a database and an HDD.
  • the storage device 1201 the storage unit of the computer described above can be used.
  • the storage device 1201 accessible from the signal processing unit 109 stores data of CS reconstruction processing in a typical imaging examination. Specifically, for example, as shown in FIG. 13, an image sample and a convergence curve model for reconstruction processing are stored in advance in the database 1301 for each imaging sequence, image type, and imaging region. That is, the storage device 1201 stores a convergence curve model of image reconstruction processing as calculation time information.
  • Fig. 14 shows a specific example of the convergence curve model.
  • the horizontal axis represents the number of loops of reconstruction processing
  • the vertical axis represents the image quality index, and in this example, the Peak Signal to Noise Ratio (PSNR) value.
  • PSNR Peak Signal to Noise Ratio
  • the reconstruction process has almost no change in image quality after a predetermined number of repetitions, that is, there are points 1401, 1402, and 1403 as threshold values for convergence.
  • This threshold value generally differs depending on each imaging sequence and imaging region. That is, the shapes of the curves up to the convergence points 1401, 1402, and 1403 are different.
  • FIG. 15 shows an example of the configuration of the signal processing unit 109 of the present embodiment in FIG. 15, the same processes as those in FIG. 2 are denoted by the same reference numerals as those in FIG.
  • the convergence curve prediction processing unit 1501 has a function of comparing the reconstruction processing result in the image reconstruction processing unit 202 with a database in the storage device 1201. That is, the signal processing unit 109 performs pattern matching processing between the convergence curve of the image reconstruction processing on the received signal and the convergence curve model stored in the storage device 1201, and the convergence with the highest matching is obtained from the result of the pattern matching processing.
  • the curve model is the estimated convergence curve of the received signal, and the image display unit 111 displays the estimated convergence curve.
  • FIG. 16 shows an example of the processing flow of the image reconstruction processing unit 202 in FIG.
  • FIG. 16 is basically the same as the configuration of FIG. 5A in the first embodiment, except that the determination condition 5 S301 outputs an intermediate image when the number of loops is less than a predetermined number. That is, it is configured to output an image at the initial loop stage of the reconstruction process.
  • FIG. 17 shows an example of the functional configuration of the convergence curve prediction processing unit 1501 in FIG.
  • the pattern matching processing unit 1701 calculates matching between the image of the reconstruction processing result obtained by the image reconstruction processing unit 202 and the convergence curve model shape in the database.
  • the determination unit 1702 selects an estimated convergence curve from the processing result of the pattern matching processing unit 1701.
  • the pattern matching processing unit 1701 performs a matching process of variance values between each imaging sequence and the convergence curve model for each part in the database 1301 and images up to a predetermined number of loops in imaging. Specifically, the cumulative difference value of the image dispersion values in each loop is calculated.
  • the image size is N pixels ⁇ M pixels
  • the image dispersion value is expressed by the following equations (17) and (18).
  • Pi is each pixel value
  • E is a pixel average value
  • E ⁇ 2 is a variance value
  • the accumulated difference value Diff E ⁇ 2 of the variance value is It is represented by (19).
  • a variance value may be calculated in advance and stored in the storage device 1201 as one of data in the database 1301 in FIG. 13, for example.
  • the determination unit 1702 displays the convergence curve model of the reference image having the smallest value among them as an estimated convergence curve.
  • the convergence curve tendency is predicted from the evaluation value (dispersion value) of the first few to several tens of intermediate images, and the convergence curve model that appears to be close is displayed.
  • FIG. 18 (a) shows an example of a display image on the screen of the image display unit 111 of the apparatus of this embodiment.
  • an inquiry may be displayed as shown in FIG. 18B, and the user may select whether or not to continue the process.
  • the present embodiment it is possible to intuitively know the prediction of the reconstruction processing time by displaying the estimated convergence curve, and the user can grasp the inspection time in advance.
  • the image obtained by the reconstruction process can be evaluated and judged in advance, and it can be confirmed at an early stage whether or not the optimum imaging for clinical use has been performed.
  • the workflow can be improved.
  • this invention is not limited to the above-mentioned Example, Various modifications are included.
  • the above-described embodiments have been described in detail for better understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of a certain embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of a certain embodiment.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

The present invention enables image display to make an early appropriateness decision of a photographed image in a high-speed photography system. An image diagnosing device 100 is provided with: a signal processing unit 109 which renders a reception signal obtained from a subject 101 into an image by an image reconstruction process, and which determines whether the image quality of the obtained image satisfies a predetermined threshold value; and an image display unit 111 which displays the image determined by the signal processing unit to satisfy the threshold value, on a threshold value by threshold value basis. A plurality of threshold values is set to display the image in a stepwise manner. With respect to an output image, a specific region is set, and a preferred image reconstruction process is implemented in the specific region set to generate an image.

