WO2016206175A1 - 用于腰部康复训练中的下肢自动调节平台及训练方法 - Google Patents

用于腰部康复训练中的下肢自动调节平台及训练方法 Download PDF

Info

Publication number
WO2016206175A1
WO2016206175A1 PCT/CN2015/086631 CN2015086631W WO2016206175A1 WO 2016206175 A1 WO2016206175 A1 WO 2016206175A1 CN 2015086631 W CN2015086631 W CN 2015086631W WO 2016206175 A1 WO2016206175 A1 WO 2016206175A1
Authority
WO
WIPO (PCT)
Prior art keywords
thigh
calf
leg
joint
bracket
Prior art date
Application number
PCT/CN2015/086631
Other languages
English (en)
French (fr)
Inventor
訾斌
陈桥
钱森
尹光才
李元
Original Assignee
訾斌
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 訾斌 filed Critical 訾斌
Priority to CA2950546A priority Critical patent/CA2950546C/en
Publication of WO2016206175A1 publication Critical patent/WO2016206175A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H1/00Apparatus for passive exercising; Vibrating apparatus ; Chiropractic devices, e.g. body impacting devices, external devices for briefly extending or aligning unbroken bones

Definitions

  • the invention relates to the field of medical rehabilitation training equipment, in particular to an automatic adjustment platform for lower limbs and a training method for waist rehabilitation training.
  • the standing platform drives the legs to move in the space, so that the legs move relative to the hip joints, and the rehabilitation of the lumbar spine is realized.
  • the patient's legs may bend during the exercise, and therefore, the patient's legs need to be assisted. Bending better achieves the effect of waist rehabilitation training; for this reason, it is necessary to further improve the mechanical structure of the application.
  • the lower limb automatic adjustment platform for lumbar rehabilitation training includes an aluminum alloy profile frame 100.
  • the aluminum alloy profile frame 100 is a rectangular frame body.
  • the aluminum alloy profile frame 100 is fixed to the foundation.
  • a lower limb automatic adjustment platform unit 300, a standing platform 400, and a motor unit are also disposed in the aluminum alloy profile frame 100. 500, a cable 600, and a pulley unit 700.
  • Each of the cables 600 is connected to the standing platform 400 after bypassing the pulley unit 700. That is, the change of the length of the cable 600 is realized by the pulley unit 700, and the change of the length of the cable 600 is realized by the motor unit 500, thereby realizing the change of the spatial posture of the standing platform 400 connected thereto, thereby adjusting the posture of the patient when standing and moving.
  • a lower limb automatic adjustment platform unit 300 is provided on the standing platform 400.
  • the lower limb automatic adjustment platform unit 300 is movably coupled to the patient's leg to restrain, support, and adjust the leg posture of the patient when standing upright and the leg posture when the waist is active. That is, the support, restraint and adjustment of the platform unit 300 are automatically adjusted by the lower limbs, so that the legs of the patient are bent or extended in the working range of the lower limb automatic adjustment platform unit 300.
  • the joint posture of the standing platform 400 and the lower limb automatic adjustment platform unit 300 is used to collectively adjust the posture of the leg when the waist of the patient standing on the standing platform 400 is straight, and the posture of the leg when the waist is bent.
  • the training method for the automatic limb lowering platform for lumbar rehabilitation training according to the present invention is carried out as follows:
  • Step 1 Power on each motor in the industrial computer and motor unit 500, and let the pressure sensor 801, the laser ranging sensor 802 and the encoder 803 feed back signals, and make the thigh pneumatic artificial muscle 316, the calf pneumatic artificial muscle 310, and rotate.
  • the joint pneumatic artificial muscle 311, the calf spring 307, the rotary joint spring 312, and the thigh spring 317 are reset.
  • Step 2 Enter the patient size leg length information on the industrial computer.
  • the preset spatial pose is a rehabilitation action information posture that is required to be performed by the patient on the device for waist rehabilitation training.
  • Step 3 Let the patient stand on the standing platform 400.
  • the industrial computer first controls the calf pneumatic artificial muscle 310 to inflate or deflate, adjusts the length of the calf module, and detects the length value of the calf spring 307 in real time by the laser ranging sensor 802 in the calf module. And transmitting the data to the industrial computer for calculation and judgment until the rotating joint 306 is flush with the knee joint of the patient.
  • the industrial pneumatic machine controls the thigh pneumatic artificial muscle 316 to inflate or deflate, adjusts the length of the thigh module, and simultaneously detects the length of the thigh spring 317 by the laser ranging sensor 802 in the thigh module, and transmits the data to the industrial computer.
  • the calculation and judgment are made such that the hip elastic band 301 is located at the hip joint portion of the patient.
  • Step 5 The industrial motor controls the rotation of the motor in the motor unit 500 to make the flexible cable 600 expand and contract, and realize the movement of the standing platform 400.
  • the industrial control machine controls the rotation of the two rotary joint pneumatic artificial muscles 311 the intake valve and the outlet valve in real time, and controls the rotation of the calf joint, thereby driving the standing platform 400 to move.
  • the industrial computer compensates the rotation of the rotating joint 306 according to the rotation angle of the calf module which is fed back in real time by the encoder 803, so that the posture of the patient standing on the standing platform 400 conforms to the preset spatial posture of the step 2 input. Consistent.
  • Step 7 The rehabilitation training is completed, and the leg elastic band 303 and the hip elastic band 301 are manually released to cause the patient to walk down the standing platform 400.
  • Step 8 Reset the lower limb automatic adjustment platform 300, and turn off the motor unit 400, the pneumatic artificial muscles, and the power of the industrial computer.
  • the device of the invention simulates the structure of the human leg, and designs a lower limb movement device based on pneumatic artificial muscles and springs, so that the lower limbs of the patient are integrated with the lumbar training device, which plays a role of fixedly supporting the lower limbs of the patient.
  • the size and leg module of the device of the present invention uses a pneumatic artificial muscle in series with a spring, which can be driven by a pneumatic artificial muscle to reduce the height of the device, or can be driven by a spring force to raise the height of the device while using a laser.
  • the distance measuring sensor monitors the change of the spring height in real time, not only can automatically adjust the height of the leg device according to the patient's leg information, but also has good flexibility in the rehabilitation training, which plays a role of shock absorption and buffering, and effectively protects.
  • the waist prevents secondary damage.
  • the device of the invention uses a pneumatic artificial muscle and a spring to drive in parallel, a timing belt and a pulley meshing transmission to drive the joint rotation, and a pneumatic artificial muscle inflation contraction stretching spring drives the rotation of the pulley, thereby causing the knee joint to rotate, and in the spring
  • the pulley can be reversely rotated, the knee joint can be rotated in the reverse direction, and an encoder is installed on the rotating shaft to detect the angle of rotation.
  • the knee joint can be accurately rotated, and the auxiliary standing platform can be reached.
  • the change of the preset spatial posture makes it more precise to bend the patient's leg relative to the waist, so that the waist achieves better rehabilitation training effect.
  • the lower limb automatic adjustment platform in the device of the invention uses a bionic design, which can be used not only as a waist training
  • the lower limb support adjustment device of the device can also be used for lower limb rehabilitation training in medical rehabilitation, and has good expandability.
  • the aluminum alloy profile frame 100 of the present invention is constructed by a plurality of aluminum alloy profiles and flat plates for fixing and supporting the units to complete the rehabilitation training process.
  • Four of the waist belt units 200 are respectively fixed to the pneumatic artificial muscles at the front, rear, left and right positions of the aluminum alloy profile frame 100, and provide an axial driving force, which acts on the waist of the patient through the coupling device connected thereto, and the waist belt unit 200
  • the spring is used to balance the weight of the coupling.
  • the overall structure is simple and firm, and the working state is stable and reliable.
  • the four motor units 500 in the present invention are composed of a motor and a reel connected to its output shaft, and are uniformly fixedly mounted on a flat plate in the aluminum alloy profile frame 100.
  • the pulley bottom end mounting shaft of the pulley unit 700 has an interference fit with the cross tapered roller bearing inner ring, and the cross tapered roller bearing outer ring is fixedly mounted on the top of the aluminum alloy profile frame 100 through the bracket, so that the pulley can rotate freely. Power output is simple and efficient.
  • the adjusting device for assisting leg movement in the lower limb automatic adjusting unit 300 is composed of a calf module and a thigh module.
  • the bottom of the lower leg bracket 309 is mounted on the standing platform 400, and the top protruding portion is a slot hole, and the bottom end of the rotating joint 306 is a plug-in plate, and can be freely inserted into the slot hole.
  • the top end of the thigh bracket 304 is a slot hole, and the bottom end of the hip joint elastic strap bracket 319 is a plug-in plate that can be freely inserted into the slot hole.
  • Two holes are formed in the bottom side wall of the thigh bracket 304 for mounting the bearing 305.
  • the rotating shaft 315 is mounted on the inner ring of the bearing 305, coupled to the rotating joint 306 by a flat key 320, and its extended end is coupled to the timing pulley 314 by an interference fit.
  • the three are compact and adjustable in length to accommodate the rehabilitation of patients with different leg lengths.
  • the belt unit 200 can not only assist the patient to achieve the effect of the bending rehabilitation training, but also serve to fix the upper torso of the patient, so that the upper torso of the patient is balanced.
  • the present invention drives the flexible cable 600 to expand and contract by the motor unit 500, thereby driving the movement of the standing platform 400.
  • the variation of the length of the four flexible cords 600 allows for a change in the position of the standing platform 400 in space.
  • the hip elastic band 301 of the present invention is fixedly attached to the hip joint portion of the patient, and the elastic band 303 of the leg is fixedly attached to the patient's large leg to play the role of fixing the lower limb of the patient, and does not limit the degree of freedom of the lower limb movement of the patient. .
  • the invention not only ensures the accuracy and safety of the rehabilitation training through the use of the sensor, but also realizes the self of the device. Mobilization.
  • the pressure sensor 801 monitors the pressure of the pneumatic artificial muscle in real time, and prevents the safety hazard caused by the change of the output force of the pneumatic artificial muscle due to the pressure change, thereby ensuring the safety of the rehabilitation training.
  • the height of the size leg module is detected by the laser ranging sensor 802, and automatic height adjustment is achieved.
  • the angle of rotation of the calf module is detected by the encoder 803 to ensure the accuracy of the rehabilitation training.
  • Figure 1 is a schematic view of the overall structure of the present invention.
  • Figure 2 is a front elevational view of the overall structure of the present invention.
  • Figure 3 is a plan view of the overall structure of the present invention.
  • FIG. 4 is a schematic view showing the overall structure of a lower limb adjusting platform of the present invention.
  • Figure 5 is a front elevational view of the lower limb adjustment platform of the present invention.
  • Figure 6 is a top plan view of the lower limb adjustment platform of the present invention.
  • Figure 8 is a partial schematic view of the thigh module of the lower limb adjustment platform of the present invention.
  • Figure 9 is a partial schematic view of a rotary joint in a lower limb adjustment platform of the present invention.
