WO2016206221A1 - 血压测量方法和测量系统 - Google Patents

血压测量方法和测量系统 Download PDF

Info

Publication number
WO2016206221A1
WO2016206221A1 PCT/CN2015/091033 CN2015091033W WO2016206221A1 WO 2016206221 A1 WO2016206221 A1 WO 2016206221A1 CN 2015091033 W CN2015091033 W CN 2015091033W WO 2016206221 A1 WO2016206221 A1 WO 2016206221A1
Authority
WO
WIPO (PCT)
Prior art keywords
body region
video
pulse wave
image
blood pressure
Prior art date
Application number
PCT/CN2015/091033
Other languages
English (en)
French (fr)
Inventor
王鑫
韩雪琳
靳小利
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/100,480 priority Critical patent/US9922420B2/en
Priority to EP15862152.4A priority patent/EP3315061B1/en
Publication of WO2016206221A1 publication Critical patent/WO2016206221A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0077Devices for viewing the surface of the body, e.g. camera, magnifying lens
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/02108Measuring pressure in heart or blood vessels from analysis of pulse wave characteristics
    • A61B5/02125Measuring pressure in heart or blood vessels from analysis of pulse wave characteristics of pulse wave propagation time
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • G06T7/0014Biomedical image inspection using an image reference approach
    • G06T7/0016Biomedical image inspection using an image reference approach involving temporal comparison
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10016Video; Image sequence
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30076Plethysmography

