WO2016206483A1 - 数据的传输方法及装置 - Google Patents

数据的传输方法及装置 Download PDF

Info

Publication number
WO2016206483A1
WO2016206483A1 PCT/CN2016/081437 CN2016081437W WO2016206483A1 WO 2016206483 A1 WO2016206483 A1 WO 2016206483A1 CN 2016081437 W CN2016081437 W CN 2016081437W WO 2016206483 A1 WO2016206483 A1 WO 2016206483A1
Authority
WO
WIPO (PCT)
Prior art keywords
cca
base station
subframe
uplink data
data transmission
Prior art date
Application number
PCT/CN2016/081437
Other languages
English (en)
French (fr)
Inventor
李新彩
苟伟
赵亚军
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US15/739,694 priority Critical patent/US20180192442A1/en
Priority to EP16813599.4A priority patent/EP3316650A4/en
Publication of WO2016206483A1 publication Critical patent/WO2016206483A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0808Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using carrier sensing, e.g. as in CSMA
    • H04W74/0825Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using carrier sensing, e.g. as in CSMA carrier sensing with collision detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0808Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using carrier sensing, e.g. as in CSMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0808Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using carrier sensing, e.g. as in CSMA
    • H04W74/0816Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using carrier sensing, e.g. as in CSMA carrier sensing with collision avoidance

