WO2016206616A1 - 无巷道无煤柱自留巷开采工法的装备系统 - Google Patents

无巷道无煤柱自留巷开采工法的装备系统 Download PDF

Info

Publication number
WO2016206616A1
WO2016206616A1 PCT/CN2016/086983 CN2016086983W WO2016206616A1 WO 2016206616 A1 WO2016206616 A1 WO 2016206616A1 CN 2016086983 W CN2016086983 W CN 2016086983W WO 2016206616 A1 WO2016206616 A1 WO 2016206616A1
Authority
WO
WIPO (PCT)
Prior art keywords
coal
mining
bracket
roadway
equipment system
Prior art date
Application number
PCT/CN2016/086983
Other languages
English (en)
French (fr)
Inventor
何满潮
杨军
陈上元
张海江
Original Assignee
何满潮
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201610430421.7A external-priority patent/CN106168131B/zh
Application filed by 何满潮 filed Critical 何满潮
Priority to EA201890132A priority Critical patent/EA037982B1/ru
Priority to UAA201800639A priority patent/UA125374C2/uk
Priority to US15/739,474 priority patent/US11008860B2/en
Publication of WO2016206616A1 publication Critical patent/WO2016206616A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21CMINING OR QUARRYING
    • E21C41/00Methods of underground or surface mining; Layouts therefor
    • E21C41/16Methods of underground mining; Layouts therefor
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D15/00Props; Chocks, e.g. made of flexible containers filled with backfilling material
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D23/00Mine roof supports for step- by- step movement, e.g. in combination with provisions for shifting of conveyors, mining machines, or guides therefor