  • Figure 10 is a schematic view of the rotational axis in the lower limb adjustment platform of the present invention.
  • Figure 11 is a schematic view showing the structure of a lower limb moving machine of the present invention.
  • Figure 12 is a schematic view of the thigh support in the lower limb adjustment platform of the present invention.
  • Figure 13 is a schematic view of a rotating joint in a lower limb adjustment platform of the present invention.
  • Figure 14 is a schematic view showing the installation of the sensor in the lower limb adjustment platform of the present invention.
  • Figure 15 is a schematic view showing the installation of a laser ranging sensor in the lower limb adjustment platform of the present invention.
  • an apparatus for waist rehabilitation training includes an aluminum alloy profile frame 100.
  • the aluminum alloy profile frame 100 is a rectangular frame body constructed from an aluminum alloy profile.
  • the aluminum alloy profile frame 100 is fixed to the foundation.
  • each pulley unit 700 is provided at the top of the aluminum alloy profile frame 100.
  • One motor unit 500 is provided below each pulley unit 700.
  • the spool shaft of each motor unit 500 is coupled to a cable 600.
  • each of the flexible cords 600 is coupled to the standing platform 400 after bypassing the pulley unit 700. That is, the change of the length of the cable 600 is realized by the pulley unit 700, and the change of the length of the cable 600 is realized by the motor unit 500, thereby realizing the change of the spatial posture of the standing platform 400 connected thereto, thereby adjusting the posture of the patient when standing and moving.
  • the four motor units 500 are respectively composed of a motor and a bevel gear connected to the output shaft thereof, and a reel which is coaxially connected to the bevel gear, and is uniformly fixedly mounted on the flat plate in the aluminum alloy profile frame 100.
  • the pulley bottom end mounting shaft of the pulley unit 700 has an interference fit with the cross tapered roller bearing inner ring, and the cross tapered roller bearing outer ring is fixedly mounted on the top of the aluminum alloy profile frame 100 through the bracket, so that the pulley can rotate freely.
  • One end of the cable 600 is connected to the reel in the motor unit 500, and the other end is connected to the standing platform 400 via a pulley in the pulley unit 700.
  • the reel connected thereto is driven to rotate, so that the flexible cable 600 wound thereon is expanded and contracted, thereby driving the movement of the standing platform 400.
  • the variation of the length of the four flexible cords 600 allows for a change in the position of the standing platform 400 in space.
  • the belt unit 200 can not only assist the patient in achieving the effect of completing the bending rehabilitation training, but also functioning to support the upper torso of the patient so that the upper torso of the patient is balanced.
  • the leg postures of different patients standing on the standing platform 400 and the leg posture during the rehabilitation training of the patient's waist are jointly adjusted.
  • the industrial computer combines the manually input exercise execution parameters with the calculated leg length of the patient and the bending angle of the lower limb automatic adjustment platform unit 300 to respectively drive the lower limb automatic adjustment platform unit 300, the standing platform 400, and the motor unit 500 to move.
  • a set of belt units 200 are provided within an aluminum alloy profile frame 100. Through the restraining and length adjustment of the belt unit 200, the waist of the patient is adjusted under the constraint and length of the belt unit 200 to assist the waist to make bending and straightening motion.
  • the joint posture of the standing platform 400, the lower limb automatic adjustment platform unit 300, and the belt unit 200 is used to collectively adjust the posture of the leg when the waist of the patient standing on the standing platform 400 is straight and the posture of the leg when the waist is bent.
  • the lower limb automatic adjustment platform unit 300 includes a hip joint elastic strap 301, a hip joint elastic strap bracket 319, and two adjusting devices for assisting leg movement.
  • the hip elastic band 301 is an elastic material of approximately elliptical shape.
  • the hip elastic band 301 is a belt or a rubber band.
  • One hip elastic band bracket 319 is connected to both ends of the hip elastic band 301 in the long axis direction.
  • the hip elastic banding bracket 319 has a Y shape.
  • a pair of hip joint plates are provided at the bottom of each hip elastic banding bracket 319.
  • the hip joint insert is inserted into an adjustment device for the adjacent auxiliary leg movement.
  • the adjusting device for the auxiliary leg movement is elongated and can be bent and stretched as shown in FIG.
  • each of the adjustment mechanisms for the movement of the auxiliary legs is connected to the top surface of the standing platform 400, respectively, as shown in FIG.
  • each of the adjustment mechanisms for the movement of the auxiliary leg is composed of a lower leg module and a thigh module.
  • the bottom end of the lower leg module is fixedly coupled to the top surface of the standing platform 400.
  • the length of the calf module can be changed in length.
  • the top of the calf module is movably coupled to the bottom end of the thigh module.
  • the length of the thigh module can be flexibly changed.
  • the bottom end of the thigh module is rotatable about the top of the calf module.
  • the height of the thigh module relative to the standing platform 400 is adjustable.
  • the height of the hip elastic strap bracket 319 relative to the standing platform 400 is adjustable.
  • the thigh module includes a leg elastic strap bracket 302, a leg elastic strap 303, a thigh bracket 304, The bearing 305, the timing pulley 314, the rotating shaft 315, the thigh pneumatic artificial muscle 316, the thigh spring 317, and the thigh soft cord 318.
  • the thigh bracket 304 is U-shaped and includes two thigh segment straight plates and one thigh segment bottom plate.
  • the two straight leg straight plates are placed in a vertical direction and are parallel to each other.
  • the bottoms of the two straight leg sections are joined together by the thigh section floor.
  • a thigh segment slot hole is formed in the top surface of each of the two thigh segments.
  • the thigh segment slot hole corresponds to the shape of the hip joint plate. That is, the hip joint plate is inserted into the slot hole of the adjacent thigh segment, as shown in FIG.
  • the top surface of the thigh segment floor is fixedly coupled to the bottom of the thigh pneumatic artificial muscle 316.
  • the tip of the thigh pneumatic artificial muscle 316 is coupled to one end of the thigh flex cable 318.
  • the other end of the thigh cord 318 is connected to the bottom surface of the hip elastic strap holder 319 after passing through a small hole in the transverse section of the thigh section.
  • a thigh spring 317 is placed over the outside of the thigh flex cable 318 located above the thigh segment transverse plate.
  • the top of the thigh spring 317 is in contact with the bottom surface of the hip joint elastic band holder 319, and the bottom of the thigh spring 317 is in contact with the top surface of the top plate.
  • two thigh segment inserts are provided on the bottom surface of the thigh segment bottom plate.
  • the thigh segment inserts extend vertically downward and are parallel to each other.
  • a circular hole is formed in the thigh segment inserting plate, and a bearing 305 is disposed in the circular hole of each thigh segment inserting plate, and a rotating shaft 315 is disposed between the adjacent two bearings 305, see FIG.
  • a leg elastic strap holder 302 is horizontally connected to the outside of the thigh section straight side of the thigh bracket 304.
  • a leg elastic strap 303 is provided at the end of the leg elastic strap holder 302.
  • a timing pulley 314 is provided at the end of the rotating shaft 315 on the other side of the thigh bracket 304, see FIG.
  • the calf module includes a leg elastic strap bracket 302, a leg elastic strap 303, a rotating joint 306, a calf spring 307, a calf cord 308, a calf bracket 309, and a calf pneumatic artificial muscle 310.
  • the joint pneumatic artificial muscle 311, the rotating joint spring 312, the timing belt 313, the timing pulley 314, and the flat key 320 are rotated.
  • the rotary joint 306 is a rectangular block.
  • a circular tube is provided at the top of the rotating joint 306. The axial direction of the circular tube of the rotating joint 306 is parallel to the width direction of the rotating joint 306 as shown in FIG.
  • the circular tube of the rotating joint 306 is sleeved on the adjacent rotating shaft 315, that is, the top of the rotating joint 306 is movably connected to the bottom of the thigh bracket 304.
  • a rectangular hole is formed in the side of the rotary joint 306, and the opening direction of the side rectangular hole of the rotary joint 306 coincides with the axial direction of the circular tube at the top of the rotary joint 306.
  • Two joint segment inserts are provided at the bottom of the rotating joint 306. The joint segment inserts extend vertically downward and are parallel to each other. The joint segment insert is perpendicular to the end face of the circular tube of the rotary joint 306.
  • a calf segment slot hole is formed in the top surface of each calf segment riser.
  • the calf segment slot hole corresponds to the shape of the joint segment card. That is, the joint segment insert is inserted into the slot hole of the adjacent calf segment.
  • the top ends of the two calf segments of the calf support 309 are fixedly coupled to the bottom ends of the two joint segments of the adjacent rotary joints 306, respectively.
  • the bottom ends of the two lower leg risers of the calf support 309 are coupled to the top surface of the standing platform 400.
  • a leg elastic strap holder 302 is horizontally coupled to the outside of the lower leg riser on one side of the calf support 309.
  • a leg elastic strap 303 is provided at the end of the leg elastic strap holder 302.
  • a calf pneumatic artificial muscle 310 is provided on the standing platform 400 below the lower leg section.
  • the top of the calf pneumatic artificial muscle 310 is coupled to one end of the calf flexible cord 308.
  • the other end of the calf cord 308 is fixedly coupled to the bottom of the rotating joint 306 after passing through a small hole in the transverse section of the calf section.
  • a calf spring 307 is placed over the outside of the calf cord 308 above the calf section transverse plate.
  • the bottom of the calf spring 307 is in contact with the top surface of the calf section transverse plate, and the top bottom of the calf spring 307 is in contact with the bottom of the rotating joint 306.
  • the standing platform 400 on the other side of the calf support 309 is provided with a rotary joint pneumatic artificial muscle 311 and a rotary joint spring 312.
  • the top of the rotary joint pneumatic artificial muscle 311 is coupled to the top of the rotary joint spring 312 by a timing belt 313.
  • the timing belt 313 is wound around the timing pulley 314.
  • leg elastic strap bracket 302 connected to the thigh bracket 304 and the leg elastic strap bracket 302 connected to the calf bracket 309 are both disposed inside the "n" shaped structural member.
  • the timing pulleys 314 connected to the ends of the rotating shaft 315 in the thigh bracket 304 are disposed outside the "n" shaped structural members.
  • model of the thigh pneumatic artificial muscle 316 is Festo's pneumatic muscle DMSP-20-100N.
  • the model of the calf pneumatic artificial muscle 310 is Festo's pneumatic muscle DMSP-20-130N.
  • the model of the rotary joint pneumatic artificial muscle 311 is Festo's pneumatic tendon DMSP-20-130N.
  • the detecting unit 800 includes six pressure sensors 801, four laser ranging sensors 802 and two absolute encoders 803.
  • the models are: SMC pressure switch ISE30A-01-N, BANNER laser measurement Sensor Q4XTBLAF300-Q8, OMRON absolute encoder E6CP-A.
  • the pressure sensor 801 is installed at the port of the thigh pneumatic artificial muscle 316 intake pipe, the port of the pneumatic artificial muscle of the calf 310, and the inlet port of the pneumatic artificial muscle 311 of the rotary joint, and the pneumatic device is detected in real time.
  • the artificial muscle pressure value is transmitted to the industrial computer through the data acquisition card.
  • the laser ranging sensor 802 includes a laser sensing head and a reflector.
  • the laser sensing heads of the laser ranging sensor 802 are respectively mounted on the top of the calf support 309 and the top of the thigh bracket 304.
  • the reflectors of the laser ranging sensor 802 are respectively mounted on the bottom of the hip elastic strap bracket 319 and the rotating joint 306.