Description

画像診断装置,及び方法Diagnostic imaging apparatus and method
 本発明は,画像診断装置に係り,特に磁気共鳴イメージング装置において,高速,高画質な画像を生成する技術に関する。 The present invention relates to a diagnostic imaging apparatus, and more particularly to a technique for generating a high-speed, high-quality image in a magnetic resonance imaging apparatus.
 磁気共鳴イメージング(Magnetic Resonance Imaging,以下MRI) 装置は,人体内の水素原子核(プロトン)の核磁気共鳴現象(Nuclear Magnetic Resonance,以下NMR)の強度分布を観測して,その人体断面のコントラスト画像を得る医用画像診断手法である。MRIはX線などの放射線を照射して断面画像を取得するCT(Computed Tomography)と比較して,放射線被ばくがなく,人体への安全性において優位性をもち,主に脳などの軟部組織の描出に優れていることが特徴である。しかし,一般的に一検体当たり数十分を要し,腹部や肺の撮影には,数十秒間呼吸を止めなければならない等,患者への負担も大きく,撮像の高速化が望まれている。近年,その高スループット,すなわち,撮影時間短縮を実現するための技術として,圧縮センシング(Compressed Sensing,以下CS)が注目されている(特許文献1、非特許文献1参照)。 Magnetic Resonance Imaging (hereinafter referred to as MRI) equipment observes the intensity distribution of nuclear magnetic resonance (Nuclear , Magnetic Resonance, hereinafter referred to as NMR) of the hydrogen nuclei (protons) in the human body, and displays a contrast image of the human cross section. It is a medical image diagnostic technique to obtain. Compared with CT (Computed Tomography), which obtains cross-sectional images by irradiating X-rays and other radiation, MRI has no radiation exposure and is superior in safety to the human body, mainly in soft tissues such as the brain. It is characterized by excellent drawing. However, it generally requires several tens of minutes per specimen, and the abdomen and lungs must be stopped for several tens of seconds, and the burden on the patient is large. . In recent years, compression sensing (hereinafter referred to as CS) has attracted attention as a technique for realizing the high throughput, that is, the reduction of photographing time (see Patent Document 1 and Non-Patent Document 1).
 一方,現在のMRI装置で主流の高速化手法であるPI(Parallel Imaging)法による造影MRA(Magnetic Resonance Angiography)撮影において,より短時間で撮影の適否を確認するための確認用画像を表示させるという技術がある(特許文献2参照)。 On the other hand, the current MRI system displays a confirmation image for confirming the suitability of imaging in a shorter time in contrast-enhanced MRA (Magnetic Resonance Angiography) imaging using the PI (Parallel Imaging) method, which is the mainstream speed-up method. There is a technology (see Patent Document 2).
米国特許7,646,924号公報US Patent 7,646,924 特開2010-012294号公報JP 2010-012294 A
 上述のCSは,少ない観測データから映像を復元する理論であり,2006年頃から急速に研究が進展,拡大しているが,CSにおける画像再構成処理は一般的に計算負荷が高く,撮影自体は高速に終わったとしても,画像表示までの時間がかかるという課題がある。一方,特許文献2に開示された高速化手法は,現在,CSを応用した撮影装置には対応していない。 The above-mentioned CS is a theory that restores video from a small amount of observation data, and research has progressed and expanded rapidly since around 2006. However, image reconstruction processing in CS is generally computationally intensive, and photography itself is Even if it ends at high speed, there is a problem that it takes time until image display. On the other hand, the speed-up method disclosed in Patent Document 2 does not currently support a photographing apparatus using CS.
 本発明の目的は,上記の課題を解決し,高速撮影システムにおいて,撮影画像の適応/不適応を早期に判断するための画像表示が可能な画像診断装置,及び画像生成方法を提供することにある。 An object of the present invention is to solve the above-described problems and provide an image diagnostic apparatus and an image generation method capable of displaying an image for early determination of adaptation / non-adaptation of a captured image in a high-speed imaging system. is there.
 上記の目的を達成するため,本発明においては,画像診断装置であって,被写体から得られた受信信号を画像再構成手法によって画像化し,得られた画像の画質が所定の閾値を満たしているかどうかを判断する信号処理部と,信号処理部で所定閾値を満たしていると判定された画像を閾値毎に表示する画像表示部とを備える構成の画像診断装置を構成する。 In order to achieve the above object, according to the present invention, an image diagnostic apparatus, wherein a received signal obtained from a subject is imaged by an image reconstruction technique, and the image quality of the obtained image satisfies a predetermined threshold value. An image diagnostic apparatus having a configuration including a signal processing unit that determines whether or not and an image display unit that displays an image determined to satisfy a predetermined threshold by the signal processing unit for each threshold is configured.
 また,上記の目的を達成するため,本発明においては,画像診断装置であって,被写体から得られた受信信号を画像再構成処理によって画像化し,画像を出力する信号処理部と,信号処理部が出力する画像を表示する画像表示部と,信号処理部における画像再構成処理の演算時間情報を記憶する記憶部とを備える構成の画像診断装置を構成する。 In order to achieve the above object, according to the present invention, there is provided an image diagnostic apparatus, wherein a received signal obtained from a subject is imaged by an image reconstruction process, and an image is output, and a signal processing unit Constitutes an image diagnostic apparatus configured to include an image display unit that displays an image output from the image processing unit and a storage unit that stores calculation time information of image reconstruction processing in the signal processing unit.
 更に,上記の目的を達成するため,本発明においては,画像診断装置における画像生成方法であって,画像診断装置は,被写体から得られた受信信号を画像再構成手法によって画像化し,得られた画像の画質が所定の閾値を満たしているかどうかを判定し,所定の閾値を満たしていると判定された画像を閾値毎に画像表示部に表示する画像生成方法を提供する。 Furthermore, in order to achieve the above object, according to the present invention, there is provided an image generation method in an image diagnostic apparatus, which is obtained by imaging a received signal obtained from a subject by an image reconstruction method. Provided is an image generation method for determining whether or not the image quality satisfies a predetermined threshold and displaying an image determined to satisfy the predetermined threshold on an image display unit for each threshold.
 本発明によれば,画像再構成処理で得られる画像を事前に評価,判断することができ,臨床に最適な撮影ができたかどうかを早期に知ることが可能となり,医療現場における検査ワークフローを改善することができる。 According to the present invention, an image obtained by image reconstruction processing can be evaluated and judged in advance, and it is possible to know at an early stage whether or not imaging optimal for clinical use has been achieved, thereby improving the examination workflow in the medical field. can do.
実施例1に係る,MRI装置の機能ブロックの一例を示す図である。It is a figure which shows an example of the functional block of the MRI apparatus based on Example 1. FIG. 実施例1に係る,信号処理部の機能ブロック図である。FIG. 3 is a functional block diagram of a signal processing unit according to the first embodiment. 実施例1に係る,画像再構成処理のフローチャートである。3 is a flowchart of image reconstruction processing according to the first embodiment. 実施例1に係る,K空間のアンダーサンプリングを説明するための図である。It is a figure for demonstrating the undersampling of K space based on Example 1. FIG. 実施例1に係る,画像再構成処理のフローチャートの一例を示す図である。FIG. 6 is a diagram illustrating an example of a flowchart of image reconstruction processing according to the first embodiment. 実施例1に係る,画像再構成処理のフローチャートの他の例を示す図である。FIG. 10 is a diagram illustrating another example of the flowchart of the image reconstruction process according to the first embodiment. 実施例1に係る,画像表示のイメージ図である。FIG. 3 is an image diagram of image display according to the first embodiment. 実施例2に係る,MRI装置の機能ブロック図である。FIG. 6 is a functional block diagram of an MRI apparatus according to a second embodiment. 実施例2に係る,画像再構成処理のフローチャートである。10 is a flowchart of image reconstruction processing according to the second embodiment. 実施例2に係る,画像表示のイメージ図である。FIG. 10 is an image diagram of image display according to the second embodiment. 実施例2の変形例の信号処理部を示す機能ブロック図である。FIG. 10 is a functional block diagram illustrating a signal processing unit according to a modification of the second embodiment. 実施例2の変形例の画像表示のイメージ図である。FIG. 10 is an image view of image display according to a modified example of Embodiment 2. 実施例3に係る,MRI装置の機能ブロック図である。FIG. 6 is a functional block diagram of an MRI apparatus according to a third embodiment. 実施例3に係る,データベースの一例を説明するための図である。It is a figure for demonstrating an example of the database based on Example 3. FIG. 実施例3に係る,収束曲線モデルの一例を説明するための図である。FIG. 10 is a diagram for explaining an example of a convergence curve model according to a third embodiment. 実施例3に係る,信号処理部を示す機能ブロック図である。FIG. 10 is a functional block diagram illustrating a signal processing unit according to a third embodiment. 実施例3に係る,画像再構成処理のフローチャートである。12 is a flowchart of image reconstruction processing according to the third embodiment. 実施例3に係る,収束曲線予測処理の機能ブロック図である。FIG. 10 is a functional block diagram of convergence curve prediction processing according to a third embodiment. 実施例3の変形例の画像表示のイメージ図である。FIG. 12 is an image diagram of image display according to a modification example of Example 3.
 以下,図面に従い,本発明の実施例を順次説明する。 Hereinafter, embodiments of the present invention will be sequentially described with reference to the drawings.
 実施例1は,画像診断装置としてのMRI装置の実施例である。すなわち、本実施例は、画像診断装置であって,被写体から得られた受信信号を画像再構成処理によって画像化し,得られた画像の画質が所定の閾値を満たしているかどうかを判断する信号処理部と,信号処理部で所定の閾値を満たしていると判定された画像を閾値毎に表示する画像表示部とを備える構成の画像診断装置、並びに、画像診断装置における画像生成方法であって,画像診断装置は,被写体から得られた受信信号を画像再構成手法によって画像化し,得られた画像の画質が所定の閾値を満たしているかどうかを判定し,所定の閾値を満たしていると判定された画像を閾値毎に画像表示部に表示する画像生成方法の実施例である。 Example 1 is an example of an MRI apparatus as an image diagnostic apparatus. In other words, the present embodiment is an image diagnostic apparatus, in which a received signal obtained from a subject is imaged by image reconstruction processing, and signal processing for determining whether or not the image quality of the obtained image satisfies a predetermined threshold value An image diagnostic apparatus configured to include an image display unit configured to display, for each threshold, an image determined to satisfy a predetermined threshold by the signal processing unit, and an image generation method in the image diagnostic apparatus, The diagnostic imaging apparatus images a received signal obtained from a subject by an image reconstruction method, determines whether the image quality of the obtained image satisfies a predetermined threshold, and determines that the predetermined threshold is satisfied. 3 is an example of an image generation method for displaying a displayed image on an image display unit for each threshold value.