Definitions

  • the invention relates to a coal mine working face supporting equipment, in particular to an equipment system without a coal pillar self-retaining roadway mining method, and provides a guarantee for the implementation of a coal pillarless mining method without roadway.
  • each working surface 10 includes an upper groove 11, a lower groove 12 and a mining face 13, and the upper groove 11 of each working surface 10 communicates with the belt downhill passage 14, and the lower groove 12 of each working surface 10 communicates back.
  • the wind down the mountain passage 15 is additionally provided with a track down the mountain passage 16.
  • coal pillars need to be left, resulting in a large amount of waste of resources.
  • each working surface needs to excavate two lanes, and the work efficiency is low.
  • the object of the present invention is to overcome the deficiencies of the prior art described above and to provide an equipment system for a method for mining a roadway without coal pillars.
  • the object of the invention is to design an equipment system suitable for the mining method without the coal pillar self-retaining roadway without lanes, to meet the technical requirements of the no-roadway mining without coal pillar mining method, and to achieve the purpose of no coal pillar mining in the mining area without roadway driving. .
  • an equipment system for a roadway-free coal pillar-free roadway mining method mainly comprising: a transition bracket, a end bracket, a super-back bracket, a retracting bracket, a slitting device, and Shearer system;
  • the coal mining machine system performs a coal mining operation in the coal mining channel, the outer end of the coal mining channel is connected to the upper trough, and the inner end of the coal mining channel is connected to the lower trough; the lower trough is the remaining lane area.
  • the upper and lower channels are substantially parallel to the mining direction of the shearer system, and the area between the rear side of the coal mining channel and the outer side of the roadway area is a goaf pressure relief zone;
  • the end bracket, the super-rear bracket and the retracting bracket can both telescopically support the bottom rock mass and the top rock mass of the mining area;
  • the transition bracket is located between the coal mining passage, the coal discharge pressure relief zone and the retaining lane zone;
  • the end bracket is located in the overlapping area of the coal mining channel and the roadway area;
  • the super-back brackets are in multiple groups, and each group is at least two, and the super-rear bracket is located in the lane-retaining area, and more
  • the super-rear brackets are arranged in sequence along the lane-retaining area;
  • the retracting bracket supports the coal-mining passage; and the coal mining channel advances as the shearer system advances, the transition a bracket, a tip bracket, a super-rear bracket and a withdrawal bracket are moved forward with
  • the slitting device includes at least a seam drilling rig that forms a plurality of drill holes on the top rock body at a certain interval, and the plurality of the drills are blasted or expanded. The hole is cracked into a linear slit.
  • a plurality of common brackets are disposed in the coal mining passage, and the common brackets telescopically support the bottom rock mass and the top rock mass.
  • a laying device wherein the protective net is laid along the bottom surface of the top rock body before the transition bracket, and the protective net is arranged on the transition bracket, the end bracket and the super rear bracket Between the top surface and the bottom surface of the top rock mass.
  • the shearer system comprises a shearer and a scraper, the scraper is located at the bottom of the coal mining channel, and the shearer is movably mounted on the scraper.
  • a plurality of dam plates are installed between the roadway area and the goaf, and a plurality of the sill plates are laid on the outer side of the roadway area;
  • a plurality of reserved holes are formed on the sill plate, and the anchor holes or anchor cables are installed to the goaf pressure relief area by using the reserved holes.
  • the super-rear bracket is mounted with a lateral support telescopic rod, and the lateral support telescopic rod supports the damper plate.
  • the slit bracket is mounted on the transition bracket, and a working slot is left on the transition bracket top beam.
  • At least one anchor rig is mounted on the end bracket, and the end bracket top beam There are working holes and/or working slots on the top.
  • the side retaining lane of the upper working face is used as the upper chute
  • the coal mining channel of the mining face is used as the ventilation passage
  • the retaining lane of the working lane is used as the lower chute, and a complete ventilation system is still formed.
  • FIG. 1 is a schematic plan view showing a working method of a 121 method of coal mining in the prior art
  • FIG. 2 is a schematic plan view showing a method for mining a no-pillar self-retaining lane without a roadway according to an embodiment of the present invention
  • FIG. 3 is a schematic top plan view showing an overall arrangement of an equipment system of a tunnel-free coal pillar-free roadway construction method according to an embodiment of the present invention
  • FIG. 4 is a schematic view showing a squint structure of an overall arrangement of an equipment system without a coal pillar self-retaining lane mining method according to an embodiment of the present invention
  • Fig. 5 is a schematic view showing the arrangement of the support for the coal mining passage and the retaining lane in the embodiment of the present invention.
  • the method for mining a no-pillar self-retaining roadway without a roadway is a new coal mining method, which is characterized in that, for a single working face, it is not necessary to excavate the upper and lower grooves before the working face is mined. There is also no need to leave coal pillars during the mining process and to ensure ventilation throughout the mining area.
  • the term “district” as used in this description refers to a section of mining that is divided into stages with a separate production system.
  • the near horizontal coal seam mining area is also called the panel; the mining area of the inclined long wall sub-zone mining is also called the strip district.
  • the following is a description of the structure of a specific embodiment.
  • FIG. 2 is a schematic plan view showing a method for excavating a pillarless road without coal pillars according to an embodiment of the present invention
  • FIG. 3 is a schematic plan view showing an overall arrangement of an equipment system without a coal pillar retaining lane without a roadway according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of the arrangement of the coal mining passage and the retaining lane bracket in the embodiment of the present invention.
  • At least one mining zone 2 is included, and a return air downhill passage is directly disposed on one side of the mining zone 2.
  • a belt downhill passage 28 is provided in the wellhead to the other side of the mining area.
  • the returning downhill passage 25, the orbiting downhill passage 26 and the belt downhill passage 28 are all connected to the wellhead, and the belt downhill passage 28 surrounds the entire mining section 2 and is connected to the returning downhill passage 25 to form an overall ventilation system of the mining section 2.
  • the mining zone mentioned in the specification refers to the mining block segment with independent production system along the course of the stage or mining level.
  • the mining area 2 can be divided into a plurality of working surfaces according to the operation requirements. For example, on the first mining face 20, a section of the belt downhill passage 28 is vented and coaled as the upper chute 21 of the first mining face 20.
  • the embodiment of the invention exemplarily provides an auxiliary equipment system suitable for the mining method without the coal pillar self-retaining lane without the roadway, so as to achieve the purpose of no coal pillar mining in the mining area without roadway.
  • the equipment system for the roadway-free coal pillar self-retaining roadway mining method the overall layout of the working surface supporting equipment system can be selected as shown in FIG. 3 and FIG. 4, where the equipment arrangement orientation is the mirror image orientation of FIG. , indicating that the implementation of the equipment system does not depend on the specific orientation relationship.
  • the equipment system can be selected to carry out the operation without the coal pillar self-retaining lane in the mining area, and the equipment system can mainly include: the transition bracket 3, the end bracket 4, the super-back bracket 5, the retracting bracket 6, the slit Device and shearer system 7.
  • the shearer system performs coal mining operations in the coal mining channel 27, and the coal mining machine advances coal mining along the direction of the upper chute 21 (in the direction indicated by the solid arrow in the figure), and the outer end of the coal mining channel 27 communicates with the upper chute 21 , the inner end of the coal mining channel 27 is connected to the lower channel twenty two.
  • the lower trough 22 is formed for continuous roadway operation during mining, wherein the upper chute 21 and the lower chute 22 are substantially parallel to the mining direction of the shearer system 7, the rear side of the coal mining channel 27 and the lower chute 22 (also called The area between the outer sides of the roadway area can be the goaf depressor zone 29, which is the rear side goaf created by the continuous operation of the shearer system.
  • the mining direction of the shearer system 7 in the present specification refers to the overall advancing direction, as indicated by the solid arrow in Fig. 3, and the shearer in the shearer system 7 is left or right along the front wall in the coal mining passage 27. Mining to achieve advancement in the direction of advancement.
  • the upper trough 21 and the lower trough 22 are substantially parallel to the mining direction of the shearer system 7, wherein substantially parallel is said to be inevitable deviation in mining; in addition, sometimes it is necessary to adjust according to the special situation of coal seam and geology, but basically Parallel state can be. Because the troughs are formed by continuous mining through mining operations.
  • the transition bracket 3, the end bracket 4, the super rear bracket 5 and the retracting bracket 6 can both telescopically support the bottom rock mass and the top rock mass of the mining area.
  • Embodiments of the brackets may be selected to have a top plate and a bottom plate, respectively, and the top plate and the bottom plate may be movably supported by hinged legs and/or hydraulic cylinder legs.
  • the transition bracket 3 can be located between the coal mining channel 27, the goaf depressor zone 29 and the lower chute zone 22.
  • the length direction of the transition bracket 3 can be selected to be approximately perpendicular to the coal mining passage 27, the rear portion of the transition bracket 3 can be located in the goaf depressing zone 29, and the front portion of the transition bracket 3 can be located in the coal mining passage 27, and the side is tight
  • the edge of the trough 22 (retaining lane) is affixed, so the front of the transition bracket 3 is left empty to allow room for the shearer to operate.
  • the transition bracket 3 is arranged here. First, the coal mining channel 27 and the lower channel 22 can be simultaneously supported.
  • the wind blocking area is reduced, so that no wall-type equipment affects the overall ventilation of the roadway; and third, there is sufficient space.
