WO2016208469A1 - Release film for ceramic green sheet production process - Google Patents

Release film for ceramic green sheet production process Download PDF

Info

Publication number
WO2016208469A1
WO2016208469A1 PCT/JP2016/067796 JP2016067796W WO2016208469A1 WO 2016208469 A1 WO2016208469 A1 WO 2016208469A1 JP 2016067796 W JP2016067796 W JP 2016067796W WO 2016208469 A1 WO2016208469 A1 WO 2016208469A1
Authority
WO
WIPO (PCT)
Prior art keywords
ceramic green
release agent
green sheet
release
polyorganosiloxane
Prior art date
Application number
PCT/JP2016/067796
Other languages
French (fr)
Japanese (ja)
Inventor
森 裕一
佐藤 慶一
Original Assignee
リンテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リンテック株式会社 filed Critical リンテック株式会社
Priority to CN201680005002.7A priority Critical patent/CN107148348A/en
Priority to KR1020177023942A priority patent/KR20180020946A/en
Priority to SG11201710776UA priority patent/SG11201710776UA/en
Publication of WO2016208469A1 publication Critical patent/WO2016208469A1/en
Priority to PH12017502383A priority patent/PH12017502383A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/30Producing shaped prefabricated articles from the material by applying the material on to a core or other moulding surface to form a layer thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/42Layered products comprising a layer of synthetic resin comprising condensation resins of aldehydes, e.g. with phenols, ureas or melamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/283Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/044Forming conductive coatings; Forming coatings having anti-static properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/20Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen
    • C08L61/26Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with heterocyclic compounds
    • C08L61/28Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with heterocyclic compounds with melamine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • C08L83/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G13/00Apparatus specially adapted for manufacturing capacitors; Processes specially adapted for manufacturing capacitors not provided for in groups H01G4/00 - H01G11/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/748Releasability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2309/00Parameters for the laminating or treatment process; Apparatus details
    • B32B2309/08Dimensions, e.g. volume
    • B32B2309/10Dimensions, e.g. volume linear, e.g. length, distance, width
    • B32B2309/105Thickness