Definitions

  • Embodiments of the present application relate to a blood pressure measuring method and a measuring system.
  • blood pressure is measured by a mercury column sphygmomanometer and blood pressure is measured by an electronic sphygmomanometer. Both of these blood pressure measurement methods require the cuff on the sphygmomanometer to be in contact with the human arm to complete the blood pressure measurement, but the measurement results are less accurate when the cuff is in contact with the arm.
  • the embodiment of the present application provides a blood pressure measuring method and a measuring system for solving the problem that the measurement accuracy caused by the cuff needs to be in contact with the arm of the subject when the blood pressure is measured.
  • At least one embodiment of the present application provides a blood pressure measuring method, the method comprising: collecting at least one video of a first body region and a second body region of a subject, wherein each of the at least one video Each includes a multi-frame image; extracting, from the image of the at least one video, a plurality of gray values including a corresponding image of the first body region and a plurality of gray values including a corresponding image of the second body region; Draw a pulse wave waveform of the first body region according to the plurality of gray values of the first body region corresponding image, and draw the second body region according to the plurality of gray values of the second body region corresponding image a pulse wave waveform; determining a propagation time of the pulse wave according to a pulse wave waveform of the first body region and a pulse wave waveform of the second body region; and according to a correspondence between a propagation time of the pulse wave and blood pressure , get the blood pressure of the subject.
  • At least one embodiment of the present application further provides a blood pressure measurement system, the blood pressure measurement system comprising: a video capture device, configured to collect at least one video of a first body region and a second body region of the test subject, Each of the at least one video includes a multi-frame image; a gray value extraction device coupled to the acquisition device and configured to extract from the image of the at least one video a plurality of gray values of the corresponding image of the first body region and a plurality of gray values including the corresponding image of the second body region; a pulse wave drawing device, the pulse wave drawing device and the gray value extracting device Connecting, and configured to draw a pulse wave waveform of the first body region according to the plurality of gray values of the first body region corresponding image, and draw a second according to the plurality of gray values of the second body region corresponding image Pulse wave waveform in the body region; pulse wave propagation time Determining means, said pulse wave propagation time determining means being coupled to said pulse wave drawing means, and operative to determine a pulse wave propag
  • FIG. 1 is a flowchart of a blood pressure measuring method according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a pulse wave waveform of a first body region and a pulse wave waveform of a second body region according to an embodiment of the present application;
  • FIG. 3 is a schematic structural diagram of a blood pressure measurement system according to an embodiment of the present application.
  • the applicant of the present application found that since blood pressure is measured by a mercury column sphygmomanometer and an electronic sphygmomanometer, the cuff needs to be in contact with the arm, so that the blood vessels in the arm are pressed, causing discomfort of the subject, thereby affecting blood pressure. The accuracy of the measurement results.
  • a pulse wave waveform of the first body region and the pulse state are respectively obtained by extracting a gray value of a corresponding image including a first body region of the subject and a gray value of a corresponding image including the second body region
  • the pulse wave waveform of the second body region is used to determine the propagation time of the pulse wave, and then according to the propagation time of the pulse wave Correspondence between blood pressure, the blood pressure of the subject is obtained.
  • the cuff is not required during the whole blood pressure measurement process, and the blood pressure of the test subject can be measured without contacting the skin of the test subject. Since the cuff is not required, there is no problem that the cuff comes into contact with the arm of the subject, so that the cuff can be prevented from being pressed against the blood vessel in the arm of the subject, thereby improving the accuracy of the blood pressure measurement result.
  • the embodiment of the present application provides a blood pressure measuring method, as shown in FIG. 1 , the blood pressure measuring method includes:
  • Step S101 Simultaneously acquire at least one video of the first body region and the second body region of the test subject, wherein the at least one video comprises a multi-frame image.
  • At least one video of the face (first body region) of the subject A and the hand (second body region) of the subject A is simultaneously extracted.
  • Step S102 extracting, from the image of the at least one video, a plurality of gray values including a corresponding image of the first body region, and extracting a plurality of gray values including corresponding images of the second body region;
  • Step S103 Draw a pulse wave waveform of the first body region according to the plurality of gray values of the first body region corresponding image, and draw the second according to the plurality of gray values of the second body region corresponding image. Pulse wave waveform of the body region;
  • Step S104 determining a propagation time of the pulse wave according to the pulse wave waveform of the first body region and the pulse wave waveform of the second body region;
  • Step S105 Acquire blood pressure corresponding to the propagation time according to a correspondence relationship between the propagation time of the pulse wave and blood pressure, and obtain the blood pressure value of the subject.
  • the first body region and the second body region are two body regions having a difference in distance between the body and the heart of the subject.
  • the first body region is a face region of the subject
  • the second body region is a hand region of the subject.
  • the distance between the face area and the hand area is different from the heart.
  • the peripheral capillaries of the face area and the hand area are dense, and the measurement accuracy is high.
  • the face area and the hand area are always exposed.
  • no other processing, such as undressing is required during the measurement process to make the measurement process simple.
  • no foreign matter is squeezed, and the subject does not feel uncomfortable by measuring blood pressure. Does not affect blood pressure measurement The accuracy of the results.
  • step S101 in order to simultaneously collect at least one video of the first body area and the second body area of the subject, there are various implementations.
  • the embodiment of the present application provides at least the following two exemplary modes.
  • the first method includes video capturing an area including the first body region and the second body region of the subject using an imaging device.
  • the subject needs to cooperate with some movements so that the first body region and the second body region are in the same image, and specifically, the first body region and the second body region of the measured person can be kept at Keep the set distance on the same plane to ensure that both are in the camera line of sight.
  • the first body area is the face area of the subject and the second body area is the hand area of the subject
  • the subject raises the right hand and places the right hand vertically next to the right ear, the face and The palm of your right hand is facing in the same direction.
  • the at least one video includes a video
  • each frame of the video includes a face region and a hand region of the subject. Therefore, simultaneously acquiring at least one video of the first body region and the second body region of the subject includes: capturing an image including the first body region and the second body region by using one imaging device, specifically, using the same imaging device pair The video is captured by the video of the subject's face and hand to obtain the video.
  • the second way is to use a imaging device to perform video capture on the first body region of the subject while using another imaging device to perform video capture on the second body region of the subject. Since the first video of the first body region of the subject and the second video of the second body region are separately acquired using the two imaging devices, the subject does not need to cooperate with some actions to make the first body region and the second body region Stay on the same plane.
  • the at least one video includes a first video and a second video, and the first video is a video including a first body region, and the second video is a video including a second body region.
  • simultaneously acquiring at least one video of the first body region and the second body region of the subject includes: performing video capture on the first body region of the subject using one imaging device to obtain the first video while using another The imaging device performs video capture on the second body region of the subject to obtain the second video.
  • the blood pressure measurement method provided by the embodiment of the present application further includes: The above two imaging devices (i.e., one imaging device and another imaging device) are controlled so that both are simultaneously video captured. In this way, the subject does not need to cooperate with some action to keep the first body region and the second body region in the same plane. Moreover, the video collection of the first body region and the second body region is ensured at the same time, so there is no imaging time interval between the two, so that the accuracy of the blood pressure measurement is high.
  • the blood pressure measurement method provided by the embodiment of the present application does not specifically limit the distance between the test subject and the imaging device. As long as the distance between the subject and the imaging device, it is possible to ensure that the first body region and the second body region of the subject are clearly imaged in the imaging device. In addition, under the premise that the first body region and the second body region of the subject are clearly imaged, when the first body region and the second body region of the subject are moved back and forth, or rotated slightly, the present application implements
  • the blood pressure measurement method provided by the example can also identify images of the first body region and the second body region in each frame of the image.
  • the one or two imaging devices when one or two imaging devices simultaneously acquire at least one video of the first body region and the second body region of the test subject, the one or two imaging devices are imaging frequencies.
  • a high speed camera that is greater than or equal to 100 frames per second.
  • Applicants of the present application have found in practical applications that since the pulse wave propagation time is on the order of one hundred milliseconds, if an ordinary camera is used, the imaging frequency is generally 25 frames per second, then the time difference between adjacent two frames of images is 40. Milliseconds, resulting in low accuracy of blood pressure measurements.
  • the imaging frequency is greater than or equal to 100 frames per second, then the time difference between adjacent two frames of images is at most 10 milliseconds, and the time difference between adjacent two frames of images is small, thereby improving blood pressure measurement. accuracy.
  • step S102 in order to extract a plurality of gray values including a corresponding image of the first body region and a plurality of gray values including the corresponding image of the second body region from the image of the at least one video, step S102 includes: First, the video of the first body region of the subject and the corresponding image of the first body region and the corresponding image of the second body region in each frame image of the video of the second body region acquired by step S101 are identified; secondly, respectively One gray value of the image corresponding to the first body region in each frame image and one gray value of the image corresponding to the second body region are extracted.
  • the gray value (ie, the gray value of the first body region, and/or the gray value of the second body region) may be red, green, and blue.
  • the integrated gray value of the signals of the three channels can also be the gray value of the red channel signal.
  • the gray value of the red channel signal in the image corresponding to the first body region in each frame image and the gray value of the red channel signal in the image corresponding to the second body region may be extracted.
  • the gray value of the red channel signal in the body region corresponding image and the second body region corresponding image can more clearly reflect the period of blood perfusion, therefore, extracting each frame image
  • the first body region corresponding to the image and the gray value of the red channel signal in the image corresponding to the second body region can improve the accuracy of the blood pressure measurement.
  • the gray value of the first body region corresponding image mentioned in step S102 may be the gray value of any one of the test points corresponding to the first body region in each frame image, or may be the first body.
  • the average value of the gray values of at least two test points in the region corresponding image may be an average value of the gray values of all the test points;
  • the gray value of the second body region mentioned in step S102 may be The gray value of any one of the test points in the second body region corresponding to the second body region in the frame image may also be an average value of the gray values of at least two test points in the image corresponding to the second body region, for example, may be for all test points.
  • the average of the gray values may be the gray value of any one of the test points corresponding to the first body region in each frame image, or may be the first body.
  • the average value of the gray values of at least two test points in the region corresponding image for example, may be an average value of the gray values of all the test points.
  • the advantages include: an operation of extracting the gray value of the image corresponding to the first body region It is relatively simple, and its disadvantages include: large error.
  • the disadvantages include: extracting gray corresponding to the image of the first body region
  • the operation of the degree value is more complicated, and its advantages include: the error is small. For example, when selecting a gray value, it can be selected according to actual needs.
  • the advantages include: extracting the grayscale of the corresponding image of the second body region
  • the operation of the value is relatively simple, and its disadvantages include: large error.
  • the disadvantages include: extracting gray corresponding to the image of the second body region
  • the operation of the degree value is more complicated, and its advantages include: the error is small.
  • test point may be a pixel on the first body region corresponding image or the second body region corresponding image in each frame image, or may be a first body region corresponding image or a second body region in each frame image. Corresponding images on adjacent multiple pixels.
  • the at least one video includes one video
  • each frame of the video is an image including both the first body region and the second body region.
  • Extracting a plurality of gray values including a corresponding image of the first body region from the image of the at least one video and a plurality of gray values including the corresponding image of the second body region includes: (1) identifying each of the videos a corresponding image of the first body region and a corresponding image of the second body region in the frame image; and (2) extracting each frame image in the video
  • the first body region corresponds to one gray value of the image and one gray value of the image corresponding to the second body region.
  • the video includes a multi-frame image, and each frame image can respectively extract one gray value of the image corresponding to the first body region and one gray value of the image corresponding to the second body region, so that the image can be extracted from the multi-frame image of the video.
  • a gray value of the image corresponding to the first body region may be obtained from each frame image in the video, and the gray value may be a gray value of any one of the test points in the image corresponding to the first body region, or
  • the first body region corresponds to an average of gray values of at least two test points in the image.
  • the gray value may be a gray value of any one of the test points in the image corresponding to the second body region, or the second body The region corresponds to the average of the gray values of at least two test points in the image.
  • the at least one video includes a first video and a second video, the first video being a video of a first body region, and the second video being a video of a second body region.
  • Extracting the plurality of gray values including the corresponding image of the first body region and the plurality of gray values including the corresponding image of the second body region includes: (1) identifying the first body region in each frame image in the first video Corresponding image and corresponding image of the second body region in each frame image in the second video; and (2) extracting a gray value and a second image of the first body region corresponding image in each frame image in the first video
  • the second body region in each frame of the image in the video corresponds to a gray value of the image.
  • the first video includes a multi-frame image, and each frame image may extract a gray value of the image corresponding to the first body region, so that multiple images corresponding to the first body region may be extracted from the multi-frame image of the first video. grayscale value.
  • the second video includes a multi-frame image, and each frame image can respectively extract a gray value of the second body region corresponding image, so that the second body region corresponding image can be extracted from the multi-frame image of the second video. Multiple gray values.
  • the gray value may be a gray value of any one of the test points in the image corresponding to the first body region, or A body region corresponds to an average of gray values of at least two test points in the image.
  • the gray value may be a gray value of any one of the test points in the image corresponding to the second body region, or the second body region corresponds to The average of the gray values of at least two test points in the image.
  • the pulse wave waveform can be drawn by: the plurality of gray values of the first body region corresponding image extracted in step S102 are the ordinate, and the time is the abscissa, and the first body region is drawn. Pulse wave waveform; the second body region extracted in step S102 The plurality of gray values of the domain corresponding image are ordinates, and the time is the abscissa, and the pulse wave waveform of the second body region is drawn.
  • the time is obtained as follows: the imaging frequency of the imaging device is f, and the time interval of the adjacent two frames is 1/f second, and the time corresponding to the image of the first frame is the time origin, and the image of the nth frame corresponds to The time is (n-1) ⁇ 1/f seconds.
  • the imaging frequency of the imaging device is 100 frames per second
  • the time interval of the adjacent two frames of images is 10 milliseconds
  • the image of the 10th frame corresponds to The time is 90 milliseconds.
  • the pulse wave waveform of the first body region and the pulse wave waveform of the second body region drawn in the above manner are as shown in FIG. 2, wherein the solid line is the pulse wave waveform of the first body region, and the broken line is the pulse of the second body region.
  • the propagation time of the pulse wave is determined based on the pulse wave waveform of the first body region and the pulse wave waveform of the second body region. It should be noted that the propagation time of the pulse wave refers to a time delay in which the pulse wave propagates at different positions of the human artery.
  • the step of determining the propagation time of the pulse wave according to the pulse wave waveform of the first body region and the pulse wave waveform of the second body region includes: first, selecting a peak A of the pulse wave waveform of the first body region, selecting the first Another peak B in the pulse wave waveform of the second body region, wherein the one peak A and the other peak B have the shortest time interval; secondly, the time interval between the one peak A and the other peak B is acquired; then, Repeating the above steps multiple times to obtain a plurality of time intervals, in the process of repeating, sequentially selecting peaks in consecutive plurality of cycles of the pulse wave waveform of the first body region; finally, calculating a plurality of time intervals obtained in the above steps The average value is taken as the propagation time of the pulse wave.
  • the step of acquiring the time interval is repeated a plurality of times, and the average value of the plurality of time intervals is taken as the propagation time of the pulse wave, so as to reduce the error that may exist in the time interval, thereby reducing the pulse wave.
  • Spread time errors to improve the accuracy of blood pressure measurements. It should be noted that the above multiple times are referred to twice or more, and are taken as ten times in this embodiment.
  • step S105 since the propagation time of the pulse wave can reflect the propagation speed of the pulse wave, blood pressure can be obtained by the propagation time of the pulse wave.
  • the propagation time of the pulse wave refers to, for example, when the pulse wave propagates at different positions of the human artery, there is a time delay, and the time of this delay is the propagation time of the pulse wave.
  • the blood of the subject is obtained according to the relationship between the propagation time of the pulse wave and the blood pressure
  • the process of pressing involves the following three formulas:
  • v is the pulse wave velocity
  • E is the elastic modulus of the blood vessel
  • h is the vessel wall thickness
  • d is the blood vessel wall diameter
  • is the blood viscosity
  • E 0 is the elastic modulus of the blood vessel when the pressure is 0, ⁇
  • S is the propagation distance of the pulse wave
  • PTT is the propagation time of the pulse wave.
  • the blood pressure measurement method provided by the embodiment of the present application further includes, after step S103, filtering the pulse wave waveform of the first body region and the pulse wave waveform of the second body region.
