JP5985563B2 - Laminated polyester film - Google Patents

Laminated polyester film Download PDF

Info

Publication number
JP5985563B2
JP5985563B2 JP2014193212A JP2014193212A JP5985563B2 JP 5985563 B2 JP5985563 B2 JP 5985563B2 JP 2014193212 A JP2014193212 A JP 2014193212A JP 2014193212 A JP2014193212 A JP 2014193212A JP 5985563 B2 JP5985563 B2 JP 5985563B2
Authority
JP
Japan
Prior art keywords
group
acid
compound
coating layer
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014193212A
Other languages
Japanese (ja)
Other versions
JP2016064519A (en
Inventor
泰史 川崎
泰史 川崎
良亮 舟津
良亮 舟津
俊啓 開
俊啓 開
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Plastics Inc
Original Assignee
Mitsubishi Plastics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Plastics Inc filed Critical Mitsubishi Plastics Inc
Priority to JP2014193212A priority Critical patent/JP5985563B2/en
Publication of JP2016064519A publication Critical patent/JP2016064519A/en
Application granted granted Critical
Publication of JP5985563B2 publication Critical patent/JP5985563B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Laminated Bodies (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Description

本発明は、積層ポリエステルフィルムに関するものであり、例えば、各種テープ用、セラミック製造用、各種表面保護フィルム用、偏光板製造時等に使用する粘着セパレータ等の用途において、良好な離型性能を有する積層ポリエステルフィルムに関するものである。   The present invention relates to a laminated polyester film, and has good release performance in applications such as adhesive separators used for various tapes, ceramic production, various surface protection films, polarizing plate production, and the like. The present invention relates to a laminated polyester film.

従来、ポリエチレンテレフタレートやポリエチレンナフタレートに代表されるポリエステルフィルムは、機械的強度、寸法安定性、平坦性、耐熱性、耐薬品性、光学特性等に優れた特性を有し、コストパフォーマンスに優れるため、各種用途に使用されている。   Conventionally, polyester films represented by polyethylene terephthalate and polyethylene naphthalate have excellent mechanical properties, dimensional stability, flatness, heat resistance, chemical resistance, optical properties, etc., and cost performance. It is used for various purposes.

ポリエステルフィルムを離型フィルムとして使用する場合、種々の樹脂や粘着剤に対する離型性が不足するため、実用性に乏しいという欠点を有している。このため、従来から、ポリエステルフィルム表面に離型性塗布膜を積層する方法が検討されてきている。   When a polyester film is used as a release film, it has a drawback of poor practicality because of its insufficient release properties for various resins and adhesives. For this reason, conventionally, a method of laminating a release coating film on the surface of a polyester film has been studied.

しかしながら、一般的に使用される離型性塗膜は、有機溶剤系のシリコーン化合物を使用することが多く、近年の環境考慮に優れているとは言い難い。また、金属触媒を用いた付加反応による離型性塗布膜は、反応の調整が難しい場合があり、官能基が残ることにより、離型性が安定化しないという課題もある。   However, generally used releasable coating films often use organic solvent-based silicone compounds, and it is difficult to say that they are excellent in consideration of the environment in recent years. In addition, in a releasable coating film by an addition reaction using a metal catalyst, it may be difficult to adjust the reaction, and there is a problem that the releasability is not stabilized due to remaining functional groups.

特開2004−142179号公報JP 2004-142179 A

本発明は、上記実情に鑑みなされたものであって、その解決課題は、各種テープ用、セラミック製造用、各種表面保護フィルム用、偏光板製造時等に使用する粘着セパレータ等の用途において、環境考慮された、離型性能に優れた積層ポリエステルフィルムを提供することにある。   The present invention has been made in view of the above circumstances, and the problem to be solved is in various applications such as adhesive separators used for various tapes, ceramic production, various surface protection films, polarizing plate production, etc. An object of the present invention is to provide a laminated polyester film that is considered and has excellent release performance.

本発明者らは、上記実情に鑑み、鋭意検討した結果、特定の構成からなる積層ポリエステルフィルムを用いれば、上述の課題を容易に解決できることを知見し、本発明を完成させるに至った。   As a result of intensive studies in view of the above circumstances, the present inventors have found that the use of a laminated polyester film having a specific configuration can easily solve the above-described problems, and have completed the present invention.

すなわち、本発明の要旨は、ポリエステルフィルムの少なくとも片面に、ポリエーテル基含有シリコーンおよびメラミン化合物、オキサゾリン化合物、エポキシ化合物、イソシアネート系化合物から選ばれる少なくとも1つの架橋剤を含有する水系の塗布液から形成された塗布層を有することを特徴とする積層ポリエステルフィルムに存する。 That is, the gist of the present invention is formed from an aqueous coating solution containing at least one crosslinking agent selected from polyether group-containing silicone and melamine compounds, oxazoline compounds, epoxy compounds, and isocyanate compounds on at least one surface of a polyester film. The present invention resides in a laminated polyester film having a coated layer.

本発明の積層ポリエステルフィルムによれば、各種テープ用、セラミック製造用、各種表面保護フィルム用、偏光板製造時等に使用する粘着セパレータ等の用途において、良好な離型性能を有する基材フィルムを提供することができ、その工業的価値は高い。   According to the laminated polyester film of the present invention, a base film having good release performance is used for various tapes, ceramics, various surface protective films, adhesive separators used at the time of polarizing plate production, etc. The industrial value is high.

本発明における積層ポリエステルフィルムを構成するポリエステルフィルムは単層構成であっても多層構成であってもよく、2層、3層構成以外にも本発明の要旨を越えない限り、4層またはそれ以上の多層であってもよく、特に限定されるものではない。   The polyester film constituting the laminated polyester film in the present invention may have a single layer structure or a multilayer structure, and may have four or more layers as long as it does not exceed the gist of the present invention other than a two-layer or three-layer structure. It may be a multilayer, and is not particularly limited.

本発明において使用するポリエステルは、ホモポリエステルであっても共重合ポリエステルであってもよい。ホモポリエステルからなる場合、芳香族ジカルボン酸と脂肪族グリコールとを重縮合させて得られるものが好ましい。芳香族ジカルボン酸としては、テレフタル酸、2,6−ナフタレンジカルボン酸などが挙げられ、脂肪族グリコールとしては、エチレングリコール、ジエチレングリコール、1,4−シクロヘキサンジメタノール等が挙げられる。代表的なポリエステルとしては、ポリエチレンテレフタレート等が例示される。一方、共重合ポリエステルのジカルボン酸成分としては、イソフタル酸、フタル酸、テレフタル酸、2,6−ナフタレンジカルボン酸、アジピン酸、セバシン酸、オキシカルボン酸(例えば、p−オキシ安息香酸など)等の一種または二種以上が挙げられ、グリコール成分として、エチレングリコール、ジエチレングリコール、プロピレングリコール、ブタンジオール、4−シクロヘキサンジメタノール、ネオペンチルグリコール等の一種または二種以上が挙げられる。   The polyester used in the present invention may be a homopolyester or a copolyester. In the case of a homopolyester, those obtained by polycondensation of an aromatic dicarboxylic acid and an aliphatic glycol are preferred. Examples of the aromatic dicarboxylic acid include terephthalic acid and 2,6-naphthalenedicarboxylic acid, and examples of the aliphatic glycol include ethylene glycol, diethylene glycol, and 1,4-cyclohexanedimethanol. Typical polyester includes polyethylene terephthalate and the like. On the other hand, the dicarboxylic acid component of the copolyester includes isophthalic acid, phthalic acid, terephthalic acid, 2,6-naphthalenedicarboxylic acid, adipic acid, sebacic acid, oxycarboxylic acid (for example, p-oxybenzoic acid, etc.), etc. 1 type or 2 types or more are mentioned, As a glycol component, 1 type or 2 types or more, such as ethylene glycol, diethylene glycol, propylene glycol, butanediol, 4-cyclohexane dimethanol, neopentyl glycol, is mentioned.

ポリエステルの重合触媒としては、特に制限はなく、従来公知の化合物を使用することができ、例えば、アンチモン化合物、チタン化合物、ゲルマニウム化合物、マンガン化合物、アルミニウム化合物、マグネシウム化合物、カルシウム化合物等が挙げられる。この中でも、アンチモン化合物は安価であることから好ましく、また、チタン化合物やゲルマニウム化合物は触媒活性が高く、少量で重合を行うことが可能であり、フィルム中に残留する金属量が少ないことから、フィルムの透明性が高くなるため好ましい。さらに、ゲルマニウム化合物は高価であることから、チタン化合物を用いることがより好ましい。   There is no restriction | limiting in particular as a polymerization catalyst of polyester, A conventionally well-known compound can be used, For example, an antimony compound, a titanium compound, a germanium compound, a manganese compound, an aluminum compound, a magnesium compound, a calcium compound etc. are mentioned. Among these, antimony compounds are preferable because they are inexpensive, and titanium compounds and germanium compounds have high catalytic activity, can be polymerized in a small amount, and the amount of metal remaining in the film is small. Since transparency of this becomes high, it is preferable. Furthermore, since a germanium compound is expensive, it is more preferable to use a titanium compound.

チタン化合物を用いたポリエステルの場合、チタン元素含有量は、好ましくは50ppm以下、より好ましくは1〜20ppm、さらに好ましくは2〜10ppmの範囲である。チタン化合物の含有量が多すぎる場合は、ポリエステルを溶融押出する工程でポリエステルの劣化が促進され黄色味が強いフィルムとなる場合があり、また、含有量が少なすぎる場合は、重合効率が悪くコストアップや十分な強度を有するフィルムが得られない場合がある。また、チタン化合物によるポリエステルを用いる場合、溶融押出する工程での劣化抑制の目的で、チタン化合物の活性を下げるためにリン化合物を使用することが好ましい。リン化合物としては、ポリエステルの生産性や熱安定性を考慮すると正リン酸が好ましい。リン元素含有量は、溶融押出するポリエステル量に対して、好ましくは1〜300ppm、より好ましくは3〜200ppm、さらに好ましくは5〜100ppmの範囲である。リン化合物の含有量が多すぎる場合は、ゲル化や異物の原因となる可能性があり、また、含有量が少なすぎる場合は、チタン化合物の活性を十分に下げることができず、黄色味のあるフィルムとなる場合がある。   In the case of polyester using a titanium compound, the titanium element content is preferably 50 ppm or less, more preferably 1 to 20 ppm, and still more preferably 2 to 10 ppm. If the content of the titanium compound is too high, the polyester may be deteriorated in the process of melt-extruding the polyester, resulting in a strong yellowish film. If the content is too low, the polymerization efficiency is poor and the cost is low. In some cases, a film having a sufficient strength or a sufficient strength cannot be obtained. Moreover, when using the polyester by a titanium compound, it is preferable to use a phosphorus compound in order to reduce the activity of a titanium compound for the purpose of suppressing deterioration in the step of melt extrusion. As the phosphorus compound, orthophosphoric acid is preferable in view of the productivity and thermal stability of the polyester. The phosphorus element content is preferably in the range of 1 to 300 ppm, more preferably 3 to 200 ppm, and still more preferably 5 to 100 ppm with respect to the amount of polyester to be melt-extruded. If the content of the phosphorus compound is too large, it may cause gelation or foreign matter. If the content is too small, the activity of the titanium compound cannot be lowered sufficiently, and the yellowish It may be a film.

本発明のフィルムのポリエステル層中には、易滑性の付与および各工程での傷発生防止を主たる目的として、粒子を配合することも可能である。粒子を配合する場合、配合する粒子の種類は、易滑性付与可能な粒子であれば特に限定されるものではなく、具体例としては、例えば、シリカ、炭酸カルシウム、炭酸マグネシウム、炭酸バリウム、硫酸カルシウム、リン酸カルシウム、リン酸マグネシウム、カオリン、酸化アルミニウム、酸化ジルコニウム、酸化チタン等の無機粒子、アクリル樹脂、スチレン樹脂、尿素樹脂、フェノール樹脂、エポキシ樹脂、ベンゾグアナミン樹脂等の有機粒子等が挙げられる。さらに、ポリエステル製造工程中、触媒等の金属化合物の一部を沈殿、微分散させた析出粒子を用いることもできる。これらの中でも特に少量で効果が出やすいという点でシリカ粒子や炭酸カルシウム粒子が好ましい。   In the polyester layer of the film of the present invention, particles can be blended mainly for the purpose of imparting slipperiness and preventing scratches in each step. When the particles are blended, the kind of the particles to be blended is not particularly limited as long as it is a particle capable of imparting slipperiness, and specific examples thereof include, for example, silica, calcium carbonate, magnesium carbonate, barium carbonate, sulfuric acid. Examples thereof include inorganic particles such as calcium, calcium phosphate, magnesium phosphate, kaolin, aluminum oxide, zirconium oxide, and titanium oxide, and organic particles such as acrylic resin, styrene resin, urea resin, phenol resin, epoxy resin, and benzoguanamine resin. Furthermore, precipitated particles obtained by precipitating and finely dispersing a part of a metal compound such as a catalyst during the polyester production process can also be used. Of these, silica particles and calcium carbonate particles are preferable because they are particularly effective in a small amount.

また、粒子の平均粒径は、好ましくは5.0μm以下、より好ましくは0.01〜3.0μmの範囲である。平均粒径が5.0μmを超える場合には、フィルムの表面粗度が粗くなりすぎて、後工程の種々の加工で不具合が生じる場合がある。また、上記範囲で使用することで、ヘーズが低く抑えられ、フィルム全体として透明性を確保しやすい。   Moreover, the average particle diameter of the particles is preferably 5.0 μm or less, and more preferably in the range of 0.01 to 3.0 μm. When the average particle diameter exceeds 5.0 μm, the surface roughness of the film becomes too rough, and problems may occur in various processes in the subsequent steps. Moreover, by using in the said range, haze is restrained low and it is easy to ensure transparency as the whole film.

さらにポリエステル層中の粒子含有量は、好ましくは5重量%未満、より好ましくは0.0003〜1重量%の範囲、さらに好ましくは0.0005〜0.5重量%の範囲である。粒子が無い場合、あるいは少ない場合は、フィルムの透明性が高くなり、良好なフィルムとなるが、滑り性が不十分となる場合があるため、塗布層中に粒子を入れることにより、滑り性を向上させる等の工夫が必要な場合がある。また、粒子含有量が多い場合にはヘーズが高くなり、透明性に欠けることから、例えば、種々の検査時に、異物等の欠陥検査の難易度が上がってしまう等の不具合が生じる場合がある。   Further, the particle content in the polyester layer is preferably less than 5% by weight, more preferably in the range of 0.0003 to 1% by weight, and still more preferably in the range of 0.0005 to 0.5% by weight. When there are no or few particles, the transparency of the film becomes high and the film becomes a good film, but the slipperiness may be insufficient. There are cases where improvement is required. In addition, when the particle content is high, haze increases and lacks transparency. For example, during various inspections, defects such as difficulty of defect inspection for foreign matters may occur.

使用する粒子の形状に関しても特に限定されるわけではなく、球状、塊状、棒状、扁平状等のいずれを用いてもよい。また、その硬度、比重、色等についても特に制限はない。
これら一連の粒子は、必要に応じて2種類以上を併用してもよい。
The shape of the particles to be used is not particularly limited, and any of a spherical shape, a block shape, a rod shape, a flat shape, and the like may be used. Moreover, there is no restriction | limiting in particular also about the hardness, specific gravity, a color, etc.
These series of particles may be used in combination of two or more as required.