Definitions

  • the present application relates to, but is not limited to, the field of communications, and in particular, to a method and an apparatus for transmitting data.
  • LTE Long Term Evolution
  • LTE faces many problems when it uses unlicensed carriers.
  • LBT Listening to Talk
  • CCA Clear Channel Assessment
  • FBE frame-based equipment
  • LBE load-based equipment
  • FBE mode the location of the CCA is fixed every time, and only the initial CCA needs to be performed once, so the timing is easy, and the same carrier's site can achieve the same frequency reuse through deployment.
  • duration of each transmission is also fixed, and there is no random backoff.
  • the location of the CCA every time can start from any time.
  • LTE has no final conclusion on how to perform LBT and data transmission frame structure for uplink data transmission during unauthorized operation.
  • the uplink of the authorized-assisted access when the same base station schedules multiple users, the following problem occurs: in the case that the user performs the LBT unsynchronization, the first user who successfully competes is at the CCA. If the data is sent immediately after the end, the user equipment (UE, User Equipment) fails to perform CCA detection on the channel, that is, other UEs cannot perform uplink data transmission, which makes it difficult to implement uplink multi-user multiplexing.
  • UE User Equipment
  • the subframe is the uplink subframe in which the SRS transmission is located, if the channel sounding reference signal (SRS) is still transmitted in the last symbol, it will affect other user CCA detection.
  • SRS channel sounding reference signal
  • the embodiments of the present invention provide a data transmission method and apparatus, to solve at least the problem of how an uplink UE performs LBT and implements multi-user frequency multiplexing when the LTE system operates in an unlicensed carrier frequency band in the related art.
  • a data transmission method including: a base station sends configuration signaling to the user equipment (UE), where the configuration signaling carries an idle channel of the UE A parameter of the evaluation (CCA) and a parameter of the uplink transmission of the UE; the base station receives uplink data that is sent by the UE according to the configuration signaling.
  • UE user equipment
  • CCA parameter of the evaluation
  • the parameter of the CCA includes at least one of: a symbol position starting from the CCA configured by the base station for the UE, an extended CCA backoff value N, and a window length CW of the CCA;
  • the parameter of the uplink transmission includes at least one of the following: carrier indication information, subframe position indication information, and physical resource blocks allocated by each subframe configured by the base station for the UE to perform data transmission on an unlicensed carrier ( PRB) Location and Number, Modulation and Coding Strategy (MCS), Hybrid Automatic Repeat Request (HARQ) process number.
  • PRB unlicensed carrier
  • MCS Modulation and Coding Strategy
  • HARQ Hybrid Automatic Repeat Request
  • the parameter of the CCA and the parameter of the uplink transmission are determined by: the base station determining, according to the multiple carrier measurement results reported by the UE, the parameter, the carrier indication information, and the location of the CCA. Said MCS; or, the base station determines the parameters of the CCA according to the statistical result; or the base station gives the UE that is scheduled to the same subframe and geographically separated within a predefined range Configuring the same CCA parameter or the same CCA parameter set; or, the base station determines a CCA parameter of each UE according to the service type or priority of the UE; when the base station schedules multiple UEs to perform in the same subframe During data transmission, the base station indicates that the multiplexed UE performs the initial CCA only once at a predefined time; when one subframe only schedules one UE, the base station configures the UE to adopt the CCA mode of the initial CCA plus extended CCA.
  • the configuring, by the base station, the CCA parameter of the UE includes: configuring, by the base station, that a difference between a start position of the CCA and a start time of the data transmission is a length of an initial CCA; or The base station configures that the difference between the initial time when the UE performs CCA and the start time of the data transmission is equal to the length of the initial CCA plus the unit duration of the M extended CCAs, where the M is a predefined integer greater than or equal to 0.
  • the difference between the time when the base station configures the UE to start performing the CCA and the start time of the data transmission is equal to the length of the initial CCA plus the backoff value N plus the unit duration of the K execution extended CCAs,
  • the K is a predefined integer value greater than or equal to 0.
  • the location of the subframe in which the uplink data is transmitted is determined by using one of the following: each subframe position where the uplink data transmission is located is determined according to a predefined timing relationship with an uplink grant; or, the uplink data is The first subframe position of the transmission is determined according to the predefined timing relationship with the uplink grant, and the remaining subframes are determined according to the subframe position indication information in the configuration signaling; or, all subframes of the uplink data transmission The locations are all determined according to the subframe position indication information in the configuration signaling.
  • the receiving, by the base station, the uplink data sent by the UE according to the configuration signaling includes: the base station receiving, by the UE, starting transmission from a first orthogonal frequency division multiplexing (OFDM) symbol of a subframe boundary.
  • the uplink data is received by the base station; or the base station receives the uplink data that the UE starts to transmit after the first complete OFDM symbol succeeds in the CCA; or the base station receives the UE successfully in the CCA.
  • OFDM orthogonal frequency division multiplexing
  • the downlink control information (DCI) of the multiple subframes is carried by a physical downlink control channel (PDCCH), where the multiple subframe position indication information Indicated as a bitmap, or the plurality of subframe positions are indicated by a starting subframe and a number of consecutive subframes.
  • DCI downlink control information
  • PDCCH physical downlink control channel
  • the configuration signaling is DCI signaling and/or radio resource control (RRC) signaling.
  • RRC radio resource control
  • a method for transmitting data includes: receiving, by a user equipment (UE), configuration signaling sent by a base station, where the configuration signaling carries an idle channel assessment of the UE a parameter of the (CCA) and a parameter of the uplink transmission of the UE; the UE sends uplink data to the base station according to the configuration signaling.
  • UE user equipment
  • the parameter of the CCA includes at least one of: a symbol position starting from the CCA configured by the base station for the UE, an extended CCA backoff value N, and a window length CW of the CCA;
  • the parameter of the uplink transmission includes at least one of the following: carrier indication information, subframe position indication information, and physical resource blocks allocated by each subframe configured by the base station for the UE to perform data transmission on an unlicensed carrier ( PRB) Location and Number, Modulation and Coding Strategy (MCS), Hybrid Automatic Repeat Request (HARQ) process number.
  • PRB unlicensed carrier
  • MCS Modulation and Coding Strategy
  • HARQ Hybrid Automatic Repeat Request
  • the sending, by the UE, the uplink data to the base station according to the configuration signaling includes:
  • the UE When the value of the backoff value or the counter has been reduced to 0 before the uplink data transmission, the UE continues to perform the CCA until the uplink data transmission start boundary, and the channel is idle to send the uplink data. Or the UE enters a waiting state until the uplink data transmission moment transmits the uplink data; or the UE first waits to perform an initial CCA or unit length again at a predefined time before the uplink data transmission
  • the extended CCA the uplink data is sent after the initial CCA or the extended CCA of the unit length is successfully executed; or the UE sends an occupancy signal, where the time domain length or energy of the occupied signal is less than a predefined threshold;
  • the UE When the UE reaches the time when the uplink data is transmitted according to the predefined timing relationship of the uplink grant, and the value of the counter is not reduced to 0, the UE abandons the transmission of the uplink data, and clears the counter. The value re-executes the CCA; or, the UE does not clear the value of the counter, continues to perform CCA, and performs transmission of the uplink data until the value of the counter of the scheduled subsequent subframe boundary is reduced to zero.
  • the sending, by the UE, the uplink data to the base station according to the configuration signaling includes:
  • the UE After performing the initial CCA success, the UE directly sends the retransmitted uplink data or the uplink data with high priority, wherein the uplink data with high priority includes response (ACK) or non-acknowledgement (NACK) information, and channel state feedback.
  • ACK response
  • NACK non-acknowledgement
  • CSI channel sounding reference signal
  • PRACH physical random access channel
  • UE Transmitting, by the UE, the uplink data according to a random backoff value generated by the predefined contention window or the variable contention window or a backoff value configured by the base station, where the UE is configured for cross-carrier scheduling.
  • the sending, by the UE, the uplink data to the base station according to the configuration signaling includes:
  • the UE When the UE continuously schedules multiple subframes, the UE performs CCA once before the first transmission subframe, and after the execution succeeds, transmits the uplink data in consecutive multiple subframes that meet the occupied time; if the subsequent subframes And the UE scheduling, where the UE receives the indication signaling sent by the base station, where the indication signaling is used to notify the UE that transmits the uplink data that the last symbol of the subframe is spared for a predefined time domain length. Or indicating the time domain length for other UE CCAs, and destroying the physical uplink shared channel (PUSCH) of the corresponding location; or
  • PUSCH physical uplink shared channel
  • the UE performs CCA on the remaining RBs after the RB of the continuous transmission UE is removed according to the scheduled transmission of the next subframe by the base station;
  • the UE performs uplink data transmission in the next subframe according to the scheduling of the base station to send the indication information.
  • the method further includes: when the UE does not receive the CCA parameter sent by the base station, the UE selects the CCA mode and its parameters to perform CCA.
  • the manner in which the UE performs CCA includes at least one of the following:
  • Each K subframes includes only one initial CCA, and the CCA is located at the last symbol position of the subframe or the first symbol position of the subframe;
  • the initial CCA and the extended CCA are included in every K subframes, where the initial location of the initial CCA is a predefined value, or is configured by the base station, and the difference between the location of the initial CCA and the initial time of the data transmission is the duration of the initial CCA. Plus M extended CCA unit durations;
  • K is an integer greater than or equal to 1
  • M is greater than or equal to the backoff value N of the extended CCA
  • N is configured by the base station or is a predefined value, or the UE randomly selects from [0, CW], the CW is a predefined value, or the CW is a variable value adjusted according to the feedback result of the base station or performs CCA according to the UE.
  • the variable value of the detection result adjustment is configured by the base station or is a predefined value, or the CW is a variable value adjusted according to the feedback result of the base station or performs CCA according to the UE.
  • the length of the initial CCA and the unit duration of the extended CCA are predefined values.
  • the subframe structure transmitted by the UE includes one of the following:
  • the silent pattern is cell-specific;
  • the SRS is sent after the CCA is successfully executed, and the position before the uplink data transmission subframe is transmitted.
  • a data transmission apparatus which is applied to a base station side, and includes: a first sending module, configured to send configuration signaling to a UE, where the configuration signaling carries a parameter of the CCA of the UE and a parameter of the uplink transmission of the UE; the first receiving module is configured to receive uplink data that is sent by the UE according to the configuration signaling.
  • a data transmission apparatus which is applied to a user equipment (UE) side, and includes: a second receiving module, configured to receive configuration signaling sent by a base station, where the configuration The signaling carries the parameters of the CCA of the UE and the parameters of the uplink transmission of the UE.
  • the second sending module is configured to send uplink data to the base station according to the configuration signaling.
  • the embodiment of the present invention further provides a computer readable storage medium storing computer executable instructions, which are implemented to implement a data transmission method applied to a base station side.
  • the embodiment of the present invention further provides a computer readable storage medium storing computer executable instructions, which are implemented to implement a data transmission method applied to a user equipment side.
  • the base station sends configuration signaling to the UE, where the configuration signaling carries the parameters of the CCA of the UE and the parameters of the uplink transmission of the UE, and then the base station receives the uplink data sent by the UE according to the configuration signaling.
  • the method solves the problem that the uplink UE performs the LBT and implements the multi-user frequency multiplexing when the LTE system operates in the unlicensed carrier frequency band in the related art, and improves the spectrum efficiency.
  • FIG. 1 is a flowchart 1 of a method of transmitting data according to an embodiment of the present invention
  • FIG. 2 is a second flowchart of a method for transmitting data according to an embodiment of the present invention
  • FIG. 3 is a block diagram 1 of a structure of a data transmission apparatus according to an embodiment of the present invention.
  • FIG. 4 is a block diagram 2 of a structure of a data transmission apparatus according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of an LBT mechanism of a frame-based device (FBE) according to an alternative embodiment of the present application;
  • LBT load-based device
  • FIG. 7 is a schematic diagram of a data transmission manner in an optional embodiment 2 of the present application.
  • FIG. 8 is a schematic diagram of resource contention and data transmission mode in an optional third embodiment of the present application.
  • FIG. 9 is a schematic diagram of resource contention and data transmission mode in an optional embodiment 4 of the present application.
  • FIG. 10 is a schematic diagram of site resource competition and data transmission in an optional embodiment 5 of the present application.
  • 11 is a schematic diagram of uplink data transmission in an optional embodiment 6 of the present application.
  • FIG. 12 is a schematic diagram of an uplink subframe transmission mechanism in an optional seventh embodiment of the present application.
  • FIG. 13 is a schematic diagram of an uplink transmission mechanism of two UEs in an optional embodiment 8 of the present application.
  • FIG. 14 is a schematic diagram of a method for transmitting SRS subframes in an optional embodiment 9 of the present application.
  • 15 is a schematic diagram of a method for transmitting an uplink subframe in an optional embodiment 9 of the present application.
  • 16 is a flowchart of an implementation of a terminal side according to an alternative embodiment 10 of the present application.
  • FIG. 17 is a flowchart of an implementation of a base station side according to an alternative embodiment 11 of the present application.
  • FIG. 1 is a flowchart 1 of a data transmission method according to an embodiment of the present invention. As shown in FIG. 1, the method includes the following steps:
  • Step S102 The base station sends configuration signaling to the user equipment (UE), where the configuration signaling carries the parameters of the idle channel assessment (CCA) of the UE and the parameters of the uplink transmission of the UE.
  • UE user equipment
  • Step S104 The base station receives uplink data sent by the UE according to the configuration signaling.
  • the base station is configured to send configuration signaling to the UE, where the configuration signaling carries the parameters of the CCA of the UE and the parameters of the uplink transmission of the UE, and then the base station receives the UE according to the configuration signaling.
  • the uplink data method solves the problem of how the uplink UE performs LBT and implements multi-user frequency multiplexing when the LTE system operates in the unlicensed carrier frequency band in the related art, and improves the spectrum efficiency.
  • the parameters of the CCA involved in this embodiment may include at least one of the following: a symbol position starting from a CCA configured by the base station for the UE, an extended CCA backoff value N, and a window length CW of the CCA;
  • the parameter of the uplink transmission may include at least one of the following: carrier indication information configured by the base station for the UE to perform data transmission on the unlicensed carrier, subframe position indication information, and physical resource block allocated by each subframe (PRB, Physical Resource) Block) Location and location Number, Modulation and Coding Scheme (MCS), Hybrid Automatic Repeat reQuest (HARQ) process number.
  • the parameter of the CCA and the parameter of the uplink transmission may be determined by using one of the following methods: the base station determines the parameter of the CCA, the carrier indication information, and the MCS according to the multiple carrier measurement results reported by the UE; Or, the base station determines the parameters of the CCA according to the statistical result; or, the base station configures the same CCA parameter or the same CCA parameter set for the UEs that are scheduled to the same subframe and whose geographical distance is within a predefined range; or, the base station according to the service of the UE Type or priority to determine the CCA parameters of each UE; when the base station schedules multiple UEs to perform data transmission in the same subframe, the base station indicates that the multiplexed UE performs the initial CCA only once at a predefined time; when one subframe only When scheduling one UE, the base station configures the UE to adopt the CCA mode of initial CCA plus extended CCA.
  • the CCA parameters of the base station configured by the UE in this embodiment include: the base station configures the difference between the start position of the CCA performed by the UE and the start time of the data transmission as the length of an initial CCA; or, the base station The difference between the initial time when the UE performs CCA and the start time of the data transmission is equal to the length of the initial CCA plus the unit duration of the M extended CCAs, where M is a predefined integer value greater than or equal to 0; or, the base station configuration The difference between the time when the UE starts to perform CCA and the start time of data transmission is equal to the length of the initial CCA plus the backoff value N plus the unit duration of K performing extended CCA, where K is a predefined integer greater than or equal to 0. value.
  • the location of the subframe where the uplink data transmission is involved in the embodiment is determined by using one of the following manners: each subframe position where the uplink data transmission is performed is determined according to a predefined timing relationship with the uplink grant; or, uplink The first subframe position of the data transmission is determined according to a predefined timing relationship with the uplink grant, and the remaining subframes are determined according to the subframe position indication information in the configuration signaling; or, all subframe positions of the uplink data transmission are in accordance with the configuration information.
  • the subframe position indication information in the order is determined.
  • the base station may receive uplink data that is sent by the UE according to the configuration signaling in the following manner: the base station receives the first orthogonal frequency division multiplexing (OFDM, Orthogonal) of the UE from the subframe boundary. Frequency Division Multiplexing) The uplink data of the symbol begins to be transmitted; or, the base station receives the uplink data of the first complete OFDM symbol that the UE starts to transmit after the CCA succeeds; or, the base station receives the uplink data that the UE starts to transmit after the CCA succeeds.
  • OFDM Orthogonal frequency division multiplexing
  • the downlink control information (DCI, Downlink Control Information) of the multiple subframes passes through a physical downlink control channel (PDCCH,
  • the Physical Downlink Control Channel is a bearer in which a plurality of subframe position indication information is a bitmap indication, or a plurality of subframe positions are indicated by a starting subframe and a number of consecutive subframes.
  • configuration signaling involved in this embodiment is DCI signaling and/or radio resource control (RRC) signaling.
  • RRC radio resource control
  • FIG. 2 is a second flowchart of a method for transmitting data according to an embodiment of the present invention. As shown in FIG. 2, the method includes the following steps:
  • Step S202 The user equipment (UE) receives the configuration signaling sent by the base station, where the configuration signaling carries the parameters of the idle channel assessment (CCA) of the UE and the parameters of the uplink transmission of the UE.
  • CCA idle channel assessment
  • Step S204 The UE sends uplink data to the base station according to the configuration signaling.
  • the parameters of the CCA involved in this embodiment may include at least one of the following: a symbol position starting from a CCA configured by the base station for the UE, an extended CCA backoff value N, and a window length CW of the CCA;
  • the parameter of the uplink transmission may include at least one of the following: carrier indication information configured by the base station for the UE to perform data transmission on the unlicensed carrier, subframe position indication information, physical resource block (PRB) position allocated by each subframe, and Number, Modulation and Coding Strategy (MCS), Hybrid Automatic Repeat Request (HARQ) process number.
  • the UE may send uplink data to the base station according to the configuration signaling in the following manner:
  • the UE When the value of the backoff value or the counter has been reduced to 0 before the uplink data transmission, the UE continues to perform CCA until the uplink data transmission start boundary, and the channel is idle to transmit the uplink data; or the UE enters the waiting state until the uplink data transmission time And transmitting the uplink data; or the UE first waits to perform the initial CCA or the extended CCA of the unit length again at a predefined time before the uplink data transmission, and sends the uplink data after the initial CCA or the extended CCA of the unit length is successfully executed; or the UE Sending an occupancy signal, wherein the time domain length or energy of the occupied signal is less than a predefined threshold;
  • the UE When the UE reaches the time when the uplink data is transmitted according to the predefined timing relationship of the uplink grant, and the value of the counter is not reduced to 0, the UE abandons the transmission of the uplink data, clears the value of the counter, and re-executes the CCA; or, the UE is unclear.
  • the value of the zero counter continues to execute CCA until the value of the scheduled subsequent subframe boundary counter is reduced to zero, and the transmission of the uplink data is performed.
  • the UE sends an uplink to the base station according to the configuration signaling.
  • the way of data can be achieved by:
  • the UE After performing the initial CCA success, the UE directly sends the retransmitted uplink data or the uplink data with high priority, wherein the uplink data with high priority includes: response (ACK) or non-acknowledgement (NACK) information, channel state feedback information. (CSI, Channel State Information), Channel Sounding Reference Signal (SRS), and Physical Random Access Channel (PRACH);
  • ACK response
  • NACK non-acknowledgement
  • CSI Channel State Information
  • SRS Channel Sounding Reference Signal
  • PRACH Physical Random Access Channel
  • the UE After performing the CCA success according to the pre-defined or configured contention window size or the configured back-off value, the UE sends uplink data or uplink data of the self-scheduling UE.
  • the UE After successfully performing CCA according to the random backoff value generated by the pre-defined contention window or the variable contention window or the back-off value configured by the base station, the UE sends uplink data, where the UE is a cross-carrier scheduled UE.
  • the manner in which the UE sends the uplink data to the base station according to the configuration signaling may be implemented as follows:
  • the UE When the UE continuously schedules multiple subframes, the UE performs CCA once before the first transmission subframe, and after the execution succeeds, transmits uplink data in consecutive multiple subframes that meet the occupied time; if the subsequent subframes also have UE scheduling, the UE Receiving the indication signaling sent by the base station, where the indication signaling is used to notify the UE transmitting the uplink data that the last symbol of the subframe is freed by a predefined time domain length or the time domain length for the other UE CCA, and The physical uplink shared channel (PUSCH, Physical Uplink Shared Channel) corresponding to the location is destroyed; or,
  • PUSCH Physical Uplink Shared Channel
  • the UE performs CCA at the PRB location where the scheduling is performed according to the scheduling of the next subframe indicated by the base station;
  • the UE performs CCA on the remaining RBs after the system bandwidth is removed from the resource block (RB, Resource Block) in which the UE is continuously transmitted according to the scheduled transmission of the next subframe by the base station; or
  • the UE performs uplink data transmission in the next subframe according to the scheduling of the base station transmitting the indication information.
  • the method in this embodiment may further include: when the UE does not receive the CCA parameter sent by the base station, the UE selects the CCA mode and its parameters to perform CCA.
  • the manner in which the UE performs CCA includes at least one of the following:
  • each K subframe includes only one initial CCA, and the CCA is located at the last of the subframe.
  • the initial CCA and the extended CCA are included in every K subframes, where the initial location of the initial CCA is a predefined value, or is configured by the base station, and the difference between the initial CCA location and the initial time of the data transmission is the initial CCA.
  • K is an integer greater than or equal to 1
  • M is greater than or equal to the backoff value N of the extended CCA
  • N is configured by the base station or is a predefined value, or the UE randomly selects from [0, CW], the CW is predefined
  • the value, or CW is a variable value adjusted according to the feedback result of the base station or a variable value adjusted according to the UE performing the CCA detection result; the length of the initial CCA and the unit duration of the extended CCA are predefined values.
  • the subframe structure transmitted by the UE includes one of the following:
  • the UE transmits an SRS in the last symbol of the subframe, where the subframe is used to cancel the free area of the CCA; the other UEs scheduled in the next subframe transmit by detecting the location where the SRS is scheduled in the next subframe; or, the subframe
  • the transmitted UE performs the subframes of the UE to be transmitted in the next subframe in a silent manner by using a predefined symbol resource unit (RE, Resource Element), wherein the pattern of the predefined symbol RE silence is cell-specific;
  • RE Resource Element
  • a physical uplink shared channel (PUSCH) of one symbol plus a CCA length is deleted at the end of the uplink subframe, where the beaten PUSCH position is used to send the SRS and the UE performs CCA;
  • PUSCH physical uplink shared channel
  • the SRS is sent to the first or a predefined symbol position of the subframe, where the end of the subframe is a free area, and is used by the UE to perform CCA;
  • the SRS is sent after the CCA is successfully executed and the position before the uplink data transmission subframe.
  • a data transmission device is also provided, which is used to implement the foregoing embodiments and optional implementations, and details are not described herein.
  • the term "module” may implement a combination of software and/or hardware of a predetermined function.
  • the devices described in the following embodiments are optionally implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • the first sending module 32 is configured to send the configuration signaling to the user equipment (UE), where the configuration signaling carries the parameters of the idle channel assessment (CCA) of the UE and the parameters of the uplink transmission of the UE;
  • UE user equipment
  • CCA idle channel assessment
  • the first receiving module 34 is coupled to the first sending module 32 and configured to receive uplink data sent by the UE according to the configuration signaling.
  • the parameter of the CCA involved in this embodiment may include at least one of the following: a symbol position started by the base station for configuring the CCA for the UE, an extended CCA backoff value N, and a window length CW of the CCA;
  • the parameter of the uplink transmission may include at least one of the following: carrier indication information configured by the base station for the UE to perform data transmission on the unlicensed carrier, subframe position indication information, physical resource block (PRB) location allocated for each subframe, and Number, Modulation and Coding Strategy (MCS), Hybrid Automatic Repeat Request (HARQ) process number.
  • the base station may determine the parameters of the CCA and the parameters of the uplink transmission by using one of the following methods: the base station determines the CCA parameters and the carrier indication information according to the multiple carrier measurement results reported by the UE. Or the MCS; or, the base station determines the parameters of the CCA according to the statistical result; or, the base station configures the same CCA parameter or the same CCA parameter set for the UEs that are scheduled to the same subframe and whose geographical distance is within a predefined range; or, the base station according to The service type or priority of the UE is used to determine the CCA parameters of each UE; when the base station schedules multiple UEs to perform data transmission in the same subframe, the base station indicates that the multiplexed UE performs only the initial CCA at a predefined time; When a subframe is scheduled only for one UE, the base station configures the UE to adopt the CCA mode of the initial CCA plus extended CCA.
  • the CCA parameters of the base station configured by the UE in this embodiment include: the base station configures the difference between the start position of the CCA performed by the UE and the start time of the data transmission as the length of an initial CCA; or, the base station The difference between the initial time when the UE performs CCA and the start time of the data transmission is equal to the length of the initial CCA plus the unit duration of the M extended CCAs, where M is a predefined integer value greater than or equal to 0; or, the base station configuration The difference between the time when the UE starts to perform CCA and the start time of data transmission is equal to the length of the initial CCA plus the backoff value N plus the unit duration of K performing extended CCA, where K is a predefined integer greater than or equal to 0. value.
  • the location of the subframe where the uplink data transmission is involved in the embodiment is determined by one of the following methods: each subframe position where the uplink data transmission is in accordance with the predefined with the uplink grant The timing relationship is determined; or, the first subframe position of the uplink data transmission is determined according to a predefined timing relationship with the uplink grant, and the remaining subframes are determined according to the subframe position indication information in the configuration signaling; or, all of the uplink data transmission The subframe positions are all determined according to the subframe position indication information in the configuration signaling.
  • the first receiving module 34 is configured to implement, by using the following manner, uplink data sent by the receiving UE according to the configuration signaling: receiving the first orthogonal frequency division of the UE from the subframe boundary. And multiplexing (OFDM) symbols to start transmitting uplink data; or, receiving uplink data of the first complete OFDM symbol that the UE starts to transmit after the CCA succeeds; or receiving uplink data that the UE starts to transmit after the CCA succeeds.
  • OFDM orthogonal frequency division of the UE
  • the downlink control information (DCI) of the multiple subframes is carried by a physical downlink control channel (PDCCH), where the multiple subframe position indication information is a bitmap.
  • the indication, or multiple subframe positions, is indicated by the starting subframe and the number of consecutive subframes.
  • configuration signaling involved in this embodiment is DCI signaling and/or radio resource control (RRC) signaling.
  • RRC radio resource control
  • FIG. 4 is a block diagram of a data transmission apparatus according to an embodiment of the present invention, which is applied to a user equipment side. This embodiment corresponds to the method embodiment of FIG. 2. As shown in FIG. 4, the apparatus includes:
  • the second sending module 44 is coupled to the second receiving module 42 and configured to send uplink data to the base station according to the configuration signaling.
  • the parameter of the CCA involved in this embodiment may include at least one of the following: a symbol position starting from a CCA configured by the base station for the UE, an extended CCA backoff value N, and a window length CW of the CCA;
  • the parameter for the uplink transmission involved in this embodiment may include at least one of the following: carrier indication information, subframe position indication information, and physical allocation of each subframe configured by the base station for the UE on the unlicensed carrier.
  • Resource Block (PRB) location and number Resource Block (PRB) location and number, Modulation and Coding Policy (MCS), Hybrid Automatic Repeat Request (HARQ) process number.
  • MCS Modulation and Coding Policy
  • HARQ Hybrid Automatic Repeat Request
  • the second sending module 44 is configured to send uplink data to the base station according to the configuration signaling in the following manner:
  • the UE When the value of the backoff value or the counter has been reduced to 0 before the uplink data transmission, the UE continues to perform CCA until the uplink data transmission start boundary, and the channel is idle to transmit the uplink data; or the UE enters the waiting state until the uplink data transmission time And transmitting the uplink data; or the UE first waits to perform the initial CCA or the extended CCA of the unit length again at a predefined time before the uplink data transmission, and sends the uplink data after the initial CCA or the extended CCA of the unit length is successfully executed; or the UE Sending an occupancy signal, wherein the time domain length or energy of the occupied signal is less than a predefined threshold;
  • the UE When the UE reaches the time when the uplink data is transmitted according to the predefined timing relationship of the uplink grant, and the value of the counter is not reduced to 0, the UE abandons the transmission of the uplink data, clears the value of the counter, and re-executes the CCA; or, the UE is unclear.
  • the value of the zero counter continues to execute CCA until the value of the scheduled subsequent subframe boundary counter is reduced to zero, and the transmission of the uplink data is performed.
  • the second sending module 44 is configured to send uplink data to the base station according to the configuration signaling in the following manner:
  • the UE After performing the initial CCA success, the UE directly sends the retransmitted uplink data or the uplink data with high priority, wherein the uplink data with high priority includes: response (ACK) or non-acknowledgement (NACK) information, channel state feedback information. (CSI), channel sounding reference signal (SRS), and physical random access channel (PRACH);
  • ACK response
  • NACK non-acknowledgement
  • CSI channel state feedback information
  • SRS channel sounding reference signal
  • PRACH physical random access channel
  • the UE After performing the CCA success according to the pre-defined or configured contention window size or the configured back-off value, the UE sends uplink data or uplink data of the self-scheduling UE.
  • the UE After successfully performing CCA according to the random backoff value generated by the pre-defined contention window or the variable contention window or the back-off value configured by the base station, the UE sends uplink data, where the UE is a cross-carrier scheduled UE.
  • the second sending module 44 is configured to send uplink data to the base station according to the configuration signaling in the following manner:
  • the UE When the UE continuously schedules multiple subframes, the UE performs CCA once before the first transmission subframe, and after the execution succeeds, transmits uplink data in consecutive multiple subframes that meet the occupied time; if the subsequent subframes also have UE scheduling, the UE Receiving the indication signaling sent by the base station, where the indication signaling is used to notify the UE transmitting the uplink data that the last symbol of the subframe is freed by a predefined time domain length or the time domain length for the other UE CCA, and Destroy the physical uplink shared channel (PUSCH) of the corresponding location; or,
  • PUSCH physical uplink shared channel
  • the UE performs CCA at the PRB location where the scheduling is performed according to the scheduling of the next subframe indicated by the base station;
  • the UE performs CCA on the remaining RBs after the system bandwidth removes the RB in which the UE is continuously transmitted according to the scheduled transmission of the next subframe indicated by the base station;
  • the UE performs uplink data transmission in the next subframe according to the scheduling of the base station transmitting the indication information.
  • the UE when the UE does not receive the CCA parameters sent by the base station, the UE selects the CCA mode and its parameters to perform CCA.
  • the manner in which the UE performs CCA includes at least one of the following:
  • each K subframe includes only one initial CCA, and the CCA is located at the last symbol position of the subframe or the first symbol position of the subframe;
  • the initial CCA and the extended CCA are included in every K subframes, where the initial location of the initial CCA is a predefined value, or is configured by the base station, and the difference between the initial CCA location and the initial time of the data transmission is the initial CCA.
  • K is an integer greater than or equal to 1
  • M is greater than or equal to the backoff value N of the extended CCA
  • N is configured by the base station or is a predefined value, or the UE randomly selects from [0, CW], the CW is predefined
  • the value, or CW is a variable value adjusted according to the feedback result of the base station or a variable value adjusted according to the UE performing the CCA detection result; the length of the initial CCA and the unit duration of the extended CCA are predefined values.
  • the subframe structure transmitted by the UE includes one of the following:
  • the UE transmits an SRS in the last symbol of the subframe, where the subframe is used to cancel the free area of the CCA; the other UEs scheduled in the next subframe transmit by detecting the location where the SRS is scheduled in the next subframe; or, the subframe
  • the transmitted UE causes the other subframes to schedule the UE to transmit in the next subframe by using the predefined symbol RE silently, wherein the pattern of the predefined symbol RE silence is cell-specific;
  • a physical uplink shared channel (PUSCH) of one symbol plus a CCA length is deleted at the end of the uplink subframe, where the beaten PUSCH position is used to send the SRS and the UE performs CCA;
  • PUSCH physical uplink shared channel
  • the SRS is sent to the first or a predefined symbol position of the subframe, where the end of the subframe is a free area, and is used by the UE to perform CCA;
  • the SRS is sent after the CCA is successfully executed and the position before the uplink data transmission subframe.
  • the base station sends a scheduling signaling DCI to the scheduling UE, where the scheduling signaling includes: multiple subframe indication information of the UE for data transmission, and specific frequency domain resource location indication, carrier indication, and other scheduling information in each subframe.
  • the base station may also configure the scheduling UE with CCA related parameters, such as a CCA start position and/or a backoff value.
  • CCA related parameters such as a CCA start position and/or a backoff value.
  • the base station configures the same CCA start position and/or backoff value or configures the same CCA parameter set for the UEs whose geographical distances in the same subframe are less than the predefined threshold.
  • the base station determines, according to the service type and priority of the scheduling UE, related parameters of the LBT performed by the UE.
  • the base station determines related parameters of the LBT according to the number of scheduled UEs in the same subframe.
  • the UE before the base station determines the scheduled transmission parameter, the UE performs measurement on the multiple unlicensed carriers and feeds back the result to the base station.
  • the result is used by the base station to determine a specific carrier index scheduled by each UE, and to schedule UEs in the same subframe of the same carrier, and the base station configures eCCA for these UEs (if there is extended clear channel assessment (eCCA))
  • eCCA extended clear channel assessment
  • the resources of the UE are determined by using a subframe and a carrier index, for example, starting from n+k (k is a predefined value, n is a time when the base station sends an uplink grant) according to a timing relationship, and continuously scheduling 4 subframes,
  • the frame resource is indicated by signaling 1111 bitmap, or 11 indicates that only the number of consecutively scheduled subframes is given.
  • the first subframe position is determined according to a predefined relationship of uplink grant and data transmission, and the remaining subframes are determined according to the subframe position indication in the scheduling signaling.
  • the PUSCH data is transmitted from the first OFDM symbol of the uplink subframe, or is in the LBT.
  • the first complete OFDM symbol after success begins transmission.
  • the LBT parameter of the base station configuration scheduling UE includes: configuring the starting position of the CCA to be longer than the starting time of the data transmission by an initial CCA; or, configuring the difference between the initial time when the UE performs the CCA and the time of the data transmission is exactly equal to the initial CCA.
  • the length of each unit of eCCA plus M; or, the difference between the time when the UE starts to perform LBT and the time of data transmission is exactly equal to the length of the initial CCA plus the random backoff value N plus n each eCCA
  • the UE continues to perform CCA until the subframe start boundary is sent, or the UE enters a waiting state until the data transmission moment starts to transmit data, Or the UE first waits and then sends the data after the initial CCA or the eCCA of the unit length is executed again at a predefined time before the data transmission, or the UE sends the occupation signal, where the time domain length of the occupied signal is less than the predefined Threshold.
  • the UE abandons the transmission of the subframe, and the N of the counter is cleared, the CCA is re-executed next time, or the UE does not clear N, and continues.
  • CCA if the uplink subframe boundary N of the subsequent scheduling is just reduced to zero, the data transmission is directly performed. Or the UE blindly checks the occupation signal, and recognizes that the UE is the UE at the time of data transmission. Or the UE performs CCA only on the scheduled RBs.
  • the time of data transmission is the boundary of the subframe, and the UE performs uplink transmission according to the subframe structure.
  • the UE when the UE does not receive the LBT-related configuration information sent by the base station, the UE performs CCA according to the predefined LBT manner.
  • the predefined manner is that the UE starts the LBT at k times after receiving the scheduling signaling.
  • the manner in which the UE performs LBT is:
  • the UE starts an initial CCA at a position that is an initial CCA duration before the data transmission, and performs data transmission after the success.
  • the LBT mode may be adopted.
  • the UE starts LBT at an initial CCA duration before the data transmission plus N extended CCA unit durations, and performs data transmission after successful, where N is a predefined value and N is optionally less than or equal to 3.
  • the UE randomly selects a number from [0, CW] as a random backoff value of the LBT, wherein CW is a predefined value, and optionally, CW is less than or equal to 3.
  • the UE randomly selects a number from [0, CW] as a random backoff value of the LBT, wherein the CW is a variable value, and is adjusted according to the feedback result of the base station or the UE's own detection result.
  • the base station configuration or the UE pre-defined adopts the LBT mode.
  • the base station configuration or the UE selects a specific LBT mode according to the data type.
  • the base station configures the CCA only once for the UE; for the initial data, the UE follows the predefined competition window.
  • the size or the predefined random backoff value is CCA.
  • the UE For a cross-carrier scheduled UE, the UE generates a random backoff value or a base station configuration backoff value according to a predefined contention window, or the contention window is variable.
  • the UE may continuously transmit multiple subframes. If there is still UE scheduling, the base station gives the length of the CCA of the last symbol of the UE indicating the signaling notification. Alternatively, the UE scheduled in the next subframe performs CCA only at the PRB location where the scheduling is located. Alternatively, the UE scheduled to transmit in the next subframe performs CCA on the remaining RBs after the system bandwidth removes the RBs of consecutively transmitting UEs. Alternatively, the base station sends indication information to the scheduled UE, and the UE transmits in the next subframe even if the CCA fails.
  • the UE when the UE is performing LBT, when the delay period T arrives, the UE waits, delays performing CCA or data transmission, and the value of T is a predefined value.
  • idle (Idle) area at the end of each uplink transmission subframe, such as an OFDM symbol, for the UE to perform CCA.
  • the UE may continuously transmit multiple subframes. If the next subframe has a scheduled UE, the base station sends an indication to the foregoing UE, and the UE idles the last symbol of the subframe for scheduling. The UE in the next subframe performs CCA success.
  • the transmission subframe structure of the UE adopts one of the following:
  • the first type the SRS is sent in the last symbol of the subframe, and the original Idle area is destroyed by the subframe.
  • the other UEs scheduled in the next subframe can also transmit in the location where the next subframe is scheduled by detecting the SRS.
  • the UE transmitted by the subframe realizes that the other subframes are scheduled to be transmitted by the UE in the next subframe by using a predefined symbol RE muting, wherein the RE muting pattern is cell-specific;
  • the second type a PUSCH with a CCA length is deleted at the end of the uplink subframe, where the beat PUSCH position is used to send the SRS and other UEs to perform CCA;
  • SRS is transmitted at the beginning of the last symbol, and the total length of SRS plus CCA is equal to the length of 1 symbol;
  • the fourth type the SRS is sent to the first or other predefined symbol position of the subframe, and the end of the subframe is still the Idle area, which is used for other UEs to do CCA;
  • the SRS is transmitted after the CCA is successful and before the PUSCH transmission subframe, such as on the Up Pilot Time Slot (UpPTS).
  • UpPTS Up Pilot Time Slot
  • the uplink data is sent in the subframe position where the scheduling is performed, and then the blind detection is performed at the corresponding location according to the predefined timing relationship, or the UE feedbacks whether the base station performs. Data transmission, the base station receives the feedback information and then receives the data.
  • a LBT of a frame-based device (FBE) and a LBT of a load-based device (LBE) are used for a site (a base station, a UE, a home base station, and a relay station).
  • FBE frame-based device
  • LBT load-based device
  • FIG. 5 is a schematic diagram of an LBT mechanism of a frame-based device (FBE) according to an alternative embodiment of the present application.
  • FBE frame-based device
  • the period constitutes a fixed frame period (FP, Frame Period), and the device performs CCA detection during the idle period.
  • FP Fixed Frame Period
  • the channel occupancy time is 1ms to 10ms
  • the idle period is at least 5% of the channel occupation time.
  • the CCA test lasts for at least 20 ⁇ s, and the CCA test can be based on energy detection or based on signal detection.
  • FIG. 6 is a schematic diagram of an LBT mechanism of a load based device (LBE) in accordance with an alternative embodiment of the present application.
  • LBE load based contention
  • load-based contention that is, when there is data transmission demand, the device starts to perform CCA detection. If the channel is found to be idle after performing CCA detection, data transmission can be performed immediately.
  • the detection period that is, X times of CCA detection, the value of X is stored in a counter, wherein the X value is randomly selected from 1 to q, which is called a random backoff value.
  • This optional embodiment describes a process in which the UE performs LBT according to the configuration information.
  • the UE When the behavior is based on the LBT of the FBE, it is assumed that the time when the base station sends the uplink grant (UL grant) is n, and the UE should perform uplink data transmission at the time of n+k according to the timing relationship, where k is a predefined value, such as for FDD ( Frequency Division Duplexing, k is less than or equal to 4.
  • k a predefined value, such as for FDD ( Frequency Division Duplexing, k is less than or equal to 4.
  • k Frequency Division Duplexing
  • k Frequency Division Duplexing
  • k Frequency Division Duplexing
  • the uplink is configured as an LBT-based LBT
  • the base station can also provide the UE with the same CCA start position for the UE scheduled in the same subframe.
  • Configure the same eCCA rollback value N is determined by the base station according to the empirical value or the result reported by the UE, or N is less than or equal to the predefined parameter K, K Optional 3 or 2.
  • the fallback value of each UE is randomly generated by itself.
  • the base station notifies the scheduling UE by using an RRC message or a DCI.
  • the UE performs a CCA starting position as a predefined plurality of locations, and the base station indicates by signaling whether the specific location starts.
  • the starting position of four CCAs is predefined, the last two symbol start boundaries of the subframe, the last half symbol start boundary of the subframe, the last symbol start boundary of the subframe, and the last time slot start boundary of the subframe are The UE is able to perform the location of the CCA.
  • the base station indicates which location is specific by 2-bit signaling, such as 00 indicating starting from the last slot boundary and 01 indicating starting from the last symbol boundary.
  • the UE's backoff value N is randomly generated from [0, M].
  • the UE scheduled in the same subframe performs LBT according to the start timing of the indication signaling CCA.
  • the value of N is decremented by one. Conversely, if it is not successful, the value of N is unchanged.
  • each UE should simultaneously reduce the value of time N at the time of data transmission to 0, and then simultaneously perform data transmission. But there will be exceptions. For example, if the N value of a scheduled UE is still not reduced to 0 at the time of the n+k data transmission, the UE cannot perform data transmission at n+k. And the N value of the UE is cleared, and the next time continues to decrement from the N value in the buffer. If the UE continuously schedules multiple subframes, the UE can ensure transmission in the next subframe. Or the UE restarts from the initial CCA next time, and the value of N returns to the initial value.
  • the occupancy signal sent by other UEs may be blindly detected. If the detection is successful, data transmission may also be performed at the time of data transmission.
  • a scheduled UE has a value of N before a time before the time of n+k data transmission has been reduced To 0, the UE has two options:
  • Manner 1 The UE sends an occupation signal, and the duration of the occupied signal is less than a predefined value, which does not cause other UEs to perform CCA failure, and then waits until the specified data transmission time to perform data transmission;
  • FIG. 7 is a schematic diagram of a data transmission manner in an optional embodiment 2 of the present application.
  • the base station schedules three UEs in the same sub-segment according to the result reported by the UE.
  • Frames, and configure the same CCA start position for the three UEs, the CCA start position and the data transmission subframe satisfy t tiCCA+M*t_ecca and the value of N is configured to 3.
  • these three UEs should be able to complete the eCCA for uplink data transmission at the time of predefined data transmission. However, exceptions may also occur.
  • the exception is handled as follows: For example, if the value of the time N of the data transmission of the UE2 is still not reduced to 0, the first subframe of the UE cannot transmit data, and the UE3 does not arrive at the time of data transmission. If it has been reduced to 0, the UE still does not send data until the data timing is sent.
  • This alternative embodiment describes a method for implementing synchronous data transmission by a multi-user CCA under LBE.
  • n eCCA the time from the time when the data transmission is n eCCA, for example, the value of n takes 1 or 2.
  • the UE that successfully performs the LBE competition in advance waits for the UE that has not successfully competed.
  • the UE that has not successfully competed can complete the LBT within the time, and then the multiple UEs perform uplink data transmission together to implement the FDM (Frequency Division). Multiplexing, frequency division multiplexing).
  • a waiting time point t1, t1 is the unit time length of 2 eCCA from the start position of the data transmission.
  • the UE1 For the UE1 to successfully complete the LBT before the time t1, the UE1 enters a waiting state before the data transmission, waits for the unit duration of the two eCCAs, and then goes to the data transmission. It is only transmitted at the moment. If UE2 still does not complete the LBT before time t1, the UE2 may continue to perform CCA.
  • the UE2 may perform data transmission together with other UEs that complete the LBT earlier, thereby realizing Frequency reuse. For UE3, since the LBT is still not completed before the data transmission, the data transmission cannot be performed at the time of data transmission.
  • the backoff value of the LBT performed by the UE may be configured by the base station, or may be independently generated by the UE.
  • the UE that succeeds in the CCA advance will not be snatched by the WiFi even if it does not send a signal at the waiting time.
  • the base station schedules three UEs to perform data transmission on the same subframe, and the base station configures the UE to perform CCA from a certain moment. Or the UE performs CCA according to a predefined location and a random backoff value N generated independently by itself. Assuming that the random backoff value generated by UE1 is 5 and has been reduced to 0 before the data transmission, the UE1 needs to enter a waiting state, and at a time tcca before the data transmission, such as 20 microseconds, or 10 microseconds, Or 9 microseconds, then perform CCA again.
  • a time tcca before the data transmission such as 20 microseconds, or 10 microseconds, Or 9 microseconds
  • the random backoff value independently generated by UE2 is 7, and the UE2 directly performs data transmission at the time before the data transmission, and the backoff value is exactly reduced to zero. It is assumed that the random backoff value generated by UE3 is 9 and is reduced to 0 before the data transmission, then the UE3 enters the delayed transmission data waiting state, and then performs the CCA again at the time tcca before the data transmission, and the success is successful. UE3 can perform data transmission.
  • This alternative embodiment still describes the UE performing CCA in detail.
  • the UE can perform CCA in the following ways:
  • Manner 1 The UE performs the LBT mode by using the FBT, that is, the initial CCA is performed only once. This mode can be adopted for a service with a higher priority, such as a retransmission service, or when the base station schedules multiple UEs to be multiplexed and transmitted in the same subframe, or the UE finds that the scheduled RB is smaller than the uplink bandwidth.
  • FIG. 10 is a schematic diagram of site resource competition and data transmission in an optional embodiment 5 of the present application. As shown in FIG. 10, in this manner, the UE performs a CCA start position as a predefined value, a duration of one CCA at the end of the ion frame at the end of the subframe, or a length of the CCA from the start symbol of the subframe.
  • Manner 2 The UE performs CCA, including the initial CCA and the extended CCA, and the specific parameters are selected by themselves or configured by the base station.
  • This CCA mode can be used when the UE schedules only one user in full bandwidth (ie, one subframe).
  • the UE When the UE does not receive the corresponding LBT-related configuration information of the base station, the UE performs LBT according to the predefined LBT parameters.
  • the predefined LBT parameter is: the CW of the random backoff of the UE CCA, and the CW is a fixed value, for example, the value is 5, 4, 3, or 2.
  • the random backoff value of the UE is a predefined value, such as 2.
  • the random window length CW of the UE's random backoff is variable, such as exponentially changing. For example, the value of CW for the first time is 4, and after the failure of k consecutive competitions, the value of CW becomes 8 and then becomes 16, where k is a predefined value.
  • the base station configures the relevant parameters of the LBT to the scheduling UE.
  • the UE has four options: the UE continues to perform CCA until data transmission; or the UE stops CCA, waits for direct data transmission at the time of data transmission; or the UE stops waiting for a period of time, Then, the CCA is performed once again at the time tcca of the data transmission time. If the data transmission is successful, the data transmission cannot be performed; or the UE always sends the occupation signal on the RB where the scheduling is located, or the UE transmits the occupation signal in the full bandwidth, but The time is very short or the energy is less than the predefined threshold and cannot prevent other UE CCA detection results from being idle.
  • the scheduling UE does not succeed in the LBT before the data transmission time, that is, the backoff value N is still not reduced to 0, the UE does not perform data transmission, or the UE detects the occupation signal sent by other UEs, if it can identify that the cell is If the UE sends it, it can also transmit data. Or the UE performs the CCA once at the time tcca before the data transmission time. The CCA is performed only on the RB where the scheduling is performed, and if the RB is found to be idle, the data can be transmitted on the RB.
  • the UE waits, delays the CCA or data transmission, and waits for the delay period T to continue to perform CCA or data transmission.
  • This alternative embodiment describes the uplink frame structure.
  • the frame structure may also be different depending on the scheduling of the UE.
  • each sub-frame is defined with an idle (Idle) area, such as an OFDM symbol length, or other value, for the UE to do CCA.
  • the UE may perform the CCA only once, and if successful, may continuously transmit the PRB corresponding to the N subframes that meet the scheduled scheduling time. Data transfer.
  • FIG. 11 is a schematic diagram of uplink data transmission in the sixth embodiment of the present application.
  • the other UEs perform CCA only on the scheduled PRB, and the location of the PRB is different from the RB position of the UE in which the multi-subframe transmission is scheduled before.
  • the UE is on the scheduled PRB After the work, uplink data transmission can be performed on the corresponding scheduled RB.
  • the UE scheduled by the subsequent subframe performs CCA on the remaining RBs of the RB in which the plurality of subframes are scheduled to be transmitted by the UE.
  • the base station may instruct the UE to perform data transmission directly without performing LBT. For example, the base station first performs the LBT to successfully send the downlink data, and the downlink transmission time does not exceed the maximum occupancy time limit. At this time, the base station may instruct the UE to directly perform uplink data transmission without performing LBT, but the uplink data transmission time and the previous base station downlink transmission. The sum of time does not exceed the maximum occupancy time limit.
  • This alternative embodiment describes a frame structure when a transmission subframe is an SRS subframe.
  • FIG. 12 is a schematic diagram of an uplink subframe transmission mechanism in an optional seventh embodiment of the present application, and a frame structure is shown in FIG. 12.
  • the UE1 that successfully competes transmits the SRS in the last symbol, that is, the structure of the subframe of the UE1 is the same as that of the legacy UE.
  • the other UEs scheduled by the same cell and other scheduled UEs start to perform CCA at the specified CCA start position according to the configuration and scheduling information of the base station. Since UE1 transmits the SRS on the carrier at this time, if busy is detected by channel detection, then the UE can continue to try signal detection to determine whether it is a signal transmitted by the UE of the local cell. After detecting the SRS of the same cell, it can be transmitted in the next subframe. This can achieve uplink multi-user FDM.
  • the base station indicates, by using the DCI, that the UE does not perform CCA, and directly performs data transmission according to scheduling signaling in the next subframe.
  • the UE for data transmission adopts a method of pre-defining a certain PUSCH symbol by using a RE muting, for example, muting an RE data in each RB, and each cell has a special muting pattern, and the UE determines that the cell is determined by detecting the pattern.
  • the UE can transmit data and then perform data transmission in the next subframe. This also ensures that the data transmitted by the UE scheduled in the next subframe will not be affected in the case of SRS transmission.
  • This alternative embodiment still describes the frame structure when the transmission subframe is an SRS subframe.
  • the uplink subframe is exactly the subframe in which the periodic SRS or the aperiodic SRS transmission is located
  • the other processing manner is: the SRS is transmitted at the end of the subframe while retaining the original Idle region used by the UE for CCA.
  • This processing method includes the following two types:
  • the first type the time domain length of the Idle area used by the UE for the CCA is unchanged, and the PUSCH of one symbol before the Idle area is used to transmit the SRS.
  • FIG. 13 is an alternative embodiment of the present application.
  • the second type compresses the original SRS length, and the sum of the SRS length and the length of the Idle area is the length of one symbol.
  • the length of the CCA is 20 microseconds or 16 microseconds or 9 microseconds, and the rest of the other symbols Time is used to send SRS.
  • This alternative embodiment describes a frame structure when a transmission subframe is an SRS subframe.
  • the uplink subframe is exactly the subframe in which the periodic SRS or the aperiodic SRS transmission is located, in addition to the processing manners given in Embodiments 7 and 8, it may also be:
  • FIG. 14 is a schematic diagram of a method for transmitting SRS subframes in an optional embodiment 9 of the present application; or other predefined symbols. Moreover, the PUSCH of the corresponding symbol position is destroyed, and the end of the subframe is still the Idle area, which is used for the UE to perform CCA.
  • the SRS is sent in the position before the PUSCH sub-frame after the UE performs the CCA success, for example, is sent on the UpPTS.
  • the frame structure is as shown in FIG. 15 , and FIG. 15 is the uplink subframe transmission in the optional embodiment 9 of the present application.
  • Method schematic When the TDM is used to transmit on the unlicensed carrier, the base station uses the unlicensed carrier for the downlink transmission for a period of time. Before the uplink transmission, a free area is defined in the middle. On the one hand, it is used for uplink and downlink conversion, and on the other hand, it is used for UE to perform CCA before uplink transmission. After the UE performs CCA successfully, the SRS, or PRACH, may be sent before the uplink subframe transmission.
  • the optional embodiment describes a process of performing uplink data transmission by the UE.
  • FIG. 16 is a flowchart of an implementation of a terminal side according to an alternative embodiment 10 of the present application, and the process is as shown in FIG. 16.
  • the UE receives uplink data transmission parameters or LBT related parameters through high layer signaling or physical DCI signaling.
  • the transmission parameter includes at least one of the following: carrier index information of the unlicensed carrier, subframe position index information of the UE for data transmission on the unlicensed carrier, physical resource block (PRB) position and number allocated by each subframe, and modulation coding.
  • carrier index information of the unlicensed carrier includes at least one of the following: carrier index information of the unlicensed carrier, subframe position index information of the UE for data transmission on the unlicensed carrier, physical resource block (PRB) position and number allocated by each subframe, and modulation coding.
  • PRB physical resource block
  • MCS Policy
  • HARQ Hybrid Automatic Repeat Request
  • the parameters of the subframes may be identical or partially identical, such as having the same PRB location, or the PRB locations on each subframe are also different.
  • the LBT related parameters include at least one of the following: a starting position of the CCA, a backing value N, and a window length.
  • the carrier index and the backoff value transmitted by the UE in each subframe may be determined according to the measurement information reported by the UE.
  • the UE performs LBT and data transmission according to the received parameters.
  • the UE If the UE succeeds in the CCA at the predefined data transmission time, the UE performs uplink data transmission according to the parameters in the scheduling signaling.
  • the UE When the UE is scheduled to consecutive multiple subframes, the UE may continuously transmit multiple subframes after competing for resources.
  • This alternative embodiment describes the implementation process of the method provided by the present application on the base station side.
  • FIG. 17 is a flowchart of an implementation of a base station side according to an optional embodiment 11 of the present application, and the process is as shown in FIG. 17.
  • the base station determines the UEs scheduled in the same subframe, and the scheduling transmission parameters of each UE or the LBT-related configuration parameters of the UE.
  • the base station notifies the UE of the relevant parameters through the RRC message or the DCI.
  • the base station performs blind detection and reception of uplink data according to the parameter, or notifies the base station after the UE transmits the data, and the base station receives the feedback information, and then receives the feedback information. If the feedback information is not received, or the feedback information indicates that the UE does not perform data transmission, The base station does not need to receive and demodulate data.
  • a computer readable storage medium wherein the software includes, but is not limited to, an optical disk, a floppy disk, a hard disk, and an erasable Memory, etc.
  • the embodiment of the present invention further provides a computer readable storage medium storing computer executable instructions, which are implemented to implement a data transmission method applied to a base station side.
  • the embodiment of the present invention further provides a computer readable storage medium storing computer executable instructions, which are implemented to implement a data transmission method applied to a user equipment side.
  • modules or steps of the present application can be implemented by a general-purpose computing device, which can be concentrated on a single computing device or distributed over a network composed of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device such that they may be stored in the storage device for execution by the computing device and, in some cases, may be performed in a different order than that illustrated herein.
  • the steps described or described are either made into individual integrated circuit modules, or a plurality of modules or steps are fabricated as a single integrated circuit module. Thus, the application is not limited to any particular combination of hardware and software.
  • the embodiment of the present invention provides a data transmission method and device, which solves the problem of how an uplink UE performs LBT and implements multi-user frequency reuse when an LTE system operates in an unlicensed carrier frequency band, and improves spectrum efficiency.