  • the laser-sensing head mounted on the top of the thigh bracket 304 corresponds to the reflector mounted on the bottom of the hip elastic strap bracket 319.
  • the laser sensing head mounted on the top of the calf support 309 corresponds to a reflector mounted on the bottom of the rotary joint 306.
  • the lengths of the thigh spring 317 and the calf spring 307 are respectively measured and transmitted to the industrial computer through the data acquisition card, and the industrial computer combines the known bracket height to calculate the total height of the thigh module and the lower leg module.
  • An encoder 803 is mounted at the end of each of the rotating shafts 315, and the rotation angle of the rotating joint 306 is detected by the encoder 803 and transmitted to the industrial computer through the data acquisition card.
  • the angle of rotation of the rotating joint 306 corresponds to the angle of rotation of the lower leg module.
  • the detecting unit 800 further includes a visual sensor.
  • the vision sensor is mounted on the aluminum alloy profile frame 100 and connected to the industrial computer, and the spatial orientation of the standing platform 400 is detected by the visual sensor.
  • the vision sensor includes a high-speed CMOS camera model OMRON FH-SC04 and is installed in the industrial computer Sysmac Studio control software.
  • the Sysmac Studio control software is executed by the industrial computer to analyze and output the images captured by the high-speed CMOS camera.
  • the bottom end of the thigh pneumatic artificial muscle 316 in the thigh module is fixedly mounted on the thigh bracket 304, and the top end is connected to one end of the thigh flex cable 318.
  • the thigh cord 318 is threaded through the hole in the top of the thigh bracket 304 and the middle of the thigh spring 317 is coupled to the bottom of the hip elastic strap bracket 319.
  • the bottom end of the thigh spring 317 is fixedly mounted to the thigh bracket 304, and the top end is connected to the hip elastic strap bracket 319.
  • the top end of the thigh bracket 304 is a slot hole, and the bottom end of the hip joint elastic strap bracket 319 is a plug-in plate that can be freely inserted into the slot hole.
  • the bottom end of the calf pneumatic artificial muscle 310 in the calf module is fixedly mounted on the standing platform 400, and the top end is connected to one end of the calf flexible cord 308.
  • the calf cord 308 passes through the hole in the top of the calf support 309 and the middle of the calf spring 307 is coupled to the bottom of the rotating joint 306.
  • the lower end of the calf spring 307 is fixedly mounted to the calf support 309, and the top end is coupled to the bottom of the rotary joint 306.
  • the bottom of the lower leg bracket 309 is mounted on the standing platform 400, and the top protruding portion is a slot hole, and the bottom end of the rotating joint 306 is a plug-in plate, and can be freely inserted into the slot hole.
  • the rotary joint pneumatic artificial muscle 311 is fixedly mounted on the standing platform 400 at one end, the timing belt 313 is coupled to the other end, the timing belt 313 is engaged with the timing pulley 314, and the other end is coupled to the rotary joint spring 312 fixedly mounted on the standing platform 400.
  • Two holes are formed in the bottom side wall of the thigh bracket 304 for mounting the bearing 305.
  • the rotating shaft 315 is mounted on the inner ring of the bearing 305, coupled to the rotating joint 306 by a flat key 320, and its extended end is coupled to the timing pulley 314 by an interference fit.
  • leg elastic strap brackets 302 in the large and small leg modules are fixedly mounted on the thigh bracket 304 and the calf bracket 309, respectively, and the outer ends thereof are attached to the patient's big and small legs through the leg elastic straps 303.
  • the hip elastic band 301 is fixedly attached to the hip joint portion of the patient, and the elastic band 303 of the leg is fixedly attached to the patient's large leg to play a role of fixedly supporting the lower limb of the patient, and does not limit the freedom of movement of the lower limb of the patient.
  • the rotary joint pneumatic artificial muscle 311 is inflated and contracted, the timing belt 313 is moved, the rotary joint spring 312 is stretched, and at the same time, the timing pulley 314 that meshes with the timing belt 313 is rotated, and the rotating shaft 315 is rotated to drive the same with the flat key 320.
  • the rotating joint 306 rotates.
  • the rotary joint pneumatic artificial muscle 311 is deflated, the rotating joint spring 312 is restored under the elastic force, the timing belt 313 is reversely moved, and at the same time, the synchronous pulley 314 that meshes with the timing belt 313 is driven to rotate in the reverse direction, and the rotating shaft 315 is reversed.
  • Rotating, driving the rotating joint 306 that cooperates with the flat key 320 to rotate in the opposite direction achieves the purpose of assisting the rearward rotation and return of the lower leg.
  • the calf pneumatic artificial muscle 310 in the calf module is inflated and contracted, and the entire leg device is compressed by the calf flexible cord 308 to compress the calf spring 307 and move downward.
  • the calf pneumatic artificial muscle 310 is deflated, so that the entire leg device moves upward under the elastic force of the compressed calf spring 307, thereby realizing the leg elasticity in the calf module.
  • the adjustment of the height of the strap 303 relative to the standing platform 400 satisfies the requirements of the different leg lengths of the patient.
  • the thigh pneumatic artificial muscle 316 in the thigh module is inflated and contracted, and the elastic bandage bracket 319 and the hip elastic band 301 connected thereto are compressed by the thigh elastic cable 318 to compress the thigh spring 317, so that the hip joint elastic band bracket 319 Move down.
  • the thigh pneumatic artificial muscle 316 is deflated, so that the hip elastic bandage bracket 319 and the hip elastic band 301 connected thereto are moved upward by the elastic force of the compressed thigh spring 317, thereby realizing the hip elastic bandage.
  • 301 is adjusted relative to the height of the leg elastic strap 303 in the thigh module to meet the requirements of different leg lengths of the patient.
  • the elastic joint of the hip joint in the automatic adjustment platform for the lower limb is attached to the hip joint of the patient. Since the elastic band of the hip joint has elasticity, the effect on the hip joint of the patient is similar to that of the ball joint, and the knee joint in the platform It can also be rotated. At the same time, there are four belt units 200 above the waist of the patient to securely support the upper body of the patient. Therefore, the entire lower limb movement mechanical structure can be simplified as shown in FIG. This ensures that the cord drives the standing platform 400 to effect movement of the patient's legs relative to the hip joint.
  • the knee joint has a pneumatic artificial muscle to provide driving force
  • the auxiliary knee joint bending can be realized, which can ensure the accuracy of the bending of the legs, and can prevent the patient from being stretched in the training because the patient's lower leg is straightened relative to the knee joint. Discomfort and safety hazards.
  • the industrial computer controls the rotation of the motor to make the rope expand and contract, thereby driving the standing platform 400 to achieve a preset spatial posture change, and at the same time, using the visual sensor to monitor the spatial posture of the standing platform 400 and transmitting it to the industrial computer, if There is an error between the actual spatial posture of the standing platform 400 and the preset spatial posture, and the industrial computer controls the switches of the two rotary joint pneumatic artificial muscles 311 intake valve and the deflation valve in the lower limb automatic adjustment platform unit 300 to provide the drive.
  • the force controls the rotation of the calf joint, thereby driving the standing platform 400 to move, so that the standing platform 400 reaches a preset spatial posture, so that the patient's leg reaches a preset position, and the patient's leg is better than the hip joint.
  • the curvature ensures the effectiveness of the waist rehabilitation training.
  • the pressure sensor 801 monitors the pressure of the pneumatic artificial muscle in real time, and prevents the safety hazard caused by the change of the output force of the pneumatic artificial muscle due to the pressure change, thereby ensuring the safety of the rehabilitation training.
  • the height of the size leg module is detected by the laser ranging sensor 802, and automatic height adjustment is achieved.
  • the angle of rotation of the calf module is detected by the encoder 803 to ensure the accuracy of the rehabilitation training.
  • the method for performing lumbar rehabilitation training using the apparatus for lumbar rehabilitation training of the present invention is carried out as follows:
  • Step 1 Power on each motor in the industrial computer and motor unit 500, and let the pressure sensor 801, the laser distance measuring sensor 802 and the encoder 803 feed back signals, and make the thigh pneumatic artificial muscle 316, the calf pneumatic artificial muscle 310, turn The joint joint pneumatic artificial muscle 311, the calf spring 307, the rotary joint spring 312, and the thigh spring 317 are reset.
  • Step 2 Enter the patient size leg length information on the industrial computer.
  • the preset spatial pose is a rehabilitation action information posture that is required to be performed by the patient on the device for waist rehabilitation training.
  • Step 3 Let the patient stand on the standing platform 400.
  • the industrial computer first controls the calf pneumatic artificial muscle 310 to inflate or deflate, adjusts the length of the calf module, and detects the length value of the calf spring 307 in real time by the laser ranging sensor 802 in the calf module. And transmitting the data to the industrial computer for calculation and judgment until the rotating joint 306 is flush with the knee joint of the patient.
  • the industrial pneumatic machine controls the thigh pneumatic artificial muscle 316 to inflate or deflate, adjusts the length of the thigh module, and simultaneously detects the length of the thigh spring 317 by the laser ranging sensor 802 in the thigh module, and transmits the data to the industrial computer.
  • the calculation and judgment are made such that the hip elastic band 301 is located at the hip joint portion of the patient.
  • Step 4 Attach the leg elastic strap 303 in the thigh module and the leg elastic strap 303 in the calf module to the thigh and the calf of the patient, and attach the hip elastic strap 301 to the patient's hip joint, and prepare. Carry out rehabilitation exercises.
  • Step 5 The industrial motor controls the rotation of the motor in the motor unit 500 to make the flexible cable 600 expand and contract, and realize the movement of the standing platform 400.
  • the industrial control machine controls the rotation of the two rotary joint pneumatic artificial muscles 311 the intake valve and the outlet valve in real time, and controls the rotation of the calf joint, thereby driving the standing platform 400 to move.
  • the industrial computer performs angle compensation on the rotation of the rotating joint 306 according to the rotation angle of the calf module which is fed back in real time by the encoder 803, so that the posture of the patient standing on the standing platform 400 conforms to the preset spatial posture input by the second step. Consistent.
  • Step 6 real-time monitoring of real-time pressure information of the thigh pneumatic artificial muscle 316, real-time pressure information of the pneumatic artificial muscle 310 of the lower leg, real-time pressure information of the pneumatic artificial muscle 311 of the rotary joint, and the standing platform 400 by the pressure sensor 801 and the visual sensor, respectively.
  • Real-time spatial pose information, and the aforementioned real-time pressure information and real-time spatial pose information are transmitted to the industrial computer through the data acquisition card. If the allowed error range set in step 2 is exceeded, the rehabilitation training is immediately stopped, and the alarm prompts Perform a device check to avoid accidents when the patient is undergoing rehabilitation training.
  • Step 7 The rehabilitation training is completed, and the leg elastic band 303 and the hip elastic band 301 are manually released to cause the patient to walk down the standing platform 400.
  • Step 8 Reset the lower limb automatic adjustment platform 300, and turn off the motor unit 400, the pneumatic artificial muscles, and the power of the industrial computer.