ポリエステル層中に粒子を添加する方法としては、特に限定されるものではなく、従来公知の方法を採用しうる。例えば、各層を構成するポリエステルを製造する任意の段階において添加することができるが、好ましくはエステル化もしくはエステル交換反応終了後、添加するのが良い。   The method for adding particles to the polyester layer is not particularly limited, and a conventionally known method can be adopted. For example, it can be added at any stage for producing the polyester constituting each layer, but it is preferably added after completion of esterification or transesterification.

なお、本発明におけるポリエステルフィルム中には、上述の粒子以外に必要に応じて従来公知の紫外線吸収剤、酸化防止剤、帯電防止剤、熱安定剤、潤滑剤、染料、顔料等を添加することができる。   In addition to the above-mentioned particles, conventionally known UV absorbers, antioxidants, antistatic agents, thermal stabilizers, lubricants, dyes, pigments, etc. may be added to the polyester film in the present invention as necessary. Can do.

本発明におけるポリエステルフィルムの厚みは、フィルムとして製膜可能な範囲であれば特に限定されるものではないが、好ましくは10〜350μm、より好ましくは15〜200μmの範囲である。   The thickness of the polyester film in the present invention is not particularly limited as long as it can be formed as a film, but it is preferably 10 to 350 μm, more preferably 15 to 200 μm.

本発明のフィルムの製膜方法としては、通常知られている製膜法を採用でき、特に制限はない。例えば、二軸延伸ポリエステルフィルムを製造する場合、まず先に述べたポリエステル原料を、押出機を用いてダイから溶融押し出しし、溶融シートを冷却ロールで冷却固化して未延伸シートを得る。この場合、シートの平面性を向上させるためシートと回転冷却ドラムとの密着性を高めることが好ましく、静電印加密着法や液体塗布密着法が好ましく採用される。次に得られた未延伸シートを一方向にロールまたはテンター方式の延伸機により延伸する。延伸温度は、通常70〜120℃、好ましくは80〜110℃であり、延伸倍率は通常2.5〜7倍、好ましくは3.0〜6倍である。次いで、一段目の延伸方向と直交する方向に、通常70〜170℃で、延伸倍率は通常2.5〜7倍、好ましくは3.0〜6倍で延伸する。引き続き180〜270℃の温度で緊張下または30%以内の弛緩下で熱処理を行い、二軸配向フィルムを得る方法が挙げられる。上記の延伸においては、一方向の延伸を2段階以上で行う方法を採用することもできる。その場合、最終的に二方向の延伸倍率がそれぞれ上記範囲となるように行うのが好ましい。   As a film forming method of the film of the present invention, a generally known film forming method can be adopted, and there is no particular limitation. For example, when producing a biaxially stretched polyester film, the polyester raw material described above is first melt-extruded from a die using an extruder, and the molten sheet is cooled and solidified with a cooling roll to obtain an unstretched sheet. In this case, in order to improve the flatness of the sheet, it is preferable to improve the adhesion between the sheet and the rotary cooling drum, and an electrostatic application adhesion method or a liquid application adhesion method is preferably employed. Next, the obtained unstretched sheet is stretched in one direction by a roll or a tenter type stretching machine. The stretching temperature is usually 70 to 120 ° C., preferably 80 to 110 ° C., and the stretching ratio is usually 2.5 to 7 times, preferably 3.0 to 6 times. Next, the film is stretched in the direction perpendicular to the first-stage stretching direction at usually 70 to 170 ° C. and the stretching ratio is usually 2.5 to 7 times, preferably 3.0 to 6 times. Subsequently, a method of obtaining a biaxially oriented film by performing heat treatment at a temperature of 180 to 270 ° C. under tension or under relaxation within 30% can be mentioned. In the above-described stretching, a method in which stretching in one direction is performed in two or more stages can be employed. In that case, it is preferable to carry out so that the draw ratios in the two directions finally fall within the above ranges.

また、本発明においては積層ポリエステルフィルムを構成するポリエステルフィルム製造に関しては同時二軸延伸法を採用することもできる。同時二軸延伸法は、前記の未延伸シートを通常70〜120℃、好ましくは80〜110℃で温度コントロールされた状態で機械方向および幅方向に同時に延伸し配向させる方法であり、延伸倍率としては、面積倍率で4〜50倍、好ましくは7〜35倍、さらに好ましくは10〜25倍である。そして、引き続き、180〜270℃の温度で緊張下または30%以内の弛緩下で熱処理を行い、延伸配向フィルムを得る。上述の延伸方式を採用する同時二軸延伸装置に関しては、スクリュー方式、パンタグラフ方式、リニアー駆動方式等、従来公知の延伸方式を採用することができる。   In the present invention, the simultaneous biaxial stretching method can be adopted for the production of the polyester film constituting the laminated polyester film. The simultaneous biaxial stretching method is a method in which the above-mentioned unstretched sheet is usually stretched and oriented in the machine direction and the width direction at a temperature controlled normally at 70 to 120 ° C., preferably 80 to 110 ° C. Is 4 to 50 times, preferably 7 to 35 times, and more preferably 10 to 25 times in terms of area magnification. Subsequently, heat treatment is performed at a temperature of 180 to 270 ° C. under tension or relaxation within 30% to obtain a stretched oriented film. With respect to the simultaneous biaxial stretching apparatus that employs the above-described stretching method, a conventionally known stretching method such as a screw method, a pantograph method, or a linear driving method can be employed.

次に本発明における積層ポリエステルフィルムを構成する塗布層の形成について説明する。塗布層に関しては、ポリエステルフィルムの製膜工程中にフィルム表面を処理する、インラインコーティングにより設けられてもよく、一旦製造したフィルム上に系外で塗布する、オフラインコーティングを採用してもよい。より好ましくはインラインコーティングにより形成されるものである。   Next, formation of the coating layer which comprises the laminated polyester film in this invention is demonstrated. Regarding the coating layer, it may be provided by in-line coating which treats the film surface during the process of forming a polyester film, or offline coating which is applied outside the system on a once produced film may be adopted. More preferably, it is formed by in-line coating.

インラインコーティングは、ポリエステルフィルム製造の工程内でコーティングを行う方法であり、具体的には、ポリエステルを溶融押出ししてから延伸後熱固定して巻き上げるまでの任意の段階でコーティングを行う方法である。通常は、溶融、急冷して得られる未延伸シート、延伸された一軸延伸フィルムの何れかにコーティングする。   In-line coating is a method of coating within the process of manufacturing a polyester film, and specifically, a method of coating at any stage from melt extrusion of a polyester to heat setting after stretching and winding up. Usually, coating is performed on either an unstretched sheet obtained by melting and rapid cooling, or a stretched uniaxially stretched film.

以下に限定するものではないが、例えば逐次二軸延伸においては、特に長手方向(縦方向)に延伸された一軸延伸フィルムにコーティングした後に横方向に延伸する方法が優れている。かかる方法によれば、製膜と塗布層形成を同時に行うことができるため製造コスト上のメリットがあり、また、コーティング後に延伸を行うために、塗布層の厚みを延伸倍率により変化させることもでき、オフラインコーティングに比べ、薄膜コーティングをより容易に行うことができる。   Although not limited to the following, for example, in sequential biaxial stretching, a method of stretching in the transverse direction after coating a uniaxially stretched film stretched in the longitudinal direction (longitudinal direction) is particularly excellent. According to such a method, film formation and coating layer formation can be performed at the same time, so there is an advantage in manufacturing cost. In addition, in order to perform stretching after coating, the thickness of the coating layer can be changed by the stretching ratio. Compared to offline coating, thin film coating can be performed more easily.

また、延伸前にフィルム上に塗布層を設けることにより、塗布層を基材フィルムと共に延伸することができ、それにより塗布層を基材フィルムに強固に密着させることができる。さらに、二軸延伸ポリエステルフィルムの製造において、クリップ等によりフィルム端部を把持しつつ延伸することで、フィルムを縦および横方向に拘束することができ、熱固定工程において、しわ等が入らず平面性を維持したまま高温をかけることができる。   Further, by providing the coating layer on the film before stretching, the coating layer can be stretched together with the base film, whereby the coating layer can be firmly adhered to the base film. Furthermore, in the production of a biaxially stretched polyester film, the film can be restrained in the longitudinal and lateral directions by stretching while gripping the film end with a clip, etc. High temperature can be applied while maintaining the properties.

それゆえ、塗布後に施される熱処理が他の方法では達成されない高温とすることができるために、塗布層の造膜性が向上し、塗布層と基材フィルムをより強固に密着させることができ、さらには、強固な塗布層とすることができる。また、高温であるがゆえに、塗布層は十分に反応することができ、離型性能はより安定したものとなりうる。特に加熱処理後の離型性能がより安定するために好ましい。   Therefore, since the heat treatment performed after coating can be performed at a high temperature that cannot be achieved by other methods, the film forming property of the coating layer can be improved, and the coating layer and the base film can be more firmly adhered to each other. Furthermore, a strong coating layer can be obtained. In addition, because of the high temperature, the coating layer can sufficiently react, and the release performance can be more stable. In particular, it is preferable because the release performance after heat treatment is more stable.

本発明においては、ポリエーテル基含有シリコーンおよび架橋剤を含有する水系の塗布液から形成された塗布層を有することを必須の要件とするものである。   In the present invention, it is an essential requirement to have a coating layer formed from an aqueous coating solution containing a polyether group-containing silicone and a crosslinking agent.

本発明における塗布層は、例えば、各種テープ用、セラミック製造用、各種表面保護フィルム用、偏光板製造時等に使用する粘着セパレータ等の用途において、良好な離型フィルムとして使用されるために設けられるものである。   The coating layer in the present invention is provided for use as a good release film in applications such as adhesive separators used for various tapes, ceramic production, various surface protection films, polarizing plate production, etc. It is what

塗布層の形成に用いられる、ポリエーテル基含有シリコーンとは、ポリエーテル基を有するシリコーン化合物のことである。ポリエーテル基は主にシリコーンの水系溶媒への分散性向上のために使用され、シリコーンの側鎖や末端に有していても、主鎖に有していても良い。水系溶媒への分散性の観点から、側鎖や末端に有していることが好ましい。   The polyether group-containing silicone used for forming the coating layer is a silicone compound having a polyether group. The polyether group is mainly used for improving the dispersibility of silicone in an aqueous solvent, and may be present in the side chain or terminal of the silicone or in the main chain. From the viewpoint of dispersibility in an aqueous solvent, it is preferably present in the side chain or terminal.

ポリエーテル基は従来公知の構造を使用することができる。水系溶媒の分散性の観点から、芳香族ポリエーテル基より、脂肪族ポリエーテル基が好ましく、脂肪族ポリエーテル基の中でも、アルキルポリエーテル基が好ましい。また、立体障害による合成上の観点から、分岐アルキルポリエーテル基よりも、直鎖アルキルポリエーテル基が好ましく、その中でも、炭素数が8以下の直鎖アルキルからなるポリエーテル基が好ましい。さらに、展開する溶媒が水の場合は、水への分散性を考慮し、ポリエチレングリコール基またはポリプロピレングリコール基が好ましく、特に最適なのは、ポリエチレングリコール基である。   A conventionally well-known structure can be used for a polyether group. From the viewpoint of the dispersibility of the aqueous solvent, an aliphatic polyether group is preferable to an aromatic polyether group, and an alkyl polyether group is preferable among the aliphatic polyether groups. Further, from the viewpoint of synthesis due to steric hindrance, a linear alkyl polyether group is preferable to a branched alkyl polyether group, and among them, a polyether group composed of linear alkyl having 8 or less carbon atoms is preferable. Further, when the developing solvent is water, a polyethylene glycol group or a polypropylene glycol group is preferable in consideration of dispersibility in water, and a polyethylene glycol group is particularly optimal.

ポリエーテル基のエーテル結合の個数は、水系溶媒への分散性と塗布層の耐久性の向上の観点から、通常1〜30個の範囲、好ましくは2〜20個の範囲、より好ましくは3〜15個の範囲である。エーテル結合が少ないと分散性が悪くなり、逆に多すぎると耐久性や離型性能が悪くなる。   The number of ether bonds of the polyether group is usually in the range of 1-30, preferably in the range of 2-20, more preferably 3 in terms of improving the dispersibility in an aqueous solvent and the durability of the coating layer. There are 15 ranges. When there are few ether bonds, dispersibility will worsen, and conversely too much, durability and mold release performance will worsen.

ポリエーテル基をシリコーンの側鎖あるいは末端に有する場合、ポリエーテル基の末端は特に限定するものではなく、水酸基、アミノ基、チオール基、アルキル基やフェニル基等の炭化水素基、カルボン酸基、スルホン酸基、アルデヒド基、アセタール基等、各種の官能基を使用することができる。その中でも、水への分散性や塗布層の強度向上のための架橋性を考慮すると、水酸基、アミノ基、カルボン酸基、スルホン酸基が好ましく、特に、水酸基が最適である。   When the polyether group has a side chain or a terminal of the silicone, the terminal of the polyether group is not particularly limited, and is a hydroxyl group, an amino group, a thiol group, a hydrocarbon group such as an alkyl group or a phenyl group, a carboxylic acid group, Various functional groups such as a sulfonic acid group, an aldehyde group, and an acetal group can be used. Among these, considering the dispersibility in water and the crosslinkability for improving the strength of the coating layer, a hydroxyl group, an amino group, a carboxylic acid group, and a sulfonic acid group are preferable, and a hydroxyl group is particularly optimal.

シリコーンとしては、従来公知のシリコーンを使用することができ、例えば、ジメチルシリコーン、ジエチルシリコーン等のアルキルシリコーン、また、フェニル基を有するフェニルシリコーン、メチルフェニルシリコーン等が挙げられる。シリコーンには上述したポリエーテル基以外の官能基を有するものも使用することができ、例えば、水酸基、アミノ基、エポキシ基、カルボン酸基、フッ素等のハロゲン基、パーフルオロアルキル基、各種アルキル基や各種芳香族基等の炭化水素基等が挙げられる。他の官能基として、ビニル基を有するシリコーンや水素原子が直接ケイ素原子に結合したハイドロゲンシリコーンも一般的であるが、未反応のまま塗布層に残ると離型性能の経時変化の原因となるので、本発明のシリコーンにおいては含有しないことが好ましい。   As the silicone, conventionally known silicones can be used, and examples thereof include alkyl silicones such as dimethyl silicone and diethyl silicone, phenyl silicones having a phenyl group, and methylphenyl silicone. A silicone having a functional group other than the above-described polyether group can also be used, for example, a hydroxyl group, an amino group, an epoxy group, a carboxylic acid group, a halogen group such as fluorine, a perfluoroalkyl group, or various alkyl groups. And hydrocarbon groups such as various aromatic groups. As other functional groups, silicones having vinyl groups and hydrogen silicones in which hydrogen atoms are directly bonded to silicon atoms are also common, but if left unreacted in the coating layer, it may cause a change in release performance over time. The silicone of the present invention is preferably not contained.

ポリエーテル基含有シリコーンのポリエーテル基の含有量は、シリコーンのシロキサン結合を1として、モル比の割合で、通常0.001〜0.30の範囲、好ましくは0.01〜0.20%の範囲、より好ましくは0.03〜0.15%の範囲、さらに好ましくは0.05〜0.12%の範囲である。この範囲内で使用することで、水への分散性と塗布層の耐久性や良好な離型性を保持することができる。   The polyether group content of the polyether group-containing silicone is usually in the range of 0.001 to 0.30, preferably 0.01 to 0.20% in terms of molar ratio, where the siloxane bond of the silicone is 1. The range is more preferably 0.03 to 0.15%, and still more preferably 0.05 to 0.12%. By using it within this range, it is possible to maintain water dispersibility, durability of the coating layer and good releasability.