Definitions

  • the present invention relates to a release film used in a process for producing a ceramic green sheet.
  • a ceramic green sheet is formed, and a plurality of obtained ceramic green sheets are laminated and fired.
  • the ceramic green sheet is formed by coating a ceramic slurry containing a ceramic material such as barium titanate or titanium oxide on a release film.
  • the release film is required to have releasability that allows the release film to be peeled off from the thin ceramic green sheet formed on the release film with an appropriate peeling force without causing cracks or breakage.
  • the release film is generally composed of a base material and a release agent layer provided on one surface of the base material.
  • the release agent layer there is a layer made of an ultraviolet curable compound.
  • This release agent layer is formed by applying a release agent composition containing an ultraviolet curable compound on a substrate and curing the composition by irradiation with ultraviolet rays.
  • ultraviolet curable compounds whose curing is inhibited by oxygen.
  • curing in the vicinity of the surface of the release agent layer on the side opposite to the substrate surface in contact with the ceramic slurry / ceramic green sheet; hereinafter may be referred to as “release surface”). It may be insufficient.
  • the release agent layer is not sufficiently cured, the elasticity of the release agent layer is lowered. As a result, the peeling force required for peeling the release sheet from the ceramic green sheet formed on the release surface is increased.
  • Patent Document 1 discloses a release film provided with a release agent layer containing a thermosetting compound such as melamine resin and polysiloxane (polyorganosiloxane).
  • a release agent layer containing a thermosetting compound such as melamine resin and polysiloxane (polyorganosiloxane).
  • the release agent layer contains polyorganosiloxane, the release force can be reduced to some extent.
  • the melamine resin condenses by heating and can be cured without the above-described inhibition by oxygen. Therefore, the above-mentioned problem peculiar when an ultraviolet curable compound is used can be avoided.
  • the “melamine resin” means a mixture containing at least one of a plurality of types of melamine compounds and a polynuclear product formed by condensation of one or more types of melamine compounds.
  • the phrase “melamine resin” means the above mixture or an aggregate of one kind of melamine compounds.
  • what the said melamine resin hardened shall be called "melamine hardened
  • Such a shift is considered to be caused by, for example, accumulation of a shift in the stacking position in the stacking process, a shift due to thermocompression bonding in the thermocompression bonding process, a shift due to shrinkage in the sintering process, and the like.
  • the present invention has been made in view of such a situation, and exhibits a good releasability and is a peel for ceramic green sheet manufacturing process in which the migration of polyorganosiloxane from the release agent layer to the ceramic green sheet is suppressed.
  • the object is to provide a film.
  • the present invention is a release film for a ceramic green sheet manufacturing process, comprising a base material and a release agent layer provided on one side of the base material, the release agent The layer was formed from a release agent composition containing a polyorganosiloxane having at least one hydroxyl group in one molecule and a melamine resin having a total acid value of 0.030 to 0.154 mg KOH / g.
  • a release film for a ceramic green sheet manufacturing process (Invention 1).
  • the release agent layer comprises a polyorganosiloxane having at least one hydroxyl group in one molecule and a melamine resin having a total acid value of 0.030 to 0.154 mg KOH / g.
  • the polyorganosiloxane preferably has at least one organic group selected from a polyester group and a polyether group in one molecule (Invention 2).
  • At least one of the hydroxyl groups is preferably present at the end of the polyorganosiloxane (Invention 3).
  • the polyorganosiloxane preferably has a weight average molecular weight of 1,000 to 300,000 (Invention 4).
  • the melamine resin has the following general formula (a): (In the formula, X represents —H, —CH 2 —OH, or —CH 2 —O—R, and may be the same or different. R represents a carbon number of 1-8. Each represents the same or different alkyl group, and at least one X is —CH 2 —OH.) Or a polynuclear product obtained by condensing two or more of the compounds (Invention 5).
  • the release agent composition preferably further contains an acid catalyst (Invention 6).
  • the thickness of the release agent layer is preferably 0.1 to 3 ⁇ m (Invention 7).
  • the release film for a ceramic green sheet production process according to the present invention exhibits good releasability and suppresses migration of polyorganosiloxane from the release agent layer to the ceramic green sheet.
  • release film 1 ⁇ / b> A for a ceramic green sheet manufacturing process according to the first embodiment is a base material 11 and one of the base materials 11. And a release agent layer 12 laminated on the surface (the upper surface in FIG. 1).
  • the release film 1 ⁇ / b> B for the ceramic green sheet manufacturing process according to the second embodiment includes the base material 11 and the base material 11.
  • the release agent layer 12 of the release films 1A and 1B comprises a polyorganosiloxane having at least one hydroxyl group in one molecule and a melamine resin having a total acid value of 0.030 to 0.154 mg KOH / g. It is formed from the contained release agent composition.
  • the release agent composition for forming the release agent layer 12 contains polyorganosiloxane. For this reason, the surface free energy in the peeling surface of the release agent layer 12 falls moderately. Furthermore, the release agent composition contains a melamine resin. For this reason, the release agent composition can be sufficiently cured by heating, and the formed release agent layer 12 has sufficient elasticity. By these, the peeling force at the time of peeling peeling film 1A, 1B from the ceramic green sheet shape
  • the total acid value of the melamine resin contained in the release agent composition for forming the release agent layer 12 is 0.030 to 0.154 mg KOH / g.
  • the melamine resin has a relatively large number of acidic functional groups.
  • This acidic functional group is derived mainly from the hydroxyl group of the methylol group (—CH 2 —OH) in the melamine resin.
  • the polyorganosiloxane contained in the release agent composition also has at least one hydroxyl group in one molecule.
  • the total acid value of the melamine resin is 0.030 to 0.154 mg KOH / g, and 0.032 to 0.100 mg KOH / g. It is preferably 0.035 to 0.070 mg KOH / g.
  • the total acid value of the melamine resin means the mass (mg) of potassium hydroxide necessary to completely react the group capable of reacting with potassium hydroxide contained in 1 g of melamine resin.
  • the total acid value of a melamine resin shall be represented not by a theoretical value but by an actual measured value.
  • the group capable of reacting with potassium hydroxide is a methylol group (—CH 2 —OH).
  • imino groups (—NH—) and alkyl ether groups (—CH 2 —OR) do not react with potassium hydroxide.
  • the specific measuring method of the total acid value of a melamine resin is as showing in the test example mentioned later.
  • the total acid value is less than 0.030 gKOH / g, the number of hydroxyl groups in the melamine resin becomes insufficient, and the reaction between the polyorganosiloxane and the melamine resin does not proceed sufficiently.
  • the formed release agent layer 12 the amount of polyorganosiloxane that is not fixed to the melamine cured product increases, and migration of the polyorganosiloxane to the ceramic green sheet is likely to occur.
  • the melamine resin preferably contains a melamine compound represented by the following general formula (a) or a polynuclear product obtained by condensing two or more of the melamine compounds.
  • X represents —H, —CH 2 —OH, or —CH 2 —O—R.
  • These groups constitute reactive groups in the condensation reaction between the melamine compounds. Specifically, the —NH group formed when X becomes H can undergo a condensation reaction between the —N—CH 2 —OH group and the —N—CH 2 —R group. Both the —N—CH 2 —OH group formed when X becomes —CH 2 —OH and the —N—CH 2 —R group formed when X becomes —CH 2 —R are both , —NH group, —N—CH 2 —OH group and —N—CH 2 —R group can be subjected to a condensation reaction.
  • At least one X is —CH 2 —OH.
  • the presence of at least one —CH 2 —OH group enables reaction between the hydroxyl group contained in the group and the hydroxyl group of the polyorganosiloxane, and the migration of the polyorganosiloxane is suppressed as described above.
  • the melamine resin contains a polynuclear product obtained by condensing the melamine compound, the polynuclear product itself has at least one —CH 2 —OH group.
  • R represents an alkyl group having 1 to 8 carbon atoms.
  • the number of carbon atoms is preferably 1 to 6, and particularly preferably 1 to 3.
  • Examples of the alkyl group having 1 to 8 carbon atoms include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, and an octyl group, and a methyl group is particularly preferable.
  • the above Xs may be the same or different.
  • said R may be the same respectively, and may differ.
  • Melamine compounds generally include a full ether form in which all Xs are —CH 2 —O—R, imino methylol in which at least one X is —CH 2 —OH and at least one X is H. type, at least one X is -CH 2 -OH and and and methylol type is H X is absent, and, at least one X is not present -CH 2 -OH a and a H H imino There are types such as types.
  • the melamine resin is an imino / methylol type from the viewpoint that curling is easily suppressed and the physical property that the total acid value is 0.030 to 0.154 mgKOH / g.
  • it preferably contains a methylol type melamine compound.
  • a methylol type melamine compound it is preferable that more X is -CH 2 -OH, in particular, the number of X is a -CH 2 -OH is preferably at least two, In particular, at least three are preferable.
  • the melamine resin may contain a polynuclear product obtained by condensing 2 to 50 compounds represented by the above formula (a), and may contain a polynuclear product obtained by condensing 2 to 30 compounds.
  • a polynuclear product formed by condensation of 10 may be included, and further, a polynuclear product formed by condensation of 2 to 5 may be included.
  • the weight average molecular weight of the melamine resin is preferably 350 to 10000, particularly preferably 700 to 5000, and more preferably 1000 to 4000. Is preferred.
  • the weight average molecular weight is 350 or more, the crosslinking rate is stabilized, and a smoother release surface can be formed.
  • the weight average molecular weight is 10,000 or less, an excessive increase in the viscosity of the release agent composition is suppressed. Thereby, the applicability
  • the weight average molecular weight in this specification is the value of standard polystyrene conversion measured by the gel permeation chromatography (GPC) method.
  • the polyorganosiloxane preferably has at least one hydroxyl group in one molecule. Further, the upper limit of the number of hydroxyl groups in one molecule of polyorganosiloxane is not particularly limited, but is 20 for example. Since the release agent layer 12 of the release films 1A and 1B is formed of a release agent composition containing polyorganosiloxane, the release surface of the release agent layer 12 can exhibit good release properties. Further, since the polyorganosiloxane has the hydroxyl group, the polyorganosiloxane can be fixed to the cured melamine by a condensation reaction with the melamine resin. As a result, the migration of the polyorganosiloxane from the release agent layer 12 to the ceramic green sheet is suppressed.
  • the structure other than the hydroxyl group in the polyorganosiloxane is particularly limited as long as it does not inhibit the above-described peelability, the condensation reaction between the polyorganosiloxane and the melamine resin, and the condensation reaction between the melamine compounds contained in the melamine resin. It is not a thing.
  • a polymer of a silicon-containing compound represented by the following general formula (b) can be used as the polyorganosiloxane.
  • m is an integer of 1 or more.
  • At least one of R 1 to R 8 is a hydroxyl group or an organic group having a hydroxyl group.
  • at least one of R 3 to R 8 is preferably a hydroxyl group or an organic group having a hydroxyl group. That is, it is preferable that at least one of the hydroxyl group or the organic group having a hydroxyl group is present at the terminal of the polyorganosiloxane. When the hydroxyl group is present at the terminal, the polyorganosiloxane easily undergoes a condensation reaction with the melamine resin, and the migration of the polyorganosiloxane is effectively suppressed.
  • At least one of the groups other than the hydroxyl group among R 1 to R 8 is preferably an organic group.
  • the other organic groups contained in R 1 to R 8 may be an organic group having a hydroxyl group, or An organic group having no hydroxyl group may be used.
  • the other organic groups contained in R 1 to R 8 are organic groups having a hydroxyl group.
  • the “organic group” does not include an alkyl group described later.
  • the polyorganosiloxane represented by the formula (b) preferably has at least one organic group having a hydroxyl group or an organic group having no hydroxyl group in one molecule, particularly preferably 1 to 10, more preferably It is preferable to have 1 to 5 pieces.
  • the organic group is preferably one or more organic groups selected from a polyester group and a polyether group. Both polyester groups and polyether groups may be present in one molecule. When a polyester group or a polyether group contains a hydroxyl group, the hydroxyl group may be present at the end of these organic groups, or may be present in the side chain of these organic groups.
  • the polyorganosiloxane has the above organic group
  • the polyorganosiloxane and the melamine resin are well mixed in the release agent composition, and the phase separation of these during the curing is suppressed.
  • the condensation reaction of the polyorganosiloxane and the melamine resin as described above proceeds well, and the migration of the polyorganosiloxane is effectively suppressed.
  • groups other than those described above are preferably alkyl groups having 1 to 12 carbon atoms.
  • alkyl group having 1 to 12 carbon atoms include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, and an octyl group, and a methyl group is particularly preferable.
  • R 1 to R 8 may be the same or different. When a plurality of R 1 and R 2 are present, R 1 and R 2 may be the same or different from each other.
  • the weight-average molecular weight of the polyorganosiloxane is preferably 1000 to 300,000, particularly preferably 3000 to 100,000, and more preferably 4000 to 50,000.
  • the weight average molecular weight of the polyorganosiloxane is 1000 or more, the surface free energy on the release surface of the release agent layer 12 is moderately reduced, and the peeling force when peeling the release films 1A and 1B from the ceramic green sheet is effective. Can be reduced.
  • the weight average molecular weight of the polyorganosiloxane is 300000 or less, an excessive increase in the viscosity of the release agent composition is suppressed, and the release agent composition can be easily applied to the substrate 11.
  • the content of the polyorganosiloxane in the release agent composition is preferably 0.05 to 15 parts by mass, particularly preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the melamine resin. Further, it is preferably 0.5 to 8 parts by mass.
  • the content of the polyorganosiloxane in the release agent composition is 0.05 parts by mass or more, the surface free energy of the release surface of the release agent layer 12 is sufficiently reduced, and an appropriate release force can be achieved. it can.
  • the content of the polyorganosiloxane in the release agent composition is 15 parts by mass or less, the content of the melamine resin can be ensured. Thereby, the elasticity of the release agent layer 12 is improved, and an appropriate peeling force can be achieved.
  • the migration of the polyorganosiloxane is suppressed due to the reaction between the polyorganosiloxane and the melamine resin as described above. For this reason, even if the release agent composition contains a relatively large amount of polyorganosiloxane, the migration of the polyorganosiloxane is sufficiently suppressed.
  • the release agent composition preferably further contains an acid catalyst.
  • an acid catalyst hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, phosphorous acid, p-toluenesulfonic acid and the like are preferable, and p-toluenesulfonic acid is particularly preferable.
  • the content of the acid catalyst in the release agent composition is preferably from 0.1 to 30 parts by weight, particularly preferably from 0.5 to 20 parts by weight, based on 100 parts by weight of the melamine resin. Is preferably 1 to 15 parts by mass.
  • the release agent composition may contain a crosslinking agent, a reaction inhibitor and the like in addition to the above components.
  • the release agent layer 12 preferably has a thickness of 0.1 to 3 ⁇ m, particularly preferably 0.2 to 2 ⁇ m, and more preferably 0.3 to 1.5 ⁇ m. It is preferable that When the thickness of the release agent layer 12 is 0.1 ⁇ m or more, the function as the release agent layer 12 can be effectively exhibited. In particular, when the release agent layer 12 containing the cured melamine is thicker than usual, the release agent layer 12 is more elastic and improved in peelability. Moreover, when the release agent layer 12 has a thickness of 3 ⁇ m or less, it is possible to suppress occurrence of blocking when the release films 1A and 1B are wound into a roll.
  • the thickness of the release agent layer 12 such as 0.1 to 3 ⁇ m is thicker than that of the normal release agent layer 12.
  • the thickness of the release agent layer 12 increases, the amount of migration of the polyorganosiloxane tends to increase, but in the release agent layer 12 of the release films 1A and 1B, the reaction between the polyorganosiloxane and the melamine resin occurs. Therefore, even when the release agent layer 12 is thick, the migration of the polyorganosiloxane is sufficiently suppressed.
  • the base material 11 of the release films 1A and 1B is not particularly limited as long as the release agent layer 12 or the resin layer 13 can be laminated.
  • Examples of the base material 11 include films made of polyesters such as polyethylene terephthalate and polyethylene naphthalate, polyolefins such as polypropylene and polymethylpentene, plastics such as polycarbonate and polyvinyl acetate. These films may be a single layer or a multilayer of two or more layers of the same or different types. Among these, a polyester film is preferable, a polyethylene terephthalate film is particularly preferable, and a biaxially stretched polyethylene terephthalate film is more preferable.
  • the polyethylene terephthalate film hardly generates dust or the like during processing or use, for example, it is possible to effectively prevent a ceramic slurry coating failure due to dust or the like. Furthermore, by performing an antistatic treatment on the polyethylene terephthalate film, it is possible to increase the effect of preventing ignition due to static electricity when coating a ceramic slurry using an organic solvent or preventing defective coating.
  • a surface treatment by an oxidation method, a concavo-convex method, or the like, if desired, on one side or both sides primer treatment can be performed.
  • the oxidation method include corona discharge treatment, plasma discharge treatment, chromium oxidation treatment (wet), flame treatment, hot air treatment, ozone, and ultraviolet irradiation treatment.
  • the unevenness method include a sand blast method and a thermal spraying method.
  • the thickness of the substrate 11 is usually 10 to 300 ⁇ m, preferably 15 to 200 ⁇ m, and particularly preferably 20 to 125 ⁇ m.
  • Resin Layer The resin layer 13 provided on the release film 1B is located between the base material 11 and the release agent layer 12 as shown in FIG. By providing the resin layer 13 between the base material 11 and the release agent layer 12, irregularities on the surface of the base material 11 on the release agent layer 12 side are absorbed, and the roughness of the release surface of the release film 1B is reduced. Can do.
  • the resin forming the resin layer 13 is not particularly limited, and examples thereof include melamine resin, epoxy resin, phenol resin, urea resin, polyester resin, urethane resin, acrylic resin, polyimide resin, and benzoxazine resin. Among these, it is preferable to form the resin layer 13 with a melamine resin.
  • a melamine resin By forming the resin layer 13 with a melamine resin, the adhesive force between the resin layer 13 and the base material 11 and between the resin layer 13 and the release agent layer 12 is improved. Furthermore, the elasticity on the peeling surface side of the release film 1B is improved, and the peeling force when peeling the release film 1B from the ceramic green sheet is appropriately reduced.
  • the melamine resin for forming the resin layer 13 is not particularly limited. However, from the viewpoint of suppressing the shrinkage of the resin layer 13 itself, the melamine resin used for forming the release agent layer 12 is preferably used as the melamine resin for the resin layer 13. That is, it is preferable to form the resin layer 13 using the composition containing the above-mentioned melamine resin.
  • the resin layer 13 may contain components other than the melamine resin together with the melamine resin, such as an epoxy resin, a phenol resin, a urea resin, a polyester resin, a urethane resin, an acrylic resin, a polyimide resin, and a benzoxazine resin.
  • a resin may be contained.
  • the content thereof is preferably 1 to 200 parts by mass, particularly preferably 10 to 150 parts by mass, with respect to 100 parts by mass of the melamine resin. It is preferably from ⁇ 100 parts by mass.
  • the resin layer 13 may contain a crosslinking agent, a reaction inhibitor, an adhesion improver, and the like.
  • the thickness of the resin layer 13 is usually 0.1 to 3 ⁇ m, preferably 0.2 to 2 ⁇ m, and particularly preferably 0.3 to 1.5 ⁇ m.
  • the release force required to release the release films 1A and 1B from the ceramic green sheet formed on the release surface of the release films 1A and 1B should be set as appropriate. However, it is preferably 2.5 to 50 mN / 20 mm, and more preferably 5 to 25 mN / 20 mm.
  • the release agent layer in the release films 1A and 1B is formed of a release agent composition containing the melamine resin and polyorganosiloxane. Therefore, it is possible to appropriately set the peeling force as 2.5 to 50 mN / 20 mm.
  • the migration of the polyorganosiloxane from the release agent layer 12 to the ceramic green sheet is suppressed. Specifically, after the ceramic green sheet was formed on the release surfaces of the release films 1A and 1B, when the ceramic green sheet was released from the release films 1A and 1B, it was in contact with the release surface of the ceramic green sheet. The migration amount of polyorganosiloxane on the surface is reduced. In particular, when a ceramic green sheet is formed using the release films 1A and 1B, the silicon atomic ratio obtained by measuring the surface of the ceramic green sheet that is in contact with the release surface is less than 1.0 atomic%.
  • the ceramic green sheet for measurement a ceramic green sheet in which silicon is not detected by XPS (that is, does not contain a silicon compound) is appropriately selected, and the silicon atomic ratio is determined based on the migration amount of the polyorganosiloxane in the release agent layer 12. It can be used as an evaluation standard.
  • release film 1A For example, gravure coating method, bar coating method, spray coating method, spin coating method, knife coating method, roll coating method, die coating method and the like can be used.
  • peeling film 1B when manufacturing peeling film 1B, after applying the coating liquid containing the melamine resin used as the raw material of a melamine resin to one surface of the base material 11, it is resin by drying and heating, for example. Layer 13 is formed. Furthermore, after applying the above-mentioned release agent composition and a coating solution containing an organic solvent as required to the surface of the resin layer 13 opposite to the substrate 11, the release agent composition is dried and heated. Is cured to form the release agent layer 12. Thereby, release film 1B is obtained. As these coating methods, the same coating methods as those described above can be used.
  • the organic solvent is not particularly limited, and various types can be used.
  • hydrocarbon compounds such as toluene, hexane, heptane, isopropyl alcohol, isobutyl alcohol, acetone, ethyl acetate, methyl ethyl ketone, methyl isobutyl ketone, and mixtures thereof are used.
  • the release agent composition coated as described above is preferably thermoset.
  • the heating temperature is preferably 90 to 140 ° C., more preferably 110 to 130 ° C.
  • the heating time is preferably about 10 to 120 seconds, particularly preferably about 50 to 70 seconds.
  • Release films 1A and 1B can be used for manufacturing ceramic green sheets. Specifically, after applying a ceramic slurry containing a ceramic material such as barium titanate or titanium oxide to the release surface of the release agent layer 12, a ceramic green sheet is obtained by drying the ceramic slurry. Can do. The coating can be performed using, for example, a slot die coating method or a doctor blade method.
  • binder component contained in the ceramic slurry examples include butyral resins and acrylic resins.
  • solvent contained in the ceramic slurry examples include organic solvents and aqueous solvents.
  • the release agent layer 12 is formed of the release agent composition containing the melamine resin and polyorganosiloxane described above, whereby excellent release properties are exhibited. Furthermore, since a structure in which the polyorganosiloxane is fixed to the melamine resin is formed in the release agent layer 12, the migration of the polyorganosiloxane from the release agent layer 12 to the ceramic green sheet is suppressed. Thereby, when the ceramic green sheets shape
  • Another layer such as an antistatic layer may be provided between the layer 13 and the release agent layer 12.
  • Example 1 100 parts by mass of imino-type methylated melamine resin (manufactured by Nippon Carbide Co., Ltd., trade name: MX-730, weight average molecular weight 1508) (amount converted as solid content, hereinafter the same) and polyether-modified hydroxyl group-containing polydimethylsiloxane (b1 ) (Manufactured by Big Chemie Japan, trade name: BYK-377, number average molecular weight (Mn) 5078, weight average molecular weight (Mw) 5993, molecular weight distribution (Mw / Mn) 1.18) 0.5 parts by mass, acid 4.0 parts by mass of p-toluenesulfonic acid (trade name: dryer 900, manufactured by Hitachi Chemical Co., Ltd.) as a catalyst was mixed in a mixed solvent of methyl ethyl ketone, isopropyl alcohol and isobutyl alcohol, and the solid content was 20% by mass.
  • a coating 100
  • the obtained coating solution was uniformly coated on a surface of a biaxially stretched polyethylene terephthalate film (thickness: 25 ⁇ m) as a base material having a maximum protrusion height Rp of 452 nm by a Mayer bar # 6. Subsequently, it heat-dried at 120 degreeC for 1 minute (s), the release agent composition was hardened, and the peeling film by which the 1.2-micrometer-thick release agent layer was laminated
  • the thickness of the base material and the release agent layer was measured using a reflective film thickness meter (manufactured by Filmetrics, product name: F20).
  • Example 2 to 4 A release film was obtained in the same manner as in Example 1 except that the mass parts of the polyether-modified hydroxyl group-containing polydimethylsiloxane (b1) was changed as shown in Table 1.
  • Example 5 0.5 parts by mass of polyether-modified hydroxyl group-containing polydimethylsiloxane (b1), polyester-modified hydroxyl group-containing polydimethylsiloxane (b2) (manufactured by BYK Japan, trade name: BYK-370, number average molecular weight (Mn) 2689, A release film was obtained in the same manner as in Example 1, except that the weight average molecular weight (Mw) 4283, the molecular weight distribution (Mw / Mn) 1.59) was changed to 1.0 part by mass.
  • Mw weight average molecular weight
  • Example 6 A release film was obtained in the same manner as in Example 5 except that the mass parts of the polyester-modified hydroxyl group-containing polydimethylsiloxane (b2) was changed as shown in Table 1.
  • the measurement sample is titrated with a potassium hydroxide standard 2-propanol solution using a potentiometric automatic titrator (product name: AT-610, EBU-610-20B, manufactured by Kyoto Electronics Industry Co., Ltd.) for neutralization.
  • the amount of potassium hydroxide standard 2-propanol solution required was measured.
  • the measurement was performed 3 times, and the average value was calculated. From this average value, the amount (mg) of potassium hydroxide required to neutralize 1 g of the melamine resin was calculated and used as the total acid value (mgKOH / g).
  • Table 1 The results are shown in Table 1.
  • the ceramic slurry was uniformly applied to the release surface of the release agent layer using an applicator. Then, it was made to dry at 80 degreeC with a dryer for 1 minute. As a result, a ceramic green sheet having a thickness of 3 ⁇ m was obtained on the release film. In this way, a release film with a ceramic green sheet was produced.
  • This release film with a ceramic green sheet was allowed to stand for 24 hours in an atmosphere at room temperature of 23 degrees and humidity of 50%.
  • an acrylic pressure-sensitive adhesive tape manufactured by Nitto Denko Corporation, trade name: 31B tape
  • 31B tape was applied to the surface of the ceramic green sheet opposite to the release film, and cut into a width of 20 mm in that state. This was used as a measurement sample.
  • the pressure-sensitive adhesive tape side of the measurement sample is fixed to a flat plate and peeled off from the ceramic green sheet using a tensile tester (manufactured by Shimadzu Corporation, product name: AG-IS500N) at a peeling angle of 180 ° and a peeling speed of 100 mm / min.
  • the film was peeled and the force required to peel (peeling force; mN / 20 mm) was measured.
  • peeling force peel
  • the polyorganosiloxane migration was evaluated according to the following criteria.
  • Table 1 shows the silicon atomic ratio and the evaluation results.
  • the release films obtained in the examples could be peeled with an appropriate peeling force when peeled from the ceramic green sheet. Furthermore, it was found that the ceramic green sheet formed using the release film obtained in the example has a small silicon atom ratio, and the migration of polyorganosiloxane is effectively suppressed. In particular, it can be seen that even when the amount of polyorganosiloxane in the release agent composition increases, the migration of polyorganosiloxane is suppressed. In addition, in the release sheet obtained in the Example, it was also confirmed that the maximum protrusion height Rp of the release surface was relatively low and the smoothness was excellent.
  • the release film obtained in the comparative example required a strong peeling force when peeling from the ceramic green sheet. Moreover, in the ceramic green sheet shape
  • the release film for a ceramic green sheet production process of the present invention is suitable for forming a ceramic green sheet.