Abstract

一种用于腰部康复训练中的下肢自动调节平台及训练方法,其中:所述的下肢自动调节平台,包括铝合金型材框架(100)、下肢自动调节平台单元(300)、站立平台(400)、电机单元(500)、柔索(600)、滑轮单元(700)。所述的训练方法,包括八个步骤,能够对下肢自动调节平台进行精确地控制,从而安全地辅助患者进行康复训练,避免患者在进行康复训练时出现意外。所述的下肢自动调节平台能够使患者的腿部在下肢自动调节平台单元(300)的工作范围内做弯曲或伸直运动,且能够调节站在站立平台(400)上的患者的腰部挺直时的腿部姿态、以及腰部做弯曲活动时的腿部姿态。

Description

用于腰部康复训练中的下肢自动调节平台及训练方法 技术领域
本发明涉及医疗康复训练器械领域,具体是用于腰部康复训练中的下肢自动调节平台及训练方法。
背景技术
当今社会,由于突发疾病和意外事故导致腰部运动障碍的病人日趋增加,而传统的康复治疗主要依赖康复医疗师,其效率低、成本高,因此人们对腰部康复训练有了进一步的要求。为了满足社会的需求,发明人申请了一项专利(申请号201410491844.0),公开了一种利用气动人工肌肉驱动腰部弯腰康复训练的六自由度并联腰部康复训练装置;该装置中由绳索驱动康复下肢调节平台,使得平台实现空间位姿的变化,实现患者双腿相对于腰部弯曲、旋转,达到腰部脊椎康复训练的效果。尽管该申请的技术方案与设备结构有创新性的突破,但在临床检验中,我们发现该专利申请(201410491844.0)中的康复训练装置在进行模拟人下肢运动方式的训练时,存在着诸多问题:
首先,患者站立在站立平台上,下肢与康复训练装置间没有任何的支撑和联接,导致了在康复训练中,由于平台的运动而带动的下肢相对腰部的运动不平稳、柔顺性很差,易给患者带来二次损伤;
其次,下肢的运动是由电机驱动柔索带动站立平台进行的,由于电机存在转动误差、柔索存在伸缩变形等因素,导致站立平台无法实现预先设定的空间位姿,影响着康复训练效果;
最后,康复训练中,站立平台带动双腿在空间运动,使得双腿相对髋关节运动,实现腰部脊椎的康复训练,但是,在运动中患者大小腿可能会弯曲,因此,需要辅助完成患者腿部弯曲更好达到腰部康复训练效果;为此,有必要对该申请的机械结构进一步改进。
发明内容
本发明的目的是提供一种用于腰部康复训练中的下肢自动调节平台及训练方法,以解决腰部康复训练装置中存在的下肢联接问题。
为了达到上述目的,本发明所采用的技术方案为:
用于腰部康复训练中的下肢自动调节平台,包括一个铝合金型材框架100。所述铝合金型材框架100为矩形的框架体。铝合金型材框架100固定在地基上。此外:
在铝合金型材框架100内还设有下肢自动调节平台单元300、站立平台400、电机单元 500、柔索600、和滑轮单元700。
在铝合金型材框架100的顶部设有4个滑轮单元700。在每个滑轮单元700下方设有1个电机单元500。每个电机单元500的卷同轴均与一根柔索600相连。每根柔索600均绕过滑轮单元700后与站立平台400相连。即通过滑轮单元700实现柔索600的变向,通过电机单元500实现柔索600长度的变化,从而实现与之相连的站立平台400空间位姿的变化,进而调整患者站立与活动时的姿态。
在站立平台400上设有下肢自动调节平台单元300。所述下肢自动调节平台单元300与患者的腿部活动连接,约束、支撑、并调节患者的直立时的腿部姿态与腰部活动时的腿部姿态。即通过下肢自动调节平台单元300的支撑、约束与调节,使患者的腿部在下肢自动调节平台单元300的工作范围内做弯曲或伸直运动。
即通过站立平台400、下肢自动调节平台单元300的联合运动,共同调节站在站立平台400上的患者的腰部挺直时的腿部姿态、以及腰部做弯曲活动时的腿部姿态。
采用本发明所述用于腰部康复训练中的下肢自动调节平台的训练方法,按如下步骤进行:
步骤一:令工控机、电机单元500内的各电机上电,令压力传感器801、激光测距传感器802和编码器803反馈信号,令大腿气动人工肌肉316、小腿部气动人工肌肉310、转动关节气动人工肌肉311、小腿部弹簧307、转动关节弹簧312、大腿部弹簧317复位。
步骤二:向工控机上输入患者大小腿长度信息。向工控机上输入预设的空间位姿、以及允许的误差范围。所述预设的空间位姿为需要患者在腰部康复训练的装置上执行的康复动作信息姿。
步骤三:令患者站立在站立平台400上。由工控机根据步骤二输入的患者腿部信息,首先控制小腿气动人工肌肉310充气或放气,调整小腿模块的长度,由小腿模块内的激光测距传感器802实时检测小腿部弹簧307长度值,并将该数据传输给工控机进行计算和判断,直至转动关节306与患者膝关节齐平。
然后,由工控机控制大腿气动人工肌肉316充气或放气,调整大腿模块的长度,同时由大腿模块内的激光测距传感器802实时检测大腿部弹簧317长度,并将该数据传输给工控机进行计算和判断,使得髋关节弹性绑带301位于患者的髋关节部位。
步骤四:将大腿模块内的腿部弹性绑带303、小腿模块内的腿部弹性绑带303分别绑在患者的大腿、小腿上,将髋关节弹性绑带301绑在患者髋关节上,准备进行康复运动。
步骤五:由工控机控制电机单元500内的电机旋转,使得柔索600伸缩,实现站立平台400的运动。由工控机根据站立平台400的空间位姿,实时控制2个转动关节气动人工肌肉311进气阀门和出气阀门的开关、控制小腿关节的转动,进而带动站立平台400运动。同时,工控机根据编码器803实时反馈的小腿模块的转动角度,对转动关节306的转动进行角度补偿,使得患者站立在站立平台400上的位姿符合步骤二输入的预设的空间位姿相一致。
步骤六:通过压力传感器801和视觉传感器分别实时监测大腿气动人工肌肉316的实时压力信息、小腿部气动人工肌肉310的实时压力信息、转动关节气动人工肌肉311的实时压力信息和站立平台400的实时空间位姿信息,并通过数据采集卡将前述的实时压力信息和实时空间位姿信息传送给工控机,如果超出在步骤二设置的允许的误差范围,则立即停止康复训练,并报警提示进行设备检查,避免患者在进行康复训练时出现意外。
步骤七:康复训练完成,人工解除腿部弹性绑带303和髋关节弹性绑带301,令患者走下站立平台400。
步骤八:令下肢自动调节平台300复位,关闭电机单元400、气动人工肌肉和工控机电源。
本发明的有益技术效果:
1.本发明装置模拟人腿部结构,设计了一种基于气动人工肌肉和弹簧的下肢运动装置,使得患者下肢与腰部训练装置联接为一体,起到了固定支撑患者下肢的作用。
2.本发明装置中的大小腿模块使用了气动人工肌肉与弹簧串联,可由气动人工肌肉驱动柔索压缩弹簧来降低装置的高度,也可由弹簧弹力驱动来升高装置的高度,同时使用了激光测距传感器实时监测弹簧高度的变化,不仅可以根据患者腿部信息自动调节大小腿装置的高度,在康复训练中,还具有很好的柔顺性,起到了减震、缓冲作用,有效地保护了腰部,防止了二次损伤。
3.本发明装置使用了气动人工肌肉与弹簧并联驱动、同步带与带轮啮合传动来驱动关节转动,气动人工肌肉充气收缩拉伸弹簧带动带轮的旋转,从而使得膝关节转动,并且在弹簧弹力作用下可使得带轮反向旋转,膝关节反向转动,同时在转动轴上安装了编码器,检测转动的角度,在康复训练过程中,可以保证膝关节精确地转动,辅助站立平台达到预设空间位姿的变化,更精准的实现了患者腿部相对于腰部的弯曲,使得腰部达到更好的康复训练效果。
4.本发明装置中的下肢自动调节平台使用了仿生学设计,不仅可以用作腰部训练 装置的下肢支撑调节装置,还可以用于医疗康复中的下肢康复训练,具有很好的扩展性。
本发明在结构上的优点还体现在如下:
本发明所述的铝合金型材框架100是由多根铝合金型材和平板搭建而成,用来固定支撑各单元,完成康复训练过程。所述的腰带单元200中的四个分别固定在铝合金型材框架100前后左右位置上的气动人工肌肉,提供轴向驱动力,通过与之相连接的联接装置作用于患者腰部,而腰带单元200中的弹簧用来平衡联接装置的重力。整体结构简单、牢固,工作状态稳定可靠。
本发明中的4个电机单元500由电机和与其输出轴相连的卷筒组成,且均布固定安装在铝合金型材框架100中的平板上。所述的滑轮单元700中的滑轮底端安装轴与交叉圆锥滚子轴承内圈过盈配合,交叉圆锥滚子轴承外圈通过支架固定安装在铝合金型材框架100顶部,使得滑轮可以自由转动。动力输出方式简洁、高效。
所述的下肢自动调节单元300中的辅助腿部运动的调节装置由小腿模块、大腿模块组成。小腿支架309底部安装在站立平台400上,其顶端伸出部分为插槽孔,而转动关节306的底端伸出部分为插板,可以自由插入插槽孔。大腿支架304的顶端伸出部分为插槽孔,而髋关节弹性绑带支架319的底端伸出部分为插板,可以自由插入插槽孔。在大腿支架304的底部侧壁上分别开有两个孔,用来安装轴承305。转动轴315安装在轴承305内圈上,通过平键320与转动关节306相联接,并且其伸出端与同步带轮314通过过盈配合联接。三者连接紧凑、长度可调节,能够满足不同腿形长度患者的康复治疗。
所述的腰带单元200不仅能够辅助患者达到弯腰康复训练的效果,还能起到固定支撑患者上躯干的作用,使得患者上躯干保持平衡。
本发明通过电机单元500带动柔索600伸缩,从而带动站立平台400的运动。四根柔索600长度的变化可实现站立平台400在空间中位姿的变化。
本发明中的髋关节弹性绑带301固定绑在患者髋关节部位,腿部弹性绑带303固定绑在患者大小腿上,起到固定支撑患者下肢的作用,同时不限制患者下肢运动的自由度。
本发明能够自检并纠正站立平台400实际的空间位姿与预设的空间位姿存在误差,使得患者腿部达到预设的位置,更精准的实现了患者腿部相对于髋关节的弯曲,保证了腰部康复训练的效果。
本发明通过传感器的使用不仅保证了康复训练的精度和安全,还实现了装置的自 动化。其中,通过压力传感器801实时监测气动人工肌肉的压力,防止了气动人工肌肉由于压力变化导致输出力变化带来的安全隐患,保证了康复训练的安全。通过激光测距传感器802检测大小腿模块的高度,实现了高度的自动调节。通过编码器803检测小腿模块转动的角度,保证了康复训练的精度。
附图说明
图1为本发明的整体结构示意图。
图2为本发明的整体结构主视图。
图3为本发明的整体结构俯视图。
图4为本发明的下肢调节平台整体结构示意图。
图5为本发明的下肢调节平台主视图。
图6为本发明的下肢调节平台俯视图。