ポリエーテル基含有シリコーンの分子量は、水系溶媒への分散性を考慮するとあまり大きくない方が好ましく、また、塗布層の耐久性や離型性能を考慮すると大きい方が好ましい。この両者の特性をバランスさせることが求められており、数平均分子量として、好ましくは1000〜100000の範囲、より好ましくは3000〜30000の範囲、さらに好ましくは、5000〜10000の範囲である。   The molecular weight of the polyether group-containing silicone is preferably not so large in consideration of dispersibility in an aqueous solvent, and is preferably in consideration of the durability and release performance of the coating layer. It is required to balance these characteristics, and the number average molecular weight is preferably in the range of 1000 to 100,000, more preferably in the range of 3000 to 30000, and still more preferably in the range of 5000 to 10,000.

また、塗布層の経時変化や離型性能、また、各種工程の汚染性を考慮するとシリコーンの低分子成分(数平均分子量で500以下)はできる限り少ない方が好ましく、その量としては、シリコーン化合物全体の割合として、好ましくは15重量%以下、より好ましくは10重量%以下、さらに好ましくは5重量%以下の範囲である。   Further, considering the time-dependent change and release performance of the coating layer and the contamination of various processes, it is preferable that the silicone low molecular component (number average molecular weight is 500 or less) is as small as possible. The total ratio is preferably 15% by weight or less, more preferably 10% by weight or less, and further preferably 5% by weight or less.

ポリエーテル基含有シリコーンは単独では塗布することが難しいので、水へ分散して使用することが好ましい。分散のために従来公知の各種の分散剤を使用することが可能であり、例えば、アニオン性分散剤、ノニオン性分散剤、カチオン性分散剤、両性分散剤が挙げられる。これらの中でも、ポリエーテル基含有シリコーンの分散性、および塗布層の形成に用いられ得るポリエーテル基含有シリコーン以外のポリマーとの相溶性を考慮した場合、アニオン性分散剤やノニオン性分散剤が好ましい。また、これら分散剤には、フッ素化合物を使用することも可能である。   Since polyether group-containing silicone is difficult to apply alone, it is preferable to use it dispersed in water. Various conventionally known dispersants can be used for dispersion, and examples thereof include anionic dispersants, nonionic dispersants, cationic dispersants, and amphoteric dispersants. Among these, when considering the dispersibility of the polyether group-containing silicone and the compatibility with a polymer other than the polyether group-containing silicone that can be used for forming the coating layer, an anionic dispersant and a nonionic dispersant are preferable. . Moreover, it is also possible to use a fluorine compound for these dispersing agents.

アニオン性分散剤としては、ドデシルベンゼンスルホン酸ナトリウム、アルキルスルホン酸ナトリウム、アルキルナフタレンスルホン酸ナトリウム、ジアルキルスルホコハク酸ナトリウム、ポリオキシエチレンアルキルエーテル硫酸ナトリウム、ポリオキシエチレンアルキルアリルエーテル硫酸ナトリウム、ポリオキシアルキレンアルケニルエーテル硫酸アンモニウム塩等のスルホン酸塩や硫酸エステル塩系、ラウリル酸ナトリウム、オレイン酸カリウム等のカルボン酸塩系、アルキルリン酸塩、ポリオキシエチレンアルキルエーテルリン酸塩、ポリオキシエチレンアルキルフェニルエーテルリン酸塩等のリン酸塩系が挙げられる。これらの中でも、分散性が良好であるという観点からスルホン酸塩系が好ましい。   Anionic dispersants include sodium dodecylbenzenesulfonate, sodium alkylsulfonate, sodium alkylnaphthalenesulfonate, sodium dialkylsulfosuccinate, sodium polyoxyethylene alkyl ether sulfate, sodium polyoxyethylene alkyl allyl ether sulfate, polyoxyalkylene alkenyl. Sulfonates such as ether ammonium sulfate, sulfate esters, carboxylates such as sodium laurate and potassium oleate, alkyl phosphates, polyoxyethylene alkyl ether phosphates, polyoxyethylene alkyl phenyl ether phosphates Examples thereof include phosphates such as salts. Among these, a sulfonate system is preferable from the viewpoint of good dispersibility.

ノニオン性分散剤としては、例えば、高級アルコールやアルキルフェノールなどの水酸基をもつ化合物にエチレンオキサイドやプロピレンオキサイド等のアルキレンオキサイドを付加させたエーテル型、グリセリンや糖類などの多価アルコールと脂肪酸がエステル結合したエステル型、脂肪酸や多価アルコール脂肪酸エステルにアルキレンオキサイドを付加させたエステル・エーテル型、疎水基と親水基がアミド結合を介しているアミド型等が挙げられる。これらの中でも水への溶解性、安定性を考慮するとエーテル型が好ましく、取扱い性も考慮するとエチレンオキサイドを付加させたタイプがより好ましい。   Nonionic dispersants include, for example, ether type compounds in which alkylene oxides such as ethylene oxide and propylene oxide are added to compounds having hydroxyl groups such as higher alcohols and alkylphenols, and polyhydric alcohols such as glycerin and saccharides and ester bonds. Examples include an ester type, an ester / ether type in which an alkylene oxide is added to a fatty acid or a polyhydric alcohol fatty acid ester, and an amide type in which a hydrophobic group and a hydrophilic group are connected via an amide bond. Among these, an ether type is preferable in consideration of solubility in water and stability, and a type to which ethylene oxide is added is more preferable in consideration of handleability.

使用するポリエーテル基含有シリコーンの分子量や構造にも依存するし、使用する分散剤の種類にも依存するので一概には言えないが、目安として分散剤の量は、ポリエーテル基含有シリコーンを1として、重量比で、好ましくは0.01〜0.5、より好ましくは0.05〜0.4、さらに好ましくは0.1〜0.3の範囲である。   Although it depends on the molecular weight and structure of the polyether group-containing silicone to be used and depends on the type of the dispersant to be used, it cannot be said unconditionally. As a weight ratio, it is preferably 0.01 to 0.5, more preferably 0.05 to 0.4, and still more preferably 0.1 to 0.3.

塗布層の強度や離型性能(特に加熱後や溶剤処理後の離型性能)を向上させるために、塗布層の形成には、架橋剤も使用する。架橋剤とは従来公知の材料を使用することができ、例えば、メラミン化合物、オキサゾリン化合物、エポキシ化合物、イソシアネート系化合物、シランカップリング化合物、カルボジイミド系化合物、ヒドラジド化合物、アジリジン化合物等が挙げられる。塗布層の強度の観点、安定した離型性能の観点から、メラミン化合物、オキサゾリン化合物、エポキシ化合物、イソシアネート系化合物、シランカップリング化合物、カルボジイミド系化合物が好ましく、メラミン化合物、オキサゾリン化合物、エポキシ化合物、イソシアネート系化合物、シランカップリング化合物がより好ましく、メラミン化合物が特に好ましい。これらの架橋剤は単独で用いても、また2種類以上組み合わせて使用しても良い。使用する材料系によっては、2種類以上組み合わせて使用する、例えば架橋剤の1種類をポリマータイプの架橋剤にすると、離型性能が向上する場合がある。   In order to improve the strength and mold release performance of the coating layer (particularly, the mold release performance after heating or solvent treatment), a crosslinking agent is also used for forming the coating layer. A conventionally well-known material can be used with a crosslinking agent, For example, a melamine compound, an oxazoline compound, an epoxy compound, an isocyanate type compound, a silane coupling compound, a carbodiimide type compound, a hydrazide compound, an aziridine compound etc. are mentioned. From the viewpoint of the strength of the coating layer and the stable release performance, melamine compounds, oxazoline compounds, epoxy compounds, isocyanate compounds, silane coupling compounds, carbodiimide compounds are preferred, melamine compounds, oxazoline compounds, epoxy compounds, isocyanates. Of these compounds, silane coupling compounds are more preferred, and melamine compounds are particularly preferred. These cross-linking agents may be used alone or in combination of two or more. Depending on the material system to be used, when two or more types are used in combination, for example, when one type of crosslinking agent is a polymer type crosslinking agent, the mold release performance may be improved.

メラミン化合物とは、化合物中にメラミン骨格を有する化合物のことであり、例えば、アルキロール化メラミン誘導体、アルキロール化メラミン誘導体にアルコールを反応させて部分的あるいは完全にエーテル化した化合物、およびこれらの混合物を用いることができる。エーテル化に用いるアルコールとしては、メチルアルコール、エチルアルコール、イソプロピルアルコール、n−ブタノール、イソブタノール等が好適に用いられる。また、メラミン化合物としては、単量体、あるいは2量体以上の多量体のいずれであってもよく、あるいはこれらの混合物を用いてもよい。各種化合物との反応性を考慮すると、メラミン化合物中に水酸基を含有していることが好ましい。さらに、メラミンの一部に尿素等を共縮合したものも使用できるし、メラミン化合物の反応性を上げるために触媒を使用することも可能である。   The melamine compound is a compound having a melamine skeleton in the compound. For example, an alkylolized melamine derivative, a compound partially or completely etherified by reacting an alcohol with an alkylolated melamine derivative, and these Mixtures can be used. As alcohol used for etherification, methyl alcohol, ethyl alcohol, isopropyl alcohol, n-butanol, isobutanol and the like are preferably used. Moreover, as a melamine compound, either a monomer or a multimer more than a dimer may be sufficient, or a mixture thereof may be used. In view of reactivity with various compounds, it is preferable that the melamine compound contains a hydroxyl group. Further, a product obtained by co-condensing urea or the like with a part of melamine can be used, and a catalyst can be used to increase the reactivity of the melamine compound.

オキサゾリン化合物とは、分子内にオキサゾリン基を有する化合物であり、特にオキサゾリン基を含有する重合体が好ましく、付加重合性オキサゾリン基含有モノマー単独もしくは他のモノマーとの重合によって作成できる。付加重合性オキサゾリン基含有モノマーは、2−ビニル−2−オキサゾリン、2−ビニル−4−メチル−2−オキサゾリン、2−ビニル−5−メチル−2−オキサゾリン、2−イソプロペニル−2−オキサゾリン、2−イソプロペニル−4−メチル−2−オキサゾリン、2−イソプロペニル−5−エチル−2−オキサゾリン等を挙げることができ、これらの1種または2種以上の混合物を使用することができる。これらの中でも2−イソプロペニル−2−オキサゾリンが工業的にも入手しやすく好適である。他のモノマーは、付加重合性オキサゾリン基含有モノマーと共重合可能なモノマーであれば制限なく、例えばアルキル(メタ)アクリレート(アルキル基としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、t−ブチル基、2−エチルヘキシル基、シクロヘキシル基)等の(メタ)アクリル酸エステル類;アクリル酸、メタクリル酸、イタコン酸、マレイン酸、フマール酸、クロトン酸、スチレンスルホン酸およびその塩(ナトリウム塩、カリウム塩、アンモニウム塩、第三級アミン塩等)等の不飽和カルボン酸類;アクリロニトリル、メタクリロニトリル等の不飽和ニトリル類;(メタ)アクリルアミド、N−アルキル(メタ)アクリルアミド、N,N−ジアルキル(メタ)アクリルアミド、(アルキル基としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、t−ブチル基、2−エチルヘキシル基、シクロヘキシル基等)等の不飽和アミド類;酢酸ビニル、プロピオン酸ビニル等のビニルエステル類;メチルビニルエーテル、エチルビニルエーテル等のビニルエーテル類;エチレン、プロピレン等のα−オレフィン類;塩化ビニル、塩化ビニリデン、フッ化ビニル等の含ハロゲンα,β−不飽和モノマー類;スチレン、α−メチルスチレン、等のα,β−不飽和芳香族モノマー等を挙げることができ、これらの1種または2種以上のモノマーを使用することができる。   The oxazoline compound is a compound having an oxazoline group in the molecule, and a polymer containing an oxazoline group is particularly preferable, and can be prepared by polymerization of an addition polymerizable oxazoline group-containing monomer alone or with another monomer. Addition polymerizable oxazoline group-containing monomers include 2-vinyl-2-oxazoline, 2-vinyl-4-methyl-2-oxazoline, 2-vinyl-5-methyl-2-oxazoline, 2-isopropenyl-2-oxazoline, 2-isopropenyl-4-methyl-2-oxazoline, 2-isopropenyl-5-ethyl-2-oxazoline, and the like can be mentioned, and one or a mixture of two or more thereof can be used. Among these, 2-isopropenyl-2-oxazoline is preferred because it is easily available industrially. The other monomer is not limited as long as it is a monomer copolymerizable with an addition polymerizable oxazoline group-containing monomer. For example, alkyl (meth) acrylate (the alkyl group includes a methyl group, an ethyl group, an n-propyl group, an isopropyl group, (meth) acrylic acid esters such as n-butyl group, isobutyl group, t-butyl group, 2-ethylhexyl group, cyclohexyl group); acrylic acid, methacrylic acid, itaconic acid, maleic acid, fumaric acid, crotonic acid, styrene Unsaturated carboxylic acids such as sulfonic acid and its salts (sodium salt, potassium salt, ammonium salt, tertiary amine salt, etc.); Unsaturated nitriles such as acrylonitrile, methacrylonitrile; (meth) acrylamide, N-alkyl ( (Meth) acrylamide, N, N-dialkyl (meth) acrylamide, As the alkyl group, unsaturated amides such as methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, t-butyl group, 2-ethylhexyl group and cyclohexyl group); vinyl acetate Vinyl esters such as vinyl propionate; vinyl ethers such as methyl vinyl ether and ethyl vinyl ether; α-olefins such as ethylene and propylene; halogen-containing α, β-unsaturated monomers such as vinyl chloride, vinylidene chloride and vinyl fluoride And α, β-unsaturated aromatic monomers such as styrene and α-methylstyrene, and the like, and one or more of these monomers can be used.

オキサゾリン化合物に含有されるオキサゾリン基の含有量は、オキサゾリン基量で、通常0.5〜10mmol/g、好ましくは1〜9mmol/g、より好ましくは3〜8mmol/g、さらに好ましくは4〜6mmol/gの範囲である。上記範囲での使用が、離型性能が向上し好ましい。   The content of the oxazoline group contained in the oxazoline compound is usually 0.5 to 10 mmol / g, preferably 1 to 9 mmol / g, more preferably 3 to 8 mmol / g, and further preferably 4 to 6 mmol in terms of the amount of the oxazoline group. / G. Use within the above range is preferable because the release performance is improved.

エポキシ化合物とは、分子内にエポキシ基を有する化合物であり、例えば、エピクロロヒドリンとエチレングリコール、ポリエチレングリコール、グリセリン、ポリグリセリン、ビスフェノールA等の水酸基やアミノ基との縮合物が挙げられ、ポリエポキシ化合物、ジエポキシ化合物、モノエポキシ化合物、グリシジルアミン化合物等がある。ポリエポキシ化合物としては、例えば、ソルビトールポリグリシジルエーテル、ポリグリセロールポリグリシジルエーテル、ペンタエリスリトールポリグリシジルエーテル、ジグリセロールポリグリシジルエーテル、トリグリシジルトリス(2−ヒドロキシエチル)イソシアネート、グリセロールポリグリシジルエーテル、トリメチロールプロパンポリグリシジルエーテル、ジエポキシ化合物としては、例えば、ネオペンチルグリコールジグリシジルエーテル、1,6−ヘキサンジオールジグリシジルエーテル、レゾルシンジグリシジルエーテル、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ポリテトラメチレングリコールジグリシジルエーテル、モノエポキシ化合物としては、例えば、アリルグリシジルエーテル、2−エチルヘキシルグリシジルエーテル、フェニルグリシジルエーテル、グリシジルアミン化合物としてはN,N,N’,N’−テトラグリシジル−m−キシリレンジアミン、1,3−ビス(N,N−ジグリシジルアミノ)シクロヘキサン等が挙げられる。   The epoxy compound is a compound having an epoxy group in the molecule, and examples thereof include condensates of epichlorohydrin with ethylene glycol, polyethylene glycol, glycerin, polyglycerin, bisphenol A and the like hydroxyl groups and amino groups, There are polyepoxy compounds, diepoxy compounds, monoepoxy compounds, glycidylamine compounds, and the like. Examples of the polyepoxy compound include sorbitol polyglycidyl ether, polyglycerol polyglycidyl ether, pentaerythritol polyglycidyl ether, diglycerol polyglycidyl ether, triglycidyl tris (2-hydroxyethyl) isocyanate, glycerol polyglycidyl ether, trimethylolpropane. Examples of the polyglycidyl ether and diepoxy compound include neopentyl glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, resorcin diglycidyl ether, ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, and propylene glycol diglycidyl ether. , Polypropylene glycol diglycidyl ether, poly Examples of tetramethylene glycol diglycidyl ether and monoepoxy compounds include allyl glycidyl ether, 2-ethylhexyl glycidyl ether, phenyl glycidyl ether, and glycidyl amine compounds such as N, N, N ′, N′-tetraglycidyl-m-xylyl. Examples include range amine and 1,3-bis (N, N-diglycidylamino) cyclohexane.