 図1は,本実施例のMRI装置の機能ブロックの一例を示す図である。同図に示すように,実施例1のMRI装置100は,被写体101の周囲に静磁場を発生する磁石102と,空間に傾斜磁場を発生する傾斜磁場コイル103と,この領域に高周波磁場を発生させるRFコイル104と,被写体101が発生するMR信号を検出するRFコイル105と,傾斜磁場コイルに電源を供給する傾斜磁場電源106と,RFコイル104を制御するRF送信部107と,RFコイル105からのMR信号を検出する信号検出部108と,信号検出部108で検出された信号を処理する信号処理部109と,信号処理部109から得られる画像を処理する画像処理部110と,画像処理部110で処理された画像を表示する画像表示部111と,全体動作をコントロールする制御部112とを備える。 FIG. 1 is a diagram showing an example of functional blocks of the MRI apparatus of the present embodiment. As shown in the figure, the MRI apparatus 100 according to the first embodiment includes a magnet 102 that generates a static magnetic field around a subject 101, a gradient magnetic field coil 103 that generates a gradient magnetic field in a space, and a high-frequency magnetic field in this region. An RF coil 104 for detecting the MR signal generated by the subject 101, a gradient magnetic field power source 106 for supplying power to the gradient magnetic field coil, an RF transmitter 107 for controlling the RF coil 104, and the RF coil 105 A signal detection unit 108 that detects an MR signal from the signal processing unit 108, a signal processing unit 109 that processes a signal detected by the signal detection unit 108, an image processing unit 110 that processes an image obtained from the signal processing unit 109, and an image processing An image display unit 111 that displays an image processed by the unit 110 and a control unit 112 that controls the overall operation are provided.
 傾斜磁場電源106,RF送信部107,信号検出部108は,一般にパルスシーケンスと呼ばれるタイムチャートに従い,制御部112で制御される。信号処理部109では,信号検出部108で検出されたMR信号が画像信号へ変換される。画像処理部110では,信号処理部109からの画像信号に対して,三次元(3D)レンダリング処理や拡大,縮小処理等が行われる。ここで,信号処理部109と画像処理部110と制御部112は通常のコンピュータの中央処理部(CPU)が実行するプログラムで実現可能である。信号処理部109は,その一部,全部をプログラムで実行する代わりに専用ハードウェアで実現しても良い。画像表示部111は,上記のコンピュータのディスプレイを用いることができる。 The gradient magnetic field power source 106, the RF transmission unit 107, and the signal detection unit 108 are controlled by the control unit 112 according to a time chart generally called a pulse sequence. In the signal processing unit 109, the MR signal detected by the signal detection unit 108 is converted into an image signal. The image processing unit 110 performs three-dimensional (3D) rendering processing, enlargement / reduction processing, and the like on the image signal from the signal processing unit 109. Here, the signal processing unit 109, the image processing unit 110, and the control unit 112 can be realized by programs executed by a central processing unit (CPU) of a normal computer. The signal processing unit 109 may be realized by dedicated hardware instead of executing part or all of it by a program. As the image display unit 111, the above-described computer display can be used.
 図2は,本実施例のMRI装置における信号処理部109の詳細を示す機能ブロックの一例を示す図である。同図に示すように,信号処理部109は,信号検出部108からの受信信号が入力されるフーリエ逆変換部(IFFT)201,画像再構成処理部202,チャンネル毎の再構成画像のSum Of Square処理等を行う画像合成処理部203,エッジ強調やノイズ低減等のフィルタリング処理部202から構成される。画像再構成処理部202には実施例2で説明する制御信号205が入力される。 FIG. 2 is a diagram illustrating an example of functional blocks showing details of the signal processing unit 109 in the MRI apparatus of the present embodiment. As shown in the figure, the signal processing unit 109 includes a Fourier inverse transform unit (IFFT) 201 to which the received signal from the signal detection unit 108 is input, an image reconstruction processing unit 202, and Sum Of the reconstructed image for each channel. The image composition processing unit 203 performs square processing and the like, and includes a filtering processing unit 202 such as edge enhancement and noise reduction. A control signal 205 described in the second embodiment is input to the image reconstruction processing unit 202.
 画像再構成処理部202は,好適には上述したCPUによるプログラム処理で実現され,低次元取得されたデータを高次元化する処理を行う。図3に画像再構成処理部202を構成する高次元化のプログラム処理フローの一例を示す。画像再構成処理部202は,コスト最小化問題を解くことで,鮮鋭な高次元画像を再構成する。この際,コスト最小化問題の解法としては,どのようなものを利用してもよいが,例えばSplit Bregman法(非特許文献2)を用いたコスト最小化,逐次最適化が考えられる。図3の処理フローに示すように,ステップS101からステップS106までを繰り返すLoop1と,S101からS109までを繰り返すLoop2が存在する。以下,Loop1がk+1回目,Loop2がi+1回目の繰り返しに関して説明する。 The image reconstruction processing unit 202 is preferably realized by the above-described program processing by the CPU, and performs a process of increasing the dimension of the data obtained with a low dimension. FIG. 3 shows an example of a high-dimensional program processing flow that constitutes the image reconstruction processing unit 202. The image reconstruction processing unit 202 reconstructs a sharp high-dimensional image by solving the cost minimization problem. At this time, any solution can be used as a solution for the cost minimization problem. For example, cost minimization and sequential optimization using the Split-Bregman method (Non-Patent Document 2) can be considered. As shown in the processing flow of FIG. 3, there are Loop1 that repeats Steps S101 to S106 and Loop2 that repeats Steps S101 to S109. In the following, loop 1 will be described for the (k + 1) th time and Loop2 will be described for the (i + 1) th time.
 図3において,S101は二乗誤差を最小化するL2ノルム最小化のステップである。具体的
には,以下に示す式(1)が計算され,推定結果画像uk+1が算出される。
In FIG. 3, S101 is an L2 norm minimizing step for minimizing the square error. Specifically, the following equation (1) is calculated, and an estimation result image u k + 1 is calculated.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 ここで,fiは直前(Loop2 i回目)の繰り返しにより更新されたK空間画像,Φはフーリエ変換と観測パタンにより表現される観測過程,ΦTは,Φの逆変換を示す。観測パタンとは,例えば図4に示すように,K空間上データをアンダーサンプリングする処理である。図4において,白い丸印部分が実際に取得されるデータの観測位置を示している。 Here, f i is the K space image updated by the previous iteration (Loop2 i), Φ is the observation process represented by Fourier transform and observation pattern, and Φ T is the inverse transform of Φ. The observation pattern is a process of undersampling data in the K space as shown in FIG. 4, for example. In FIG. 4, the white circle indicates the observation position of the data actually acquired.
 INは,全ての要素が1である単位行列であり,fiと同サイズの配列である。また,uc k,u k は直前(Loop k回目)の疎性評価結果成分,bc k,b kは,直前(Loop1 k回目)で算出された変動成分である。μはパラメータとしての正の定数である。S102は例えばWaveletやDCT,Curveletによる直交変換ステップ,S103は前記直交変換後の係数の疎性を評価するL1ノルム最小化のステップ,S104は,直交基底S102の逆変換ステップである。ここまでのステップは,具体的には,以下の式(2)(3)の最適化問題を解くことで算出される。 I N is a unit matrix in which all elements are 1, and is an array of the same size as f i . Further, u c k, u w k sparse evaluation result component of the immediately preceding (Loop k th), b c k, b w k is a variation component calculated immediately before (Loop1 k th). μ is a positive constant as a parameter. For example, S102 is an orthogonal transformation step using Wavelet, DCT, or Curvelet, S103 is an L1 norm minimization step for evaluating the sparseness of the coefficient after the orthogonal transformation, and S104 is an inverse transformation step of the orthogonal basis S102. Specifically, the steps so far are calculated by solving the optimization problems of the following equations (2) and (3).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 ここで,Ψ,ΨはそれぞれCurvelet変換およびWavelet変換である。また,νc k+1,νw k+1はそれぞれCurvelet係数,Wavelet係数, Λc,Λwはパラメータとしての定数である。本実施例においては,直交変換としてCurvelet変換およびWavelet変換を利用しているが,これ以外を利用しても構わない。 Here, Ψ c and Ψ w are Curvelet transform and Wavelet transform, respectively. Ν c k + 1 and ν w k + 1 are the Curvelet coefficient and Wavelet coefficient, respectively, and Λ c and Λ w are constants as parameters. In this embodiment, Curvelet transform and Wavelet transform are used as orthogonal transform, but other than this may be used.
 式(2)(3)に関しては,どのような解法を用いてもよいが,本実施例ではソフトシュリンケージ法を用いる。すなわち,式(2)(3)の両辺をそれぞれCurvelet逆変換,Wavelet逆変換をすることで,以下,式(4)(5)を得る。 For the equations (2) and (3), any solution may be used, but in this embodiment, the soft shrinkage method is used. That is, by performing the Curvelet inverse transform and Wavelet inverse transform on both sides of Equations (2) and (3), Equations (4) and (5) are obtained below.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 式(4)(5)において,Ψ T,Ψ TはそれぞれCurvelet逆変換およびWavelet逆変換である。ScおよびSがソフトシュリンケージ処理を示す。ScおよびSはすべての要素についてそれぞれ以下に示す式(6),(7)で示す処理を行う。 In Equations (4) and (5), Ψ c T and Ψ w T are a Curvelet inverse transform and a Wavelet inverse transform, respectively. S c and S w represents the soft shrinkage process. For S c and S w , the processing shown by the following equations (6) and (7) is performed for all elements.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
  ここで,λはパラメータとしての定数である。 Λ where λ is a constant as a parameter.
 S105は直前のループで算出された画像との差分を算出する変動量算出ステップである。具体的には,変動量bc k+1,b k+1が以下に示す式(8),(9)を用いて算出される。 S105 is a fluctuation amount calculating step for calculating a difference from the image calculated in the immediately preceding loop. Specifically, the fluctuation amounts b c k + 1 and b w k + 1 are calculated using the following equations (8) and (9).