Abstract

A release film 1 for a ceramic green sheet production process, comprising a base material 11 and a release agent layer 12 provided on one side of the base material 11. The release agent layer 12 comprises a release agent composition containing: a polyorganosiloxane having at least one hydroxyl group per molecule; and a melamine resin having a total acid value of 0.030-0.154 mg KOH/g. This release film 1 for a ceramic green sheet production process displays good release properties and has suppressed transfer of polyorganosiloxane from the release agent layer 12 to the ceramic green sheet.

Description

セラミックグリーンシート製造工程用剥離フィルムRelease film for ceramic green sheet manufacturing process
 本発明は、セラミックグリーンシートを製造する工程で使用する剥離フィルムに関するものである。 The present invention relates to a release film used in a process for producing a ceramic green sheet.
 従来より、積層セラミックコンデンサや多層セラミック基板といった積層セラミック製品を製造するには、セラミックグリーンシートを成形し、得られたセラミックグリーンシートを複数枚積層して焼成することが行われている。 Conventionally, in order to manufacture a multilayer ceramic product such as a multilayer ceramic capacitor or a multilayer ceramic substrate, a ceramic green sheet is formed, and a plurality of obtained ceramic green sheets are laminated and fired.
 セラミックグリーンシートは、チタン酸バリウムや酸化チタンなどのセラミック材料を含有するセラミックスラリーを剥離フィルム上に塗工することにより成形される。剥離フィルムには、当該剥離フィルム上に成形した薄いセラミックグリーンシートから当該剥離フィルムを、ヒビ、破断等が生じることなく、適度な剥離力により剥離できる剥離性が要求される。 The ceramic green sheet is formed by coating a ceramic slurry containing a ceramic material such as barium titanate or titanium oxide on a release film. The release film is required to have releasability that allows the release film to be peeled off from the thin ceramic green sheet formed on the release film with an appropriate peeling force without causing cracks or breakage.
 剥離フィルムは、一般的に、基材と、基材の一方の面に設けられた剥離剤層とから構成される。剥離剤層としては、紫外線硬化性化合物を材料とするものが存在する。この剥離剤層は、紫外線硬化性化合物を含む剥離剤組成物を基材上に塗工し、紫外線の照射により当該組成物を硬化させることで形成される。しかしながら、紫外線硬化性化合物には酸素によって硬化が阻害される種類が存在する。このような紫外線硬化性化合物を使用する場合、剥離剤層の基材とは反対側の面(セラミックスラリー・セラミックグリーンシートと接する面;以下「剥離面」という場合がある。)付近の硬化が不十分となることがある。剥離剤層の硬化が不十分であると、剥離剤層の弾性が低下する。その結果、剥離面に成形したセラミックグリーンシートから剥離シートを剥離する際に要する剥離力が強くなる。 The release film is generally composed of a base material and a release agent layer provided on one surface of the base material. As the release agent layer, there is a layer made of an ultraviolet curable compound. This release agent layer is formed by applying a release agent composition containing an ultraviolet curable compound on a substrate and curing the composition by irradiation with ultraviolet rays. However, there are types of ultraviolet curable compounds whose curing is inhibited by oxygen. When such an ultraviolet curable compound is used, curing in the vicinity of the surface of the release agent layer on the side opposite to the substrate (surface in contact with the ceramic slurry / ceramic green sheet; hereinafter may be referred to as “release surface”). It may be insufficient. If the release agent layer is not sufficiently cured, the elasticity of the release agent layer is lowered. As a result, the peeling force required for peeling the release sheet from the ceramic green sheet formed on the release surface is increased.
 一方、特許文献1には、メラミン樹脂といった熱硬化性化合物とポリシロキサン(ポリオルガノシロキサン)とを含有する剥離剤層が設けられた剥離フィルムが開示されている。この剥離フィルムでは、剥離剤層がポリオルガノシロキサンを含有するため、上記剥離力をある程度低下させることができる。また、メラミン樹脂は加熱することで縮合し、上記のような酸素による阻害が生じることなく硬化できる。そのため、紫外線硬化性化合物を使用した場合に特有の前述した問題を回避することができる。 On the other hand, Patent Document 1 discloses a release film provided with a release agent layer containing a thermosetting compound such as melamine resin and polysiloxane (polyorganosiloxane). In this release film, since the release agent layer contains polyorganosiloxane, the release force can be reduced to some extent. The melamine resin condenses by heating and can be cured without the above-described inhibition by oxygen. Therefore, the above-mentioned problem peculiar when an ultraviolet curable compound is used can be avoided.
 なお、一般的に、「メラミン樹脂」とは、複数種のメラミン化合物、および1種または複数種のメラミン化合物が縮合してできる多核体の少なくとも一方を含む混合物を意味する。本明細書においては、「メラミン樹脂」という語句は、上記混合物または1種のメラミン化合物の集合物を意味するものとする。さらに、本明細書では、当該メラミン樹脂が硬化したものを「メラミン硬化物」というものとする。 In general, the “melamine resin” means a mixture containing at least one of a plurality of types of melamine compounds and a polynuclear product formed by condensation of one or more types of melamine compounds. In the present specification, the phrase “melamine resin” means the above mixture or an aggregate of one kind of melamine compounds. Furthermore, in this specification, what the said melamine resin hardened shall be called "melamine hardened | cured material."
特開2004-82370号公報JP 2004-82370 A
 ところで、積層セラミック製品の製造時、積層されたセラミックグリーンシート同士において面方向のズレが発生する場合がある。このようなズレは、例えば、積層工程における積層位置のズレ、熱圧着工程における熱圧着に起因したズレ、焼結工程における収縮に起因したズレ等が累積されることで生じると考えられる。 By the way, when the multilayer ceramic product is manufactured, there may be a deviation in the plane direction between the laminated ceramic green sheets. Such a shift is considered to be caused by, for example, accumulation of a shift in the stacking position in the stacking process, a shift due to thermocompression bonding in the thermocompression bonding process, a shift due to shrinkage in the sintering process, and the like.
 特許文献1に記載されるような、ポリオルガノシロキサンを含有する剥離剤層を備えた剥離フィルムを用いてセラミックグリーンシートを成形すると、剥離剤層から当該セラミックグリーンシートへのポリオルガノシロキサンの移行が生じ易い。ポリオルガノシロキサンが移行したセラミックグリーンシートを複数枚積層して積層セラミック製品を製造すると、セラミックグリーンシート同士の接着力が低下し、前述のようなズレが生じ易い。その結果、積層セラミック製品の製造における歩留まりが低下する。そのため、セラミックグリーンシートへのポリオルガノシロキサンの移行の少ない剥離フィルムが求められている。 When a ceramic green sheet is formed using a release film having a release agent layer containing polyorganosiloxane as described in Patent Document 1, the migration of the polyorganosiloxane from the release agent layer to the ceramic green sheet is caused. It is likely to occur. When a multilayer ceramic product is manufactured by laminating a plurality of ceramic green sheets to which polyorganosiloxane has migrated, the adhesive strength between the ceramic green sheets is reduced, and the above-described deviation is likely to occur. As a result, the yield in manufacturing the multilayer ceramic product is reduced. For this reason, there is a need for a release film with less migration of the polyorganosiloxane to the ceramic green sheet.
 本発明は、このような実状に鑑みてなされたものであり、良好な剥離性を示すとともに、剥離剤層からセラミックグリーンシートへのポリオルガノシロキサンの移行が抑制されたセラミックグリーンシート製造工程用剥離フィルムを提供することを目的とする。 The present invention has been made in view of such a situation, and exhibits a good releasability and is a peel for ceramic green sheet manufacturing process in which the migration of polyorganosiloxane from the release agent layer to the ceramic green sheet is suppressed. The object is to provide a film.
 上記目的を達成するために、第1に本発明は、基材と、前記基材の片側に設けられた剥離剤層とを備えたセラミックグリーンシート製造工程用剥離フィルムであって、前記剥離剤層は、1分子中に少なくとも1個の水酸基を有するポリオルガノシロキサンと、全酸価が0.030~0.154mgKOH/gであるメラミン樹脂とを含有する剥離剤組成物から形成されたことを特徴とするセラミックグリーンシート製造工程用剥離フィルムを提供する(発明1)。 In order to achieve the above object, first, the present invention is a release film for a ceramic green sheet manufacturing process, comprising a base material and a release agent layer provided on one side of the base material, the release agent The layer was formed from a release agent composition containing a polyorganosiloxane having at least one hydroxyl group in one molecule and a melamine resin having a total acid value of 0.030 to 0.154 mg KOH / g. Provided is a release film for a ceramic green sheet manufacturing process (Invention 1).
 上記発明(発明1)によれば、剥離剤層が、1分子中に少なくとも1個の水酸基を有するポリオルガノシロキサンと、全酸価が0.030~0.154mgKOH/gであるメラミン樹脂とを含有する剥離剤組成物から形成されていることにより、良好な剥離性を示すとともに、剥離剤層からセラミックグリーンシートへのポリオルガノシロキサンの移行が抑制される。 According to the above invention (Invention 1), the release agent layer comprises a polyorganosiloxane having at least one hydroxyl group in one molecule and a melamine resin having a total acid value of 0.030 to 0.154 mg KOH / g. By being formed from the contained release agent composition, it exhibits good release properties and suppresses migration of polyorganosiloxane from the release agent layer to the ceramic green sheet.
 上記発明(発明1)において、前記ポリオルガノシロキサンは、1分子中に少なくとも1個の、ポリエステル基およびポリエーテル基から選択される1種類以上の有機基を有することが好ましい(発明2)。 In the above invention (Invention 1), the polyorganosiloxane preferably has at least one organic group selected from a polyester group and a polyether group in one molecule (Invention 2).
 上記発明(発明1,2)において、前記水酸基の少なくとも1個は、前記ポリオルガノシロキサンの末端に存在することが好ましい(発明3)。 In the above inventions (Inventions 1 and 2), at least one of the hydroxyl groups is preferably present at the end of the polyorganosiloxane (Invention 3).
 上記発明(発明1~3)において、前記ポリオルガノシロキサンの重量平均分子量は、1000~300000であることが好ましい(発明4)。 In the above inventions (Inventions 1 to 3), the polyorganosiloxane preferably has a weight average molecular weight of 1,000 to 300,000 (Invention 4).
 上記発明(発明1~4)において、前記メラミン樹脂は、下記一般式(a)
Figure JPOXMLDOC01-appb-C000002

(式中、Xは、-H、-CH-OH、または-CH-O-Rを示し、それぞれ同じであってもよいし、異なっていてもよい。Rは、炭素数1~8個のアルキル基を示し、それぞれ同じであってもよいし、異なっていてもよい。少なくとも1個のXは-CH-OHである。)
で表される化合物、または2個以上の前記化合物が縮合してなる多核体を含有することが好ましい(発明5)。
In the above inventions (Inventions 1 to 4), the melamine resin has the following general formula (a):
Figure JPOXMLDOC01-appb-C000002