  • filtering can be employed. By filtering, other interference signals such as jitter caused by respiratory signals and body stress reactions can be removed, thereby improving the accuracy of blood pressure measurement.
  • the blood pressure measurement method enables the measurement to be measured without using the cuff during the whole blood pressure measurement process, without touching the skin of the test subject.
  • the blood pressure of the person does not require a cuff, so there is no problem that the cuff is in contact with the arm of the subject, so that the cuff can be prevented from being pressed against the blood vessel in the arm of the subject, thereby improving the accuracy of the blood pressure measurement result. Sex.
  • the blood pressure measurement method can also measure the blood pressure of the subject using a blood pressure measurement method for a subject having a wound on the arm skin and an arm inconvenience.
  • the embodiment of the present application further provides a blood pressure measurement system.
  • the blood pressure measurement system includes: a video collection device 301; a gray value extraction device 302 connected to the video collection device 301; and a gray value extraction device 302.
  • the working process of the blood pressure measurement system may include: first collecting, by the video collection device 301, a video of the first body region of the subject and a video of the second body region, and transmitting the collected video to the gray value extraction device 302;
  • the degree value extracting means 302 respectively extracts the gray value of the first body region corresponding image and the gray value of the second body region corresponding image from the video, and transmits the gray value to the pulse wave drawing device 303;
  • the pulse wave drawing device 303 respectively plot the pulse wave waveforms of the first body region and the second body region according to the corresponding gray value, and transmit the pulse wave waveform to the pulse wave propagation time determining means 304;
  • the pulse wave propagation time determining means 304 determines the pulse wave propagation The time and the propagation time of the pulse wave are transmitted to the blood pressure acquiring device 305;
  • the blood pressure acquiring device 305 acquires the blood pressure of the subject based on the correspondence between the pulse wave propagation time and the blood pressure.
  • the first body region and the second body region are two body regions having a difference in distance between the body and the heart of the subject.
  • the first body region is a face region of the subject
  • the second body region is a hand region of the subject.
  • the video capture device 301 is configured to collect at least one video of the first body region and the second body region of the test subject, and each video of the at least one video includes a multi-frame image.
  • the video capture device includes one or more imaging devices.
  • the video capture device 301 captures at least one video of the first body region and the second body region of the subject, and the embodiments of the present application provide at least the following two exemplary ways.
  • the first method includes video capturing an area including the first body region and the second body region of the subject using an imaging device.
  • the subject needs to cooperate with some movements to keep the first body area and the second body area in the same plane. For example, when the first body area is the face area of the subject and the second body area is the hand area of the subject, the subject raises the right hand and places the right hand vertically next to the right ear, the face and The palm of your right hand is facing in the same direction.
  • Adopt When the video is collected in this manner, since the video collection of the first body region and the second body region is performed simultaneously, there is no imaging time difference between the two, so that the accuracy of the blood pressure measurement is high.
  • the at least one video includes one video
  • each frame image of the video includes a face region and a hand region of the subject.
  • the video capture device 301 uses the same imaging device to perform video capture on the area including the face and hand of the subject to obtain the video.
  • the second method includes: using one imaging device to perform video capture on the first body region of the subject while using another imaging device to perform video capture on the second body region of the subject. Since the video of the first body region of the subject and the video of the second body region are respectively acquired by using two imaging devices, the subject does not need to cooperate with some actions to keep the first body region and the second body region in the same on flat surface.
  • the at least one video includes a first video and a second video.
  • the video capture device 301 uses an imaging device to perform video capture on the first body region of the subject to obtain the first video, and simultaneously uses another imaging device to perform video capture on the second body region of the test subject to obtain the second image. video.
  • the blood pressure measurement system provided by the embodiment of the present application further includes a trigger signal control device (not shown).
  • the two imaging devices ie, one imaging device and another imaging device
  • the two imaging devices are controlled by the trigger signal sent by the trigger signal control device, so that the two simultaneously perform video acquisition.
  • the subject does not need to cooperate with some action to keep the first body region and the second body region in the same plane.
  • the video collection of the first body region and the second body region is ensured at the same time, so there is no imaging time interval between the two, so that the accuracy of the blood pressure measurement is high.
  • the blood pressure measurement system provided by the embodiment of the present application does not specifically limit the distance between the test subject and the imaging device, and the distance between the test subject and the imaging device can ensure the first of the test subject.
  • the body area and the second body area can be clearly imaged in the imaging device.
  • the present application implements
  • the blood pressure measurement system provided by the example is also capable of recognizing images of the first body region and the second body region in each frame of the image.
  • the video capture device in the blood pressure measurement system provided by the embodiment of the present application includes one or more imaging devices, and the one or more imaging devices are high speed cameras whose imaging frequency is greater than or equal to 100 frames per second.
  • the applicant of the present application found in the practical application that the pulse wave has a large propagation time. On the order of a hundred milliseconds, if an ordinary camera is used, the imaging frequency is generally 25 frames per second, and the time difference between adjacent two frames of images is 40 milliseconds, resulting in low accuracy of blood pressure measurement.
  • the imaging frequency is greater than or equal to 100 frames per second, then the time difference between adjacent two frames of images is at most 10 milliseconds, and the time interval between adjacent two frames of images is small, thereby improving blood pressure measurement.
  • the accuracy is the above high-speed camera.
  • the step of extracting a plurality of gray values including a corresponding image of the first body region and a plurality of gray values of the corresponding image including the second body region in each frame image using the gray value extraction device 302 specifically includes: first, Identifying a corresponding image of the first body region and a corresponding image of the first body region in the video of the first body region of the subject and the video of the second body region acquired by the video capture device 301; secondly, A gray value of the first body region corresponding image and the second body region corresponding image in each frame image is extracted.
  • the gray value may be a comprehensive gray value of a signal including three channels of red, green, and blue, or may be a gray value of a red channel signal.
  • the gray value of the red channel signal in the first body region corresponding image and the second body region corresponding image in each frame image may be extracted. Extracting the gray value of the red channel signal in the first body region corresponding image and the second body region corresponding image has many advantages, including: the gray channel signal has a gray value that more clearly reflects the blood perfusion period, and extracts each frame image. The gray value of the red channel signal can improve the accuracy of blood pressure measurement.
  • the gray value extraction device 302 may extract the gray value of any one of the test points corresponding to the first body region in each frame image as the gray value of the image corresponding to the first body region, and may also extract the first body.
  • the average value of the gray values of the at least two test points in the region corresponding image is used as the gray value of the image corresponding to the first body region.
  • the average value of the gray values of all the test points may be selected as the corresponding image of the first body region. grayscale value.
  • the gray value extraction device 302 may extract the gray value of any one of the test points corresponding to the second body region in each frame image as the gray value of the image corresponding to the second body region, or extract at least the image corresponding to the second body region.
  • the average value of the gray values of the two test points is used as the gray value of the image corresponding to the second body region.
  • the average value of the gray values of all the test points may be selected as the gray value of the image corresponding to the second body region.
  • the advantages include: an operation of extracting the gray value of the image corresponding to the first body region It is relatively simple, and its disadvantages include large errors.
  • the gray value of the image corresponding to the first body region is an average value of the gray values of at least two test points in the image corresponding to the first body region in each frame image
  • the disadvantages include: extracting gray corresponding to the image of the first body region
  • the operation of the degree value is more complicated.
  • the advantages include: less error. When you select the gray value, you can choose according to the actual needs.
  • the advantages include: extracting the grayscale of the image corresponding to the second body region
  • the operation of the value is relatively simple, and its disadvantages include: large error.
  • the disadvantages include: extracting gray corresponding to the image of the second body region
  • the operation of the degree value is more complicated, and its advantages include: the error is small.
  • test point may be one pixel on the first body region corresponding image or the corresponding image of the second body region in each frame image, or may be the first body region corresponding image or the second body in each frame image. Adjacent pixels on the corresponding image of the region.
  • the at least one video includes a video.
  • the gray value extracting means 302 includes, from the image of the at least one video, a plurality of gray values for extracting the corresponding image of the first body region and a plurality of gray values including the corresponding image of the second body region, including the following operations: (1) identifying a corresponding image of the first body region and a corresponding image of the second body region in each frame image in the video (eg, each frame image simultaneously includes a correspondence between the corresponding image of the first body region and the second body region) And (2) extracting a gray value of the first body region corresponding image and a gray value of the second body region corresponding image in each frame image in the video.
  • the gray value of the corresponding image of the first body region is the gray value of any one of the test points corresponding to the first body region in each frame of the video, or the first body region corresponds to at least two test points in the image.
  • the gray value of the image corresponding to the second body region is a gray value of any one of the test points corresponding to the second body region in each frame of the video, or the second body region corresponds to at least two test points in the image. The average of the gray values.
  • the at least one video includes a first video and a second video.
  • the first video is a video that includes a first body region.
  • the second video is a video that includes a second body region.
  • the gray value extracting means 302 extracts, from the image of the at least one video, a plurality of gray values including the corresponding image of the first body region and a plurality of gray values including the corresponding image of the second body region, including the following operations: (1) identifying a corresponding image of the first body region in each frame image in the first video and a corresponding image of the second body region in each frame image in the second video; and (2) extracting each of the first video
  • the first body region in the frame image corresponds to the gray value of the image and the gray value of the image corresponding to the second body region in each frame of the second video.
  • the gray value of the corresponding image of the first body region is a gray value of any one of the test points corresponding to the image of the first body region in each frame of the first video, or A body region corresponds to an average of gray values of at least two test points in the image.
  • the gray value of the image corresponding to the second body region is a gray value of any one of the test points in the image corresponding to the second body region in each frame image in the second video, or at least two tests in the image corresponding to the second body region The average of the gray values of the points.
  • the pulse wave drawing device 303 is configured to draw a pulse wave waveform of the first body region according to the gray value of the first body region corresponding image in each frame image, and draw according to the gray value of the corresponding image of the second body region in each frame image.
  • the pulse wave waveform of the second body region is configured to draw a pulse wave waveform of the first body region according to the gray value of the first body region corresponding image in each frame image, and draw according to the gray value of the corresponding image of the second body region in each frame image.
  • the pulse wave drawing device 303 can be used to draw a pulse wave waveform by using a plurality of gray values of the first body region corresponding image extracted by the gray value extraction device 302 as the ordinate and time as the abscissa.
  • a pulse wave waveform of a body region; a plurality of gray values of the second body region corresponding image extracted by the gray value extraction device 302 are ordinates, and a pulse wave waveform of the second body region is plotted with time as the abscissa.
  • the time is obtained as follows: the imaging frequency of the imaging device is f, and the time interval of the adjacent two frames is 1/f second, and the time corresponding to the image of the first frame is the time origin, and the image of the nth frame corresponds to The time is (n-1) ⁇ 1/f seconds.
  • the imaging frequency of the imaging device is 100 frames per second
  • the time interval of the adjacent two frames of images is 10 milliseconds
  • the image of the 10th frame corresponds to The time is 90 milliseconds.
  • the pulse wave waveform of the first body region and the pulse wave waveform of the second body region drawn in the above manner are as shown in FIG. 2, wherein the solid line is the pulse wave waveform of the first body region, and the broken line is the pulse of the second body region. Wave waveform.
  • the pulse wave propagation time determining means 304 is configured to determine the propagation time of the pulse wave based on the pulse wave waveform of the first body region and the pulse wave waveform of the second body region.
  • the propagation time of the pulse wave refers to, for example, a time delay when the pulse wave propagates at different positions of the human artery, and the time of the delay is the propagation time of the pulse wave.
  • the pulse wave time determining means 304 determines the propagation time of the pulse wave based on the pulse wave waveform of the first body region and the pulse wave waveform of the second body region.
  • the steps can include:
  • one peak A of the pulse wave waveform of the first body region is selected, and another peak B of the pulse wave waveform of the second body region is selected, and the time interval between the one peak A and the other peak B is the shortest;
  • the average of the plurality of time intervals acquired in the above steps is calculated, and the average value is taken as the propagation time of the pulse wave.
  • the step of acquiring the time interval is repeated a plurality of times, and the average value of the plurality of time intervals is taken as the propagation time of the pulse wave, so as to reduce the error that may exist in the time interval, thereby reducing the pulse wave.
  • the error of the propagation time is used to improve the accuracy of the blood pressure measurement.
  • the blood pressure acquiring means 305 is configured to acquire the blood pressure of the subject based on the relationship between the propagation time of the pulse wave and the blood pressure. Since the propagation time of the pulse wave can reflect the propagation speed of the pulse wave, blood pressure can be obtained by the propagation time of the pulse wave.
  • the propagation time of the pulse wave means, for example, that there is a time delay when the pulse wave propagates at different positions of the human artery.
  • the process of acquiring the blood pressure of the subject may involve the following three formulas:
  • v is the pulse wave velocity
  • E is the elastic modulus of the blood vessel
  • h is the vessel wall thickness
  • d is the blood vessel wall diameter
  • is the blood viscosity
  • E 0 is the elastic modulus of the blood vessel when the pressure is 0, ⁇
  • S is the propagation distance of the pulse wave
  • PTT is the propagation time of the pulse wave.
  • the blood pressure measurement system may further include a measurement result display device 306 for displaying blood pressure measurement results, so that the subject can intuitively understand his blood pressure measurement result.
  • the measurement result display device 306 can be selected as a liquid crystal display.
  • the blood pressure measurement system provided by the embodiment of the present application further includes a filtering device.
  • the filtering means filters the pulse wave waveform of the first body region and the pulse wave waveform of the second body region drawn by the pulse wave drawing device 303.
  • the filtering means may filter the pulse wave waveform of the first body region and the pulse wave waveform of the second body region using Fourier transform bandpass filtering. By filtering, other interference signals such as jitter caused by respiratory signals and body stress reactions can be removed, thereby improving the accuracy of blood pressure measurement.
  • the blood pressure measurement system provided by the embodiment of the present application enables the measurement to be measured without using the cuff during the whole blood pressure measurement process, without touching the skin of the test subject.
  • the blood pressure of the person does not require a cuff, so there is no problem that the cuff is in contact with the arm of the subject, so that the cuff can be prevented from being pressed against the blood vessel in the arm of the subject, thereby improving the accuracy of the blood pressure measurement result. Sex.
  • the blood pressure measurement system can also measure the blood pressure of the subject using the above-mentioned blood pressure measurement system for a subject who has a wound on the arm skin and an arm that is inconvenient to carry the cuff.
  • the blood pressure measurement system of embodiments of the present application may also include one or more processors and one or more memories.
  • the processor can process the data signals and can include various computing structures, such as a Complex Instruction Set Computer (CISC) architecture, a Structured Reduced Instruction Set Computer (RISC) architecture, or a structure that implements a combination of multiple instruction sets.
  • the memory can hold instructions and/or data executed by the processor. These instructions and/or data may include code for implementing some or all of the functions of one or more of the devices described in this application.
  • the memory includes dynamic random access memory (DRAM), static random access memory (SRAM), flash memory, optical memory, or other memory well known to those skilled in the art.
  • the gray value extraction device, the pulse wave rendering device, the pulse wave propagation time determining device, and/or the blood pressure acquiring device include code and a program stored in a memory; the processor can execute the code and program To achieve some or all of the functions of the gray value extraction means, the pulse wave drawing means, the pulse wave propagation time determining means, and/or the blood pressure obtaining means as described above.
  • the gray value extraction device, the pulse wave rendering device, the pulse wave propagation time determining device, and/or the blood pressure obtaining device may be special hardware devices for implementing the gray value extraction as described above. Some or all of the functions of the device, the pulse wave mapping device, the pulse wave propagation time determining device, and/or the blood pressure acquiring device.
  • the gray value extraction means, the pulse wave drawing means, the pulse wave propagation time determining means, and/or the blood pressure obtaining means may be a circuit board or a combination of a plurality of circuit boards for realizing the functions as described above.
  • the one circuit board or a combination of the plurality of circuit boards may include: (1) one or more processors; (2) one or more non-transitory computer readable computers connected to the processor And (3) firmware executable by the processor to be stored in the memory.
  • the terms “mounted,” “connected,” and “connected” are used in a broad sense, and may be, for example, a fixed connection, a detachable connection, or an integral connection; it may be a mechanical connection, It can also be an electrical connection; it can be directly connected, or it can be connected indirectly through an intermediate medium, which can be the internal connection of two components.
  • the specific meanings of the above terms in the present application can be understood on a case-by-case basis.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Cardiology (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Surgery (AREA)
  • Molecular Biology (AREA)
  • Public Health (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Quality & Reliability (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physiology (AREA)
  • Vascular Medicine (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