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 S106は疎性が所定レベル以上にあるかどうかを判定する条件ステップ,ここで,疎性が所定レベルとは,どのような定義のものでも構わないが,例えば前記の変動量が所定閾値以下(ほとんど変動がなく収束している)という条件が考えられる。S107は,前記L2ノルム最小化S101ステップ,L1ノルム最小化S103ステップにおける閾値設定の更新ステップである。具体的には,上記パラメータμ,λの値を更新する。このように、信号処理部109は、画像再構成処理として,L2ノルム最小化,L1ノルム最小化,及びL2ノルム最小化,L1ノルム最小化における閾値の更新を行う。 S106 is a condition step for determining whether or not the sparseness is equal to or higher than a predetermined level. Here, the sparseness may be defined at any level. For example, the fluctuation amount is equal to or lower than a predetermined threshold ( The condition is that there is almost no fluctuation and convergence). S107 is a threshold setting update step in the L2 norm minimizing S101 step and the L1 norm minimizing S103 step. Specifically, the values of the parameters μ and λ are updated. As described above, the signal processing unit 109 performs L2 norm minimization, L1 norm minimization, and threshold update in L2 norm minimization and L1 norm minimization as image reconstruction processing.
 S108は,式(1)で算出される推定結果画像uk+1をフーリエ変換し,実際に取得した部分以外のデータを式(10)に基づいて更新し,再構成画像を生成するステップである。 S108 is a step of performing Fourier transform on the estimation result image u k + 1 calculated by the equation (1), updating data other than the actually acquired part based on the equation (10), and generating a reconstructed image. is there.
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
  ここで,Fはフーリエ変換を示す。 F where F is the Fourier transform.
 式(10)の意味は,図4で示した観測パタンでの観測位置(白丸)の画素値はそのままコピーし,それ以外の画素を更新する処理を示す。 The meaning of Equation (10) indicates that the pixel value at the observation position (white circle) in the observation pattern shown in Fig. 4 is copied as it is, and the other pixels are updated.
 S109は再構成画像の画質が所定の閾値以上にあるかどうかを判定する条件ステップである。ここで,前記の所定の閾値としてはどのようなものでも構わないが,例えば所定ループ回数を回したか否かという条件が考えられる。すなわち、信号処理部109は、得られた画像の画質が所定の閾値を満たしているかどうかを判断するが、この所定の閾値として、例えば、画像再構成処理の繰り返し演算回数を用いることができる。また、画像再構成処理における直前の処理の画像との差分値や、信号処理部109で得られる画像の分散値などを用いることができる。 S109 is a condition step for determining whether the image quality of the reconstructed image is equal to or higher than a predetermined threshold. Here, the predetermined threshold value may be any value. For example, a condition of whether or not a predetermined number of loops has been turned can be considered. That is, the signal processing unit 109 determines whether or not the image quality of the obtained image satisfies a predetermined threshold value. As the predetermined threshold value, for example, it is possible to use the number of repetitions of the image reconstruction process. In addition, a difference value from the immediately preceding image in the image reconstruction process, an image dispersion value obtained by the signal processing unit 109, or the like can be used.
 図3の処理フローにおいて,Loop1はデータの疎性を高める処理,Loop2は画像復元性能を高める処理に相当する。それぞれのループ回数は,対象データに大きく依存するが,Loop1が~十数回,Loop2が~数百回のオーダーとなる。一般的に,図3に示すような処理フローの画像再構成処理を実施する場合,処理プラットフォームに依存はするが,最終推定画像出力が得られるまでに数分程度の時間を要することが想定される。 In the processing flow of Fig. 3, Loop1 corresponds to a process for increasing data sparseness, and Loop2 corresponds to a process for improving image restoration performance. The number of loops depends largely on the target data, but Loop1 is on the order of ~ 10 times and Loop2 is on the order of several hundred times. In general, when image reconstruction processing with the processing flow shown in Fig. 3 is performed, depending on the processing platform, it is expected that it will take several minutes to obtain the final estimated image output. The
 そこで,本実施例の診断画像生成装置においては,図5A,図5Bに示すような処理フローを実施して,条件に合致する場合(Yes)に中間画像を出力し,画像処理部110経由で画像表示部111に中間画像を表示する構成とする。なお,図5A,図5Bにおいて,図3と同じ処理に関しては,図3と同じ符号をつけて説明を省略する。本実施例に係る図5Aの処理フローにおいて,S109のLoop2の終了判定の条件2の結果がNoの場合に,更に,S110の別の判定を行う条件3を加える。S110の判定条件としては,例えば,S109のループ回数よりは少ない所定ループ回数や,直前の画像からの差分値,また,推定画像結果に対して,新たな評価指標を用いて判定を行ってもよい。この評価指標の一例として,上述したように推定画像の分散値を用いた閾値判定が考えられる。 Therefore, in the diagnostic image generation apparatus of the present embodiment, the processing flow as shown in FIGS. 5A and 5B is performed, and if the condition is met (Yes), an intermediate image is output, and the image processing unit 110 The intermediate image is displayed on the image display unit 111. 5A and 5B, the same processes as those in FIG. 3 are denoted by the same reference numerals as those in FIG. In the processing flow of FIG. 5A according to the present embodiment, if the result of the condition 2 for determining the end of Loop2 in S109 is No, condition 3 for performing another determination in S110 is further added. As the determination condition of S110, for example, a predetermined number of loops smaller than the number of loops of S109, a difference value from the previous image, or an estimated image result may be determined using a new evaluation index. Good. As an example of this evaluation index, threshold determination using a variance value of an estimated image can be considered as described above.
 或いは,図5Bに示すように,Loop1の終了判定の条件1の結果がNoの場合に,別の判定条件S111を加えることもできる。S111の条件としてはデータの疎性,例えばCurvelet係数,Wavelet係数の0以外の数で閾値判定をしてもよい。つまり,所定閾値以下の係数しか持たない状態になった際の画像を中間表示する。このS111の条件における所定閾値は数種類設定し,段階的に表示するようにしてもよい。 Alternatively, as shown in FIG. 5B, when the result of the condition 1 for determining the end of Loop1 is No, another determination condition S111 can be added. As a condition of S111, threshold determination may be performed based on data sparseness, for example, a number other than 0 of the Curvelet coefficient and Wavelet coefficient. That is, the image when it has a state having only a coefficient equal to or less than a predetermined threshold value is displayed in an intermediate manner. Several types of predetermined threshold values in the condition of S111 may be set and displayed step by step.
 図6は,図5AにおけるS110の判定条件として,所定ループ回数を1,10,30,50,100に設定した場合に,画像表示部111に表示される中間画像の表示イメージを示す図である。すなわち、信号処理部109は,複数の閾値各々を満たす複数の画像を出力し,画像表示部111は,複数の画像を同一画面上に表示する。このように,本実施例の画像生成装置においては,段階的に中間画像を表示させることにより,ユーザに対する表示までの待ち時間を緩和できると共に,それぞれの中間画像の段階に応じた確認,判断が可能となる。例えば,図6に示すように,ループ回数が少なく推定画像がぼやけている段階では撮影位置の位置確認,次は所定の臓器が映っているかの部位確認,最終的に組織確認という流れである。これにより,例えば途中の段階で部位等の確認ができない場合は,撮り直すといった作業が可能となり,最終画像出力まで待つ必要がない分,検査ワークフローの改善が期待できる。 FIG. 6 is a diagram showing a display image of an intermediate image displayed on the image display unit 111 when the predetermined number of loops is set to 1, 10, 30, 50, 100 as the determination condition of S110 in FIG. 5A. . That is, the signal processing unit 109 outputs a plurality of images that satisfy each of the plurality of threshold values, and the image display unit 111 displays the plurality of images on the same screen. As described above, in the image generating apparatus according to the present embodiment, the intermediate image is displayed step by step, so that the waiting time until the display to the user can be reduced, and confirmation and determination according to each intermediate image step can be performed. It becomes possible. For example, as shown in FIG. 6, in the stage where the number of loops is small and the estimated image is blurred, the position of the imaging position is confirmed, the next part is confirmed whether a predetermined organ is reflected, and finally the tissue is confirmed. As a result, for example, when a part or the like cannot be confirmed at an intermediate stage, it is possible to perform an operation such as re-taking, and an improvement in the inspection workflow can be expected because there is no need to wait until the final image output.
 以上説明したように,本実施例によれば,画像再構成処理の中間画像を出力する構成とすることにより,ユーザの画像表示までの待ち時間を緩和すると共に,撮影条件の正否を早い段階で認識・判断することができ,検査ワークフローの改善を図ることができる。 As described above, according to the present embodiment, the configuration in which the intermediate image of the image reconstruction process is output reduces the waiting time until the user displays an image, and whether or not the photographing condition is correct is determined at an early stage. It can be recognized and judged, and the inspection workflow can be improved.
 次に実施例2として,ユーザが再構成処理の中間画像に対して,領域を指定することが可能な診断画像生成装置を説明する。より具体的には,本実施例は,被写体からの信号を受信し,受信信号を画像再構成処理によって画像化し,その画質が所定の閾値を満たしているかどうかを判断する信号処理部と,信号処理部で所定の閾値を満たしていると判定された画像を閾値毎に表示する画像表示部と,ユーザからのインタラクティブ入力を可能とするユーザーインターフェース部と,を備え,信号処理部は,画像表示部に表示された画像に対する,ユーザーインターフェース部からの入力に応じて,画像上に所定領域を設定し,領域設定された所定領域に対して最適な画像処理を行う構成の画像診断装置の実施例である。 Next, as a second embodiment, a diagnostic image generation apparatus that allows a user to specify a region for an intermediate image of reconstruction processing will be described. More specifically, this embodiment receives a signal from a subject, images the received signal through image reconstruction processing, and determines whether the image quality satisfies a predetermined threshold, The signal processing unit includes an image display unit that displays, for each threshold, an image that is determined to satisfy a predetermined threshold by the processing unit, and a user interface unit that enables interactive input from the user. Example of an image diagnostic apparatus configured to set a predetermined area on an image in accordance with an input from a user interface unit with respect to an image displayed on the section, and to perform optimal image processing on the predetermined area set It is.
 図7は,本実施例のMRI装置の機能ブロックの一例を示す図である。本実施例のMRI装置700は,基本的に実施例1と同様の構成を有するが,タッチパネル等のユーザーインターフェース(UI)部701を更に備え,ユーザからのインタラクティブ入力を可能としている。以下,本実施例の構成について,第一の実施例と異なる構成に主眼をおいて説明する。 FIG. 7 is a diagram illustrating an example of functional blocks of the MRI apparatus according to the present embodiment. The MRI apparatus 700 according to the present embodiment basically has the same configuration as that of the first embodiment, but further includes a user interface (UI) unit 701 such as a touch panel to enable interactive input from the user. Hereinafter, the configuration of the present embodiment will be described focusing on the configuration different from the first embodiment.