  • the coal mining machine is allowed to pass through the space, so it does not affect the coal mining operation; the fourth is to facilitate the use of the transition bracket 3 to lay a protective net extending a certain distance to the goaf decompression zone 29 at the top, so that the goaf decompression zone 29 collapses.
  • the protective net can be protected from the gang of the lower chute 22.
  • the transition bracket 3 can satisfy the above conditions, and the main structure can select the support structure for coal mining commonly used in the field, such as a hydraulic column bracket, a bracket combining an articulated leg and a hydraulic column, and the specific bracket form is not limited. .
  • the slitting devices can be optionally installed on the transition bracket 3, and the slitting device can be used to align the top rock mass along the boundary line between the lower chute 22 (retaining lane) and the goaf decompression zone 29.
  • a longitudinal slitting operation is performed to form a lower chute 22 (retaining lane).
  • the transition bracket 3 can be used to carry the slitting device, wherein the slitting device can comprise a plurality of slit drilling rigs, and a plurality of drill holes can be formed on the top rock body at a certain interval by using a slitting drill, and then the blasting or the The expansion device expands the plurality of boreholes into a linear slit.
  • it is selected to install a slitting device on the transition bracket 3, and a working groove is left on the top beam of the transition bracket 3 to facilitate the slitting operation from the bottom to the top.
  • the end bracket 4 is located in the overlapping area of the coal mining passage 27 and the roadway area, and the end bracket 4 may include two or three side by side brackets, and the end bracket 4 is located at the coal mining passage 27.
  • Inner end and lower slot The inner end of 22.
  • the lower trough 22 is formed after the top of the goaf is drained and decompressed. Therefore, after the coal miner has finished the coal, the inner and top of the lower trough 22 need to be reinforced as soon as possible, and the rear end of the end bracket 4 is located at the lower end.
  • the front portion is located in the overlapping area with the coal mining channel 27, and the side surface can be closely attached to the inner groove 22, and of course, a certain distance can be left, so the front end of the end bracket 4 is left blank to facilitate the setting.
  • the end bracket 4 is arranged here, one can support the coal mining channel 27 and the lower channel 22 at the same time; the second is that there is enough space to leave the coal mining machine through the space, so it does not affect the coal mining operation;
  • the anchor or anchor rig is arranged with the end bracket 4 to facilitate reinforcement of the inner and top portions of the lower sump 22 with anchors and/or anchors.
  • the main structure can select the structure of the coal mining bracket commonly used in the field, such as a hydraulic column bracket, a bracket combining the hinged leg and the hydraulic column, and the specific bracket form is not limit.
  • a working hole and/or a working slot may be left on the top beam of the end bracket 4.
  • a plurality of anchor rigs also have a lateral anchor hole drilling machine to facilitate the operation of punching the anchor cable or the anchor rod on the inner gang.
  • the super rear brackets 5 are in multiple groups, and each group is at least two, and the super rear bracket 5 is located in the lane retaining area, and the plurality of sets of super rear brackets 5 are retained.
  • the lanes are arranged in turn.
  • the super-rear bracket 5 can be continuously stepped and moved forward with the shearer system 7, and at the same time, the functions of retaining the roadway, retaining the guard, supporting and the like are completed.
  • the first two groups or three groups can be selected as the topping super-back bracket 51, and the rear two or three groups can be selected as the smashing super rear bracket 52, and the topping super-back bracket 51 can be installed with a slit drilling rig, and the cutting in the transition bracket
  • the sewing device is matched to ensure that the overall system has sufficient cutting resistance and can ensure that the top plate smoothly falls along the slit surface. Under the joint action of mine pressure and cutting resistance, the roof of the goaf is basically completely stable and stable.
  • a plurality of retaining plates may be installed between the retaining zone 22 and the goaf depressing zone 29, and a plurality of retaining plates are laid flat on the outer side of the retaining lane;
  • the hole is used to install a bolt or anchor cable to the goaf relief zone 29 using the reserved hole.
  • the super rear bracket 5 is mounted with a lateral support telescopic rod, and the lateral support telescopic rod supports the damper plate.
  • the smashing super rear bracket 52 may be equipped with a bolt rig, and the grouting anchor is applied to the goaf through the reserved hole of the sill bolt.
  • the super-rear bracket system of the embodiment of the invention realizes functions such as cutting the top of the working surface, blocking the shovel, grouting the anchor rod, and grouting, which can facilitate the smooth fall of the roof of the goaf and further improve the grouting.
  • the strength and stability of the goaf in the goaf can achieve good roadway effect.
  • a plurality of withdrawal brackets 6 may be arranged side by side to support the coal mining passage 27, and the withdrawal bracket 6 may also be selected as a common bracket, and only the passage space of the shearer system 7 is required to be left at the front end, and the bracket is withdrawn. 6 can also choose to install the anchor hole drilling machine, the laying device and the slitting device, so as to carry out the bolt or the net after a certain distance before the end of the coal mining operation. The anchor cable is installed, and finally the topping operation is performed by the slitting operation.
  • the coal mining face can adopt a special dustproof and anti-shock quick-retracting bracket 6, and the top and rear side protective plates are enlarged to form a closed plate, and the frame is sealed by a flexible friction-resistant material, and the top beam design has Cut holes and anchor holes for drilling holes.
  • the plurality of retracting brackets 6 can be arranged side by side in the coal mining passage 27, the plurality of retracting brackets 6 facing the side of the goaf depressing zone 29, and the top surface gaps can be sealed by friction-resistant materials,
  • the retrace bracket 6 is arranged to extend to interface with the side sealing plate of the transition bracket 3.
  • the coal recovery channel 27 and the goaf pressure relief zone 29 can be sealed by the withdrawal bracket 6.
  • a layer of dust-proof net on this interface may also be a webing device which may comprise a plurality of webs and a set of shafts which may be provided at the front or rear end of the transition bracket 3, the end bracket 4 or the first set of super rear brackets 5.
  • the protective net is laid along the bottom surface of the top rock body, and the protective net is arranged between the transition bracket 3, the end bracket 4 and the top surface of the super-back bracket 5 and the bottom surface of the top rock body.
  • the shearer system 7 includes a shearer 71 and a scraper 72.
  • the scraper 72 is located at the bottom of the coal mining channel 27, and the shearer is movably mounted on the scraper 72, and the upper chute 21 should also be disposed.
  • the coal roller path 73 is adapted to cooperate with the scraper 72 to transport the mined coal.
  • the shearer system 7 is forwardly extracted, the coal mining channel 27 is advanced, and the transition bracket 3, the end bracket 4, and the super rear bracket 5 are And the retrace bracket 6 is moved forward with the coal mining channel 27; the longitudinal rock cutting operation can be performed on the top rock mass along the boundary line between the retaining lane area and the goaf decompression zone 29 by using the slitting device; the top rock of the goaf The body continuously collapses to form a goaf relief zone 29.
  • the goaf decompression zone 29 can utilize the swell of the rock to finally achieve stable support of the geological structure of the area.
  • the cutting operation of the top plate is continuously performed, so that the goaf pressure relief zone 29 is continuously collapsed to form a stable supporting goaf pressure relief zone 29, and the super rear bracket 5 and the preset anchor or anchor cable are utilized.
  • the retaining lane is formed at a position close to the next working surface 20 to form a lower chute 22.
  • the upper roof of the remaining roadway area is substantially a structurally stable cantilever beam structure.
  • the mining face 23 has a coal mining passage 27.
  • the upper chute 21, the coal mining channel 27, the lower chute 22, and the original belt downhill passage 28 are sequentially connected, that is, the passage of the ventilation system is always connected.
  • the mining process of each working surface 20 includes the following steps:
  • the mining forms a goaf decompression zone 29; a neat coal wall is cut through the inner end of the shearer as a lane sluice of the trough, and another gang is formed by continuous chopping in the operation, and the roof is automatically formed after the shovel Lane gang, thus forming a trough in the mining process, the coal mining machine through the digital control at the end of the coal cutting, automatically cut the end side of the coal wall to form a vertical straight line, as a lane alley, scraper machine with mining
  • the coal-shaped arc-shaped coal grabbing board will clean the end of the floating coal as much as possible;
  • the transition bracket 3 is equipped with a slit drilling rig, a cracking machine and a front roof transportation system.
  • the rear part of the bracket is designed with a fixing plate of 3-5 meters long.
  • the cutting rig can be used to drill holes into the roof construction, and the slit is drilled.
  • cracks are formed on the top plate by the cracker.
  • the top plate of the goaf decompression zone 29 is automatically cut along the crack to form the lane guard.
  • the fixed plate is used as a temporary stop; the end is equipped with two or three
  • the end bracket 4 can be equipped with a bolt (cable) drill and a post-laying system. After the net is laid to the roof through the post-laying system, the bolt is drilled to the roof by the anchor drill, and after the drilling is completed , installing an anchor cable to support the top plate;
  • the return air downhill passage 25 and the orbit downhill passage 26 do not change throughout the mining process and are fixed passages.
  • the belt downhill passage 28 gradually changes with the mining lane, and is a changing passage, and the belt downhill passage 28 is formed into a passage substantially parallel to the return air downhill passage 25 and the orbital downhill passage 26 after the mining section 2 is mined.
  • the super-rear bracket 5 is arranged next to the rear support plate of the transition bracket 3, and the retaining slab is arranged to support the gangue of the goaf pressure relief zone, and each damper plate is connected to each other as a whole, and is removed and recycled after the grouting is completed;
  • the above-mentioned working surface equipment system is a new type of equipment system suitable for the construction method. It successfully achieves the purpose of no coal pillar mining without roadway excavation, and lays a solid foundation for the implementation of the long arm mining method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Mechanical Engineering (AREA)
  • Structural Engineering (AREA)
  • Remote Sensing (AREA)
  • Devices Affording Protection Of Roads Or Walls For Sound Insulation (AREA)