一种血压测量方法和测量系统。该血压测量方法包括:采集被测者的第一身体区域和第二身体区域的至少一个视频,其中,所述至少一个视频中的每个视频都包括多帧图像;从所述至少一个视频的图像中提取包含第一身体区域的对应图像的多个灰度值和包含第二身体区域的对应图像的多个灰度值;根据所述第一身体区域对应图像的多个灰度值绘制第一身体区域的脉搏波波形,根据所述第二身体区域对应图像的多个灰度值绘制第二身体区域的脉搏波波形;根据第一身体区域的脉搏波波形和第二身体区域的脉搏波波形,确定脉搏波的传播时间;根据脉搏波的传播时间与血压之间对应的关系,获取被测者的血压。该血压测量方法和测量系统可以应用于非接触式血压测量,也可以提高血压测量准确性。

Description

血压测量方法和测量系统 技术领域
本申请的实施例涉及一种血压测量方法和测量系统。
背景技术
目前,在测量人体血压时,通常采用水银柱式血压计测量血压和电子血压计测量血压。这两种血压测量方式,均需要血压计上的袖带与人体手臂接触,以完成血压测量,但是袖带与手臂接触时,测量结果的准确性较低。
发明内容
本申请的实施例提供了一种血压测量方法和测量系统,用于解决现有测量血压时,因袖带需与被测者手臂接触所导致的测量准确性差的问题。
本申请的至少一个实施例提供了一种血压测量方法,该方法包括:采集被测者的第一身体区域和第二身体区域的至少一个视频,其中,所述至少一个视频中的每一视频都包括多帧图像;从所述至少一个视频的图像中提取包含所述第一身体区域的对应图像的多个灰度值和包含所述第二身体区域的对应图像的多个灰度值;根据所述第一身体区域对应图像的多个灰度值绘制所述第一身体区域的脉搏波波形,根据所述第二身体区域对应图像的多个灰度值绘制所述第二身体区域的脉搏波波形;根据所述第一身体区域的脉搏波波形和所述第二身体区域的脉搏波波形,确定脉搏波的传播时间;以及根据所述脉搏波的传播时间与血压之间的对应关系,获取被测者的血压。
此外,本申请至少一个实施例还提供了一种血压测量系统,所述血压测量系统包括:视频采集装置,用于采集被测者的第一身体区域和第二身体区域的至少一个视频,所述至少一个视频的每个视频都包括多帧图像;灰度值提取装置,所述灰度值提取装置与所述采集装置连接,且用于从所述至少一个视频的图像中提取包含所述第一身体区域的对应图像的多个灰度值和包含所述第二身体区域的对应图像的多个灰度值;脉搏波绘制装置,所述脉搏波绘制装置与所述灰度值提取装置连接,且用于根据所述第一身体区域对应图像的多个灰度值绘制所述第一身体区域的脉搏波波形,根据所述第二身体区域对应图像的多个灰度值绘制第二身体区域的脉搏波波形;脉搏波传播时间 确定装置,所述脉搏波传播时间确定装置与所述脉搏波绘制装置连接,且用于根据所述第一身体区域的脉搏波波形和所述第二身体区域的脉搏波波形,确定脉搏波的传播时间;以及血压获取装置,所述血压获取装置与所述脉搏波传播时间确定装置连接,且用于根据所述脉搏波的传播时间与血压之间的对应关系,获取被测者的血压。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,而非对本申请的限制,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的血压测量方法的流程图;
图2为本申请实施例绘制的第一身体区域的脉搏波波形和第二身体区域的脉搏波波形的示意图;
图3为本申请实施例提供的血压测量系统的结构示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例的附图,对本申请实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本申请的一部分实施例,而不是全部的实施例。基于所描述的本申请的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的申请人发现,由于采用水银柱式血压计和电子血压计测量血压时,袖带均需要与手臂接触,从而使得手臂中的血管受到压迫,引起被测者身体的不适,进而影响血压测量结果的准确性。
为了解决现有测量血压时,袖带需与被测量者手臂接触所导致的测量准确性差的问题,本申请实施例提供了一种新的技术方案。具体的,通过提取包含被测者的第一身体区域的对应图像的灰度值和包含第二身体区域的对应图像的灰度值来分别得到所述第一身体区域的脉搏波波形和所述第二身体区域的脉搏波波形,来确定脉搏波的传播时间,进而根据脉搏波的传播时间与 血压之间的对应关系,获取被测者的血压。例如,本申请实施例在整个血压测量过程中不需要使用袖带,可以实现在不接触被测者的皮肤的情况下,即可测量被测者的血压。由于不需要袖带,因此也就不存在袖带与被测者的手臂接触的问题,从而可以避免袖带对被测者手臂中的血管的压迫,进而提高血压测量结果的准确性。
为了便于理解,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。
实施例一
本申请实施例提供了一种血压测量方法,如图1所示,该血压测量方法包括:
步骤S101、同时采集被测者的第一身体区域和第二身体区域的至少一个视频,其中,所述至少一个视频包括多帧图像。
例如,同时提取被测者A的脸部(第一身体区域)和被测者A的手部(第二身体区域)的至少一个视频。
步骤S102、从所述至少一个视频的图像中提取包含所述第一身体区域的对应图像的多个灰度值,以及提取包含所述第二身体区域的对应图像的多个灰度值;
步骤S103、根据所述第一身体区域对应图像的多个灰度值绘制所述第一身体区域的脉搏波波形,根据所述第二身体区域对应图像的多个灰度值绘制所述第二身体区域的脉搏波波形;
步骤S104、根据所述第一身体区域的脉搏波波形和所述第二身体区域的脉搏波波形,确定脉搏波的传播时间;
步骤S105、根据所述脉搏波的传播时间与血压之间的对应关系,获取所述传播时间对应的血压,作为被测者的血压值。
上述第一身体区域和第二身体区域为被测者身体上与心脏之间的距离具有差值的两个身体区域。例如,上述第一身体区域为被测者的脸部区域,第二身体区域为被测者的手部区域。脸部区域和手部区域距离心脏的距离不同,这样,一方面,脸部区域和手部区域的末梢毛细血管密集,测量的准确性高,另一方面,脸部区域和手部区域一直暴露在外,在测量过程中无需进行其他处理,例如脱衣服等步骤,以使得测量过程简单,此外,测量过程中,也没有任何外物挤压,被测者身体不会因测量血压而不适,从而不影响血压测量 结果的准确性。
下面本申请实施例对上述五个步骤进行详细说明:
在步骤S101中,为了同时采集被测者的第一身体区域和第二身体区域的至少一个视频,具体实现方式有多种,本申请实施例提供了至少以下两种示例性的方式。
第一种方式包括:使用一个成像设备对包括有被测者第一身体区域和第二身体区域的区域进行视频采集。测量血压过程中,被测者需要通过一些动作配合,使第一身体区域和第二身体区域在同一幅图像中,具体的,可以使得被测量者的第一身体区域和第二身体区域保持在同一个平面上且保持设定距离,保证二者同时在摄像视线内。例如:当第一身体区域为被测者的脸部区域,第二身体区域为被测者的手部区域时,被测者举起右手,将右手竖直放在右耳旁边,脸部与右手手掌朝向一致。采用该方式采集视频时,由于第一身体区域与第二身体区域的视频采集是同时进行,所以二者之间不存在成像时间间隔,使得血压测量的准确性较高。在这种情况下,所述至少一个视频包括一个视频,而且该视频的每一帧图像均包括了被测者的脸部区域和手部区域。因此,同时采集被测者的第一身体区域和第二身体区域的至少一个视频包括:采用一个成像设备采集包含第一身体区域和第二身体区域的图像,具体的,使用同一个成像设备对包括被测者脸部和手部的区域进行视频采集来得到该视频。
第二种方式是:使用一个成像设备对被测者的第一身体区域进行视频采集,同时使用另一个成像设备对被测者的第二身体区域进行视频采集。由于使用两个成像设备分别采集被测者的第一身体区域的第一视频和第二身体区域的第二视频,所以被测者无需通过一些动作配合以使得第一身体区域和第二身体区域保持在同一个平面上。在这种情况下,例如,所述至少一个视频包括第一视频和第二视频,而且该第一视频为包括第一身体区域的视频,该第二视频为包括第二身体区域的视频。因此,同时采集被测者的第一身体区域和第二身体区域的至少一个视频包括:使用一个成像设备对被测者的第一身体区域进行视频采集来得到该第一视频,同时使用另一个成像设备对被测者的第二身体区域进行视频采集来得到该第二视频。
但保证第一身体区域与第二身体区域的视频采集是同时进行是比较困难的,针对此问题,本申请实施例提供的血压测量方法还包括,通过触发信号 控制上述两个成像设备(即一个成像设备和另一个成像设备),以使二者同时进行视频采集。这样,被测者无需通过一些动作配合以使得第一身体区域和第二身体区域保持在同一个平面上。并且保证了第一身体区域与第二身体区域的视频采集的同时进行,因此二者之间不存在成像时间间隔,使得血压测量的准确性较高。
需要说明的是,本申请实施例提供的血压测量方法对被测者与成像设备之间的距离不做具体限定。只要被测者与成像设备之间的距离,能够保证被测者的第一身体区域和第二身体区域在成像设备里清晰地成像即可。此外,在被测者的第一身体区域和第二身体区域成像清晰的前提下,当被测者的第一身体区域和第二身体区域做前后运动,或者小幅度的转动时,本申请实施例提供的血压测量方法也能够识别每帧图像中的第一身体区域和第二身体区域的图像。
此外,本申请实施例提供的血压测量方法中使用一个或两个成像设备同时采集被测者的第一身体区域和第二身体区域的至少一个视频时,该一个或两个成像设备为成像频率为大于或等于每秒100帧的高速摄像机。本申请申请人在实际应用中发现,由于脉搏波的传播时间大约在百毫秒量级,如果使用普通的摄像机,成像频率一般为每秒25帧,那么相邻两帧图像之间的时间差为40毫秒,导致血压测量的准确性低。如果使用上述高速摄像机,其成像频率大于或等于每秒100帧,那么相邻两帧图像之间的时间差最多为10毫秒,相邻两帧图像之间的时间差较小,从而提高了血压测量的准确性。
在步骤S102中,为了从所述至少一个视频的图像中提取包含第一身体区域的对应图像的多个灰度值和包含第二身体区域的对应图像的多个灰度值,步骤S102包括:首先,识别由步骤S101采集的被测者的第一身体区域的视频和第二身体区域的视频的每帧图像中的第一身体区域的对应图像和第二身体区域的对应图像;其次,分别提取每帧图像中的第一身体区域对应图像的一个灰度值和第二身体区域对应图像的一个灰度值。
由于图像有红、绿、蓝三个通道的信号,该灰度值(即,第一身体区域的灰度值,和/或第二身体区域的灰度值)可以为包括红、绿、蓝三个通道的信号的综合灰度值,也可以为红色通道信号的灰度值。本申请至少一个实施例中,可以提取每帧图像中的第一身体区域对应图像中的红色通道信号的灰度值和第二身体区域对应图像中的红色通道信号的灰度值。分别提取第一身 体区域对应图像和第二身体区域对应图像中红色通道信号的灰度值的益处有很多,其中包括:红色通道信号的灰度值更能明显的反映血液灌注的周期,因此,提取每帧图像中的第一身体区域对应图像和第二身体区域对应图像中红色通道信号的灰度值,可以提高血压测量的准确性。
需要说明的是,在步骤S102中提及的第一身体区域对应图像的灰度值可以为每帧图像中第一身体区域对应图像中任意一个测试点的灰度值,也可以为第一身体区域对应图像中至少两个测试点的灰度值的平均值,例如,可以为所有测试点的灰度值的平均值;在步骤S102中提及的第二身体区域的灰度值可以为每帧图像中第二身体区域对应图像中任意一个测试点的灰度值,也可以为第二身体区域对应图像中至少两个测试点的灰度值的平均值,例如,可以为所有测试点的灰度值的平均值。当第一身体区域对应图像的灰度值为每帧图像中第一身体区域对应图像中任意一个测试点的灰度值时,其优点包括:提取第一身体区域对应图像的灰度值的操作较为简单,其缺点包括:误差较大。当第一身体区域对应图像的灰度值为每帧图像中第一身体区域对应图像中至少两个测试点的灰度值的平均值时,其缺点包括:提取第一身体区域对应图像的灰度值的操作较为复杂,其优点包括:误差较小。例如,选择灰度值时,可根据实际需要选择。类似地,当第二身体区域对应图像的灰度值为每帧图像中第二身体区域对应图像中任意一个测试点的灰度值时,其优点包括:提取第二身体区域对应图像的灰度值的操作较为简单,其缺点包括:误差较大。当第二身体区域对应图像的灰度值为每帧图像中第二身体区域对应图像中至少两个测试点的灰度值的平均值时,其缺点包括:提取第二身体区域对应图像的灰度值的操作较为复杂,其优点包括:误差较小。选择灰度值时,可根据实际需要选择。