 図7において,UI部701は,タッチパネル等ユーザ入力を実現するインターフェースであり,表示画像上で指定された領域の情報を,制御部112を介して信号処理部109の画像再構成処理部202へ制御信号205として送られる。図7における信号処理部109の機能構成は,図2と同様である。図8は,信号処理部109における画像再構成処理部202の処理フローである。図8において,図5A,図5Bと同じ処理に関しては,同図と同じ符号をつけて説明を省略する。 In FIG. 7, a UI unit 701 is an interface that realizes user input such as a touch panel. Information on a region designated on the display image is sent to the image reconstruction processing unit 202 of the signal processing unit 109 via the control unit 112. It is sent as a control signal 205. The functional configuration of the signal processing unit 109 in FIG. 7 is the same as that in FIG. FIG. 8 is a processing flow of the image reconstruction processing unit 202 in the signal processing unit 109. In FIG. 8, the same processes as those in FIGS. 5A and 5B are denoted by the same reference numerals as those in FIG.
 図8において,ステップS110を通して出力された中間画像に対して,ユーザがUI部701を介して領域を指定した場合(S201),画像再構成処理部202はこの指定に従って領域設定し(S202),領域設定された画像領域のL1ノルムが最小となるようなLoop1処理を実施する。領域設定の仕方としては,例えば,UI部701で中間画像上に指定された点の周囲の所定画素分を設定する。すなわち、信号処理部108は,タッチパネルによるユーザ入力点を中心とした所定画素分の矩形領域を領域として設定する。 In FIG. 8, when the user designates an area via the UI unit 701 for the intermediate image output through step S110 (S201), the image reconstruction processing unit 202 sets the area according to this designation (S202), Loop1 processing is performed so that the L1 norm of the image area that has been set is minimized. As a region setting method, for example, a predetermined pixel area around a point designated on the intermediate image by the UI unit 701 is set. That is, the signal processing unit 108 sets a rectangular area for a predetermined pixel centered on a user input point on the touch panel as an area.
 領域指定後のステップS101からS105は,以下式(11)(12)の最適化問題を解く処理へ変更する。 Steps S101 to S105 after the area specification are changed to processing for solving the optimization problem of the following equations (11) and (12).
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
 ここで,Nは指定された領域,νcN,νwNは,それぞれ領域NのCurvelet係数,Wavelet係数を示す。画像全体のCurvelet係数,Wavelet係数をそれぞれνcALL,νwALLとした場
合,式(13)(14)の関係が成り立つ。
Here, N is the designated region, and ν cN and ν wN are the Curvelet coefficient and Wavelet coefficient of the region N, respectively. When the Curvelet coefficient and Wavelet coefficient of the entire image are ν cALL and ν wALL , respectively, the relations of equations (13) and (14) are established.
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000014
 つまり,指定領域N内におけるL1ノルムが最小となるように,より具体的には指定領域内のCurvelet係数,Wavelet係数がそれぞれ疎になるように最適化が実施される。信号処理部109は,設定された領域に適した画像再構成処理として,当該領域内のL1ノルム最小化の処理を行う。 That is, the optimization is performed so that the L1 norm in the designated area N is minimized, more specifically, the Curvelet coefficient and the Wavelet coefficient in the designated area are sparse. The signal processing unit 109 performs L1 norm minimization processing in the region as image reconstruction processing suitable for the set region.
 また,式(10)(11)の解法として,ソフトシュリンケージ法を用いた場合,式(15)(16)を解くことになる。 In addition, when the soft shrinkage method is used as a method of solving equations (10) and (11), equations (15) and (16) are solved.
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000016
 これらの式の処理は,実施例1と同様のため省略するが,指定領域Nのみ処理を実施するため,処理速度の向上を見込むことができる。 The processing of these formulas is omitted because it is the same as in the first embodiment, but the processing speed is expected to be improved because only the designated area N is processed.
 図9は,実施例2による領域指定処理と結果のイメージを示す図である。中間画像表示901において,より詳細に見たい領域Nを設定903することで,最終的にはその周辺領域904が,より精度よく復元された画像902を得ることが可能となる。領域Nの指定方法に関しては,図9のようにタッチパネルを想定するものでなくても,例えばマウスやキーボード,トラックボールでの指定でも構わない。また,一点でなく矩形等の領域を直接設定してもよい。 FIG. 9 is a diagram showing an area designation process and a result image according to the second embodiment. By setting 903 a region N to be viewed in more detail in the intermediate image display 901, an image 902 in which the peripheral region 904 is finally restored with higher accuracy can be obtained. Regarding the designation method of the area N, the touch panel may not be assumed as shown in FIG. 9, but may be designated by, for example, a mouse, a keyboard, or a trackball. Also, a rectangular area or the like may be set directly instead of a single point.
 図8の処理フローにあっては,領域Nに最適な再構成処理となるため,それ以外の領域の再構成画像は基本的に保証されない。図9の画像902において,指定領域外は中間画像のままの画質として,示しているが,特に根拠があるわけではない。 In the processing flow of FIG. 8, since the reconstruction process is optimal for the area N, the reconstructed image of the other areas is not basically guaranteed. In the image 902 of FIG. 9, the image quality outside the designated area is shown as the intermediate image quality, but there is no particular reason.
 以上のように,本実施例によれば,ユーザの入力インターフェースを備えることにより,中間画像表示の段階でより詳細に見たい領域を指定することにで,指定領域に最適な再構成処理を実施,より好適な画像表示することが可能となる。 As described above, according to this embodiment, by providing a user input interface, it is possible to specify an area to be viewed in more detail at the intermediate image display stage, thereby performing an optimal reconstruction process for the specified area. , It is possible to display a more suitable image.
 また,本実施例によれば,指定領域に最適な再構成処理を実施できると共に,処理速度の向上も可能となり,検査時間短縮実現によるワークフロー改善により貢献することが可能となる。 In addition, according to the present embodiment, it is possible to perform optimum reconstruction processing in a specified area, and it is possible to improve the processing speed, and it is possible to contribute by improving the workflow by realizing the inspection time reduction.
 図10は,実施例2における信号処理部109の変形例である。図10に示すように,本実施例では画像再構成処理部202は再構成処理を2つ並列に装備している。図10において,画像再構成処理1 1001は,上述した実施例2での制御信号205で指定される指定領域に最適な再構成処理を実施し,画像再構成処理2 1002は,通常の画像全体の再構成処理を行う。本構成により,画像処再構成処理1の出力を表示することで,撮影画像適否判断を効率化や指定領域最適化を実施し,並行して画像再構成処理2 1002により全体画像の再構成処理を実施しておくことで,1度の撮影で2種類の画像を生成することができ,全体画像の再構成画像を後から確認することが可能となる。 FIG. 10 shows a modification of the signal processing unit 109 in the second embodiment. As shown in FIG. 10, in this embodiment, the image reconstruction processing unit 202 is equipped with two reconstruction processes in parallel. In FIG. 10, an image reconstruction process 1 to 1001 performs an optimum reconstruction process for the designated area designated by the control signal 205 in the second embodiment, and the image reconstruction process 2 to 1002 is an entire normal image. Perform reconfiguration processing. With this configuration, the output of the image processing reconstruction process 1 is displayed to improve the efficiency of the captured image judgment and the specified area optimization, and the entire image reconstruction process is performed in parallel with the image reconstruction process 2 1002. By implementing the above, it is possible to generate two types of images in one shooting, and to confirm the reconstructed image of the whole image later.
 また,制御信号205により,二つの指定領域を指定し,画像再構成処理2 1002では,画像再構成処理1 1001とは異なる指定領域の最適化を実施し,図11のように,設定903とは異なる領域の設定1101により,周辺領域904とは異なる周辺領域1102を同時に表示する構成も考えられる。すなわち、信号処理部109は,複数設定された領域各々に対する画像処理を並列に処理することが可能となる。更には,2つに限らず,複数個の画像再構成処理を並行動作させる構成を取ることで,複数の指定領域最適化画像を表示できる構成も考えられる。 Also, two designated areas are designated by the control signal 205, and in the image reconstruction process 2 to 1002, optimization of the designated area different from the image reconstruction process 1 to 1001 is performed, and as shown in FIG. A configuration in which a peripheral area 1102 different from the peripheral area 904 is simultaneously displayed by setting different areas 1101 is also conceivable. That is, the signal processing unit 109 can perform image processing for each of a plurality of set areas in parallel. Furthermore, the configuration is not limited to two, and a configuration in which a plurality of designated area optimized images can be displayed by adopting a configuration in which a plurality of image reconstruction processes are operated in parallel is also conceivable.
 実施例3は,事前に装置内部に装備しているデータベースと実際の再構成処理画像の傾
向から,画像表示までの時間,画質を予測し,ユーザに情報を提供することを可能とする
診断画像生成装置である。すなわち、本実施例は、画像診断装置であって,被写体から得
られた受信信号を画像再構成処理によって画像化し,画像を出力する信号処理部と,信号
処理部が出力する画像を表示する画像表示部と,信号処理部における画像再構成処理の演
算時間情報を記憶する記憶部とを備える構成の画像診断装置の実施例である。
In the third embodiment, a diagnostic image that makes it possible to predict the time and image quality until image display and provide information to the user based on the tendency of the database and the actual reconstructed image installed in the apparatus in advance. It is a generation device. In other words, the present embodiment is an image diagnostic apparatus, in which a received signal obtained from a subject is imaged by image reconstruction processing, and a signal processing unit that outputs an image and an image that displays an image output by the signal processing unit It is an Example of the image diagnostic apparatus of a structure provided with a display part and the memory | storage part which memorize | stores the calculation time information of the image reconstruction process in a signal processing part.
