WO2016208049A1 - Laser light position control device and measuring device - Google Patents

Laser light position control device and measuring device Download PDF

Info

Publication number
WO2016208049A1
WO2016208049A1 PCT/JP2015/068443 JP2015068443W WO2016208049A1 WO 2016208049 A1 WO2016208049 A1 WO 2016208049A1 JP 2015068443 W JP2015068443 W JP 2015068443W WO 2016208049 A1 WO2016208049 A1 WO 2016208049A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical axis
unit
laser beam
detector
axis scanning
Prior art date
Application number
PCT/JP2015/068443
Other languages
French (fr)
Japanese (ja)
Inventor
幸修 田中
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2015/068443 priority Critical patent/WO2016208049A1/en
Priority to JP2017524537A priority patent/JP6199002B2/en
Publication of WO2016208049A1 publication Critical patent/WO2016208049A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3581Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using far infrared light; using Terahertz radiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems

Definitions

  • the present invention relates to a laser beam position control device and a measurement device.
  • Patent Document 1 includes “an optical beat signal generating unit 1 that generates an optical beat signal, an optical branching unit 2 that branches the optical beat signal into n channels, and an n-channel light input from the optical branching unit 2.
  • An optical delay circuit 3 that independently adjusts and outputs the delay amount of the beat signal, and terahertz wave radiating elements that receive the optical beat signal from the optical delay circuit 3 and emit a terahertz wave are arranged in an array.
  • the phase of the terahertz wave emitted from the terahertz wave radiating element is controlled by controlling the delay amount of the n-channel optical beat signal output from the terahertz wave radiation source 6 and the optical delay circuit 3, and thereby the terahertz wave radiation And a control unit 9 that controls the direction of the terahertz wave emitted from the source 6.
  • Patent Document 1 has been proposed as means for scanning the focused beam in order to increase the speed of fluoroscopic imaging of the sample using the focused beam.
  • a focused beam is scanned using a phased array antenna.
  • the phase difference of the condensing beam is shifted by using an optical phase shifter for each array element. Scanning is performed by indirectly tilting the wavefront of the focused beam.
  • Patent Document 1 an optical phase shifter is used for each array element.
  • the scale of the array is increased, it is necessary to use a large number of phase shifters corresponding to the number of elements. There is a problem that the scale and cost of the system will increase.
  • the present invention has been made in view of the above, and an object thereof is to provide a laser beam position control device capable of controlling the position of a laser beam with a simple structure.
  • a first oscillation unit that generates a first laser beam
  • a first detection unit that detects the first laser beam
  • a first lens and a second lens that are arranged to face each other.
  • Two lenses a first optical axis scanning unit that scans an optical axis of the first laser light located between the first oscillation unit and the first lens, and the second lens
  • a second optical axis scanning unit that scans the optical axis of the first laser beam located between the first detector and a first control unit that controls the first optical axis scanning unit
  • a second control unit that controls the second optical axis scanning unit
  • a first control unit that controls the second optical axis scanning unit
  • a first control unit that provides control information to the second control unit, and the first detection unit.
  • a control unit configured to control the second optical axis scanning unit based on the control information from the scanning instruction unit to the first optical axis scanning unit and a detection signal of the first detection unit; This is a laser beam position control device.
  • a laser beam position control device capable of controlling the position of a laser beam with a simple structure.
  • FIG. 3 is a diagram illustrating a configuration of a galvanometer mirror according to the first embodiment.
  • FIG. 3 is a diagram illustrating a relationship between four light receiving units of the detector according to the first embodiment and laser light.
  • FIG. 3 is a diagram illustrating a relationship between two light receiving units of the detector according to the first embodiment and laser light.
  • FIG. 3 is a diagram illustrating a configuration of a light receiving unit of a detector according to Embodiment 1.
  • FIG. 6 is a diagram illustrating a relationship between a light receiving unit of a detector according to a second embodiment and main and sub laser beams.
  • FIG. 10 is a flowchart showing a PM concentration calculation method and filter distribution measurement switching according to the third embodiment.
  • FIG. FIG. 6 is a diagram illustrating a configuration of a galvanometer mirror according to a fourth embodiment.
  • FIG. 1 illustrates the configuration of a repair distribution measuring device for particulate matter (PM) contained in the exhaust gas filter of this embodiment.
  • the frequency of the electromagnetic wave emitted by the oscillating unit 3 is, for example, a frequency that passes through a non-hydrogen bonding substance and is easily absorbed by the carbon component and organic solvent component of the exhaust gas particulate component, for example, 0.1 THz to 3.0 THz.
  • the terahertz wave has a property of transmitting to some extent to semiconductors, ceramics, paper, etc., absorbing to water, and reflecting to metal.
  • a material that emits the terahertz wave collected from the oscillation part as laser light and transmits this laser light to some extent, or a material that transmits terahertz light only to the part of the oscillation part and the photodetector to some extent Keep it as
  • FIG. 1 shows the configuration of a filter PM collection distribution measuring apparatus according to a first embodiment of the present invention.
  • the PM measuring system of the filter 2 of this embodiment includes an oscillating unit 3, a galvano mirror 5, a scanner lens 7, a scanner lens 8, a galvano mirror 6, a detector 4, and a controller 23.
  • This embodiment is characterized in that three-dimensional imaging of the PM accumulation amount of the filter can be performed.
  • the position of the galvanometer mirror is generally obtained by indirectly detecting it with an angle detector. In this case, there is no compensation in which the position of the galvanometer mirror completely matches the position indicated by the angle detector.
  • the position of the galvanometer mirror can be directly detected by detecting the positional deviation of the laser beam by the detector 4. Further, laser light emitted from the following oscillating unit 3 is converted into laser light having S-polarized light and P-polarized light at a constant light quantity ratio by a polarizing element.
  • the controller 3 controls the oscillating unit 3 and the detector 4, and the laser light emitted from the oscillating unit 3 reflects the galvano mirror 5 and enters the filter 2 in the engine piping.
  • the laser light that has passed through the filter 2 enters the detector 4 through the scanner lens 7, the scanner lens 8, and the galvanometer mirror 6.
  • the galvanometer mirror 5 can rotate around the rotation axis of the rotary drive actuator 10 to change the angle.
  • the rotation angle of the rotary drive actuator 10 is detected by the angle detector 9, and the detected signal is input to the arithmetic circuit (A) 18.
  • the arithmetic circuit (A) 18 generates a drive signal necessary for the galvano mirror 5 to perform positioning control at a predetermined angle. Based on this control signal, the control unit (A) 11 sends a drive control signal to the rotary drive actuator 10. Is sent out. For example, the arithmetic circuit (A) 18 generates a drive signal for reciprocating the galvanometer mirror 5 within a predetermined angle range, for example, 30 deg, and the control unit (A) 11 controls the rotary drive actuator 10 to thereby control the laser. The light can be scanned and the filter 2 can be passed uniformly.
  • the PM 2 is disposed on the filter 2 for the purpose of measuring PM accumulated on the filter.
  • it may be disposed on the exhaust part of the vehicle as a PM detection device.
  • the laser light transmitted through the filter 2 is incident on the detector 4 through the scanner lens 8 and the galvanometer mirror 6, but positional deviation or the like becomes a problem in the detector using a semiconductor element. .
  • the amount of light reduction may be learned in accordance with the incident angle to the semiconductor element and corrected using the learned amount. This correction optical control means will be described below.
  • the galvanometer mirror 6 can rotate around the rotation axis of the rotary drive actuator 13 and change the angle.
  • the rotation angle of the rotation drive actuator 13 is detected by the angle detector 12 and input to the arithmetic circuit (B) 19.
  • a mechanism for detecting the optical axis deviation angle by the position sensor 15 provided in the detector 4 for correcting the optical axis positional deviation is provided to compensate for the optical axis positional deviation generated by the positional deviation signal generation circuit 17. Is also input to the arithmetic circuit (B) 19.
  • the arithmetic circuit (B) 19 generates a drive signal necessary for controlling the galvanometer mirror 6 to a predetermined position by the rotational position control, and the control unit (B) 14 based on the control signal, the rotational drive actuator 13 A drive control signal is sent to.
  • the optical axis can be controlled to a predetermined position of the detector 4 by performing an optical axis position correction operation.
  • the galvano mirror 6 needs to be driven in cooperation with the galvano mirror 5. Therefore, the synchronization control unit 16 sends the position profile of the galvano mirror 5 to the arithmetic circuit (A) 18 and receives the position information of the galvano mirror 5 from the angle detector 9 through the arithmetic circuit (A) 18. 16 sends the position profile of the galvanometer mirror 6 to the arithmetic circuit (B) 19, and the galvanometer mirrors 5 and 6 realize a synchronized scanning operation.
  • the misalignment signal generation circuit 17 synchronizes the galvanometer mirror 6 by sending a signal indicating that the galvanometer mirror 6 is controlled within a predetermined angle range, for example, a static angle width within ⁇ 1 mdeg, to the synchronization control unit 16. Realize control.
  • a predetermined angle range for example, a static angle width within ⁇ 1 mdeg
  • FIG. 2B shows the configuration of the galvanometer mirrors 5 and 6 when the optical axis is scanned in the X direction and the Y direction. It is.
  • a two-dimensional image of the cross section of the filter 2 can be obtained by a scanning operation with one optical axis in the X direction.
  • a three-dimensional image of the filter 2 can be obtained by a two-axis scanning operation with the axes in the X direction and the Y direction. Further, the positional deviation of the galvano mirror 6 can be compensated according to the positional deviation of the laser light obtained from the position sensor 15. Next, the position sensor 15 will be described.
  • the position of the laser beam 300 can be detected in the X and Y directions if the light receiving portion of the position sensor 15 is configured as shown in FIG. Since FIG. 2A is a case where FIG. 2B is limited to the X direction, description thereof is omitted.
  • FIG. 3B shows an optimum state of the laser beam 300 incident on the detector 4
  • FIG. 3A shows a case where the laser beam 300 is shifted to the + side in the Y direction
  • FIG. A case where the direction is shifted to the minus side is shown.
  • FIG. 3E shows an optimum state of the laser beam 300 incident on the detector 4, FIG.
  • the position sensor 15 of the detector 4 has four light receiving parts, a light receiving part 301, a light receiving part 302, a light receiving part 303, and a light receiving part 304.
  • signals obtained from the light receiving units 301, 302, 303, and 304 are A, B, C, and D, respectively.
  • the position error signal Sx in the X direction and the position error signal Sy in the Y direction are obtained by the following equations, for example.
  • the signals of the light receiving unit 302 and the light receiving unit 304 are smaller than the light receiving unit 301 and the light receiving unit 303. For this reason, the signal of Sy becomes positive.
  • the rotational drive actuator Y of FIG. 2B is controlled to the minus side, and in the case of FIG. It becomes possible to stably control to the state of B).
  • the signals of the light receiving unit 301 and the light receiving unit 302 are smaller than the light receiving unit 303 and the light receiving unit 304. For this reason, the signal of Sx becomes negative.
  • the rotational drive actuator X of FIG. 2B is controlled to the plus side, and in the case of FIG. It becomes possible to stably control to the state of E).
  • the detector 4 will be described.
  • the region A505 is composed of the resonant tunneling diode 507 and the resonant tunneling diode 508, and the region B506 is composed of the resonant tunneling diode 509 and the resonant tunneling diode 510.
  • a configuration is adopted in which laser beams having polarizations different from each other by 90 degrees in regions A and B are detected.
  • the configuration of the galvanometer mirror is shown in FIG. 2B.
  • the configuration of the position sensor 15 is as shown in FIG. As described above, the positional deviation of the laser beam 400 can be detected.
  • the optical axis scanning is realized by a galvanometer mirror, but the optical axis scanning may be realized by using a polygon mirror or a MEMS (Micro Electro Mechanical Systems) mirror.
  • the light receiving portion of the detector 4 is realized by a resonant tunnel diode, a tannet diode, an impatt diode, a Schottky barrier diode, a GaAs field effect transistor, a GaN FET, a high electron mobility transistor, a heterojunction bipolar transistor It may be realized with.
  • the control is performed based on the signal of the detector 4, but the positional deviation amount may be learned in advance and the control may be performed based on the learning result.
  • the laser light emitted from the oscillating unit 3 is a laser beam having S-polarized light and P-polarized light at a constant light quantity ratio by the polarizing element, but the polarizing element may be integrated with the oscillating unit 3.
  • FIG. 6 shows the configuration of a PM collection and distribution measuring apparatus for a filter according to a second embodiment of the present invention.
  • the difference between the present embodiment and the first embodiment is the laser beam misalignment signal detection method related to the position sensor 20, the detector 21, and the branching element 22.
  • the rest of the present embodiment is the same as the first embodiment.
  • a signal detection method that is a difference from the first embodiment will be described. In the following, description will be made assuming that the galvano mirror of FIG. 2A is a case where FIG. 2B is limited to the X direction, the description is omitted. Further, laser light emitted from the following oscillating unit 3 is converted into laser light having S-polarized light and P-polarized light at a constant light quantity ratio by a polarizing element.
  • the laser light reflected from the galvanometer mirror 6 is branched into a main laser beam and a sub laser beam by a branch element 22 such as a diffraction element, and enters a detector 21.
  • FIG. 7 shows the relationship between the light receiving portion of the detector 21 and the main and sub laser beams.
  • FIGS. 7B and 7E show the optimum state of the laser beam incident on the detector 21, and
  • FIG. 7A shows the case where the laser beam is shifted to the + side in the Y direction.
  • (C) shows the case of shifting to the Y direction minus side.
  • the detector 21 includes three light receiving units, a main light receiving unit 701, a sub detection unit 702, a sub detection unit 703, a sub detection unit 704, and a sub detection unit 705.
  • FIG. 7D shows a case of shifting to the + side in the X direction
  • (F) shows a case of shifting to the ⁇ side of the X direction.
  • the detector 21 includes three light receiving units, a main light receiving unit 701, a sub detection unit 702, a sub detection unit 703, a sub detection unit 704, and a sub detection unit 705. Further, the interval between the sub detection unit 702 and the sub detection unit 704 is larger than the interval between the sub laser beam 771 and the sub laser beam 772. Similarly, the interval between the sub detection unit 703 and the sub detection unit 705 is also increased.
  • the galvanometer mirror 6 is controlled using a differential signal of the sum signal of the sub detection unit 702 and the sub detection unit 703 and the sum signal of the sub detection unit 704 and the sub detection unit 705. .
  • the reason why stable signal detection is possible is shown below.
  • the sub-detector 702 and the sub-detector 704 since the sub-detector 702 and the sub-detector 704 detect the sub-laser light 771 and the sub-laser light 772, the sub-detector 702 and the sub-detector 704 The sum signal is a larger signal than the sum signal of the sub detection unit 703 and the sub detection unit 705. For this reason, the differential signal becomes positive.
  • the X-direction mirror in FIG. 2B is controlled to the minus side
  • the X-direction mirror is controlled to the plus side. It becomes possible to stably control the state.
  • the detector 20 will be described.
  • the detector 20 uses a plurality of resonant tunneling diodes as an element for detecting the laser light reflected from the galvanometer mirror 6
  • a region A505 is configured by a resonant tunneling diode 507 and a resonant tunneling diode 508 as shown in FIG.
  • the region B506 is constituted by the resonant tunneling diode 509 and the resonant tunneling diode 510, and the laser beams having polarization different by 90 degrees in the regions A and B are detected.
  • the galvano mirror has the configuration shown in FIG. 2B is shown, but the configuration shown in FIG. 2A may be the same as that shown in FIG.
  • the optical axis scanning is realized by a galvanometer mirror, but the optical axis scanning may be realized by using a polygon mirror or a MEMS mirror.
  • the position sensor 20 of the detector 21 is realized by a resonant tunnel diode, a tannet diode, an impat diode, a Schottky barrier diode, a GaAs field effect transistor, a GaN FET, a high electron mobility transistor, a heterojunction bipolar You may implement
  • the control is performed based on the signal obtained from the position sensor 20, but for example, the positional deviation amount may be learned in advance and the control may be performed based on the learning result.
  • the laser light emitted from the oscillating unit 3 is a laser beam having S-polarized light and P-polarized light at a constant light quantity ratio by the polarizing element, but the polarizing element may be integrated with the oscillating unit 3.
  • FIG. 8 shows the configuration of a filter PM collection and distribution measuring apparatus according to a third embodiment of the present invention.