(In the formula, X represents —H, —CH 2 —OH, or —CH 2 —O—R, and may be the same or different. R represents a carbon number of 1-8. Each represents the same or different alkyl group, and at least one X is —CH 2 —OH.)
Or a polynuclear product obtained by condensing two or more of the compounds (Invention 5).
 上記発明(発明1~5)において、前記剥離剤組成物は、酸触媒をさらに含有することが好ましい(発明6)。 In the above inventions (Inventions 1 to 5), the release agent composition preferably further contains an acid catalyst (Invention 6).
 上記発明(発明1~6)において、前記剥離剤層の厚さが、0.1~3μmであることが好ましい(発明7)。 In the above inventions (Inventions 1 to 6), the thickness of the release agent layer is preferably 0.1 to 3 μm (Invention 7).
 上記発明(発明1~7)においては、前記基材と前記剥離剤層との間に位置する樹脂層をさらに備えることが好ましい(発明8)。 In the above inventions (Inventions 1 to 7), it is preferable to further comprise a resin layer located between the substrate and the release agent layer (Invention 8).
 本発明に係るセラミックグリーンシート製造工程用剥離フィルムは、良好な剥離性を示すとともに、剥離剤層からセラミックグリーンシートへのポリオルガノシロキサンの移行が抑制される。 The release film for a ceramic green sheet production process according to the present invention exhibits good releasability and suppresses migration of polyorganosiloxane from the release agent layer to the ceramic green sheet.
本発明の一実施形態に係るセラミックグリーンシート製造工程用剥離フィルムの断面図である。It is sectional drawing of the peeling film for ceramic green sheet manufacturing processes which concerns on one Embodiment of this invention. 本発明の別の実施形態に係るセラミックグリーンシート製造工程用剥離フィルムの断面図である。It is sectional drawing of the peeling film for ceramic green sheet manufacturing processes which concerns on another embodiment of this invention.
 以下、本発明の実施形態について説明する。
〔セラミックグリーンシート製造工程用剥離フィルム〕
 図1に示すように、第1の実施形態に係るセラミックグリーンシート製造工程用剥離フィルム1A(以下単に「剥離フィルム1A」という場合がある。)は、基材11と、基材11の一方の面(図1では上面)に積層された剥離剤層12とを備えて構成される。
Hereinafter, embodiments of the present invention will be described.
[Peeling film for ceramic green sheet manufacturing process]
As shown in FIG. 1, a release film 1 </ b> A for a ceramic green sheet manufacturing process according to the first embodiment (hereinafter sometimes simply referred to as “release film 1 </ b> A”) is a base material 11 and one of the base materials 11. And a release agent layer 12 laminated on the surface (the upper surface in FIG. 1).
 また、図2に示すように、第2の実施形態に係るセラミックグリーンシート製造工程用剥離フィルム1B(以下単に「剥離フィルム1B」という場合がある。)は、基材11と、基材11の一方の面(図2では上面)に積層された樹脂層13と、樹脂層13の基材11とは反対側の面(図2では上面)に積層された剥離剤層12とを備えて構成される。 As shown in FIG. 2, the release film 1 </ b> B for the ceramic green sheet manufacturing process according to the second embodiment (hereinafter sometimes simply referred to as “release film 1 </ b> B”) includes the base material 11 and the base material 11. A resin layer 13 laminated on one surface (upper surface in FIG. 2) and a release agent layer 12 laminated on a surface opposite to the base 11 of the resin layer 13 (upper surface in FIG. 2). Is done.
1.剥離剤層
 剥離フィルム1A,1Bの剥離剤層12は、1分子中に少なくとも1個の水酸基を有するポリオルガノシロキサンと、全酸価が0.030~0.154mgKOH/gであるメラミン樹脂とを含有する剥離剤組成物から形成されたものである。
1. Release Agent Layer The release agent layer 12 of the release films 1A and 1B comprises a polyorganosiloxane having at least one hydroxyl group in one molecule and a melamine resin having a total acid value of 0.030 to 0.154 mg KOH / g. It is formed from the contained release agent composition.
 剥離フィルム1A,1Bでは、剥離剤層12を形成するための剥離剤組成物がポリオルガノシロキサンを含有する。このため、剥離剤層12の剥離面における表面自由エネルギーが適度に低下する。さらに、剥離剤組成物がメラミン樹脂を含有する。このため、加熱によって剥離剤組成物を十分に硬化させることができ、形成される剥離剤層12は十分な弾性を有する。これらにより、剥離フィルム1A,1Bの剥離面上に成形されたセラミックグリーンシートから剥離フィルム1A,1Bを剥離する際の剥離力が適度に低下し、良好な剥離性が発揮される。 In the release films 1A and 1B, the release agent composition for forming the release agent layer 12 contains polyorganosiloxane. For this reason, the surface free energy in the peeling surface of the release agent layer 12 falls moderately. Furthermore, the release agent composition contains a melamine resin. For this reason, the release agent composition can be sufficiently cured by heating, and the formed release agent layer 12 has sufficient elasticity. By these, the peeling force at the time of peeling peeling film 1A, 1B from the ceramic green sheet shape | molded on the peeling surface of peeling film 1A, 1B falls moderately, and favorable peelability is exhibited.
 また、剥離フィルム1A,1Bでは、剥離剤層12を形成するための剥離剤組成物に含有されるメラミン樹脂の全酸価が0.030~0.154mgKOH/gである。このことは、当該メラミン樹脂が比較的多くの酸性官能基を有することを意味する。この酸性官能基は、主にメラミン樹脂中のメチロール基(-CH-OH)の水酸基に由来する。一方、剥離剤組成物に含有されるポリオルガノシロキサンも1分子中に少なくとも1個の水酸基を有する。このような剥離剤組成物を硬化させて剥離剤層12を形成すると、メラミン樹脂とポリオルガノシロキサンとが互いの水酸基において化学結合し、ポリオルガノシロキサンがメラミン硬化物に固定された構造が形成される。このため、ポリオルガノシロキサンは剥離剤層12の中で自由な移動が制限される。したがって、剥離フィルム1A,1Bの剥離面上にセラミックグリーンシートを成形した場合に、剥離剤層12からセラミックグリーンシートへのポリオルガノシロキサンの移行が抑制される。これにより、剥離フィルム1A,1Bを用いて成形したセラミックグリーンシートを積層した際、セラミックグリーンシート同士の接着力が向上し、セラミックグリーンシート間におけるズレの発生が抑制される。 In the release films 1A and 1B, the total acid value of the melamine resin contained in the release agent composition for forming the release agent layer 12 is 0.030 to 0.154 mg KOH / g. This means that the melamine resin has a relatively large number of acidic functional groups. This acidic functional group is derived mainly from the hydroxyl group of the methylol group (—CH 2 —OH) in the melamine resin. On the other hand, the polyorganosiloxane contained in the release agent composition also has at least one hydroxyl group in one molecule. When such a release agent composition is cured to form the release agent layer 12, a structure in which the melamine resin and the polyorganosiloxane are chemically bonded to each other at the hydroxyl groups and the polyorganosiloxane is fixed to the cured melamine is formed. The For this reason, free movement of the polyorganosiloxane in the release agent layer 12 is restricted. Therefore, when a ceramic green sheet is formed on the release surfaces of the release films 1A and 1B, the migration of the polyorganosiloxane from the release agent layer 12 to the ceramic green sheet is suppressed. Thereby, when the ceramic green sheets shape | molded using peeling film 1A, 1B are laminated | stacked, the adhesive force of ceramic green sheets improves, and generation | occurrence | production of the gap between ceramic green sheets is suppressed.
(1)メラミン樹脂
 剥離剤層12を形成するための剥離剤組成物において、メラミン樹脂の全酸価は、0.030~0.154mgKOH/gであり、0.032~0.100mgKOH/gであることが好ましく、特に0.035~0.070mgKOH/gであることが好ましい。メラミン樹脂の全酸価とは、1gのメラミン樹脂に含まれる水酸化カリウムと反応し得る基を完全に反応させるために必要な水酸化カリウムの質量(mg)を意味する。本明細書において、メラミン樹脂の全酸価は、理論値ではなく、実際の測定値により表されるものとする。ここで、水酸化カリウムと反応し得る基とは、メチロール基(-CH-OH)である。一方、イミノ基(-NH-)およびアルキルエーテル基(-CH-OR)は水酸化カリウムとは反応しない。なお、メラミン樹脂の全酸価の具体的な測定方法は、後述する試験例に示すとおりである。全酸価が0.030gKOH/g未満であると、メラミン樹脂中における水酸基の数が不十分となり、ポリオルガノシロキサンとメラミン樹脂との間における反応が十分に進行しない。その結果、形成された剥離剤層12において、メラミン硬化物に固定されていないポリオルガノシロキサンの量が多くなり、ポリオルガノシロキサンのセラミックグリーンシートへの移行が生じ易くなる。一方、全酸価が0.154mgKOH/gを超える場合、前述の縮合反応およびメラミン樹脂同士の縮合反応に関与しない酸性基が過剰に存在することとなり、架橋速度を制御することが困難となる。その結果、剥離面上に形成されるセラミックグリーンシートの品質低下が懸念されることとなる。
(1) Melamine resin In the release agent composition for forming the release agent layer 12, the total acid value of the melamine resin is 0.030 to 0.154 mg KOH / g, and 0.032 to 0.100 mg KOH / g. It is preferably 0.035 to 0.070 mg KOH / g. The total acid value of the melamine resin means the mass (mg) of potassium hydroxide necessary to completely react the group capable of reacting with potassium hydroxide contained in 1 g of melamine resin. In this specification, the total acid value of a melamine resin shall be represented not by a theoretical value but by an actual measured value. Here, the group capable of reacting with potassium hydroxide is a methylol group (—CH 2 —OH). On the other hand, imino groups (—NH—) and alkyl ether groups (—CH 2 —OR) do not react with potassium hydroxide. In addition, the specific measuring method of the total acid value of a melamine resin is as showing in the test example mentioned later. When the total acid value is less than 0.030 gKOH / g, the number of hydroxyl groups in the melamine resin becomes insufficient, and the reaction between the polyorganosiloxane and the melamine resin does not proceed sufficiently. As a result, in the formed release agent layer 12, the amount of polyorganosiloxane that is not fixed to the melamine cured product increases, and migration of the polyorganosiloxane to the ceramic green sheet is likely to occur. On the other hand, when the total acid value exceeds 0.154 mg KOH / g, an acidic group that does not participate in the above condensation reaction and the condensation reaction between melamine resins is excessively present, and it becomes difficult to control the crosslinking rate. As a result, there is a concern that the quality of the ceramic green sheet formed on the peeled surface is degraded.
 上記メラミン樹脂は、具体的には、下記一般式(a)で示されるメラミン化合物、または当該メラミン化合物が2個以上縮合してなる多核体を含有することが好ましい。
Figure JPOXMLDOC01-appb-C000003
Specifically, the melamine resin preferably contains a melamine compound represented by the following general formula (a) or a polynuclear product obtained by condensing two or more of the melamine compounds.
Figure JPOXMLDOC01-appb-C000003
 式(a)中、Xは、-H、-CH-OH、または-CH-O-Rを示す。これらの基は、上記メラミン化合物同士の縮合反応における反応基を構成する。具体的には、XがHとなることで形成される-NH基は、-N-CH-OH基および-N-CH-R基との間で縮合反応を行うことができる。また、Xが-CH-OHとなることで形成される-N-CH-OH基およびXが-CH-Rとなることで形成される-N-CH-R基は、ともに、-NH基、-N-CH-OH基および-N-CH-R基との間で縮合反応を行うことができる。式(a)中、少なくとも1個のXは-CH-OHである。-CH-OH基が少なくとも1個存在することで、当該基に含まれる水酸基とポリオルガノシロキサンの水酸基との間で反応が可能となり、前述のようにポリオルガノシロキサンの移行が抑制される。メラミン樹脂が、上記メラミン化合物が縮合してなる多核体を含む場合、当該多核体自体が少なくとも1個の-CH-OH基を有する。 In formula (a), X represents —H, —CH 2 —OH, or —CH 2 —O—R. These groups constitute reactive groups in the condensation reaction between the melamine compounds. Specifically, the —NH group formed when X becomes H can undergo a condensation reaction between the —N—CH 2 —OH group and the —N—CH 2 —R group. Both the —N—CH 2 —OH group formed when X becomes —CH 2 —OH and the —N—CH 2 —R group formed when X becomes —CH 2 —R are both , —NH group, —N—CH 2 —OH group and —N—CH 2 —R group can be subjected to a condensation reaction. In formula (a), at least one X is —CH 2 —OH. The presence of at least one —CH 2 —OH group enables reaction between the hydroxyl group contained in the group and the hydroxyl group of the polyorganosiloxane, and the migration of the polyorganosiloxane is suppressed as described above. When the melamine resin contains a polynuclear product obtained by condensing the melamine compound, the polynuclear product itself has at least one —CH 2 —OH group.
 上記-CH-O-R基において、Rは、炭素数1~8個のアルキル基を示す。当該炭素数は、1~6個であることが好ましく、特に1~3個であることが好ましい。炭素数1~8のアルキル基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、オクチル基等が挙げられ、特にメチル基が好ましい。 In the above —CH 2 —O—R group, R represents an alkyl group having 1 to 8 carbon atoms. The number of carbon atoms is preferably 1 to 6, and particularly preferably 1 to 3. Examples of the alkyl group having 1 to 8 carbon atoms include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, and an octyl group, and a methyl group is particularly preferable.
 上記Xは、それぞれ同じであってもよいし、異なっていてもよい。また、上記Rは、それぞれ同じであってもよいし、異なっていてもよい。 The above Xs may be the same or different. Moreover, said R may be the same respectively, and may differ.
 メラミン化合物には、一般に、全てのXが-CH-O-Rであるフルエーテル型、少なくとも1個のXが-CH-OHであり且つ少なくとも1個のXがHであるイミノ・メチロール型、少なくとも1個のXが-CH-OHであり且つHであるXが存在しないメチロール型、および、少なくとも1個のXがHであり且つHである-CH-OHが存在しないイミノ型といった種類が存在する。剥離フィルム1A,1Bでは、カールを抑制し易いという観点、および全酸価が0.030~0.154mgKOH/gであるという物性を達成し易いという観点から、上記メラミン樹脂は、イミノ・メチロール型またはメチロール型のメラミン化合物を含むことが好ましい。特に、式(a)中、より多くのXが-CH-OHであることが好ましく、具体的には、-CH-OHであるXの数が、少なくとも2個であることが好ましく、特に、少なくとも3個であることが好ましい。 Melamine compounds generally include a full ether form in which all Xs are —CH 2 —O—R, imino methylol in which at least one X is —CH 2 —OH and at least one X is H. type, at least one X is -CH 2 -OH and and and methylol type is H X is absent, and, at least one X is not present -CH 2 -OH a and a H H imino There are types such as types. In the release films 1A and 1B, the melamine resin is an imino / methylol type from the viewpoint that curling is easily suppressed and the physical property that the total acid value is 0.030 to 0.154 mgKOH / g. Alternatively, it preferably contains a methylol type melamine compound. In particular, in the formula (a), it is preferable that more X is -CH 2 -OH, in particular, the number of X is a -CH 2 -OH is preferably at least two, In particular, at least three are preferable.
 上記メラミン樹脂は、上記式(a)で表される化合物が2~50個縮合してなる多核体を含んでよく、また2~30個縮合してなる多核体を含んでよく、特に2~10個縮合してなる多核体を含んでよく、さらには2~5個縮合してなる多核体を含んでよい。 The melamine resin may contain a polynuclear product obtained by condensing 2 to 50 compounds represented by the above formula (a), and may contain a polynuclear product obtained by condensing 2 to 30 compounds. A polynuclear product formed by condensation of 10 may be included, and further, a polynuclear product formed by condensation of 2 to 5 may be included.
 剥離剤層12を形成するための剥離剤組成物において、メラミン樹脂の重量平均分子量は、350~10000であることが好ましく、特に700~5000であることが好ましく、さらには1000~4000であることが好ましい。重量平均分子量が350以上であることで、架橋速度が安定し、より平滑な剥離面を形成することができる。一方、重量平均分子量が10000以下であることで、剥離剤組成物の粘度が過度に高くなることが抑制される。これにより、基材11上に剥離剤組成物を塗工する際の塗工性が良好なものとなる。なお、本明細書における重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法により測定した標準ポリスチレン換算の値である。 In the release agent composition for forming the release agent layer 12, the weight average molecular weight of the melamine resin is preferably 350 to 10000, particularly preferably 700 to 5000, and more preferably 1000 to 4000. Is preferred. When the weight average molecular weight is 350 or more, the crosslinking rate is stabilized, and a smoother release surface can be formed. On the other hand, when the weight average molecular weight is 10,000 or less, an excessive increase in the viscosity of the release agent composition is suppressed. Thereby, the applicability | paintability at the time of coating a release agent composition on the base material 11 will become favorable. In addition, the weight average molecular weight in this specification is the value of standard polystyrene conversion measured by the gel permeation chromatography (GPC) method.
(2)ポリオルガノシロキサン
 ポリオルガノシロキサンは、1分子中に少なくとも1個の水酸基を有することが好ましい。また、ポリオルガノシロキサン1分子における水酸基の数の上限は、特に制限されないものの、例えば20個である。剥離フィルム1A,1Bの剥離剤層12が、ポリオルガノシロキサンを含有する剥離剤組成物によって形成されることで、剥離剤層12の剥離面は良好な剥離性を発揮することができる。さらに、ポリオルガノシロキサンが上記水酸基を有することで、ポリオルガノシロキサンはメラミン樹脂との縮合反応によりメラミン硬化物に固定されることが可能となる。その結果、剥離剤層12からセラミックグリーンシートへのポリオルガノシロキサンの移行が抑制される。
(2) Polyorganosiloxane The polyorganosiloxane preferably has at least one hydroxyl group in one molecule. Further, the upper limit of the number of hydroxyl groups in one molecule of polyorganosiloxane is not particularly limited, but is 20 for example. Since the release agent layer 12 of the release films 1A and 1B is formed of a release agent composition containing polyorganosiloxane, the release surface of the release agent layer 12 can exhibit good release properties. Further, since the polyorganosiloxane has the hydroxyl group, the polyorganosiloxane can be fixed to the cured melamine by a condensation reaction with the melamine resin. As a result, the migration of the polyorganosiloxane from the release agent layer 12 to the ceramic green sheet is suppressed.
 ポリオルガノシロキサンにおける上記水酸基以外の構造は、前述の剥離性、ポリオルガノシロキサンとメラミン樹脂との間の縮合反応、およびメラミン樹脂に含まれるメラミン化合物間における縮合反応を阻害しない限り、特に限定されるものではない。ポリオルガノシロキサンとしては、下記の一般式(b)で示されるケイ素含有化合物の重合体を使用することができる。
Figure JPOXMLDOC01-appb-C000004
The structure other than the hydroxyl group in the polyorganosiloxane is particularly limited as long as it does not inhibit the above-described peelability, the condensation reaction between the polyorganosiloxane and the melamine resin, and the condensation reaction between the melamine compounds contained in the melamine resin. It is not a thing. As the polyorganosiloxane, a polymer of a silicon-containing compound represented by the following general formula (b) can be used.
Figure JPOXMLDOC01-appb-C000004
 式(b)中、mは1以上の整数である。また、R~Rの少なくとも1個は、水酸基または水酸基を有する有機基である。特に、R~Rの少なくとも1個が水酸基または水酸基を有する有機基であることが好ましい。すなわち、水酸基または水酸基を有する有機基の少なくとも1個は、ポリオルガノシロキサンの末端に存在することが好ましい。水酸基が末端に存在することで、ポリオルガノシロキサンがメラミン樹脂との間で縮合反応し易くなり、ポリオルガノシロキサンの移行が効果的に抑制される。 In the formula (b), m is an integer of 1 or more. At least one of R 1 to R 8 is a hydroxyl group or an organic group having a hydroxyl group. In particular, at least one of R 3 to R 8 is preferably a hydroxyl group or an organic group having a hydroxyl group. That is, it is preferable that at least one of the hydroxyl group or the organic group having a hydroxyl group is present at the terminal of the polyorganosiloxane. When the hydroxyl group is present at the terminal, the polyorganosiloxane easily undergoes a condensation reaction with the melamine resin, and the migration of the polyorganosiloxane is effectively suppressed.
 式(b)中、R~Rのうち、水酸基以外の基の少なくとも1個は、有機基であることが好ましい。ここで、式(b)中のR~Rの少なくとも1個が水酸基である場合、その他のR~Rに含まれる有機基は、水酸基を有する有機基であってもよく、または水酸基を有しない有機基であってもよい。一方、式(b)中のR~Rのいずれもが水酸基でない場合、その他のR~Rに含まれる有機基は、水酸基を有する有機基である。なお、本明細書において、「有機基」は、後述するアルキル基を含まないものとする。式(b)で表されるポリオルガノシロキサンは、水酸基を有する有機基または水酸基を有しない有機基を1分子中に少なくとも1個有することが好ましく、特に1~10個有することが好ましく、さらには1~5個有することが好ましい。ここで、有機基は、ポリエステル基およびポリエーテル基から選択される1種類以上の有機基であることが好ましい。1分子中にポリエステル基およびポリエーテル基の両方が存在していてもよい。ポリエステル基またはポリエーテル基に水酸基が含まれる場合、当該水酸基はこれらの有機基の末端に存在していてもよく、または、これらの有機基の側鎖に存在していてもよい。ポリオルガノシロキサンが上記有機基を有することで、剥離剤組成物中においてポリオルガノシロキサンとメラミン樹脂とが良好に混合され、硬化の際においてこれらが極端に相分離することが抑制される。これにより、前述したようなポリオルガノシロキサンとメラミン樹脂との縮合反応が良好に進行し、ポリオルガノシロキサンの移行も効果的に抑制される。 In the formula (b), at least one of the groups other than the hydroxyl group among R 1 to R 8 is preferably an organic group. Here, when at least one of R 1 to R 8 in formula (b) is a hydroxyl group, the other organic groups contained in R 1 to R 8 may be an organic group having a hydroxyl group, or An organic group having no hydroxyl group may be used. On the other hand, when none of R 1 to R 8 in formula (b) is a hydroxyl group, the other organic groups contained in R 1 to R 8 are organic groups having a hydroxyl group. In the present specification, the “organic group” does not include an alkyl group described later. The polyorganosiloxane represented by the formula (b) preferably has at least one organic group having a hydroxyl group or an organic group having no hydroxyl group in one molecule, particularly preferably 1 to 10, more preferably It is preferable to have 1 to 5 pieces. Here, the organic group is preferably one or more organic groups selected from a polyester group and a polyether group. Both polyester groups and polyether groups may be present in one molecule. When a polyester group or a polyether group contains a hydroxyl group, the hydroxyl group may be present at the end of these organic groups, or may be present in the side chain of these organic groups. When the polyorganosiloxane has the above organic group, the polyorganosiloxane and the melamine resin are well mixed in the release agent composition, and the phase separation of these during the curing is suppressed. Thereby, the condensation reaction of the polyorganosiloxane and the melamine resin as described above proceeds well, and the migration of the polyorganosiloxane is effectively suppressed.