 図12は,本実施例のMRI装置の機能ブロックの一例を示す図である。本実施例のMRI装置1200は,基本的に実施例1と同様の構成を有するが,更に,データベースを保持するメモリ,HDD等の記憶装置1201を更に有する。この記憶装置1201としては,上述したコンピュータの記憶部を利用できる。信号処理部109からアクセス可能な記憶装置1201には,代表的な撮影検査におけるCS再構成処理のデータを格納する。具体的には,例えば図13に示すように,各撮影シーケンス,画像種,撮影部位毎に画像サンプル,再構成処理の収束曲線モデルを事前にデータベース1301に記憶しておく。すなわち、記憶装置1201には、演算時間情報として画像再構成処理の収束曲線モデルが記憶されている。 FIG. 12 is a diagram showing an example of functional blocks of the MRI apparatus of the present embodiment. The MRI apparatus 1200 of the present embodiment basically has the same configuration as that of the first embodiment, but further includes a storage device 1201 such as a memory for holding a database and an HDD. As the storage device 1201, the storage unit of the computer described above can be used. The storage device 1201 accessible from the signal processing unit 109 stores data of CS reconstruction processing in a typical imaging examination. Specifically, for example, as shown in FIG. 13, an image sample and a convergence curve model for reconstruction processing are stored in advance in the database 1301 for each imaging sequence, image type, and imaging region. That is, the storage device 1201 stores a convergence curve model of image reconstruction processing as calculation time information.
 図14に収束曲線モデルの具体例を示す。図14に示す各グラフにおいて,横軸は再構成処理のLoop回数,縦軸は画質指標,本例ではPeak Signal to Noise Ratio(PSNR)値を示している。図14の各グラフに示すように,再構成処理は所定繰り返し回数を境に,画質変化がほとんどなくなる,すなわち,収束する閾値としてのポイント1401,1402,1403が存在する。この閾値が一般的に各撮影シーケンスや撮影部位に応じて異なる。つまり,収束ポイント1401,1402,1403までの曲線の形状が異なる。 Fig. 14 shows a specific example of the convergence curve model. In each graph shown in FIG. 14, the horizontal axis represents the number of loops of reconstruction processing, the vertical axis represents the image quality index, and in this example, the Peak Signal to Noise Ratio (PSNR) value. As shown in the graphs of FIG. 14, the reconstruction process has almost no change in image quality after a predetermined number of repetitions, that is, there are points 1401, 1402, and 1403 as threshold values for convergence. This threshold value generally differs depending on each imaging sequence and imaging region. That is, the shapes of the curves up to the convergence points 1401, 1402, and 1403 are different.
 図15は,図12における本実施例の信号処理部109の構成の一例を示している。図15において,図2と同じ処理に関しては,図2と同じ符号をつけて説明を省略する。収束曲線予測処理部1501は,画像再構成処理部202における再構成処理結果を,記憶装置1201内のデータベースと比較する機能を有する。すなわち、信号処理部109は,受信信号に対する画像再構成処理の収束曲線と,記憶装置1201に記憶された収束曲線モデルとのパタンマッチング処理を行い,パタンマッチング処理の結果から,最もマッチングの高い収束曲線モデルを,受信信号の推定収束曲線とし,画像表示部111は推定収束曲線を表示する。 FIG. 15 shows an example of the configuration of the signal processing unit 109 of the present embodiment in FIG. 15, the same processes as those in FIG. 2 are denoted by the same reference numerals as those in FIG. The convergence curve prediction processing unit 1501 has a function of comparing the reconstruction processing result in the image reconstruction processing unit 202 with a database in the storage device 1201. That is, the signal processing unit 109 performs pattern matching processing between the convergence curve of the image reconstruction processing on the received signal and the convergence curve model stored in the storage device 1201, and the convergence with the highest matching is obtained from the result of the pattern matching processing. The curve model is the estimated convergence curve of the received signal, and the image display unit 111 displays the estimated convergence curve.
 図16に,図15における画像再構成処理部202の処理フローの一例を示している。図16は,実施例1における図5Aの構成と基本的に同じであるが,判定条件5 S301では,所定Loop回数以下の場合に中間画像を出力する点が異なっている。つまり,再構成処理の初期Loop段階の画像を出力する構成とする。図17は,図15における収束曲線予測処理部1501の機能構成の一例を示している。図17において,パタンマッチング処理部1701は,画像再構成処理部202で得られた再構成処理結果の画像と,データベース内の収束曲線モデル形状とのマッチングを計算する。判定部1702はパタンマッチング処理部1701の処理結果から推定収束曲線を選択する。パタンマッチング処理部1701では,データベース1301内の各撮影シーケンス,部位毎の収束曲線モデルと,撮影における所定Loop回数までの画像との分散値のマッチング処理を行う。具体的には,各Loopにおける画像の分散値の累積差分値を算出する。画像サイズN画素×M画素の場合,画像の分散値は以下式(17)(18)で表される。 FIG. 16 shows an example of the processing flow of the image reconstruction processing unit 202 in FIG. FIG. 16 is basically the same as the configuration of FIG. 5A in the first embodiment, except that the determination condition 5 S301 outputs an intermediate image when the number of loops is less than a predetermined number. That is, it is configured to output an image at the initial loop stage of the reconstruction process. FIG. 17 shows an example of the functional configuration of the convergence curve prediction processing unit 1501 in FIG. In FIG. 17, the pattern matching processing unit 1701 calculates matching between the image of the reconstruction processing result obtained by the image reconstruction processing unit 202 and the convergence curve model shape in the database. The determination unit 1702 selects an estimated convergence curve from the processing result of the pattern matching processing unit 1701. The pattern matching processing unit 1701 performs a matching process of variance values between each imaging sequence and the convergence curve model for each part in the database 1301 and images up to a predetermined number of loops in imaging. Specifically, the cumulative difference value of the image dispersion values in each loop is calculated. When the image size is N pixels × M pixels, the image dispersion value is expressed by the following equations (17) and (18).
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000018
  ここで,Piは各画素値,Eは画素平均値,Eσ2が分散値である。 Here, Pi is each pixel value, E is a pixel average value, and Eσ 2 is a variance value.
 式(18)で計算される中間画像,及びデータベース内のリファレンス画像の分散値をそれぞれEIσ2,ERσ2とし,所定Loop回数が10回の場合,分散値の累積差分値Diff Eσ2は以下式(19)で表される。リファレンス画像に関しては事前に分散値を計算し,例えば図13のデータベース1301のデータの一つとして記憶装置1201へ格納しておいてもよい。 When the variance values of the intermediate image calculated by Equation (18) and the reference image in the database are EIσ 2 and ERσ 2 , respectively, and the predetermined number of loops is 10, the accumulated difference value Diff Eσ 2 of the variance value is It is represented by (19). For the reference image, a variance value may be calculated in advance and stored in the storage device 1201 as one of data in the database 1301 in FIG. 13, for example.
Figure JPOXMLDOC01-appb-M000019
Figure JPOXMLDOC01-appb-M000019
 データベース内の全てのリファレンスとのDiff Eσ2を算出し,判定部1702では,それらのうち最も値の小さいリファレンス画像の収束曲線モデルを推定収束曲線として表示する。つまり,最初の数回~数十回の中間画像の評価値(分散値)から,収束曲線傾向を予測し,近いと思われる収束曲線モデルを表示する。 Diff Eσ 2 with all the references in the database is calculated, and the determination unit 1702 displays the convergence curve model of the reference image having the smallest value among them as an estimated convergence curve. In other words, the convergence curve tendency is predicted from the evaluation value (dispersion value) of the first few to several tens of intermediate images, and the convergence curve model that appears to be close is displayed.
 図18の(a)は,本実施例の装置の画像表示部111の画面上の表示イメージの一例を示す。これにより画像表示までの時間が大体把握できるため,例えば図18の(b)のように問合せを表示し,このまま処理を継続するか否かをユーザに選択させるようにしてもよい。 FIG. 18 (a) shows an example of a display image on the screen of the image display unit 111 of the apparatus of this embodiment. Thus, since the time until image display can be roughly grasped, for example, an inquiry may be displayed as shown in FIG. 18B, and the user may select whether or not to continue the process.
 本実施例によれば,再構成処理時間の予測を推定収束曲線を表示することで直観的に知ることができ,ユーザが事前に検査時間を把握することができる。 According to the present embodiment, it is possible to intuitively know the prediction of the reconstruction processing time by displaying the estimated convergence curve, and the user can grasp the inspection time in advance.
 以上詳述した本発明によれば,再構成処理で得られる画像を事前に評価,判断することができ,臨床に最適な撮影ができたかどうかを早期に確認することができ,医療現場における検査ワークフローを改善することができる。 According to the present invention described in detail above, the image obtained by the reconstruction process can be evaluated and judged in advance, and it can be confirmed at an early stage whether or not the optimum imaging for clinical use has been performed. The workflow can be improved.
 なお,本発明は上記した実施例に限定されるものではなく,様々な変形例が含まれる。例えば,上記した実施例は本発明のより良い理解のために詳細に説明したのであり,必ずしも説明の全ての構成を備えるものに限定されものではない。また,ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり,また,ある実施例の構成に他の実施例の構成を加えることが可能である。また,各実施例の構成の一部について,他の構成の追加・削除・置換をすることが可能である。 In addition, this invention is not limited to the above-mentioned Example, Various modifications are included. For example, the above-described embodiments have been described in detail for better understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of a certain embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of a certain embodiment. In addition, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.
 更に,上述した各構成,機能,処理部等は,それらの一部又は全部をCPUで実現するプログラムを作成する例を説明したが,それらの一部又は全部を例えば集積回路で設計する等によりハードウェアで実現しても良いことは言うまでもない。 In addition, the above-described configuration, function, processing unit, etc. have been described as an example of creating a program that realizes a part or all of them with a CPU. Needless to say, it may be realized by hardware.
100 MRI装置
101 被写体
102 磁石
103 傾斜磁場コイル
104 RFコイル
105 RFコイル
106 傾斜磁場電源
107 RF送信部
108 信号検出部
109 信号処理部
110 画像処理部
111 画像表示部
112 制御部
201 フーリエ逆変換部
202 画像再構成処理部
203 画像合成処理部
204 フィルタリング処理部
701 UI部
901 中間画像表示
902 復元画像
903 設定領域
904 周辺領域
1001 画像再構成処理1
1002 画像再構成処理2
1200 MRI装置
1201 記憶装置
1301 データベース
1501 収束曲線予測処理
1701 パタンマッチング処理部
1702 判定部
100 MRI apparatus 101 Subject 102 Magnet 103 Gradient magnetic field coil 104 RF coil 105 RF coil 106 Gradient magnetic field power source 107 RF transmission unit 108 Signal detection unit 109 Signal processing unit 110 Image processing unit 111 Image display unit 112 Control unit 201 Inverse Fourier transform unit 202 Image reconstruction processing unit 203 Image composition processing unit 204 Filtering processing unit 701 UI unit 901 Intermediate image display 902 Restored image 903 Setting area 904 Peripheral area 1001 Image reconstruction process 1
1002 Image reconstruction process 2
1200 MRI device 1201 Storage device 1301 Database 1501 Convergence curve prediction processing 1701 Pattern matching processing unit 1702 Determination unit