  • the difference between the present embodiment and the first and second embodiments is that the PM collection distribution measuring apparatus of the present embodiment cancels the influence of moisture absorption and obtains a distribution as a three-dimensional image of the PM concentration deposited on the filter 2.
  • the three-dimensional distribution measurement can be performed by changing the scanning range of the galvanometer mirror from the point that can be measured and the PM concentration. Since other than that is the same as that of Example 1 and 2, in a present Example, the difference with Example 1 is demonstrated.
  • the laser light emitted from the following oscillating unit 30 is converted into laser light having S-polarized light and P-polarized light at a constant light quantity ratio by a polarizing element.
  • the frequency of the laser light emitted from the first oscillating unit 31 is, for example, a frequency that passes through the non-hydrogen bonding substance and is easily absorbed by the carbon component and the organic solvent component of the exhaust gas particulate component, for example, 0.
  • the second oscillating unit 32 and the detector 33 are arranged at positions facing the pipe so that the laser beam emitted from the oscillating unit 32 can be received by the photodetector 33.
  • the terahertz wave has a property of transmitting to some extent to semiconductors, ceramics, paper, etc., absorbing to water, and reflecting to metal.
  • a material is selected so that the laser beam emitted from the oscillating portion is transmitted to some extent, or only the portions of the oscillating portion and the photodetector are made to transmit the laser beam to some extent.
  • each laser beam in the filter 2 and downstream it is set as the structure which divides
  • the arithmetic circuit 81 calculates the ratio between the detector 4 and the detector 33.
  • the amount of laser light emitted from the first oscillating unit 30 is I 0
  • the absorption rate of the laser beam by ⁇ is ⁇
  • the absorption rate by moisture is ⁇
  • the absorption rate by PM is ⁇
  • the controller 23 when the PM concentration of the calculation result of the calculation circuit 81 exceeds, for example, 60% or more of the PM amount that can be deposited on the filter, the controller 23 generates an XY coordinate profile that limits the range for measuring the distribution, The profile is sent to the synchronization control unit 16.
  • FIG. 9 shows a calculation flow of this embodiment.
  • the laser beam emitted from the oscillating unit 30 by the controller 23 is divided into two by the branch element 80, and light is emitted from the first oscillating unit 31 and the second oscillating unit 32 with the light quantity I 0 . 32, the received light amounts I 1 and I 2 are measured (90).
  • the PM absorption rate ⁇ is calculated from the equation (5) by calculating the ratio between I 1 and I 2 (91).
  • the PM concentration is calculated from the relationship between the PM concentration and the PM absorption rate (92).
  • the XY coordinates are sequentially changed by the galvanometer mirror 5 and the galvanometer mirror 6 to perform the three-dimensional measurement of the filter 2 (94).
  • the PM concentration obtained in the process (92) and a predetermined threshold value for example, the PM concentration accumulated in the filter 2 are stored in the filter 2. Compare to the accumulable concentration of 60% (95). If the result of this comparison is greater than or equal to the threshold value, the measurement position is limited and the next three-dimensional distribution measurement is executed (97). Further, as a result of the comparison with the threshold value in the process (95), if there is no place exceeding the threshold value, the entire three-dimensional distribution of the filter 2 is measured (96).
  • the laser light emitted from the oscillating unit 30 is a laser beam having S-polarized light and P-polarized light at a constant light quantity ratio by the polarizing element, but the polarizing element may be integrated with the oscillating unit 3.
  • FIG. 10 illustrates the configuration of a water distribution measuring apparatus included in a sheet-like sample, for example, paper 100 used in an image forming apparatus such as a printer, according to this embodiment.
  • the present embodiment is different from the first embodiment in that the frequency of the electromagnetic wave emitted by the oscillating unit 3 is, for example, a frequency that passes through a non-hydrogen bonding substance and is easily absorbed by moisture, for example, 0.1 THz to 3.
  • a terahertz wave band of 0 THz is used.
  • the terahertz wave has a property of transmitting to some extent to semiconductors, ceramics, paper, etc., absorbing to water, and reflecting to metal.
  • FIG. 10 shows the configuration of the water distribution measuring apparatus for paper 100 according to the fourth embodiment of the present invention.
  • the measurement system of the present embodiment is an oscillation unit 3, a galvanometer mirror 5, a scanner lens 7, a scanner lens 8, a galvanometer mirror 106, and a detector 4.
  • the feature of this embodiment is that three-dimensional imaging of a sheet-like sample can be performed.
  • the galvano mirror 106 since the position of the galvano mirror can be directly detected by detecting the positional deviation of the laser beam by the detector 4, the galvano mirror 106 does not have an angle detector. Is the feature.
  • the laser light emitted from the oscillation unit 3 is reflected by the galvanometer mirror 5 and enters the paper 100.
  • the laser light transmitted through the paper is incident on the detector 4 through the scanner lens 7, the scanner lens 8, and the galvanometer mirror 106.
  • the galvanometer mirror 5 can rotate around the rotation axis of the rotary drive actuator 10 to change the angle.
  • the rotation angle of the rotary drive actuator 10 is detected by the angle detector 9, and the detected signal is input to the arithmetic circuit (A) 18.
  • the arithmetic circuit (A) 18 generates a drive signal necessary for the galvano mirror 5 to perform positioning control at a predetermined angle. Based on this control signal, the control unit (A) 11 sends a drive control signal to the rotary drive actuator 10. Is sent out.
  • the arithmetic circuit (A) 18 generates a drive signal for reciprocating the galvanometer mirror 105 within a predetermined angle range, for example, 30 deg, and the control unit (A) 11 controls the rotary drive actuator 10, so that the laser The light can be scanned, and the paper 100 can pass uniformly.
  • the absorption rate of water contained in the paper can be detected by detecting the signal of the detector 4, for example, while observing a change in water when shaping an image on paper with a printer or the like. Ink can be controlled.
  • the laser beam that has passed through the paper 100 is incident on the detector 4 via the scanner lens 8 and the galvanometer mirror 106.
  • misalignment or the like becomes a problem.
  • the amount of light reduction may be learned in accordance with the incident angle to the semiconductor element and corrected using the learned amount.
  • This correction optical control means will be described below.
  • the galvanometer mirror 106 can rotate around the rotation axis of the rotary drive actuator 13 to change the angle.
  • a signal for detecting the optical axis deviation angle is provided by the position sensor 15 provided in the detector 4 for optical axis positional deviation correction, and the optical axis positional deviation compensation signal generated by the positional deviation signal generation circuit 17 is provided.
  • the position profile of the galvanometer mirror 106 sent from the synchronization control unit 16 are input to the arithmetic circuit (B) 19.
  • the arithmetic circuit (B) 19 generates a drive signal necessary for controlling the galvanometer mirror 106 to a predetermined position by the rotational position control, and the control unit (B) 14 based on the control signal causes the rotational drive actuator 13 to operate.
  • a drive control signal is sent to.
  • the optical axis can be controlled to a predetermined position of the detector 4 by performing an optical axis position correction operation.
  • the galvano mirror 106 needs to be driven in synchronism with the galvano mirror 5. Therefore, the synchronization control unit 16 sends the position profile of the galvano mirror 5 to the arithmetic circuit (A) 18 and receives the position information of the galvano mirror 105 from the angle detector 9 through the arithmetic circuit (A) 18. 16 sends the position profile of the galvanometer mirror 106 to the arithmetic circuit (B) 19, and the galvanometer mirrors 5 and 106 realize a synchronized scanning operation.
  • the misalignment signal generation circuit 17 synchronizes the galvano mirror 106 by sending a signal indicating that the galvano mirror 106 is controlled within a predetermined angle range, for example, a static angle width within ⁇ 1 mdeg, to the synchronization control unit 16. Realize control.
  • a predetermined angle range for example, a static angle width within ⁇ 1 mdeg
  • the galvanometer mirror 106 will be described.
  • the configuration of the galvanometer mirror 5 is the same as that of FIG. 2 described in the first embodiment.
  • FIG. 11A shows the configuration of the galvanometer mirror 106 when the optical axis is scanned in the X direction
  • FIG. 11B shows the configuration of the galvanometer mirror 106 when the optical axis is scanned in the X direction and the Y direction.
  • the detector 4 functions as the function of the angle detector.
  • a three-dimensional image of the paper 100 can be obtained by a two-axis scanning operation with the axes in the X direction and the Y direction. Further, the positional deviation of the galvano mirror 106 can be compensated according to the positional deviation of the laser light obtained from the position sensor 15. Next, the position sensor 15 will be described.
  • the laser beam 300 reflected from the galvanometer mirror 106 is incident on the detector 4.
  • the galvanometer mirror is configured as shown in FIG. 11B
  • the position of the laser beam 300 can be detected in the X and Y directions if the light receiving portion of the position sensor 15 is configured as shown in FIG.
  • FIG. 11A illustrates a case where FIG. 11B is limited to the X direction, and thus description thereof is omitted.
  • the position error signal Sx in the X direction and the position error signal Sy in the Y direction are obtained by (Equation 1) and (Equation 2) as in the first embodiment.
  • the calculation of the position error signal is performed by, for example, the position shift signal generation circuit 17, and the rotation drive actuator 13 is driven by, for example, the control unit (B) 14 so that each calculated position error signal becomes zero.
  • the galvano mirror 106 is positioned at an angle. By doing so, the position stabilization determination of the rotation angle of the rotary drive actuator 13 is performed by the position error signal, and the position of the galvano mirror is directly controlled. The reason why stable signal detection is possible is shown below.
  • the signals of the light receiving unit 302 and the light receiving unit 304 are smaller than the light receiving unit 301 and the light receiving unit 303. For this reason, the signal of Sy becomes positive.
  • the rotational drive actuator Y of FIG. 11B is controlled to the minus side, and in the case of FIG. It becomes possible to stably control to the state of B).
  • the signals of the light receiving unit 301 and the light receiving unit 302 are smaller than the light receiving unit 303 and the light receiving unit 304. For this reason, the signal of Sx becomes negative.
  • the rotational drive actuator X of FIG. 11B is controlled to the plus side, and in the case of FIG. It becomes possible to stably control to the state of E).
  • the configuration in which only the galvanometer mirror 106 has no angle detector has been described.
  • the positional deviation signal detected by the detector 4 detects the relative angular deviation between the galvano mirror 106 and the galvano mirror 5 as a positional deviation, for example, the angular detector of the galvano mirror 5 is eliminated and the positional deviation signal is detected.
  • the galvanometer mirror 5 may not have an angle detector.
  • the configuration at that time is the same as that shown in FIG.
  • the optical axis scanning is realized by a galvanometer mirror, but the optical axis scanning may be realized by using a polygon mirror or a MEMS mirror.
  • the light receiving portion of the detector 4 is realized by a resonant tunnel diode, a tannet diode, an impatt diode, a Schottky barrier diode, a GaAs field effect transistor, a GaN FET, a high electron mobility transistor, a heterojunction bipolar transistor It may be realized with.
  • the control is performed based on the signal of the detector 4, but the positional deviation amount may be learned in advance and the control may be performed based on the learning result.
  • the laser light emitted from the oscillating unit 3 is a laser beam having S-polarized light and P-polarized light at a constant light quantity ratio by the polarizing element, but the polarizing element may be integrated with the oscillating unit 3.
  • the present invention is not limited to the above-described embodiments, and includes various modifications.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
  • a first oscillation unit that generates a first laser beam
  • a first detection unit that detects the first laser beam
  • a first lens and a second lens that are arranged to face each other
  • a first optical axis scanning unit that scans an optical axis of the first laser beam positioned between the lens, the first oscillation unit, and the first lens, the second lens, and the first lens
  • a second optical axis scanning unit that scans the optical axis of the first laser beam located between the first detector, a first control unit that controls the first optical axis scanning unit, and A second control unit that controls the second optical axis scanning unit, a first control unit, and a scanning instruction unit that provides control information to the second control unit
  • the first detection unit includes: The first laser beam is detected through the first optical axis scanning unit, the first lens, the second lens, and the second optical axis scanning unit, and the second optical axis scanning unit Control unit, said scanning from said instruction unit first is controlled based on a detection signal of the control information and the first
  • the laser beam position control device As a second modification, the laser beam position control device according to the first modification, wherein the first detection unit detects a positional deviation of the first laser beam with a plurality of sensors, and the first detection unit. And an arithmetic circuit for calculating a position shift signal of the laser beam by calculating each of the signals output from the first control unit, wherein the first control unit includes the position shift signal generated by the arithmetic circuit.
  • Modification 3 is the laser beam position control apparatus according to Modification 2, in which the first oscillation unit that generates the first laser beam, the polarization variable element that adjusts the polarization of the laser beam, and 2
  • the first detection unit having a plurality of sensor units composed of one or more sensors and a sensor unit composed of at least one sensor, and each of the signals output from the plurality of sensor units is calculated, and the laser An arithmetic circuit that generates a positional deviation signal of the light, wherein the sensors adjacent to each other of the plurality of sensors are arranged so that the light receiving polarization angles of the first laser beams are different from each other, and are output from the plurality of sensors.
  • a laser beam position control device in which the second optical axis scanning unit is controlled based on a position shift signal generated from the signal by the arithmetic circuit.
  • an oscillation unit that generates laser light
  • a polarization variable element that adjusts polarization of the laser light
  • a detection unit that detects the laser light with two or more sensors
  • an optical axis of the laser light An optical axis scanning unit that scans, and a control unit that controls the optical axis scanning unit, wherein the sensors adjacent to each other of the plurality of sensors are arranged such that the light receiving polarization angles of the laser beams are different from each other,
  • the laser beam position control device wherein the optical axis control unit is controlled based on each output signal.
  • the laser beam position control device As a modified example 5, the laser beam position control device according to the modified example 2, wherein the second oscillation unit that generates the second laser beam, the second detection unit that detects the second laser beam,
  • the first detection unit is a ratio of a signal obtained by detecting the first laser beam by the first detection unit and a signal obtained by detecting the second laser beam by the second detection unit.
  • Laser beam position scanning device Laser beam position scanning device.
  • the laser beam position scanning device includes a branch element that branches the first laser light, and the first laser light branched by the branch element is used.
  • a laser beam position that is used as the second oscillating unit, and that changes a range in which the optical axis is scanned by the first control unit and the second control unit based on the signal intensity of the arithmetic unit. Scanning device.
  • each of the above-described configurations, functions, processing units, processing means, and the like may be realized by hardware by designing a part or all of them with, for example, an integrated circuit.
  • Each of the above-described configurations, functions, and the like may be realized by software by interpreting and executing a program that realizes each function by the processor.
  • Information such as programs, tables, and files for realizing each function can be stored in a recording device such as a memory, a hard disk, or an SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, or a DVD.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Laser Beam Processing (AREA)

Abstract

Provided is a laser light position control device applicable to measurement of concentration distribution of particulate matter in the exhaust gas in a pipe, and capable of producing scanning laser light with a simple structure. The laser light position control device comprises: a first oscillation unit for generating first laser light; a first detection unit for detecting the laser light; first and second lenses arranged opposite each other; a first optical axis scanning unit between the first oscillation unit and the first lens; a second optical axis scanning unit between the second lens and the first detection unit; a first control unit for controlling the first optical axis scanning unit; a second control unit for controlling the second optical axis scanning unit; and a scanning command unit for providing the first control unit and the second control unit with control information. The first detection unit detects the laser light through the first optical axis scanning unit, the first and second lenses, and the second optical axis scanning unit. The second control unit controls the second optical axis scanning unit on the basis of the control information from the scanning command unit to the first optical axis scanning unit and the detection signal from the first detection unit.