 式(b)中、R~Rのうち、上述した基以外の基は、炭素数1~12のアルキル基であることが好ましい。炭素数1~12のアルキル基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、オクチル基等が挙げられ、特にメチル基が好ましい。 In the formula (b), among R 1 to R 8 , groups other than those described above are preferably alkyl groups having 1 to 12 carbon atoms. Examples of the alkyl group having 1 to 12 carbon atoms include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, and an octyl group, and a methyl group is particularly preferable.
 R~Rは同一であっても異なっていてもよい。また、RおよびRが複数存在する場合、RおよびRは、それぞれ同一であっても異なっていてもよい。 R 1 to R 8 may be the same or different. When a plurality of R 1 and R 2 are present, R 1 and R 2 may be the same or different from each other.
 上記ポリオルガノシロキサンの重量平均分子量は1000~300000であることが好ましく、特に3000~100000であることが好ましく、さらには4000~50000であることが好ましい。ポリオルガノシロキサンの重量平均分子量が1000以上であることで、剥離剤層12の剥離面における表面自由エネルギーが適度に低下し、セラミックグリーンシートから剥離フィルム1A,1Bを剥離する際の剥離力を効果的に低下させることができる。ポリオルガノシロキサンの重量平均分子量が300000以下であることで、剥離剤組成物の粘度が過度に高くなることが抑制され、剥離剤組成物を基材11に塗工し易くなる。 The weight-average molecular weight of the polyorganosiloxane is preferably 1000 to 300,000, particularly preferably 3000 to 100,000, and more preferably 4000 to 50,000. When the weight average molecular weight of the polyorganosiloxane is 1000 or more, the surface free energy on the release surface of the release agent layer 12 is moderately reduced, and the peeling force when peeling the release films 1A and 1B from the ceramic green sheet is effective. Can be reduced. When the weight average molecular weight of the polyorganosiloxane is 300000 or less, an excessive increase in the viscosity of the release agent composition is suppressed, and the release agent composition can be easily applied to the substrate 11.
 剥離剤組成物中におけるポリオルガノシロキサンの含有量は、メラミン樹脂100質量部に対して、0.05~15質量部であることが好ましく、特に0.1~10質量部であることが好ましく、さらには0.5~8質量部であることが好ましい。剥離剤組成物中におけるポリオルガノシロキサンの含有量が0.05質量部以上であることで、剥離剤層12の剥離面の表面自由エネルギーが十分に低下し、適度な剥離力を達成することができる。一方、剥離剤組成物中におけるポリオルガノシロキサンの含有量が15質量部以下であることで、メラミン樹脂の含有量を確保することができる。これにより、剥離剤層12の弾性が向上し、適度な剥離力を達成することができる。なお、剥離フィルム1A,1Bでは、前述の通りポリオルガノシロキサンとメラミン樹脂との間における反応に起因してポリオルガノシロキサンの移行が抑制される。このため、剥離剤組成物が比較的多くのポリオルガノシロキサンを含有する場合であっても、ポリオルガノシロキサンの移行は十分に抑制される。 The content of the polyorganosiloxane in the release agent composition is preferably 0.05 to 15 parts by mass, particularly preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the melamine resin. Further, it is preferably 0.5 to 8 parts by mass. When the content of the polyorganosiloxane in the release agent composition is 0.05 parts by mass or more, the surface free energy of the release surface of the release agent layer 12 is sufficiently reduced, and an appropriate release force can be achieved. it can. On the other hand, when the content of the polyorganosiloxane in the release agent composition is 15 parts by mass or less, the content of the melamine resin can be ensured. Thereby, the elasticity of the release agent layer 12 is improved, and an appropriate peeling force can be achieved. In the release films 1A and 1B, the migration of the polyorganosiloxane is suppressed due to the reaction between the polyorganosiloxane and the melamine resin as described above. For this reason, even if the release agent composition contains a relatively large amount of polyorganosiloxane, the migration of the polyorganosiloxane is sufficiently suppressed.
(3)その他の成分
 剥離剤組成物は、酸触媒をさらに含有することが好ましい。酸触媒の例としては、塩酸、硫酸、硝酸、リン酸、亜リン酸、p-トルエンスルホン酸等が好ましく、特にp-トルエンスルホン酸が好ましい。剥離剤組成物が酸触媒を含有することにより、上記メラミン樹脂における縮合反応が効率よく進行する。
(3) Other components The release agent composition preferably further contains an acid catalyst. As examples of the acid catalyst, hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, phosphorous acid, p-toluenesulfonic acid and the like are preferable, and p-toluenesulfonic acid is particularly preferable. When the release agent composition contains an acid catalyst, the condensation reaction in the melamine resin proceeds efficiently.
 剥離剤組成物中における酸触媒の含有量は、メラミン樹脂100質量部に対して、0.1~30質量部であることが好ましく、特に0.5~20質量部であることが好ましく、さらには1~15質量部であることが好ましい。 The content of the acid catalyst in the release agent composition is preferably from 0.1 to 30 parts by weight, particularly preferably from 0.5 to 20 parts by weight, based on 100 parts by weight of the melamine resin. Is preferably 1 to 15 parts by mass.
 剥離剤組成物は、上記成分の他、架橋剤、反応抑制剤等を含有していてもよい。 The release agent composition may contain a crosslinking agent, a reaction inhibitor and the like in addition to the above components.
(4)剥離剤層の厚さ
 剥離剤層12の厚さは、0.1~3μmであることが好ましく、特に0.2~2μmであることが好ましく、さらには0.3~1.5μmであることが好ましい。剥離剤層12の厚さが0.1μm以上であることで、剥離剤層12としての機能を効果的に発揮することができる。特に、メラミン硬化物を含む剥離剤層12の厚さが通常よりも厚いことにより、剥離剤層12の弾性が高まり、剥離性が向上する。また、剥離剤層12の厚さが3μm以下であることで、剥離フィルム1A,1Bをロール状に巻き取った際に、ブロッキングが発生することを抑制することができる。0.1~3μmといった剥離剤層12の厚さは、通常の剥離剤層12と比較して厚い。通常、剥離剤層12の厚さが厚いほど、ポリオルガノシロキサンの移行量が多くなる傾向があるが、剥離フィルム1A,1Bの剥離剤層12では、ポリオルガノシロキサンとメラミン樹脂との反応が生じるため、剥離剤層12の厚さが厚い場合であってもポリオルガノシロキサンの移行が十分抑制される。
(4) Release agent layer thickness The release agent layer 12 preferably has a thickness of 0.1 to 3 μm, particularly preferably 0.2 to 2 μm, and more preferably 0.3 to 1.5 μm. It is preferable that When the thickness of the release agent layer 12 is 0.1 μm or more, the function as the release agent layer 12 can be effectively exhibited. In particular, when the release agent layer 12 containing the cured melamine is thicker than usual, the release agent layer 12 is more elastic and improved in peelability. Moreover, when the release agent layer 12 has a thickness of 3 μm or less, it is possible to suppress occurrence of blocking when the release films 1A and 1B are wound into a roll. The thickness of the release agent layer 12 such as 0.1 to 3 μm is thicker than that of the normal release agent layer 12. Usually, as the thickness of the release agent layer 12 increases, the amount of migration of the polyorganosiloxane tends to increase, but in the release agent layer 12 of the release films 1A and 1B, the reaction between the polyorganosiloxane and the melamine resin occurs. Therefore, even when the release agent layer 12 is thick, the migration of the polyorganosiloxane is sufficiently suppressed.
2.基材
 剥離フィルム1A,1Bの基材11は、剥離剤層12または樹脂層13を積層することができれば特に限定されるものではない。かかる基材11としては、例えば、ポリエチレンテレフタレートやポリエチレンナフタレート等のポリエステル、ポリプロピレンやポリメチルペンテン等のポリオレフィン、ポリカーボネート、ポリ酢酸ビニルなどのプラスチックからなるフィルムが挙げられる。これらのフィルムは、単層であってもよいし、同種又は異種の2層以上の多層であってもよい。これらの中でもポリエステルフィルムが好ましく、特にポリエチレンテレフタレートフィルムが好ましく、さらには二軸延伸ポリエチレンテレフタレートフィルムが好ましい。ポリエチレンテレフタレートフィルムは、加工時、使用時等において、埃等が発生しにくいため、例えば、埃等によるセラミックスラリー塗工不良等を効果的に防止することができる。さらに、ポリエチレンテレフタレートフィルムに帯電防止処理を行うことで、有機溶剤を使用するセラミックスラリーを塗工する際の静電気による発火を防止したり、塗工不良等を防止する効果を高めることができる。
2. Base Material The base material 11 of the release films 1A and 1B is not particularly limited as long as the release agent layer 12 or the resin layer 13 can be laminated. Examples of the base material 11 include films made of polyesters such as polyethylene terephthalate and polyethylene naphthalate, polyolefins such as polypropylene and polymethylpentene, plastics such as polycarbonate and polyvinyl acetate. These films may be a single layer or a multilayer of two or more layers of the same or different types. Among these, a polyester film is preferable, a polyethylene terephthalate film is particularly preferable, and a biaxially stretched polyethylene terephthalate film is more preferable. Since the polyethylene terephthalate film hardly generates dust or the like during processing or use, for example, it is possible to effectively prevent a ceramic slurry coating failure due to dust or the like. Furthermore, by performing an antistatic treatment on the polyethylene terephthalate film, it is possible to increase the effect of preventing ignition due to static electricity when coating a ceramic slurry using an organic solvent or preventing defective coating.
 また、この基材11においては、その表面に設けられる剥離剤層12または樹脂層13との密着性を向上させる目的で、所望により片面又は両面に、酸化法や凹凸化法などによる表面処理、あるいはプライマー処理を施すことができる。上記酸化法としては、例えばコロナ放電処理、プラズマ放電処理、クロム酸化処理(湿式)、火炎処理、熱風処理、オゾン、紫外線照射処理などが挙げられる。また、上記凹凸化法としては、例えばサンドブラスト法、溶射処理法などが挙げられる。これらの表面処理法は、基材フィルムの種類に応じて適宜選ばれるが、一般にコロナ放電処理法が効果及び操作性の面から好ましく用いられる。 Moreover, in this base material 11, for the purpose of improving the adhesiveness with the release agent layer 12 or the resin layer 13 provided on the surface, a surface treatment by an oxidation method, a concavo-convex method, or the like, if desired, on one side or both sides, Alternatively, primer treatment can be performed. Examples of the oxidation method include corona discharge treatment, plasma discharge treatment, chromium oxidation treatment (wet), flame treatment, hot air treatment, ozone, and ultraviolet irradiation treatment. Examples of the unevenness method include a sand blast method and a thermal spraying method. These surface treatment methods are appropriately selected depending on the type of the base film, but generally, a corona discharge treatment method is preferably used from the viewpoints of effects and operability.
 基材11の厚さは、通常10~300μmであればよく、好ましくは15~200μmであり、特に好ましくは20~125μmである。 The thickness of the substrate 11 is usually 10 to 300 μm, preferably 15 to 200 μm, and particularly preferably 20 to 125 μm.
3.樹脂層
 剥離フィルム1Bに設けられる樹脂層13は、図2に示されるように基材11と剥離剤層12との間に位置する。基材11と剥離剤層12との間に樹脂層13を設けることで、基材11の剥離剤層12側の面における凹凸を吸収し、剥離フィルム1Bの剥離面の粗さを低くすることができる。
3. Resin Layer The resin layer 13 provided on the release film 1B is located between the base material 11 and the release agent layer 12 as shown in FIG. By providing the resin layer 13 between the base material 11 and the release agent layer 12, irregularities on the surface of the base material 11 on the release agent layer 12 side are absorbed, and the roughness of the release surface of the release film 1B is reduced. Can do.
 樹脂層13を形成する樹脂としては、特に限定されず、例えば、メラミン樹脂、エポキシ樹脂、フェノール樹脂、尿素樹脂、ポリエステル樹脂、ウレタン樹脂、アクリル樹脂、ポリイミド樹脂、ベンゾオキサジン樹脂等が挙げられる。これらの中でも、特にメラミン樹脂によって樹脂層13を形成することが好ましい。樹脂層13をメラミン樹脂によって形成することにより、樹脂層13と基材11との間および樹脂層13と剥離剤層12との間の接着力が向上する。さらに、剥離フィルム1Bの剥離面側における弾性が向上し、セラミックグリーンシートから剥離フィルム1Bを剥離する際の剥離力が適度に低下する。 The resin forming the resin layer 13 is not particularly limited, and examples thereof include melamine resin, epoxy resin, phenol resin, urea resin, polyester resin, urethane resin, acrylic resin, polyimide resin, and benzoxazine resin. Among these, it is preferable to form the resin layer 13 with a melamine resin. By forming the resin layer 13 with a melamine resin, the adhesive force between the resin layer 13 and the base material 11 and between the resin layer 13 and the release agent layer 12 is improved. Furthermore, the elasticity on the peeling surface side of the release film 1B is improved, and the peeling force when peeling the release film 1B from the ceramic green sheet is appropriately reduced.
 樹脂層13を形成するためのメラミン樹脂は、特に限定されるものではない。しかしながら、樹脂層13自体の収縮を抑制するという観点から、樹脂層13のためのメラミン樹脂として、剥離剤層12を形成するために使用される前述のメラミン樹脂を使用することが好ましい。すなわち、樹脂層13は、前述のメラミン樹脂を含有する組成物を使用して形成することが好ましい。 The melamine resin for forming the resin layer 13 is not particularly limited. However, from the viewpoint of suppressing the shrinkage of the resin layer 13 itself, the melamine resin used for forming the release agent layer 12 is preferably used as the melamine resin for the resin layer 13. That is, it is preferable to form the resin layer 13 using the composition containing the above-mentioned melamine resin.
 また、樹脂層13は、メラミン樹脂とともに、メラミン樹脂以外の成分を含有してもよく、例えば、エポキシ樹脂、フェノール樹脂、尿素樹脂、ポリエステル樹脂、ウレタン樹脂、アクリル樹脂、ポリイミド樹脂、ベンゾオキサジン樹脂といった樹脂を含有してもよい。樹脂層13がこれらの樹脂を含有する場合、その含有量は、メラミン樹脂100質量部に対して、1~200質量部であることが好ましく、特に10~150質量部であることが好ましく、30~100質量部であることが好ましい。また、樹脂層13は、架橋剤、反応抑制剤、密着向上剤等を含有してもよい。 Moreover, the resin layer 13 may contain components other than the melamine resin together with the melamine resin, such as an epoxy resin, a phenol resin, a urea resin, a polyester resin, a urethane resin, an acrylic resin, a polyimide resin, and a benzoxazine resin. A resin may be contained. When the resin layer 13 contains these resins, the content thereof is preferably 1 to 200 parts by mass, particularly preferably 10 to 150 parts by mass, with respect to 100 parts by mass of the melamine resin. It is preferably from ˜100 parts by mass. Moreover, the resin layer 13 may contain a crosslinking agent, a reaction inhibitor, an adhesion improver, and the like.
 樹脂層13の厚さは、通常0.1~3μmであればよく、好ましくは0.2~2μmであり、特に好ましくは0.3~1.5μmである。 The thickness of the resin layer 13 is usually 0.1 to 3 μm, preferably 0.2 to 2 μm, and particularly preferably 0.3 to 1.5 μm.
4.セラミックグリーンシート製造工程用剥離フィルムの物性
 剥離フィルム1A,1Bの剥離面上に成形されたセラミックグリーンシートから、当該剥離フィルム1A,1Bを剥離する際に要する剥離力は、適宜設定することができるが、2.5~50mN/20mmであることが好ましく、特に5~25mN/20mmであることが好ましい。剥離フィルム1A,1Bにおける剥離剤層は、上記メラミン樹脂とポリオルガノシロキサンとを含有する剥離剤組成物によって形成される。そのため、2.5~50mN/20mmといった剥離力に適宜設定することが可能である。
4. Physical properties of release film for ceramic green sheet manufacturing process The release force required to release the release films 1A and 1B from the ceramic green sheet formed on the release surface of the release films 1A and 1B should be set as appropriate. However, it is preferably 2.5 to 50 mN / 20 mm, and more preferably 5 to 25 mN / 20 mm. The release agent layer in the release films 1A and 1B is formed of a release agent composition containing the melamine resin and polyorganosiloxane. Therefore, it is possible to appropriately set the peeling force as 2.5 to 50 mN / 20 mm.
 剥離フィルム1A,1Bを用いてセラミックグリーンシートを成形すると、剥離剤層12からセラミックグリーンシートへのポリオルガノシロキサンの移行が抑制される。具体的には、剥離フィルム1A,1Bの剥離面上にセラミックグリーンシートを成形した後、当該セラミックグリーンシートを剥離フィルム1A,1Bから剥離したときに、セラミックグリーンシートにおける剥離面に接触していた面のポリオルガノシロキサンの移行量が低下する。特に、剥離フィルム1A,1Bを用いてセラミックグリーンシートを成形した場合、当該セラミックグリーンシートにおける剥離面に接触していた面を測定して得られるケイ素原子比率が、1.0原子%未満であることが好ましく、特に0.5原子%未満であることが好ましく、さらには0.3原子%以下であることが好ましい。なお、ケイ素原子比率は、例えばX線光電子分光分析法(XPS)によって測定される、ケイ素原子(Si)、炭素原子(C)及び酸素原子(O)の量(XPSカウント数)に基づき、下記の式により算出される。
 ケイ素原子比率(原子%)=[(Si元素量)/{(C元素量)+(O元素量)+(Si元素量)}]×100
When the ceramic green sheet is formed using the release films 1A and 1B, the migration of the polyorganosiloxane from the release agent layer 12 to the ceramic green sheet is suppressed. Specifically, after the ceramic green sheet was formed on the release surfaces of the release films 1A and 1B, when the ceramic green sheet was released from the release films 1A and 1B, it was in contact with the release surface of the ceramic green sheet. The migration amount of polyorganosiloxane on the surface is reduced. In particular, when a ceramic green sheet is formed using the release films 1A and 1B, the silicon atomic ratio obtained by measuring the surface of the ceramic green sheet that is in contact with the release surface is less than 1.0 atomic%. In particular, it is preferably less than 0.5 atomic%, more preferably 0.3 atomic% or less. The silicon atom ratio is based on the amount of silicon atoms (Si), carbon atoms (C), and oxygen atoms (O) (XPS count number) measured by, for example, X-ray photoelectron spectroscopy (XPS). It is calculated by the following formula.
Silicon atomic ratio (atomic%) = [(Si element amount) / {(C element amount) + (O element amount) + (Si element amount)}] × 100
 なお、測定用のセラミックグリーンシートは、XPSによりケイ素が検出されない(すなわち、ケイ素化合物を含まない)セラミックグリーンシートを適宜選択して、当該ケイ素原子比率を剥離剤層12のポリオルガノシロキサンの移行量の評価基準として利用することができる。 In addition, as the ceramic green sheet for measurement, a ceramic green sheet in which silicon is not detected by XPS (that is, does not contain a silicon compound) is appropriately selected, and the silicon atomic ratio is determined based on the migration amount of the polyorganosiloxane in the release agent layer 12. It can be used as an evaluation standard.
5.セラミックグリーンシート製造工程用剥離フィルムの製造方法
 剥離フィルム1Aを製造する場合、基材11の一方の面に、前述した剥離剤組成物及び所望により有機溶剤を含有する塗工液を塗工した後、乾燥および加熱することで剥離剤組成物を硬化させ、剥離剤層12を形成する。これにより剥離フィルム1Aが得られる。塗工方法としては、例えば、グラビアコート法、バーコート法、スプレーコート法、スピンコート法、ナイフコート法、ロールコート法、ダイコート法などが使用できる。
5. Manufacturing method of release film for ceramic green sheet manufacturing process When manufacturing release film 1A, one side of substrate 11 is coated with the above-described release agent composition and, optionally, a coating solution containing an organic solvent. Then, the release agent composition is cured by drying and heating, and the release agent layer 12 is formed. Thereby, release film 1A is obtained. As the coating method, for example, gravure coating method, bar coating method, spray coating method, spin coating method, knife coating method, roll coating method, die coating method and the like can be used.
 また、剥離フィルム1Bを製造する場合には、基材11の一方の面に、例えば、メラミン樹脂の原料となるメラミン樹脂を含有する塗工液を塗工した後、乾燥および加熱することで樹脂層13を形成する。さらに、樹脂層13の基材11とは反対側の面に、前述した剥離剤組成物及び所望により有機溶剤を含有する塗工液を塗工した後、乾燥および加熱することで剥離剤組成物を硬化させ、剥離剤層12を形成する。これにより剥離フィルム1Bが得られる。これらの塗工方法としては、上述の塗工方法と同様のものを使用することができる。 Moreover, when manufacturing peeling film 1B, after applying the coating liquid containing the melamine resin used as the raw material of a melamine resin to one surface of the base material 11, it is resin by drying and heating, for example. Layer 13 is formed. Furthermore, after applying the above-mentioned release agent composition and a coating solution containing an organic solvent as required to the surface of the resin layer 13 opposite to the substrate 11, the release agent composition is dried and heated. Is cured to form the release agent layer 12. Thereby, release film 1B is obtained. As these coating methods, the same coating methods as those described above can be used.