图7为本发明的下肢调节平台中小腿模块的局部示意图。
图8为本发明的下肢调节平台中大腿模块的局部示意图。
图9为本发明的下肢调节平台中转动关节的局部示意图。
图10为本发明的下肢调节平台中的转动轴示意图。
图11为本发明的下肢运动机械结构简图。
图12为本发明的下肢调节平台中的大腿支架示意图。
图13为本发明的下肢调节平台中的转动关节示意图。
图14为本发明的下肢调节平台中的传感器安装示意图。
图15为本发明的下肢调节平台中的激光测距传感器安装示意图。
图16为本发明的下肢调节平台系统控制流程图。
图中,铝合金型材框架100,腰带单元200,下肢自动调节平台单元300,髋关节弹性绑带301,腿部弹性绑带支架302,腿部弹性绑带303,大腿支架304,轴承305,转动关节306,小腿部弹簧307,小腿部柔索308,小腿支架309,小腿部气动人工肌肉310,转动关节气动人工肌肉311,转动关节弹簧312,同步带313,同步带轮314,转动轴315,大腿部气动人工肌肉316,大腿部弹簧317,大腿部柔索318,髋关节弹性绑带支架319,平键320,站立平台400,电机单元500,柔索600,滑轮单元700,检测单元800,压力传感器801,激光测距传感器802,编码器803。
具体实施方法
现结合附图详细说明本发明的结构特点。
参见图1,用于腰部康复训练的装置,包括一个铝合金型材框架100。所述铝合金型材框架100是由铝合金型材搭建的矩形框架体。铝合金型材框架100固定在地基上。
参见图2,在铝合金型材框架100内还设有下肢自动调节平台单元300、站立平台400、电机单元500、柔索600、和滑轮单元700。
参见图1,在铝合金型材框架100的顶部设有4个滑轮单元700。在每个滑轮单元700下方设有1个电机单元500。每个电机单元500的卷筒轴均与一根柔索600相连。参见图3,每根柔索600均绕过滑轮单元700后与站立平台400相连。即通过滑轮单元700实现柔索600的变向,通过电机单元500实现柔索600长度的变化,从而实现与之相连的站立平台400空间位姿的变化,进而调整患者站立与活动时的姿态。换言之,四个电机单元500分别由电机和与其输出轴相连的锥齿轮对传动链及与大锥齿轮同轴相连的卷筒组成,且均布固定安装在铝合金型材框架100中的平板上。滑轮单元700中的滑轮底端安装轴与交叉圆锥滚子轴承内圈过盈配合,交叉圆锥滚子轴承外圈通过支架固定安装在铝合金型材框架100顶部,使得滑轮可以自由转动。柔索600一端分别与电机单元500中的卷筒连接,另一端经过滑轮单元700中的滑轮与站立平台400相连接。即,通过电机单元500中的电机旋转,带动与之相连的卷筒旋转,使得缠绕在上面的柔索600伸缩,从而带动站立平台400的运动。四根柔索600长度的变化可实现站立平台400在空间中位姿的变化。
参见图1,腰带单元200中的四个分别固定在铝合金型材框架100前后左右位置上的气动人工肌肉,提供轴向驱动力,通过与之相连接的联接装置作用于患者腰部,而腰带单元200中的弹簧用来平衡联接装置的重力。
参见图2,进一步说,腰带单元200不仅能够辅助患者达到完成弯腰康复训练的效果,还能起到固定支撑患者上躯干的作用,使得患者上躯干保持平衡。
参见图4,在站立平台400上设有下肢自动调节平台单元300。所述下肢自动调节平台单元300与患者的腿部活动连接,约束、支撑、并调节患者的直立时的腿部姿态与腰部活动时的腿部姿态。即通过下肢自动调节平台单元300的支撑、约束与调节,使患者的腿部在下肢自动调节平台单元300的工作范围内做弯曲或伸直运动,如图11所示。
即通过站立平台400、下肢自动调节平台单元300的联合运动,共同调节站在站立平台400上的不同患者的腿部姿态、以及对患者腰部进行康复训练过程中的腿部姿态。
进一步说,在下肢自动调节平台单元300上设有检测单元800。通过检测单元800将下肢自动调节平台单元300的工作姿态反馈给工控机。由工控机计算得到患者的腿长 及下肢自动调节平台单元300的弯曲角度。
工控机将人工输入的运动执行参数与计算获得的患者的腿长、下肢自动调节平台单元300的弯曲角度相结合,分别驱动下肢自动调节平台单元300、站立平台400、电机单元500运动。
参见图1,在铝合金型材框架100内设有一组腰带单元200。通过腰带单元200的约束与长度调整,使患者的腰部在腰带单元200的约束与长度调整下,辅助腰部做弯曲和直挺运动。
即通过站立平台400、下肢自动调节平台单元300、腰带单元200的联合运动,共同调节站在站立平台400上的患者的腰部挺直时的腿部姿态以及腰部做弯曲活动时的腿部姿态。
参见图5,下肢自动调节平台单元300包括髋关节弹性绑带301、髋关节弹性绑带支架319和2个辅助腿部运动的调节装置。
所述髋关节弹性绑带301为近似椭圆形的弹性材质的带子。优选的方案是,髋关节弹性绑带301为皮带或橡胶带。在髋关节弹性绑带301长轴方向的两端分别连有1个髋关节弹性绑带支架319。髋关节弹性绑带支架319的呈Y字形。在每个髋关节弹性绑带支架319的底部均设有1对髋关节插板。所述髋关节插板插在相邻的辅助腿部运动的调节装置上。所述辅助腿部运动的调节装置为长条状,且均可弯曲、伸缩,如图11所示。
每个辅助腿部运动的调节装置的底部均分别与站立平台400的顶面相连接,如图6所示。
参见图5,每个辅助腿部运动的调节装置均由小腿模块和大腿模块两部分构成。
参见图9,小腿模块的底端与站立平台400的顶面固定连接。小腿模块的长度能够伸缩变化。
参见图8,小腿模块的顶部与大腿模块底端活动连接。大腿模块的长度能够伸缩变化。大腿模块底端能够绕小腿模块的顶部旋转。
参见图7,大腿模块的顶端与相邻的髋关节弹性绑带支架319活动连接。
即大腿模块相对站立平台400的高度是可调的。髋关节弹性绑带支架319相对站立平台400的高度是可调的。
大腿模块以及经髋关节弹性绑带支架319与大腿模块相连的髋关节弹性绑带301能够绕小腿模块的顶部转动。
参见图7,大腿模块包括腿部弹性绑带支架302、腿部弹性绑带303、大腿支架304、 轴承305、同步带轮314、转动轴315、大腿气动人工肌肉316、大腿部弹簧317、大腿部柔索318。
参见图12,大腿支架304呈U形,包括2个大腿段直板和1个大腿段底板。所述的2个大腿段直板均竖直方向放置,且相互平行。通过大腿段底板将2个大腿段直板的底部连接在一起。
在每个两块大腿段直板的顶面均开有1个大腿段插槽孔。所述大腿段插槽孔与髋关节插板的外形相对应。即髋关节插板插在相邻的大腿段插槽孔中,如图7所示。
在大腿段底板上方、2个大腿段直板之间设有1个大腿段横板。在大腿段横板上开有一个小孔。
参见图7,在大腿段底板的顶面与大腿气动人工肌肉316的底部固定连接。大腿气动人工肌肉316的顶端与大腿部柔索318的一端相连接。大腿部柔索318的另一端穿过大腿段横板上的小孔后与髋关节弹性绑带支架319的底面相连接。在位于大腿段横板上方的大腿部柔索318的外部套有大腿部弹簧317。所述大腿部弹簧317的顶部与髋关节弹性绑带支架319底面相接触,大腿部弹簧317的底部与顶板的顶面相接触。
参见图12,在大腿段底板的底面设有2个大腿段插板。所述大腿段插板均竖直向下延伸,且相互平行。在大腿段插板上均开有圆孔,在每个大腿段插板的圆孔内配有轴承305,在相邻的2个轴承305之间配有转动轴315,参见图10。
在大腿支架304一侧的大腿段直板外侧水平连接有腿部弹性绑带支架302。在腿部弹性绑带支架302的末端设有腿部弹性绑带303。在大腿支架304另一侧的转动轴315的端部设有同步带轮314,参见图10。
参见图4、7和11,当大腿气动人工肌肉316伸缩时,通过大腿部柔索318及大腿部弹簧317共同牵引髋关节弹性绑带支架319伸缩运动,进而调节与大腿支架304相连的腿部弹性绑带支架302、腿部弹性绑带303相对引髋关节弹性绑带支架319、髋关节弹性绑带301的位置。
参见图9,小腿模块包括腿部弹性绑带支架302、腿部弹性绑带303、转动关节306、小腿部弹簧307、小腿部柔索308、小腿支架309、小腿部气动人工肌肉310、转动关节气动人工肌肉311、转动关节弹簧312、同步带313、同步带轮314、平键320。其中,参见图13,转动关节306为矩形块。参见图13,在转动关节306的顶部设有圆管。转动关节306的圆管的轴向与转动关节306的宽度方向平行,如图8所示。转动关节306的圆管套在相邻的转动轴315上,即转动关节306的顶部与大腿支架304的底部活动连接, 如图8所示。参见图13,在转动关节306的侧面开有矩形孔,转动关节306的侧矩形孔的开口方向与转动关节306顶部的圆管轴向相一致。在转动关节306的底部设有两个关节段插板。所述关节段插板均竖直向下延伸,且相互平行。关节段插板与转动关节306的圆管的端面相垂直。
参见图9,小腿支架309呈H形,包括2个小腿段竖板和1个小腿段横板。通过小腿段横板将2个小腿段竖板连接在一起。在小腿段横板上设有一个小孔。
在每个小腿段竖板的顶面上均开有1个小腿段插槽孔。所述小腿段插槽孔与关节段插板的外形相对应。即关节段插板插在相邻的小腿段插槽孔中。
小腿支架309的2个小腿段竖板的顶端分别与相邻的转动关节306的2块关节段插板的底端固定连接。小腿支架309的2个小腿段竖板的底端与站立平台400的顶面相连接。
在小腿支架309的一侧的小腿段竖板的外侧水平连接有腿部弹性绑带支架302。在腿部弹性绑带支架302的末端设有腿部弹性绑带303。
参见图9,在小腿段横板的下方的站立平台400上设有小腿部气动人工肌肉310。小腿部气动人工肌肉310的顶部与小腿部柔索308的一端相连接。小腿部柔索308的另一端穿过小腿段横板上的小孔后与转动关节306的底部固定连接。
参见图9,在小腿段横板上方的小腿部柔索308的外部套有小腿部弹簧307。小腿部弹簧307的底部与小腿段横板的顶面相接触,小腿部弹簧307的顶底部与转动关节306的底部相接触。
参见图5或9,小腿支架309的另一侧的站立平台400上设有一个转动关节气动人工肌肉311和一个转动关节弹簧312。通过一根同步带313将转动关节气动人工肌肉311的顶部与转动关节弹簧312的顶部连接在一起。所述同步带313的绕在同步带轮314上。
参见图10,在转动轴315上设有平键320,在转动关节306的圆管内壁上设有对应的键槽,从而将转动轴315与转动关节306连接在一起。当转动关节气动人工肌肉311伸缩时,由转动关节气动人工肌肉311、转动关节弹簧312、同步带313、同步带轮314、平键320共同带动小腿模块相对大腿模块转动。