需要补充的是,上述测试点可以为每帧图像中第一身体区域对应图像或者第二身体区域对应图像上的一个像素,也可以为每帧图像中第一身体区域对应图像或者第二身体区域的对应图像上的相邻的多个像素。
例如,所述至少一个视频包括一个视频,而且该视频的每帧图像为同时包括第一身体区域和第二身体区域的图像。从所述至少一个视频的图像中提取包含第一身体区域的对应图像的多个灰度值和包含第二身体区域的对应图像的多个灰度值包括:(1)识别该视频中的每帧图像中的第一身体区域的对应图像和第二身体区域的对应图像;以及(2)提取该视频中的每帧图像中的 第一身体区域对应图像的一个灰度值和第二身体区域对应图像的一个灰度值。该视频包括多帧图像,而且每帧图像可以分别提取第一身体区域对应图像的一个灰度值和第二身体区域对应图像的一个灰度值,所以,可以从该视频的多帧图像中提取到第一身体区域对应图像的多个灰度值和第二身体区域对应图像的多个灰度值。从该视频中的每一帧图像可以获取第一身体区域对应图像的一个灰度值,而且该灰度值可以为该第一身体区域对应图像中任意一个测试点的灰度值,或者,该第一身体区域对应图像中至少两个测试点的灰度值的平均值。从该视频的每一帧图像可以获取第二身体区域对应图像的一个灰度值,而且该灰度值可以为第二身体区域对应图像中任意一个测试点的灰度值,或者,第二身体区域对应图像中至少两个测试点的灰度值的平均值。
例如,所述至少一个视频包括第一视频和第二视频,该第一视频为第一身体区域的视频,该第二视频为第二身体区域的视屏。提取包含第一身体区域的对应图像的多个灰度值和包含第二身体区域的对应图像的多个灰度值包括:(1)识别第一视频中的每帧图像中的第一身体区域的对应图像和第二视频中每帧图像中的第二身体区域的对应图像;以及(2)提取第一视频中的每帧图像中的第一身体区域对应图像的一个灰度值和第二视频中每帧图像中的第二身体区域对应图像的一个灰度值。第一视频包括多帧图像,而且每帧图像可以提取第一身体区域对应图像的一个灰度值,所以,可以从该第一视频的多帧图像中提取到第一身体区域对应图像的多个灰度值。该第二视频包括多帧图像,而且每帧图像可以分别提取第二身体区域对应图像的一个灰度值,所以,可以从该第二视频的多帧图像中提取到第二身体区域对应图像的多个灰度值。从该第一视频的每帧图像中可以获取第一身体区域对应图像的一个灰度值,而且该灰度值可以为第一身体区域对应图像中任意一个测试点的灰度值,或者,第一身体区域对应图像中至少两个测试点的灰度值的平均值。从该第二视频中可以获取第二身体区域对应图像的一个灰度值,而且该灰度值可以为第二身体区域对应图像中任意一个测试点的灰度值,或者,第二身体区域对应图像中至少两个测试点的灰度值的平均值。
在步骤S103和S104中,例如,可以通过以下方式绘制脉搏波波形:以步骤S102提取的第一身体区域对应图像的多个灰度值为纵坐标,以时间为横坐标,绘制第一身体区域的脉搏波波形;以步骤S102提取的第二身体区 域对应图像的多个灰度值为纵坐标,以时间为横坐标,绘制第二身体区域的脉搏波波形。其中,时间的获取方式如下:定义成像设备的成像频率为f,则相邻两帧图像的时间间隔为1/f秒,选取第1帧图像对应的时间为时间原点,则第n帧图像对应的时间为(n-1)×1/f秒,示例性地,当成像设备的成像频率为每秒100帧时,则相邻两帧图像的时间间隔为10毫秒,第10帧图像对应的时间为90毫秒。
采用上述方式绘制的第一身体区域的脉搏波波形和第二身体区域的脉搏波波形如图2所示,其中,实线为第一身体区域的脉搏波波形,虚线为第二身体区域的脉搏波波形。进而,根据第一身体区域的脉搏波波形和第二身体区域的脉搏波波形,确定脉搏波的传播时间。需要说明的是,脉搏波的传播时间指的是:脉搏波在人体动脉的不同位置传播时,存在的时间延迟。
例如,根据第一身体区域的脉搏波波形和第二身体区域的脉搏波波形,确定脉搏波的传播时间的步骤包括:首先,选取第一身体区域的脉搏波波形中的一个波峰A,选取第二身体区域的脉搏波波形中的另一个波峰B,其中该一个波峰A与该另一个波峰B时间间隔最短;其次,获取该一个波峰A和该另一个波峰B之间的时间间隔;然后,重复以上步骤多次,以获取多个时间间隔,在重复过程中,依次选取第一身体区域的脉搏波波形中连续多个周期中的波峰;最后,计算上述步骤中获取的多个时间间隔的平均值,取该平均值作为脉搏波的传播时间。
在确定脉搏波的传播时间时,当只采用一个周期内,相邻波峰之间的时间间隔作为脉搏波的传播时间时,由于该时间间隔可能存在误差,导致脉搏波的传播时间存在误差,进而影响血压测量的准确性。因此,本申请实施例重复多次上述获取时间间隔的步骤,取上述多个时间间隔的平均值作为脉搏波的传播时间,以便于减小该时间间隔可能存在的误差,进而减小脉搏波的传播时间的误差,以提高血压测量的准确性。需要说明的是,上述多次指两次以及两次以上,本实施例中取为十次。
在步骤S105中,由于脉搏波的传播时间可以反映出脉搏波的传播速度,所以可以通过脉搏波的传播时间可以得到血压。脉搏波的传播时间是指,例如:脉搏波在人体动脉的不同位置传播时,存在时间延迟,这个延迟的时间就是脉搏波的传播时间。
示例性地,根据脉搏波的传播时间与血压之间的关系,获取被测者的血 压的过程涉及以下三个公式:
Figure PCTCN2015091033-appb-000001
Figure PCTCN2015091033-appb-000002
Figure PCTCN2015091033-appb-000003
根据公式(1)、(2)、(3)推导出脉搏波的传播时间与血压之间的关系为:
Figure PCTCN2015091033-appb-000004
其中,v为脉搏波传播速度,E为血管的弹性模量,h为血管壁厚度,d为血管内壁直径,ρ为血液粘稠度,E0为压力为0时血管的弹性模量,γ为0.016-0.018毫米汞柱,S为脉搏波的传播距离,PTT为是所述脉搏波的传播时间。需要说明的是,在脉搏波的传播时间与血压之间的关系中,当测量过程中选取不同的身体区域时,需要对脉搏波的传播距离S进行调节,以保证测量的准确性。示例性地,可以建立包含不同身高,不同性别下,脉搏波在不同身体区域之间的传播距离的数据库,在测量过程中,被测者可以根据自身情况及不同的身体区域选择对应的脉搏波的传播距离S。
此外,为了进一步提高血压测量的准确性,本申请实施例提供的血压测量方法,在步骤S103之后还包括:对第一身体区域的脉搏波波形和第二身体区域的脉搏波波形进行滤波。示例性地,可采用傅里叶变换带通滤波。通过滤波,能够去除由于呼吸信号和身体应激反应等引起的抖动等其他干扰信号,进而提高血压测量的准确性。
从上述实施例可知,采用本申请实施例提供的血压测量方法,使得在整个血压测量过程中不需要使用袖带,便可以实现在不接触被测者的皮肤的情况下,即可测量被测者的血压,由于不需要袖带,因此也就不存在袖带与被测者的手臂接触的问题,从而可以避免袖带对被测者手臂中的血管的压迫,进而提高血压测量结果的准确性。此外,由于不需要袖带,对于手臂皮肤有伤口、手臂不便于套袖带的被测者,使用上述血压测量方法也能对被测者的血压进行测量。
实施例二
本申请实施例还提供一种血压测量系统,如图3所示,该血压测量系统包括:视频采集装置301;与视频采集装置301连接的灰度值提取装置302;与灰度值提取装置302连接的脉搏波绘制装置303;与脉搏波绘制装置303连接的脉搏波传播时间确定装置304;与脉搏波传播时间确定装置304连接的血压获取装置305。
该血压测量系统的工作过程可以包括:先由视频采集装置301采集被测者的第一身体区域的视频和第二身体区域的视频,并将采集的视频传输至灰度值提取装置302;灰度值提取装置302从视频中分别提取第一身体区域对应图像的灰度值和第二身体区域对应图像的灰度值,并将这些灰度值传输至脉搏波绘制装置303;脉搏波绘制装置303根据相应的灰度值分别绘制第一身体区域和第二身体区域的脉搏波波形,并将脉搏波波形传输至脉搏波传播时间确定装置304;脉搏波传播时间确定装置304确定脉搏波的传播时间,并将脉搏波的传播时间传输至血压获取装置305;血压获取装置305根据脉搏波的传播时间与血压之间的对应关系,获取被测者的血压。
上述第一身体区域和第二身体区域为被测者身体上与心脏之间的距离具有差值的两个身体区域。本申请实施例中,上述第一身体区域为被测者的脸部区域,第二身体区域为被测者的手部区域,如上选择具有以下有益效果:一方面,脸部区域和手部区域的末梢毛细血管密集,测量的准确性高,另一方面,脸部区域和手部区域一直暴露在外,在测量过程中无需进行其他处理,例如脱衣服等步骤,以使得测量过程简单。
下面本申请实施例对上述5个装置进行详细说明:
视频采集装置301,用于采集被测者的第一身体区域和第二身体区域的至少一个视频,所述至少一个视频的每个视频都包括多帧图像。该视频采集装置包括一个或多个成像设备。
示例性地,视频采集装置301采集被测者的第一身体区域和第二身体区域的至少一个视频,本申请实施例提供了至少以下两种示例性的方式。
第一种方式包括:使用一个成像设备对包括有被测者第一身体区域和第二身体区域的区域进行视频采集。测量血压过程中,被测者需要通过一些动作配合,使第一身体区域和第二身体区域保持在同一个平面上。例如:当第一身体区域为被测者的脸部区域,第二身体区域为被测者的手部区域时,被测者举起右手,将右手竖直放在右耳旁边,脸部与右手手掌朝向一致。采用 该方式采集视频时,由于第一身体区域与第二身体区域的视频采集是同时进行,所以二者之间不存在成像时间差,使得血压测量的准确性较高。在这种情况下,例如,所述至少一个视频包括一个视频,而且该视频的每一帧图像均包括了被测者的脸部区域和手部区域。视频采集装置301使用同一个成像设备对包括被测者脸部和手部的区域进行视频采集来得到该视频。
第二种方式包括:使用一个成像设备对被测者的第一身体区域进行视频采集,同时使用另一个成像设备对被测者的第二身体区域进行视频采集。由于使用两个成像设备分别采集被测者的第一身体区域的视频和第二身体区域的视频,所以被测者无需通过一些动作配合以使得第一身体区域和第二身体区域保持在同一个平面上。在这种情况下,例如,所述至少一个视频包括第一视频和第二视频。视频采集装置301使用一个成像设备对被测者的第一身体区域进行视频采集来得到该第一视频,同时使用另一个成像设备对被测者的第二身体区域进行视频采集来得到该第二视频。
但保证第一身体区域与第二身体区域的视频采集是同时进行是比较困难的,针对此问题,本申请实施例提供的血压测量系统,还包括触发信号控制装置(图中未示出),通过该触发信号控制装置发出的触发信号控制上述两个成像设备(即,一个成像设备和另一个成像设备),以使二者同时进行视频采集。这样,被测者无需通过一些动作配合以使得第一身体区域与第二身体区域保持在同一个平面上。并且保证了第一身体区域与第二身体区域的视频采集的同时进行,因此二者之间不存在成像时间间隔,使得血压测量的准确性较高。
需要说明的是,本申请实施例提供的血压测量系统对被测者与成像设备之间的距离不做具体限定,只要被测者与成像设备之间的距离,能够保证被测者的第一身体区域和第二身体区域在成像设备里清晰的成像即可。此外,在被测者的第一身体区域和第二身体区域成像清晰的前提下,当被测者的第一身体区域和第二身体区域做前后运动,或者小幅度的转动时,本申请实施例提供的血压测量系统也能够识别每帧图像中的第一身体区域和第二身体区域的图像。
此外,本申请实施例提供的血压测量系统中的视频采集装置包括一个或多个成像设备,该一个或多个成像设备为成像频率为大于或等于每秒100帧的高速摄像机。本申请申请人在实际应用中发现,由于脉搏波的传播时间大 约在百毫秒量级,如果使用普通的摄像机,成像频率一般为每秒25帧,那么相邻两帧图像之间的时间差为40毫秒,导致血压测量的准确性低。如果使用上述高速摄像机,其成像频率大于或等于每秒100帧,那么相邻两帧图像之间的时间差最多为10毫秒,相邻两帧图像之间的时间间隔较小,从而提高了血压测量的准确性。