Description

レーザ光位置制御装置および計測装置Laser light position control device and measuring device
 本発明は、レーザ光位置制御装置および計測装置に関する。 The present invention relates to a laser beam position control device and a measurement device.
 特許文献1の要約書には「光ビート信号を発生する光ビート信号発生部1と、光ビート信号をnチャンネルに分岐する光分岐部2と、光分岐部2から入力されるnチャンネルの光ビート信号の遅延量をそれぞれ独立に調整して出力する光遅延回路3と、光遅延回路3からの光ビート信号を受けてテラヘルツ波を放射するテラヘルツ波放射素子がアレイ状にn素子配置されたテラヘルツ波放射源6と、光遅延回路3から出力されるnチャンネルの光ビート信号の遅延量を制御することによりテラヘルツ波放射素子が放射するテラヘルツ波の位相をそれぞれ制御し、これによりテラヘルツ波放射源6が放射するテラヘルツ波の方向を制御する制御部9とを備える。」と記載されている。 The abstract of Patent Document 1 includes “an optical beat signal generating unit 1 that generates an optical beat signal, an optical branching unit 2 that branches the optical beat signal into n channels, and an n-channel light input from the optical branching unit 2. An optical delay circuit 3 that independently adjusts and outputs the delay amount of the beat signal, and terahertz wave radiating elements that receive the optical beat signal from the optical delay circuit 3 and emit a terahertz wave are arranged in an array. The phase of the terahertz wave emitted from the terahertz wave radiating element is controlled by controlling the delay amount of the n-channel optical beat signal output from the terahertz wave radiation source 6 and the optical delay circuit 3, and thereby the terahertz wave radiation And a control unit 9 that controls the direction of the terahertz wave emitted from the source 6.
特開2007‐103997JP2007-103997A
 数10GHz~数THzの電磁波を用いた従来の試料の透視イメージングは、電磁波の集光ビームを試料に照射し、試料自体を機械的に動かして集光ビームを走査していた。そのため、走査速度は機械的動作で制限され、透視イメージングに長時間を要する課題があった。そこで、集光ビームを用いた試料の透視イメージングの高速化のため、集光ビームを走査する手段として、特許文献1が提案されている。特許文献1ではフェーズドアレーアンテナを用いて、集光ビームを走査するものである。この発明は、波長が異なる2つの集光ビームを用いた差周波混合によりレーザ光を発生させる際、アレー素子毎に光の移相器を用いて、集光ビームの位相差をシフトすることで集光ビームの波面を間接的に傾けることで、走査するものである。 In conventional fluoroscopic imaging of a sample using electromagnetic waves of several tens of GHz to several THz, the sample was irradiated with a focused beam of electromagnetic waves and the sample itself was mechanically moved to scan the focused beam. Therefore, the scanning speed is limited by a mechanical operation, and there is a problem that a long time is required for fluoroscopic imaging. Therefore, Patent Document 1 has been proposed as means for scanning the focused beam in order to increase the speed of fluoroscopic imaging of the sample using the focused beam. In Patent Document 1, a focused beam is scanned using a phased array antenna. In the present invention, when laser light is generated by difference frequency mixing using two condensing beams having different wavelengths, the phase difference of the condensing beam is shifted by using an optical phase shifter for each array element. Scanning is performed by indirectly tilting the wavefront of the focused beam.
 しかし、特許文献1では、アレー素子ごとに光の移相器を用いているが、アレーの規模を大きくする場合、素子数に応じた多数の移相器を使用する必要があるため、装置全体の規模、コストが高くなるという課題がある。 However, in Patent Document 1, an optical phase shifter is used for each array element. However, when the scale of the array is increased, it is necessary to use a large number of phase shifters corresponding to the number of elements. There is a problem that the scale and cost of the system will increase.
 本発明は上記を鑑みてなされたもので、簡素な構造でレーザ光の位置の制御ができるレーザ光位置制御装置を提供することを目的とする。 The present invention has been made in view of the above, and an object thereof is to provide a laser beam position control device capable of controlling the position of a laser beam with a simple structure.
 上記目的は、特許請求の範囲に記載の発明によって達成できる。その一例を挙げるならば、第1のレーザ光を発生させる第1の発振部と、前記第1のレーザ光を検出する第1の検出部と、対向して配置される第1のレンズ及び第2のレンズと、前記第1の発振部と前記第1のレンズとの間に位置する前記第1のレーザ光の光軸を走査する第1の光軸走査部と、前記第2のレンズと前記第1の検出器との間に位置する前記第1のレーザ光の光軸を走査する第2の光軸走査部と、前記第1の光軸走査部を制御する第1の制御部と、前記第2の光軸走査部を制御する第2の制御部と、第1の制御部と第2の制御部への制御情報を与える走査指示部と、を備え、前記第1の検出部は、前記第1のレーザ光を前記第1の光軸走査部、前記第1のレンズ、前記第2のレンズ、前記第2の光軸走査部を介して検出し、前記第2の制御部は、前記走査指示部から前記第1の光軸走査部への前記制御情報と前記第1の検出部の検出信号とに基づいて前記第2の光軸走査部を制御する、レーザ光位置制御装置である。
The above object can be achieved by the invention described in the claims. For example, a first oscillation unit that generates a first laser beam, a first detection unit that detects the first laser beam, a first lens and a second lens that are arranged to face each other. Two lenses, a first optical axis scanning unit that scans an optical axis of the first laser light located between the first oscillation unit and the first lens, and the second lens A second optical axis scanning unit that scans the optical axis of the first laser beam located between the first detector and a first control unit that controls the first optical axis scanning unit; A second control unit that controls the second optical axis scanning unit; a first control unit; and a scanning instruction unit that provides control information to the second control unit, and the first detection unit. Detects the first laser beam through the first optical axis scanning unit, the first lens, the second lens, the second optical axis scanning unit, and A control unit configured to control the second optical axis scanning unit based on the control information from the scanning instruction unit to the first optical axis scanning unit and a detection signal of the first detection unit; This is a laser beam position control device.
 本発明によれば、簡素な構造でレーザ光の位置の制御ができるレーザ光位置制御装置を提供する。 According to the present invention, a laser beam position control device capable of controlling the position of a laser beam with a simple structure is provided.
実施例1に係るフィルタのPMの捕集分布計測装置の構成を示した図。The figure which showed the structure of the collection collection measuring device of PM of the filter which concerns on Example 1. FIG. 実施例1に係るガルバノミラーの構成を表す図。FIG. 3 is a diagram illustrating a configuration of a galvanometer mirror according to the first embodiment. 実施例1に係る検出器の4受光部とレーザ光の関係を表す図。FIG. 3 is a diagram illustrating a relationship between four light receiving units of the detector according to the first embodiment and laser light. 実施例1に係る検出器の2受光部とレーザ光の関係を表す図。FIG. 3 is a diagram illustrating a relationship between two light receiving units of the detector according to the first embodiment and laser light. 実施例1に係る検出器の受光部の構成を表す図。FIG. 3 is a diagram illustrating a configuration of a light receiving unit of a detector according to Embodiment 1. 実施例2に係るフィルタのPMの捕集分布計測装置の構成を表す図。The figure showing the structure of the collection collection measuring device of PM of the filter concerning Example 2. FIG. 実施例2に係る検出器の受光部とメインとサブのレーザ光の関係を表す図。FIG. 6 is a diagram illustrating a relationship between a light receiving unit of a detector according to a second embodiment and main and sub laser beams. 実施例3に係るフィルタのPMの捕集分布計測装置の構成を表す図。The figure showing the structure of the collection collection measuring device of PM of the filter concerning Example 3. FIG. 実施例3に係るPM濃度演算方法とフィルタの分布計測切替えを表すフロー図。FIG. 10 is a flowchart showing a PM concentration calculation method and filter distribution measurement switching according to the third embodiment. 実施例4に係る紙に含まれる水分布計測装置の構成測装置の構成を表す図。The figure showing the structure of the structure measuring apparatus of the water distribution measuring apparatus contained in the paper which concerns on Example 4. FIG. 実施例4に係るガルバノミラーの構成を表す図。FIG. 6 is a diagram illustrating a configuration of a galvanometer mirror according to a fourth embodiment.
 図1に本実施例の排ガスフィルタに含まれる粒子状物質(Particulate Matter:PM)の補修分布計測装置の構成について説明する。発振部3が発する電磁波の周波数は、例えば、非水素結合物質を透過する周波数であって、排ガス微粒子成分のカーボン成分、有機溶媒成分に吸収され易い周波数、例えば0.1THzから3.0THzのテラヘルツ波帯域を使う。テラヘルツ波は半導体、セラミック、紙等に対してはある程度透過し、水に対しては吸収し、金属に対しては反射する特性を持つ。配管については発振部から集光したテラヘルツ波をレーザ光として出射し、このレーザ光がある程度透過するように材料を選定するか、もしくは発振部および光検出器の部分のみテラヘルツ光がある程度透過する材料としておく。 FIG. 1 illustrates the configuration of a repair distribution measuring device for particulate matter (PM) contained in the exhaust gas filter of this embodiment. The frequency of the electromagnetic wave emitted by the oscillating unit 3 is, for example, a frequency that passes through a non-hydrogen bonding substance and is easily absorbed by the carbon component and organic solvent component of the exhaust gas particulate component, for example, 0.1 THz to 3.0 THz. Use wavebands. The terahertz wave has a property of transmitting to some extent to semiconductors, ceramics, paper, etc., absorbing to water, and reflecting to metal. For piping, select a material that emits the terahertz wave collected from the oscillation part as laser light and transmits this laser light to some extent, or a material that transmits terahertz light only to the part of the oscillation part and the photodetector to some extent Keep it as
 図1は本発明の第1の実施例に係るフィルタのPMの捕集分布計測装置の構成を示したものである。本実施例のフィルタ2のPM計測系は、発振部3、ガルバノミラー5、スキャナレンズ7、スキャナレンズ8、ガルバノミラー6、検出器4、コントローラ23とからなっている。本実施例ではフィルタのPM堆積量の3次元画像化が行えることが特徴である。また、ガルバノミラーの位置は角度検出器で間接的に検出することで得るのが一般的である。この場合、ガルバノミラーの位置と角度検出器の示す位置とが完全に一致する補償は無い。 FIG. 1 shows the configuration of a filter PM collection distribution measuring apparatus according to a first embodiment of the present invention. The PM measuring system of the filter 2 of this embodiment includes an oscillating unit 3, a galvano mirror 5, a scanner lens 7, a scanner lens 8, a galvano mirror 6, a detector 4, and a controller 23. This embodiment is characterized in that three-dimensional imaging of the PM accumulation amount of the filter can be performed. Further, the position of the galvanometer mirror is generally obtained by indirectly detecting it with an angle detector. In this case, there is no compensation in which the position of the galvanometer mirror completely matches the position indicated by the angle detector.
 一方本実施例で説明するように検出器4でレーザ光の位置ずれを検出することでガルバノミラーの位置を直接検出することが出来る構成であるのも特徴である。また、以下の発振部3を出射したレーザ光は偏光素子により一定光量比率でS偏光とP偏光をもつレーザ光とする。 On the other hand, as described in the present embodiment, it is also a feature that the position of the galvanometer mirror can be directly detected by detecting the positional deviation of the laser beam by the detector 4. Further, laser light emitted from the following oscillating unit 3 is converted into laser light having S-polarized light and P-polarized light at a constant light quantity ratio by a polarizing element.
 本実施例では、発振部3および検出器4の制御はコントローラ23により行われ、発振部3から出射したレーザ光はガルバノミラー5を反射し、エンジン配管内のフィルタ2に入射する。フィルタ2を透過したレーザ光は、スキャナレンズ7、スキャナレンズ8、ガルバノミラー6を経て、検出器4に入射する。ここで、ガルバノミラー5は、回転駆動アクチュエータ10の回転軸を中心に回転し、角度を変更することができる。回転駆動アクチュエータ10の回転角は、角度検出器9により検出され、その検出された信号は演算回路(A)18へ入力される。 In this embodiment, the controller 3 controls the oscillating unit 3 and the detector 4, and the laser light emitted from the oscillating unit 3 reflects the galvano mirror 5 and enters the filter 2 in the engine piping. The laser light that has passed through the filter 2 enters the detector 4 through the scanner lens 7, the scanner lens 8, and the galvanometer mirror 6. Here, the galvanometer mirror 5 can rotate around the rotation axis of the rotary drive actuator 10 to change the angle. The rotation angle of the rotary drive actuator 10 is detected by the angle detector 9, and the detected signal is input to the arithmetic circuit (A) 18.
 演算回路(A)18は、ガルバノミラー5が所定角度に位置決め制御するために必要な駆動信号を生成し、この制御信号に基づいて制御部(A)11は、回転駆動アクチュエータ10へ駆動制御信号を送出する。例えば演算回路(A)18でガルバノミラー5を所定角度範囲、例えば30degの角度を往復動作するような駆動信号を生成し、制御部(A)11により回転駆動アクチュエータ10を制御することで、レーザ光をスキャン動作することができ、フィルタ2を均一に通過させることができる。 The arithmetic circuit (A) 18 generates a drive signal necessary for the galvano mirror 5 to perform positioning control at a predetermined angle. Based on this control signal, the control unit (A) 11 sends a drive control signal to the rotary drive actuator 10. Is sent out. For example, the arithmetic circuit (A) 18 generates a drive signal for reciprocating the galvanometer mirror 5 within a predetermined angle range, for example, 30 deg, and the control unit (A) 11 controls the rotary drive actuator 10 to thereby control the laser. The light can be scanned and the filter 2 can be passed uniformly.
 このとき、検出器4の信号を検出することで、フィルタ2に堆積したPMの吸収率を検出することができるので、例えば、時間的なフィルタ内のPM堆積量の変化を画像化することができる。さらに、本実施例では、フィルタに堆積したPMを測定する目的で、フィルタ2に配置したが、例えば、車両の排気部に、PM検出用装置として配置しても良い。 At this time, by detecting the signal of the detector 4, it is possible to detect the absorption rate of PM deposited on the filter 2. For example, it is possible to image a change in the amount of PM accumulated in the filter over time. it can. Furthermore, in the present embodiment, the PM 2 is disposed on the filter 2 for the purpose of measuring PM accumulated on the filter. However, for example, it may be disposed on the exhaust part of the vehicle as a PM detection device.
 さらに、本実施例では、フィルタ2内を透過したレーザ光はスキャナレンズ8、ガルバノミラー6を経て検出器4に入射しているが、半導体素子を用いた検出器では位置ずれ等が課題となる。このため、例えば半導体素子への入射角度に応じて光量低下分を学習し、それを用いて補正しても良い。この補正光学制御手段について以下に説明する。 Further, in the present embodiment, the laser light transmitted through the filter 2 is incident on the detector 4 through the scanner lens 8 and the galvanometer mirror 6, but positional deviation or the like becomes a problem in the detector using a semiconductor element. . For this reason, for example, the amount of light reduction may be learned in accordance with the incident angle to the semiconductor element and corrected using the learned amount. This correction optical control means will be described below.
 前記検出器4での位置ずれを補正するために、ガルバノミラー6は、回転駆動アクチュエータ13の回転軸を中心に回転し、角度を変更することができる。回転駆動アクチュエータ13の回転角は、角度検出器12により検出されて演算回路(B)19へ入力される。また、光軸位置ずれ補正のために検出器4に設けた位置センサ15により光軸のずれ角を検出する機構を設けて、位置ずれ信号生成回路17にて生成された光軸位置ずれ補償用の信号も演算回路(B)19に入力される。 In order to correct the positional deviation at the detector 4, the galvanometer mirror 6 can rotate around the rotation axis of the rotary drive actuator 13 and change the angle. The rotation angle of the rotation drive actuator 13 is detected by the angle detector 12 and input to the arithmetic circuit (B) 19. In addition, a mechanism for detecting the optical axis deviation angle by the position sensor 15 provided in the detector 4 for correcting the optical axis positional deviation is provided to compensate for the optical axis positional deviation generated by the positional deviation signal generation circuit 17. Is also input to the arithmetic circuit (B) 19.
 演算回路(B)19は、ガルバノミラー6を回転位置制御にて、所定位置に制御するために必要な駆動信号を生成し、この制御信号に基づいて制御部(B)14は回転駆動アクチュエータ13へ駆動制御信号を送出する。このような補正光学制御手段について、光軸位置補正動作することで検出器4の所定位置に光軸を制御することができる。ここで、ガルバノミラー6は、ガルバノミラー5に対して連携同期した駆動が必要である。そこで同期制御部16は、演算回路(A)18へガルバノミラー5の位置プロファイルを送出し、ガルバノミラー5の位置情報を角度検出器9から演算回路(A)18を通じて受信する、一方同期制御部16は、演算回路(B)19へガルバノミラー6の位置プロファイルを送出して、ガルバノミラー5と6は同期したスキャン動作を実現する。 The arithmetic circuit (B) 19 generates a drive signal necessary for controlling the galvanometer mirror 6 to a predetermined position by the rotational position control, and the control unit (B) 14 based on the control signal, the rotational drive actuator 13 A drive control signal is sent to. With such correction optical control means, the optical axis can be controlled to a predetermined position of the detector 4 by performing an optical axis position correction operation. Here, the galvano mirror 6 needs to be driven in cooperation with the galvano mirror 5. Therefore, the synchronization control unit 16 sends the position profile of the galvano mirror 5 to the arithmetic circuit (A) 18 and receives the position information of the galvano mirror 5 from the angle detector 9 through the arithmetic circuit (A) 18. 16 sends the position profile of the galvanometer mirror 6 to the arithmetic circuit (B) 19, and the galvanometer mirrors 5 and 6 realize a synchronized scanning operation.
 ここで、例えば位置ずれ信号生成回路17は、ガルバノミラー6を所定角度範囲、例えば静定角度幅が±1mdeg以内に制御されていることを示す信号を、同期制御部16に送出することで同期制御を実現する。次にガルバノミラー5と6について説明する。
図2(A)はX方向に光軸を走査する場合のガルバノミラー5と6の構成であり、(B)はX方向とY方向に光軸を走査する場合のガルバノミラー5と6の構成である。例えば、図2(A)のガルバノミラーの構成では、光軸はX方向の1軸のスキャン動作によりフィルタ2の断面の2次元画像を得ることができる。
Here, for example, the misalignment signal generation circuit 17 synchronizes the galvanometer mirror 6 by sending a signal indicating that the galvanometer mirror 6 is controlled within a predetermined angle range, for example, a static angle width within ± 1 mdeg, to the synchronization control unit 16. Realize control. Next, the galvanometer mirrors 5 and 6 will be described.