Abstract

一种数据的传输方法,包括:基站向用户设备UE发送配置信令,其中,配置信令中携带有UE的空闲信道评估CCA的参数以及UE上行传输的参数;基站接收UE依据配置信令发送的上行数据。通过上述方法,解决了相关技术中LTE系统在非授权载波频段进行操作时,上行UE如何进行LBT及实现多用户频率复用的问题,提高了频谱效率。

Description

数据的传输方法及装置 技术领域
本申请涉及但不限于通信领域,尤其涉及一种数据的传输方法及装置。
背景技术
在长期演进技术(Long Term Evolution,简称为LTE)的演进过程中,LTE Rel-13版本于2014年9月开始立项研究,其中一个重要内容就是LTE系统使用非授权载波工作。这项技术将使得LTE系统能够使用目前存在的非授权载波,大大提升LTE系统的潜在频谱资源,使得LTE系统能够获得更低的频谱成本。
但是LTE利用非授权载波时会面临诸多问题。首先,在有些国家和地区,对于非授权频谱的使用,有相应的管制政策。比如,对于先听后说(Listen Before Talk,简称为LBT)也叫做干净信道评估(Clear Channel Assessment,简称为CCA),定义了两种,一种是基于帧的设备(FBE,Frame-based Equipment),另一种是基于负载的设备(LBE,Load-based Equipment)。对于FBE的方式,站点每次CCA的位置都是固定的,且仅需执行一次初始CCA即可,因此定时容易,同一运营商的站点通过部署可以实现同频复用。并且,每次传输占用时长也是固定的,没有随机回退。对于LBE的方式,站点每次CCA的位置可以从任意时刻开始,只要有负载就可以开始做CCA,并且传输时长只要在最大占用时间内就可以根据负载大小随机确定。但是多站点或对于LTE上行多用户频率复用比较困难。目前,LTE在非授权运营时对于上行数据传输,UE如何执行LBT及数据传输的帧结构都还没有定论。
对于授权辅助接入(License-assisted Access,简称为LAA)上行,同一个基站调度多个用户时,会存在如下问题:在用户执行LBT不同步的情况下,竞争成功的第一个用户在CCA结束后如果立即发送数据会造成其他用户设备(UE,User Equipment)对信道进行CCA检测时失败,即其他UE不能进行上行数据传输,导致上行多用户复用实现存在困难。
另外,当子帧为SRS传输所在的上行子帧时,如果信道探测参考信号(Sounding Reference Signal,简称为SRS)仍然在最后一个符号发送会对其他用户CCA检测产生影响。如何设计SRS子帧结构在保证SRS发送的情况下,不会阻碍其他用户的CCA检测或保证下一个调度子帧进行数据复用传输也是一个待解决的问题。
针对相关技术中上述问题,目前尚未提出有效的解决方案。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本发明实施例提供一种数据的传输方法及装置,以至少解决相关技术中LTE系统在非授权载波频段进行操作时,上行UE如何进行LBT及实现多用户频率复用的问题。
根据本发明实施例的一个方面,提供了一种数据的传输方法,包括:基站向所述用户设备(UE)发送配置信令,其中,所述配置信令中携带有所述UE的空闲信道评估(CCA)的参数以及所述UE上行传输的参数;所述基站接收所述UE依据所述配置信令发送的上行数据。
可选地,
所述CCA的参数包括以下至少之一:由所述基站为所述UE配置的所述CCA开始的符号位置、扩展CCA回退值N、所述CCA的窗长CW;
所述上行传输的参数包括以下至少之一:由所述基站为所述UE配置的在非授权载波上进行数据传输的载波指示信息、子帧位置指示信息、每个子帧分配的物理资源块(PRB)位置及个数、调制编码策略(MCS)、混合自动重传请求(HARQ)进程号。
可选地,通过以下之一的方式确定所述CCA的参数和所述上行传输的参数:所述基站根据所述UE上报的多个载波测量结果确定所述CCA的参数、载波指示信息、所述MCS;或,所述基站根据统计结果确定所述CCA的参数;或,所述基站给调度到同一个子帧且地理位置相距在预定义范围内的UE 配置相同的CCA参数或相同的CCA参数集合;或,所述基站根据所述UE的业务类型或优先级来确定每个UE的CCA的参数;当所述基站调度多个UE在同一子帧进行数据传输时,所述基站指示复用的UE在预定义时刻仅进行一次初始CCA;当一个子帧仅调度一个UE时,所述基站配置所述UE采用初始CCA加扩展CCA的CCA方式。
可选地,所述基站配置所述UE的CCA参数包括:所述基站配置所述UE执行所述CCA的起始位置与数据传输的起始时刻的差为一个初始CCA的长度;或,所述基站配置所述UE执行CCA的初始时刻与数据传输的起始时刻的差等于初始CCA的长度加上M个执行扩展CCA的单位时长,其中,所述M为大于或等于0的预定义整数值;或,所述基站配置所述UE开始执行所述CCA的时刻与数据传输的起始时刻的差等于初始CCA的长度加上回退值N再加上K个执行扩展CCA的单位时长,其中,所述K为大于或等于0的预定义整数值。
可选地,所述上行数据传输所在子帧位置通过以下之一的方式确定:所述上行数据传输所在的每个子帧位置都按照与上行授权预定义的定时关系确定;或,所述上行数据传输的第一个子帧位置按照与上行授权的所述预定义定时关系确定,剩余子帧按照所述配置信令中的子帧位置指示信息确定;或,所述上行数据传输的所有子帧位置均按照所述配置信令中的子帧位置指示信息确定。
可选地,所述基站接收所述UE依据所述配置信令发送的上行数据包括:所述基站接收所述UE从子帧边界的第一个正交频分复用(OFDM)符号开始传输的所述上行数据;或,所述基站接收所述UE在所述CCA成功后的第一个完整OFDM符号开始传输的所述上行数据;或,所述基站接收所述UE在所述CCA成功后就开始传输的所述上行数据。
可选地,在所述基站给UE配置多个子帧传输时,所述多个子帧的下行控制信息(DCI)通过一个物理下行控制信道(PDCCH)承载,其中,所述多个子帧位置指示信息为位图(bitmap)指示,或所述多个子帧位置通过起始子帧及连续子帧数目指示。
可选地,所述配置信令为DCI信令和/或无线资源控制(RRC)信令。
根据本发明实施例的另一个方面,提供一种数据的传输方法,包括:用户设备(UE)接收基站发送的配置信令,其中,所述配置信令中携带有所述UE的空闲信道评估(CCA)的参数以及所述UE上行传输的参数;所述UE依据所述配置信令向所述基站发送上行数据。
可选地,
所述CCA的参数包括以下至少之一:由所述基站为所述UE配置的所述CCA开始的符号位置、扩展CCA回退值N、所述CCA的窗长CW;
所述上行传输的参数包括以下至少之一:由所述基站为所述UE配置的在非授权载波上进行数据传输的载波指示信息、子帧位置指示信息、每个子帧分配的物理资源块(PRB)位置及个数、调制编码策略(MCS)、混合自动重传请求(HARQ)进程号。
可选地,所述UE依据所述配置信令向所述基站发送上行数据包括:
在所述上行数据传输之前所述回退值或计数器的值已经减到0时,所述UE继续执行所述CCA,直到所述上行数据传输起始边界,且信道空闲才发送所述上行数据;或所述UE进入等待状态,直到所述上行数据传输时刻则发送所述上行数据;或所述UE先等待再在离所述上行数据传输之前的预定义时刻再执行一次初始CCA或单位长度的扩展CCA,在执行所述初始CCA或单位长度的扩展CCA成功后发送所述上行数据;或所述UE发送占用信号,其中,所述占用信号的时域长度或能量小于预定义的门限;
在所述UE按照上行授权的预定义定时关系达到传输所述上行数据的时刻,且所述计数器的值没有减到0时,所述UE放弃所述上行数据的传输,并清零所述计数器的值,重新执行CCA;或,所述UE不清零所述计数器的值,继续执行CCA,直到调度的后续子帧边界所述计数器的值减到零,则执行所述上行数据的传输。
可选地,所述UE依据所述配置信令向所述基站发送上行数据包括:
所述UE在进行一次初始CCA成功后,直接发送重传的上行数据或优先级高的上行数据,其中,优先级高的上行数据包括应答(ACK)或非应答(NACK)信息、信道状态反馈信息(CSI)、信道探测参考信号(SRS)以 及物理随机接入信道(PRACH);
所述UE按照预定义或配置的竞争窗大小或者配置的所述回退值执行CCA成功后,发送上行数据或自调度UE的上行数据;
所述UE按照预定义竞争窗或可变竞争窗自己生成的随机回退值或所述基站配置的回退值成功执行CCA后,发送所述上行数据,其中,所述UE为跨载波调度的UE。
可选地,所述UE依据所述配置信令向所述基站发送上行数据包括:
在所述UE连续调度多个子帧时,所述UE在第一个传输子帧前执行一次CCA,执行成功后在满足占用时间内的连续的多个子帧传输所述上行数据;如果后续子帧还有UE调度,所述UE接收所述基站发送的指示信令,其中,所述指示信令用于通知传输所述上行数据的UE将该子帧最后一个符号空余出预定义的时域长度或者指示的用于其它UE CCA的时域长度,并打掉相对应位置的物理上行共享信道(PUSCH);或,
所述UE根据所述基站指示的下一个子帧的调度,在调度所在的PRB位置执行CCA;或,
所述UE根据所述基站指示下一个子帧的调度传输,在系统带宽除去连续传输UE所在的RB后的剩余RB上执行CCA;或,
所述UE根据所述基站发送指示信息的调度,所述UE在下一个子帧进行上行数据的传输。
可选地,所述方法还包括:在所述UE没有接收到所述基站发送的所述CCA的参数时,所述UE自己选择所述CCA的方式及其参数进行CCA。
可选地,所述UE执行CCA的方式包括以下至少之一:
每K个子帧仅包括一个初始CCA,且CCA位于子帧的最后一个符号位置或子帧第一个符号位置;
每K个子帧内包括一次初始CCA及扩展CCA,其中,初始CCA的起始位置为预定义值,或者由所述基站配置,且初始CCA的位置与数据传输初始时刻的差为初始CCA的时长加上M个扩展CCA单位时长;
其中,K为大于或等于1的整数,M大于或等于扩展CCA的回退值N, N由基站配置或为预定义值,或UE从[0,CW]中随机选择,该CW为预定义值,或CW为根据所述基站反馈结果调整的可变值或根据所述UE执行CCA检测结果调整的可变值。
可选地,所述初始CCA的长度及扩展CCA的单位时长为预定义值。
可选地,在传输所述上行数据的子帧是周期或非周期信道探测参考信号(SRS)发送的子帧时,所述UE传输的子帧结构包括如下之一:
所述UE在所述子帧的最后一个符号发送所述SRS,其中,所述子帧用于打掉CCA的空闲区域;调度在下一子帧的其它UE通过检测到所述SRS,在所述下一子帧调度所在的位置传输;或,所述子帧传输的所述UE通过预定义符号RE静默的方式让其它子帧调度UE在下一子帧进行传输,其中,所述预定义符号RE静默的图样为小区特定的;
上行子帧末尾打掉一个符号加所述CCA长度的物理上行共享信道(PUSCH),其中,所述打掉的PUSCH位置用于发送所述SRS及所述UE执行CCA;
在最后一个符号的起始位置发送所述SRS,其中,所述SRS加CCA的总长度等于1个符号的长度;
将所述SRS放到子帧的第一个或预定义符号位置发送,其中,所述子帧末尾为空闲区域,用于所述UE执行CCA;
所述SRS在所述CCA执行成功后,且所述上行数据传输子帧前的位置发送。
根据本发明实施例的再一个方面,提供了一种数据的传输装置,应用于基站侧,包括:第一发送模块,设置为向UE发送配置信令,其中,所述配置信令中携带有所述UE的CCA的参数以及所述UE上行传输的参数;第一接收模块,设置为接收所述UE依据所述配置信令发送的上行数据。
根据本发明实施例的再一个方面,提供了一种数据的传输装置,应用于用户设备(UE)侧,包括:第二接收模块,设置为接收基站发送的配置信令,其中,所述配置信令中携带有所述UE的CCA的参数以及所述UE上行传输的参数;第二发送模块,设置为依据所述配置信令向所述基站发送上行数据。
本发明实施例还提供一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被执行时实现应用于基站侧的数据的传输方法。
本发明实施例还提供一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被执行时实现应用于用户设备侧的数据的传输方法。
在本发明实施例中,采用基站向UE发送配置信令,其中,配置信令中携带有UE的CCA的参数以及UE上行传输的参数,进而该基站接收UE依据配置信令发送的上行数据的方式,解决了相关技术中LTE系统在非授权载波频段进行操作时,上行UE如何进行LBT及实现多用户频率复用的问题,提高了频谱效率。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1是根据本发明实施例的数据的传输方法的流程图一;
图2是根据本发明实施例的数据的传输方法的流程图二;
图3是根据本发明实施例的数据的传输装置结构框图一;
图4是根据本发明实施例的数据的传输装置结构框图二;
图5是根据本申请可选实施例的基于帧的设备(FBE)的LBT机制示意图;
图6是根据本申请可选实施例的基于负载的设备(LBE)的LBT机制示意图;
图7是本申请可选实施例二中的数据传输方式示意图;
图8是本申请可选实施例三中资源竞争及数据传输方式示意图;
图9是本申请可选实施例四中资源竞争及数据传输方式示意图;
图10是本申请可选实施例五中站点资源竞争及数据传输示意图;
图11是本申请可选实施例六中上行数据传输示意图;
图12是本申请可选实施例七中上行子帧传输机制示意图;
图13是本申请可选实施例八中两个UE上行传输机制示意图;
图14是本申请可选实施例九中SRS子帧传输的方法示意图;
图15是本申请可选实施例九中上行子帧传输的方法示意图;
图16是根据本申请可选实施例十的终端侧的实施流程图;
图17是根据本申请可选实施例十一的基站侧的实施流程图。
本发明的实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
在本实施例中提供了一种数据的传输方法,图1是根据本发明实施例的数据的传输方法的流程图一,如图1所示,该方法包括如下步骤:
步骤S102:基站向用户设备(UE)发送配置信令,其中,配置信令中携带有UE的空闲信道评估(CCA)的参数以及UE上行传输的参数;
步骤S104:基站接收UE依据配置信令发送的上行数据。
通过本实施例的步骤S102和步骤S104,采用基站向UE发送配置信令,其中,配置信令中携带有UE的CCA的参数以及UE上行传输的参数,进而该基站接收UE依据配置信令发送的上行数据的方式,解决了相关技术中LTE系统在非授权载波频段进行操作时,上行UE如何进行LBT及实现多用户频率复用的问题,提高了频谱效率。
对于本实施例中涉及到的CCA的参数可以包括以下至少之一:由基站为UE配置的CCA开始的符号位置、扩展CCA回退值N、CCA的窗长CW;对于本实施例中涉及到的上行传输的参数可以包括以下至少之一:由基站为UE配置的在非授权载波上进行数据传输的载波指示信息、子帧位置指示信息、每个子帧分配的物理资源块(PRB,Physical Resource Block)位置及个 数、调制编码策略(MCS,Modulation and Coding Scheme)、混合自动重传请求(HARQ,Hybrid Automatic Repeat reQuest)进程号。
在本实施例中的可选实施方式中,可以通过以下之一的方式确定CCA的参数和上行传输的参数:基站根据UE上报的多个载波测量结果确定CCA的参数、载波指示信息、MCS;或,基站根据统计结果确定CCA的参数;或,基站给调度到同一个子帧且地理位置相距在预定义范围内的UE配置相同的CCA参数或相同的CCA参数集合;或,基站根据UE的业务类型或优先级来确定每个UE的CCA的参数;当基站调度多个UE在同一子帧进行数据传输时,基站指示复用的UE在预定义时刻仅进行一次初始CCA;当一个子帧仅调度一个UE时,基站配置UE采用初始CCA加扩展CCA的CCA方式。
此外,需要说明的是,本实施例中涉及到的基站配置UE的CCA参数包括:基站配置UE执行CCA的起始位置与数据传输的起始时刻的差为一个初始CCA的长度;或,基站配置UE执行CCA的初始时刻与数据传输的起始时刻的差等于初始CCA的长度加上M个执行扩展CCA的单位时长,其中,M为大于或等于0的预定义整数值;或,基站配置UE开始执行CCA的时刻与数据传输的起始时刻的差等于初始CCA的长度加上回退值N再加上K个执行扩展CCA的单位时长,其中,K为大于或等于0的预定义整数值。
可选地,本实施例中涉及到的上行数据传输所在子帧位置通过以下之一的方式确定:上行数据传输所在的每个子帧位置都按照与上行授权的预定义定时关系确定;或,上行数据传输的第一个子帧位置按照与上行授权的预定义定时关系确定,剩余子帧按照配置信令中的子帧位置指示信息确定;或,上行数据传输的所有子帧位置均按照配置信令中的子帧位置指示信息确定。
在本实施例的可选实施方式中,该基站可以通过如下方式实现接收UE依据配置信令发送的上行数据:基站接收UE从子帧边界的第一个正交频分复用(OFDM,Orthogonal Frequency Division Multiplexing)符号开始传输的上行数据;或,基站接收UE在CCA成功后的第一个完整OFDM符号开始传输的上行数据;或,基站接收UE在CCA成功后就开始传输的上行数据。
可选地,在基站给UE配置多个子帧传输时,多个子帧的下行控制信息(DCI,Downlink Control Information)通过一个物理下行控制信道(PDCCH, Physical Downlink Control Channel)承载,其中,多个子帧位置指示信息为位图(bitmap)指示,或多个子帧位置通过起始子帧及连续子帧数目指示。
需要说明的是,本实施例中涉及到的配置信令为DCI信令和/或无线资源控制(RRC,Radio Resource Control)信令。
图2是根据本发明实施例的数据的传输方法的流程图二,如图2所示,该方法包括以下步骤:
步骤S202:用户设备(UE)接收基站发送的配置信令,其中,配置信令中携带有UE的空闲信道评估(CCA)的参数以及UE上行传输的参数;
步骤S204:UE依据配置信令向基站发送上行数据。
对于本实施例中涉及到的CCA的参数可以包括以下至少之一:由基站为UE配置的CCA开始的符号位置、扩展CCA回退值N、CCA的窗长CW;对于本实施例中涉及到的上行传输的参数可以包括以下至少之一:由基站为UE配置的在非授权载波上进行数据传输的载波指示信息、子帧位置指示信息、每个子帧分配的物理资源块(PRB)位置及个数、调制编码策略(MCS)、混合自动重传请求(HARQ)进程号。
本实施例中,UE可以通过如下方式实现依据配置信令向基站发送上行数据:
在上行数据传输之前回退值或计数器的值已经减到0时,UE继续执行CCA,直到上行数据传输起始边界,且信道空闲才发送上行数据;或UE进入等待状态,直到上行数据传输时刻则发送上行数据;或UE先等待再在离上行数据传输之前的预定义时刻再执行一次初始CCA或单位长度的扩展CCA,在执行初始CCA或单位长度的扩展CCA成功后发送上行数据;或UE发送占用信号,其中,占用信号的时域长度或能量小于预定义的门限;
在UE按照上行授权的预定义定时关系达到传输上行数据的时刻,且计数器的值没有减到0时,UE放弃上行数据的传输,并清零计数器的值,重新执行CCA;或,UE不清零计数器的值,继续执行CCA,直到调度的后续子帧边界计数器的值减到零,则执行上行数据的传输。
在本实施例的另一个可选实施方式中,UE依据配置信令向基站发送上行 数据的方式,可以通过如下方式来实现:
UE在进行一次初始CCA成功后,直接发送重传的上行数据或优先级高的上行数据,其中,优先级高的上行数据包括:应答(ACK)或非应答(NACK)信息、信道状态反馈信息(CSI,Channel State Information)、信道探测参考信号(SRS)以及物理随机接入信道(PRACH,Physical Random Access Channel);
UE按照预定义或配置的竞争窗大小或者配置的回退值执行CCA成功后,发送上行数据或自调度UE的上行数据;
UE按照预定义竞争窗或可变竞争窗自己生成的随机回退值或基站配置的回退值成功执行CCA后,发送上行数据,其中,UE为跨载波调度的UE。
在本实施例的再一个可选实施方式中,UE依据配置信令向基站发送上行数据的方式可以通过如下方式来实现:
在UE连续调度多个子帧时,UE在第一个传输子帧前执行一次CCA,执行成功后在满足占用时间内的连续的多个子帧传输上行数据;如果后续子帧还有UE调度,UE接收基站发送的指示信令,其中,指示信令用于通知传输上行数据的UE将该子帧最后一个符号空余出预定义的时域长度或者指示的用于其它UE CCA的时域长度,并打掉相对应位置的物理上行共享信道(PUSCH,Physical Uplink Shared Channel);或,
UE根据基站指示的下一个子帧的调度,在调度所在的PRB位置执行CCA;或,
UE根据基站指示下一个子帧的调度传输,在系统带宽除去连续传输UE所在的资源块(RB,Resource Block)后的剩余RB上执行CCA;或,
UE根据基站发送指示信息的调度,UE在下一个子帧进行上行数据的传输。
此外,本实施例的方法还可以包括:在UE没有接收到基站发送的CCA的参数时,UE自己选择CCA的方式及其参数进行CCA。
需要说明的是,该UE执行CCA的方式包括以下至少之一:
第一种,每K个子帧仅包括一个初始CCA,且CCA位于子帧的最后一 个符号位置或子帧第一个符号位置;
第二种,每K个子帧内包括一次初始CCA及扩展CCA,其中,初始CCA的起始位置为预定义值,或者由基站配置,且初始CCA的位置与数据传输初始时刻的差为初始CCA的时长加上M个扩展CCA单位时长;
其中,K为大于或等于1的整数,M大于或等于扩展CCA的回退值N,N由基站配置或为预定义值,或UE从[0,CW]中随机选择,该CW为预定义值,或CW为根据基站反馈结果调整的可变值或根据UE执行CCA检测结果调整的可变值;初始CCA的长度及扩展CCA的单位时长为预定义值。
需要说明的是,在传输上行数据的子帧是周期或非周期信道探测参考信号(SRS)发送的子帧时,UE传输的子帧结构包括如下之一:
UE在子帧的最后一个符号发送SRS,其中,子帧用于打掉CCA的空闲区域;调度在下一子帧的其它UE通过检测到SRS在下一子帧调度所在的位置传输;或,子帧传输的UE通过预定义符号资源单元(RE,Resource Element)静默的方式让其它子帧调度UE在下一子帧进行传输,其中,预定义符号RE静默的图样为小区特定的;
上行子帧末尾打掉一个符号加CCA长度的物理上行共享信道(PUSCH),其中,所述打掉的PUSCH位置用于发送SRS及UE执行CCA;
在最后一个符号的起始位置发送SRS,其中,SRS加CCA的总长度等于1个符号的长度;
将SRS放到子帧的第一个或预定义符号位置发送,其中,子帧末尾为空闲区域,用于UE执行CCA;
SRS在CCA执行成功后,且上行数据传输子帧前的位置发送。
在本实施例中还提供了一种数据的传输装置,该装置用于实现上述实施例及可选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置可选地以软件来实现,但是硬件、或者软件和硬件的组合的实现也是可能并被构想的。
图3是根据本发明实施例的数据的传输装置结构框图一,应用于基站侧, 本实施例对应于图1的方法实施例,如图3所示,该装置包括:
第一发送模块32,设置为向用户设备(UE)发送配置信令,其中,配置信令中携带有UE的空闲信道评估(CCA)的参数以及UE上行传输的参数;
第一接收模块34,与第一发送模块32耦合连接,设置为接收UE依据配置信令发送的上行数据。
对于本实施例中涉及到的CCA的参数可以包括以下至少之一:由基站为UE配置CCA开始的符号位置、扩展CCA回退值N、CCA的窗长CW;对于本实施例中涉及到的上行传输的参数可以包括以下至少之一:由基站为UE配置的在非授权载波上进行数据传输的载波指示信息、子帧位置指示信息、每个子帧分配的物理资源块(PRB)位置及个数、调制编码策略(MCS)、混合自动重传请求(HARQ)进程号。
在本实施例中的可选实施方式中,所述基站可以通过以下之一的方式确定CCA的参数和上行传输的参数:基站根据UE上报的多个载波测量结果确定CCA的参数、载波指示信息、MCS;或,基站根据统计结果确定CCA的参数;或,基站给调度到同一个子帧且地理位置相距在预定义范围内的UE配置相同的CCA参数或相同的CCA参数集合;或,基站根据UE的业务类型或优先级来确定每个UE的CCA的参数;当基站调度多个UE在同一子帧进行数据传输时,基站指示复用的UE在预定义时刻仅进行一次初始CCA;当一个子帧仅调度一个UE时,基站配置UE采用初始CCA加扩展CCA的CCA方式。
此外,需要说明的是,本实施例中涉及到的基站配置UE的CCA参数包括:基站配置UE执行CCA的起始位置与数据传输的起始时刻的差为一个初始CCA的长度;或,基站配置UE执行CCA的初始时刻与数据传输的起始时刻的差等于初始CCA的长度加上M个执行扩展CCA的单位时长,其中,M为大于或等于0的预定义整数值;或,基站配置UE开始执行CCA的时刻与数据传输的起始时刻的差等于初始CCA的长度加上回退值N再加上K个执行扩展CCA的单位时长,其中,K为大于或等于0的预定义整数值。
可选地,本实施例中涉及到的上行数据传输所在子帧位置通过以下之一的方式确定:上行数据传输所在的每个子帧位置都按照与上行授权的预定义 定时关系确定;或,上行数据传输的第一个子帧位置按照与上行授权的预定义定时关系确定,剩余子帧按照配置信令中的子帧位置指示信息确定;或,上行数据传输的所有子帧位置均按照配置信令中的子帧位置指示信息确定。
在本实施例的可选实施方式中,所述第一接收模块34是设置为通过如下方式实现接收UE依据配置信令发送的上行数据:接收UE从子帧边界的第一个正交频分复用(OFDM)符号开始传输的上行数据;或,接收UE在CCA成功后的第一个完整OFDM符号开始传输的上行数据;或,接收UE在CCA成功后就开始传输的上行数据。
可选地,在基站给UE配置多个子帧传输时,多个子帧的下行控制信息(DCI)通过一个物理下行控制信道(PDCCH)承载,其中,多个子帧位置指示信息为位图(bitmap)指示,或多个子帧位置通过起始子帧及连续子帧数目指示。
需要说明的是,本实施例中涉及到的配置信令为DCI信令和/或无线资源控制(RRC)信令。
图4是根据本发明实施例的数据的传输装置结构框图二,应用于用户设备侧,本实施例对应于图2的方法实施例,如图4所示,该装置包括:
第二接收模块42,设置为接收基站发送的配置信令,其中,配置信令中携带有UE的空闲信道评估(CCA)的参数以及UE上行传输的参数;
第二发送模块44,与第二接收模块42耦合连接,设置为依据配置信令向基站发送上行数据。
对于本实施例中涉及到的CCA的参数可以包括以下至少之一:由基站为UE配置的CCA开始的符号位置、扩展CCA回退值N、CCA的窗长CW;
对于本实施例中涉及到的上行传输的参数可以包括以下至少之一:由基站为UE配置的在非授权载波上进行数据传输的载波指示信息、子帧位置指示信息、每个子帧分配的物理资源块(PRB)位置及个数、调制编码策略(MCS)、混合自动重传请求(HARQ)进程号。
在本实施例中,第二发送模块44是设置为通过以下方式依据配置信令向基站发送上行数据:
在上行数据传输之前回退值或计数器的值已经减到0时,UE继续执行CCA,直到上行数据传输起始边界,且信道空闲才发送上行数据;或UE进入等待状态,直到上行数据传输时刻则发送上行数据;或UE先等待再在离上行数据传输之前的预定义时刻再执行一次初始CCA或单位长度的扩展CCA,在执行初始CCA或单位长度的扩展CCA成功后发送上行数据;或UE发送占用信号,其中,占用信号的时域长度或能量小于预定义的门限;
在UE按照上行授权的预定义定时关系达到传输上行数据的时刻,且计数器的值没有减到0时,UE放弃上行数据的传输,并清零计数器的值,重新执行CCA;或,UE不清零计数器的值,继续执行CCA,直到调度的后续子帧边界计数器的值减到零,则执行上行数据的传输。
在本实施例的另一个可选实施方式中,第二发送模块44是设置为通过以下方式依据配置信令向基站发送上行数据:
UE在进行一次初始CCA成功后,直接发送重传的上行数据或优先级高的上行数据,其中,优先级高的上行数据包括:应答(ACK)或非应答(NACK)信息、信道状态反馈信息(CSI)、信道探测参考信号(SRS)以及物理随机接入信道(PRACH);
UE按照预定义或配置的竞争窗大小或者配置的回退值执行CCA成功后,发送上行数据或自调度UE的上行数据;
UE按照预定义竞争窗或可变竞争窗自己生成的随机回退值或基站配置的回退值成功执行CCA后,发送上行数据,其中,UE为跨载波调度的UE。
在本实施例的再一个可选实施方式中,第二发送模块44是设置为通过以下方式依据配置信令向基站发送上行数据:
在UE连续调度多个子帧时,UE在第一个传输子帧前执行一次CCA,执行成功后在满足占用时间内的连续的多个子帧传输上行数据;如果后续子帧还有UE调度,UE接收基站发送的指示信令,其中,指示信令用于通知传输上行数据的UE将该子帧最后一个符号空余出预定义的时域长度或者指示的用于其它UE CCA的时域长度,并打掉相对应位置的物理上行共享信道(PUSCH);或,
UE根据基站指示的下一个子帧的调度,在调度所在的PRB位置执行CCA;或,
UE根据基站指示下一个子帧的调度传输,在系统带宽除去连续传输UE所在的RB后的剩余RB上执行CCA;或,
UE根据基站发送指示信息的调度,UE在下一个子帧进行上行数据的传输。
此外,在本实施例中,在UE没有接收到基站发送的CCA的参数时,UE自己选择CCA的方式及其参数进行CCA。
需要说明的是,该UE执行CCA的方式包括以下至少之一:
第一种,每K个子帧仅包括一个初始CCA,且CCA位于子帧的最后一个符号位置或子帧第一个符号位置;
第二种,每K个子帧内包括一次初始CCA及扩展CCA,其中,初始CCA的起始位置为预定义值,或者由基站配置,且初始CCA的位置与数据传输初始时刻的差为初始CCA的时长加上M个扩展CCA单位时长;
其中,K为大于或等于1的整数,M大于或等于扩展CCA的回退值N,N由基站配置或为预定义值,或UE从[0,CW]中随机选择,该CW为预定义值,或CW为根据基站反馈结果调整的可变值或根据UE执行CCA检测结果调整的可变值;初始CCA的长度及扩展CCA的单位时长为预定义值。
需要说明的是,在传输上行数据的子帧是周期或非周期信道探测参考信号(SRS)发送的子帧时,UE传输的子帧结构包括如下之一:
UE在子帧的最后一个符号发送SRS,其中,子帧用于打掉CCA的空闲区域;调度在下一子帧的其它UE通过检测到SRS在下一子帧调度所在的位置传输;或,子帧传输的UE通过预定义符号RE静默的方式让其它子帧调度UE在下一子帧进行传输,其中,预定义符号RE静默的图样为小区特定的;
上行子帧末尾打掉一个符号加CCA长度的物理上行共享信道(PUSCH),其中,所述打掉的PUSCH位置用于发送SRS及UE执行CCA;
在最后一个符号的起始位置发送SRS,其中,SRS加CCA的总长度等于1个符号的长度;
将SRS放到子帧的第一个或预定义符号位置发送,其中,子帧末尾为空闲区域,用于UE执行CCA;
SRS在CCA执行成功后,且上行数据传输子帧前的位置发送。
下面通过本申请可选实施例对本申请实施例进行举例说明。
本可选实施例中提供的数据传输方法,包括以下过程:
基站给调度UE发送调度信令DCI,其中,调度信令包括:该UE进行数据传输的多子帧指示信息,及每个子帧中的具体频域资源位置指示、载波指示,及其它调度信息。
另外,基站还可以给调度UE配置CCA相关的参数,比如CCA起始位置和/或回退值。其中,在本可选实施例中,基站给调度在相同子帧的地理位置相距差小于预定义阈值的UE配置相同的CCA起始位置和/或回退值或配置相同的CCA参数集合。
可选地,基站根据调度UE的业务类型及优先级确定UE进行LBT的相关参数。
可选地,基站根据同一子帧调度UE的数目确定LBT的相关参数。
可选地,在基站确定调度传输参数之前,UE对多个非授权载波进行测量并将结果反馈给基站。此结果用于基站确定每个UE调度的具体载波索引,及调度在同一载波同一子帧的UE,及基站给这些UE(如果有扩展空闲信道评估(eCCA,extended Clear Channel Assessment)的话)配置eCCA中的随机回退中的N值,N值为3或2。
可选地,UE的资源通过子帧及载波索引确定,比如按照定时关系从n+k(k为预定义值,n为基站发送上行授权的时刻)开始传输,连续调度4个子帧,则子帧资源通过信令1111bitmap指示,或者用11表示仅给出连续调度的子帧数目。
可选地,当调度UE在多个连续子帧传输时,第一个子帧位置按照上行授权和数据传输的预定义关系确定,剩余子帧按照调度信令中的子帧位置指示确定。
其中,PUSCH数据从上行子帧第一个OFDM符号开始传输,或者在LBT 成功后的第一个完整OFDM符号开始传输。
基站配置调度UE的LBT参数包括:配置CCA的起始位置比数据传输的起始时刻早一个初始CCA的长度;或,配置UE执行CCA的初始时刻与数据传输的时刻的差t正好等于初始CCA的长度加上M个每次eCCA的单位时长;或,配置UE开始执行LBT的时刻与数据传输的时刻的差t正好等于初始CCA的长度加上随机回退值N加上n个每次eCCA的单位时长,其中n为预定义值。
可选地,如果在数据传输的时刻之前随机回退值N已经减到0,该UE继续执行CCA,直到子帧开始边界才发送,或者该UE进入等待状态,直到数据传输时刻开始发送数据,或者该UE先等待然后在离数据传输之前的预定义时刻再执行一次初始CCA或者单位长度的eCCA成功后才发送数据,或者该UE发送占用信号,其中,该占用信号的时域长度小于预定义的门限。
如果按照定时关系到了PUSCH的传输时刻,N的值仍然没有减到0,则UE放弃该子帧的传输,并且计数器的N清零,下次重新执行CCA,或者该UE不清零N,继续CCA,如果到了后续调度的上行子帧边界N正好减到零,则直接进行数据传输。或者该UE盲检占用信号,识别出是本小区UE时在数据传输的时刻进行数据传输。或者该UE仅在调度的RB上进行CCA。
如果N的值正好减到0,则数据传输的时刻即为子帧的边界,该UE直接按照子帧结构进行上行传输。
可选地,当UE没有接收到基站发送的LBT相关的配置信息时,UE按照预定义的LBT方式进行CCA。
其中,预定义的方式为:UE在接收到调度信令之后的k个时刻开始进行LBT。
可选地,UE进行LBT的方式为:
UE在距离数据传输之前的一个初始CCA时长的位置开始进行一次初始CCA,成功后就进行数据传输。
当基站调度多个UE在相同的子帧进行数据传输时,可选采用此LBT方式。
或者,UE在距离数据传输之前的一个初始CCA时长加N个扩展CCA单位时长的位置开始进行LBT,成功后就进行数据传输,其中,N为预定义值,N可选小于或等于3。
或者,UE每次自己从[0,CW]中随机选择一个数作为LBT的随机回退值,其中,CW为预定义值,可选地,CW小于或等于3。
或者,UE每次自己从[0,CW]中随机选择一个数作为LBT的随机回退值,其中,CW为可变值,根据基站反馈结果或UE自己的检测结果进行调整。
可选地,当基站在一个子帧仅调度一个UE时,基站配置或UE预定义采用此LBT方式。
可选地,基站配置或者UE选择具体的LBT方式根据数据类型确定:对于重传数据,或者优先级较高的业务,基站给UE仅配置一次CCA;对于初传数据,UE按照预定义竞争窗大小或者预定义的随机回退值进行CCA。对跨载波调度的UE,UE按照预定义竞争窗自己生成随机回退值或者基站配置回退值,或者竞争窗可变。
可选地,当UE调度方式为多子帧调度时,如果后续没有UE做CCA或者该UE的数据传输能量小于CCA检测的门限,则该UE可以连续传输多个子帧。如果后续还有UE调度,基站给出指示信令通知传输的UE最后一个符号空余出CCA的长度。或者,下一个子帧调度的UE,仅在调度所在的PRB位置进行CCA。或者,下一个子帧调度传输的UE,在系统带宽除去连续传输UE的RB后的剩余RB上进行CCA。或者,基站发送指示信息给调度的UE,该UE即使CCA失败了也在下一个子帧进行传输。
可选地,当UE在进行LBT,延迟周期T到来时,UE要等待,延迟进行CCA或者数据传输,T的值为预定义值。
可选地,每个上行传输子帧末尾有个空闲(Idle)区域,比如一个OFDM符号,用于UE进行CCA。
可选地,当调度的UE为连续传输多个子帧时,如果下一个子帧没有调度其它UE,则该UE可以连续传输多个子帧。如果下一个子帧有调度的UE,则基站发送指示给前述UE,该UE将该子帧的最后一个符号空闲,用于调度 在下一个子帧的UE执行CCA成功。
可选地,当发送数据的子帧正好是周期或非周期SRS发送的子帧,则该UE的传输子帧结构采用如下之一:
第一种:SRS在子帧的最后一个符号发送,该子帧打掉原来的Idle区域,调度在下一子帧的其它UE通过检测到该SRS,也能在下一个子帧调度所在的位置传输,或者,子帧传输的UE通过预定义符号RE静默(muting)的方式实现让其它子帧调度UE在下一子帧进行传输,其中,RE muting图样为小区特定的;
第二种:上行子帧末尾打掉一个符号加CCA长度的PUSCH,其中,所述打掉的PUSCH位置用于发送SRS及其它UE做CCA;
第三种:在最后一个符号的起始位置发送SRS,且SRS加CCA的总长度等于1个符号的长度;
第四种:将SRS放到子帧的第一个或其它预定义符号位置发送,子帧末尾仍然为Idle区域,用于其它UE做CCA;