 上記有機溶剤としては特に制限はなく、様々なものを用いることができる。例えばトルエン、ヘキサン、ヘプタン等の炭化水素化合物をはじめ、イソプロピルアルコール、イソブチルアルコール、アセトン、酢酸エチル、メチルエチルケトン、メチルイソブチルケトン及びこれらの混合物等が用いられる。特に、メチルエチルケトンとイソプロピルアルコールとの混合液を使用することが好ましい。 The organic solvent is not particularly limited, and various types can be used. For example, hydrocarbon compounds such as toluene, hexane, heptane, isopropyl alcohol, isobutyl alcohol, acetone, ethyl acetate, methyl ethyl ketone, methyl isobutyl ketone, and mixtures thereof are used. In particular, it is preferable to use a mixed liquid of methyl ethyl ketone and isopropyl alcohol.
 上記のように塗工した剥離剤組成物は、熱硬化させることが好ましい。この場合の加熱温度は90~140℃であることが好ましく、特に110~130℃であることが好ましい。また、加熱時間は10~120秒程度であることが好ましく、特に50~70秒程度であることが好ましい。 The release agent composition coated as described above is preferably thermoset. In this case, the heating temperature is preferably 90 to 140 ° C., more preferably 110 to 130 ° C. The heating time is preferably about 10 to 120 seconds, particularly preferably about 50 to 70 seconds.
6.セラミックグリーンシート製造工程用剥離フィルムの使用方法
 剥離フィルム1A,1Bは、セラミックグリーンシートを製造するために使用することができる。具体的には、剥離剤層12の剥離面に対し、チタン酸バリウムや酸化チタンなどのセラミック材料を含有するセラミックスラリーを塗工した後、当該セラミックスラリーを乾燥させることでセラミックグリーンシートを得ることができる。塗工は、例えば、スロットダイ塗工方式やドクターブレード方式等を用いて行うことができる。
6. Method for Using Release Film for Ceramic Green Sheet Manufacturing Process Release films 1A and 1B can be used for manufacturing ceramic green sheets. Specifically, after applying a ceramic slurry containing a ceramic material such as barium titanate or titanium oxide to the release surface of the release agent layer 12, a ceramic green sheet is obtained by drying the ceramic slurry. Can do. The coating can be performed using, for example, a slot die coating method or a doctor blade method.
 セラミックスラリーに含まれるバインダー成分の例としては、ブチラール系樹脂、アクリル系樹脂等が挙げられる。また、セラミックスラリーに含まれる溶媒の例としては、有機溶媒、水系溶媒等が挙げられる。 Examples of the binder component contained in the ceramic slurry include butyral resins and acrylic resins. Examples of the solvent contained in the ceramic slurry include organic solvents and aqueous solvents.
 剥離フィルム1A,1Bでは、剥離剤層12が、前述のメラミン樹脂とポリオルガノシロキサンとを含有する剥離剤組成物によって形成されることにより、優れた剥離性が発揮される。さらに、剥離剤層12において、ポリオルガノシロキサンがメラミン樹脂に固定された構造が形成されるため、剥離剤層12からセラミックグリーンシートへのポリオルガノシロキサンの移行が抑制される。これにより、剥離フィルム1A,1Bを用いて成形したセラミックグリーンシートを積層した際、セラミックグリーンシート同士の接着力が向上し、セラミックグリーンシート間におけるズレの発生が抑制される。 In the release films 1 </ b> A and 1 </ b> B, the release agent layer 12 is formed of the release agent composition containing the melamine resin and polyorganosiloxane described above, whereby excellent release properties are exhibited. Furthermore, since a structure in which the polyorganosiloxane is fixed to the melamine resin is formed in the release agent layer 12, the migration of the polyorganosiloxane from the release agent layer 12 to the ceramic green sheet is suppressed. Thereby, when the ceramic green sheets shape | molded using peeling film 1A, 1B are laminated | stacked, the adhesive force of ceramic green sheets improves, and generation | occurrence | production of the gap between ceramic green sheets is suppressed.
 以上説明した実施形態は、本発明の理解を容易にするために記載されたものであって、本発明を限定するために記載されたものではない。したがって、上記実施形態に開示された各要素は、本発明の技術的範囲に属する全ての設計変更や均等物をも含む趣旨である。 The embodiment described above is described for facilitating understanding of the present invention, and is not described for limiting the present invention. Therefore, each element disclosed in the above embodiment is intended to include all design changes and equivalents belonging to the technical scope of the present invention.
 例えば、基材11における剥離剤層12の反対側の面、剥離フィルム1Aにおける基材11と剥離剤層12との間、または、剥離フィルム1Bにおける基材11と樹脂層13との間もしくは樹脂層13と剥離剤層12との間には、帯電防止層等の他の層が設けられてもよい。 For example, the surface on the opposite side of the release agent layer 12 in the base material 11, between the base material 11 and the release agent layer 12 in the release film 1A, or between the base material 11 and the resin layer 13 in the release film 1B, or a resin Another layer such as an antistatic layer may be provided between the layer 13 and the release agent layer 12.
 以下、実施例等により本発明をさらに具体的に説明するが、本発明の範囲はこれらの実施例等に限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples and the like, but the scope of the present invention is not limited to these examples and the like.
〔実施例1〕
 イミノ型メチル化メラミン樹脂(日本カーバイド社製,商品名:MX-730,重量平均分子量1508)100質量部(固形分として換算した量、以下同じ)と、ポリエーテル変性水酸基含有ポリジメチルシロキサン(b1)(ビックケミー・ジャパン社製,商品名:BYK-377,数平均分子量(Mn)5078,重量平均分子量(Mw)5993,分子量分布(Mw/Mn)1.18)0.5質量部と、酸触媒としてのp-トルエンスルホン酸(日立化成社製,商品名:ドライヤー900)4.0質量部とを、メチルエチルケトンとイソプロピルアルコールとイソブチルアルコールとの混合溶剤にて混合し、固形分20質量%の剥離剤組成物の塗布液を得た。
[Example 1]
100 parts by mass of imino-type methylated melamine resin (manufactured by Nippon Carbide Co., Ltd., trade name: MX-730, weight average molecular weight 1508) (amount converted as solid content, hereinafter the same) and polyether-modified hydroxyl group-containing polydimethylsiloxane (b1 ) (Manufactured by Big Chemie Japan, trade name: BYK-377, number average molecular weight (Mn) 5078, weight average molecular weight (Mw) 5993, molecular weight distribution (Mw / Mn) 1.18) 0.5 parts by mass, acid 4.0 parts by mass of p-toluenesulfonic acid (trade name: dryer 900, manufactured by Hitachi Chemical Co., Ltd.) as a catalyst was mixed in a mixed solvent of methyl ethyl ketone, isopropyl alcohol and isobutyl alcohol, and the solid content was 20% by mass. A coating solution for the release agent composition was obtained.
 得られた塗布液を、基材としての二軸延伸ポリエチレンテレフタレートフィルム(厚さ:25μm)における、最大突起高さRpが452nmである面の上にマイヤーバー♯6により均一に塗布した。次いで、120℃で1分間加熱乾燥し、剥離剤組成物を硬化させ、基材上に厚さ1.2μmの剥離剤層が積層された剥離フィルムを得た。 The obtained coating solution was uniformly coated on a surface of a biaxially stretched polyethylene terephthalate film (thickness: 25 μm) as a base material having a maximum protrusion height Rp of 452 nm by a Mayer bar # 6. Subsequently, it heat-dried at 120 degreeC for 1 minute (s), the release agent composition was hardened, and the peeling film by which the 1.2-micrometer-thick release agent layer was laminated | stacked on the base material was obtained.
 なお、基材および剥離剤層の厚さは、反射式膜厚計(フィルメトリックス社製,製品名:F20)を用いて測定した。 In addition, the thickness of the base material and the release agent layer was measured using a reflective film thickness meter (manufactured by Filmetrics, product name: F20).
〔実施例2~4〕
 ポリエーテル変性水酸基含有ポリジメチルシロキサン(b1)の質量部数を表1に示すように変更した以外は、実施例1と同様にして剥離フィルムを得た。
[Examples 2 to 4]
A release film was obtained in the same manner as in Example 1 except that the mass parts of the polyether-modified hydroxyl group-containing polydimethylsiloxane (b1) was changed as shown in Table 1.
〔実施例5〕
 ポリエーテル変性水酸基含有ポリジメチルシロキサン(b1)0.5質量部を、ポリエステル変性水酸基含有ポリジメチルシロキサン(b2)(ビックケミー・ジャパン社製,商品名:BYK-370,数平均分子量(Mn)2689,重量平均分子量(Mw)4283,分子量分布(Mw/Mn)1.59)1.0質量部に変更した以外は、実施例1と同様にして剥離フィルムを得た。
Example 5
0.5 parts by mass of polyether-modified hydroxyl group-containing polydimethylsiloxane (b1), polyester-modified hydroxyl group-containing polydimethylsiloxane (b2) (manufactured by BYK Japan, trade name: BYK-370, number average molecular weight (Mn) 2689, A release film was obtained in the same manner as in Example 1, except that the weight average molecular weight (Mw) 4283, the molecular weight distribution (Mw / Mn) 1.59) was changed to 1.0 part by mass.
〔実施例6〕
 ポリエステル変性水酸基含有ポリジメチルシロキサン(b2)の質量部数を表1に示すように変更した以外は、実施例5と同様にして剥離フィルムを得た。
Example 6
A release film was obtained in the same manner as in Example 5 except that the mass parts of the polyester-modified hydroxyl group-containing polydimethylsiloxane (b2) was changed as shown in Table 1.
〔比較例1〕
 0.5質量部のポリエーテル変性水酸基含有ポリジメチルシロキサン(b1)を、1.0質量部のポリエーテル変性ポリジメチルシロキサン(b3)(ビックケミー・ジャパン社製,商品名:BYK-345,数平均分子量(Mn)1194,重量平均分子量(Mw)1563,分子量分布(Mw/Mn)1.31)に変更した以外は、実施例1と同様にして剥離フィルムを得た。
[Comparative Example 1]
0.5 parts by mass of a polyether-modified hydroxyl group-containing polydimethylsiloxane (b1) and 1.0 part by mass of a polyether-modified polydimethylsiloxane (b3) (manufactured by BYK Japan Japan, trade name: BYK-345, number average) A release film was obtained in the same manner as in Example 1 except that the molecular weight (Mn) was 1194, the weight average molecular weight (Mw) 1563, and the molecular weight distribution (Mw / Mn) 1.31).
〔比較例2〕
 ポリエーテル変性ポリジメチルシロキサン(b3)の質量部数を表1に示すように変更した以外は、比較例1と同様にして剥離フィルムを得た。
[Comparative Example 2]
A release film was obtained in the same manner as in Comparative Example 1 except that the mass parts of the polyether-modified polydimethylsiloxane (b3) was changed as shown in Table 1.
〔試験例1〕(全酸価の測定)
 実施例および比較例で使用したメラミン樹脂を、固形分濃度が50質量%となるようにイソプロピルアルコールによって希釈した。この希釈液を200mLビーカに10g採取した。これに対して、トルエン、純水および2-プロパノールを500:5:495の質量比で混合した溶液を125mL添加し、測定サンプルを得た。なお、実施例および比較例で使用したメラミン樹脂の各商品が、溶剤としたイソプロピルアルコール以外のものを使用している場合、乾燥させて溶剤を除去した後、イソプロピルアルコールによって希釈し、固形分濃度を50質量%とした。
[Test Example 1] (Measurement of total acid value)
The melamine resin used in Examples and Comparative Examples was diluted with isopropyl alcohol so that the solid content concentration was 50% by mass. 10 g of this diluted solution was collected in a 200 mL beaker. On the other hand, 125 mL of a solution in which toluene, pure water and 2-propanol were mixed at a mass ratio of 500: 5: 495 was added to obtain a measurement sample. In addition, when each product of the melamine resin used in Examples and Comparative Examples uses a product other than isopropyl alcohol as a solvent, after drying and removing the solvent, diluting with isopropyl alcohol, the solid content concentration Was 50% by mass.
 当該測定サンプルに対して、電位差自動滴定装置(京都電子工業社製,製品名:AT-610 EBU-610-20B)を用いて、水酸化カリウム標準2-プロパノール溶液による滴定を行い、中和に要する水酸化カリウム標準2-プロパノール溶液の量を測定した。測定は3回行い、その平均値を算出した。この平均値から、1gのメラミン樹脂を中和するのに必要な水酸化カリウムの量(mg)を算出し、全酸価(mgKOH/g)とした。結果を表1に示す。 The measurement sample is titrated with a potassium hydroxide standard 2-propanol solution using a potentiometric automatic titrator (product name: AT-610, EBU-610-20B, manufactured by Kyoto Electronics Industry Co., Ltd.) for neutralization. The amount of potassium hydroxide standard 2-propanol solution required was measured. The measurement was performed 3 times, and the average value was calculated. From this average value, the amount (mg) of potassium hydroxide required to neutralize 1 g of the melamine resin was calculated and used as the total acid value (mgKOH / g). The results are shown in Table 1.
〔試験例2〕(剥離力の測定)
 チタン酸バリウム(BaTiO;堺化学工業社製,商品名:BT-03)100質量部、ポリビニルブチラール(積水化学工業社製,商品名:エスレックB・KBM-2)10質量部、およびフタル酸ジオクチル(関東化学社製,商品名:フタル酸ジオクチル鹿1級)5質量部に、トルエン69質量部およびエタノール46質量部を加え、ボールミルにて混合分散させて、セラミックスラリーを調製した。
[Test Example 2] (Measurement of peel force)
100 parts by mass of barium titanate (BaTiO 3 ; manufactured by Sakai Chemical Industry Co., Ltd., trade name: BT-03), 10 parts by mass of polyvinyl butyral (manufactured by Sekisui Chemical Co., Ltd., trade name: ESREC B · KBM-2), and phthalic acid 69 parts by mass of toluene and 46 parts by mass of ethanol were added to 5 parts by mass of dioctyl (manufactured by Kanto Chemical Co., Inc., trade name: dioctyl deer phthalate grade 1), and mixed and dispersed in a ball mill to prepare a ceramic slurry.
 実施例および比較例にて製造してから常温で48時間保管した剥離フィルムにおいて、剥離剤層の剥離面に、アプリケーターを用いて上記セラミックスラリーを均一に塗工した。その後、乾燥機にて80℃で1分間乾燥させた。これにより、剥離フィルム上に厚さ3μmのセラミックグリーンシートが得られた。このようにして、セラミックグリーンシート付剥離フィルムを製造した。 In the release film that was manufactured in Examples and Comparative Examples and stored at room temperature for 48 hours, the ceramic slurry was uniformly applied to the release surface of the release agent layer using an applicator. Then, it was made to dry at 80 degreeC with a dryer for 1 minute. As a result, a ceramic green sheet having a thickness of 3 μm was obtained on the release film. In this way, a release film with a ceramic green sheet was produced.
 このセラミックグリーンシート付剥離フィルムを、室温23度、湿度50%の雰囲気下に24時間静置した。次に、セラミックグリーンシートにおける剥離フィルムとは反対側の面に対して、アクリル粘着テープ(日東電工社製,商品名:31Bテープ)を貼付し、その状態で20mm幅に裁断した。これを測定サンプルとした。 This release film with a ceramic green sheet was allowed to stand for 24 hours in an atmosphere at room temperature of 23 degrees and humidity of 50%. Next, an acrylic pressure-sensitive adhesive tape (manufactured by Nitto Denko Corporation, trade name: 31B tape) was applied to the surface of the ceramic green sheet opposite to the release film, and cut into a width of 20 mm in that state. This was used as a measurement sample.
 当該測定サンプルの粘着テープ側を平板に固定し、引張試験機(島津製作所社製,製品名:AG-IS500N)を用いて180°の剥離角度、100mm/分の剥離速度でセラミックグリーンシートから剥離フィルムを剥離し、剥離するのに必要な力(剥離力;mN/20mm)を測定した。結果を表1に示す。 The pressure-sensitive adhesive tape side of the measurement sample is fixed to a flat plate and peeled off from the ceramic green sheet using a tensile tester (manufactured by Shimadzu Corporation, product name: AG-IS500N) at a peeling angle of 180 ° and a peeling speed of 100 mm / min. The film was peeled and the force required to peel (peeling force; mN / 20 mm) was measured. The results are shown in Table 1.
〔試験例3〕(ポリオルガノシロキサン移行性の評価)
 実施例および比較例にて製造してから常温で48時間保管した剥離フィルムにおいて、剥離剤層の剥離面に、35μmアプリケーターを用いて上記セラミックスラリーを均一に塗工した。その後、乾燥機にて60℃で1分間乾燥させた。これにより、剥離フィルム上に厚さ4μmのセラミックグリーンシートが得られた。このようにして、セラミックグリーンシート付剥離フィルムを製造した。
[Test Example 3] (Evaluation of polyorganosiloxane migration)
In the release film that was manufactured in Examples and Comparative Examples and stored at room temperature for 48 hours, the ceramic slurry was uniformly applied to the release surface of the release agent layer using a 35 μm applicator. Then, it was made to dry at 60 degreeC with a dryer for 1 minute. As a result, a ceramic green sheet having a thickness of 4 μm was obtained on the release film. In this way, a release film with a ceramic green sheet was produced.
 上記セラミックグリーンシートを剥離フィルムから剥離し、当該セラミックグリーンシートにおける剥離剤層表面と接触していた面について、X線光電子分光分析法(XPS)によって測定されるケイ素原子(Si)、炭素原子(C)及び酸素原子(O)の量(XPSカウント数)に基づき、下記の式によりケイ素原子比率(原子%)を算出した。
 ケイ素原子比率(原子%)=[(Si元素量)/{(C元素量)+(O元素量)+(Si元素量)}]×100
The ceramic green sheet is peeled from the release film, and silicon atoms (Si), carbon atoms (measured by X-ray photoelectron spectroscopy (XPS) are measured on the surface of the ceramic green sheet that is in contact with the surface of the release agent layer. Based on the amount of C) and oxygen atoms (O) (XPS count number), the silicon atom ratio (atomic%) was calculated by the following formula.
Silicon atomic ratio (atomic%) = [(Si element amount) / {(C element amount) + (O element amount) + (Si element amount)}] × 100
 そして、以下の判断基準により、ポリオルガノシロキサン移行性を評価した。ケイ素原子比率および評価結果を表1に示す。
 A…ケイ素原子比率が0.3原子%未満
 B…ケイ素原子比率が0.3原子%以上、0.75原子%未満
 C…ケイ素原子比率が0.75原子%以上
The polyorganosiloxane migration was evaluated according to the following criteria. Table 1 shows the silicon atomic ratio and the evaluation results.
A: Silicon atomic ratio is less than 0.3 atomic% B: Silicon atomic ratio is 0.3 atomic% or more and less than 0.75 atomic% C: Silicon atomic ratio is 0.75 atomic% or more
 なお、表1に記載の略号等の詳細は以下の通りである。
[ポリオルガノシロキサン]
 b1:ポリエーテル変性水酸基含有ポリジメチルシロキサン(ビックケミー・ジャパン社製,商品名:BYK-377,数平均分子量(Mn)5078,重量平均分子量(Mw)5993,分子量分布(Mw/Mn)1.18)
 b2:ポリエステル変性水酸基含有ポリジメチルシロキサン(ビックケミー・ジャパン社製,商品名:BYK-370,数平均分子量(Mn)2689,重量平均分子量(Mw)4283,分子量分布(Mw/Mn)1.59)
 b3:ポリエーテル変性ポリジメチルシロキサン(ビックケミー・ジャパン社製,商品名:BYK-345,数平均分子量(Mn)1194,重量平均分子量(Mw)1563,分子量分布(Mw/Mn)1.31)
Details of the abbreviations and the like described in Table 1 are as follows.
[Polyorganosiloxane]
b1: Polydimethylsiloxane having a polyether-modified hydroxyl group (manufactured by BYK Japan, trade name: BYK-377, number average molecular weight (Mn) 5078, weight average molecular weight (Mw) 5993, molecular weight distribution (Mw / Mn) 1.18 )
b2: Polyester-modified hydroxyl group-containing polydimethylsiloxane (manufactured by BYK Japan, trade name: BYK-370, number average molecular weight (Mn) 2689, weight average molecular weight (Mw) 4283, molecular weight distribution (Mw / Mn) 1.59)
b3: Polyether-modified polydimethylsiloxane (manufactured by Big Chemie Japan, trade name: BYK-345, number average molecular weight (Mn) 1194, weight average molecular weight (Mw) 1563, molecular weight distribution (Mw / Mn) 1.31)
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表1から明らかなように、実施例で得られた剥離フィルムでは、セラミックグリーンシートから剥離する際に適度な剥離力で剥離することが可能であった。さらに、実施例で得られた剥離フィルムを用いて成形したセラミックグリーンシートではケイ素原子比率が小さく、ポリオルガノシロキサンの移行が効果的に抑制されていることがわかった。特に、剥離剤組成物中におけるポリオルガノシロキサンの配合量が増えた場合であっても、ポリオルガノシロキサンの移行が抑制されていることがわかる。なお、実施例で得られた剥離シートでは、剥離面の最大突起高さRpが比較的低く、平滑性にも優れていることも確認された。 As is clear from Table 1, the release films obtained in the examples could be peeled with an appropriate peeling force when peeled from the ceramic green sheet. Furthermore, it was found that the ceramic green sheet formed using the release film obtained in the example has a small silicon atom ratio, and the migration of polyorganosiloxane is effectively suppressed. In particular, it can be seen that even when the amount of polyorganosiloxane in the release agent composition increases, the migration of polyorganosiloxane is suppressed. In addition, in the release sheet obtained in the Example, it was also confirmed that the maximum protrusion height Rp of the release surface was relatively low and the smoothness was excellent.
 一方、比較例で得られた剥離フィルムでは、セラミックグリーンシートから剥離する際に、強い剥離力を要することがわかった。また、比較例で得られた剥離フィルムを用いて成形したセラミックグリーンシートでは、ケイ素原子比率が大きく、ポリオルガノシロキサンの移行が十分抑制されていないことがわかった。 On the other hand, it was found that the release film obtained in the comparative example required a strong peeling force when peeling from the ceramic green sheet. Moreover, in the ceramic green sheet shape | molded using the peeling film obtained by the comparative example, it turned out that the silicon atom ratio is large and the transfer of polyorganosiloxane is not fully suppressed.
 本発明のセラミックグリーンシート製造工程用剥離フィルムは、セラミックグリーンシートを成形するのに好適である。 The release film for a ceramic green sheet production process of the present invention is suitable for forming a ceramic green sheet.
1A,1B…セラミックグリーンシート製造工程用剥離フィルム
 11…基材
 12…剥離剤層
 13…樹脂層
1A, 1B ... Release film for ceramic green sheet manufacturing process 11 ... Base material 12 ... Release agent layer 13 ... Resin layer