2A shows the configuration of the galvanometer mirrors 5 and 6 when the optical axis is scanned in the X direction, and FIG. 2B shows the configuration of the galvanometer mirrors 5 and 6 when the optical axis is scanned in the X direction and the Y direction. It is. For example, in the configuration of the galvanometer mirror shown in FIG. 2A, a two-dimensional image of the cross section of the filter 2 can be obtained by a scanning operation with one optical axis in the X direction.
 一方、図2(B)のガルバノミラーの構成では、軸をX方向とY方向の2軸のスキャン動作によりフィルタ2の3次元画像を得ることができる。さらに、位置センサ15から得られるレーザ光の位置ずれに応じてガルバノミラー6の位置ずれを補償することができる。次に位置センサ15について説明する。 On the other hand, in the configuration of the galvanometer mirror shown in FIG. 2B, a three-dimensional image of the filter 2 can be obtained by a two-axis scanning operation with the axes in the X direction and the Y direction. Further, the positional deviation of the galvano mirror 6 can be compensated according to the positional deviation of the laser light obtained from the position sensor 15. Next, the position sensor 15 will be described.
 ガルバノミラー6を反射したレーザ光300は、検出器4に入射する。ガルバノミラーを図2(B)のように構成した場合に、レーザ光300の位置は、例えば図3のように位置センサ15の受光部を構成すればX方向とY方向の位置を検出できる。図2(A)は、図2(B)をX方向に限定した場合であるため説明は省略する。図3(B)は、検出器4に入射するレーザ光300が最適な状態を示しており、(A)は、Y方向の+側にずれた場合を示しており、(C)は、Y方向の-側にずれた場合を示している。また、図3(E)は、検出器4に入射するレーザ光300が最適な状態を示しており、(D)は、X方向の+側にずれた場合を示しており、(F)は、X方向の-側にずれた場合を示している。検出器4の位置センサ15は受光部301、受光部302、受光部303、受光部304の4つの受光部を有している。また、ここでは、受光部301、302、303、304から得られる信号をそれぞれA、B、C、Dとする。X方向の位置誤差信号Sx、Y方向の位置誤差信号Syは例えば以下の式で得られる。
  (数1)Sx=(A+B)-(C+D)
  (数2)Sy=(A+C)-(B+D)
 上記の位置誤差信号の演算は例えば位置ずれ信号生成回路17で行い、この算出した各位置誤差信号が零となるように回転駆動アクチュエータ13を、例えば制御部(B)14により駆動することで、ガルバノミラー6の角度位置決め行うことを特徴としている。このようにすることで、回転駆動アクチュエータ13の回転角は角度検出器12で検出するが、最終的な位置静定判定は、位置誤差信号により行った方がガルバノミラーの位置を直接制御することができる。以下に安定した信号検出が可能な理由を示す。
The laser beam 300 reflected from the galvanometer mirror 6 enters the detector 4. When the galvanometer mirror is configured as shown in FIG. 2B, the position of the laser beam 300 can be detected in the X and Y directions if the light receiving portion of the position sensor 15 is configured as shown in FIG. Since FIG. 2A is a case where FIG. 2B is limited to the X direction, description thereof is omitted. FIG. 3B shows an optimum state of the laser beam 300 incident on the detector 4, FIG. 3A shows a case where the laser beam 300 is shifted to the + side in the Y direction, and FIG. A case where the direction is shifted to the minus side is shown. FIG. 3E shows an optimum state of the laser beam 300 incident on the detector 4, FIG. 3D shows a case where the laser beam 300 is shifted to the + side in the X direction, and FIG. , Shows a case of shifting to the negative side in the X direction. The position sensor 15 of the detector 4 has four light receiving parts, a light receiving part 301, a light receiving part 302, a light receiving part 303, and a light receiving part 304. In addition, here, signals obtained from the light receiving units 301, 302, 303, and 304 are A, B, C, and D, respectively. The position error signal Sx in the X direction and the position error signal Sy in the Y direction are obtained by the following equations, for example.
(Expression 1) Sx = (A + B) − (C + D)
(Expression 2) Sy = (A + C) − (B + D)
The calculation of the position error signal is performed by, for example, the position shift signal generation circuit 17, and the rotation drive actuator 13 is driven by, for example, the control unit (B) 14 so that each calculated position error signal becomes zero. It is characterized in that the galvanometer mirror 6 is angularly positioned. In this way, the rotation angle of the rotary drive actuator 13 is detected by the angle detector 12, but the final position stabilization determination is performed directly by the position error signal to directly control the position of the galvanometer mirror. Can do. The reason why stable signal detection is possible is shown below.
 図3(A)の場合には、受光部301と受光部303に対して受光部302と受光部304の信号が小さい信号となる。このためSyの信号はプラスになる。それに対し、図3(C)の場合には同様にしてマイナスとなる。このため、図3(A)の場合には、図2(B)の回転駆動アクチュエータYをマイナス側に制御し、図3(C)の場合にはプラス側に制御することで、図3(B)の状態に安定制御することが可能となる。 In the case of FIG. 3A, the signals of the light receiving unit 302 and the light receiving unit 304 are smaller than the light receiving unit 301 and the light receiving unit 303. For this reason, the signal of Sy becomes positive. On the other hand, in the case of FIG. Therefore, in the case of FIG. 3A, the rotational drive actuator Y of FIG. 2B is controlled to the minus side, and in the case of FIG. It becomes possible to stably control to the state of B).
 一方、図3(D)の場合には、受光部303と受光部304に対して受光部301と受光部302の信号が小さい信号となる。このためSxの信号はマイナスになる。それに対し、図3(F)の場合には同様にしてプラスとなる。このため、図3(D)の場合には、図2(B)の回転駆動アクチュエータXをプラス側に制御し、図3(F)の場合にはマイナス側に制御することで、図3(E)の状態に安定制御することが可能となる。次に、検出器4について説明する。 On the other hand, in the case of FIG. 3D, the signals of the light receiving unit 301 and the light receiving unit 302 are smaller than the light receiving unit 303 and the light receiving unit 304. For this reason, the signal of Sx becomes negative. On the other hand, in the case of FIG. Therefore, in the case of FIG. 3D, the rotational drive actuator X of FIG. 2B is controlled to the plus side, and in the case of FIG. It becomes possible to stably control to the state of E). Next, the detector 4 will be described.
 検出器4の位置センサ15に複数の共鳴トンネルダイオードを用いた場合で説明する。レーザ光の偏光方向に指向性を持つ複数の共鳴トンネルダイオードによって入射したレーザ光を検出する場合は、例えば、図5の(A)に示すように共鳴トンネルダイオード501に隣接する共鳴トンネルダイオード502と共鳴トンネルダイオード503は90度偏光方向が異なるように配置することで、隣接間のクロストークノイズを低減可能である。このように配置することで、ガルバノミラー5と6のX方向とY方向の2軸のスキャン動作によるレーザ光の位置ずれを検出することができる。 The case where a plurality of resonant tunneling diodes are used for the position sensor 15 of the detector 4 will be described. When detecting incident laser light by a plurality of resonant tunneling diodes having directivity in the polarization direction of the laser light, for example, as shown in FIG. 5A, the resonant tunneling diode 502 adjacent to the resonant tunneling diode 501 By arranging the resonant tunneling diode 503 so that the polarization directions thereof are different by 90 degrees, it is possible to reduce crosstalk noise between adjacent ones. By arranging in this way, it is possible to detect the positional deviation of the laser beam due to the biaxial scanning operation of the galvanometer mirrors 5 and 6 in the X direction and the Y direction.
 また、1軸のスキャン動作においては、図5(B)のように領域A505を共鳴トンネルダイオード507と共鳴トンネルダイオード508で構成し、領域B506を共鳴トンネルダイオード509と共鳴トンネルダイオード510で構成し、領域AとBとで90度異なる偏光のレーザ光を検出する構成とする。 In the uniaxial scan operation, as shown in FIG. 5B, the region A505 is composed of the resonant tunneling diode 507 and the resonant tunneling diode 508, and the region B506 is composed of the resonant tunneling diode 509 and the resonant tunneling diode 510. A configuration is adopted in which laser beams having polarizations different from each other by 90 degrees in regions A and B are detected.
 なお、ここではガルバノミラーを図2(B)の構成を示したが、図2(A)で構成した場合には、位置センサ15の構成を図5(B)のようにすれば、図4のようにレーザ光400の位置ずれを検出することができる。 Here, the configuration of the galvanometer mirror is shown in FIG. 2B. However, if the configuration of the position sensor 15 is as shown in FIG. As described above, the positional deviation of the laser beam 400 can be detected.
 本実施例では光軸走査をガルバノミラーで実現しているが、ポリゴンミラーやMEMS(Micro Electro Mechanical Systems)ミラーのようなものを用いて光軸走査を実現しても良い。また、検出器4の受光部を共鳴トンネルダイオードで実現したが、タンネットダイオード、インパットダイオード、ショットキーバリアダイオード、GaAs系電界効果トランジスタ、GaN系FET、高電子移動度トランジスタ、ヘテロ接合バイポーラトランジスタで実現しても良い。また、ここでは検出器4の信号をもとに制御を行ったが、例えば位置ずれ量を予め学習しておき、その学習結果をもとに制御しても良い。 In this embodiment, the optical axis scanning is realized by a galvanometer mirror, but the optical axis scanning may be realized by using a polygon mirror or a MEMS (Micro Electro Mechanical Systems) mirror. In addition, although the light receiving portion of the detector 4 is realized by a resonant tunnel diode, a tannet diode, an impatt diode, a Schottky barrier diode, a GaAs field effect transistor, a GaN FET, a high electron mobility transistor, a heterojunction bipolar transistor It may be realized with. Further, here, the control is performed based on the signal of the detector 4, but the positional deviation amount may be learned in advance and the control may be performed based on the learning result.
 さらに、本実施例はフィルタのPMの捕集分布計測装置の構成例を示したが、例えば紙などシート状の媒体への応用も同様の構成で適用することが可能である。また、発振部3を出射したレーザ光は偏光素子により一定光量比率でS偏光とP偏光をもつレーザ光としたが、発振部3に偏光素子を一体化させても良い。 Furthermore, although the present embodiment shows an example of the configuration of a filter PM collection distribution measuring device, application to a sheet-like medium such as paper can also be applied with the same configuration. The laser light emitted from the oscillating unit 3 is a laser beam having S-polarized light and P-polarized light at a constant light quantity ratio by the polarizing element, but the polarizing element may be integrated with the oscillating unit 3.
 図6は本発明の第2の実施例に係るフィルタのPMの捕集分布計測装置の構成を示したものである。本実施例は実施例1との違いは、位置センサ20、検出器21、分岐素子22に係るレーザ光の位置ずれ信号検出方法であり、それ以外は実施例1と同様であるため本実施例では、実施例1との差分である信号検出方法について説明を行う。以下、図2(B)のガルバノミラーの2軸のスキャン動作が可能な構成として説明する。また、図2(A)の説明は、図2(B)をX方向に限定した場合であるため説明は省略する。また、以下の発振部3を出射したレーザ光は偏光素子により一定光量比率でS偏光とP偏光をもつレーザ光とする。 FIG. 6 shows the configuration of a PM collection and distribution measuring apparatus for a filter according to a second embodiment of the present invention. The difference between the present embodiment and the first embodiment is the laser beam misalignment signal detection method related to the position sensor 20, the detector 21, and the branching element 22. The rest of the present embodiment is the same as the first embodiment. Now, a signal detection method that is a difference from the first embodiment will be described. In the following, description will be made assuming that the galvano mirror of FIG. 2A is a case where FIG. 2B is limited to the X direction, the description is omitted. Further, laser light emitted from the following oscillating unit 3 is converted into laser light having S-polarized light and P-polarized light at a constant light quantity ratio by a polarizing element.
 ガルバノミラー6を反射したレーザ光は、回折素子などの分岐素子22により、メインとサブのレーザ光に分岐され、検出器21に入射する。図7は、検出器21の受光部とメインとサブのレーザ光との関係を示したものである。ここで、図7(B)と(E)は、検出器21に入射するレーザ光が最適な状態を示しており、図7(A)は、Y方向の+側にずれた場合を示しており、(C)は、Y方向-側にずれた場合を示している。検出器21はメイン受光部701、サブ検出部702、サブ検出部703、サブ検出部704、サブ検出部705の3つの受光部を有している。 The laser light reflected from the galvanometer mirror 6 is branched into a main laser beam and a sub laser beam by a branch element 22 such as a diffraction element, and enters a detector 21. FIG. 7 shows the relationship between the light receiving portion of the detector 21 and the main and sub laser beams. Here, FIGS. 7B and 7E show the optimum state of the laser beam incident on the detector 21, and FIG. 7A shows the case where the laser beam is shifted to the + side in the Y direction. (C) shows the case of shifting to the Y direction minus side. The detector 21 includes three light receiving units, a main light receiving unit 701, a sub detection unit 702, a sub detection unit 703, a sub detection unit 704, and a sub detection unit 705.
 一方、図7(D)は、X方向の+側にずれた場合を示しており、(F)は、X方向-側にずれた場合を示している。検出器21はメイン受光部701、サブ検出部702、サブ検出部703、サブ検出部704、サブ検出部705の3つの受光部を有している。また、サブのレーザ光771とサブのレーザ光772の間隔よりも、サブ検出部702とサブ検出部704との間隔が大きくなっている。また、サブ検出部703とサブ検出部705との間隔も同様に大きくなっている。 On the other hand, FIG. 7D shows a case of shifting to the + side in the X direction, and (F) shows a case of shifting to the − side of the X direction. The detector 21 includes three light receiving units, a main light receiving unit 701, a sub detection unit 702, a sub detection unit 703, a sub detection unit 704, and a sub detection unit 705. Further, the interval between the sub detection unit 702 and the sub detection unit 704 is larger than the interval between the sub laser beam 771 and the sub laser beam 772. Similarly, the interval between the sub detection unit 703 and the sub detection unit 705 is also increased.
 ここでは、サブ検出部702とサブ検出部703との和信号と、サブ検出部704とサブ検出部705との和信号との差動信号を用いてガルバノミラー6を制御することが特徴である。以下に安定した信号検出が可能な理由を示す。 Here, the galvanometer mirror 6 is controlled using a differential signal of the sum signal of the sub detection unit 702 and the sub detection unit 703 and the sum signal of the sub detection unit 704 and the sub detection unit 705. . The reason why stable signal detection is possible is shown below.
 図7(A)の場合には、サブ検出部702とサブ検出器703にサブのレーザ光771とが一致しているため、サブ検出部702とサブ検出器703との和信号は、サブ検出部704とサブ検出部705の和信号と比べて大きな信号となる。このため差動信号はプラスになる。それに対し、図7(C)の場合には同様にしてマイナスとなる。このため、(A)の場合には、図2(B)のY方向ミラーをマイナス側に制御し、(C)の場合にはY方向ミラーをプラス側に制御することで、(B)の状態に安定制御することが可能となる。 In the case of FIG. 7A, since the sub laser light 771 matches the sub detector 702 and the sub detector 703, the sum signal of the sub detector 702 and the sub detector 703 is sub-detected. The signal is larger than the sum signal of the unit 704 and the sub-detection unit 705. For this reason, the differential signal becomes positive. On the other hand, in the case of FIG. Therefore, in the case of (A), the Y-direction mirror in FIG. 2B is controlled to the minus side, and in the case of (C), the Y-direction mirror is controlled to the plus side. It becomes possible to stably control the state.
 一方、図7(D)場合には、サブ検出部702とサブ検出器704でサブのレーザ光771およびサブのレーザ光772を検出しているため、サブ検出部702とサブ検出器704との和信号は、サブ検出部703とサブ検出部705の和信号と比べて大きな信号となる。このため差動信号はプラスになる。それに対し、図7(F)の場合には同様にしてマイナスとなる。このため、(D)の場合には、図2(B)のX方向ミラーをマイナス側に制御し、(F)の場合にはX方向ミラーをプラス側に制御することで、(E)の状態に安定制御することが可能となる。次に、検出器20について説明する。 On the other hand, in the case of FIG. 7D, since the sub-detector 702 and the sub-detector 704 detect the sub-laser light 771 and the sub-laser light 772, the sub-detector 702 and the sub-detector 704 The sum signal is a larger signal than the sum signal of the sub detection unit 703 and the sub detection unit 705. For this reason, the differential signal becomes positive. On the other hand, in the case of FIG. For this reason, in the case of (D), the X-direction mirror in FIG. 2B is controlled to the minus side, and in the case of (F), the X-direction mirror is controlled to the plus side. It becomes possible to stably control the state. Next, the detector 20 will be described.
 検出器20はガルバノミラー6を反射したレーザ光を検出する素子として複数の共鳴トンネルダイオードを用いた場合について説明する。レーザ光の偏光方向に指向性を持つ複数の共鳴トンネルダイオードによって入射したレーザ光を検出する場合は、例えば、図5(B)のように領域A505を共鳴トンネルダイオード507と共鳴トンネルダイオード508で構成し、領域B506を共鳴トンネルダイオード509と共鳴トンネルダイオード510で構成し、領域AとBとで90度異なる偏光のレーザ光を検出する。なお、ここではガルバノミラーが図2(B)の構成の場合を示したが、図2(A)で構成した場合も図5(B)と同じで良い。 The case where the detector 20 uses a plurality of resonant tunneling diodes as an element for detecting the laser light reflected from the galvanometer mirror 6 will be described. When detecting incident laser light by a plurality of resonant tunneling diodes having directivity in the polarization direction of the laser light, for example, a region A505 is configured by a resonant tunneling diode 507 and a resonant tunneling diode 508 as shown in FIG. Then, the region B506 is constituted by the resonant tunneling diode 509 and the resonant tunneling diode 510, and the laser beams having polarization different by 90 degrees in the regions A and B are detected. Here, the case where the galvano mirror has the configuration shown in FIG. 2B is shown, but the configuration shown in FIG. 2A may be the same as that shown in FIG.
 本実施例では光軸走査をガルバノミラーで実現しているが、ポリゴンミラーやMEMSミラーのようなものを用いて光軸走査を実現しても良い。また、検出器21の位置センサ20を共鳴トンネルダイオードで実現したが、タンネットダイオード、インパットダイオード、ショットキーバリアダイオード、GaAs系電界効果トランジスタ、GaN系FET、高電子移動度トランジスタ、ヘテロ接合バイポーラトランジスタで実現しても良い。また、ここでは位置センサ20から得られる信号をもとに制御を行ったが、例えば位置ずれ量を予め学習しておき、その学習結果をもとに制御しても良い。
さらに、本実施例はフィルタのPMの捕集分布計測装置の構成例を示したが、例えば紙などシート状の媒体への応用も同様の構成で適用することが可能である。また、発振部3を出射したレーザ光は偏光素子により一定光量比率でS偏光とP偏光をもつレーザ光としたが、発振部3に偏光素子を一体化させても良い。