イソシアネート系化合物とは、イソシアネート、あるいはブロックイソシアネートに代表されるイソシアネート誘導体構造を有する化合物のことである。イソシアネートとしては、例えば、トリレンジイソシアネート、キシリレンジイソシアネート、メチレンジフェニルジイソシアネート、フェニレンジイソシアネート、ナフタレンジイソシアネート等の芳香族イソシアネート、α,α,α’,α’−テトラメチルキシリレンジイソシアネート等の芳香環を有する脂肪族イソシアネート、メチレンジイソシアネート、プロピレンジイソシアネート、リジンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、ヘキサメチレンジイソシアネート等の脂肪族イソシアネート、シクロヘキサンジイソシアネート、メチルシクロヘキサンジイソシアネート、イソホロンジイソシアネート、メチレンビス(4−シクロヘキシルイソシアネート)、イソプロピリデンジシクロヘキシルジイソシアネート等の脂環族イソシアネート等が例示される。また、これらイソシアネートのビュレット化物、イソシアヌレート化物、ウレトジオン化物、カルボジイミド変性体等の重合体や誘導体も挙げられる。これらは単独で用いても、複数種併用してもよい。上記イソシアネートの中でも、紫外線による黄変を避けるために、芳香族イソシアネートよりも脂肪族イソシアネートまたは脂環族イソシアネートがより好ましい。   The isocyanate compound is a compound having an isocyanate derivative structure typified by isocyanate or blocked isocyanate. Examples of the isocyanate include aromatic isocyanates such as tolylene diisocyanate, xylylene diisocyanate, methylene diphenyl diisocyanate, phenylene diisocyanate, and naphthalene diisocyanate, and aromatic rings such as α, α, α ′, α′-tetramethylxylylene diisocyanate. Aliphatic isocyanates such as aliphatic isocyanate, methylene diisocyanate, propylene diisocyanate, lysine diisocyanate, trimethylhexamethylene diisocyanate, hexamethylene diisocyanate, cyclohexane diisocyanate, methylcyclohexane diisocyanate, isophorone diisocyanate, methylene bis (4-cyclohexyl isocyanate), isopropylidene dicyclohexyl diisocyanate Ne Alicyclic isocyanates such as bets are exemplified. Further, polymers and derivatives such as burettes, isocyanurates, uretdiones, and carbodiimide modified products of these isocyanates are also included. These may be used alone or in combination. Among the above isocyanates, aliphatic isocyanates or alicyclic isocyanates are more preferable than aromatic isocyanates in order to avoid yellowing due to ultraviolet rays.

ブロックイソシアネートの状態で使用する場合、そのブロック剤としては、例えば重亜硫酸塩類、フェノール、クレゾール、エチルフェノールなどのフェノール系化合物、プロピレングリコールモノメチルエーテル、エチレングリコール、ベンジルアルコール、メタノール、エタノールなどのアルコール系化合物、イソブタノイル酢酸メチル、マロン酸ジメチル、マロン酸ジエチル、アセト酢酸メチル、アセト酢酸エチル、アセチルアセトンなどの活性メチレン系化合物、ブチルメルカプタン、ドデシルメルカプタンなどのメルカプタン系化合物、ε‐カプロラクタム、δ‐バレロラクタムなどのラクタム系化合物、ジフェニルアニリン、アニリン、エチレンイミンなどのアミン系化合物、アセトアニリド、酢酸アミドの酸アミド化合物、ホルムアルデヒド、アセトアルドオキシム、アセトンオキシム、メチルエチルケトンオキシム、シクロヘキサノンオキシムなどのオキシム系化合物が挙げられ、これらは単独でも2種以上の併用であってもよい。これらの中でも特に離型性能が良好であるという観点から活性メチレン系化合物であることが好ましい。   When used in the state of blocked isocyanate, the blocking agent includes, for example, bisulfites, phenolic compounds such as phenol, cresol, and ethylphenol, and alcohols such as propylene glycol monomethyl ether, ethylene glycol, benzyl alcohol, methanol, and ethanol. Compounds, active methylene compounds such as methyl isobutanoyl acetate, dimethyl malonate, diethyl malonate, methyl acetoacetate, ethyl acetoacetate, acetylacetone, mercaptan compounds such as butyl mercaptan, dodecyl mercaptan, ε-caprolactam, δ-valerolactam, etc. Lactam compounds, amine compounds such as diphenylaniline, aniline, ethyleneimine, acetanilide, acid amide compounds of acetic acid amide, Examples include oxime compounds such as maldehyde, acetoald oxime, acetone oxime, methyl ethyl ketone oxime, and cyclohexanone oxime, and these may be used alone or in combination of two or more. Among these, an active methylene compound is preferable from the viewpoint of particularly good release performance.

また、本発明におけるイソシアネート系化合物は単体で用いてもよいし、各種ポリマーとの混合物や結合物として用いてもよい。イソシアネート系化合物の分散性や架橋性を向上させるという意味において、ポリエステル樹脂やウレタン樹脂との混合物や結合物を使用することも好ましい。   In addition, the isocyanate compound in the present invention may be used alone, or may be used as a mixture or bond with various polymers. In the sense of improving the dispersibility and crosslinkability of the isocyanate compound, it is also preferable to use a mixture or a bond with a polyester resin or a urethane resin.

シランカップリング化合物とは、一般的にX−Si(OR)4−n(n=1〜3)で表される構造を有する化合物のことであり、1分子内に有機系材料と親和性あるいは反応性のある官能基を有する部位Xと、無機系材料と親和性あるいは反応性のある官能基ORを有するシラン化合物のことである。官能基を有する部位X中の官能基としては、例えば、エポキシ基、(メタ)アクリロキシ基、アミノ基、ビニル基、メルカプト基 、スチリル基、スルフィド基、イソシアネート基等が挙げられ、官能基とSiは直接結合していても、またメチレン、エチレン、プロピレン等のアルキレン基等の炭化水素基等を介して結合していても良い。官能基ORとしては、例えば、メトキシ、エトキシ、イソプロポキシなどのアルコキシ基やアセトキシ基等が挙げられるが、特にこれらに限定されるものではない。 The silane coupling compound is a compound having a structure represented by the general X n -Si (OR) 4- n (n = 1~3), and affinity organic material in one molecule Alternatively, it is a silane compound having a site X having a reactive functional group and a functional group OR having affinity or reactivity with an inorganic material. Examples of the functional group in the site X having a functional group include an epoxy group, a (meth) acryloxy group, an amino group, a vinyl group, a mercapto group, a styryl group, a sulfide group, an isocyanate group, and the like. May be directly bonded or may be bonded via a hydrocarbon group such as an alkylene group such as methylene, ethylene or propylene. Examples of the functional group OR include alkoxy groups such as methoxy, ethoxy, and isopropoxy, and acetoxy groups, but are not particularly limited thereto.

上記中でも、各種有機材料との架橋性を考慮すると、官能基を有する部位X中の官能基としては、エポキシ基、(メタ)アクリロキシ基、アミノ基、ビニル基、メルカプト基 か好ましく、特にポリエステル樹脂等のポリマーと併用した系において離型性能が向上することから、エポキシ基や(メタ)アクリロキシ基が好ましい。   Among these, considering the crosslinkability with various organic materials, the functional group in the site X having a functional group is preferably an epoxy group, a (meth) acryloxy group, an amino group, a vinyl group, a mercapto group, particularly a polyester resin. An epoxy group and a (meth) acryloxy group are preferred because the mold release performance is improved in a system used in combination with a polymer such as.

カルボジイミド系化合物とは、カルボジイミド構造を有する化合物のことであり、塗布層上に形成され得る各種の表面機能層との密着性の向上や、塗布層の耐湿熱性の向上のために用いられるものである。カルボジイミド系化合物は、分子内にカルボジイミド、あるいはカルボジイミド誘導体構造を1つ以上有する化合物であるが、より良好な密着性等のために、分子内に2つ以上有するポリカルボジイミド系化合物がより好ましい。   A carbodiimide-based compound is a compound having a carbodiimide structure, and is used to improve adhesion with various surface functional layers that can be formed on a coating layer and to improve the heat and humidity resistance of the coating layer. is there. The carbodiimide compound is a compound having one or more carbodiimide or carbodiimide derivative structures in the molecule, but a polycarbodiimide compound having two or more in the molecule is more preferable for better adhesion and the like.

カルボジイミド系化合物は従来公知の技術で合成することができ、一般的には、ジイソシアネート化合物の縮合反応が用いられる。ジイソシアネート化合物としては、特に限定されるものではなく、芳香族系、脂肪族系いずれも使用することができ、具体的には、トリレンジイソシアネート、キシレンジイソシアネート、ジフェニルメタンジイソシアネート、フェニレンジイソシアネート、ナフタレンジイソシアネート、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、シクロヘキサンジイソシアネート、メチルシクロヘキサンジイソシアネート、イソホロンジイソシアネート、ジシクロヘキシルジイソシアネート、ジシクロヘキシルメタンジイソシアネートなどが挙げられる。   The carbodiimide compound can be synthesized by a conventionally known technique, and generally a condensation reaction of a diisocyanate compound is used. The diisocyanate compound is not particularly limited, and any of aromatic and aliphatic compounds can be used. Specifically, tolylene diisocyanate, xylene diisocyanate, diphenylmethane diisocyanate, phenylene diisocyanate, naphthalene diisocyanate, hexa Examples include methylene diisocyanate, trimethylhexamethylene diisocyanate, cyclohexane diisocyanate, methylcyclohexane diisocyanate, isophorone diisocyanate, dicyclohexyl diisocyanate, and dicyclohexylmethane diisocyanate.

さらに本発明の効果を消失させない範囲において、ポリカルボジイミド系化合物の水溶性や水分散性を向上させるために、界面活性剤を添加することや、ポリアルキレンオキシド、ジアルキルアミノアルコールの四級アンモニウム塩、ヒドロキシアルキルスルホン酸塩などの親水性モノマーを添加して用いてもよい。   Furthermore, in order not to lose the effect of the present invention, in order to improve the water solubility and water dispersibility of the polycarbodiimide compound, adding a surfactant, polyalkylene oxide, quaternary ammonium salt of dialkylamino alcohol, You may add and use hydrophilic monomers, such as a hydroxyalkyl sulfonate.

カルボジイミド系化合物に含有されるカルボジイミド基の含有量は、カルボジイミド当量(カルボジイミド基1molを与えるためのカルボジイミド化合物の重さ[g])で、通常100〜1000、好ましくは250〜800、より好ましくは300〜700、さらに好ましくは350〜650の範囲である。上記範囲での使用が、離型性能が向上し好ましい。   The content of the carbodiimide group contained in the carbodiimide-based compound is a carbodiimide equivalent (weight of the carbodiimide compound to give 1 mol of carbodiimide group [g]) and is usually 100 to 1000, preferably 250 to 800, more preferably 300. It is -700, More preferably, it is the range of 350-650. Use within the above range is preferable because the release performance is improved.

なお、これら架橋剤は、乾燥過程や、製膜過程において、反応させて塗布層の性能を向上させる設計で用いている。できあがった塗布層中には、これら架橋剤の未反応物、反応後の化合物、あるいはそれらの混合物が存在しているものと推測できる。   These cross-linking agents are used in a design that improves the performance of the coating layer by reacting in the drying process or film forming process. It can be inferred that unreacted products of these crosslinking agents, compounds after the reaction, or mixtures thereof exist in the finished coating layer.

塗布層の形成には、塗布層の外観、離型性能の安定化、基材のポリエステルフィルムとの密着性等の観点からポリエーテル基含有シリコーンや、ポリマー型の架橋剤以外のポリマーを併用することも好ましい。   For the formation of the coating layer, a polyether group-containing silicone or a polymer other than a polymer type crosslinking agent is used in combination from the viewpoints of the appearance of the coating layer, stabilization of the mold release performance, adhesion to the polyester film of the base material, etc. It is also preferable.

ポリマーとしては従来公知のポリマーを使用することができる。ポリマーの具体例としては、ポリエステル樹脂、アクリル樹脂、ウレタン樹脂、ポリビニル(ポリビニルアルコール、塩化ビニル酢酸ビニル共重合体等)、ポリアルキレングリコール、ポリアルキレンイミン、メチルセルロース、ヒドロキシセルロース、でんぷん類等が挙げられる。これらの中でも塗布外観の向上、離型性能の安定化、基材のポリエステルフィルムとの密着性の観点から、ポリエステル樹脂、アクリル樹脂、ウレタン樹脂、ポリビニルアルコールを併用することが好ましく、その中でも特にポリエステル樹脂、アクリル樹脂、ウレタン樹脂は好ましい。また、基材がポリエステルフィルムであることを考慮すると、基材のポリエステルフィルムとの密着性の観点からポリエステル骨格を有する樹脂がより好ましい。   A conventionally well-known polymer can be used as a polymer. Specific examples of the polymer include polyester resin, acrylic resin, urethane resin, polyvinyl (polyvinyl alcohol, vinyl chloride vinyl acetate copolymer, etc.), polyalkylene glycol, polyalkyleneimine, methylcellulose, hydroxycellulose, starches and the like. . Among these, polyester resin, acrylic resin, urethane resin, and polyvinyl alcohol are preferably used in combination from the viewpoint of improving the coating appearance, stabilizing the release performance, and adhesion to the polyester film of the base material. Resins, acrylic resins and urethane resins are preferred. In view of the fact that the substrate is a polyester film, a resin having a polyester skeleton is more preferable from the viewpoint of adhesion to the polyester film of the substrate.