Abstract

一种无巷道无煤柱自留巷开采工法的装备系统,主要包括过渡支架(3)、端头支架(4)、超后支架(5)和快速回撤支架(6)。开采中工作面顺槽无需掘进,可通过采煤机在采区端头割出一个整齐的煤壁,作为顺槽的一个巷帮,另一个帮部通过切顶形成,顶板垮落后自动形成巷帮,从而在回采过程中形成顺槽,采煤机在端头割煤时通过数字化控制,自动把端头侧向煤壁切割形成竖直直线,作为顺槽巷帮,刮板机配合采煤机弧形抓煤板将端头浮煤尽量清理干净。过渡支架、端头支架、超后支架和快速回撤支架能提供作业中的支护,并能随采煤作业设备前移。

Description

无巷道无煤柱自留巷开采工法的装备系统 技术领域
本发明涉及煤矿工作面配套设备,尤其涉及无巷道无煤柱自留巷开采工法的装备系统,为无巷道掘进无煤柱开采工法的实施提供了保障。
背景技术
目前,在进行长壁开采过程中,一般是如图1所示采用121工法,即一个工作面需先挖掘两个巷道,并且留一个煤柱作为支撑。具体说来,每个工作面10包括上顺槽11、下顺槽12和开采面13,各工作面10的上顺槽11连通皮带下山通道14,各工作面10的下顺槽12连通回风下山通道15,另外还设置有轨道下山通道16。目前的这种结构中,需要留设煤柱,造成资源的大量浪费。而且,每个工作面都需要挖掘两个巷道,工作效率低。
随着大规模的煤炭开采,煤炭资源量日益减少,尤其在煤炭经济萧条的今天,传统的留设煤柱、沿空掘巷的开采方式造成的开采成本高,煤炭回收率低等问题日益突出。
在所述背景技术部分公开的上述信息仅用于加强对本发明的背景的理解,因此它可以包括不构成对本领域普通技术人员已知的现有技术的信息。
发明内容
在发明内容部分中引入了一系列简化形式的概念,这将在具体实施方式部分中进一步详细说明。本发明内容部分并不意味着要试图限定出所要求保护的技术方案的关键特征和必要技术特征,更不意味着试图确定所要求保护的技术方案的保护范围。
本发明的目的在于克服上述现有技术的不足,提供一种无巷道无煤柱自留巷开采工法的装备系统。
本发明的目的在于设计适用于无巷道无煤柱自留巷开采工法的装备系统,以满足无巷道掘进无煤柱开采工法下各项技术要求,达到采区无巷道掘进无煤柱开采的目的。
本发明的额外方面和优点将部分地在下面的描述中阐述,并且部分地将从描述中变得显然,或者可以通过本发明的实践而习得。
根据本发明的一个方面,提供一种无巷道无煤柱自留巷开采工法的装备系统,所述装备系统主要包括:过渡支架、端头支架、超后支架、回撤支架、切缝装置及采煤机系统; 所述采煤机系统在采煤通道内进行采煤作业,所述采煤通道外端连通上顺槽,所述采煤通道内端连通下顺槽;所述下顺槽为留巷区,所述上顺槽和下顺槽基本平行于所述采煤机系统开采方向,所述采煤通道后侧与所述留巷区外侧之间的区域为采空卸压区;所述过渡支架、端头支架、超后支架与回撤支架均可伸缩地支撑采区底部岩体和顶部岩体;所述过渡支架位于所述采煤通道、采空卸压区与留巷区之间;所述端头支架位于所述采煤通道与留巷区重叠区内;所述超后支架为多组,且每组为至少两个,所述超后支架位于所述留巷区内,多组所述超后支架顺所述留巷区依次布置;所述回撤支架支撑所述采煤通道;随所述采煤机系统向前开采,所述采煤通道向前推进,所述过渡支架、端头支架、超后支架与回撤支架随所述采煤通道向前移架;利用所述切缝装置沿所述留巷区与采空卸压区的交界线上对顶部岩体进行纵向切缝作业;顶部岩体垮塌形成所述采空卸压区。
根据本发明的一实施方式,所述切缝装置包括至少一切缝钻机,所述切缝钻机沿一定间距在顶部岩体上形成多个钻孔,利用爆破或胀开装置将多个所述钻孔涨裂为线性缝。
根据本发明的一实施方式,所述采煤通道内还布置有多个普通支架,所述普通支架可伸缩地支撑底部岩体和顶部岩体。
根据本发明的一实施方式,另具有一铺网装置,在所述过渡支架前将防护网顺顶部岩体底面进行铺设,所述防护网布置于所述过渡支架、端头支架与超后支架顶面与顶部岩体底面之间。
根据本发明的一实施方式,采煤机系统包括采煤机与刮板机,所述刮板机位于所述采煤通道底部,所述采煤机可移动地安装于所述刮板机上。
根据本发明的一实施方式,所述留巷区与所述采空卸压区之间安装有多个挡矸板,多个所述挡矸板平铺于所述留巷区外侧帮上;所述挡矸板上开设多个预留孔,利用所述预留孔向所述采空卸压区安装锚杆或锚索。
根据本发明的一实施方式,所述超后支架安装有侧向支撑伸缩杆,所述侧向支撑伸缩杆支撑所述挡矸板。
根据本发明的一实施方式,还具有多个锚孔钻机,利用所述锚孔钻机在所述留巷区顶部或帮部安装锚索或锚杆。
根据本发明的一实施方式,所述过渡支架上安装有所述切缝装置,所述过渡支架顶梁上留有作业槽。
根据本发明的一实施方式,所述端头支架上安装至少一锚索钻机,所述端头支架顶梁 上留有作业孔及/或作业槽。
由上述技术方案可知,本发明的无巷道无煤柱自留巷开采工法的装备系统的优点和积极效果在于:
在进行一般工作面开采时,其上一工作面的侧部留巷作为其上顺槽,开采面的采煤通道作为通风通道,自身留巷作为下顺槽,依旧形成完整的通风系统。在该过程中,始终无需对任一工作面在开采作业前单独挖掘上顺槽和下顺槽,仅需开采过程进行留巷即可,因此提高工作效率,降低资源消耗。
附图说明
通过结合附图考虑以下对本发明的优选实施例的详细说明,本发明的各种目标、特征和优点将变得更加显而易见。附图仅为本发明的示范性图解,并非一定是按比例绘制。在附图中,同样的附图标记始终表示相同或类似的部件。其中:
图1是现有技术中121工法采煤作业方式的平面示意图;
图2是本发明实施例的无巷道无煤柱自留巷开采工法的平面示意图;
图3是本发明实施例的无巷道无煤柱自留巷开采工法的装备系统整体布置俯视结构示意图;
图4是本发明实施例的无巷道无煤柱自留巷开采工法的装备系统整体布置斜视结构示意图;
图5是本发明实施例中采煤通道与留巷区支架布置的示意图。
附图标记说明:
2、采区;20、首采面;21、上顺槽;22、下顺槽;25、回风下山通道;26、轨道下山通道;27、采煤通道;28、皮带下山通道;29、采空卸压区;3、过渡支架;4、端头支架;5、超后支架;51、切顶超后支架;52、挡矸超后支架;6、回撤支架;7、采煤机系统;71、采煤机;72、刮板机。