Claims (15)

  1. 画像診断装置であって,
    被写体から得られた受信信号を画像再構成処理によって画像化し,得られた画像の画質が所定の閾値を満たしているかどうかを判断する信号処理部と,
    前記信号処理部で前記閾値を満たしていると判定された前記画像を前記閾値毎に表示する画像表示部と,を備える,
    ことを特徴とする画像診断装置。
    A diagnostic imaging device,
    A signal processing unit that images a received signal obtained from a subject by image reconstruction processing and determines whether the image quality of the obtained image satisfies a predetermined threshold;
    An image display unit that displays, for each of the threshold values, the image determined to satisfy the threshold value by the signal processing unit,
    An image diagnostic apparatus characterized by that.
  2. 請求項1記載の画像診断装置であって,
    前記閾値は,前記信号処理部における前記画像再構成処理の繰り返し演算回数である,
    ことを特徴とする画像診断装置。
    The diagnostic imaging apparatus according to claim 1,
    The threshold value is the number of repetitions of the image reconstruction process in the signal processing unit.
    An image diagnostic apparatus characterized by that.
  3. 請求項1記載の画像診断装置であって,
    前記閾値は,前記信号処理部の前記画像再構成処理における,直前の処理の画像との差分値である,
    ことを特徴とする画像診断装置。
    The diagnostic imaging apparatus according to claim 1,
    The threshold value is a difference value from the image of the immediately preceding process in the image reconstruction process of the signal processing unit.
    An image diagnostic apparatus characterized by that.
  4. 請求項1記載の画像診断装置であって,
    前記閾値は,前記信号処理部で得られる前記画像の分散値である,
    ことを特徴とする画像診断装置。
    The diagnostic imaging apparatus according to claim 1,
    The threshold value is a variance value of the image obtained by the signal processing unit.
    An image diagnostic apparatus characterized by that.
  5. 請求項1記載の画像診断装置であって,
    前記信号処理部は,複数の前記閾値各々を満たす複数の画像を出力し,前記画像表示部は,前記複数の画像を同一画面上に表示する,
    ことを特徴とする画像診断装置。
    The diagnostic imaging apparatus according to claim 1,
    The signal processing unit outputs a plurality of images satisfying each of the plurality of threshold values, and the image display unit displays the plurality of images on the same screen.
    An image diagnostic apparatus characterized by that.
  6. 請求項1記載の画像診断装置であって,
    前記信号処理部は,前記画像再構成処理として,L2ノルム最小化,L1ノルム最小化,及び前記L2ノルム最小化,前記L1ノルム最小化における閾値の更新を行う,
    ことを特徴とする画像診断装置。
    The diagnostic imaging apparatus according to claim 1,
    The signal processing unit performs L2 norm minimization, L1 norm minimization, and L2 norm minimization, threshold updating in the L1 norm minimization, as the image reconstruction process.
    An image diagnostic apparatus characterized by that.
  7. 請求項1記載の画像診断装置であって,
    インタラクティブ入力を可能とするユーザーインターフェース部を更に備え,
    前記信号処理部は,前記画像表示部に表示された画像に対する前記ユーザーインターフェース部からの入力に応じて,前記画像上に領域を設定し,設定された前記領域に適した画像再構成処理を実行する,
    ことを特徴とする画像診断装置。
    The diagnostic imaging apparatus according to claim 1,
    A user interface that enables interactive input,
    The signal processing unit sets an area on the image in response to an input from the user interface unit with respect to the image displayed on the image display unit, and executes an image reconstruction process suitable for the set area Do,
    An image diagnostic apparatus characterized by that.
  8. 請求項7記載の画像診断装置であって,
    前記ユーザーインターフェース部はタッチパネルであり,前記信号処理部は,前記タッチパネルによるユーザ入力点を中心とした所定画素分の矩形領域を前記領域として設定する,
    ことを特徴とする画像診断装置。
    The diagnostic imaging apparatus according to claim 7,
    The user interface unit is a touch panel, and the signal processing unit sets a rectangular area for a predetermined pixel centered on a user input point by the touch panel as the area.
    An image diagnostic apparatus characterized by that.
  9. 請求項7記載の画像診断装置であって,
    前記信号処理部は,設定された前記領域に適した前記画像再構成処理として,前記領域内のL1ノルム最小化の処理を行う,
    ことを特徴とする画像診断装置。
    The diagnostic imaging apparatus according to claim 7,
    The signal processing unit performs L1 norm minimization processing in the region as the image reconstruction processing suitable for the set region.
    An image diagnostic apparatus characterized by that.
  10. 請求項7記載の画像診断装置であって,
    前記信号処理部は,複数設定された前記領域各々に対する画像処理を並列に処理する,
    ことを特徴とする画像診断装置。
    The diagnostic imaging apparatus according to claim 7,
    The signal processing unit processes image processing for each of the plurality of set regions in parallel.
    An image diagnostic apparatus characterized by that.
  11. 画像診断装置であって,
    被写体から得られた受信信号を画像再構成処理によって画像化し,画像を出力する信号処理部と,
    前記信号処理部が出力する前記画像を表示する画像表示部と,
    前記信号処理部における前記画像再構成処理の演算時間情報を記憶する記憶部と,を備える,
    ことを特徴とする画像診断装置。
    A diagnostic imaging device,
    A signal processing unit that images a received signal obtained from a subject by image reconstruction processing and outputs an image;
    An image display unit for displaying the image output by the signal processing unit;
    A storage unit for storing calculation time information of the image reconstruction processing in the signal processing unit,
    An image diagnostic apparatus characterized by that.
  12. 請求項11記載の画像診断装置であって,
    前記記憶部に記憶される前記演算時間情報は,前記信号処理部による前記画像再構成処理の収束曲線モデルである,
    ことを特徴とする画像診断装置。
    The diagnostic imaging apparatus according to claim 11,
    The calculation time information stored in the storage unit is a convergence curve model of the image reconstruction processing by the signal processing unit,
    An image diagnostic apparatus characterized by that.
  13. 請求項11記載の画像診断装置であって,
    前記信号処理部は,前記受信信号に対する前記画像再構成処理の収束曲線と,前記記憶部に記憶された前記収束曲線モデルとのパタンマッチング処理を行い,前記パタンマッチング処理の結果から,最もマッチングの高い前記収束曲線モデルを,前記受信信号の推定収束曲線とし,前記画像表示部は前記推定収束曲線を表示する,
    ことを特徴とする画像診断装置。
    The diagnostic imaging apparatus according to claim 11,
    The signal processing unit performs a pattern matching process between the convergence curve of the image reconstruction process for the received signal and the convergence curve model stored in the storage unit, and the most matching result is obtained from the result of the pattern matching process. The high convergence curve model is the estimated convergence curve of the received signal, and the image display unit displays the estimated convergence curve.
    An image diagnostic apparatus characterized by that.
  14. 画像診断装置における画像生成方法であって,
    前記画像診断装置は,
    被写体から得られた受信信号を画像再構成手法によって画像化し,得られた画像の画質が所定の閾値を満たしているかどうかを判定し,
    前記所定の閾値を満たしていると判定された前記画像を前記閾値毎に画像表示部に表示する,
    ことを特徴とする画像生成方法。
    An image generation method in an image diagnostic apparatus,
    The diagnostic imaging apparatus includes:
    The received signal obtained from the subject is imaged by an image reconstruction method, and it is determined whether the image quality of the obtained image satisfies a predetermined threshold,
    Displaying the image determined to satisfy the predetermined threshold on the image display unit for each threshold;
    An image generation method characterized by the above.
  15. 請求項14記載の画像生成方法であって,
    前記画像診断装置は,
    前記画像表示部に表示された画像に対する,インタラクティブ入力を可能とするユーザーインターフェース部からの入力に応じて,前記画像上に領域を設定し,設定された前記領域に適した画像再構成処理を実行する,
    ことを特徴とする画像生成方法。
    15. The image generation method according to claim 14, wherein
    The diagnostic imaging apparatus includes:
    A region is set on the image in response to an input from the user interface unit that enables interactive input with respect to the image displayed on the image display unit, and an image reconstruction process suitable for the set region is executed. Do,
    An image generation method characterized by the above.
PCT/JP2016/068059 2015-06-22 2016-06-17 Image diagnosing device and method WO2016208503A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017524850A JP6423094B2 (en) 2015-06-22 2016-06-17 Diagnostic imaging apparatus and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015124505 2015-06-22
JP2015-124505 2015-06-22