当小腿部气动人工肌肉310伸缩时,通过小腿部弹簧307、小腿部柔索308共同拉动转动关节306相对小腿支架309伸缩运动,进而调节与小腿支架309相连的腿部弹性绑带支架302、腿部弹性绑带303相对引髋关节弹性绑带支架319、髋关节弹性绑带 301的位置。
参见图5,在由髋关节弹性绑带支架319、髋关节弹性绑带301与辅助腿部运动的调节装置连接而成的“n”形状的结构件中:
与大腿支架304相连的腿部弹性绑带支架302、与小腿支架309相连的腿部弹性绑带支架302均设置在“n”形状的结构件的内侧。
与大腿支架304内转动轴315的端部相连的同步带轮314均设置在“n”形状的结构件的外侧。
进一步说,大腿气动人工肌肉316的型号为Festo公司的气动肌腱DMSP-20-100N。
小腿部气动人工肌肉310的型号为Festo公司的气动肌腱DMSP-20-130N。
转动关节气动人工肌肉311的型号为Festo公司的气动肌腱DMSP-20-130N。
参见图14,所述的检测单元800,包括6个压力传感器801,4个激光测距传感器802和2个绝对式编码器803其型号分别为:SMC压力开关ISE30A-01-N,BANNER激光测传感器Q4XTBLAF300-Q8,OMRON绝对型编码器E6CP-A。其中,参见图14,压力传感器801分安装在大腿气动人工肌肉316进气管端口处、小腿部气动人工肌肉310进气管端口处、转动关节气动人工肌肉311的进气管端口处,实时检测上述气动人工肌肉的压力值,并通过数据采集卡传送给工控机。
参见图15,激光测距传感器802包括激光感应头和反光板。其中,激光测距传感器802的激光感应头分别安装在小腿支架309的顶部、大腿支架304的顶部,激光测距传感器802的反光板分别安装在髋关节弹性绑带支架319的底部和转动关节306的底部,安装在大腿支架304顶部的激光感应头与安装在髋关节弹性绑带支架319底部的反光板相对应。安装在小腿支架309顶部的激光感应头与安装在转动关节306底部的反光板相对应。
由分别测量出大腿部弹簧317和小腿部弹簧307的长度,并通过数据采集卡传送给工控机,工控机结合已知的支架高度计算得出大腿模块与小腿模块的总高度。
在每个转动轴315的末端均安装有编码器803,通过编码器803检测转动关节306的旋转角度,并通过数据采集卡传送给工控机。该转动关节306的旋转角度即对应于小腿模块的旋转角度。
进一步说,检测单元800还包括一台视觉传感器。所述视觉传感器安装在铝合金型材框架100上并与工控机相连接,通过视觉传感器检测站立平台400的空间位姿。
视觉传感器包括型号为OMRON FH-SC04的高速CMOS相机及安装在工控机内 的Sysmac Studio控制软件。通过工控机执行Sysmac Studio控制软件,对高速CMOS相机扑捉的图像进行分析和输出。
结合图5和11,本发明的结构与工作原理简述如下:大腿模块中的大腿气动人工肌肉316底端固定安装在大腿支架304上,顶端与大腿部柔索318一端相连接。大腿部柔索318穿过大腿支架304顶部的孔和大腿部弹簧317中部与髋关节弹性绑带支架319底部相连接。大腿部弹簧317底端固定安装在大腿支架304,顶端与髋关节弹性绑带支架319相连接。大腿支架304的顶端伸出部分为插槽孔,而髋关节弹性绑带支架319的底端伸出部分为插板,可以自由插入插槽孔。所述的小腿模块中的小腿气动人工肌肉310底端固定安装在站立平台400上,顶端与小腿部柔索308一端相连接。小腿部柔索308穿过小腿支架309顶部的孔和小腿部弹簧307中部与转动关节306底部相连接。小腿部弹簧307底端固定安装在小腿支架309,顶端与转动关节306底部相连接。小腿支架309底部安装在站立平台400上,其顶端伸出部分为插槽孔,而转动关节306的底端伸出部分为插板,可以自由插入插槽孔。转动关节气动人工肌肉311一端固定安装在站立平台400上,另一端联接同步带313,同步带313与同步带轮314相啮合,其另一端与固定安装在站立平台400上的转动关节弹簧312相联接。在大腿支架304的底部侧壁上分别开有两个孔,用来安装轴承305。转动轴315安装在轴承305内圈上,通过平键320与转动关节306相联接,并且其伸出端与同步带轮314通过过盈配合联接。
使用时,大、小腿模块中的腿部弹性绑带支架302分别固定安装在大腿支架304、小腿支架309上,其外端通过腿部弹性绑带303绑在患者的大、小腿上,起到固定作用。髋关节弹性绑带301固定绑在患者髋关节部位,腿部弹性绑带303固定绑在患者大小腿上,起到固定支撑患者下肢的作用,同时不限制患者下肢运动的自由度。
转动关节气动人工肌肉311充气收缩,同步带313运动,转动关节弹簧312被拉伸,同时,带动与同步带313啮合的同步带轮314旋转,转动轴315旋转,带动与其通过平键320配合的转动关节306转动。转动关节气动人工肌肉311放气伸长,转动关节弹簧312在弹力作用下恢复,同步带313反向运动,同时,带动与同步带313啮合的同步带轮314反向旋转,转动轴315反向旋转,带动与其通过平键320配合的转动关节306反向转动,实现了辅助小腿向后转动和回程的目的。
小腿模块中的小腿气动人工肌肉310充气收缩,通过小腿部柔索308带动整个腿部装置压缩小腿部弹簧307并向下运动。小腿气动人工肌肉310放气伸长,使得整个腿部装置在压缩的小腿部弹簧307的弹力作用下向上运动,实现了小腿模块中的腿部弹性 绑带303相对于站立平台400高度的调节,满足患者不同小腿长度的要求。
大腿模块中的大腿气动人工肌肉316充气收缩,通过大腿部柔索318带动弹性绑带支架319以及与其相连的髋关节弹性绑带301压缩大腿部弹簧317,使得髋关节弹性绑带支架319向下运动。大腿气动人工肌肉316放气伸长,使得髋关节弹性绑带支架319以及与其相连的髋关节弹性绑带301在压缩的大腿部弹簧317的弹力作用下向上运动,实现了髋关节弹性绑带301相对于大腿模块中的腿部弹性绑带303高度的调节,满足患者不同大腿长度的要求。
本发明中,下肢自动调节平台中的髋关节弹性绑带绑在患者髋关节上,由于髋关节弹性绑带具有弹性,所以,对患者髋关节的作用类似于球铰,而平台中的膝关节也可旋转,同时,患者腰部上方有四个腰带单元200来固定支撑患者上躯体,因此,整个下肢运动机械结构可简化成如图11所示。这样保证了绳索带动站立平台400实现患者双腿相对于髋关节的运动。同时,由于膝关节具有气动人工肌肉提供驱动力,实现了辅助膝关节弯曲,既可保证双腿弯曲的精度,也能防止在训练中出现由于患者小腿相对膝关节向前绷直而给患者带来的不适和安全隐患。
在康复训练过程中,工控机控制电机旋转,使得绳索伸缩,从而带动站立平台400实现预设的空间位姿变化,同时,使用视觉传感器监测站立平台400的空间位姿并传送给工控机,若站立平台400实际的空间位姿与预设的空间位姿存在误差,工控机控制下肢自动调节平台单元300中的两个转动关节气动人工肌肉311进气阀门和放气阀门的开关,从而提供驱动力,控制小腿关节的转动,进而带动站立平台400运动,使得站立平台400达到预设的空间位姿,从而使得患者腿部达到预设的位置,更好的实现了患者腿部相对于髋关节的弯曲,保证了腰部康复训练的效果。
本发明的下肢自动调节平台通过传感器的使用不仅保证了康复训练的精度和安全,还实现了装置的自动化。其中,通过压力传感器801实时监测气动人工肌肉的压力,防止了气动人工肌肉由于压力变化导致输出力变化带来的安全隐患,保证了康复训练的安全。通过激光测距传感器802检测大小腿模块的高度,实现了高度的自动调节。通过编码器803检测小腿模块转动的角度,保证了康复训练的精度。
参见图16,采用本发明所述用于腰部康复训练的装置进行腰部康复训练的方法,按如下步骤进行:
步骤一:令工控机、电机单元500内的各电机上电,令压力传感器801、激光测距传感器802和编码器803反馈信号,令大腿气动人工肌肉316、小腿部气动人工肌肉310、转 动关节气动人工肌肉311、小腿部弹簧307、转动关节弹簧312、大腿部弹簧317复位。
步骤二:向工控机上输入患者大小腿长度信息。向工控机上输入预设的空间位姿、以及允许的误差范围。所述预设的空间位姿为需要患者在腰部康复训练的装置上执行的康复动作信息姿。
步骤三:令患者站立在站立平台400上。由工控机根据步骤二输入的患者腿部信息,首先控制小腿气动人工肌肉310充气或放气,调整小腿模块的长度,由小腿模块内的激光测距传感器802实时检测小腿部弹簧307长度值,并将该数据传输给工控机进行计算和判断,直至转动关节306与患者膝关节齐平。
然后,由工控机控制大腿气动人工肌肉316充气或放气,调整大腿模块的长度,同时由大腿模块内的激光测距传感器802实时检测大腿部弹簧317长度,并将该数据传输给工控机进行计算和判断,使得髋关节弹性绑带301位于患者的髋关节部位。
步骤四:将大腿模块内的腿部弹性绑带303、小腿模块内的腿部弹性绑带303分别绑在患者的大腿、小腿上,将髋关节弹性绑带301绑在患者髋关节上,准备进行康复运动。
步骤五:由工控机控制电机单元500内的电机旋转,使得柔索600伸缩,实现站立平台400的运动。由工控机根据站立平台400的空间位姿,实时控制2个转动关节气动人工肌肉311进气阀门和出气阀门的开关、控制小腿关节的转动,进而带动站立平台400运动。,同时,工控机根据编码器803实时反馈的小腿模块的转动角度,对转动关节306的转动进行角度补偿,使得患者站立在站立平台400上的位姿符合步骤二输入的预设的空间位姿相一致。
步骤六:通过压力传感器801和视觉传感器分别实时监测大腿气动人工肌肉316的实时压力信息、小腿部气动人工肌肉310的实时压力信息、转动关节气动人工肌肉311的实时压力信息、和站立平台400的实时空间位姿信息,并通过数据采集卡将前述的实时压力信息和实时空间位姿信息传送给工控机,如果超出在步骤二设置的允许的误差范围,则立即停止康复训练,并报警提示进行设备检查,避免患者在进行康复训练时出现意外。
步骤七:康复训练完成,人工解除腿部弹性绑带303和髋关节弹性绑带301,令患者走下站立平台400。
步骤八:令下肢自动调节平台300复位,关闭电机单元400、气动人工肌肉和工控机电源。