10、工作面;11、上顺槽;12、下顺槽;13、开采面;14、皮带下山通道;15、回风下山通道;16、轨道下山通道。
具体实施方式
现在将参考附图更全面地描述示例实施方式。然而,示例实施方式能够以多种形式实 施,且不应被理解为限于在此阐述的实施方式;相反,提供这些实施方式使得本发明将全面和完整,并将示例实施方式的构思全面地传达给本领域的技术人员。图中相同的附图标记表示相同或类似的结构,因而将省略它们的详细描述。
本发明实施例涉及的无巷道无煤柱自留巷开采工法是一种新型煤矿开采方法,其特点是,就单个工作面来看,不用在工作面开采前挖掘上顺槽和下顺槽,开采过程中也不需要留设煤柱,并且可保证整个采区的通风。本说明中所称采区(district)是指:阶段或开采水平内沿走向划分为具有独立生产系统的开采块段。近水平煤层采区又称盘区(panel);倾斜长壁分带开采的采区又称带区(strip district)。下面以一具体实施例的结构作展开说明。
图2是本发明实施例的无巷道掘进无煤柱开采工法的平面示意图;图3是本发明实施例的无巷道无煤柱自留巷开采工法的装备系统整体布置俯视结构示意图;图4是本发明实施例的无巷道无煤柱自留巷开采工法的装备系统整体布置斜视结构示意图;图5是本发明实施例中采煤通道与留巷区支架布置的示意图。
本发明实施例涉及的无巷道无煤柱自留巷开采工法,在一具体实施例中如图2所示,包括至少一个采区2,在采区2的一侧直接设置有回风下山通道25和轨道下山通道26,在采区井口到另一侧连通设置有皮带下山通道28。回风下山通道25、轨道下山通道26和皮带下山通道28都连通井口,而且皮带下山通道28环绕整个采区2后连通回风下山通道25,形成采区2的整体通风系统。说明书中提及的采区是指,阶段或开采水平内沿走向划分为具有独立生产系统的开采块段。该实施例中,采区2可根据作业需求区分为多个工作面。举例来讲,在首采面20上,皮带下山通道28的一段作为该首采面20的上顺槽21进行通风和出煤。
本发明实施例示例性提供一种适用于无巷道无煤柱自留巷开采工法的配套装备系统,以达到采区无巷道掘进无煤柱开采的目的。
本发明实施例的无巷道无煤柱自留巷开采工法的装备系统,工作面配套装备系统总体布局图可以选择为如图3、图4所示,这里的设备布置方位是图2的镜像方位,说明本装备系统的实施并不依赖于具体方位关系。
可以选择以此装备系统在采区进行无巷道无煤柱自留巷开采作业,所述装备系统可主要包括:过渡支架3、端头支架4、超后支架5、回撤支架6、切缝装置及采煤机系统7。采煤机系统在采煤通道27内进行采煤作业,采煤机沿上顺槽21延伸方向采煤前进(图中实心箭头所示方向),且采煤通道27外端连通上顺槽21,采煤通道27内端连通下顺槽 22。这里下顺槽22为开采中不断留巷作业形成,这其中上顺槽21和下顺槽22基本平行于采煤机系统7开采方向,采煤通道27后侧与下顺槽22(也称留巷区)外侧之间的区域可为采空卸压区29,是采煤机系统不断运行产生的后侧采空区。
本说明书中所述采煤机系统7开采方向是指整体前进方向,如图3中实心箭头所示方向,采煤机系统7中采煤机在采煤通道27内向左或向右沿前壁开采,以实现向前进方向的推进。上顺槽21和下顺槽22基本平行于采煤机系统7开采方向,其中基本平行是说开采中难免存在的偏差;另外,有时也需要根据煤层与地质的特殊情形进行调整,但基本处于平行状态即可。因为顺槽均是通过开采作业不断留巷形成。
其中,并参照图5所示,过渡支架3、端头支架4、超后支架5与回撤支架6均可伸缩地支撑采区底部岩体和顶部岩体。这些支架的实施方式可选择为均具有顶板和底板,而顶板和底板之间可由铰接的支腿及/或液压缸式支腿进行活动地支撑。
根据本发明一实施方式,过渡支架3可位于采煤通道27、采空卸压区29与下顺槽22之间。具体示例,过渡支架3长度方向可选择为大约是垂直于采煤通道27,过渡支架3后部可位于采空卸压区29内,过渡支架3前部可位于采煤通道27内,侧面紧贴下顺槽22(留巷区)边缘,所以过渡支架3前部留空,以便于留出采煤机运作通过的空间。将过渡支架3布置于此,一是可以同时支撑采煤通道27和下顺槽22;二是减小阻风面积,使得没有挡墙类设备影响巷道的整体通风;三是可以有足够的空间留出采煤机通过空间,因此不会影响采煤作业;四是便于利用过渡支架3在顶部铺设向采空卸压区29延伸一定距离的防护网,以便采空卸压区29垮塌下来后,防护网可防护在下顺槽22的帮部。过渡支架3在满足以上条件的前提下,主体结构上可选择本领域中常用的采煤用支架结构,例如液压柱式支架,铰接腿与液压柱结合的支架等形式,具体支架形式并不限制。
根据本发明一实施方式,可选择将至少一切缝装置安装于过渡支架3,可以利用切缝装置沿下顺槽22(留巷区)与采空卸压区29的交界线上对顶部岩体进行纵向切缝作业,以便形成下顺槽22(留巷区)。好处在于,可利用过渡支架3承载切缝装置,其中,切缝装置可包括多个切缝钻机,可利用切缝钻机沿一定间距在顶部岩体上形成多个钻孔,之后可利用爆破或胀开装置将多个钻孔涨裂为线性缝。这里选择在过渡支架3上安装切缝装置,且在过渡支架3顶梁上留有作业槽,以便于从下向上进行切缝作业。
根据本发明一实施方式,端头支架4位于采煤通道27与留巷区重叠区内,端头支架4可以包括两个或三个并排支架,端头支架4也就是位于采煤通道27的内端头与下顺槽 22的内端头。下顺槽22为采空区切顶泄压后留巷形成,所以,采煤机采完煤后,需要尽快对下顺槽22的内帮和顶部进行加固,端头支架4后部位于下顺槽22内,前部位于与采煤通道27的重叠区内,侧面可以紧贴下顺槽22内帮,当然也可以留出一定间距,所以端头支架4前部留空,以便于留出采煤机运作通过的空间。将端头支架4布置于此,一是可以同时支撑采煤通道27和下顺槽22;二是可以有足够的空间留出采煤机通过空间,因此不会影响采煤作业;三是便于利用端头支架4布置锚杆或锚索钻机,以便于对下顺槽22的内帮和顶部利用锚索及/或锚杆进行加固。在顶部铺设防护网,防护网可由锚杆或锚索进行固定,以防止碎裂岩石掉落,同时还便于后续的喷浆加固作业。端头支架4在满足以上条件的前提下,主体结构上可选择本领域中常用的采煤用支架结构,例如液压柱式支架,铰接腿与液压柱结合的支架等形式,具体支架形式并不限制。