ポリエステル樹脂とは、主な構成成分として例えば、下記のような多価カルボン酸および多価ヒドロキシ化合物からなるものが挙げられる。すなわち、多価カルボン酸としては、テレフタル酸、イソフタル酸、オルトフタル酸、フタル酸、4,4’−ジフェニルジカルボン酸、2,5−ナフタレンジカルボン酸、1,5−ナフタレンジカルボン酸および、2,6−ナフタレンジカルボン酸、2,7−ナフタレンジカルボン酸、1,4−シクロヘキサンジカルボン酸、2−カリウムスルホテレフタル酸、5−ソジウムスルホイソフタル酸、アジピン酸、アゼライン酸、セバシン酸、ドデカンジカルボン酸、グルタル酸、コハク酸、トリメリット酸、トリメシン酸、ピロメリット酸、無水トリメリット酸、無水フタル酸、p−ヒドロキシ安息香酸、トリメリット酸モノカリウム塩およびそれらのエステル形成性誘導体などを用いることができ、多価ヒドロキシ化合物としては、エチレングリコール、1,2−プロピレングリコール、1,3−プロピレングリコール、1,3−プロパンジオ−ル、1,4−ブタンジオール、1,6−ヘキサンジオ−ル、2−メチル−1,5−ペンタンジオ−ル、ネオペンチルグリコール、1,4−シクロヘキサンジメタノ−ル、p−キシリレングリコ−ル、ビスフェノ−ルA−エチレングリコ−ル付加物、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコ−ル、ポリプロピレングリコ−ル、ポリテトラメチレングリコ−ル、ポリテトラメチレンオキシドグリコ−ル、ジメチロ−ルプロピオン酸、グリセリン、トリメチロ−ルプロパン、ジメチロ−ルエチルスルホン酸ナトリウム、ジメチロ−ルプロピオン酸カリウムなどを用いることができる。これらの化合物の中から、それぞれ適宜1つ以上を選択し、常法の重縮合反応によりポリエステル樹脂を合成すればよい。   The polyester resin includes, for example, those composed of the following polyvalent carboxylic acid and polyvalent hydroxy compound as main constituent components. That is, as the polyvalent carboxylic acid, terephthalic acid, isophthalic acid, orthophthalic acid, phthalic acid, 4,4′-diphenyldicarboxylic acid, 2,5-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, and 2,6 -Naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, 2-potassium sulfoterephthalic acid, 5-sodium sulfoisophthalic acid, adipic acid, azelaic acid, sebacic acid, dodecanedicarboxylic acid, glutar Acid, succinic acid, trimellitic acid, trimesic acid, pyromellitic acid, trimellitic anhydride, phthalic anhydride, p-hydroxybenzoic acid, trimellitic acid monopotassium salt and ester-forming derivatives thereof can be used. As the polyvalent hydroxy compound, ethylene Recall, 1,2-propylene glycol, 1,3-propylene glycol, 1,3-propanediol, 1,4-butanediol, 1,6-hexanediol, 2-methyl-1,5-pentanediol , Neopentyl glycol, 1,4-cyclohexanedimethanol, p-xylylene glycol, bisphenol A-ethylene glycol adduct, diethylene glycol, triethylene glycol, polyethylene glycol, polypropylene glycol Polytetramethylene glycol, polytetramethylene oxide glycol, dimethylolpropionic acid, glycerin, trimethylolpropane, sodium dimethylolethylsulfonate, potassium dimethylolpropionate, and the like can be used. One or more compounds may be appropriately selected from these compounds, and a polyester resin may be synthesized by a conventional polycondensation reaction.

アクリル樹脂とは、アクリル系、メタアクリル系のモノマーを含む重合性モノマーからなる重合体である。これらは、単独重合体あるいは共重合体、さらにはアクリル系、メタアクリル系のモノマー以外の重合性モノマーとの共重合体、いずれでも差し支えない。また、それら重合体と他のポリマー(例えばポリエステル、ポリウレタン等)との共重合体も含まれる。例えば、ブロック共重合体、グラフト共重合体である。あるいは、ポリエステル溶液、またはポリエステル分散液中で重合性モノマーを重合して得られたポリマー(場合によってはポリマーの混合物)も含まれる。同様にポリウレタン溶液、ポリウレタン分散液中で重合性モノマーを重合して得られたポリマー(場合によってはポリマーの混合物)も含まれる。同様にして他のポリマー溶液、または分散液中で重合性モノマーを重合して得られたポリマー(場合によってはポリマー混合物)も含まれる。また、密着性をより向上させるために、ヒドロキシル基、アミノ基を含有することも可能である。   The acrylic resin is a polymer composed of a polymerizable monomer including acrylic and methacrylic monomers. These may be either homopolymers or copolymers, and copolymers with polymerizable monomers other than acrylic and methacrylic monomers. Moreover, the copolymer of these polymers and other polymers (for example, polyester, polyurethane, etc.) is also included. For example, a block copolymer or a graft copolymer. Alternatively, a polymer (possibly a mixture of polymers) obtained by polymerizing a polymerizable monomer in a polyester solution or a polyester dispersion is also included. Similarly, a polymer obtained by polymerizing a polymerizable monomer in a polyurethane solution or a polyurethane dispersion (sometimes a mixture of polymers) is also included. Similarly, a polymer (in some cases, a polymer mixture) obtained by polymerizing a polymerizable monomer in another polymer solution or dispersion is also included. Moreover, in order to improve adhesiveness more, it is also possible to contain a hydroxyl group and an amino group.

上記重合性モノマーとしては、特に限定はしないが、特に代表的な化合物としては、例えば、アクリル酸、メタクリル酸、クロトン酸、イタコン酸、フマル酸、マレイン酸、シトラコン酸のような各種カルボキシル基含有モノマー類、およびそれらの塩;2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、4−ヒドロキシブチル(メタ)アクリレート、モノブチルヒドロキルフマレート、モノブチルヒドロキシイタコネートのような各種の水酸基含有モノマー類;メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、ラウリル(メタ)アクリレートのような各種の(メタ)アクリル酸エステル類;(メタ)アクリルアミド、ジアセトンアクリルアミド、N−メチロールアクリルアミドまたは(メタ)アクリロニトリル等のような種々の窒素含有化合物;スチレン、α−メチルスチレン、ジビニルベンゼン、ビニルトルエンのような各種スチレン誘導体、プロピオン酸ビニルのような各種のビニルエステル類;γ−メタクリロキシプロピルトリメトキシシラン、ビニルトリメトキシシラン等のような種々の珪素含有重合性モノマー類;燐含有ビニル系モノマー類;塩化ビニル、塩化ビリデンのような各種のハロゲン化ビニル類;ブタジエンのような各種共役ジエン類が挙げられる。   The polymerizable monomer is not particularly limited, but particularly representative compounds include, for example, various carboxyl groups such as acrylic acid, methacrylic acid, crotonic acid, itaconic acid, fumaric acid, maleic acid, and citraconic acid. Monomers, and salts thereof; such as 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, monobutyl hydroxyl fumarate, monobutyl hydroxy itaconate Various hydroxyl group-containing monomers; various (meth) acrylic acid esters such as methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, lauryl (meth) acrylate; (Meth) acrylamide, Various nitrogen-containing compounds such as acetone acrylamide, N-methylol acrylamide or (meth) acrylonitrile; various styrene derivatives such as styrene, α-methylstyrene, divinylbenzene, vinyltoluene, and various vinyls such as vinyl propionate Esters; various silicon-containing polymerizable monomers such as γ-methacryloxypropyltrimethoxysilane, vinyltrimethoxysilane, etc .; phosphorus-containing vinyl monomers; various vinyl halides such as vinyl chloride and biridene chloride Various conjugated dienes such as butadiene.

ウレタン樹脂とは、ウレタン結合を分子内に有する高分子化合物のことであり、通常ポリオールとイソシアネートの反応により作成される。ポリオールとしては、ポリエステルポリオール類、ポリカーボネートポリオール類、ポリエーテルポリオール類、ポリオレフィンポリオール類、アクリルポリオール類が挙げられ、これらの化合物は単独で用いても、複数種用いてもよい。   The urethane resin is a polymer compound having a urethane bond in the molecule, and is usually produced by a reaction between a polyol and an isocyanate. Examples of the polyol include polyester polyols, polycarbonate polyols, polyether polyols, polyolefin polyols, and acrylic polyols. These compounds may be used alone or in combination.

ポリエステルポリオール類としては、多価カルボン酸(マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、セバシン酸、フマル酸、マレイン酸、テレフタル酸、イソフタル酸等)またはそれらの酸無水物と多価アルコール(エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール、ブタンジオール、1,3−ブタンジオール、1,4−ブタンジオール、2,3−ブタンジオール、2−メチル−1,3−プロパンジオール、1,5−ペンタンジオール、ネオペンチルグリコール、1,6−ヘキサンジオール、3−メチル−1,5−ペンタンジオール、2−メチル−2,4−ペンタンジオール、2−メチル−2−プロピル−1,3−プロパンジオール、1,8−オクタンジオール、2,2,4−トリメチル−1,3−ペンタンジオール、2−エチル−1,3−ヘキサンジオール、2,5−ジメチル−2,5−ヘキサンジオール、1,9−ノナンジオール、2−メチル−1,8−オクタンジオール、2−ブチル−2−エチル−1,3−プロパンジオール、2−ブチル−2−ヘキシル−1,3−プロパンジオール、シクロヘキサンジオール、ビスヒドロキシメチルシクロヘキサン、ジメタノールベンゼン、ビスヒドロキシエトキシベンゼン、アルキルジアルカノールアミン、ラクトンジオール等)の反応から得られるもの、ポリカプロラクトン等のラクトン化合物の誘導体ユニットを有するもの等が挙げられる。   Polyester polyols include polycarboxylic acids (malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, sebacic acid, fumaric acid, maleic acid, terephthalic acid, isophthalic acid, etc.) or their acid anhydrides. Product and polyhydric alcohol (ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, butanediol, 1,3-butanediol, 1,4-butanediol, 2,3-butanediol, 2-methyl-1,3-propanediol, 1,5-pentanediol, neopentyl glycol, 1,6-hexanediol, 3-methyl-1,5-pentanediol, 2-methyl-2,4-pentanediol 2-methyl-2-propyl-1 3-propanediol, 1,8-octanediol, 2,2,4-trimethyl-1,3-pentanediol, 2-ethyl-1,3-hexanediol, 2,5-dimethyl-2,5-hexanediol 1,9-nonanediol, 2-methyl-1,8-octanediol, 2-butyl-2-ethyl-1,3-propanediol, 2-butyl-2-hexyl-1,3-propanediol, cyclohexane Diol, bishydroxymethylcyclohexane, dimethanolbenzene, bishydroxyethoxybenzene, alkyl dialkanolamine, lactone diol, etc.) and those having derivative units of lactone compounds such as polycaprolactone.

ポリカーボネートポリオール類は、多価アルコール類とカーボネート化合物とから、脱アルコール反応によって得られる。多価アルコール類としては、エチレングリコール、1,2−プロピレングリコール、1,3−プロピレングリコール、1,2−ブタンジオール、1,3−ブタンジオール、1,4−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオール、1,4−シクロヘキサンジオール、1,4−シクロヘキサンジメタノール、1,7−ヘプタンジオール、1,8−オクタンジオール、1,9−ノナンジオール、1,10−デカンジオール、ネオペンチルグリコール、3−メチル−1,5−ペンタンジオール、3,3−ジメチロールヘプタン等が挙げられる。カーボネート化合物としては、ジメチルカーボネート、ジエチルカーボネート、ジフェニルカーボネート、エチレンカーボネート等が挙げられ、これらの反応から得られるポリカーボネート系ポリオール類としては、例えば、ポリ(1,6−ヘキシレン)カーボネート、ポリ(3−メチル−1,5−ペンチレン)カーボネート等が挙げられる。   Polycarbonate polyols are obtained from a polyhydric alcohol and a carbonate compound by a dealcoholization reaction. Examples of the polyhydric alcohols include ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentane. Diol, 1,6-hexanediol, 1,4-cyclohexanediol, 1,4-cyclohexanedimethanol, 1,7-heptanediol, 1,8-octanediol, 1,9-nonanediol, 1,10-decane Diol, neopentyl glycol, 3-methyl-1,5-pentanediol, 3,3-dimethylol heptane and the like can be mentioned. Examples of the carbonate compound include dimethyl carbonate, diethyl carbonate, diphenyl carbonate, and ethylene carbonate. Examples of the polycarbonate-based polyols obtained from these reactions include poly (1,6-hexylene) carbonate, poly (3- And methyl-1,5-pentylene) carbonate.

ポリエーテルポリオール類としては、ポリエチレングリコール、ポリプロピレングリコール、ポリエチレンプロピレングリコール、ポリテトラメチレンエーテルグリコール、ポリヘキサメチレンエーテルグリコール等が挙げられる。   Examples of polyether polyols include polyethylene glycol, polypropylene glycol, polyethylene propylene glycol, polytetramethylene ether glycol, polyhexamethylene ether glycol, and the like.

塗布外観や離型性能の安定化等を考慮すると、上記ポリオール類の中でもポリエステルポリオール類およびポリカーボネートポリオール類がより好適に用いられ、特にポリエステルポリオール類が好適である。   Considering the appearance of coating and stabilization of the release performance, among the above polyols, polyester polyols and polycarbonate polyols are more preferably used, and polyester polyols are particularly preferable.

ウレタン樹脂を得るために使用されるポリイソシアネート化合物としては、トリレンジイソシアネート、キシリレンジイソシアネート、メチレンジフェニルジイソシアネート、フェニレンジイソシアネート、ナフタレンジイソシアネート、トリジンジイソシアネート等の芳香族ジイソシアネート、α,α,α’,α’−テトラメチルキシリレンジイソシアネート等の芳香環を有する脂肪族ジイソシアネート、メチレンジイソシアネート、プロピレンジイソシアネート、リジンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、ヘキサメチレンジイソシアネート等の脂肪族ジイソシアネート、シクロヘキサンジイソシアネート、メチルシクロヘキサンジイソシアネート、イソホロンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、イソプロピリデンジシクロヘキシルジイソシアネート等の脂環族ジイソシアネート等が例示される。これらは単独で用いても、複数種併用してもよい。   Examples of the polyisocyanate compound used for obtaining the urethane resin include aromatic diisocyanates such as tolylene diisocyanate, xylylene diisocyanate, methylene diphenyl diisocyanate, phenylene diisocyanate, naphthalene diisocyanate, and tolidine diisocyanate, α, α, α ′, α ′. -Aliphatic diisocyanates having aromatic rings such as tetramethylxylylene diisocyanate, aliphatic diisocyanates such as methylene diisocyanate, propylene diisocyanate, trimethylhexamethylene diisocyanate, hexamethylene diisocyanate, cyclohexane diisocyanate, methylcyclohexane diisocyanate, isophorone diisocyanate, dicyclohexyl Methanzi Cyanate, alicyclic diisocyanates such as isopropylidene dicyclohexyl diisocyanates. These may be used alone or in combination.

ウレタン樹脂を合成する際に鎖延長剤を使用しても良く、鎖延長剤としては、イソシアネート基と反応する活性基を2個以上有するものであれば特に制限はなく、一般的には、水酸基またはアミノ基を2個有する鎖延長剤を主に用いることができる。   A chain extender may be used when synthesizing the urethane resin, and the chain extender is not particularly limited as long as it has two or more active groups that react with an isocyanate group. Alternatively, a chain extender having two amino groups can be mainly used.