In this embodiment, the optical axis scanning is realized by a galvanometer mirror, but the optical axis scanning may be realized by using a polygon mirror or a MEMS mirror. Further, although the position sensor 20 of the detector 21 is realized by a resonant tunnel diode, a tannet diode, an impat diode, a Schottky barrier diode, a GaAs field effect transistor, a GaN FET, a high electron mobility transistor, a heterojunction bipolar You may implement | achieve with a transistor. Further, here, the control is performed based on the signal obtained from the position sensor 20, but for example, the positional deviation amount may be learned in advance and the control may be performed based on the learning result.
Furthermore, although the present Example showed the structural example of PM collection distribution measuring device of a filter, the application to sheet-like media, such as paper, can also be applied with the same structure. The laser light emitted from the oscillating unit 3 is a laser beam having S-polarized light and P-polarized light at a constant light quantity ratio by the polarizing element, but the polarizing element may be integrated with the oscillating unit 3.
 図8は本発明の第3の実施例に係るフィルタのPMの捕集分布計測装置の構成を示したものである。本実施例と実施例1と2との違いは、本実施例のPMの捕集分布計測装置は水分の吸収の影響をキャンセルし、フィルタ2に堆積したPM濃度の3次元画像として分布を得ることができる点とPM濃度からガルバノミラーの走査範囲を可変にして3次元分布測定をできる点である。それ以外は実施例1と2と同様であるため本実施例では、実施例1との差分を説明する。また、以下の発振部30を出射したレーザ光は偏光素子により一定光量比率でS偏光とP偏光をもつレーザ光とする。 FIG. 8 shows the configuration of a filter PM collection and distribution measuring apparatus according to a third embodiment of the present invention. The difference between the present embodiment and the first and second embodiments is that the PM collection distribution measuring apparatus of the present embodiment cancels the influence of moisture absorption and obtains a distribution as a three-dimensional image of the PM concentration deposited on the filter 2. The three-dimensional distribution measurement can be performed by changing the scanning range of the galvanometer mirror from the point that can be measured and the PM concentration. Since other than that is the same as that of Example 1 and 2, in a present Example, the difference with Example 1 is demonstrated. The laser light emitted from the following oscillating unit 30 is converted into laser light having S-polarized light and P-polarized light at a constant light quantity ratio by a polarizing element.
 本実施例は、排気ガス用のフィルタ2に配置された第1の発振部31と検出器4、フィルタ2よりも排気下流側に配置された第2の発振部32と検出器33とコントローラ23とからなる。ここで、第1の発振部31から出射したレーザ光の周波数は、例えば、非水素結合物質を透過する周波数であって、排ガス微粒子成分のカーボン成分、有機溶媒成分に吸収され易い周波数、例えば0.3THzから3.0THzのテラヘルツ波帯域を使う。 In this embodiment, the first oscillating unit 31 and the detector 4 disposed in the exhaust gas filter 2, the second oscillating unit 32, the detector 33, and the controller 23 disposed on the exhaust downstream side of the filter 2. It consists of. Here, the frequency of the laser light emitted from the first oscillating unit 31 is, for example, a frequency that passes through the non-hydrogen bonding substance and is easily absorbed by the carbon component and the organic solvent component of the exhaust gas particulate component, for example, 0. Uses a terahertz band from 3 THz to 3.0 THz.
 第2の発振部32と検出器33は発振部32から出射したレーザ光が光検出器33で受光できるように配管に対して対向した位置に配置されている。テラヘルツ波は半導体、セラミック、紙等に対してはある程度透過し、水に対しては吸収し、金属に対しては反射する特性を持つ。配管については発振部から出射したレーザ光がある程度透過するように材料を選定するか、もしくは発振部および光検出器の部分のみレーザ光がある程度透過する材料としておく。 The second oscillating unit 32 and the detector 33 are arranged at positions facing the pipe so that the laser beam emitted from the oscillating unit 32 can be received by the photodetector 33. The terahertz wave has a property of transmitting to some extent to semiconductors, ceramics, paper, etc., absorbing to water, and reflecting to metal. For the piping, a material is selected so that the laser beam emitted from the oscillating portion is transmitted to some extent, or only the portions of the oscillating portion and the photodetector are made to transmit the laser beam to some extent.
 なお、フィルタ2中と下流側でそれぞれのレーザ光の光量を測定するために、例えば発振部30から出射される偏光を持つレーザ光をビームスプリッタ等の分岐素子80により分割する構成としている。また、演算回路81は、検出器4と検出器33との比を演算する。 In addition, in order to measure the light quantity of each laser beam in the filter 2 and downstream, it is set as the structure which divides | segments the laser beam with the polarized light radiate | emitted from the oscillation part 30, for example by the branch elements 80, such as a beam splitter. The arithmetic circuit 81 calculates the ratio between the detector 4 and the detector 33.
 第1の発振部30から出射したレーザ光の光量をI、レーザ光の配管による吸収率をα、水分による吸収率をβ、PMによる吸収率をγ、検出器4が配管を通して受光した受光量をIとすると、Iは配管、水分、PMの吸収による影響を受けるため、
 (数3)I=αβγI
となる。一方、第2の発振部32から出射した光量を第1の発振部31と同じくI0として、フィルタの排気下流側で検出器32が配管を通して受光した受光量をIとすると、Iは配管、水分の吸収による影響を受けるが、PMはほぼ除去されて影響が無いものとして、
 (数4)I=αβI
 となる。したがって、両者を測定し、比率を取ることにより、次式の通りPMによる吸収率を求めることができる。
 (数5)I/I=γ
 PMの吸収率はPMの濃度に比例するため、算出したγよりPM濃度を算出することができる。コントローラ23は発振部および検出器の制御を行う。さらに、演算回路81の演算結果のPM濃度がフィルタの堆積可能なPM量の例えば60%以上を超えた場合には、コントローラ23は分布を測定する範囲を限定したXY座標プロファイルを生成し、そのプロファイルを同期制御部16に送出する。
The amount of laser light emitted from the first oscillating unit 30 is I 0 , the absorption rate of the laser beam by α is α, the absorption rate by moisture is β, the absorption rate by PM is γ, and the light received by the detector 4 through the piping When the amount to I 1, for receiving I 1 piping, water, the effect of absorption of the PM,
(Equation 3) I 1 = αβγI 0
It becomes. On the other hand, if the amount of light emitted from the second oscillating unit 32 is I 0 as in the first oscillating unit 31, and the amount of light received by the detector 32 through the pipe on the exhaust downstream side of the filter is I 2 , I 2 is Although it is affected by piping and moisture absorption, PM is almost removed and has no effect.
(Equation 4) I 2 = αβI 0
It becomes. Therefore, by measuring both and taking the ratio, the absorption rate by PM can be obtained as in the following equation.
(Equation 5) I 1 / I 2 = γ
Since the PM absorption rate is proportional to the PM concentration, the PM concentration can be calculated from the calculated γ. The controller 23 controls the oscillation unit and the detector. Further, when the PM concentration of the calculation result of the calculation circuit 81 exceeds, for example, 60% or more of the PM amount that can be deposited on the filter, the controller 23 generates an XY coordinate profile that limits the range for measuring the distribution, The profile is sent to the synchronization control unit 16.
 本実施例によれば、水分の吸収の影響をキャンセルし、精度良くリアルタイムで排気ガスのフィルタ2中に堆積したPM濃度の3次元画像として分布を得ることができる。また、コントローラ23から同期制御部16に対してXY座標を支持することで局所的なPM濃度の3次元画像分布も取得可能となる。 According to this embodiment, it is possible to cancel the influence of moisture absorption and obtain a distribution as a three-dimensional image of the PM concentration deposited in the exhaust gas filter 2 with high accuracy in real time. In addition, by supporting the XY coordinates from the controller 23 to the synchronization control unit 16, it is also possible to acquire a local three-dimensional image distribution of PM concentration.
 次に図9に本実施例の演算フローを示す。まず,コントローラ23で発振部30から出射されたレーザ光を分岐素子80により2分割し、第1の発振部31と第2の発振部32から光量I0で発光させ,検出器4と検出器32によりそれぞれ受光量I1とI2を測定する(90)。次に数5式からPMの吸収率γをI1とI2の比を演算する(91)。次にPM濃度とPMの吸収率の関係からPM濃度を演算する(92)。次に、フィルタ2の3次元測定が完了していなければ(93)、順次ガルバノミラー5とガルバノミラー6でXY座標を変更してフィルタ2の3次元測定を行う(94)。 Next, FIG. 9 shows a calculation flow of this embodiment. First, the laser beam emitted from the oscillating unit 30 by the controller 23 is divided into two by the branch element 80, and light is emitted from the first oscillating unit 31 and the second oscillating unit 32 with the light quantity I 0 . 32, the received light amounts I 1 and I 2 are measured (90). Next, the PM absorption rate γ is calculated from the equation (5) by calculating the ratio between I 1 and I 2 (91). Next, the PM concentration is calculated from the relationship between the PM concentration and the PM absorption rate (92). Next, if the three-dimensional measurement of the filter 2 is not completed (93), the XY coordinates are sequentially changed by the galvanometer mirror 5 and the galvanometer mirror 6 to perform the three-dimensional measurement of the filter 2 (94).
 一方、フィルタ2の3次元測定が完了していれば(94)、処理(92)で求めたPM濃度と予め決めておいたしきい値、例えば、フィルタ2に累積されたPM濃度がフィルタ2に累積可能な濃度の60%、と比較する(95)。この比較の結果、しきい値以上であれば、測定位置を限定して、次の3次元分布測定を実行する(97)。また、処理(95)でしきい値と比較した結果、しきい値を超える場所がなければフィルタ2の全体の3次元分布測定を行う(96)。 On the other hand, if the three-dimensional measurement of the filter 2 is completed (94), the PM concentration obtained in the process (92) and a predetermined threshold value, for example, the PM concentration accumulated in the filter 2 are stored in the filter 2. Compare to the accumulable concentration of 60% (95). If the result of this comparison is greater than or equal to the threshold value, the measurement position is limited and the next three-dimensional distribution measurement is executed (97). Further, as a result of the comparison with the threshold value in the process (95), if there is no place exceeding the threshold value, the entire three-dimensional distribution of the filter 2 is measured (96).
 さらに、本実施例はフィルタのPMの捕集分布計測装置の構成例を示したが、例えば紙などシート状の媒体への応用も同様の構成で適用することが可能である。また、発振部30を出射したレーザ光は偏光素子により一定光量比率でS偏光とP偏光をもつレーザ光としたが、発振部3に偏光素子を一体化させても良い。 Furthermore, although the present embodiment shows an example of the configuration of a filter PM collection distribution measuring device, application to a sheet-like medium such as paper can also be applied with the same configuration. The laser light emitted from the oscillating unit 30 is a laser beam having S-polarized light and P-polarized light at a constant light quantity ratio by the polarizing element, but the polarizing element may be integrated with the oscillating unit 3.
 図10に本実施例の、シート状試料、たとえばプリンタなどの画像形成装置に使う紙100に含まれる水分布計測装置の構成について説明する。本実施例は実施例1との違いは、発振部3が発する電磁波の周波数は、例えば、非水素結合物質を透過する周波数であって、水分に吸収され易い周波数、例えば0.1THzから3.0THzのテラヘルツ波帯域を使う。テラヘルツ波は半導体、セラミック、紙等に対してはある程度透過し、水に対しては吸収し、金属に対しては反射する特性を持つ。 FIG. 10 illustrates the configuration of a water distribution measuring apparatus included in a sheet-like sample, for example, paper 100 used in an image forming apparatus such as a printer, according to this embodiment. The present embodiment is different from the first embodiment in that the frequency of the electromagnetic wave emitted by the oscillating unit 3 is, for example, a frequency that passes through a non-hydrogen bonding substance and is easily absorbed by moisture, for example, 0.1 THz to 3. A terahertz wave band of 0 THz is used. The terahertz wave has a property of transmitting to some extent to semiconductors, ceramics, paper, etc., absorbing to water, and reflecting to metal.
 図10は本発明の第4の実施例に係る紙100の水分布計測装置の構成を示したものである。本実施例の実施例1との違いは、本実施例の計測系は、発振部3、ガルバノミラー5、スキャナレンズ7、スキャナレンズ8、ガルバノミラー106、検出器4となっている。本実施例ではシート状試料の3次元画像化が行えることが特徴である。また、本実施例で説明するように検出器4でレーザ光の位置ずれを検出することでガルバノミラーの位置を直接検出することが出来る構成であるため、ガルバノミラー106には角度検出器は無いのが特徴である。 FIG. 10 shows the configuration of the water distribution measuring apparatus for paper 100 according to the fourth embodiment of the present invention. The difference between the present embodiment and the first embodiment is that the measurement system of the present embodiment is an oscillation unit 3, a galvanometer mirror 5, a scanner lens 7, a scanner lens 8, a galvanometer mirror 106, and a detector 4. The feature of this embodiment is that three-dimensional imaging of a sheet-like sample can be performed. Further, as described in the present embodiment, since the position of the galvano mirror can be directly detected by detecting the positional deviation of the laser beam by the detector 4, the galvano mirror 106 does not have an angle detector. Is the feature.
 本実施例では、発振部3から出射したレーザ光はガルバノミラー5を反射し、紙100に入射する。紙を透過したレーザ光は、スキャナレンズ7、スキャナレンズ8、ガルバノミラー106を経て、検出器4に入射する。ここで、ガルバノミラー5は、回転駆動アクチュエータ10の回転軸を中心に回転し、角度を変更することができる。回転駆動アクチュエータ10の回転角は、角度検出器9により検出され、その検出された信号は演算回路(A)18へ入力される。 In this embodiment, the laser light emitted from the oscillation unit 3 is reflected by the galvanometer mirror 5 and enters the paper 100. The laser light transmitted through the paper is incident on the detector 4 through the scanner lens 7, the scanner lens 8, and the galvanometer mirror 106. Here, the galvanometer mirror 5 can rotate around the rotation axis of the rotary drive actuator 10 to change the angle. The rotation angle of the rotary drive actuator 10 is detected by the angle detector 9, and the detected signal is input to the arithmetic circuit (A) 18.
 演算回路(A)18は、ガルバノミラー5が所定角度に位置決め制御するために必要な駆動信号を生成し、この制御信号に基づいて制御部(A)11は、回転駆動アクチュエータ10へ駆動制御信号を送出する。例えば演算回路(A)18でガルバノミラー105を所定角度範囲、例えば30degの角度を往復動作するような駆動信号を生成し、制御部(A)11により回転駆動アクチュエータ10を制御することで、レーザ光をスキャン動作することができ、紙100を均一に通過させることができる。このとき、検出器4の信号を検出することで、紙に含まれる水の吸収率を検出することができるので、例えば、プリンタなどで紙に画像を整形する場合に水の変化を観測しながらインクの制御が可能となる。 The arithmetic circuit (A) 18 generates a drive signal necessary for the galvano mirror 5 to perform positioning control at a predetermined angle. Based on this control signal, the control unit (A) 11 sends a drive control signal to the rotary drive actuator 10. Is sent out. For example, the arithmetic circuit (A) 18 generates a drive signal for reciprocating the galvanometer mirror 105 within a predetermined angle range, for example, 30 deg, and the control unit (A) 11 controls the rotary drive actuator 10, so that the laser The light can be scanned, and the paper 100 can pass uniformly. At this time, since the absorption rate of water contained in the paper can be detected by detecting the signal of the detector 4, for example, while observing a change in water when shaping an image on paper with a printer or the like. Ink can be controlled.
 さらに、本実施例では、紙100を透過したレーザ光はスキャナレンズ8、ガルバノミラー106を経て検出器4に入射しているが、半導体素子を用いた検出器では位置ずれ等が課題となる。このため、例えば半導体素子への入射角度に応じて光量低下分を学習し、それを用いて補正しても良い。この補正光学制御手段について以下に説明する。前記検出器4での位置ずれを補正するために、ガルバノミラー106は、回転駆動アクチュエータ13の回転軸を中心に回転し、角度を変更することができる。光軸位置ずれ補正のために検出器4に設けた位置センサ15により光軸のずれ角を検出する機構を設けて、位置ずれ信号生成回路17にて生成された光軸位置ずれ補償用の信号と同期制御部16から送出されるガルバノミラー106の位置プロファイルとを演算回路(B)19に入力される。演算回路(B)19は、ガルバノミラー106を回転位置制御にて、所定位置に制御するために必要な駆動信号を生成し、この制御信号に基づいて制御部(B)14は回転駆動アクチュエータ13へ駆動制御信号を送出する。このような補正光学制御手段について、光軸位置補正動作することで検出器4の所定位置に光軸を制御することができる。 Furthermore, in this embodiment, the laser beam that has passed through the paper 100 is incident on the detector 4 via the scanner lens 8 and the galvanometer mirror 106. However, in a detector using a semiconductor element, misalignment or the like becomes a problem. For this reason, for example, the amount of light reduction may be learned in accordance with the incident angle to the semiconductor element and corrected using the learned amount. This correction optical control means will be described below. In order to correct the misalignment at the detector 4, the galvanometer mirror 106 can rotate around the rotation axis of the rotary drive actuator 13 to change the angle. A signal for detecting the optical axis deviation angle is provided by the position sensor 15 provided in the detector 4 for optical axis positional deviation correction, and the optical axis positional deviation compensation signal generated by the positional deviation signal generation circuit 17 is provided. And the position profile of the galvanometer mirror 106 sent from the synchronization control unit 16 are input to the arithmetic circuit (B) 19. The arithmetic circuit (B) 19 generates a drive signal necessary for controlling the galvanometer mirror 106 to a predetermined position by the rotational position control, and the control unit (B) 14 based on the control signal causes the rotational drive actuator 13 to operate. A drive control signal is sent to. With such correction optical control means, the optical axis can be controlled to a predetermined position of the detector 4 by performing an optical axis position correction operation.