例如,使用灰度值提取装置302提取每帧图像中包含第一身体区域的对应图像的多个灰度值和包含第二身体区域的对应图像的多个灰度值的步骤具体包括:首先,识别由视频采集装置301采集的被测者的第一身体区域的视频和第二身体区域的视频中的每帧图像中的第一身体区域的对应图像和第二身体区域的对应图像;其次,提取每帧图像中的第一身体区域对应图像和第二身体区域对应图像的灰度值。由于图像有红、绿、蓝三个通道的信号,该灰度值可以为包括红、绿、蓝三个通道的信号的综合灰度值,也可以为红色通道信号的灰度值。本申请实施例中,例如,可以提取每帧图像中的第一身体区域对应图像和第二身体区域对应图像中红色通道信号的灰度值。提取第一身体区域对应图像和第二身体区域对应图像中红色通道信号的灰度值有很多益处,包括:红色通道信号的灰度值更能明显的反映血液灌注的周期,提取每帧图像中红色通道信号的灰度值,可以提高血压测量的准确性。
需要说明的是,灰度值提取装置302可以提取每帧图像中第一身体区域对应图像中任意一个测试点的灰度值作为第一身体区域对应图像的灰度值,也可以提取第一身体区域对应图像中至少两个测试点的灰度值的平均值作为第一身体区域对应图像的灰度值,例如,可以选取所有测试点的灰度值的平均值作为第一身体区域对应图像的灰度值。灰度值提取装置302可以提取每帧图像中第二身体区域对应图像中任意一个测试点的灰度值作为第二身体区域对应图像的灰度值,也可以提取第二身体区域对应图像中至少两个测试点的灰度值的平均值作为第二身体区域对应图像的灰度值,例如,可以选取所有测试点的灰度值的平均值作为第二身体区域对应图像的灰度值。
当第一身体区域对应图像的灰度值为每帧图像中第一身体区域对应图像中任意一个测试点的灰度值时,其优点包括:提取第一身体区域对应图像的灰度值的操作较为简单,其缺点包括误差较大。当第一身体区域对应图像的灰度值为每帧图像中第一身体区域对应图像中至少两个测试点的灰度值的平均值时,其缺点包括:提取第一身体区域对应图像的灰度值的操作较为复杂, 其优点包括:误差较小。选择灰度值时,可根据实际需要选择。类似的,当第二身体区域对应图像的灰度值为每帧图像中第二身体区域对应图像中任意一个测试点的灰度值时,其优点包括:提取第二身体区域对应图像的灰度值的操作较为简单,其缺点包括:误差较大。当第二身体区域对应图像的灰度值为每帧图像中第二身体区域对应图像中至少两个测试点的灰度值的平均值时,其缺点包括:提取第二身体区域对应图像的灰度值的操作较为复杂,其优点包括:误差较小。选择灰度值时,可根据实际需要选择。
需要补充的是,上述测试点可以为每帧图像中第一身体区域对应图像或者第二身体区域的对应图像上的一个像素,也可以为每帧图像中第一身体区域对应图像或者第二身体区域的对应图像上的相邻的多个像素。
例如,所述至少一个视频包括一个视频。灰度值提取装置302从所述至少一个视频的图像中包含提取第一身体区域的对应图像的多个灰度值和包含第二身体区域的对应图像的多个灰度值,包括以下操作:(1)识别该视频中的每帧图像中的第一身体区域的对应图像和第二身体区域的对应图像(例如,每帧图像同时包括第一身体区域的对应图像和第二身体区域的对应图像);以及(2)提取该视频中的每帧图像中的第一身体区域对应图像的灰度值和第二身体区域对应图像的灰度值。第一身体区域对应图像的灰度值为该视频中的每帧图像中第一身体区域对应图像中任意一个测试点的灰度值,或者,第一身体区域对应图像中至少两个测试点的灰度值的平均值。第二身体区域对应图像的灰度值为该视频中的每帧图像中第二身体区域对应图像中任意一个测试点的灰度值,或者,第二身体区域对应图像中至少两个测试点的灰度值的平均值。
例如,所述至少一个视频包括第一视频和第二视频。该第一视频为包括第一身体区域的视频。该第二视频为包括第二身体区域的视频。灰度值提取装置302从所述至少一个视频的图像中提取包含第一身体区域的对应图像的多个灰度值和包含第二身体区域的对应图像的多个灰度值,包括以下操作:(1)识别第一视频中的每帧图像中的第一身体区域的对应图像和第二视频中每帧图像中的第二身体区域的对应图像;以及(2)提取第一视频中的每帧图像中的第一身体区域对应图像的灰度值和第二视频中每帧图像中的第二身体区域对应图像的灰度值。第一身体区域对应图像的灰度值为该第一视频中的每帧图像中的第一身体区域对应图像中任意一个测试点的灰度值,或者,第 一身体区域对应图像中至少两个测试点的灰度值的平均值。第二身体区域对应图像的灰度值为该第二视频中的每帧图像中第二身体区域对应图像中任意一个测试点的灰度值,或者,第二身体区域对应图像中至少两个测试点的灰度值的平均值。
例如,脉搏波绘制装置303用于根据每帧图像中第一身体区域对应图像的灰度值绘制第一身体区域的脉搏波波形,根据每帧图像中第二身体区域对应图像的灰度值绘制第二身体区域的脉搏波波形。
例如,使用脉搏波绘制装置303可以通过以下方式绘制脉搏波波形:以灰度值提取装置302提取的第一身体区域对应图像的多个灰度值为纵坐标,以时间为横坐标,绘制第一身体区域的脉搏波波形;以灰度值提取装置302提取的第二身体区域对应图像的多个灰度值为纵坐标,以时间为横坐标,绘制第二身体区域的脉搏波波形。其中,时间的获取方式如下:定义成像设备的成像频率为f,则相邻两帧图像的时间间隔为1/f秒,选取第1帧图像对应的时间为时间原点,则第n帧图像对应的时间为(n-1)×1/f秒,示例性地,当成像设备的成像频率为每秒100帧时,则相邻两帧图像的时间间隔为10毫秒,第10帧图像对应的时间为90毫秒。采用上述方式绘制的第一身体区域的脉搏波波形和第二身体区域的脉搏波波形如图2所示,其中,实线为第一身体区域的脉搏波波形,虚线为第二身体区域的脉搏波波形。
例如,脉搏波传播时间确定装置304用于根据第一身体区域的脉搏波波形和第二身体区域的脉搏波波形,确定脉搏波的传播时间。
需要说明的是,上述脉搏波的传播时间指的是,例如:脉搏波在人体动脉的不同位置传播时,存在的时间延迟,这个延迟的时间就是脉搏波的传播时间。
本申请实施例提供的血压测量系统中,如图2所示,使用脉搏波时间确定装置304根据第一身体区域的脉搏波波形和第二身体区域的脉搏波波形,确定脉搏波的传播时间的步骤可以包括:
首先,选取第一身体区域的脉搏波波形中的一个波峰A,选取第二身体区域的脉搏波波形中的另一个波峰B,该一个波峰A与该另一个波峰B时间间隔最短;
其次,获取该一个波峰A和该另一个波峰B之间的时间间隔;
然后,重复以上步骤多次,以获取多个时间间隔,在重复过程中,依次 选取第一身体区域的脉搏波波形中连续多个周期中的波峰;
最后,计算上述步骤中获取的多个时间间隔的平均值,取该平均值作为脉搏波的传播时间。
在确定脉搏波的传播时间时,当只采用一个周期内,相邻波峰之间的时间间隔作为脉搏波的传播时间时,由于该时间间隔可能存在误差,导致脉搏波的传播时间存在误差,进而影响血压测量的准确性。因此,本申请实施例重复多次上述获取时间间隔的步骤,取上述多个时间间隔的平均值作为脉搏波的传播时间,以便于减小该时间间隔可能存在的误差,进而减小脉搏波的传播时间的误差,以提高血压测量的准确性,需要说明的是,上述多次指两次以及两次以上,本实施例中取为十次。
例如,血压获取装置305用于根据脉搏波的传播时间与血压之间的关系,获取被测者的血压。由于脉搏波的传播时间可以反映出脉搏波的传播速度,可以通过脉搏波的传播时间可以得到血压。脉搏波的传播时间是指,例如:脉搏波在人体动脉的不同位置传播时,存在时间延迟。
示例性地,根据脉搏波的传播时间与血压之间的关系,获取被测者的血压的过程可以涉及以下三个公式:
Figure PCTCN2015091033-appb-000005
Figure PCTCN2015091033-appb-000006
Figure PCTCN2015091033-appb-000007
根据公式(1)、(2)、(3)推导出脉搏波的传播时间与血压之间的关系为:
Figure PCTCN2015091033-appb-000008
其中,v为脉搏波传播速度,E为血管的弹性模量,h为血管壁厚度,d为血管内壁直径,ρ为血液粘稠度,E0为压力为0时血管的弹性模量,γ为0.016~0.018毫米汞柱,S为脉搏波的传播距离,PTT为是所述脉搏波的传播时间。需要说明的是,在脉搏波的传播时间与血压之间的关系中,当测量过程中选取不同的身体区域时,需要对脉搏波的传播距离S进行调节,以保证测量的准确性。示例性地,可以建立包含不同身高,不同性别下,脉搏波在 不同身体区域之间的传播距离的数据库,在测量过程中,被测者可以根据自身情况及不同的身体区域选择对应的脉搏波的传播距离S。
根据实际使用的需要,如图3所示,本申请实施例提供的血压测量系统还可以包括测量结果显示装置306,用于显示血压测量结果,以便于被测者直观地了解自己的血压测量结果。示例性地,测量结果显示装置306可选为液晶显示器。
此外,为了进一步提高血压测量的准确性,本申请实施例提供的血压测量系统,还包括滤波装置。滤波装置对由脉搏波绘制装置303绘制的第一身体区域的脉搏波波形和第二身体区域的脉搏波波形进行滤波。示例性地,滤波装置可采用傅里叶变换带通滤波对第一身体区域的脉搏波波形和第二身体区域的脉搏波波形进行滤波。通过滤波,能够去除由于呼吸信号和身体应激反应等引起的抖动等其他干扰信号,进而提高血压测量的准确性。
从上述实施例可知,采用本申请实施例提供的血压测量系统,使得在整个血压测量过程中不需要使用袖带,便可以实现在不接触被测者的皮肤的情况下,即可测量被测者的血压,由于不需要袖带,因此也就不存在袖带与被测者的手臂接触的问题,从而可以避免袖带对被测者手臂中的血管的压迫,进而提高血压测量结果的准确性。此外,由于不需要袖带,对于手臂皮肤有伤口、手臂不便于套袖带的被测者,使用上述血压测量系统也能对被测者的血压进行测量。
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同或相似的部分可以互相参照,每个实施例的说明包括了与其他实施例的不同之处。尤其,对于系统实施例而言,由于其基本相似于方法实施例,所以描述得比较简单,相关之处可以参见方法实施例的部分说明。
本申请实施例的血压测量系统还可以包括一个或多个处理器以及一个或多个存储器。处理器可以处理数据信号,可以包括各种计算结构,例如复杂指令集计算机(CISC)结构、结构精简指令集计算机(RISC)结构或者一种实行多种指令集组合的结构。存储器可以保存处理器执行的指令和/或数据。这些指令和/或数据可以包括代码,用于实现本申请实施例描述的一个或多个装置的一些功能或全部功能。例如,存储器包括动态随机存取存储器(DRAM)、静态随机存取存储器(SRAM)、闪存(flash memory)、光存储器(optical memory),或其他的本领域技术人员熟知的存储器。
在本申请的一些实施例中,灰度值提取装置、脉搏波绘制装置、脉搏波传播时间确定装置和/或血压获取装置包括存储在存储器中的代码和程序;处理器可以执行该代码和程序以实现如上所述的灰度值提取装置、脉搏波绘制装置、脉搏波传播时间确定装置和/或血压获取装置的一些功能或全部功能。
在本申请的一些实施例中,灰度值提取装置、脉搏波绘制装置、脉搏波传播时间确定装置和/或血压获取装置可以是特殊硬件器件,用来实现如上所述的该灰度值提取装置、脉搏波绘制装置、脉搏波传播时间确定装置和/或血压获取装置的一些或全部功能。例如,灰度值提取装置、脉搏波绘制装置、脉搏波传播时间确定装置和/或血压获取装置可以是一个电路板或多个电路板的组合,用于实现如上所述的功能。在本申请实施例中,该一个电路板或多个电路板的组合可以包括:(1)一个或多个处理器;(2)与处理器相连接的一个或多个非暂时的计算机可读的存储器;以及(3)处理器可执行的存储在存储器中的固件。
需要指出的是,在附图中,为了图示的清晰可能夸大了层和区域的尺寸。而且可以理解,当元件或层被称为在另一元件或层“上”时,它可以直接在其他元件上,或者可以存在中间的层。另外,可以理解,当元件或层被称为在另一元件或层“下”时,它可以直接在其他元件下,或者可以存在一个以上的中间的层或元件。另外,还可以理解,当层或元件被称为在两层或两个元件“之间”时,它可以为两层或两个元件之间惟一的层,或还可以存在一个以上的中间层或元件。通篇相似的参考标记指示相似的元件。
而且,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
还需要说明的是,术语“上”、“下”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作, 因此不能理解为对本申请的限制。除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。
本申请要求于2015年6月26日递交的中国专利申请第201510364594.9号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。