水酸基を2個有する鎖延長剤としては、例えば、エチレングリコール、プロピレングリコール、ブタンジオール等の脂肪族グリコール、キシリレングリコール、ビスヒドロキシエトキシベンゼン等の芳香族グリコール、ネオペンチルグリコールヒドロキシピバレート等のエステルグリコールといったグリコール類を挙げることができる。また、アミノ基を2個有する鎖延長剤としては、例えば、トリレンジアミン、キシリレンジアミン、ジフェニルメタンジアミン等の芳香族ジアミン、エチレンジアミン、プロピレンジアミン、ヘキサンジアミン、2,2−ジメチル−1,3−プロパンジアミン、2−メチル−1,5−ペンタンジアミン、トリメチルヘキサンジアミン、2−ブチル−2−エチル−1,5−ペンタンジアミン、1 ,8−オクタンジアミン、1 ,9−ノナンジアミン、1 ,10−デカンジアミン等の脂肪族ジアミン、1−アミノ−3−アミノメチル−3,5,5−トリメチルシクロヘキサン、ジシクロヘキシルメタンジアミン、イソプロビリチンシクロヘキシル−4,4’−ジアミン、1,4−ジアミノシクロヘキサン、1 ,3−ビスアミノメチルシクロヘキサン等の脂環族ジアミン等が挙げられる。   Examples of the chain extender having two hydroxyl groups include aliphatic glycols such as ethylene glycol, propylene glycol and butanediol, aromatic glycols such as xylylene glycol and bishydroxyethoxybenzene, and esters such as neopentyl glycol hydroxypivalate. And glycols such as glycols. Examples of the chain extender having two amino groups include aromatic diamines such as tolylenediamine, xylylenediamine, and diphenylmethanediamine, ethylenediamine, propylenediamine, hexanediamine, 2,2-dimethyl-1,3- Propanediamine, 2-methyl-1,5-pentanediamine, trimethylhexanediamine, 2-butyl-2-ethyl-1,5-pentanediamine, 1,8-octanediamine, 1,9-nonanediamine, 1,10- Aliphatic diamines such as decane diamine, 1-amino-3-aminomethyl-3,5,5-trimethylcyclohexane, dicyclohexylmethanediamine, isoprobilitincyclohexyl-4,4′-diamine, 1,4-diaminocyclohexane, 1 , 3-Bisaminomethylcyclohexa And alicyclic diamines such as

本発明におけるウレタン樹脂は、溶剤を媒体とするものであってもよいが、好ましくは水を媒体とするものである。ウレタン樹脂を水に分散または溶解させるには、乳化剤を用いる強制乳化型、ウレタン樹脂中に親水性基を導入する自己乳化型あるいは水溶型等がある。特に、ウレタン樹脂の構造中にイオン基を導入しアイオノマー化した自己乳化タイプが、液の貯蔵安定性や得られる塗布層の耐水性、透明性に優れており好ましい。   The urethane resin in the present invention may use a solvent as a medium, but preferably uses water as a medium. In order to disperse or dissolve the urethane resin in water, there are a forced emulsification type using an emulsifier, a self-emulsification type in which a hydrophilic group is introduced into the urethane resin, and a water-soluble type. In particular, the self-emulsification type in which an ionic group is introduced into the structure of the urethane resin to form an ionomer is preferable because of excellent storage stability of the liquid and water resistance and transparency of the resulting coating layer.

また、導入するイオン基としては、カルボキシル基、スルホン酸、リン酸、ホスホン酸、第4級アンモニウム塩等、種々のものが挙げられるが、カルボキシル基が好ましい。ウレタン樹脂にカルボキシル基を導入する方法としては、重合反応の各段階の中で種々の方法が取り得る。例えば、プレポリマー合成時に、カルボキシル基を持つ樹脂を共重合成分として用いる方法や、ポリオールやポリイソシアネート、鎖延長剤などの一成分としてカルボキシル基を持つ成分を用いる方法がある。特に、カルボキシル基含有ジオールを用いて、この成分の仕込み量によって所望の量のカルボキシル基を導入する方法が好ましい。
例えば、ウレタン樹脂の重合に用いるジオールに対して、ジメチロールプロピオン酸、ジメチロールブタン酸、ビス−(2−ヒドロキシエチル)プロピオン酸、ビス−(2−ヒドロキシエチル)ブタン酸等を共重合させることができる。またこのカルボキシル基はアンモニア、アミン、アルカリ金属類、無機アルカリ類等で中和した塩の形にするのが好ましい。特に好ましいものは、アンモニア、トリメチルアミン、トリエチルアミンである。かかるウレタン樹脂は、塗布後の乾燥工程において中和剤が外れたカルボキシル基を、他の架橋剤による架橋反応点として用いることが出来る。これにより、塗布前の液の状態での安定性に優れる上、得られる塗布層の耐久性、耐溶剤性、耐水性、耐ブロッキング性等をさらに改善することが可能となる。
Examples of the ionic group to be introduced include various groups such as a carboxyl group, sulfonic acid, phosphoric acid, phosphonic acid, quaternary ammonium salt, and the like, and a carboxyl group is preferable. As a method for introducing a carboxyl group into a urethane resin, various methods can be taken in each stage of the polymerization reaction. For example, there are a method of using a carboxyl group-containing resin as a copolymer component during prepolymer synthesis, and a method of using a component having a carboxyl group as one component such as polyol, polyisocyanate, and chain extender. In particular, a method in which a desired amount of carboxyl groups is introduced using a carboxyl group-containing diol depending on the amount of this component charged is preferred.
For example, dimethylolpropionic acid, dimethylolbutanoic acid, bis- (2-hydroxyethyl) propionic acid, bis- (2-hydroxyethyl) butanoic acid and the like are copolymerized with a diol used for polymerization of a urethane resin. Can do. The carboxyl group is preferably in the form of a salt neutralized with ammonia, amine, alkali metal, inorganic alkali or the like. Particularly preferred are ammonia, trimethylamine and triethylamine. In such a urethane resin, the carboxyl group from which the neutralizing agent has been removed in the drying step after coating can be used as a crosslinking reaction point by another crosslinking agent. Thereby, it is possible to further improve the durability, solvent resistance, water resistance, blocking resistance, and the like of the obtained coating layer, as well as excellent stability in a liquid state before coating.

ポリビニルアルコールとは、ポリビニルアルコール部位を有するものであり、例えば、ポリビニルアルコールに対し、部分的にアセタール化やブチラール化等された変性化合物も含め、従来公知のポリビニルアルコールを使用することができる。ポリビニルアルコールの重合度は特に限定されるものではないが、通常100以上、好ましくは300〜40000の範囲のものが用いられる。重合度が100未満の場合、塗布層の耐水性が低下する場合がある。また、ポリビニルアルコールのケン化度は特に限定されるものではないが、好ましくは70mol%以上、より好ましくは80〜99mol%、さらに好ましくは86〜97mol%の範囲であるポリ酢酸ビニルケン化物である。   Polyvinyl alcohol has a polyvinyl alcohol site, and conventionally known polyvinyl alcohol can be used, including modified compounds partially acetalized or butyralized with respect to polyvinyl alcohol. The degree of polymerization of polyvinyl alcohol is not particularly limited, but is usually 100 or more, preferably 300 to 40,000. When the degree of polymerization is less than 100, the water resistance of the coating layer may decrease. Further, the saponification degree of polyvinyl alcohol is not particularly limited, but it is preferably a saponified polyvinyl acetate having a range of 70 mol% or more, more preferably 80 to 99 mol%, and still more preferably 86 to 97 mol%.

また、塗布層の形成には、ブロッキングや滑り性改良のために粒子を併用することも可能である。ただし透明性の観点、離型性能の安定化の観点から、あまり使用しない方が好ましい。   In forming the coating layer, particles may be used in combination for blocking and improving slipperiness. However, from the viewpoint of transparency and stabilization of the release performance, it is preferable not to use much.

さらに本発明の主旨を損なわない範囲において、塗布層の形成には必要に応じて消泡剤、塗布性改良剤、増粘剤、有機系潤滑剤、帯電防止剤、紫外線吸収剤、酸化防止剤、発泡剤、染料、顔料等を併用することも可能である。   Further, in the range not impairing the gist of the present invention, an antifoaming agent, a coating property improver, a thickener, an organic lubricant, an antistatic agent, an ultraviolet absorber, and an antioxidant are formed as necessary for forming the coating layer. It is also possible to use a foaming agent, a dye, a pigment and the like in combination.

本発明における積層ポリエステルフィルムの構成する塗布層中の割合として、ポリエーテル基含有シリコーンの割合は、通常3〜95重量%、好ましくは8〜80重量%、より好ましくは10〜70重量%、さらに好ましくは15〜60重量%の範囲である。上記範囲から外れる場合は、離型性能が悪くなる場合がある。   As a ratio in the coating layer constituting the laminated polyester film in the present invention, the ratio of the polyether group-containing silicone is usually 3 to 95% by weight, preferably 8 to 80% by weight, more preferably 10 to 70% by weight, Preferably it is the range of 15-60 weight%. When it is out of the above range, the release performance may be deteriorated.

本発明における積層ポリエステルフィルムの構成する塗布層中の割合として、架橋剤の割合は、通常1〜90重量%、好ましくは2〜80重量%、より好ましくは5〜70重量%、さらに好ましくは8〜50重量%の範囲である。上記範囲から外れる場合は、塗膜強度や離型性能が悪くなる場合がある。   As a ratio in the coating layer constituting the laminated polyester film in the present invention, the ratio of the crosslinking agent is usually 1 to 90% by weight, preferably 2 to 80% by weight, more preferably 5 to 70% by weight, and still more preferably 8%. It is in the range of ˜50% by weight. When it is out of the above range, the coating film strength and the release performance may be deteriorated.

本発明における積層ポリエステルフィルムの構成する塗布層中の割合として、ポリエーテル基含有シリコーン以外のポリマーの割合は、通常95重量%以下、好ましくは5〜90重量%、より好ましくは10〜70重量%、さらに好ましくは15〜55重量%の範囲である。上記範囲で使用することで良好な塗布外観、基材であるポリエステルフィルムとの密着性、各種の離型特性を確保しやすい。   As a ratio in the coating layer constituting the laminated polyester film in the present invention, the ratio of the polymer other than the polyether group-containing silicone is usually 95% by weight or less, preferably 5 to 90% by weight, more preferably 10 to 70% by weight. More preferably, it is in the range of 15 to 55% by weight. By using it in the above-mentioned range, it is easy to ensure a good coating appearance, adhesion with a polyester film as a substrate, and various release characteristics.

本発明のポリエステルフィルムにおいて、ポリエーテル基含有シリコーンを含有する塗布層とは反対面側にも、各種の塗布層を設けることが可能である。例えば、機能層を設けるための易接着層、塵埃付着防止のための帯電防止層等が挙げられる。   In the polyester film of the present invention, various coating layers can be provided on the side opposite to the coating layer containing the polyether group-containing silicone. For example, an easy adhesion layer for providing a functional layer, an antistatic layer for preventing dust adhesion, and the like can be used.

塗布層中の成分の分析は、例えば、TOF−SIMS、ESCA、蛍光X線、IR等の分析によって行うことができる。   The analysis of the components in the coating layer can be performed, for example, by analysis of TOF-SIMS, ESCA, fluorescent X-ray, IR, or the like.

塗布層の形成に関して、環境考慮やインラインコーティングも可能にするために、上述の一連の化合物を水系で、固形分濃度が0.1〜80重量%程度を目安に調整した塗布液をポリエステルフィルム上に塗布する要領にて積層ポリエステルフィルムを製造するのが好ましい。水系とは、水溶液または水分散体のことであり、塗布液中の溶媒成分として、50重量%以上が水であること、好ましくは70重量%以上、より好ましくは85重量%以上、さらに好ましくは95重量%以上が水であることである。しかしながら、水への分散性改良、造膜性改良等を目的として、塗布液中には少量の有機溶剤を含有していてもよい。また、有機溶剤は1種類のみでもよく、適宜、2種類以上を使用してもよい。   Regarding the formation of the coating layer, in order to enable environmental considerations and in-line coating, a coating solution prepared by adjusting the above-mentioned series of compounds in an aqueous system and having a solid content concentration of about 0.1 to 80% by weight on the polyester film is used. It is preferable to produce a laminated polyester film in the manner of applying to the substrate. An aqueous system is an aqueous solution or a dispersion, and as a solvent component in the coating solution, 50% by weight or more is water, preferably 70% by weight or more, more preferably 85% by weight or more, and still more preferably. 95% by weight or more is water. However, a small amount of an organic solvent may be contained in the coating solution for the purpose of improving dispersibility in water, improving the film forming property, and the like. Moreover, only one type of organic solvent may be used, and two or more types may be used as appropriate.

本発明における積層ポリエステルフィルムに関して、ポリエステルフィルム上に設けられる塗布層の膜厚は、好ましくは0.001〜1μm、より好ましくは0.01〜0.5μm、さらに好ましくは0.02〜0.2μmの範囲である。膜厚が上記範囲より外れる場合は、塗布外観の悪化や離型性能が悪化する場合がある。   Regarding the laminated polyester film in the present invention, the thickness of the coating layer provided on the polyester film is preferably 0.001 to 1 μm, more preferably 0.01 to 0.5 μm, still more preferably 0.02 to 0.2 μm. Range. When the film thickness is out of the above range, the appearance of the coating may be deteriorated or the release performance may be deteriorated.

本発明のフィルムにおいて、塗布層を形成する方法としては、例えば、グラビアコート、リバースロールコート、ダイコート、エアドクターコート、ブレードコート、ロッドコート、バーコート、カーテンコート、ナイフコート、トランスファロールコート、スクイズコート、含浸コート、キスコート、スプレーコート、カレンダコート、押出コート等、従来公知の塗工方式を用いることができる。   In the film of the present invention, as a method for forming the coating layer, for example, gravure coating, reverse roll coating, die coating, air doctor coating, blade coating, rod coating, bar coating, curtain coating, knife coating, transfer roll coating, squeeze Conventionally known coating methods such as coating, impregnation coating, kiss coating, spray coating, calendar coating, extrusion coating, etc. can be used.

本発明において、ポリエステルフィルム上に塗布層を形成する際の乾燥および硬化条件に関しては特に限定されるわけではないが、塗布液に使用している水の乾燥に関しては、好ましくは70〜150℃、より好ましくは80〜130℃、さらに好ましくは90〜120℃の範囲である。乾燥の時間としては、目安として3〜200秒、好ましくは5〜120秒の範囲である。また、塗布層の離型性能や強度を向上させるため、フィルム製造工程において、好ましくは180〜270℃、より好ましくは200〜250℃、さらに好ましくは210〜240℃の範囲の熱処理工程を経ることである。当該熱処理工程の時間としては、目安として3〜200秒、好ましくは5〜120秒の範囲である。   In the present invention, the drying and curing conditions for forming the coating layer on the polyester film are not particularly limited, but for the drying of water used in the coating solution, preferably 70 to 150 ° C, More preferably, it is 80-130 degreeC, More preferably, it is the range of 90-120 degreeC. The drying time is generally 3 to 200 seconds, preferably 5 to 120 seconds. Moreover, in order to improve the mold release performance and intensity | strength of an application layer, In a film manufacturing process, Preferably it is 180-270 degreeC, More preferably, it is 200-250 degreeC, More preferably, it passes through the heat treatment process of the range of 210-240 degreeC. It is. The time for the heat treatment step is generally 3 to 200 seconds, preferably 5 to 120 seconds.

また、必要に応じて熱処理と紫外線照射等の活性エネルギー線照射とを併用してもよい。本発明における積層ポリエステルフィルムを構成するポリエステルフィルムにはあらかじめ、コロナ処理、プラズマ処理等の表面処理を施してもよい。   Moreover, you may use together heat processing and active energy ray irradiation, such as ultraviolet irradiation, as needed. The polyester film constituting the laminated polyester film in the present invention may be subjected to surface treatment such as corona treatment or plasma treatment in advance.

本発明のポリエステルフィルムのヘーズは特に制限はないが、例えば、偏光板用途等、検査の厳しい用途に使用する場合には、より精度の高い検査のために、検査光の透過性が重要となるため、ヘーズが低い方が好ましい。そのような用途に使用する場合には、好ましいヘーズとしては、4.0%以下、より好ましくは、3.0%以下、さらに好ましくは2.0%以下、特に好ましくは0.2〜1.5%の範囲である。   Although the haze of the polyester film of the present invention is not particularly limited, for example, when used for strict inspections such as polarizing plates, transmission of inspection light is important for more accurate inspection. Therefore, it is preferable that the haze is low. When used in such applications, the preferred haze is 4.0% or less, more preferably 3.0% or less, still more preferably 2.0% or less, and particularly preferably 0.2 to 1. The range is 5%.