第五种:SRS在CCA成功后且PUSCH传输子帧之前的位置发送,比如在上行导频时隙(UpPTS)上发送。
当调度的UE按照基站配置的或者自己选取的LBT参数CCA成功后就在调度所在的子帧位置发送上行数据,然后按照预定义的定时关系在相应位置进行盲检,或者UE反馈基站是否进行了数据传输,基站接收到反馈信息后再进行数据接收。
下面通过附图及具体实施例对本发明实施例中提供的非授权载波资源竞争及数据传输方法做进一步的详细说明。
实施例一
本实施例对站点(基站、UE、家庭基站、中继站)基于帧的设备(Frame-based Equipment,简称为FBE)的LBT的方式和基于负载的设备(Load-based Equipment,简称为LBE)的LBT的方式进行简单介绍。
图5是根据本申请可选实施例的基于帧的设备(FBE)的LBT机制示意图。如图5所示,对于FBE,具有固定的传输帧结构,信道占用时间和空闲 时期构成固定的帧周期(FP,Frame Period),设备在空闲时期进行CCA检测,当检测到信道为空闲时,则可以立即进行数据传输,否则,在下一个固定帧周期的空闲时期再进行CCA检测。对于欧洲的FBE,信道占用时间为1ms到10ms,空闲时期至少为信道占用时间的5%。CCA检测持续的时间至少为20μs,CCA检测可以基于能量检测,也可以基于信号检测。
图6是根据本申请可选实施例的基于负载的设备(LBE)的LBT机制示意图。如图6所示,对于LBE,基于负载的竞争,即当有数据传输需求时,设备才开始去进行CCA检测,如果在进行CCA检测后,发现信道为空闲时,则可以立即进行数据传输,数据传输可占用的最大时间为(13/32)×q ms,其中,q={4,5,6…31,32}是可配置的;否则,如果发现信道为忙,进入扩展CCA(eCCA)检测时期,也就是要进行X次的CCA检测,X的值存储在一个计数器里,其中,X值在1到q里随机选取,称为随机回退值。每次CCA检测(每次CCA检测时间相同)如果发现信道是空闲的,则计数器开始递减,如果信道不是空闲的,则计数器不递减,当计数器递减到0时,则可以开始进行数据传输,数据传输时间根据需求确定,但是最大不能超过(13/32)×q ms。
实施例二
本可选实施例对UE按照配置信息执行LBT的过程进行说明。
当上行为基于FBE的LBT时,假设基站发送上行授权(UL grant)的时刻为n,UE按照定时关系应该在n+k时刻进行上行数据传输,其中,k为预定义值,比如对于FDD(Frequency Division Duplexing,频分双工),k小于或等于4,对于TDD(Time Division Duplexing,时分双工),k的取值更大些;则UE会在距离n+k前的t_cca时刻进行CCA,其中,t_cca为预定义的CCA或初始CCA的时长,取值比如为34微秒或者20微秒。如果UE执行CCA成功,则UE就在n+k时刻进行数据传输,如果失败,则不能进行数据传输。
当上行配置为基于LBE的LBT时,假设UE按照定时关系应该在n+k时刻进行上行数据传输,则基站除了给调度在同一子帧的UE配置相同的CCA起始位置以外,还可以给UE配置相同的eCCA回退值N。其中,N为基站根据经验值或者UE上报的结果确定的,或者N小于或等于预定义参数K,K 可选为3或者2。或者,每个UE的回退值都是自己随机产生的。
并且,基站通过RRC消息或者DCI通知给调度UE。
其中,CCA的起始位置可选为t=tiCCA+M*t_ecca,M大于或等于N,tiCCA为初始CCA的长度,t_ecca为eCCA中每次CCA的时长,可以跟初始CCA的时长一样,或者为1/m个OFDM符号,其中m为4或者8,或者eCCA的每次时长为9微秒或10微秒或16微秒。
或者,UE执行CCA的起始位置为预定义的多个位置,基站通过信令指示具体哪个位置开始。比如预定义四个CCA的起始位置,子帧最后两个符号起始边界、子帧最后一个半符号起始边界、子帧最后一个符号起始边界、子帧最后一个时隙起始边界为UE能够进行执行CCA的位置。然后,基站通过2比特(bit)信令来指示具体哪个位置,比如00指示从最后一个时隙边界开始,01指示从最后一个符号边界开始。
或者,基站通知上述M值,UE通过预定义的初始CCA长度及eCCA单位时长推算出初始CCA的位置。比如基站通知M的大小为5,预定义初始CCA的长度为34微秒,eCCA的单位时长为9微秒,则UE开始执行CCA的时刻离数据传输的时刻应该为34+5*9=79微秒。
在该方式下,UE的回退值N从[0,M]中随机产生。
然后,调度在同一子帧的UE按照指示信令CCA的开始时刻进行LBT。eCCA每成功一次,N的值就减一,反之,如果不成功,则N的值不变。
正常情况下,每个UE应该都同时在数据传输的时刻N的值减为0,然后同时进行数据传输。但也会出现例外。比如,如果到了n+k数据传输的时刻,某调度UE的N值仍然没有减为0,则该UE不能在n+k进行数据传输。且该UE的N值清零,下次继续从缓存中的N值开始递减,如果该UE连续调度多个子帧,则在下一个子帧该UE可以确保能传输。或者该UE下次重新从初始CCA开始,N的值回到初始值。
或者,盲检其他UE发送的占用信号,如果检测成功,则也可以在数据传输的时刻进行数据传输。
如果某个调度UE在n+k数据传输的时刻之前的某个时刻N的值已经减 到0,则该UE有两种选择方式:
方式一:该UE发送占用信号,且该占用信号的时长小于预定义值,不会造成其他UE执行CCA失败,然后等到规定的数据传输的时刻才进行数据传输;
方式二:该UE继续执行CCA。
图7是本申请可选实施例二中的数据传输方式示意图,如图7所示,给出了不同UE执行LBT可能的三种情况,基站根据UE上报的结果调度三个UE在相同的子帧,且给这三个UE配置相同的CCA起始位置,该CCA起始位置跟数据传输所在子帧满足t=tiCCA+M*t_ecca且N的值配置为3。如果按照经验统计,这三个UE应该能在预定义数据传输的时刻正好完成eCCA进行上行数据的传输。但也可能会出现例外,例外的处理如下:比如UE2到了数据传输的定时时刻N的值仍然没有减到0,则该UE第一个子帧不能发送数据,UE3在未到数据传输的时刻N已经减到0,则该UE仍然不发送数据直到数据定时时刻才发送上行子帧。
实施例三
本可选实施例对LBE下,多用户CCA实现数据同步传输的方法进行说明。
为了实现上行调度在同一子帧的多个UE在完成CCA后能同时进行数据传输,可以定义一个公共等待时刻。该时刻距离数据传输的时刻为n个eCCA的时间,比如n的值取1或者2。该时间用于提前执行LBE竞争成功的UE先等一下没有竞争成功的UE,没有竞争成功的UE能在该时间内完成LBT,然后该多个UE一起进行上行数据传输,从而实现FDM(Frequency Division Multiplexing,频分复用)。
图8是本申请可选实施例三中资源竞争及数据传输方式示意图;如图8所示,假设基站配置三个UE在相同的时刻同时执行CCA,且随机回退值都为3,同时定义一个等待的时刻点t1,t1距离数据传输的起始位置为2个eCCA的单位时长。对于UE1在t1时刻之前就已经成功完成了LBT,则该UE1在数据传输之前进入等待状态,等待两个eCCA的单位时长,然后到数据传输 时刻才进行传输。对于UE2在t1时刻之前仍然没有完成LBT,则该UE2可以继续进行CCA,如果在数据传输之前该UE2能完成LBT,则该UE2就可以跟其他早些完成LBT的UE一起进行数据传输,从而实现频率复用。对于UE3,在数据传输之前因为仍然没有完成LBT,因此不能在数据传输的时刻进行数据传输。
该方式下,UE进行LBT的回退值可以是基站配置的,也可以是UE独立生成的。
由于WiFi最快接入也需要34微秒,在CCA提前成功的UE即使在等待的时刻内不发送信号也不会被WiFi抢走。
实施例四
本可选实施例继续对本申请提供的方法如何实现上行多用户复用进行说明。
为确保UE进行数据传输时信道是空闲的,在某些UE在执行CCA完成后,在等待一段时间后,需要在数据传输之前再执行一次CCA,时长比如为预定义时长(34微秒或者9微秒或者10微秒)。在CCA成功后才能发送数据,不成功就不能发送数据。
图9是本申请可选实施例四中资源竞争及数据传输方式示意图,如图9所示,基站调度三个UE在同一个子帧上进行数据传输,并且基站配置UE从某个时刻开始执行CCA或者UE按照预定义位置及自己独立产生的随机回退值N进行CCA。假设UE1产生的随机回退值为5,且在数据传输之前就已经减为0,则该UE1需要进入等待状态,且在离数据传输之前的tcca时刻,比如20微秒,或者10微秒,或者9微秒,再执行一次CCA。此刻可能因为有其他设备,比如WiFi信号突然发送数据,导致该UE1检测信道失败,则不能进行数据传输。假设UE2独立产生的随机回退值为7,该UE2在数据传输之前的时刻,回退值正好减为0,则直接进行数据传输。假设UE3产生的随机回退值为9,且在数据传输之前就减为0,然后该UE3进入延迟发送数据等待状态,然后在离数据传输之前的tcca时刻再执行一次CCA,成功了,则该UE3能进行数据传输。
实施例五
本可选实施例仍然对UE执行CCA进行详细说明。
UE执行CCA可以有下面几种方式:
方式一:UE执行LBT采用FBE的方式,即每次仅执行一次初始CCA即可。对于优先级较高的业务,比如重传业务,或者当基站调度多个UE在相同子帧复用发送,或者UE自己发现调度的RB小于上行带宽时,可选采用该方式。
图10是本申请可选实施例五中站点资源竞争及数据传输示意图。如图10所示,该方式下,UE执行CCA的起始位置为预定义值,位于子帧末尾离子帧边界一个CCA的时长,或者从子帧起始符号开始,执行一个CCA的长度。
方式二:UE执行CCA包括初始CCA和扩展CCA两部分,且具体的参数自己选择或者由基站进行配置。
当UE调度在全带宽(即一个子帧)仅调度一个用户的时候,可选采用此CCA方式。
当UE没有接收到基站相应的LBT相关的配置信息时,UE按照预定义的LBT参数进行LBT。
其中,预定义的LBT参数为:UE CCA的随机回退的竞争窗长CW,CW是固定值,比如取值是5、4、3或2。每次每个调度UE自己独立从[0,CW]里面生成随机回退值N。或者,UE的随机回退值是预定义值,比如为2。或者UE的随机回退的竞争窗长CW是可变的,比如采用指数方式变化。比如第一次CW的值为4,连续竞争k次失败后,CW的值变为8,然后变为16,其中,k为预定义值。
或者,基站给调度UE配置LBT的相关参数。可选地,基站给调度UE配置初始CCA的位置和/或回退值N。比如,基站给调度UE配置CCA的起始位置与数据传输的时刻差满足t=tiCCA+M*t_ecca。然后UE自己从[1,M]中选择随机数作为回退值。或者基站给地理位置相距在预定义范围内的UE配置相同的CCA位置且相同的回退值或者相同的CCA参数集合。
如果UE在数据传输之前的时刻完成LBT,则该UE有四种选择:UE继续执行CCA一直到数据传输;或者UE停止CCA,等待到数据传输时刻直接数据传输;或者UE先停止等待一段时间,然后在离数据传输时刻的tcca时刻再进行一次CCA,如果成功才能进行数据传输,否则不能进行数据传输;或者UE一直在调度所在的RB上发送占用信号,或者UE在全带宽发送占用信号,但时间非常短或者能量小于预定义门限值,不能阻碍其他UE CCA检测结果为空闲。
如果调度UE在数据传输时刻之前LBT仍然没有成功,即回退值N仍然没有减为0,则该UE不进行数据传输,或者该UE检测其它UE发送的占用信号,如果能识别出是本小区的UE发送的,则也可以传输数据。或者该UE在数据传输时刻之前的tcca时刻进行一次CCA,该CCA仅在调度所在的RB上进行,如果发现该RB空闲,则可以在该RB上传输数据。
并且,UE在进行LBT或数据传输的过程中,如果遇到延迟周期T到来时,UE要等待,延迟进行CCA或者数据传输,等该延迟周期T过去后再继续进行CCA或数据传输。
实施例六
本可选实施例对上行帧结构进行说明。
根据调度UE的情况,帧结构也可以不同。
通常情况下,定义每个子帧的末尾有一个空闲(Idle)区域,该长度比如为一个OFDM符号长度,或者其它值,用于UE做CCA。对于基站调度某UE连续两个或者多个上行子帧进行传输的情况下,该UE可以仅进行一次CCA,如果成功,就可以连续传输在满足占用时间内的调度的N个子帧对应的PRB上进行数据传输。
如果中间有其他UE进行CCA,则基站发送信令通知该UE,该UE空余子帧的最后一个符号,如图11所示,图11是本申请可选实施例六中上行数据传输示意图。
或者,其它UE仅在调度的PRB上进行CCA,且该PRB的位置跟之前调度多子帧传输的UE在该子帧的RB位置不同。该UE在调度的PRB上成 功后就可以在相应调度的RB上进行上行数据传输。
或者,后面子帧调度的UE在连续传输多个子帧UE调度所在RB剩余的RB上进行CCA。
对于某些情形下,基站可以指示UE不进行LBT而直接进行数据传输。比如,基站先进行LBT成功发送下行数据,并且下行传输时间没有超过最大占用时间限制,这时基站可以指示UE直接进行上行数据传输不用再进行LBT,但上行数据的传输时间和之前基站下行传输的时间之和不超过最大占用时间的限制。
实施例七
本可选实施例对传输子帧为SRS子帧时的帧结构进行说明。
当上行子帧正好为周期SRS或者非周期SRS传输所在的子帧时,一种处理方法是SRS仍然在最后一个符号发送。图12是本申请可选实施例七中上行子帧传输机制示意图,帧结构如图12所示。
该方式下,竞争成功的UE1在最后一个符号发送SRS,即该UE1的子帧的结构跟传统UE的相同。其它同一小区调度的UE2以及其他调度的UE按照基站的配置及调度信息在指定的CCA起始位置开始做CCA。由于此时UE1在该载波上发送SRS,因此如果通过信道检测会检测到忙,然后UE可以继续尝试进行信号检测,来判断是否是本小区的UE发送的信号。检测到同一小区的SRS后就可以在下一个子帧进行传输。这样可以实现上行多用户FDM。
或者,基站通过DCI指示该UE不用进行CCA,直接在下一个子帧按照调度信令进行数据传输。
或者,数据传输的UE采用预定义某PUSCH符号采用RE muting的方式,比如每一个RB中muting一个RE的数据,并且每个小区有个专门的muting图样,UE通过检测该图样确定是本小区的UE在传输数据,然后在下一个子帧就可以进行数据传输,这样也可以保证在SRS发送的情况下不会影响下一个子帧调度的UE进行数据传输。
实施例八
本可选实施例仍然对传输子帧为SRS子帧时的帧结构进行说明。
当上行子帧正好为周期SRS或者非周期SRS传输所在的子帧时,另外的处理方式为:保留原有用于UE做CCA的Idle区域的同时在子帧的末尾发送SRS。该处理方式包括以下两种:
第一种:用于UE做CCA的Idle区域的时域长度不变,将Idle区域之前的一个符号的PUSCH打掉用来传输SRS,如图13所示,图13是本申请可选实施例八中两个UE上行传输机制示意图;
第二种:将原有的SRS长度压缩,SRS长度跟Idle区域的长度之和为一个符号的长度,比如CCA的长度为20微秒或16微秒或9微秒,其它的一个符号的剩余时间用于发送SRS。
实施例九
本可选实施例对传输子帧为SRS子帧时的帧结构进行说明。
当上行子帧正好为周期SRS或者非周期SRS传输所在的子帧时,除了实施例七和八中给出的处理方式外,还可以为:
将SRS放到子帧的初始第一个符号如图14所示,图14是本申请可选实施例九中SRS子帧传输的方法示意图;或者其它预定义的符号。并且,相应符号位置的PUSCH打掉,子帧末尾仍然为Idle区域,用于UE做CCA。
或者,SRS在UE执行CCA成功后,PUSCH子帧之前的位置发送,比如在UpPTS上发送,此时帧结构如图15所示,图15是本申请可选实施例九中上行子帧传输的方法示意图。其中,在上下行采用TDM的方式在非授权载波上进行传输时,基站在抢占到非授权载波后先用于下行传输一段时间,在上行传输之前,中间定义一个空闲区域。一方面用于上下行转换,另一方面用于UE在上行传输之前进行CCA。UE执行CCA成功后,在上行子帧传输之前就可以发送SRS,或者PRACH。
实施例十
本可选实施例对UE进行上行数据传输的过程进行说明。
图16是根据本申请可选实施例十的终端侧的实施流程图,该过程如图16所示。
首先,UE通过高层信令或者物理DCI信令接收上行数据传输参数,或者LBT相关的参数。
传输参数包括以下至少之一:非授权载波的载波索引信息、UE在非授权载波上进行数据传输的子帧位置索引信息、每个子帧分配的物理资源块(PRB)位置及个数、调制编码策略(MCS)、混合自动重传请求(HARQ)进程号。
当UE被调度到多个子帧时,这些子帧的参数可以完全相同,或者部分相同,比如有相同的PRB位置,或者每个子帧上的PRB位置也不同。
LBT相关的参数包括以下至少之一:CCA的起始位置、回退值N、窗长。
UE每个子帧传输的载波索引、回退值可以根据UE上报的测量信息确定。
然后,UE按照接收到的参数进行LBT及数据传输。
如果UE在预定义的数据传输时刻CCA成功,则该UE按照调度信令里的参数进行上行数据传输。
当UE被调度到连续多个子帧时,UE在竞争到资源后可以连续传输多个子帧。
实施例十一
本可选实施例对本申请提供的方法在基站侧的实施过程进行说明。
图17是根据本申请可选实施例十一的基站侧的实施流程图,该过程如图17所示。
首先,基站确定调度在同一子帧的UE,及每个UE的调度传输参数或者UE进行LBT相关的配置参数。
然后,基站通过RRC消息或者DCI将相关参数通知给UE。
然后,基站按照参数进行上行数据的盲检接收,或者当UE发送数据后通知基站,基站接收到反馈信息后才进行接收,如果没有收到反馈信息,或者反馈信息指示UE没有进行数据传输,则该基站不用对数据进行接收解调。
在另外一个实施例中,还提供了一种软件,该软件用于执行上述实施例及可选实施方式中描述的技术方案。
在另外一个实施例中,还提供了一种计算机可读存储介质,该计算机可读存储介质中存储有上述软件,该计算机可读存储介质包括但不限于:光盘、软盘、硬盘、可擦写存储器等。
本发明实施例还提供一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被执行时实现应用于基站侧的数据的传输方法。
本发明实施例还提供一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被执行时实现应用于用户设备侧的数据的传输方法。
本领域的技术人员应该明白,上述本申请的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本申请不限制于任何特定的硬件和软件结合。
上述仅为本申请的可选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。
工业实用性
本申请实施例提供一种数据的传输方法及装置,解决了相关技术中LTE系统在非授权载波频段进行操作时,上行UE如何进行LBT及实现多用户频率复用的问题,提高了频谱效率。