Claims (20)

  1. 一种血压测量方法,包括:
    采集被测者的第一身体区域和第二身体区域的至少一个视频,其中,所述至少一个视频中的每个视频都包括多帧图像;
    从所述至少一个视频的图像中提取包含所述第一身体区域的对应图像的多个灰度值和包含所述第二身体区域的对应图像的多个灰度值;
    根据所述第一身体区域对应图像的多个灰度值绘制所述第一身体区域的脉搏波波形,根据所述第二身体区域对应图像的多个灰度值绘制所述第二身体区域的脉搏波波形;
    根据所述第一身体区域的脉搏波波形和所述第二身体区域的脉搏波波形,确定脉搏波的传播时间;以及
    根据所述脉搏波的传播时间与血压之间的对应关系,获取被测者的血压。
  2. 根据权利要求1所述的血压测量方法,其中,所述至少一个视频包括一个视频,采集被测者的第一身体区域和第二身体区域的至少一个视频包括:使用一个成像设备对包括被测者脸部和手部的区域进行视频采集得到所述一个视频。
  3. 根据权利要求1所述的血压测量方法,其中,所述至少一个视频包括第一视频和第二视频,采集被测者的第一身体区域和第二身体区域的至少一个视频包括:使用一个成像设备对被测者的所述第一身体区域进行视频采集得到所述第一视频,同时使用另一个成像设备对被测者的所述第二身体区域进行视频采集得到所述第二视频。
  4. 根据权利要求2或3所述的血压测量方法,其中,所述成像设备为成像频率为大于或等于每秒100帧的高速摄像机。
  5. 根据权利要求1所述的血压测量方法,其中,所述至少一个视频包括一个视频,从所述至少一个视频的图像中提取包含所述第一身体区域的对应图像的多个灰度值和包含所述第二身体区域的对应图像的多个灰度值包括:
    识别所述一个视频的每帧图像中的所述第一身体区域的对应图像和所述第二身体区域的对应图像;以及
    提取所述一个视频的每帧图像中的所述第一身体区域对应图像中的红色通道信号的灰度值和所述第二身体区域对应图像中的红色通道信号的灰度 值。
  6. 根据权利要求5所述的血压测量方法,其中,
    所述第一身体区域对应图像的每个灰度值为所述一个视频的相对应的一帧图像中所述第一身体区域对应图像中任意一个测试点的灰度值,或者,所述第一身体区域对应图像中至少两个测试点的灰度值的平均值;
    所述第二身体区域对应图像的每个灰度值为所述一个视频的相对应的一帧图像中所述第二身体区域对应图像中任意一个测试点的灰度值,或者,所述第二身体区域对应图像中至少两个测试点的灰度值的平均值。
  7. 根据权利要求1所述的血压测量方法,其中,所述至少一个视频包括第一视频和第二视频,从所述至少一个视频的图像中提取包含所述第一身体区域的对应图像的多个灰度值和包含所述第二身体区域的对应图像的多个灰度值包括:
    识别所述第一视频每帧图像中的所述第一身体区域的对应图像和所述第二视频每帧图像中的所述第二身体区域的对应图像;以及
    提取所述第一视频每帧图像中的所述第一身体区域对应图像中的红色通道信号的灰度值和所述第二视频每帧图像中的所述第二身体区域对应图像中的红色通道信号的灰度值。
  8. 根据权利要求7所述的血压测量方法,其中,
    所述第一身体区域对应图像的每个灰度值为所述第一视频的相对应的一帧图像中的所述第一身体区域对应图像中任意一个测试点的灰度值,或者,所述第一身体区域对应图像中至少两个测试点的灰度值的平均值;
    所述第二身体区域对应图像的每个灰度值为所述第二视频的相对应的一帧图像中的所述第二身体区域对应图像中任意一个测试点的灰度值,或者,所述第二身体区域对应图像中至少两个测试点的灰度值的平均值。
  9. 根据权利要求1所述的血压测量方法,其中,根据所述第一身体区域的脉搏波波形和所述第二身体区域的脉搏波波形,确定脉搏波的传播时间包括:
    选取所述第一身体区域的脉搏波波形中的一个波峰,选取所述第二身体区域的脉搏波波形中的与所述一个波峰时间间隔最短的另一个波峰;
    获取所述一个波峰和所述另一个波峰之间的时间间隔;
    重复以上步骤多次,以获取多个时间间隔,其中,在重复过程中,依次 选取所述第一身体区域的脉搏波波形中连续多个周期中的波峰;以及
    计算所述多个时间间隔的平均值,作为所述脉搏波的传播时间。
  10. 根据权利要求1所述的血压测量方法,其中,脉搏波的传播时间与血压之间的关系为:
    Figure PCTCN2015091033-appb-100001
    其中,h为血管壁厚度,d为血管内壁直径,S为所述脉搏波的传播距离,ρ为血液粘稠度,E0为压力为0时血管的弹性模量,γ为0.016-0.018毫米汞柱,PTT为所述脉搏波的传播时间。
  11. 根据权利要求1所述的血压测量方法,其中,在根据所述第一身体区域对应图像的多个灰度值绘制所述第一身体区域的脉搏波波形,根据所述第二身体区域对应图像的多个灰度值绘制所述第二身体区域的脉搏波波形之后,所述血压测量方法还包括:
    对所述第一身体区域的脉搏波波形和所述第二身体区域的脉搏波波形进行滤波。
  12. 一种血压测量系统,包括:
    视频采集装置,用于采集被测者的第一身体区域和第二身体区域的至少一个视频,其中,所述至少一个视频中的每个视频都包括多帧图像;
    灰度值提取装置,所述灰度值提取装置与所述视频采集装置连接,且用于从所述至少一个视频的图像中提取包含所述第一身体区域的对应图像的多个灰度值和包含所述第二身体区域的对应图像的多个灰度值;
    脉搏波绘制装置,所述脉搏波绘制装置与所述灰度值提取装置连接,且用于根据所述第一身体区域对应图像的多个灰度值绘制所述第一身体区域的脉搏波波形,根据所述第二身体区域对应图像的多个灰度值绘制所述第二身体区域的脉搏波波形;
    脉搏波传播时间确定装置,所述脉搏波传播时间确定装置与所述脉搏波绘制装置连接,且用于根据所述第一身体区域的脉搏波波形和所述第二身体区域的脉搏波波形,确定脉搏波的传播时间;以及
    血压获取装置,所述血压获取装置与所述脉搏波传播时间确定装置连接,且用于根据所述脉搏波的传播时间与血压之间的对应关系,获取被测者的血压。
  13. 根据权利要求12所述的血压测量系统,其中,所述至少一个视频包括一个视频,所述视频采集装置为一个成像设备,所述成像设备对包括被测者脸部和手部的区域进行视频采集得到所述一个视频。
  14. 根据权利要求13所述的血压测量系统,其中,所述成像设备为成像频率为大于或等于每秒100帧的高速摄像机。
  15. 根据权利要求12所述的血压测量系统,其中,所述至少一个视频包括一个视频,所述灰度值提取装置用于:
    识别所述一个视频每帧图像中的所述第一身体区域的对应图像和所述第二身体区域的对应图像;
    提取所述一个视频每帧图像中的所述第一身体区域对应图像和所述第二身体区域对应图像中红色通道信号的灰度值。
  16. 根据权利要求12所述的血压测量系统,其中,所述至少一个视频包括第一视频和第二视频,所述视频采集装置包括第一成像设备和第二成像设备,所述第一成像设备和所述第二成像设备被设置为同时地分别对被测者的所述一个身体和所述第二身体区域进行视频采集来得到所述第一视频和所述第二视频。
  17. 根据权利要求16所述的血压测量系统,其中,所述灰度值提取装置用于:
    识别所述第一视频每帧图像中的所述第一身体区域的对应图像和所述第二视频每帧图像中的所述第二身体区域的对应图像;
    提取所述第一视频每帧图像中的所述第一身体区域对应图像中红色通道信号的灰度值和所述第二视频每帧图像中的所述第二身体区域对应图像中红色通道信号的灰度值。
  18. 根据权利要求17所述的血压测量系统,其中,
    所述灰度值提取装置用于:提取所述第一视频每帧图像中的所述第一身体区域对应图像中任意一个测试点的灰度值作为相对应的所述第一身体区域对应图像的灰度值,或者,提取所述第一视频每帧图像中的所述第一身体区域对应图像中至少两个测试点的灰度值的平均值作为相对应的所述第一身体区域对应图像的灰度值;
    所述灰度值提取装置还用于:提取所述第二视频每帧图像中的所述第二身体区域对应图像中任意一个测试点的灰度值作为相对应的所述第二身体区 域对应图像的灰度值,或者,提取所述第二视频每帧图像中的所述第二身体区域对应图像中至少两个测试点的灰度值的平均值作为相对应的所述第二身体区域对应图像的灰度值。
  19. 根据权利要求12所述的血压测量系统,其中,所述脉搏波传播时间确定装置用于,
    选取所述第一身体区域的脉搏波波形中的一个波峰,选取所述第二身体区域的脉搏波波形中的与所述一个波峰时间间隔最短的另一个波峰;
    获取所述一个波峰和所述另一个波峰之间的时间间隔;
    重复以上步骤多次,以获取多个时间间隔,其中,在重复过程中,依次选取所述第一身体区域的脉搏波波形中连续多个周期中的波峰;以及
    计算所述多个时间间隔的平均值,作为所述脉搏波的传播时间。
  20. 根据权利要求12所述的血压测量系统,其中,所述血压测量系统还包括滤波装置,所述滤波装置用于对所述脉搏波绘制装置绘制的所述第一身体区域的脉搏波波形和所述第二身体区域的脉搏波波形进行滤波。
PCT/CN2015/091033 2015-06-26 2015-09-29 血压测量方法和测量系统 WO2016206221A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/100,480 US9922420B2 (en) 2015-06-26 2015-09-29 Blood pressure measuring method and system
EP15862152.4A EP3315061B1 (en) 2015-06-26 2015-09-29 Blood pressure measurement method and measurement system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510364594.9A CN104887209A (zh) 2015-06-26 2015-06-26 一种血压测量方法和测量系统
CN201510364594.9 2015-06-26