根据本发明一实施方式,由于端头支架4上安装多个锚索钻机,端头支架4顶梁上可以留有作业孔及/或作业槽。以便于从下向上打锚孔并安装锚索或锚孔。多个锚索钻机中还具有侧向锚孔钻机,以便于向内帮上进行打孔安装锚索或锚杆的作业。
根据本发明一实施方式,如图3、图4所示,超后支架5为多组,且每组为至少两个,超后支架5位于留巷区内,多组超后支架5顺留巷区依次布置。超后支架5可随采煤机系统7不断步进移架前进,同时完成留巷区的挡矸、护帮、支撑等作用。可选择前面两组或三组为切顶超后支架51,可选择后面两组或三组为挡矸超后支架52,切顶超后支架51可安装切缝钻机,与过渡支架中的切缝装置配合,以此保证整体系统有足够的切顶阻力,能保证顶板沿切缝面顺利垮落。采空区顶板在矿山压力及切顶阻力的共同作用下,基本完全垮落稳定。下顺槽22留巷区与采空卸压区29之间还可安装有多个挡矸板,多个挡矸板平铺于留巷区外侧帮上;挡矸板上开设多个预留孔,利用预留孔向采空卸压区29安装锚杆或锚索。超后支架5安装有侧向支撑伸缩杆,侧向支撑伸缩杆支撑挡矸板。挡矸超后支架52可以配备有锚杆钻机,通过挡矸板锚杆预留孔向采空区巷帮施工注浆锚杆。
本发明实施例的超后支架系统,实现了工作面后方切顶、挡矸、打注浆锚杆、注浆等功能,可利于采空区顶板的顺利垮落,并通过注浆进一步提高了采空区巷帮的强度及稳定性,能取得良好的成巷效果。
可以采用多个回撤支架6并排布置,以支撑采煤通道27,回撤支架6也可选择为普通支架,仅需在前端留出采煤机系统7的通过空间即可,且回撤支架6上还可以选择安装锚孔钻机、铺网装置和切缝装置,以便于在采煤作业的终点前一定距离铺网后进行锚杆或 锚索的安装,最后通过切缝作业进行放顶作业。
根据一实施方式,采煤工作面可采用专用防尘防冲快速回撤支架6,顶部和后侧防护板加大,形成封闭式板,架间采用柔性耐摩擦材料进行密封,顶梁设计有切缝钻孔和锚索钻孔预留孔。多个回撤支架6可以侧面紧贴地排列在采煤通道27内,多个回撤支架6面向采空卸压区29的侧面,以及顶面间隙都可以采用耐摩擦材料进行密封,多个回撤支架6一直排列延伸到与过渡支架3侧面密封板进行对接。如此采煤通道27与采空卸压区29之间能以回撤支架6进行密封。避免采空卸压区29垮落时的灰尘进入采煤作业区和通风道中。当然,也可以在这个界面上再增加一层防尘网,以便于再对各个接缝再进行一次保护,而且防尘网能随各支架向前移架,可重复再生利用。另还可具有一铺网装置,铺网装置可包括多个网卷和轴组,这些网卷可设于过渡支架3、端头支架4或第一组超后支架5的前端或后端。在过渡支架3前将防护网顺顶部岩体底面进行铺设,防护网布置于过渡支架3、端头支架4与超后支架5顶面与顶部岩体底面之间。
采煤机系统7包括采煤机71与刮板机72,刮板机72位于采煤通道27底部,采煤机可移动地安装于刮板机72上,上顺槽21内还应配置出煤辊道73,以便于与刮板机72配合,将采出的煤运出。
根据本发明的实施例,参照图2至图5所示,作业中,随采煤机系统7向前开采,采煤通道27向前推进,过渡支架3、端头支架4、超后支架5与回撤支架6随采煤通道27向前移架;能利用切缝装置沿留巷区与采空卸压区29的交界线上对顶部岩体进行纵向切缝作业;采空区顶部岩体不断垮塌形成采空卸压区29。采空卸压区29可利用岩石的碎胀性,最终达成该区域地质结构的稳定支撑。
在开采过程中,利用不断对顶板进行切缝作业,使采空卸压区29不断塌陷形成稳定支撑的采空卸压区29,同时利用超后支架5和预设的锚杆或锚索,在靠近下一工作面20的位置上进行留巷,形成下顺槽22。这种实施方式的留巷区,由于外侧已由切缝给顶板卸压,留巷区上部顶板实质是结构稳定的悬臂梁结构。另外,开采面23上具有采煤通道27。本实施例中,上顺槽21、采煤通道27、下顺槽22和原皮带下山通道28依次连通,也就是通风系统的通道始终连通。
该实施例中,每一工作面20的开采过程包括如下步骤:
围绕采区2挖掘皮带下山通道28;
从远离回风下山通道25和轨道下山通道26的一端(即靠近皮带下山通道28的一端) 向回风下山通道25和轨道下山通道26方向开采;
开采形成采空卸压区29;通过采煤机在内侧端头割出一个整齐的煤壁,作为顺槽的一个巷帮,另一个帮部通过作业中不断切顶形成,顶板垮落后自动形成巷帮,从而在回采过程中形成顺槽,采煤机在端头割煤时通过数字化控制,自动把端头侧向煤壁切割形成竖直直线,作为顺槽巷帮,刮板机配合采煤机弧形抓煤板将端头浮煤尽量清理干净;
在开采过程中切顶卸压并留巷,留巷位置为靠近下一工作面20的侧部22。过渡支架3配备有切缝钻机、裂缝机和架前顶网运输系统,支架后部设计有3-5米长的固定板,通过切缝钻机可向顶板施工切缝钻孔,切缝钻孔施工完毕后,通过裂缝机张拉在顶板形成裂缝,煤层回采以后,采空卸压区29顶板沿裂缝自动切落形成巷帮,固定板作为临时挡矸使用;端头共配备两到三架端头支架4,可配备有锚杆(索)钻机和架后铺网系统,通过架后铺网系统向顶板铺网后,通过锚杆钻机向顶板施工锚索钻孔,钻孔施工完毕后,安装锚索用以支护顶板;
该实施例中,回风下山通道25和轨道下山通道26在整个开采过程中不发生变化,为固定通道。皮带下山通道28随着开采的留巷而逐渐变化,为变化通道,而且皮带下山通道28在采区2开采完毕后,形成为与回风下山通道25和轨道下山通道26大致相平行的通道。
超后支架5紧跟过渡支架3后方固定板架设挡矸板,用以支挡采空卸压区29矸石,每个挡矸板之间相互连接成一个整体,注浆完毕后拆除循环使用;
上述工作面设备系统是一种适用于工法的新型装备系统,成功实现了工法无巷道掘进无煤柱开采的目的,为长臂开采工法的实施打下了坚实的基础。
在下文的描述中,给出了大量具体的细节以便提供对本发明更为彻底的理解。然而,对于本领域技术人员来说显而易见的是,本发明可以无需一个或多个这些细节而得以实施。在其他的例子中,为了避免与本发明发生混淆,对于本领域公知的一些技术特征未进行描述。
在说明本发明或本发明优选实施例的元件时,词“一”、“一个”、“该”以及“所述”意欲指的是存在着一个或更多个元件。术语“包括”、“包含”和“具有”等意欲是开放性的且指的是除了所列出的元件之外还可存在其它元件。