Claims (8)

  1.  基材と、前記基材の片側に設けられた剥離剤層とを備えたセラミックグリーンシート製造工程用剥離フィルムであって、
     前記剥離剤層は、
     1分子中に少なくとも1個の水酸基を有するポリオルガノシロキサンと、
     全酸価が0.030~0.154mgKOH/gであるメラミン樹脂と
    を含有する剥離剤組成物から形成されたことを特徴とするセラミックグリーンシート製造工程用剥離フィルム。
    A release film for a ceramic green sheet manufacturing process comprising a substrate and a release agent layer provided on one side of the substrate,
    The release agent layer is
    A polyorganosiloxane having at least one hydroxyl group in one molecule;
    A release film for a ceramic green sheet manufacturing process, comprising a release agent composition containing a melamine resin having a total acid value of 0.030 to 0.154 mg KOH / g.
  2.  前記ポリオルガノシロキサンは、1分子中に少なくとも1個の、ポリエステル基およびポリエーテル基から選択される1種類以上の有機基を有することを特徴とする請求項1に記載のセラミックグリーンシート製造工程用剥離フィルム。 2. The ceramic green sheet manufacturing process according to claim 1, wherein the polyorganosiloxane has at least one organic group selected from a polyester group and a polyether group in one molecule. Release film.
  3.  前記水酸基の少なくとも1個は、前記ポリオルガノシロキサンの末端に存在することを特徴とする請求項1または2に記載のセラミックグリーンシート製造工程用剥離フィルム。 3. The release film for producing a ceramic green sheet according to claim 1, wherein at least one of the hydroxyl groups is present at an end of the polyorganosiloxane.
  4.  前記ポリオルガノシロキサンの重量平均分子量は、1000~300000であることを特徴とする請求項1~3のいずれか一項に記載のセラミックグリーンシート製造工程用剥離フィルム。 The release film for a ceramic green sheet production process according to any one of claims 1 to 3, wherein the polyorganosiloxane has a weight average molecular weight of 1,000 to 300,000.
  5.  前記メラミン樹脂は、下記一般式(a)
    Figure JPOXMLDOC01-appb-C000001