 ここで、ガルバノミラー106は、ガルバノミラー5に対して連携同期した駆動が必要である。そこで同期制御部16は、演算回路(A)18へガルバノミラー5の位置プロファイルを送出し、ガルバノミラー105の位置情報を角度検出器9から演算回路(A)18を通じて受信する、一方同期制御部16は、演算回路(B)19へガルバノミラー106の位置プロファイルを送出して、ガルバノミラー5と106は同期したスキャン動作を実現する。ここで、例えば位置ずれ信号生成回路17は、ガルバノミラー106を所定角度範囲、例えば静定角度幅が±1mdeg以内に制御されていることを示す信号を、同期制御部16に送出することで同期制御を実現する。次にガルバノミラー106について説明する。なお、ガルバノミラー5の構成は、実施例1で説明した図2と同様である。 Here, the galvano mirror 106 needs to be driven in synchronism with the galvano mirror 5. Therefore, the synchronization control unit 16 sends the position profile of the galvano mirror 5 to the arithmetic circuit (A) 18 and receives the position information of the galvano mirror 105 from the angle detector 9 through the arithmetic circuit (A) 18. 16 sends the position profile of the galvanometer mirror 106 to the arithmetic circuit (B) 19, and the galvanometer mirrors 5 and 106 realize a synchronized scanning operation. Here, for example, the misalignment signal generation circuit 17 synchronizes the galvano mirror 106 by sending a signal indicating that the galvano mirror 106 is controlled within a predetermined angle range, for example, a static angle width within ± 1 mdeg, to the synchronization control unit 16. Realize control. Next, the galvanometer mirror 106 will be described. The configuration of the galvanometer mirror 5 is the same as that of FIG. 2 described in the first embodiment.
 図11(A)はX方向に光軸を走査する場合、(B)はX方向とY方向に光軸を走査する場合のガルバノミラー106の構成である。図2と図11との違いは角度検出器の有無で有り、図11では角度検出器の機能は検出器4が担う。例えば、図2(A)と図11(A)のガルバノミラーの構成では、光軸はX方向の1軸のスキャン動作によりフィルタ2の断面の2次元画像を得ることができる。一方、図2(B)と図11(A)のガルバノミラーの構成では、軸をX方向とY方向の2軸のスキャン動作により紙100の3次元画像を得ることができる。さらに、位置センサ15から得られるレーザ光の位置ずれに応じてガルバノミラー106の位置ずれを補償することができる。次に位置センサ15について説明する。 11A shows the configuration of the galvanometer mirror 106 when the optical axis is scanned in the X direction, and FIG. 11B shows the configuration of the galvanometer mirror 106 when the optical axis is scanned in the X direction and the Y direction. The difference between FIG. 2 and FIG. 11 is the presence or absence of an angle detector. In FIG. 11, the detector 4 functions as the function of the angle detector. For example, in the configuration of the galvanometer mirror in FIGS. 2A and 11A, a two-dimensional image of the cross section of the filter 2 can be obtained by a single-axis scanning operation in the X direction. On the other hand, in the configuration of the galvanometer mirror shown in FIGS. 2B and 11A, a three-dimensional image of the paper 100 can be obtained by a two-axis scanning operation with the axes in the X direction and the Y direction. Further, the positional deviation of the galvano mirror 106 can be compensated according to the positional deviation of the laser light obtained from the position sensor 15. Next, the position sensor 15 will be described.
 ガルバノミラー106を反射したレーザ光300は、検出器4に入射する。ガルバノミラーを図11(B)のように構成した場合に、レーザ光300の位置は、例えば図3のように位置センサ15の受光部を構成すればX方向とY方向の位置を検出できる。図11(A)は、図11(B)をX方向に限定した場合であるため説明は省略する。X方向の位置誤差信号Sx、Y方向の位置誤差信号Syは、実施例1と同様に(数1)、(数2)で得られる。 The laser beam 300 reflected from the galvanometer mirror 106 is incident on the detector 4. When the galvanometer mirror is configured as shown in FIG. 11B, the position of the laser beam 300 can be detected in the X and Y directions if the light receiving portion of the position sensor 15 is configured as shown in FIG. FIG. 11A illustrates a case where FIG. 11B is limited to the X direction, and thus description thereof is omitted. The position error signal Sx in the X direction and the position error signal Sy in the Y direction are obtained by (Equation 1) and (Equation 2) as in the first embodiment.
 上記の位置誤差信号の演算は例えば位置ずれ信号生成回路17で行い、この算出した各位置誤差信号が零となるように回転駆動アクチュエータ13を、例えば制御部(B)14により駆動することで、ガルバノミラー106の角度位置決め行うことを特徴としている。このようにすることで、回転駆動アクチュエータ13の回転角の位置静定判定は、位置誤差信号により行いガルバノミラーの位置を直接制御する。以下に安定した信号検出が可能な理由を示す。 The calculation of the position error signal is performed by, for example, the position shift signal generation circuit 17, and the rotation drive actuator 13 is driven by, for example, the control unit (B) 14 so that each calculated position error signal becomes zero. The galvano mirror 106 is positioned at an angle. By doing so, the position stabilization determination of the rotation angle of the rotary drive actuator 13 is performed by the position error signal, and the position of the galvano mirror is directly controlled. The reason why stable signal detection is possible is shown below.
 図3(A)の場合には、受光部301と受光部303に対して受光部302と受光部304の信号が小さい信号となる。このためSyの信号はプラスになる。それに対し、図3(C)の場合には同様にしてマイナスとなる。このため、図3(A)の場合には、図11(B)の回転駆動アクチュエータYをマイナス側に制御し、図3(C)の場合にはプラス側に制御することで、図3(B)の状態に安定制御することが可能となる。 In the case of FIG. 3A, the signals of the light receiving unit 302 and the light receiving unit 304 are smaller than the light receiving unit 301 and the light receiving unit 303. For this reason, the signal of Sy becomes positive. On the other hand, in the case of FIG. Therefore, in the case of FIG. 3A, the rotational drive actuator Y of FIG. 11B is controlled to the minus side, and in the case of FIG. It becomes possible to stably control to the state of B).
 一方、図3(D)の場合には、受光部303と受光部304に対して受光部301と受光部302の信号が小さい信号となる。このためSxの信号はマイナスになる。それに対し、図3(F)の場合には同様にしてプラスとなる。このため、図3(D)の場合には、図11(B)の回転駆動アクチュエータXをプラス側に制御し、図3(F)の場合にはマイナス側に制御することで、図3(E)の状態に安定制御することが可能となる。 On the other hand, in the case of FIG. 3D, the signals of the light receiving unit 301 and the light receiving unit 302 are smaller than the light receiving unit 303 and the light receiving unit 304. For this reason, the signal of Sx becomes negative. On the other hand, in the case of FIG. Therefore, in the case of FIG. 3D, the rotational drive actuator X of FIG. 11B is controlled to the plus side, and in the case of FIG. It becomes possible to stably control to the state of E).
 本実施例では、ガルバノミラー106のみ角度検出器が無い構成を説明した。ここで、検出器4で検出した位置ずれ信号はガルバノミラー106とガルバノミラー5の相対的な角度ずれを位置ずれとして検出しているため、例えばガルバノミラー5の角度検出器を無くし、位置ずれ信号でガルバノミラー5とガルバノミラー106の相対的な位置ずれを補償することも可能であり、ガルバノミラー5は角度検出器を持たなくても良い。その際の構成は、ガルバノミラー106と同様の図11に示す構成である。 In the present embodiment, the configuration in which only the galvanometer mirror 106 has no angle detector has been described. Here, since the positional deviation signal detected by the detector 4 detects the relative angular deviation between the galvano mirror 106 and the galvano mirror 5 as a positional deviation, for example, the angular detector of the galvano mirror 5 is eliminated and the positional deviation signal is detected. Thus, it is possible to compensate for the relative displacement between the galvanometer mirror 5 and the galvanometer mirror 106, and the galvanometer mirror 5 may not have an angle detector. The configuration at that time is the same as that shown in FIG.
 なお、本実施例では光軸走査をガルバノミラーで実現しているが、ポリゴンミラーやMEMSミラーのようなものを用いて光軸走査を実現しても良い。また、検出器4の受光部を共鳴トンネルダイオードで実現したが、タンネットダイオード、インパットダイオード、ショットキーバリアダイオード、GaAs系電界効果トランジスタ、GaN系FET、高電子移動度トランジスタ、ヘテロ接合バイポーラトランジスタで実現しても良い。また、ここでは検出器4の信号をもとに制御を行ったが、例えば位置ずれ量を予め学習しておき、その学習結果をもとに制御しても良い。 In this embodiment, the optical axis scanning is realized by a galvanometer mirror, but the optical axis scanning may be realized by using a polygon mirror or a MEMS mirror. In addition, although the light receiving portion of the detector 4 is realized by a resonant tunnel diode, a tannet diode, an impatt diode, a Schottky barrier diode, a GaAs field effect transistor, a GaN FET, a high electron mobility transistor, a heterojunction bipolar transistor It may be realized with. Further, here, the control is performed based on the signal of the detector 4, but the positional deviation amount may be learned in advance and the control may be performed based on the learning result.
 さらに、本実施例は紙などシート状の媒体への応用に適用したが、これに限定されるものではない。また、発振部3を出射したレーザ光は偏光素子により一定光量比率でS偏光とP偏光をもつレーザ光としたが、発振部3に偏光素子を一体化させても良い。 Furthermore, although this embodiment is applied to application to a sheet-like medium such as paper, it is not limited to this. The laser light emitted from the oscillating unit 3 is a laser beam having S-polarized light and P-polarized light at a constant light quantity ratio by the polarizing element, but the polarizing element may be integrated with the oscillating unit 3.
 本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。変形例としては例えば、下記の例がある。 The present invention is not limited to the above-described embodiments, and includes various modifications. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment. For example, there are the following examples.
 変形例1として、第1のレーザ光を発生させる第1の発振部と、前記第1のレーザ光を検出する第1の検出部と、対向して配置される第1のレンズ及び第2のレンズと、前記第1の発振部と前記第1のレンズとの間に位置する前記第1のレーザ光の光軸を走査する第1の光軸走査部と、前記第2のレンズと前記第1の検出器との間に位置する前記第1のレーザ光の光軸を走査する第2の光軸走査部と、前記第1の光軸走査部を制御する第1の制御部と、前記第2の光軸走査部を制御する第2の制御部と、第1の制御部と第2の制御部への制御情報を与える走査指示部と、を備え、前記第1の検出部は、前記第1のレーザ光を前記第1の光軸走査部、前記第1のレンズ、前記第2のレンズ、前記第2の光軸走査部を介して検出し、前記第2の制御部は、前記走査指示部から前記第1の光軸制御部への前記制御情報と前記第1の検出部の検出信号とに基づいて制御される、レーザ光位置制御装置。 As a first modification, a first oscillation unit that generates a first laser beam, a first detection unit that detects the first laser beam, a first lens and a second lens that are arranged to face each other A first optical axis scanning unit that scans an optical axis of the first laser beam positioned between the lens, the first oscillation unit, and the first lens, the second lens, and the first lens A second optical axis scanning unit that scans the optical axis of the first laser beam located between the first detector, a first control unit that controls the first optical axis scanning unit, and A second control unit that controls the second optical axis scanning unit, a first control unit, and a scanning instruction unit that provides control information to the second control unit, wherein the first detection unit includes: The first laser beam is detected through the first optical axis scanning unit, the first lens, the second lens, and the second optical axis scanning unit, and the second optical axis scanning unit Control unit, said scanning from said instruction unit first is controlled based on a detection signal of the control information and the first detection portion in the optical axis control unit, the laser beam position controller.
 変形例2として、変形例1に記載のレーザ光位置制御装置であって、前記第1のレーザ光の位置のずれを複数センサで検出する前記第1の検出部と、前記第1の検出部から出力されるそれぞれの信号を演算して、前記レーザ光の位置のずれ信号を生成する演算回路と、を備え、前記第1の制御部は、前記演算回路で生成された位置ずれ信号をもとに制御される、レーザ光位置制御装置。 As a second modification, the laser beam position control device according to the first modification, wherein the first detection unit detects a positional deviation of the first laser beam with a plurality of sensors, and the first detection unit. And an arithmetic circuit for calculating a position shift signal of the laser beam by calculating each of the signals output from the first control unit, wherein the first control unit includes the position shift signal generated by the arithmetic circuit. A laser beam position control device controlled by
 変形例3として、変形例2に記載のレーザ光位置制御装置であって、前記第1のレーザ光を発生させる前記第1の発振部と、レーザ光の偏光を調整する偏光可変素子と、2つ以上のセンサから構成される複数センサ部と少なくとも1つから構成されるセンサ部とを有する前記第1の検出部と、前記複数センサ部から出力されるそれぞれの信号を演算して、前記レーザ光の位置のずれ信号を生成する演算回路と、を備え、前記複数センサの互いに隣り合うセンサは前記第1のレーザ光の互いに受光偏光角が異なる配置とし、前記複数センサから出力されるそれぞれの信号から前記演算回路で生成される位置ずれ信号をもとに前記第2の光軸走査部を制御される、レーザ光位置制御装置。 Modification 3 is the laser beam position control apparatus according to Modification 2, in which the first oscillation unit that generates the first laser beam, the polarization variable element that adjusts the polarization of the laser beam, and 2 The first detection unit having a plurality of sensor units composed of one or more sensors and a sensor unit composed of at least one sensor, and each of the signals output from the plurality of sensor units is calculated, and the laser An arithmetic circuit that generates a positional deviation signal of the light, wherein the sensors adjacent to each other of the plurality of sensors are arranged so that the light receiving polarization angles of the first laser beams are different from each other, and are output from the plurality of sensors. A laser beam position control device in which the second optical axis scanning unit is controlled based on a position shift signal generated from the signal by the arithmetic circuit.
 変形例4として、レーザ光を発生させる発振部と、レーザ光の偏光を調整する偏光可変素子と、2つ以上の複数センサで前記レーザ光を検出する検出部と、前記レーザ光の光軸を走査する光軸走査部と、前記光軸走査部を制御する制御部と、を備え、前記複数センサの互いに隣り合うセンサは前記レーザ光の互いに受光偏光角が異なる配置とし、前記複数センサ部から出力されるそれぞれの信号をもとに前記光軸制御部を制御されることを特徴とする、レーザ光位置制御装置。 As a fourth modification, an oscillation unit that generates laser light, a polarization variable element that adjusts polarization of the laser light, a detection unit that detects the laser light with two or more sensors, and an optical axis of the laser light An optical axis scanning unit that scans, and a control unit that controls the optical axis scanning unit, wherein the sensors adjacent to each other of the plurality of sensors are arranged such that the light receiving polarization angles of the laser beams are different from each other, The laser beam position control device, wherein the optical axis control unit is controlled based on each output signal.
 変形例5として、変形例2に記載のレーザ光位置制御装置であって、第2のレーザ光を発生させる第2の発振部と、第2のレーザ光を検出する第2の検出部と、第1のレーザ光を前記第1の検出部で検出して得られる信号と、第2のレーザ光を前記第2の検出部で検出して得られる信号との比で前記第1の検出部の信号強度を求める演算部と、を備え、前記演算部の信号強度に基づいて前記第1の制御部と前記第2の制御部による光軸を走査する範囲を変更する、ことを特徴とするレーザ光位置走査装置。 As a modified example 5, the laser beam position control device according to the modified example 2, wherein the second oscillation unit that generates the second laser beam, the second detection unit that detects the second laser beam, The first detection unit is a ratio of a signal obtained by detecting the first laser beam by the first detection unit and a signal obtained by detecting the second laser beam by the second detection unit. And a calculation unit for obtaining the signal intensity of the first and second components, and a range in which the optical axis is scanned by the first control unit and the second control unit is changed based on the signal intensity of the calculation unit. Laser beam position scanning device.
 変形例6として、変形例5に記載のレーザ光位置走査装置であって、前記第1のレーザ光を分岐する分岐素子と、を備え、前記分岐素子により分岐された前記第1のレーザ光を前記第2の発振部として用い、前記演算部の信号強度に基づいて前記第1の制御部と前記第2の制御部による光軸を走査する範囲を変更する、ことを特徴とするレーザ光位置走査装置。 As a sixth modification, the laser beam position scanning device according to the fifth modification includes a branch element that branches the first laser light, and the first laser light branched by the branch element is used. A laser beam position that is used as the second oscillating unit, and that changes a range in which the optical axis is scanned by the first control unit and the second control unit based on the signal intensity of the arithmetic unit. Scanning device.
 また、上記の各構成、機能、処理部、処理手段等は、それらの一部又は全部を、例えば集積回路で設計する等によりハードウェアで実現してもよい。また、上記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリや、ハードディスク、SSD(Solid State Drive)等の記録装置、または、ICカード、SDカード、DVD等の記録媒体に置くことができる。 In addition, each of the above-described configurations, functions, processing units, processing means, and the like may be realized by hardware by designing a part or all of them with, for example, an integrated circuit. Each of the above-described configurations, functions, and the like may be realized by software by interpreting and executing a program that realizes each function by the processor. Information such as programs, tables, and files for realizing each function can be stored in a recording device such as a memory, a hard disk, or an SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, or a DVD.
1・・・エンジン廃棄管
2・・・フィルタ
3・・・発振部、
4・・・検出器、
5・・・ガルバノミラー、
6・・・ガルバノミラー、
7・・・スキャナレンズ、
8・・・スキャナレンズ、
9・・・角度検出器、
10・・・回転駆動アクチュエータ、
12・・・角度検出器、
13・・・回転駆動アクチュエータ、
15・・・位置センサ、
22・・・分岐素子
23・・・コントローラ、
DESCRIPTION OF SYMBOLS 1 ... Engine waste pipe 2 ... Filter 3 ... Oscillation part,
4 ... Detector,
5 ... Galvano mirror,
6 ... Galvano mirror,
7 ... Scanner lens,
8 ... Scanner lens,
9: Angle detector,
10: Rotation drive actuator,
12 ... An angle detector,
13 ... Rotation drive actuator,
15 ... Position sensor,
22 ... Branch element 23 ... Controller,