Claims (10)

  1. 一种无巷道无煤柱自留巷开采工法的装备系统,以此装备系统在采区进行无巷道无煤柱自留巷开采作业,其特征在于,所述装备系统包括:过渡支架、端头支架、超后支架、回撤支架、切缝装置及采煤机系统;所述采煤机系统在采煤通道内进行采煤作业,所述采煤通道外端连通上顺槽,所述采煤通道内端连通下顺槽;所述下顺槽为留巷区,所述上顺槽和下顺槽基本平行于所述采煤机系统开采方向,所述采煤通道后侧与所述留巷区外侧之间的区域为采空卸压区;
    所述过渡支架、端头支架、超后支架与回撤支架均可伸缩地支撑采区底部岩体和顶部岩体;所述过渡支架位于所述采煤通道、采空卸压区与留巷区之间;所述端头支架位于所述采煤通道与留巷区重叠区内;所述超后支架为多组,且每组为至少两个,所述超后支架位于所述留巷区内,多组所述超后支架顺所述留巷区依次布置;所述回撤支架支撑所述采煤通道;随所述采煤机系统向前开采,所述采煤通道向前推进,所述过渡支架、端头支架、超后支架与回撤支架随所述采煤通道向前移架;
    利用所述切缝装置沿所述留巷区与采空卸压区的交界线上对顶部岩体进行纵向切缝作业;顶部岩体垮塌形成所述采空卸压区。
  2. 如权利要求1所述的无巷道无煤柱自留巷开采工法的装备系统,其特征在于,所述切缝装置包括至少一切缝钻机,所述切缝钻机沿一定间距在顶部岩体上形成多个钻孔,利用爆破或胀开装置将多个所述钻孔涨裂为线性缝。
  3. 如权利要求1所述的无巷道无煤柱自留巷开采工法的装备系统,其特征在于,所述采煤通道内还布置有多个普通支架,所述普通支架可伸缩地支撑底部岩体和顶部岩体。
  4. 如权利要求1所述的无巷道无煤柱自留巷开采工法的装备系统,其特征在于,所述装备系统另具有一铺网装置,在所述过渡支架和端头支架前将防护网顺顶部岩体底面进行铺设,所述防护网布置于所述过渡支架、端头支架与超后支架顶面与顶部岩体底面之间。
  5. 如权利要求1所述的无巷道无煤柱自留巷开采工法的装备系统,其特征在于,所述采煤机系统包括采煤机与刮板机,所述刮板机位于所述采煤通道底部,所述采煤机可移动地安装于所述刮板机上。
  6. 如权利要求1所述的无巷道无煤柱自留巷开采工法的装备系统,其特征在于,所述留巷区与所述采空卸压区之间安装有多个挡矸板,多个所述挡矸板平铺于所述留巷区外侧帮上;所述挡矸板上开设多个预留孔,利用所述预留孔向所述采空卸压区安装锚杆或锚索。
  7. 如权利要求6所述的无巷道无煤柱自留巷开采工法的装备系统,其特征在于,所述超后支架安装有侧向支撑伸缩杆,所述侧向支撑伸缩杆支撑所述挡矸板。
  8. 如权利要求7所述的无巷道无煤柱自留巷开采工法的装备系统,其特征在于,还具有多个锚孔钻机,利用所述锚孔钻机在所述留巷区顶部或帮部安装锚索或锚杆。
  9. 如权利要求1至8任一项所述的无巷道无煤柱自留巷开采工法的装备系统,其特征在于,所述过渡支架上安装有所述切缝装置,所述过渡支架顶梁上留有作业槽。
  10. 如权利要求1至8任一项所述的无巷道无煤柱自留巷开采工法的装备系统,其特征在于,所述端头支架上安装至少一锚索钻机,所述端头支架顶梁上留有作业孔及/或作业槽。
PCT/CN2016/086983 2015-06-24 2016-06-24 无巷道无煤柱自留巷开采工法的装备系统 WO2016206616A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EA201890132A EA037982B1 (ru) 2015-06-24 2016-06-24 Способ бесцеликовой разработки с самосохраняющейся подготовительной выработкой без проходки подготовительной выработки на участке горных работ
UAA201800639A UA125374C2 (uk) 2015-06-24 2016-06-24 Спосіб розробки корисних копалин із самозбереженням під час безлюдного безціликового проведення штреку у виїмковій дільниці
US15/739,474 US11008860B2 (en) 2015-06-24 2016-06-24 Equipment system for no-roadway no-coal-pillar retained roadway mining method

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201510354564.X 2015-06-24
CN201510354564 2015-06-24
CN201510642211.X 2015-09-30
CN201510642211 2015-09-30
CN201610430421.7 2016-06-16
CN201610430421.7A CN106168131B (zh) 2015-06-24 2016-06-16 无巷道无煤柱自留巷开采工法的装备系统

Publications (1)

Publication Number Publication Date
WO2016206616A1 true WO2016206616A1 (zh) 2016-12-29

Family

ID=57584724

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/086983 WO2016206616A1 (zh) 2015-06-24 2016-06-24 无巷道无煤柱自留巷开采工法的装备系统

Country Status (1)

Country Link
WO (1) WO2016206616A1 (zh)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109139076A (zh) * 2018-08-24 2019-01-04 淮北矿业股份有限公司 一种采矿巷道工作面机械化刷扩出架通道装置
CN109838265A (zh) * 2019-03-18 2019-06-04 中国矿业大学 一种沿空留巷端头支架迁移时保护顶板托盘的装置
CN109882176A (zh) * 2019-04-04 2019-06-14 中国矿业大学(北京) 末采充填及液压支架切顶沿空留巷双翼交替协同回采方法
CN110847912A (zh) * 2019-04-16 2020-02-28 天地科技股份有限公司 一种回采工作面“支-卸”组合沿空留巷巷道及施工方法
CN111022090A (zh) * 2019-04-16 2020-04-17 天地科技股份有限公司 一种预掘大断面巷内砌柱沿空留巷巷道及施工方法
CN113550763A (zh) * 2021-08-24 2021-10-26 西安科技大学 一种快速构筑沿空留巷的支撑结构及其施工方法
CN113586055A (zh) * 2021-09-15 2021-11-02 西安科技大学 一种放顶煤沿空留巷折减煤柱采煤法
CN114165233A (zh) * 2021-11-30 2022-03-11 中煤科工开采研究院有限公司 一种沿中预留墙体的强动压煤层巷道布置方法
CN114201866A (zh) * 2021-12-02 2022-03-18 安徽理工大学 一种用于保护采区上下山的回撤巷道切顶卸压方法
CN114320456A (zh) * 2020-09-27 2022-04-12 山东科技大学 一种支巷开采无人抛矸充填注浆加固方法
CN115059504A (zh) * 2022-06-28 2022-09-16 安徽理工大学 一种超煤层开采沿空充填留巷封存co2的防灭火方法
CN115559728A (zh) * 2022-11-10 2023-01-03 中国矿业大学(北京) 无煤柱自成巷平衡开采方法与装备
CN116165071A (zh) * 2023-04-21 2023-05-26 中国矿业大学(北京) 岩体碎胀特性测试系统与方法
CN116696348A (zh) * 2023-08-01 2023-09-05 云南滇东雨汪能源有限公司 射孔预裂切顶沿空留巷方法及注浆设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2206644A (en) * 1986-12-19 1989-01-11 Avm Inc Pneumatic spring:dual output force
CN101289939A (zh) * 2008-06-10 2008-10-22 沈阳天安矿山机械科技有限公司 沿空留巷综合支护装置
CN102182460A (zh) * 2011-04-14 2011-09-14 山西晋城无烟煤矿业集团有限责任公司 高瓦斯多巷无煤柱开采法
CN102392642A (zh) * 2011-11-02 2012-03-28 王晓利 一种无煤柱回采工作面的巷道布置方法
CN102996131A (zh) * 2012-12-10 2013-03-27 中国矿业大学 一种预掘两巷前进式固体充填采煤方法
CN103459772A (zh) * 2010-12-30 2013-12-18 拉格股份公司 带有用于确定长壁开采设备的单个元件的高度位置的设置在该元件处的软管式水准仪的长壁开采设备
CN103775085A (zh) * 2012-10-25 2014-05-07 泰安市华硕能源科技有限公司 急倾斜中厚煤层柔性掩护支架采掘一体支护无煤柱采煤方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2206644A (en) * 1986-12-19 1989-01-11 Avm Inc Pneumatic spring:dual output force
CN101289939A (zh) * 2008-06-10 2008-10-22 沈阳天安矿山机械科技有限公司 沿空留巷综合支护装置
CN103459772A (zh) * 2010-12-30 2013-12-18 拉格股份公司 带有用于确定长壁开采设备的单个元件的高度位置的设置在该元件处的软管式水准仪的长壁开采设备
CN102182460A (zh) * 2011-04-14 2011-09-14 山西晋城无烟煤矿业集团有限责任公司 高瓦斯多巷无煤柱开采法
CN102392642A (zh) * 2011-11-02 2012-03-28 王晓利 一种无煤柱回采工作面的巷道布置方法
CN103775085A (zh) * 2012-10-25 2014-05-07 泰安市华硕能源科技有限公司 急倾斜中厚煤层柔性掩护支架采掘一体支护无煤柱采煤方法
CN102996131A (zh) * 2012-12-10 2013-03-27 中国矿业大学 一种预掘两巷前进式固体充填采煤方法