Publications (1)

Publication Number Publication Date
WO2016208503A1 true WO2016208503A1 (en) 2016-12-29

Family

ID=57585428

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/068059 WO2016208503A1 (en) 2015-06-22 2016-06-17 Image diagnosing device and method

Country Status (2)

Country Link
JP (1) JP6423094B2 (en)
WO (1) WO2016208503A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018037868A1 (en) * 2016-08-22 2018-03-01 株式会社日立製作所 Magnetic resonance imaging device and image reconstruction method
WO2018155046A1 (en) * 2017-02-21 2018-08-30 株式会社日立製作所 Medical imaging device, image processing method, and program

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102023203460B3 (en) 2023-04-17 2024-01-25 Siemens Healthcare Gmbh Computer-implemented method for operating an imaging device, imaging device, computer program and electronically readable data carrier

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0246828A (en) * 1988-08-10 1990-02-16 Hitachi Ltd Method for imaging mri
JP2013005985A (en) * 2011-06-27 2013-01-10 Ge Medical Systems Global Technology Co Llc Magnetic resonance imaging apparatus
WO2014207139A1 (en) * 2013-06-28 2014-12-31 Koninklijke Philips N.V. Methods of utilizing image noise information

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0246828A (en) * 1988-08-10 1990-02-16 Hitachi Ltd Method for imaging mri
JP2013005985A (en) * 2011-06-27 2013-01-10 Ge Medical Systems Global Technology Co Llc Magnetic resonance imaging apparatus
WO2014207139A1 (en) * 2013-06-28 2014-12-31 Koninklijke Philips N.V. Methods of utilizing image noise information

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SRIKANT KAMESH IYER ET AL.: "Fast reconstruction of 3D LGE images of the left atrium in a compressed sensing framework using Split Bregman", PROC. INTL. SOC. MAG. RESON. MED., vol. 21, April 2013 (2013-04-01), pages 2607, XP055340056 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018037868A1 (en) * 2016-08-22 2018-03-01 株式会社日立製作所 Magnetic resonance imaging device and image reconstruction method
WO2018155046A1 (en) * 2017-02-21 2018-08-30 株式会社日立製作所 Medical imaging device, image processing method, and program
US10885680B2 (en) 2017-02-21 2021-01-05 Hitachi, Ltd. Medical imaging device, image processing method, and program

Also Published As

Publication number Publication date
JP6423094B2 (en) 2018-11-14
JPWO2016208503A1 (en) 2018-03-08

Similar Documents

Publication Publication Date Title
US11341616B2 (en) Methods and system for selective removal of streak artifacts and noise from images using deep neural networks
CN108885246B (en) Diffusion MRI method for generating synthetic diffusion images at high b-values
US11042803B2 (en) Method and apparatus for using generative adversarial networks in magnetic resonance image reconstruction
JP3976684B2 (en) Method and apparatus for reducing the effects of motion in images
JP6044046B2 (en) Motion following X-ray CT image processing method and motion following X-ray CT image processing apparatus
JP6753798B2 (en) Medical imaging equipment, image processing methods and programs
JP6072723B2 (en) Magnetic resonance imaging apparatus and imaging method
JP2020137992A (en) Magnetic resonance imaging apparatus, method, and program
CN109152549B (en) Image diagnosis apparatus and image acquisition method
JP6423094B2 (en) Diagnostic imaging apparatus and method
US8559688B2 (en) System and method for processing data signals
WO2017221654A1 (en) Magnetic resonance imaging device, image processing device, and method for calculating diffusion weighted image
CN111856367A (en) Magnetic resonance imaging system and method for detecting and correcting patient motion
US8503755B2 (en) Tomosynthesis method with an iterative maximum a posteriori reconstruction
JP2020146449A (en) Magnetic resonance image high-speed reconfiguring method and magnetic resonance imaging device
EP3542176B1 (en) Intensity corrected magnetic resonance images
JP2019213623A (en) Medical information processing device, medical information processing method, and program
JP2021171490A (en) Magnetic resonance imaging device and image reconstruction method
WO2023219963A1 (en) Deep learning-based enhancement of multispectral magnetic resonance imaging
KR102090690B1 (en) Apparatus and method for selecting imaging protocol of magnetic resonance imaging by using artificial neural network, and computer-readable recording medium storing related program
JP5105823B2 (en) Magnetic resonance imaging apparatus, medical image processing method, program, and medical image display system
JP6202761B2 (en) Magnetic resonance imaging apparatus and processing method thereof
JP6681708B2 (en) Magnetic resonance imaging equipment
CN115667969A (en) Automatic adjustment of undersampling factors
KR101797141B1 (en) Apparatus and method for image processing of magnetic resonance

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16814274

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017524850

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16814274

Country of ref document: EP

Kind code of ref document: A1