本発明の積層ポリエステルフィルムの塗布層の離型性能として、未処理の塗布層として、粘着テープに対する剥離力(常態剥離力)としては、好ましくは200mN/cm以下であり、より好ましくは100mN/cm以下、さらに好ましくは50mN/cm以下、特に好ましくは40mN/cm以下の範囲である。上記範囲とすることで、剥離作業が容易となる。   As the mold release performance of the coated layer of the laminated polyester film of the present invention, as an untreated coated layer, the peel force (normal peel force) for the adhesive tape is preferably 200 mN / cm or less, more preferably 100 mN / cm. Hereinafter, it is more preferably in the range of 50 mN / cm or less, particularly preferably 40 mN / cm or less. By setting the amount within the above range, the peeling operation becomes easy.

塗布層の離型性能として、粘着テープに対する加熱後の剥離力は、好ましくは1000mN/cm以下、より好ましくは300mN/cm以下、さらに好ましくは100mN/cm以下、特に好ましくは40mN/cm以下である。上記範囲にすることで、塗布層の上にくる材料を加熱加工後にも上手く剥離することが可能となる。   As the mold release performance of the coating layer, the peel force after heating to the adhesive tape is preferably 1000 mN / cm or less, more preferably 300 mN / cm or less, still more preferably 100 mN / cm or less, and particularly preferably 40 mN / cm or less. . By setting it as the said range, it becomes possible to peel the material which comes on an application layer well even after heat processing.

塗布層の離型性能として、粘着テープに対する溶剤(トルエン)処理後の剥離力は、好ましくは1000mN/cm以下、より好ましくは300mN/cm以下、さらに好ましくは100mN/cm以下、特に好ましくは40mN/cm以下である。上記範囲にすることで、塗布層の上にくる材料を溶剤処理後にも上手く剥離することが可能となる。   As the mold release performance of the coating layer, the peeling force after solvent (toluene) treatment on the adhesive tape is preferably 1000 mN / cm or less, more preferably 300 mN / cm or less, still more preferably 100 mN / cm or less, and particularly preferably 40 mN / cm. cm or less. By setting it as the said range, it becomes possible to peel the material which comes on an application layer well even after solvent processing.

以下、本発明を実施例によりさらに詳細に説明するが、本発明はその要旨を越えない限り、以下の実施例に限定されるものではない。また、本発明で用いた測定法および評価方法は次のとおりである。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to a following example, unless the summary is exceeded. The measurement method and evaluation method used in the present invention are as follows.

(1)ポリエステルの極限粘度の測定方法
ポリエステルに非相溶な他のポリマー成分および顔料を除去したポリエステル1gを精秤し、フェノール/テトラクロロエタン=50/50(重量比)の混合溶媒100mlを加えて溶解させ、30℃で測定した。
(1) Method for measuring the intrinsic viscosity of polyester 1 g of polyester from which other polymer components and pigments incompatible with polyester have been removed are precisely weighed, and 100 ml of a mixed solvent of phenol / tetrachloroethane = 50/50 (weight ratio) is added. And dissolved at 30 ° C.

(2)塗布層の膜厚測定方法
塗布層の表面をRuOで染色し、エポキシ樹脂中に包埋した。その後、超薄切片法により作成した切片をRuOで染色し、塗布層断面をTEM(株式会社日立ハイテクノロジーズ製 H−7650、加速電圧100V)を用いて測定した。なお、膜厚は粒子の部分を含まない箇所で測定した。
(2) Method for measuring film thickness of coating layer The surface of the coating layer was dyed with RuO 4 and embedded in an epoxy resin. Thereafter, the section prepared by ultramicrotomy stained with RuO 4, a coating layer cross-section was measured by using a TEM (Hitachi High Technologies Corporation H-7650, accelerating voltage 100 V). The film thickness was measured at a location not including the particle portion.

(3)ポリエーテル基含有シリコーンの数平均分子量測定方法
ポリエーテル基含有シリコーンをトルエン溶液に調整し、トルエンを溶離液としてGPC(東ソー株式会社製 HLC−8120GPC)を用いて測定した。数平均分子量はポリスチレン換算で算出した。
(3) Method for measuring number average molecular weight of polyether group-containing silicone Polyether group-containing silicone was adjusted to a toluene solution, and measurement was performed using GPC (HLC-8120GPC manufactured by Tosoh Corporation) with toluene as an eluent. The number average molecular weight was calculated in terms of polystyrene.

(4)ポリエーテル基含有シリコーンの官能基確認
ポリエーテル基含有シリコーンを、NMR(Bruker Biospin社製 AVANCEIII600)を用いて、H−NMRの各ピークを帰属し、ジメチルシロキサンとポリエーテル基の量、ビニルシランやハイドロゲンシランの有無を確認した。
(4) Functional group confirmation of polyether group-containing silicone Using polyether (AVANCE III600 manufactured by Bruker Biospin), the polyether group-containing silicone is assigned each peak of 1 H-NMR, and the amount of dimethylsiloxane and polyether group The presence or absence of vinyl silane or hydrogen silane was confirmed.

(5)ヘーズの測定方法
株式会社村上色彩技術研究所製ヘーズメーター HM−150を使用して、JIS K 7136で測定した。
(5) Measuring method of haze It measured by JISK7136 using the haze meter HM-150 by Murakami Color Research Laboratory.

(6)塗布層の剥離力(常態剥離力)の測定方法
塗布層表面に粘着テープ(日東電工株式会社製「No.502」)を5cm幅で2kgゴムローラーにて1往復圧着し、室温にて1時間放置後の剥離力を測定した。剥離力は、株式会社島津製作所製「Ezgraph」を使用し、引張速度300mm/分の条件下、180°剥離を行い、その剥離力を測定した。
(6) Measuring method of peeling force (normal peeling force) of coating layer Adhesive tape (“No. 502” manufactured by Nitto Denko Co., Ltd.) 5 cm in width is applied to the surface of the coating layer by one reciprocating press with a 2 kg rubber roller to room temperature The peel strength after standing for 1 hour was measured. The peeling force used was “Ezgraph” manufactured by Shimadzu Corporation, and was peeled 180 ° under conditions of a tensile speed of 300 mm / min, and the peeling force was measured.

(7)塗布層の加熱後剥離力の測定方法
塗布層表面に粘着テープ(日東電工株式会社製「No.502」)を5cm幅で2kgゴムローラーにて1往復圧着した後、100℃のオーブン内にて1hr加熱した。その後、室温にて1時間放置後の剥離力を測定した。剥離力は、株式会社島津製作所製「Ezgraph」を使用し、引張速度300mm/分の条件下、180°剥離を行い、その剥離力を測定した。
(7) Method of measuring peel force after heating of coating layer After pressure-bonding a pressure sensitive adhesive tape (“No. 502” manufactured by Nitto Denko Corporation) 5 cm wide with a 2 kg rubber roller on the surface of the coating layer, oven at 100 ° C. The inside was heated for 1 hr. Thereafter, the peel force after standing at room temperature for 1 hour was measured. The peeling force used was “Ezgraph” manufactured by Shimadzu Corporation, and was peeled 180 ° under conditions of a tensile speed of 300 mm / min, and the peeling force was measured.

(8)塗布層の溶剤(トルエン)処理後剥離力の測定方法
塗布層表面をトルエン含浸ベンコットにてラビングテスターを使用し、700g荷重で10往復する。風乾後、塗布層表面に粘着テープ(日東電工株式会社製「No.502」)を5cm幅で2kgゴムローラーにて1往復圧着した後の剥離力を測定した。剥離力は、株式会社島津製作所製「Ezgraph」を使用し、引張速度300mm/分の条件下、180°剥離を行い、その剥離力を測定した。
(8) Measuring method of peeling force after solvent (toluene) treatment of coating layer The surface of the coating layer is reciprocated 10 times with a load of 700 g using a rubbing tester with a toluene impregnated becot. After air-drying, the peel force after one-way pressure-bonding of a pressure-sensitive adhesive tape (“No. 502” manufactured by Nitto Denko Corporation) with a 2 kg rubber roller to the surface of the coating layer was measured. The peeling force used was “Ezgraph” manufactured by Shimadzu Corporation, and was peeled 180 ° under conditions of a tensile speed of 300 mm / min, and the peeling force was measured.

(9)塗布層の強度評価方法
積層ポリエステルフィルムの塗布層の表面を指の腹で強く3回擦り、塗布層の剥離が見られない場合を○、塗布層の剥離がやや見られ、やや白っぽくなる場合を△、塗布層の剥離が見られ、白くなる場合を×とした。
(9) Strength evaluation method of coating layer The surface of the coating layer of the laminated polyester film is rubbed strongly three times with the belly of the finger, and when peeling of the coating layer is not observed, peeling of the coating layer is seen slightly and slightly whitish The case where it becomes becomes (triangle | delta), peeling of the coating layer was seen and the case where it became white was set as x.

実施例および比較例において使用したポリエステルは、以下のようにして準備したものである。
<ポリエステル(A)の製造方法>
テレフタル酸ジメチル100重量部、エチレングリコール60重量部、エチルアシッドフォスフェートを生成ポリエステルに対して30ppm、触媒として酢酸マグネシウム・四水和物を生成ポリエステルに対して100ppmを窒素雰囲気下、260℃でエステル化反応をさせた。引き続いて、テトラブチルチタネートを生成ポリエステルに対して50ppm添加し、2時間30分かけて280℃まで昇温すると共に、絶対圧力0.3kPaまで減圧し、さらに80分、溶融重縮合させ、極限粘度0.63のポリエステル(A)を得た。
The polyester used in the examples and comparative examples was prepared as follows.
<Method for producing polyester (A)>
100 parts by weight of dimethyl terephthalate, 60 parts by weight of ethylene glycol, 30 ppm of ethyl acid phosphate with respect to the resulting polyester, and 100 ppm of magnesium acetate tetrahydrate with respect to the resulting polyester as the catalyst at 260 ° C. in a nitrogen atmosphere at 260 ° C. The reaction was allowed to proceed. Subsequently, 50 ppm of tetrabutyl titanate was added to the resulting polyester, the temperature was raised to 280 ° C. over 2 hours and 30 minutes, the pressure was reduced to 0.3 kPa in absolute pressure, and melt polycondensation was further carried out for 80 minutes. 0.63 polyester (A) was obtained.

<ポリエステル(B)の製造方法>
テレフタル酸ジメチル100重量部、エチレングリコール60重量部、触媒として酢酸マグネシウム・四水和物を生成ポリエステルに対して900ppmを窒素雰囲気下、225℃でエステル化反応をさせた。引き続いて、正リン酸を生成ポリエステルに対して3500ppm、二酸化ゲルマニウムを生成ポリエステルに対して70ppm添加し、2時間30分かけて280℃まで昇温すると共に、絶対圧力0.4kPaまで減圧し、さらに85分、溶融重縮合させ、極限粘度0.64のポリエステル(B)を得た。
<Method for producing polyester (B)>
100 parts by weight of dimethyl terephthalate, 60 parts by weight of ethylene glycol, and magnesium acetate tetrahydrate as a catalyst were subjected to an esterification reaction at 225 ° C. in a nitrogen atmosphere at 900 ppm with respect to the produced polyester. Subsequently, 3500 ppm of orthophosphoric acid was added to the produced polyester, and 70 ppm of germanium dioxide was added to the produced polyester. The temperature was raised to 280 ° C. over 2 hours and 30 minutes, and the pressure was reduced to an absolute pressure of 0.4 kPa. After 85 minutes of melt polycondensation, polyester (B) having an intrinsic viscosity of 0.64 was obtained.

<ポリエステル(C)の製造方法>
ポリエステル(A)の製造方法において、溶融重合前に平均粒径2μmのシリカ粒子を0.3重量部添加する以外はポリエステル(A)の製造方法と同様の方法を用いてポリエステル(C)を得た。
<Method for producing polyester (C)>
In the production method of polyester (A), polyester (C) is obtained using the same method as the production method of polyester (A) except that 0.3 part by weight of silica particles having an average particle diameter of 2 μm is added before melt polymerization. It was.

塗布層を構成する化合物例は以下のとおりである。
(化合物例)
・ポリエーテル基含有シリコーン:(IA)
ジメチルシリコーンの側鎖に、モル比でジメチルシロキサン100に対して、エチレングリコール鎖が8であるポリエチレングリコール(末端は水酸基)を1含有する、数平均分子量7000のポリエーテル基含有シリコーン(シリコーンのシロキサン結合を1とした場合、モル比の割合で、ポリエーテル基のエーテル結合は0.07である)。数平均分子量500以下の低分子成分は3%、ケイ素に結合したビニル基(ビニルシラン)、水素基(ハイドロゲンシラン)は存在せず。なお、本化合物は、重量比で、ポリエーテル基含有シリコーンを1として、ドデシルベンゼンスルホン酸ナトリウムを0.25の割合で配合し、水分散したものを塗布層形成に使用した。
Examples of compounds constituting the coating layer are as follows.
(Example compounds)
・ Polyether group-containing silicone: (IA)
Polyether group-containing silicone having a number average molecular weight of 7000 (silicone siloxane) containing 1 polyethylene glycol (terminated with a hydroxyl group) having an ethylene glycol chain of 8 with respect to dimethylsiloxane 100 in the dimethyl silicone side chain in a molar ratio. When the bond is 1, the ether bond of the polyether group is 0.07 at a molar ratio). 3% of low molecular components having a number average molecular weight of 500 or less, no vinyl group (vinyl silane) and hydrogen group (hydrogen silane) bonded to silicon exist. In addition, this compound used the polyether group containing silicone as 1 by weight ratio, mix | blended sodium dodecylbenzenesulfonate in the ratio of 0.25, and used it for the water-dispersed layer formation.

・ポリエーテル基含有シリコーン:(IB)
ジメチルシリコーンの側鎖に、モル比でジメチルシロキサン100に対して、エチレングリコール鎖が8であるポリエチレングリコール(末端は水酸基)を1.5含有する、数平均分子量7200のポリエーテル基含有シリコーン(シリコーンのシロキサン結合を1とした場合、モル比の割合で、ポリエーテル基のエーテル結合は0.11である)。数平均分子量500以下の低分子成分は3%、ケイ素に結合したビニル基(ビニルシラン)、水素基(ハイドロゲンシラン)は存在せず。なお、本化合物は、重量比で、ポリエーテル基含有シリコーンを1として、ドデシルベンゼンスルホン酸ナトリウムを0.25の割合で配合し、水分散したものを塗布層形成に使用した。
・ Polyether group-containing silicone: (IB)
Polyether group-containing silicone having a number average molecular weight of 7200 (silicone) containing 1.5 polyethylene glycol (terminated with a hydroxyl group) having an ethylene glycol chain of 8 with respect to dimethylsiloxane 100 in the side chain of dimethyl silicone. When the siloxane bond of 1 is 1, the ether bond of the polyether group is 0.11. 3% of low molecular components having a number average molecular weight of 500 or less, no vinyl group (vinyl silane) and hydrogen group (hydrogen silane) bonded to silicon exist. In addition, this compound used the polyether group containing silicone as 1 by weight ratio, mix | blended sodium dodecylbenzenesulfonate in the ratio of 0.25, and used it for the water-dispersed layer formation.