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109139076A (zh) * 2018-08-24 2019-01-04 淮北矿业股份有限公司 一种采矿巷道工作面机械化刷扩出架通道装置
CN109838265A (zh) * 2019-03-18 2019-06-04 中国矿业大学 一种沿空留巷端头支架迁移时保护顶板托盘的装置
CN109838265B (zh) * 2019-03-18 2024-04-02 中国矿业大学 一种沿空留巷端头支架迁移时保护顶板托盘的装置
CN109882176A (zh) * 2019-04-04 2019-06-14 中国矿业大学(北京) 末采充填及液压支架切顶沿空留巷双翼交替协同回采方法
CN110847912A (zh) * 2019-04-16 2020-02-28 天地科技股份有限公司 一种回采工作面“支-卸”组合沿空留巷巷道及施工方法
CN111022090A (zh) * 2019-04-16 2020-04-17 天地科技股份有限公司 一种预掘大断面巷内砌柱沿空留巷巷道及施工方法
CN114320456A (zh) * 2020-09-27 2022-04-12 山东科技大学 一种支巷开采无人抛矸充填注浆加固方法
CN114320456B (zh) * 2020-09-27 2023-12-08 山东科技大学 一种支巷开采无人抛矸充填注浆加固方法
CN113550763B (zh) * 2021-08-24 2023-05-02 西安科技大学 一种快速构筑沿空留巷的支撑结构及其施工方法
CN113550763A (zh) * 2021-08-24 2021-10-26 西安科技大学 一种快速构筑沿空留巷的支撑结构及其施工方法
CN113586055B (zh) * 2021-09-15 2023-06-09 西安科技大学 一种放顶煤沿空留巷折减煤柱采煤法
CN113586055A (zh) * 2021-09-15 2021-11-02 西安科技大学 一种放顶煤沿空留巷折减煤柱采煤法
CN114165233A (zh) * 2021-11-30 2022-03-11 中煤科工开采研究院有限公司 一种沿中预留墙体的强动压煤层巷道布置方法
CN114201866A (zh) * 2021-12-02 2022-03-18 安徽理工大学 一种用于保护采区上下山的回撤巷道切顶卸压方法
CN114201866B (zh) * 2021-12-02 2024-04-09 安徽理工大学 一种用于保护采区上下山的回撤巷道切顶卸压方法
CN115059504A (zh) * 2022-06-28 2022-09-16 安徽理工大学 一种超煤层开采沿空充填留巷封存co2的防灭火方法
CN115559728A (zh) * 2022-11-10 2023-01-03 中国矿业大学(北京) 无煤柱自成巷平衡开采方法与装备
CN116165071A (zh) * 2023-04-21 2023-05-26 中国矿业大学(北京) 岩体碎胀特性测试系统与方法
CN116696348A (zh) * 2023-08-01 2023-09-05 云南滇东雨汪能源有限公司 射孔预裂切顶沿空留巷方法及注浆设备

Similar Documents

Publication Publication Date Title
WO2016206616A1 (zh) 无巷道无煤柱自留巷开采工法的装备系统
US11008860B2 (en) Equipment system for no-roadway no-coal-pillar retained roadway mining method
AU2013358812B2 (en) Solid-filling coal mining method with two pre-excavated tunnels for advancing
CN106930763B (zh) 一种充填复采特厚煤层残采区护巷煤柱的方法
WO2016206618A1 (zh) 长壁开采n00工法
CN104847355B (zh) 中厚急倾斜矿体空场连续开采方法
CN109209382B (zh) 无煤柱无掘巷z型工作面回采方法
CN111878080B (zh) 煤矿综采工作面的设备回撤及回撤通道自成巷的方法
CN106593501A (zh) 无巷道无煤柱自留巷开采工法的防尘防冲支架及装备系统
CN104234749B (zh) 一种综采工作面大断面回撤通道围岩控制方法
CN105952453B (zh) 长壁前进式煤层工作面机械化无巷开采成套设备
CN103470261A (zh) 综采放顶煤采空区原巷道顶板下沿空掘巷的方法
MX2012009756A (es) Mineria de explotacion subterranea.
CN103643979A (zh) 用于巷道临时支护的液压支架及其架设、使用方法
CN102536229A (zh) 掘、护、锚平行作业系统与施工工艺
CN109538224A (zh) 一种新型煤巷快速掘进机
CN111379561B (zh) 采煤系统及基于该采煤系统的无煤柱自成巷开采方法
CN104265294A (zh) 大倾角煤层炮采面无煤柱开采技术
CN109882172A (zh) 一种切落直接顶做巷旁支护墙体的沿空留巷方法
CN209494569U (zh) 一种新型煤巷快速掘进机
CN109882189B (zh) 一种适用于断层破碎带的马蹄形半断面盾构机及施工方法
CN115637978A (zh) 一种保护煤柱下垮落转充填开采与沿空留巷的方法
CN113006797B (zh) 一种地表沟谷径流下煤层局部充填减损开采方法
Lind Coal pillar extraction experiences in New South Wales
Goel Tunnel boring machine in the Himalayan tunnels

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16813732

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: A201800639

Country of ref document: UA

Ref document number: 201890132

Country of ref document: EA

122 Ep: pct application non-entry in european phase

Ref document number: 16813732

Country of ref document: EP

Kind code of ref document: A1