Claims (10)

  1. 用于腰部康复训练中的下肢自动调节平台,包括一个铝合金型材框架(100);所述铝合金型材框架(100)是由铝合金型材搭建的矩形框架体;铝合金型材框架(100)固定在地基上;其特征在于:
    在铝合金型材框架(100)内还设有下肢自动调节平台单元(300)、站立平台(400)、电机单元(500)、柔索(600)、和滑轮单元(700);
    在铝合金型材框架(100)的顶部设有4个滑轮单元(700);在每个滑轮单元(700)下方设有1个电机单元(500);每个电机单元(500)的卷筒轴均与一根柔索(600)相连;每根柔索(600)均绕过滑轮单元(700)后与站立平台(400)相连;即通过滑轮单元(700)实现柔索(600)的变向,通过电机单元(500)实现柔索(600)长度的变化,从而实现与之相连的站立平台(400)空间位姿的变化,进而调整患者腿部站立与活动时的姿态;
    在站立平台(400)上设有下肢自动调节平台单元(300);所述下肢自动调节平台单元(300)与患者的腿部活动连接,约束、支撑、并调节患者的直立时的腿部姿态与腰部活动时的腿部姿态;即通过下肢自动调节平台单元(300)的支撑、约束与调节,使患者的腿部在下肢自动调节平台单元(300)的工作范围内做弯曲或伸直运动;
    即通过站立平台(400)、下肢自动调节平台单元(300)的联合运动,共同调节站在站立平台(400)上的不同患者的腿部姿态、以及对患者腰部进行康复训练过程中的腿部姿态。
  2. 根据权利要求1所述的用于腰部康复训练中的下肢自动调节平台,其特征在于:在下肢自动调节平台单元(300)上设有检测单元(800);通过检测单元(800)将下肢自动调节平台单元(300)的工作姿态反馈给工控机;由工控机计算得到患者的腿长及下肢自动调节平台单元(300)的空间角度;
    工控机将人工输入的运动执行参数与计算获得的患者的腿长、下肢自动调节平台单元(300)的空间角度相结合,分别驱动下肢自动调节平台单元(300)、站立平台(400)、电机单元(500)运动。
  3. 根据权利要求1所述的用于腰部康复训练中的下肢自动调节平台,其特征在于:在铝合金型材框架(100)内设有一组腰带单元(200);通过腰带单元(200)的约束与长度调整,使患者的腰部在腰带单元(200)的约束与长度调整下,辅助腰部做弯曲和直挺运动;
    即通过站立平台(400)、下肢自动调节平台单元(300)、腰带单元(200)的联合运动,共同调节站在站立平台(400)上的患者的腰部挺直时的腿部姿态、以及腰部做弯曲活动时的腿部姿态。
  4. 根据权利要求1、2或3所述的用于腰部康复训练中的下肢自动调节平台,其特征在于:
    下肢自动调节平台单元(300)包括髋关节弹性绑带(301)、髋关节弹性绑带支架(319)、和2个辅助腿部运动的调节装置;
    所述髋关节弹性绑带(301)为近似椭圆形的弹性材质的带子;在髋关节弹性绑带(301)长轴方向的两端分别连有1个髋关节弹性绑带支架(319);在每个髋关节弹性绑带支架(319)的底部均设有1对髋关节插板;所述髋关节插板插在相邻的辅助腿部运动的调节装置上;所述辅助腿部运动的调节装置为长条状,且均可弯曲、伸缩;
    每个辅助腿部运动的调节装置的底部均分别与站立平台(400)的顶面相连接。
  5. 根据权利要求4所述的用于腰部康复训练中的下肢自动调节平台,其特征在于:
    每个辅助腿部运动的调节装置均由小腿模块和大腿模块两部分构成;
    小腿模块的底端与站立平台(400)的顶面固定连接;小腿模块的长度能够伸缩调节;
    小腿模块的顶部与大腿模块底端活动连接;大腿模块的长度能够伸缩调节;大腿模块底端能够绕小腿模块的顶部旋转;
    大腿模块的顶端与相邻的髋关节弹性绑带支架(319)活动连接;
    即大腿模块相对站立平台(400)的高度是可调的;髋关节弹性绑带支架(319)相对站立平台(400)的高度是可调的;
    大腿模块、以及经髋关节弹性绑带支架(319)与大腿模块相连的髋关节弹性绑带(301)能够绕小腿模块的顶部转动。
  6. 根据权利要求5所述的用于腰部康复训练中的下肢自动调节平台,其特征在于:
    大腿模块包括腿部弹性绑带支架(302)、腿部弹性绑带(303)、大腿支架(304)、轴承(305)、同步带轮(314)、转动轴(315)、大腿气动人工肌肉(316)、大腿部弹簧(317)、大腿部柔索(318);
    大腿支架(304)呈U形,包括2个大腿段直板和1个大腿段底板;所述的2个大腿段直板均竖直方向放置,且相互平行;通过大腿段底板将2个大腿段直板的底部连接在一起;
    在每个两块大腿段直板的顶面均开有1个大腿段插槽孔;所述大腿段插槽孔与髋关节插板的外形相对应;即髋关节插板插在相邻的大腿段插槽孔中;
    在大腿段底板上方、2个大腿段直板之间设有1个大腿段横板;在大腿段横板上开有一个 小孔;
    在大腿段底板的顶面与大腿气动人工肌肉(316)的底部固定连接;大腿气动人工肌肉(316)的顶端与大腿部柔索(318)的一端相连接;大腿部柔索(318)的另一端穿过大腿段横板上的小孔后与髋关节弹性绑带支架(319)的底面相连接;在位于大腿段横板上方的大腿部柔索(318)的外部套有大腿部弹簧(317);所述大腿部弹簧(317)的顶部与髋关节弹性绑带支架(319)底面相接触,大腿部弹簧(317)的底部与顶板的顶面相接触;
    在大腿段底板的底面设有2个大腿段插板;所述大腿段插板均竖直向下延伸,且相互平行;在大腿段插板上均开有圆孔,在每个大腿段插板的圆孔内配有轴承(305),在相邻的2个轴承(305)之间配有转动轴(315);
    在大腿支架(304)一侧的大腿段直板外侧水平连接有腿部弹性绑带支架(302);在腿部弹性绑带支架(302)的末端设有腿部弹性绑带(303);在大腿支架(304)另一侧的转动轴(315)的端部设有同步带轮(314);
    当大腿气动人工肌肉(316)伸缩时,通过大腿部柔索(318)及大腿部弹簧(317)共同牵引髋关节弹性绑带支架(319)上下运动,进而调节与大腿支架(304)相连的腿部弹性绑带支架(302)、腿部弹性绑带(303)相对引髋关节弹性绑带支架(319)、髋关节弹性绑带(301)的位置;
    小腿模块包括腿部弹性绑带支架(302)、腿部弹性绑带(303)、转动关节(306)、小腿部弹簧(307)、小腿部柔索(308)、小腿支架(309)、小腿部气动人工肌肉(310)、转动关节气动人工肌肉(311)、转动关节弹簧(312)、同步带(313)、同步带轮(314)、平键(320);其中,
    转动关节(306)为矩形块;在转动关节(306)的顶部设有圆管;转动关节(306)的圆管的轴向与转动关节(306)的宽度方向平行;转动关节(306)的圆管套在相邻的转动轴(315)上,即转动关节(306)的顶部与大腿支架(304)的底部活动连接;在转动关节(306)的侧面开有矩形孔,转动关节(306)的侧矩形孔的开口方向与转动关节(306)顶部的圆管轴向相一致;在转动关节(306)的底部设有两个关节段插板;所述关节段插板均竖直向下延伸,且相互平行;关节段插板与转动关节(306)的圆管端面相垂直;
    小腿支架(309)呈H形,包括2个小腿段竖板和1个小腿段横板;通过小腿段横板将2个小腿段竖板连接在一起;在小腿段横板上设有一个小孔;
    在每个小腿段竖板的顶面上均开有1个小腿段插槽孔;所述小腿段插槽孔与关节段插板的外形相对应;即关节段插板插在相邻的小腿段插槽孔中;
    小腿支架(309)的2个小腿段竖板的顶端分别与相邻的转动关节(306)的2块关节段插板的底端固定连接;小腿支架(309)的2个小腿段竖板的底端与站立平台(400)的顶面相连接;
    在小腿支架(309)的一侧的小腿段竖板的外侧水平连接有腿部弹性绑带支架(302);在腿部弹性绑带支架(302)的末端设有腿部弹性绑带(303);
    在小腿段横板的下方的站立平台(400)上设有小腿部气动人工肌肉(310);小腿部气动人工肌肉(310)的顶部与小腿部柔索(308)的一端相连接;小腿部柔索(308)的另一端穿过小腿段横板上的小孔后与转动关节(306)的底部固定连接;
    在小腿段横板上方的小腿部柔索(308)的外部套有小腿部弹簧(307);小腿部弹簧(307)的底部与小腿段横板的顶面相接触,小腿部弹簧(307)的顶底部与转动关节(306)的底部相接触;
    小腿支架(309)的另一侧的站立平台(400)上设有一个转动关节气动人工肌肉(311)和一个转动关节弹簧(312);通过一根同步带(313)将转动关节气动人工肌肉(311)的顶部与转动关节弹簧(312)的顶部连接在一起;所述同步带(313)的绕在同步带轮(314)上;
    在转动轴(315)上设有平键(320),在转动关节(306)的圆管内壁上设有对应的键槽,从而将转动轴(315)与转动关节(306)连接在一起;当转动关节气动人工肌肉(311)伸缩时,由转动关节气动人工肌肉(311)、转动关节弹簧(312)、同步带(313)、同步带轮(314)、平键(320)共同带动小腿模块相对大腿模块转动;
    当小腿部气动人工肌肉(310)伸缩时,通过小腿部弹簧(307)、小腿部柔索(308)共同拉动转动关节(306)相对小腿支架(309)伸缩运动,进而调节与小腿支架(309)相连的腿部弹性绑带支架(302)、腿部弹性绑带(303)相对引髋关节弹性绑带支架(319)、髋关节弹性绑带(301)的位置。
  7. 根据权利要求6所述的用于腰部康复训练中的下肢自动调节平台,其特征在于:在由髋关节弹性绑带支架(319)、髋关节弹性绑带(301)与辅助腿部运动的调节装置连接而成的“n”形状的结构件中:
    与大腿支架(304)相连的腿部弹性绑带支架(302)、与小腿支架(309)相连的腿部弹性绑带支架(302)均设置在“n”形状的结构件的内侧;
    与大腿支架(304)内转动轴(315)的端部相连的同步带轮(314)均设置在“n”形状的结构件的外侧。
  8. 根据权利要求6所述的用于腰部康复训练中的下肢自动调节平台,其特征在于:
    所述的检测单元(800),包括6个压力传感器(801),4个激光测距传感器(802)和2个绝对式编码器(803);其中,
    压力传感器(801)分安装在大腿气动人工肌肉(316)进气管端口处、小腿部气动人工肌肉(310)进气管端口处、转动关节气动人工肌肉(311)的进气管端口处,实时检测上述气动人工肌肉的压力值,并通过数据采集卡传送给工控机;
    激光测距传感器(802)包括激光感应头和反光板;其中,激光测距传感器(802)的激光感应头分别安装在小腿支架(309)的顶部、大腿支架(304)的顶部,激光测距传感器(802)的反光板分别安装在髋关节弹性绑带支架(319)的底部和转动关节(306)的底部,
    安装在大腿支架(304)顶部的激光感应头与安装在髋关节弹性绑带支架(319)底部的反光板相对应;安装在小腿支架(309)顶部的激光感应头与安装在转动关节(306)底部的反光板相对应;
    由分别测量出大腿部弹簧(317)和小腿部弹簧(307)的长度,并通过数据采集卡传送给工控机,工控机结合已知的支架高度计算得出大腿模块与小腿模块的总高度;
    在每个转动轴(315)的末端均安装有编码器(803),通过编码器(803)检测转动关节(306)的旋转角度,并通过数据采集卡传送给工控机;该转动关节(306)的旋转角度即对应于小腿模块的旋转角度。
  9. 根据权利要求8所述的用于腰部康复训练的装置,其特征在于:检测单元(800)还包括一台视觉传感器;所述视觉传感器安装在铝合金型材框架(100)上并与工控机相连接,通过视觉传感器检测站立平台(400)的空间位姿。
  10. 采用权利要求9所述用于腰部康复训练中的下肢自动调节平台的训练方法,其特征在于:按如下步骤进行:
    步骤一:令工控机、电机单元(500)内的各电机上电,令压力传感器(801)、激光测距传感器(802)和编码器(803)反馈信号,令大腿气动人工肌肉(316)、小腿部气动人工肌肉(310)、转动关节气动人工肌肉(311)、小腿部弹簧(307)、转动关节弹簧(312)、大腿部弹簧(317)复位;
    步骤二:向工控机上输入患者大小腿长度信息;向工控机上输入预设的空间位姿、以及允许的误差范围;所述预设的空间位姿为需要患者在腰部康复训练的装置上执行的康复动作信息姿;
    步骤三:令患者站立在站立平台(400)上;由工控机根据步骤二输入的患者腿部信息,首先控制小腿气动人工肌肉(310)充气或放气,调整小腿模块的长度,由小腿模块内的 激光测距传感器(802)实时检测小腿部弹簧(307)长度值,并将该数据传输给工控机进行计算和判断,直至转动关节(306)与患者膝关节齐平;
    然后,由工控机控制大腿气动人工肌肉(316)充气或放气,调整大腿模块的长度,同时由大腿模块内的激光测距传感器(802)实时检测大腿部弹簧(317)长度,并将该数据传输给工控机进行计算和判断,使得髋关节弹性绑带(301)位于患者的髋关节部位;
    步骤四:将大腿模块内的腿部弹性绑带(303)、小腿模块内的腿部弹性绑带(303)分别绑在患者的大腿、小腿上,将髋关节弹性绑带(301)绑在患者髋关节上,准备进行康复运动;
    步骤五:由工控机控制电机单元(500)内的电机旋转,使得柔索(600)伸缩,实现站立平台(400)的运动;由工控机根据站立平台(400)的空间位姿,实时控制2个转动关节气动人工肌肉(311)进气阀门和出气阀门的开关、控制小腿关节的转动,进而带动站立平台(400)运动;同时,工控机根据编码器(803)实时反馈的小腿模块的转动角度,对转动关节(306)的转动进行角度补偿,使得患者站立在站立平台(400)上的位姿符合步骤二输入的预设的空间位姿相一致;
    步骤六:通过压力传感器(801)和视觉传感器分别实时监测大腿气动人工肌肉(316)的实时压力信息、小腿部气动人工肌肉(310)的实时压力信息、转动关节气动人工肌肉(311)的实时压力信息和站立平台(400)的实时空间位姿信息,并通过数据采集卡将前述的实时压力信息和实时空间位姿信息传送给工控机,如果超出在步骤二设置的允许的误差范围,则立即停止康复训练,并报警提示进行设备检查,避免患者在进行康复训练时出现意外;
    步骤七:康复训练完成,人工解除腿部弹性绑带(303)和髋关节弹性绑带(301),令患者走下站立平台(400);
    步骤八:令下肢自动调节平台(300)复位,关闭电机单元(400)、气动人工肌肉和工控机电源。
PCT/CN2015/086631 2015-06-24 2015-08-11 用于腰部康复训练中的下肢自动调节平台及训练方法 WO2016206175A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA2950546A CA2950546C (en) 2015-06-24 2015-08-11 Lower limb automatic regulating platform for waist rehabilitation training and training method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510348989.X 2015-06-24
CN201510348989.XA CN105147493B (zh) 2015-06-24 2015-06-24 用于腰部康复训练中的下肢自动调节平台及训练方法