Publications (1)

Publication Number Publication Date
WO2016206221A1 true WO2016206221A1 (zh) 2016-12-29

Family

ID=54020493

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/091033 WO2016206221A1 (zh) 2015-06-26 2015-09-29 血压测量方法和测量系统

Country Status (4)

Country Link
US (1) US9922420B2 (zh)
EP (1) EP3315061B1 (zh)
CN (1) CN104887209A (zh)
WO (1) WO2016206221A1 (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104887209A (zh) * 2015-06-26 2015-09-09 京东方科技集团股份有限公司 一种血压测量方法和测量系统
TWI556793B (zh) * 2015-07-09 2016-11-11 國立臺灣科技大學 非接觸式即時生理訊號及動作偵測方法
ES2616740B1 (es) * 2015-11-13 2018-03-21 Universitat Politécnica de Catalunya Método y aparato para estimar el tiempo de tránsito del pulso arterial a partir de medidas obtenidas en zonas distales de las extremidades
CN105310663B (zh) * 2015-11-16 2018-06-22 浙江大学 基于视频采集和超声波的非接触可视可感脉搏波采集系统
US11412943B2 (en) 2016-07-16 2022-08-16 Olesya Chornoguz Methods and systems for obtaining physiologic information
CN112263230B (zh) * 2016-09-22 2023-05-09 上海潓美医疗科技有限公司 基于桡动脉生物传感器技术的血压动态监测系统及方法
CN107174225A (zh) * 2017-06-30 2017-09-19 哈尔滨工业大学深圳研究生院 一种臂带式血管生理参数监测装置
CN107438210A (zh) * 2017-07-28 2017-12-05 京东方科技集团股份有限公司 一种体征检测耳机和体征检测方法
CN107736883A (zh) * 2017-10-24 2018-02-27 京东方科技集团股份有限公司 血压测量方法及装置
DE102017126551B4 (de) * 2017-11-13 2019-11-21 Technische Universität Dresden Verfahren zur Bestimmung eines physiologischen Parameters sowie Verfahren zur Bestimmung des Blutdruckes unter Berücksichtigung des physiologischen Parameters
JP6620999B2 (ja) * 2017-11-30 2019-12-18 国立大学法人東北大学 生体情報計測装置、生体情報計測プログラム、及び生体情報計測方法
CN108186000B (zh) * 2018-02-07 2024-04-02 河北工业大学 基于心冲击信号与光电信号的实时血压监测系统及方法
TWI708924B (zh) * 2019-01-19 2020-11-01 鉅怡智慧股份有限公司 影像式血壓量測裝置與方法
CN110090010B (zh) * 2019-06-17 2022-04-26 北京心数矩阵科技有限公司 一种非接触式血压测量方法及系统
CN113786179A (zh) * 2021-09-27 2021-12-14 北方工业大学 红外与光学图像融合的人体血压实时测量方法及装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080275351A1 (en) * 2007-05-02 2008-11-06 Siemens Corporate Research, Inc. Model-based pulse wave velocity measurement method
US20130046192A1 (en) * 2011-08-19 2013-02-21 Yue-Der LIN Image-based pwv measurement device and method
CN103263271A (zh) * 2013-05-27 2013-08-28 天津点康科技有限公司 非接触式自动血氧饱和度测量系统及测量方法
CN103908236A (zh) * 2013-05-13 2014-07-09 天津点康科技有限公司 一种自动血压测量系统
WO2014136310A1 (ja) * 2013-03-08 2014-09-12 富士フイルム株式会社 脈波伝播速度の測定方法及びシステム並びに撮像装置
WO2014181056A1 (fr) * 2013-05-06 2014-11-13 Hallab Magid Appareil et procede de determination de la vitesse de propagation d'une onde de pouls
CN104887209A (zh) * 2015-06-26 2015-09-09 京东方科技集团股份有限公司 一种血压测量方法和测量系统
CN204797820U (zh) * 2015-06-26 2015-11-25 京东方科技集团股份有限公司 一种血压测量系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4984728B2 (ja) * 2006-08-07 2012-07-25 パナソニック株式会社 被写体照合装置および被写体照合方法
US8838209B2 (en) * 2012-02-21 2014-09-16 Xerox Corporation Deriving arterial pulse transit time from a source video image
EP2979631B1 (en) * 2013-03-29 2023-05-10 Fujitsu Limited Blood flow index calculation method, blood flow index calculation program and blood flow index calculation device
WO2015045554A1 (ja) * 2013-09-26 2015-04-02 シャープ株式会社 生体情報取得装置および生体情報取得方法
WO2015191830A2 (en) * 2014-06-13 2015-12-17 The Procter & Gamble Company Treatment compositions, apparatus and methods for modifying keratinous surfaces
CN104665803B (zh) * 2014-12-10 2017-04-26 上海理工大学 基于智能平台的检测房颤系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080275351A1 (en) * 2007-05-02 2008-11-06 Siemens Corporate Research, Inc. Model-based pulse wave velocity measurement method
US20130046192A1 (en) * 2011-08-19 2013-02-21 Yue-Der LIN Image-based pwv measurement device and method
WO2014136310A1 (ja) * 2013-03-08 2014-09-12 富士フイルム株式会社 脈波伝播速度の測定方法及びシステム並びに撮像装置
WO2014181056A1 (fr) * 2013-05-06 2014-11-13 Hallab Magid Appareil et procede de determination de la vitesse de propagation d'une onde de pouls
CN103908236A (zh) * 2013-05-13 2014-07-09 天津点康科技有限公司 一种自动血压测量系统
CN103263271A (zh) * 2013-05-27 2013-08-28 天津点康科技有限公司 非接触式自动血氧饱和度测量系统及测量方法
CN104887209A (zh) * 2015-06-26 2015-09-09 京东方科技集团股份有限公司 一种血压测量方法和测量系统
CN204797820U (zh) * 2015-06-26 2015-11-25 京东方科技集团股份有限公司 一种血压测量系统

Also Published As

Publication number Publication date
US9922420B2 (en) 2018-03-20
EP3315061A1 (en) 2018-05-02
CN104887209A (zh) 2015-09-09
EP3315061B1 (en) 2020-03-18
EP3315061A4 (en) 2019-02-27
US20170039702A1 (en) 2017-02-09

Similar Documents

Publication Publication Date Title
WO2016206221A1 (zh) 血压测量方法和测量系统
CN103006195B (zh) 一种基于图像处理的非接触式生命体征数据监测系统和监测方法
US10292602B2 (en) Blood flow index calculating method, blood flow index calculating apparatus, and recording medium
US9795306B2 (en) Method of estimating blood pressure based on image
Kwon et al. Validation of heart rate extraction using video imaging on a built-in camera system of a smartphone
JP6052027B2 (ja) 脈波検出装置、脈波検出プログラムおよび脈波検出方法
KR20190050725A (ko) 모바일 단말을 이용한 맥파 신호 및 스트레스 측정 방법 및 장치
JP2018534007A (ja) モバイルデバイスを使用してバイタル測定値を取得するためのシステムおよび方法
JP6142664B2 (ja) 脈波検出装置、脈波検出プログラム、脈波検出方法及びコンテンツ評価システム
WO2017088156A1 (zh) 一种血压参数检测方法及用户终端
US20230355216A1 (en) Ultrasound imaging method combining physiological signals and an electronic device
WO2023284727A1 (zh) 生物特征信息的测量方法、装置和电子设备
CN107692988A (zh) 基于智能平台的血压监测方法及图形化显示的方法
JP6135255B2 (ja) 心拍測定プログラム、心拍測定方法及び心拍測定装置
EP3318179B1 (en) Method for measuring respiration rate and heart rate using dual camera of smartphone
EP3781016A1 (en) Method and apparatus for estimating blood pressure
JP2014073159A (ja) 脈波検出装置、脈波検出プログラム及び脈波検出方法
RU2289310C2 (ru) Способ получения информации о психофизиологическом состоянии живого объекта
JP6167615B2 (ja) 血流指標算出プログラム、端末装置および血流指標算出方法
CN104510494B (zh) 一种颈总动脉m型超声波图像后处理装置及方法
WO2018090254A1 (zh) 一种生物测定数据存储方法、电子设备及系统
CN204797820U (zh) 一种血压测量系统
Lu et al. Research on Embedded Heart Rate Detector Based on Vision
CN105011921A (zh) 一种通过视频分析测量血压的方法
CN203388851U (zh) 数字化肌电检测装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15100480

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015862152

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15862152

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2015862152

Country of ref document: EP