Claims (13)

  1.  第1のレーザ光を発生させる第1の発振部と、
     前記第1のレーザ光を検出する第1の検出部と、
     対向して配置される第1のレンズ及び第2のレンズと、
     前記第1の発振部と前記第1のレンズとの間に位置する前記第1のレーザ光の光軸を走査する第1の光軸走査部と、
     前記第2のレンズと前記第1の検出器との間に位置する前記第1のレーザ光の光軸を走査する第2の光軸走査部と、
     前記第1の光軸走査部を制御する第1の制御部と、
     前記第2の光軸走査部を制御する第2の制御部と、
     第1の制御部と第2の制御部への制御情報を与える走査指示部と、を備え、
     前記第1の検出部は、前記第1のレーザ光を前記第1の光軸走査部、前記第1のレンズ、前記第2のレンズ、前記第2の光軸走査部を介して検出し、
     前記第2の制御部は、前記走査指示部から前記第1の光軸走査部への前記制御情報と前記第1の検出部の検出信号とに基づいて前記第2の光軸走査部を制御する、レーザ光位置制御装置。
    A first oscillation unit for generating a first laser beam;
    A first detector for detecting the first laser beam;
    A first lens and a second lens arranged opposite to each other;
    A first optical axis scanning unit that scans an optical axis of the first laser beam located between the first oscillation unit and the first lens;
    A second optical axis scanning unit that scans an optical axis of the first laser beam located between the second lens and the first detector;
    A first control unit for controlling the first optical axis scanning unit;
    A second control unit for controlling the second optical axis scanning unit;
    A scanning instruction unit that gives control information to the first control unit and the second control unit,
    The first detection unit detects the first laser beam via the first optical axis scanning unit, the first lens, the second lens, and the second optical axis scanning unit,
    The second control unit controls the second optical axis scanning unit based on the control information from the scanning instruction unit to the first optical axis scanning unit and a detection signal of the first detection unit. A laser beam position control device.
  2.  請求項1に記載のレーザ光位置制御装置であって、
     前記第1の検出部から出力される信号を演算して、前記レーザ光の位置ずれ信号を生成する演算回路と、を備え、
     前記第1の検出部は、前記第1のレーザ光の位置ずれを検出する複数のセンサを有し、
     前記演算回路は、前記複数センサで検出されたそれぞれの信号を演算して前記位置ずれ信号を生成し、
     前記第1の制御部は、前記演算回路で生成された位置ずれ信号をもとに前記第1の光軸走査部を制御する、レーザ光位置制御装置。
    The laser beam position control device according to claim 1,
    A calculation circuit that calculates a signal output from the first detection unit and generates a positional deviation signal of the laser beam, and
    The first detection unit includes a plurality of sensors that detect a positional shift of the first laser beam,
    The arithmetic circuit calculates each signal detected by the plurality of sensors to generate the positional deviation signal,
    The laser beam position control device, wherein the first control unit controls the first optical axis scanning unit based on a positional shift signal generated by the arithmetic circuit.
  3.  請求項2に記載のレーザ光位置制御装置であって、
     レーザ光の偏光を調整する偏光可変素子と、
    を備え、
     前記第1の検出部は、2つ以上のセンサから構成される複数センサ部と、1つのセンサから構成されるセンサ部とを有し、
     前記複数センサ部の互いに隣り合うセンサは、前記偏光可変素子を介して入射する前記第1のレーザ光の受光偏光角がそれぞれ異なるように配置され、
     前記第2の制御部は、前記複数センサ部で検出したそれぞれの信号を前記演算回路で演算して生成した前記位置ずれ信号とに基づいて前記第2の光軸走査部を制御する、レーザ光位置制御装置。
    The laser beam position control device according to claim 2,
    A polarization variable element for adjusting the polarization of the laser light;
    With
    The first detection unit has a plurality of sensor units composed of two or more sensors and a sensor unit composed of one sensor,
    The sensors adjacent to each other of the plurality of sensor units are arranged such that the light receiving polarization angles of the first laser light incident via the polarization variable element are different from each other,
    The second control unit controls the second optical axis scanning unit based on the positional deviation signal generated by calculating each signal detected by the plurality of sensor units by the arithmetic circuit. Position control device.
  4.  請求項2に記載のレーザ光位置制御装置であって、
     第2のレーザ光を発生させる第2の発振部と、
     前記第2のレーザ光を検出する第2の検出部と、
     前記演算回路は、第1のレーザ光を前記第1の検出部で検出して得られる信号と、第2のレーザ光を前記第2の検出部で検出して得られる信号との比で前記第1の検出部の信号強度を求め、
     前記第1の制御部と前記第2の制御部は、前記演算回路で求めた信号強度に基づいて前記第1の光軸走査部と前記第2の光軸走査部により光軸を走査する範囲を変更する、ことを特徴とするレーザ光位置制御装置。
    The laser beam position control device according to claim 2,
    A second oscillation unit for generating a second laser beam;
    A second detector for detecting the second laser beam;
    The arithmetic circuit has a ratio of a signal obtained by detecting the first laser beam by the first detector and a signal obtained by detecting the second laser beam by the second detector. Determining the signal strength of the first detector;
    The first control unit and the second control unit are configured to scan the optical axis by the first optical axis scanning unit and the second optical axis scanning unit based on the signal intensity obtained by the arithmetic circuit. The laser beam position control device characterized by changing the above.
  5.  請求項2に記載のレーザ光位置制御装置であって、
     前記第1のレーザ光を分岐して第2のレーザ光を発生させる分岐素子と、
     前記第2のレーザ光を検出する第2の検出部と、
    を備え、
     前記演算回路は、第1のレーザ光を前記第1の検出部で検出して得られる信号と、第2のレーザ光を前記第2の検出部で検出して得られる信号との比で前記第1の検出部の信号強度を求め、
     前記第1の制御部と前記第2の制御部は、前記演算回路で求めた信号強度に基づいて前記第1の光軸走査部と前記第2の光軸走査部により光軸を走査する範囲を変更する、ことを特徴とするレーザ光位置制御装置。
    The laser beam position control device according to claim 2,
    A branch element for branching the first laser beam to generate a second laser beam;
    A second detector for detecting the second laser beam;
    With
    The arithmetic circuit has a ratio of a signal obtained by detecting the first laser beam by the first detector and a signal obtained by detecting the second laser beam by the second detector. Determining the signal strength of the first detector;
    The first control unit and the second control unit are configured to scan the optical axis by the first optical axis scanning unit and the second optical axis scanning unit based on the signal intensity obtained by the arithmetic circuit. The laser beam position control device characterized by changing the above.
  6.  レーザ光を発生させる発振部と、
     前記レーザ光の偏光を調整する偏光可変素子と、
     2つ以上の複数センサで前記レーザ光を検出する検出部と、
     前記レーザ光の光軸を走査する光軸走査部と、
     前記光軸走査部を制御する制御部と、を備え、
     前記複数センサの互いに隣り合うセンサは前記偏光可変素子を介して入射する前記レーザ光の受光偏光角がそれぞれ異なるように配置され、
     前記制御部は、前記複数センサから出力されるそれぞれの信号をもとに前記光軸制御部を制御することを特徴とする、レーザ光位置制御装置。
    An oscillation unit for generating laser light;
    A polarization variable element for adjusting the polarization of the laser light;
    A detection unit for detecting the laser beam with two or more plural sensors;
    An optical axis scanning unit that scans the optical axis of the laser beam;
    A control unit for controlling the optical axis scanning unit,
    The sensors adjacent to each other of the plurality of sensors are arranged so that the light receiving polarization angles of the laser light incident via the polarization variable element are different from each other,
    The said control part controls the said optical axis control part based on each signal output from the said several sensor, The laser beam position control apparatus characterized by the above-mentioned.
  7.  被検査対象物にレーザ光を照射して計測を行う計測装置であって、
     第1のレーザ光を発生させる第1の発振部と、
     前記第1のレーザ光を検出する第1の検出部と、
     対向して配置される第1のレンズ及び第2のレンズと、
     前記第1の発振部と前記第1のレンズとの間に位置する前記第1のレーザ光の光軸を走査する第1の光軸走査部と、
     前記第2のレンズと前記第1の検出器との間に位置する前記第1のレーザ光の光軸を走査する第2の光軸走査部と、
     前記第1の光軸走査部を制御する第1の制御部と、
     前記第2の光軸走査部を制御する第2の制御部と、
     第1の制御部と第2の制御部への制御情報を与える走査指示部と、を備え、
     前記第1の検出部は、前記第1のレーザ光を前記第1の光軸走査部、前記第1のレンズ、前記第2のレンズ、前記第2の光軸走査部を介して検出し、
     前記第2の制御部は、前記走査指示部から前記第1の光軸走査部への前記制御情報と前記第1の検出部の検出信号とに基づいて前記第2の光軸走査部を制御する、
    ことで計測を行う計測装置。
    A measuring device that performs measurement by irradiating an object to be inspected with laser light,
    A first oscillation unit for generating a first laser beam;
    A first detector for detecting the first laser beam;
    A first lens and a second lens arranged opposite to each other;
    A first optical axis scanning unit that scans an optical axis of the first laser beam located between the first oscillation unit and the first lens;
    A second optical axis scanning unit that scans an optical axis of the first laser beam located between the second lens and the first detector;
    A first control unit for controlling the first optical axis scanning unit;
    A second control unit for controlling the second optical axis scanning unit;
    A scanning instruction unit that gives control information to the first control unit and the second control unit,
    The first detection unit detects the first laser beam via the first optical axis scanning unit, the first lens, the second lens, and the second optical axis scanning unit,
    The second control unit controls the second optical axis scanning unit based on the control information from the scanning instruction unit to the first optical axis scanning unit and a detection signal of the first detection unit. To
    A measuring device that performs measurements.
  8.  請求項7に記載の計測装置であって、
     前記第1の検出部から出力される信号を演算して、前記レーザ光の位置ずれ信号を生成する演算回路と、を備え、
     前記第1の検出部は、前記第1のレーザ光の位置ずれを検出する複数のセンサを有し、
     前記演算回路は、前記複数センサで検出されたそれぞれの信号を演算して前記位置ずれ信号を生成し、
     前記第1の制御部は、前記演算回路で生成された位置ずれ信号をもとに前記第1の光軸走査部を制御する、ことで計測を行う計測装置。
    It is a measuring device of Claim 7, Comprising:
    A calculation circuit that calculates a signal output from the first detection unit and generates a positional deviation signal of the laser beam, and
    The first detection unit includes a plurality of sensors that detect a positional shift of the first laser beam,
    The arithmetic circuit calculates each signal detected by the plurality of sensors to generate the positional deviation signal,
    The first control unit is a measurement device that performs measurement by controlling the first optical axis scanning unit based on a positional deviation signal generated by the arithmetic circuit.
  9.  請求項8に記載の計測装置であって、
     レーザ光の偏光を調整する偏光可変素子と、
    を備え、
     前記第1の検出部は、2つ以上のセンサから構成される複数センサ部と、1つのセンサから構成されるセンサ部とを有し、
     前記複数センサ部の互いに隣り合うセンサは、前記偏光可変素子を介して入射する前記第1のレーザ光の受光偏光角がそれぞれ異なるように配置され、
     前記第2の制御部は、前記複数センサ部で検出したそれぞれの信号を前記演算回路で演算して生成した前記位置ずれ信号とに基づいて前記第2の光軸走査部を制御する、ことで計測を行う計測装置。
    It is a measuring device of Claim 8, Comprising:
    A polarization variable element for adjusting the polarization of the laser light;
    With
    The first detection unit has a plurality of sensor units composed of two or more sensors and a sensor unit composed of one sensor,
    The sensors adjacent to each other of the plurality of sensor units are arranged such that the light receiving polarization angles of the first laser light incident via the polarization variable element are different from each other,
    The second control unit controls the second optical axis scanning unit based on the positional deviation signal generated by calculating each signal detected by the plurality of sensor units by the arithmetic circuit. A measuring device that performs measurements.
  10.  請求項8に記載の計測装置であって、
     第2のレーザ光を発生させる第2の発振部と、
     前記第2のレーザ光を検出する第2の検出部と、
     前記演算回路は、第1のレーザ光を前記第1の検出部で検出して得られる信号と、第2のレーザ光を前記第2の検出部で検出して得られる信号との比で前記第1の検出部の信号強度を求め、
     前記第1の制御部と前記第2の制御部は、前記演算回路で求めた信号強度に基づいて前記第1の光軸走査部と前記第2の光軸走査部により光軸を走査する範囲を変更する、ことを特徴とする、ことで計測を行う計測装置。
    It is a measuring device of Claim 8, Comprising:
    A second oscillation unit for generating a second laser beam;
    A second detector for detecting the second laser beam;
    The arithmetic circuit has a ratio of a signal obtained by detecting the first laser beam by the first detector and a signal obtained by detecting the second laser beam by the second detector. Determining the signal strength of the first detector;
    The first control unit and the second control unit are configured to scan the optical axis by the first optical axis scanning unit and the second optical axis scanning unit based on the signal intensity obtained by the arithmetic circuit. A measuring device that performs measurement by changing.
  11.  請求項8に記載の計測装置であって、
     前記第1のレーザ光を分岐して第2のレーザ光を発生させる分岐素子と、
     前記第2のレーザ光を検出する第2の検出部と、
    を備え、
     前記演算回路は、第1のレーザ光を前記第1の検出部で検出して得られる信号と、第2のレーザ光を前記第2の検出部で検出して得られる信号との比で前記第1の検出部の信号強度を求め、
     前記第1の制御部と前記第2の制御部は、前記演算回路で求めた信号強度に基づいて前記第1の光軸走査部と前記第2の光軸走査部により光軸を走査する範囲を変更する、ことを特徴とする、ことで計測を行う計測装置。
    It is a measuring device of Claim 8, Comprising:
    A branch element for branching the first laser beam to generate a second laser beam;
    A second detector for detecting the second laser beam;
    With
    The arithmetic circuit has a ratio of a signal obtained by detecting the first laser beam by the first detector and a signal obtained by detecting the second laser beam by the second detector. Determining the signal strength of the first detector;
    The first control unit and the second control unit are configured to scan the optical axis by the first optical axis scanning unit and the second optical axis scanning unit based on the signal intensity obtained by the arithmetic circuit. A measuring device that performs measurement by changing.
  12.  レーザ光を発生させる発振部と、
     前記レーザ光の偏光を調整する偏光可変素子と、
     2つ以上の複数センサで前記レーザ光を検出する検出部と、
     前記レーザ光の光軸を走査する光軸走査部と、
     前記光軸走査部を制御する制御部と、を備え、
     前記複数センサの互いに隣り合うセンサは前記偏光可変素子を介して入射する前記レーザ光の受光偏光角がそれぞれ異なるように配置され、
     前記制御部は、前記複数センサから出力されるそれぞれの信号をもとに前記光軸制御部を制御することを特徴とする、ことで計測を行う計測装置。
    An oscillation unit for generating laser light;
    A polarization variable element for adjusting the polarization of the laser light;
    A detection unit for detecting the laser beam with two or more plural sensors;
    An optical axis scanning unit that scans the optical axis of the laser beam;
    A control unit for controlling the optical axis scanning unit,
    The sensors adjacent to each other of the plurality of sensors are arranged so that the light receiving polarization angles of the laser light incident via the polarization variable element are different from each other,
    The said control part controls the said optical axis control part based on each signal output from the said several sensor, The measuring device which measures by this is characterized by the above-mentioned.
  13.  請求項2記載のレーザ光位置制御装置であって、
     前記第1と前記第2の光軸走査部はガルバノミラーであり、
     前記第1と前記第2の制御部は、前記光軸走査部を駆動する回転駆動アクチュエータであり、
     前記回転駆動アクチュエータは、前記第1の検出部が検出信号に基づいて、前記ガルバノミラーを駆動することを特徴とするレーザ光位置制御装置。
    The laser beam position control device according to claim 2,
    The first and second optical axis scanning units are galvanometer mirrors,
    The first and second control units are rotational drive actuators that drive the optical axis scanning unit,
    The rotation drive actuator is a laser beam position control device, wherein the first detection unit drives the galvanometer mirror based on a detection signal.
PCT/JP2015/068443 2015-06-26 2015-06-26 Laser light position control device and measuring device WO2016208049A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2015/068443 WO2016208049A1 (en) 2015-06-26 2015-06-26 Laser light position control device and measuring device
JP2017524537A JP6199002B2 (en) 2015-06-26 2015-06-26 Laser light position control device and measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/068443 WO2016208049A1 (en) 2015-06-26 2015-06-26 Laser light position control device and measuring device