Claims (19)

  1. 一种数据的传输方法,包括:
    基站向用户设备UE发送配置信令,其中,所述配置信令中携带有所述UE的空闲信道评估CCA的参数以及所述UE上行传输的参数;
    所述基站接收所述UE依据所述配置信令发送的上行数据。
  2. 根据权利要求1所述的方法,其中,
    所述CCA的参数包括以下至少之一:由所述基站为所述UE配置的所述CCA开始的符号位置、扩展CCA回退值N、所述CCA的窗长CW;
    所述上行传输的参数包括以下至少之一:由所述基站为所述UE配置的在非授权载波上进行数据传输的载波指示信息、子帧位置指示信息、每个子帧分配的物理资源块PRB位置及个数、调制编码策略MCS、混合自动重传请求HARQ进程号。
  3. 根据权利要求2所述的方法,其中,通过以下之一的方式确定所述CCA的参数和所述上行传输的参数:
    所述基站根据所述UE上报的多个载波测量结果确定所述CCA的参数、载波指示信息、所述MCS;或,
    所述基站根据统计结果确定所述CCA的参数;或,
    所述基站给调度到同一个子帧且地理位置相距在预定义范围内的UE配置相同的CCA参数或相同的CCA参数集合;或,
    所述基站根据所述UE的业务类型或优先级来确定每个UE的CCA的参数;
    当所述基站调度多个UE在同一子帧进行数据传输时,所述基站指示复用的UE在预定义时刻仅进行一次初始CCA;当一个子帧仅调度一个UE时,所述基站配置所述UE采用初始CCA加扩展CCA的CCA方式。
  4. 根据权利要求2所述的方法,其中,所述基站配置所述UE的CCA参数包括:
    所述基站配置所述UE执行所述CCA的起始位置与数据传输的起始时刻 的差为一个初始CCA的长度;或,
    所述基站配置所述UE执行CCA的初始时刻与数据传输的起始时刻的差等于初始CCA的长度加上M个执行扩展CCA的单位时长,其中,所述M为大于或等于0的预定义整数值;或,
    所述基站配置所述UE开始执行所述CCA的时刻与数据传输的起始时刻的差等于初始CCA的长度加上回退值N再加上K个执行扩展CCA的单位时长,其中,所述K为大于或等于0的预定义整数值。
  5. 根据权利要求2所述的方法,其中,所述上行数据传输所在子帧位置通过以下之一的方式确定:
    所述上行数据传输所在的每个子帧位置都按照与上行授权预定义的定时关系确定;或,
    所述上行数据传输的第一个子帧位置按照与上行授权的所述预定义定时关系确定,剩余子帧按照所述配置信令中的子帧位置指示信息确定;或,
    所述上行数据传输的所有子帧位置均按照所述配置信令中的子帧位置指示信息确定。
  6. 根据权利要求5所述的方法,其中,所述基站接收所述UE依据所述配置信令发送的上行数据包括:
    所述基站接收所述UE从子帧边界的第一个正交频分复用OFDM符号开始传输的所述上行数据;或,
    所述基站接收所述UE在所述CCA成功后的第一个完整正交频分复用OFDM符号开始传输的所述上行数据;或,
    所述基站接收所述UE在所述CCA成功后就开始传输的所述上行数据。
  7. 根据权利要求5所述的方法,其中,在所述基站给UE配置多个子帧传输时,所述多个子帧的下行控制信息DCI通过一个物理下行控制信道PDCCH承载,其中,所述多个子帧位置指示信息为位图bitmap指示,或所述多个子帧位置通过起始子帧及连续子帧数目指示。
  8. 根据权利要求1所述的方法,其中,所述配置信令为下行控制信息DCI信令和/或无线资源控制RRC信令。
  9. 一种数据的传输方法,包括:
    用户设备UE接收基站发送的配置信令,其中,所述配置信令中携带有所述UE的空闲信道评估CCA的参数以及所述UE上行传输的参数;
    所述UE依据所述配置信令向所述基站发送上行数据。
  10. 根据权利要求9所述的方法,其中,
    所述CCA的参数包括以下至少之一:由所述基站为所述UE配置的所述CCA开始的符号位置、扩展CCA回退值N、所述CCA的窗长CW;
    所述上行传输的参数包括以下至少之一:由所述基站为所述UE配置的在非授权载波上进行数据传输的载波指示信息、子帧位置指示信息、每个子帧分配的物理资源块PRB位置及个数、调制编码策略MCS、混合自动重传请求HARQ进程号。
  11. 根据权利要求10所述的方法,其中,所述UE依据所述配置信令向所述基站发送上行数据包括:
    在所述上行数据传输之前所述回退值或计数器的值已经减到0时,所述UE继续执行所述CCA,直到所述上行数据传输起始边界,且信道空闲才发送所述上行数据;或,所述UE进入等待状态,直到所述上行数据传输时刻则发送所述上行数据;或,所述UE先等待再在离所述上行数据传输之前的预定义时刻再执行一次初始CCA或单位长度的扩展CCA,在执行所述初始CCA或单位长度的扩展CCA成功后发送所述上行数据;或,所述UE发送占用信号,其中,所述占用信号的时域长度或能量小于预定义的门限;
    在所述UE按照上行授权的预定义定时关系达到传输所述上行数据的时刻,且所述计数器的值没有减到0时,所述UE放弃所述上行数据的传输,并清零所述计数器的值,重新执行CCA;或,所述UE不清零所述计数器的值,继续执行CCA,直到调度的后续子帧边界所述计数器的值减到零,则执行所述上行数据的传输。
  12. 根据权利要求11所述的方法,其中,所述UE依据所述配置信令向所述基站发送上行数据包括:
    所述UE在进行一次初始CCA成功后,直接发送重传的上行数据或优先 级高的上行数据,其中,优先级高的上行数据包括应答ACK或非应答NACK信息、信道状态反馈信息CSI、信道探测参考信号SRS以及物理随机接入信道PRACH;
    所述UE按照预定义或配置的竞争窗大小或者配置的所述回退值执行CCA成功后,发送上行数据或自调度UE的上行数据;
    所述UE按照预定义竞争窗或可变竞争窗自己生成的随机回退值或所述基站配置的回退值成功执行CCA后,发送所述上行数据,其中,所述UE为跨载波调度的UE。
  13. 根据权利要求11所述的方法,其中,所述UE依据所述配置信令向所述基站发送上行数据包括:
    在所述UE连续调度多个子帧时,所述UE在第一个传输子帧前执行一次CCA,执行成功后在满足占用时间内的连续的多个子帧传输所述上行数据;如果后续子帧还有UE调度,所述UE接收所述基站发送的指示信令,其中,所述指示信令用于通知传输所述上行数据的UE将该子帧最后一个符号空余出预定义的时域长度或者指示的用于其它UE CCA的时域长度,并打掉相对应位置的物理上行共享信道PUSCH;或,
    所述UE根据所述基站指示的下一个子帧的调度,在调度所在的物理资源块PRB位置执行CCA;或,
    所述UE根据所述基站指示下一个子帧的调度传输,在系统带宽除去连续传输UE所在的资源块RB后的剩余RB上执行CCA;或,
    所述UE根据所述基站发送指示信息的调度,所述UE在下一个子帧进行上行数据的传输。
  14. 根据权利要求9所述的方法,所述方法还包括:
    在所述UE没有接收到所述基站发送的所述CCA的参数时,所述UE自己选择所述CCA的方式及其参数进行CCA。
  15. 根据权利要求12或13所述的方法,其中,所述UE执行CCA的方式包括以下至少之一:
    每K个子帧仅包括一个初始CCA,且CCA位于子帧的最后一个符号位 置或子帧第一个符号位置;
    每K个子帧内包括一次初始CCA及扩展CCA,其中,初始CCA的起始位置为预定义值,或者由所述基站配置,且初始CCA的位置与数据传输初始时刻的差为初始CCA的时长加上M个扩展CCA单位时长;
    其中,K为大于或等于1的整数,M大于或等于扩展CCA的回退值N,N由基站配置或为预定义值,或UE从[0,CW]中随机选择,该CW为预定义值,或CW为根据所述基站反馈结果调整的可变值或根据所述UE执行CCA检测结果调整的可变值。
  16. 根据权利要求15所述的方法,其中,所述初始CCA的长度及扩展CCA的单位时长为预定义值。
  17. 根据权利要求9所述的方法,其中,在传输所述上行数据的子帧是周期或非周期信道探测参考信号SRS发送的子帧时,所述UE传输的子帧结构包括如下之一:
    所述UE在所述子帧的最后一个符号发送所述SRS,其中,所述子帧用于打掉CCA的空闲区域;调度在下一子帧的其它UE通过检测到所述SRS,在所述下一子帧调度所在的位置传输;或,所述子帧传输的所述UE通过预定义符号资源单元RE静默的方式让其它子帧调度UE在下一子帧进行传输,其中,所述预定义符号RE静默的图样为小区特定的;
    上行子帧末尾打掉一个符号加所述CCA长度的物理上行共享信道PUSCH,其中,所述打掉的PUSCH位置用于发送所述SRS及所述UE执行CCA;
    在最后一个符号的起始位置发送所述SRS,其中,所述SRS加CCA的总长度等于1个符号的长度;
    将所述SRS放到子帧的第一个或预定义符号位置发送,其中,所述子帧末尾为空闲区域,用于所述UE执行CCA;
    所述SRS在所述CCA执行成功后,且所述上行数据传输子帧前的位置发送。
  18. 一种数据的传输装置,应用于基站侧,包括:
    第一发送模块,设置为向用户设备UE发送配置信令,其中,所述配置信令中携带有所述UE的空闲信道评估CCA的参数以及所述UE上行传输的参数;
    第一接收模块,设置为接收所述UE依据所述配置信令发送的上行数据。
  19. 一种数据的传输装置,应用于用户设备UE侧,包括:
    第二接收模块,设置为接收基站发送的配置信令,其中,所述配置信令中携带有所述UE的空闲信道评估CCA的参数以及所述UE上行传输的参数;
    第二发送模块,设置为依据所述配置信令向所述基站发送上行数据。
PCT/CN2016/081437 2015-06-26 2016-05-09 数据的传输方法及装置 WO2016206483A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/739,694 US20180192442A1 (en) 2015-06-26 2016-05-09 Data transmission method and device
EP16813599.4A EP3316650A4 (en) 2015-06-26 2016-05-09 METHOD AND DEVICE FOR DATA TRANSMISSION