    (式中、Xは、-H、-CH-OH、または-CH-O-Rを示し、それぞれ同じであってもよいし、異なっていてもよい。Rは、炭素数1~8個のアルキル基を示し、それぞれ同じであってもよいし、異なっていてもよい。少なくとも1個のXは-CH-OHである。)
    で表される化合物、または2個以上の前記化合物が縮合してなる多核体を含有することを特徴とする請求項1~4のいずれか一項に記載のセラミックグリーンシート製造工程用剥離フィルム。
    The melamine resin has the following general formula (a)
    Figure JPOXMLDOC01-appb-C000001

    (In the formula, X represents —H, —CH 2 —OH, or —CH 2 —O—R, and may be the same or different. R represents a carbon number of 1-8. Each represents the same or different alkyl group, and at least one X is —CH 2 —OH.)
    The release film for a ceramic green sheet production process according to any one of claims 1 to 4, comprising a compound represented by the formula (1) or a polynuclear product obtained by condensing two or more of the compounds.
  6.  前記剥離剤組成物は、酸触媒をさらに含有することを特徴とする請求項1~5のいずれか一項に記載のセラミックグリーンシート製造工程用剥離フィルム。 The release film for a ceramic green sheet production process according to any one of claims 1 to 5, wherein the release agent composition further contains an acid catalyst.
  7.  前記剥離剤層の厚さが、0.1~3μmであることを特徴とする請求項1~6のいずれか一項に記載のセラミックグリーンシート製造工程用剥離フィルム。 The release film for a ceramic green sheet manufacturing process according to any one of claims 1 to 6, wherein the release agent layer has a thickness of 0.1 to 3 µm.
  8.  前記基材と前記剥離剤層との間に位置する樹脂層をさらに備えることを特徴とする請求項1~7のいずれか一項に記載のセラミックグリーンシート製造工程用剥離フィルム。 The release film for a ceramic green sheet production process according to any one of claims 1 to 7, further comprising a resin layer positioned between the substrate and the release agent layer.
PCT/JP2016/067796 2015-06-23 2016-06-15 Release film for ceramic green sheet production process WO2016208469A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680005002.7A CN107148348A (en) 2015-06-23 2016-06-15 Ceramic green sheet manufacturing process stripping film
KR1020177023942A KR20180020946A (en) 2015-06-23 2016-06-15 Release film for ceramic green sheet production process
SG11201710776UA SG11201710776UA (en) 2015-06-23 2016-06-15 Release film for ceramic green sheet production process
PH12017502383A PH12017502383A1 (en) 2015-06-23 2017-12-21 Release film for ceramic green sheet production process

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-125627 2015-06-23
JP2015125627A JP2017007227A (en) 2015-06-23 2015-06-23 Release film for ceramic green sheet manufacturing process

Publications (1)

Publication Number Publication Date
WO2016208469A1 true WO2016208469A1 (en) 2016-12-29

Family

ID=57585425

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/067796 WO2016208469A1 (en) 2015-06-23 2016-06-15 Release film for ceramic green sheet production process

Country Status (7)

Country Link
JP (1) JP2017007227A (en)
KR (1) KR20180020946A (en)
CN (1) CN107148348A (en)
PH (1) PH12017502383A1 (en)
SG (1) SG11201710776UA (en)
TW (1) TW201710085A (en)
WO (1) WO2016208469A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7306514B2 (en) * 2018-03-22 2023-07-11 東洋紡株式会社 Release film for manufacturing ceramic green sheets
JP7106912B2 (en) * 2018-03-22 2022-07-27 東洋紡株式会社 Release film for manufacturing ceramic green sheets
JP7306515B2 (en) * 2018-03-22 2023-07-11 東洋紡株式会社 Release film for manufacturing ceramic green sheets
JP7306516B2 (en) * 2018-03-22 2023-07-11 東洋紡株式会社 Release film for manufacturing ceramic green sheets
JP7082890B2 (en) * 2018-03-23 2022-06-09 リンテック株式会社 Release film for ceramic green sheet manufacturing process
MY196707A (en) * 2018-08-10 2023-05-02 Toyo Boseki Release film for production of ceramic green sheet
CN113613897B (en) * 2019-03-26 2023-05-12 琳得科株式会社 Stripping sheet
CN117325533A (en) * 2019-06-28 2024-01-02 东洋纺株式会社 Release film for ceramic green sheet production
KR102408154B1 (en) * 2021-09-07 2022-06-14 도레이첨단소재 주식회사 Release film
KR102457454B1 (en) * 2021-09-07 2022-10-21 도레이첨단소재 주식회사 Release coating composition

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000095929A (en) * 1998-09-24 2000-04-04 Hitachi Kasei Polymer Co Ltd Release agent composition for process release paper
JP2001246698A (en) * 2000-03-08 2001-09-11 Mitsubishi Polyester Film Copp Mold release film
JP2004082370A (en) * 2002-08-23 2004-03-18 Teijin Dupont Films Japan Ltd Release film
JP2006159651A (en) * 2004-12-07 2006-06-22 Tohcello Co Ltd Multi-layer film and its production method
JP2008156499A (en) * 2006-12-25 2008-07-10 Hitachi Kasei Polymer Co Ltd Releasant composition for adhesive tape and release liner
JP2012163594A (en) * 2011-02-03 2012-08-30 Toppan Printing Co Ltd Ink composition and method for manufacturing color filter by using the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003226837A (en) * 2002-02-05 2003-08-15 Matsumoto Seiyaku Kogyo Kk Surface treatment agent
CN101909875B (en) * 2008-01-11 2014-05-14 帝人杜邦薄膜日本有限公司 Mould release film
WO2009122984A1 (en) * 2008-03-31 2009-10-08 日立化成ポリマー株式会社 Releasing agent composition and releasing material
JP2012102293A (en) * 2010-11-12 2012-05-31 Yokohama Rubber Co Ltd:The Thermosetting optical semiconductor sealing silicone composition and optical semiconductor package using the same
JP2012224011A (en) * 2011-04-21 2012-11-15 Lintec Corp Release film for ceramic green sheet manufacturing process
JP6238608B2 (en) * 2013-07-17 2017-11-29 日東電工株式会社 Re-peeling water-dispersed acrylic pressure-sensitive adhesive composition, pressure-sensitive adhesive sheet and optical member
JP5985563B2 (en) * 2014-09-24 2016-09-06 三菱樹脂株式会社 Laminated polyester film

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000095929A (en) * 1998-09-24 2000-04-04 Hitachi Kasei Polymer Co Ltd Release agent composition for process release paper
JP2001246698A (en) * 2000-03-08 2001-09-11 Mitsubishi Polyester Film Copp Mold release film
JP2004082370A (en) * 2002-08-23 2004-03-18 Teijin Dupont Films Japan Ltd Release film
JP2006159651A (en) * 2004-12-07 2006-06-22 Tohcello Co Ltd Multi-layer film and its production method
JP2008156499A (en) * 2006-12-25 2008-07-10 Hitachi Kasei Polymer Co Ltd Releasant composition for adhesive tape and release liner
JP2012163594A (en) * 2011-02-03 2012-08-30 Toppan Printing Co Ltd Ink composition and method for manufacturing color filter by using the same

Also Published As

Publication number Publication date
CN107148348A (en) 2017-09-08
KR20180020946A (en) 2018-02-28
SG11201710776UA (en) 2018-01-30
TW201710085A (en) 2017-03-16
PH12017502383A1 (en) 2018-07-02
JP2017007227A (en) 2017-01-12

Similar Documents

Publication Publication Date Title
WO2016208469A1 (en) Release film for ceramic green sheet production process
JP6474327B2 (en) Release film for ceramic green sheet manufacturing process
WO2016158592A1 (en) Releasing film for ceramic green sheet production step
WO2017098956A1 (en) Release film for ceramic green sheet production process
JP6586376B2 (en) Peeling film for ceramic green sheet manufacturing process and manufacturing method thereof
TWI773887B (en) Release film for ceramic green sheet manufacturing process
WO2012132681A1 (en) Release agent composition and release film for ceramic green sheet mold
JP6586375B2 (en) Peeling film for ceramic green sheet manufacturing process and manufacturing method thereof
CN117677682A (en) Release film
WO2020203654A1 (en) Release film for ceramic green sheet production process
KR102598209B1 (en) Release coating composition
JP7176990B2 (en) Coating liquid of release agent composition and method for producing release film for ceramic green sheet production process
TW202408803A (en) Release film
JP2023104203A (en) Release sheet and manufacturing method for release sheet
TW202407063A (en) Release coating composition
WO2021186939A1 (en) Release film for use in ceramic green sheet production process
TW202248366A (en) Release film for use in ceramic green sheet production process
TW202330811A (en) Heat-curable release coating agent composition, and layered body
TW202304710A (en) Release film for use in ceramic green sheet production process

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16814240

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177023942

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12017502383

Country of ref document: PH

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 11201710776U

Country of ref document: SG

122 Ep: pct application non-entry in european phase

Ref document number: 16814240

Country of ref document: EP

Kind code of ref document: A1