Publications (1)

Publication Number Publication Date
WO2016208049A1 true WO2016208049A1 (en) 2016-12-29

Family

ID=57585157

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/068443 WO2016208049A1 (en) 2015-06-26 2015-06-26 Laser light position control device and measuring device

Country Status (2)

Country Link
JP (1) JP6199002B2 (en)
WO (1) WO2016208049A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021179385A (en) * 2020-05-15 2021-11-18 キヤノン株式会社 Terahertz wave camera system and control method of terahertz wave camera system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62207904A (en) * 1986-03-07 1987-09-12 Mitsubishi Monsanto Chem Co Measuring instrument for light emission wavelength and area of wafer
JP2004361087A (en) * 2003-05-30 2004-12-24 Olympus Corp Biomolecule analyzer
JP2007103997A (en) * 2005-09-30 2007-04-19 Nippon Telegr & Teleph Corp <Ntt> Electromagnetic radiation device
JP2009057948A (en) * 2007-09-03 2009-03-19 Toyota Motor Corp Particulate matter collection distribution detection method, collection distribution detection device and exhaust gas purification device
JP2009265361A (en) * 2008-04-25 2009-11-12 Institute Of Physical & Chemical Research Terahertz beam scanning apparatus and method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62207904A (en) * 1986-03-07 1987-09-12 Mitsubishi Monsanto Chem Co Measuring instrument for light emission wavelength and area of wafer
JP2004361087A (en) * 2003-05-30 2004-12-24 Olympus Corp Biomolecule analyzer
JP2007103997A (en) * 2005-09-30 2007-04-19 Nippon Telegr & Teleph Corp <Ntt> Electromagnetic radiation device
JP2009057948A (en) * 2007-09-03 2009-03-19 Toyota Motor Corp Particulate matter collection distribution detection method, collection distribution detection device and exhaust gas purification device
JP2009265361A (en) * 2008-04-25 2009-11-12 Institute Of Physical & Chemical Research Terahertz beam scanning apparatus and method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ATSUSHI YAMAGUCHI ET AL.: "Reflection Type THz Imaging with Resonant Tunneling Diodes", THE 61ST JSAP SPRING MEETING KOEN YOKOSHU, vol. 18a-E17-, 3 March 2014 (2014-03-03), pages 04 - 197 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021179385A (en) * 2020-05-15 2021-11-18 キヤノン株式会社 Terahertz wave camera system and control method of terahertz wave camera system
JP7532083B2 (en) 2020-05-15 2024-08-13 キヤノン株式会社 Terahertz wave system, method for controlling the terahertz wave system, and method for inspecting the terahertz wave system
US12081867B2 (en) 2020-05-15 2024-09-03 Canon Kabushiki Kaisha System and method for system for generating and detecting an electromagnetic wave

Also Published As

Publication number Publication date
JP6199002B2 (en) 2017-09-20
JPWO2016208049A1 (en) 2017-08-17

Similar Documents

Publication Publication Date Title
EP3249422B1 (en) Laser radar device
KR101590241B1 (en) Optical characteristics measuring apparatus, and optical characteristics measuring method
US8625106B2 (en) Method for optically scanning and measuring an object
US10429171B2 (en) Laser multibeam differential interferometric sensor and methods for vibration imaging
KR101335233B1 (en) Shape determining device
WO2017014097A1 (en) Gas detection device and gas detection method
JP2022115975A (en) Electromagnetic wave detection device and information acquisition system
US12366443B2 (en) Surface inspection device and shape measurement software
CN106052585A (en) Surface shape detection device and detection method
US9810619B2 (en) Method and system for simultaneous tilt and height control of a substrate surface in an inspection system
JP2015203592A (en) Laser doppler measurement device and measurement method
JP2010197376A (en) Shape measurement device and shape measurement method
JP6199002B2 (en) Laser light position control device and measuring device
US11927701B2 (en) Techniques for scan pattern beam alignment
KR100941981B1 (en) Laser Interferometer Mechometer
KR100925783B1 (en) Shape measuring device and method
US9863752B2 (en) Metrology apparatus for a semiconductor pattern, metrology system including the same and metrology method using the same
KR102416570B1 (en) Laser crystalling apparatus and laser crystalling method
KR101640348B1 (en) Apparatus of high precision optical scanning
JP2005317669A (en) Terahertz wave generator and measuring device using the same
CN102175187B (en) A Two-Dimensional Detection Device Without Diffraction Beam Drift
JP5793355B2 (en) Oblique incidence interferometer
CN116134971A (en) EUV light source target measurement
JP5289383B2 (en) Shape measuring device and shape measuring method
CN114787636A (en) Surface imaging method using scanning probe microscope and corresponding system using the method

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017524537

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15896371

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15896371

Country of ref document: EP

Kind code of ref document: A1