・メラミン化合物:(IIA)ヘキサメトキシメチロールメラミン Melamine compound: (IIA) hexamethoxymethylol melamine

・オキサゾリン化合物:(IIB)
オキサゾリン基及びポリアルキレンオキシド鎖を有するアクリルポリマー エポクロス(オキサゾリン基量=4.5mmol/g、株式会社日本触媒製)
・エポキシ化合物:(IIC)ポリグリセロールポリグリシジルエーテル
・ Oxazoline compounds: (IIB)
Acrylic polymer having an oxazoline group and a polyalkylene oxide chain Epocross (Oxazoline group amount = 4.5 mmol / g, manufactured by Nippon Shokubai Co., Ltd.)
Epoxy compound: (IIC) polyglycerol polyglycidyl ether

・イソシアネート系化合物:(IID)
ヘキサメチレンジイソシアネート1000部を60℃で攪拌し、触媒としてテトラメチルアンモニウム・カプリエート0.1部を加えた。4時間後、リン酸0.2部を添加して反応を停止させ、イソシアヌレート型ポリイソシアネート組成物を得た。得られたイソシアヌレート型ポリイソシアネート組成物100部、数平均分子量400のメトキシポリエチレングリコール42.3部、プロピレングリコールモノメチルエーテルアセテート29.5部を仕込み、80℃で7時間保持した。その後反応液温度を60℃に保持し、イソブタノイル酢酸メチル35.8部、マロン酸ジエチル32.2部、ナトリウムメトキシドの28%メタノール溶液0.88部を添加し、4時間保持した。n−ブタノール58.9部を添加し、反応液温度80℃で2時間保持し、その後、2−エチルヘキシルアシッドホスフェート0.86部を添加して得られたブロックポリイソシアネート。
・ Isocyanate compounds: (IID)
1000 parts of hexamethylene diisocyanate was stirred at 60 ° C., and 0.1 part of tetramethylammonium capryate was added as a catalyst. After 4 hours, 0.2 part of phosphoric acid was added to stop the reaction, and an isocyanurate type polyisocyanate composition was obtained. 100 parts of the obtained isocyanurate type polyisocyanate composition, 42.3 parts of methoxypolyethylene glycol having a number average molecular weight of 400, and 29.5 parts of propylene glycol monomethyl ether acetate were charged and maintained at 80 ° C. for 7 hours. Thereafter, the reaction solution temperature was kept at 60 ° C., 35.8 parts of methyl isobutanoyl acetate, 32.2 parts of diethyl malonate, and 0.88 part of 28% methanol solution of sodium methoxide were added and kept for 4 hours. Block polyisocyanate obtained by adding 58.9 parts of n-butanol, maintaining the reaction solution temperature at 80 ° C. for 2 hours, and then adding 0.86 part of 2-ethylhexyl acid phosphate.

・イソシアネート系化合物:(IIE)
ヘキサメチレンジイソシアネートトリマー158重量部、メトキシポリエチレングリコール(OH価=81mgKOH/g)26重量部、ジエチルジエチレングリコール27.8重量部、ジオクチルチンラウレート0.001重量部を85℃で反応させた。その後、放冷し、メチルエチルケトンオキシム66重量部を滴下し、反応させた。引き続き、1,6−ヘキサメチレンジオール系ポリカーボネートジオール(OH価=56mgKOH/g)115重量部、トリメチロールプロパン(OH価=1254mgKOH/g)1.2重量部、ジメチロールプロピオン酸(OH価=837mgKOH/g)7.6重量部、ジメチルジプロピレングリコール50重量部を加え、攪拌後、イソホロンジイソシアネート40.3重量部を加え、反応させた。放冷後、ヘキサメチレンジイソシアネートトリマー8.2重量部を添加し、攪拌後、トリエチルアミン5.8重量部を添加し、攪拌した。この混合液に水450重量部を滴下し、15%のジエチレントリアミン水溶液21重量部を滴下・攪拌し得られたブロックイソシアネート系化合物。
・ Isocyanate compounds: (IIE)
158 parts by weight of hexamethylene diisocyanate trimer, 26 parts by weight of methoxypolyethylene glycol (OH value = 81 mg KOH / g), 27.8 parts by weight of diethyl diethylene glycol and 0.001 part by weight of dioctyltin laurate were reacted at 85 ° C. Thereafter, the mixture was allowed to cool, and 66 parts by weight of methyl ethyl ketone oxime was added dropwise to react. Subsequently, 115 parts by weight of 1,6-hexamethylenediol-based polycarbonate diol (OH value = 56 mgKOH / g), 1.2 parts by weight of trimethylolpropane (OH value = 1254 mgKOH / g), dimethylolpropionic acid (OH value = 837 mgKOH) / G) 7.6 parts by weight and 50 parts by weight of dimethyldipropylene glycol were added, and after stirring, 40.3 parts by weight of isophorone diisocyanate was added and reacted. After allowing to cool, 8.2 parts by weight of hexamethylene diisocyanate trimer was added, and after stirring, 5.8 parts by weight of triethylamine was added and stirred. A block isocyanate compound obtained by dropping 450 parts by weight of water into this mixed solution and dropping and stirring 21 parts by weight of a 15% aqueous diethylenetriamine solution.

・シランカップリング化合物:(IIF)3−グリシドキシプロピルトリエトキシシラン
・カルボジイミド系化合物:(IIG)
ポリカルボジイミド化合物 カルボジライト(カルボジイミド当量=600、日清紡株式会社製)
Silane coupling compound: (IIF) 3-glycidoxypropyltriethoxysilane Carbodiimide compound: (IIG)
Polycarbodiimide compound Carbodilite (carbodiimide equivalent = 600, manufactured by Nisshinbo Co., Ltd.)

・ポリエステル樹脂:(III)
下記組成からなるポリエステル樹脂の水分散体
モノマー組成:(酸成分)テレフタル酸/イソフタル酸/5−ソジウムスルホイソフタル酸//(ジオール成分)エチレングリコール/1,4−ブタンジオール/ジエチレングリコール=56/40/4//70/20/10(mol%)
・ Polyester resin: (III)
Water dispersion of polyester resin having the following composition: Monomer composition: (acid component) terephthalic acid / isophthalic acid / 5-sodium sulfoisophthalic acid // (diol component) ethylene glycol / 1,4-butanediol / diethylene glycol = 56 / 40/4 // 70/20/10 (mol%)

・シリコーン分散剤:(IV)ドデシルベンゼンスルホン酸ナトリウム
シリコーン化合物の項目で記載しているが、塗布層中の成分を明確に表示するため、シリコーン化合物と分散剤を分けて記載している。表1においても同様である。
-Silicone dispersant: (IV) Sodium dodecylbenzenesulfonate Although described in the item of silicone compound, the silicone compound and the dispersant are described separately to clearly indicate the components in the coating layer. The same applies to Table 1.

実施例1:
ポリエステル(A)、(B)、(C)をそれぞれ91%、3%、6%の割合で混合した混合原料を最外層(表層)の原料とし、ポリエステル(A)、(B)をそれぞれ97%、3%の割合で混合した混合原料を中間層の原料として、2台の押出機に各々を供給し、各々285℃で溶融した後、40℃に設定した冷却ロール上に、2種3層(表層/中間層/表層=2:21:2の吐出量)の層構成で共押出し冷却固化させて未延伸シートを得た。次いで、ロール周速差を利用してフィルム温度85℃で縦方向に3.3倍延伸した後、この縦延伸フィルムの片面に、下記表1に示す塗布液1を塗布層の膜厚(乾燥後)が0.05μmになるように塗布し、テンターに導き、95℃で10秒間乾燥させた後、横方向に120℃で4.3倍延伸し、230℃で10秒間熱処理を行った後、横方向に2%弛緩し、厚さ25μmのポリエステルフィルムを得た。
Example 1:
A mixed raw material in which polyesters (A), (B), and (C) were mixed in proportions of 91%, 3%, and 6%, respectively, was used as a raw material for the outermost layer (surface layer), and polyesters (A) and (B) were each 97 %, 3% of the mixed raw material is used as an intermediate layer raw material, each is supplied to two extruders, melted at 285 ° C., and then on a cooling roll set at 40 ° C. Coextruded and cooled and solidified in a layer configuration of layers (surface layer / intermediate layer / surface layer = 2: 21: 2 discharge amount) to obtain an unstretched sheet. Next, the film was stretched 3.3 times in the machine direction at a film temperature of 85 ° C. using the roll peripheral speed difference, and then the coating solution 1 shown in Table 1 below was applied to the film thickness of the coating layer (dried) on one side of the machined film. After coating to 0.05 μm, guiding to a tenter, drying at 95 ° C. for 10 seconds, stretching in the transverse direction by 4.3 times at 120 ° C., and performing heat treatment at 230 ° C. for 10 seconds The polyester film was relaxed by 2% in the transverse direction to obtain a polyester film having a thickness of 25 μm.

でき上がったポリエステルフィルムを評価したところ、粘着テープによる常態剥離力は28mN/cmと低く、離型性能は良好であった。このフィルムの特性を下記表2に示す。   When the finished polyester film was evaluated, the normal peel strength by the adhesive tape was as low as 28 mN / cm, and the release performance was good. The properties of this film are shown in Table 2 below.

実施例2〜20:
実施例1において、塗布剤組成を表1に示す塗布剤組成に変更する以外は実施例1と同様にして製造し、ポリエステルフィルムを得た。でき上がったポリエステルフィルムは表2に示すとおり、粘着テープによる剥離力は低く、離型性能は良好であった。
Examples 2 to 20:
In Example 1, it manufactured similarly to Example 1 except having changed the coating agent composition into the coating agent composition shown in Table 1, and obtained the polyester film. As shown in Table 2, the finished polyester film had a low peel force with the adhesive tape and a good release performance.

比較例1:
実施例1において、塗布層を設けなかったこと以外は実施例1と同様にして製造し、ポリエステルフィルムを得た。でき上がったポリエステルフィルムを評価したところ、下記表2に示すとおり、粘着テープによる剥離力は高く、離型性能が悪いフィルムであった。
Comparative Example 1:
In Example 1, it manufactured similarly to Example 1 except having not provided the application layer, and obtained the polyester film. When the completed polyester film was evaluated, as shown in Table 2 below, the peel strength by the adhesive tape was high and the release performance was poor.

比較例2、3:
実施例1において、塗布剤組成を表1に示す塗布剤組成に変更する以外は実施例1と同様にして製造し、ポリエステルフィルムを得た。でき上がったポリエステルフィルムは表2に示すとおり、粘着テープによる剥離力は、常態剥離力は低く良好であったが、加熱後剥離力や溶剤処理剥離力は高く、離型性能が良いフィルムではなかった。
Comparative Examples 2 and 3:
In Example 1, it manufactured similarly to Example 1 except having changed the coating agent composition into the coating agent composition shown in Table 1, and obtained the polyester film. As shown in Table 2, the completed polyester film had good peel strength with the adhesive tape, and the normal peel strength was low and good, but the peel strength after heating and the solvent treatment peel strength were high, and the release performance was not good. .

Figure 0005985563
Figure 0005985563

Figure 0005985563
Figure 0005985563

本発明のフィルムは、例えば、各種テープ用、セラミック製造用、各種表面保護フィルム用、偏光板製造時等に使用する粘着セパレータ等の用途において、良好な離型性能が必要な用途に好適に利用することができる。   The film of the present invention is suitably used for applications that require good release performance, for example, for various tapes, for ceramic production, for various surface protection films, for adhesive separators used for polarizing plate production, etc. can do.

Claims (3)

ポリエステルフィルムの少なくとも片面に、ポリエーテル基含有シリコーンおよびメラミン化合物、オキサゾリン化合物、エポキシ化合物、イソシアネート系化合物から選ばれる少なくとも1つの架橋剤を含有する水系の塗布液から形成された塗布層を有することを特徴とする積層ポリエステルフィルム。 It has a coating layer formed from an aqueous coating solution containing at least one crosslinking agent selected from polyether group-containing silicone and melamine compounds, oxazoline compounds, epoxy compounds, and isocyanate compounds on at least one side of the polyester film. A laminated polyester film characterized. 塗布層が少なくとも一方向に延伸されて形成されたものである請求項1記載の積層ポリエステルフィルム。 The laminated polyester film according to claim 1, wherein the coating layer is formed by stretching in at least one direction. 塗布層表面に粘着テープを貼り付け後、100℃で1時間処理後の剥離力が1000mN/cm以下である請求項1または2記載の積層ポリエステルフィルム。The laminated polyester film according to claim 1 or 2, wherein after the adhesive tape is applied to the surface of the coating layer, the peel strength after treatment for 1 hour at 100 ° C is 1000 mN / cm or less.
JP2014193212A 2014-09-24 2014-09-24 Laminated polyester film Active JP5985563B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014193212A JP5985563B2 (en) 2014-09-24 2014-09-24 Laminated polyester film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014193212A JP5985563B2 (en) 2014-09-24 2014-09-24 Laminated polyester film

Publications (2)

Publication Number Publication Date
JP2016064519A JP2016064519A (en) 2016-04-28
JP5985563B2 true JP5985563B2 (en) 2016-09-06

Family

ID=55804743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014193212A Active JP5985563B2 (en) 2014-09-24 2014-09-24 Laminated polyester film

Country Status (1)

Country Link
JP (1) JP5985563B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6474327B2 (en) * 2015-06-23 2019-02-27 リンテック株式会社 Release film for ceramic green sheet manufacturing process
JP2017007227A (en) * 2015-06-23 2017-01-12 リンテック株式会社 Release film for ceramic green sheet manufacturing process

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6092829A (en) * 1983-10-27 1985-05-24 Toyobo Co Ltd Manufacture of slippery and transparent film
JPH07103260B2 (en) * 1988-02-03 1995-11-08 ダイアホイルヘキスト株式会社 Polyester film with coating layer
JPH01202449A (en) * 1988-02-08 1989-08-15 Diafoil Co Ltd Laminated polyester film
JP2569761B2 (en) * 1988-09-29 1997-01-08 東レ株式会社 Polyester film for thermal transfer material
JPH02107642A (en) * 1988-10-18 1990-04-19 Toray Ind Inc Biaxially oriented polyester film
JPH02194034A (en) * 1989-01-20 1990-07-31 Toray Ind Inc Biaxially oriented polyester film
JP3197086B2 (en) * 1992-12-11 2001-08-13 帝人株式会社 Laminated film and manufacturing method thereof
JP4071562B2 (en) * 2002-07-11 2008-04-02 帝人デュポンフィルム株式会社 Silicone easy-adhesive polyester film

Also Published As

Publication number Publication date
JP2016064519A (en) 2016-04-28

Similar Documents

Publication Publication Date Title
JP6365506B2 (en) Laminated polyester film
JP6077063B2 (en) Laminated film
JP6528809B2 (en) Laminated polyester film
WO2016092905A1 (en) Coated film
JP2017218593A (en) Laminated polyester film
JP6365613B2 (en) Method for producing laminated polyester film
JP6172209B2 (en) Optical member surface protection film
JP5985563B2 (en) Laminated polyester film
JP6278104B2 (en) Method for producing polyester film for polarizing plate production process
JP6075918B2 (en) Laminated polyester film
JP6350623B2 (en) Laminated film
JP6005704B2 (en) Laminated polyester film
JP2014210422A (en) Laminated polyester film
JP6075916B2 (en) Laminated polyester film
JP2018159929A (en) Optical member
JP2018123325A (en) Laminated polyester film
JP2016218482A (en) Optical member
JP6428879B2 (en) Laminated film
JP6296129B2 (en) Method for producing laminated film
JP6278085B2 (en) Manufacturing method of optical member
JP6109261B2 (en) Laminated polyester film
JP6168106B2 (en) Laminated film
JP2017080969A (en) Laminated polyester film
JP2017042914A (en) Laminate film
JP6117858B2 (en) Laminated film

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160803

R150 Certificate of patent or registration of utility model

Ref document number: 5985563

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350