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510366754.3 2015-06-26
CN201510366754.3A CN106301733B (zh) 2015-06-26 2015-06-26 数据的传输方法及装置

Publications (1)

Publication Number Publication Date
WO2016206483A1 true WO2016206483A1 (zh) 2016-12-29

Family

ID=57584530

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/081437 WO2016206483A1 (zh) 2015-06-26 2016-05-09 数据的传输方法及装置

Country Status (4)

Country Link
US (1) US20180192442A1 (zh)
EP (1) EP3316650A4 (zh)
CN (1) CN106301733B (zh)
WO (1) WO2016206483A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109314998A (zh) * 2017-04-25 2019-02-05 华为技术有限公司 一种随机接入方法和装置
WO2019028675A1 (en) 2017-08-08 2019-02-14 Telefonaktiebolaget Lm Ericsson (Publ) METHOD AND APPARATUS FOR UPLINK TRANSMISSION IN A WIRELESS COMMUNICATION SYSTEM
CN111543100A (zh) * 2018-08-10 2020-08-14 联发科技股份有限公司 减轻未授权频谱中对话前监听影响的方法
CN115225234A (zh) * 2017-06-16 2022-10-21 韦勒斯标准与技术协会公司 使用时分双工方案的无线通信系统的用户设备及操作方法
CN111543100B (zh) * 2018-08-10 2024-04-19 联发科技股份有限公司 减轻未授权频谱中对话前监听影响的方法及装置

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016072685A2 (ko) * 2014-11-04 2016-05-12 엘지전자 주식회사 비면허 대역에서의 상향링크 전송 방법 및 이를 이용한 장치
CN107071915B (zh) * 2015-01-29 2021-02-02 中兴通讯股份有限公司 一种数据传输方法、数据传输站点及接收端
CN106341828B (zh) * 2015-07-10 2020-04-03 华为技术有限公司 一种信道测量方法及sta
WO2017030486A1 (en) * 2015-08-14 2017-02-23 Telefonaktiebolaget Lm Ericsson (Publ) Channel access configuration
US10492220B2 (en) * 2015-09-30 2019-11-26 Qualcomm Incorporated Opportunistic extended channel uplink grants for ECC
CN108702788B (zh) * 2016-05-12 2021-01-12 华为技术有限公司 一种随机接入方法及装置
WO2017208286A1 (ja) * 2016-06-03 2017-12-07 富士通株式会社 無線通信装置、および無線通信方法
EP3531603B1 (en) * 2016-11-18 2023-08-30 Huawei Technologies Co., Ltd. Data transmission method and device
US10694533B2 (en) * 2016-12-19 2020-06-23 T-Mobile Usa, Inc. Network scheduling in unlicensed spectrums
CN115884403A (zh) * 2017-01-06 2023-03-31 中兴通讯股份有限公司 数据传输方法、设备及存储介质
US10869300B2 (en) * 2017-01-08 2020-12-15 Lg Electronics Inc. Uplink signal transmission method of terminal in wireless communication system and device for supporting same
WO2018137215A1 (zh) * 2017-01-25 2018-08-02 华为技术有限公司 物理下行共享信道覆盖增强方法、装置及系统
CN110235473B (zh) * 2017-01-30 2021-11-09 深圳市汇顶科技股份有限公司 非许可ISM频带中的NB-IoT多载波操作
CN108512632B (zh) 2017-02-28 2021-06-01 华为技术有限公司 数据处理方法及装置
WO2018157501A1 (zh) * 2017-03-03 2018-09-07 华为技术有限公司 信道竞争的方法、基站和终端设备
CN110447298B (zh) * 2017-03-25 2023-07-28 韦勒斯标准与技术协会公司 在非授权带中发送物理信道的方法、装置和系统
EP3618333B1 (en) 2017-05-05 2022-12-21 Huawei Technologies Co., Ltd. Uplink data sending method and apparatus
EP3429111B1 (en) * 2017-07-09 2021-08-25 HTC Corporation Device and method of performing data transmission in bandwidth parts
EP3664539B1 (en) 2017-08-04 2022-06-29 Beijing Xiaomi Mobile Software Co., Ltd. Data transmission method and device, and computer-readable storage medium
CN109495923B (zh) * 2017-09-11 2021-09-07 中兴通讯股份有限公司 一种cca检测方法、装置、存储介质和终端
CN109890076B (zh) * 2017-12-06 2023-01-06 华为技术有限公司 一种非授权频谱上的数据传输方法、设备和存储介质
EP3721671B1 (en) * 2017-12-08 2022-08-31 Telefonaktiebolaget LM Ericsson (publ) Network node and method for performing multi-channel access procedures in a license-assisted access cell in wireless communication network
WO2019242452A1 (zh) * 2018-06-20 2019-12-26 Oppo广东移动通信有限公司 用于物理随机接入信道传输的信道接入方法、装置和程序
CN110831179A (zh) * 2018-08-10 2020-02-21 索尼公司 用于无线通信系统的电子设备、方法和存储介质
EP3629506A1 (en) * 2018-09-27 2020-04-01 Panasonic Intellectual Property Corporation of America User equipment and base station involved in the transmission of data
CN110958710B (zh) * 2018-09-27 2021-12-24 维沃移动通信有限公司 信道接入方法、配置方法、终端及网络侧设备
US11405980B2 (en) * 2018-09-28 2022-08-02 Apple Inc. Listen again after talk for broadcast/multi-cast communications
CN113169835B (zh) * 2018-12-14 2023-11-03 华为技术有限公司 一种数据传输方法及装置
US11706800B2 (en) * 2018-12-21 2023-07-18 Qualcomm Incorporated Category-2 listen-before-talk (LBT) options for new radio-unlicensed (NR-U)
EP3895497A1 (en) * 2019-02-12 2021-10-20 Apple Inc. Frame-based equipment mode of operation for new radio-unlicensed systems and networks
CN112738905B (zh) * 2019-02-21 2022-04-29 华为技术有限公司 随机接入的方法和装置
EP3734885A1 (en) * 2019-05-02 2020-11-04 Panasonic Intellectual Property Corporation of America User equipment and network node involved in communication
EP3979537A4 (en) * 2019-05-28 2022-06-15 Beijing Xiaomi Mobile Software Co., Ltd. CONTROL SIGNAL DETECTION METHOD AND DEVICE, DEVICE AND STORAGE MEDIUM
WO2020248133A1 (zh) * 2019-06-11 2020-12-17 小米通讯技术有限公司 信道接入配置方法、装置、设备及存储介质
US11653386B2 (en) * 2019-09-10 2023-05-16 Qualcomm Incorporated Indication of listen-before-talk configuration for uplink communications
CN114828219A (zh) * 2019-11-08 2022-07-29 展讯通信(上海)有限公司 数据接收方法及装置、存储介质、终端
CN113114436B (zh) * 2020-01-10 2022-06-10 维沃移动通信有限公司 一种发送配置方法、设备及系统
CN114006683A (zh) * 2020-07-28 2022-02-01 上海朗帛通信技术有限公司 一种副链路无线通信的方法和装置
CN111970765B (zh) * 2020-08-10 2022-05-31 杭州电子科技大学 一种大规模终端接入方法及系统
US20230239928A1 (en) * 2020-10-16 2023-07-27 Apple Inc. Semi-static channel access for traffic with different priorities
CN114765469A (zh) * 2021-01-15 2022-07-19 华为技术有限公司 一种数据传输方法及装置
CN115550683A (zh) * 2021-06-29 2022-12-30 华为技术有限公司 一种视频数据的传输方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104012159A (zh) * 2011-12-22 2014-08-27 交互数字专利控股公司 Lte载波聚合中的控制信令
US20140362780A1 (en) * 2013-06-11 2014-12-11 Qualcomm Incorporated Lte/lte-a uplink carrier aggregation using unlicensed spectrum
WO2015057367A1 (en) * 2013-10-14 2015-04-23 Qualcomm Incorporated Downlink control management in an unlicensed or shared spectrum
CN104717686A (zh) * 2015-03-31 2015-06-17 深圳酷派技术有限公司 一种未授权频段的信道检测方法及网元设备
CN105101446A (zh) * 2015-06-30 2015-11-25 宇龙计算机通信科技(深圳)有限公司 一种用于非授权频段的冲突避免方法及装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9693264B2 (en) * 2011-04-18 2017-06-27 Lg Electronics Inc. Signal transmission method and device in a wireless communication system
CN103650622A (zh) * 2011-05-24 2014-03-19 美国博通公司 信道接入控制
WO2016029876A1 (en) * 2014-08-29 2016-03-03 Mediatek Inc. Prioritized channel access schemes with spatial reuse consideration
WO2016048227A2 (en) * 2014-09-25 2016-03-31 Telefonaktiebolaget L M Ericsson (Publ) Method and apparatus for enhanced uplink reference signal in listen-before-talk systems
US10349293B2 (en) * 2015-04-17 2019-07-09 Qualcomm Incorporated Control of UE clear channel assessment by an eNB
US10159089B2 (en) * 2015-04-20 2018-12-18 Qualcomm Incorporated Uplink listen before talk operation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104012159A (zh) * 2011-12-22 2014-08-27 交互数字专利控股公司 Lte载波聚合中的控制信令
US20140362780A1 (en) * 2013-06-11 2014-12-11 Qualcomm Incorporated Lte/lte-a uplink carrier aggregation using unlicensed spectrum
WO2015057367A1 (en) * 2013-10-14 2015-04-23 Qualcomm Incorporated Downlink control management in an unlicensed or shared spectrum
CN104717686A (zh) * 2015-03-31 2015-06-17 深圳酷派技术有限公司 一种未授权频段的信道检测方法及网元设备
CN105101446A (zh) * 2015-06-30 2015-11-25 宇龙计算机通信科技(深圳)有限公司 一种用于非授权频段的冲突避免方法及装置

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ETRI.: "Discussion on the UL Transmission for LAA and the Potential Solution thereof", 3GPP TSG RAN WG1 MEETING #80BIS R1-152094, 24 April 2015 (2015-04-24), XP050934942 *
ETRI.: "Discussion on UL Grant for LAA", 3GPP TSG RAN WG1 MEETING #80BIS R1-152095, 24 April 2015 (2015-04-24), XP050934943 *
INTEL CORPORATION.: "Comparison of evaluation results for various UL LBT options", 3GPP TSG RAN WG1 MEETING #81 R1-152645, 29 May 2015 (2015-05-29), XP050973164 *
See also references of EP3316650A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109314998A (zh) * 2017-04-25 2019-02-05 华为技术有限公司 一种随机接入方法和装置
CN109314998B (zh) * 2017-04-25 2020-12-15 华为技术有限公司 一种随机接入方法和装置
US10999875B2 (en) 2017-04-25 2021-05-04 Huawei Technologies Co., Ltd. Random access method and apparatus
CN115225234A (zh) * 2017-06-16 2022-10-21 韦勒斯标准与技术协会公司 使用时分双工方案的无线通信系统的用户设备及操作方法
WO2019028675A1 (en) 2017-08-08 2019-02-14 Telefonaktiebolaget Lm Ericsson (Publ) METHOD AND APPARATUS FOR UPLINK TRANSMISSION IN A WIRELESS COMMUNICATION SYSTEM
EP3665992A4 (en) * 2017-08-08 2021-03-24 Telefonaktiebolaget LM Ericsson (publ) UPLOAD TRANSMISSION METHOD AND APPARATUS IN A WIRELESS COMMUNICATION SYSTEM
CN111543100A (zh) * 2018-08-10 2020-08-14 联发科技股份有限公司 减轻未授权频谱中对话前监听影响的方法
CN111543100B (zh) * 2018-08-10 2024-04-19 联发科技股份有限公司 减轻未授权频谱中对话前监听影响的方法及装置

Also Published As

Publication number Publication date
US20180192442A1 (en) 2018-07-05
CN106301733A (zh) 2017-01-04
CN106301733B (zh) 2020-11-20
EP3316650A1 (en) 2018-05-02
EP3316650A4 (en) 2019-05-01

Similar Documents

Publication Publication Date Title
WO2016206483A1 (zh) 数据的传输方法及装置
US11929833B2 (en) HARQ feedback for unscheduled uplink
US11356211B2 (en) Uplink MAC protocol aspects
US10764914B2 (en) Uplink information processing method and apparatus
US10581577B2 (en) Data scheduling and transmission method, apparatus, and system
CN107371274B (zh) 传输数据的方法及设备
US20210298108A1 (en) Apparatus and method for idle mode uplink transmission in wireless communication system
CN107548159B (zh) 处理上行链路传输的装置及方法
US20210315008A1 (en) Multiple starting and ending positions for scheduled downlink transmission on unlicensed spectrum
EP3556157B1 (en) Systems and methods for asynchronous grant-free access
EP2523520B1 (en) Method and device for scheduling request
CN102158981B (zh) 一种基于竞争的上行数据传输方法和系统
WO2018223893A1 (zh) 一种调整竞争窗长度的方法及设备
WO2017125077A1 (zh) 数据传输方法及装置
KR20170043539A (ko) 면허 및 비면허 대역에 대한 통신
KR20200142051A (ko) 데이터 송신을 위한 방법 및 장치
WO2018028489A1 (zh) 一种数据传输的方法和装置
WO2019192613A1 (zh) 一种信息传输方法、装置、基站及计算机可读存储介质
JP2018530960A (ja) データ伝送方法、端末及びranデバイス
WO2017132964A1 (zh) 一种上行数据传输方法及相关设备
JP2018523415A (ja) アップリンク情報送信方法及び装置
CN107623652A (zh) 一种数据传输方法及装置
CN115052364A (zh) 传输数据的方法及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16813599

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016813599

Country of ref document: EP