Publications (1)

Publication Number Publication Date
WO2016206175A1 true WO2016206175A1 (zh) 2016-12-29

Family

ID=54788793

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/086631 WO2016206175A1 (zh) 2015-06-24 2015-08-11 用于腰部康复训练中的下肢自动调节平台及训练方法

Country Status (3)

Country Link
CN (1) CN105147493B (zh)
CA (1) CA2950546C (zh)
WO (1) WO2016206175A1 (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107456353A (zh) * 2017-08-22 2017-12-12 浙江工业大学 站立式腿部康复训练仪
CN107754207A (zh) * 2017-11-21 2018-03-06 翁燕飞 一种下肢辅助运动装置
CN107773385A (zh) * 2017-11-22 2018-03-09 白鹤 一种防止瘫痪病人肌肉萎缩的锻炼装置
CN109621302A (zh) * 2019-01-08 2019-04-16 河南翔宇医疗设备股份有限公司 一种智能工作台
CN110433022A (zh) * 2019-08-08 2019-11-12 河南科技大学 一种采用气动肌肉驱动的腰椎牵引装置
CN110448863A (zh) * 2019-09-19 2019-11-15 湖南中医药大学 一种躯干肌肉激活康复训练装置
CN112370313A (zh) * 2020-11-10 2021-02-19 天津大学 一种抵消重力下肢外骨骼的测试系统与测试方法
CN113230046A (zh) * 2021-03-23 2021-08-10 安徽医科大学第一附属医院 一种膝关节康复训练设备
CN114099304A (zh) * 2021-12-07 2022-03-01 中国人民解放军北部战区总医院 一种用于骨科护理康复辅助装置及其使用方法
CN114569228A (zh) * 2022-03-04 2022-06-03 班红梅 一种腿部骨折复位机
CN110433022B (zh) * 2019-08-08 2024-04-26 河南科技大学 一种采用气动肌肉驱动的腰椎牵引装置

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106214420A (zh) * 2016-07-16 2016-12-14 哈尔滨鼎智瑞光科技有限公司 一种智能反馈式膝关节康复训练器
CN106903675A (zh) * 2017-04-11 2017-06-30 河北科技大学 一种基于柔索并联技术的运动装置
CN107260483B (zh) * 2017-05-22 2018-06-26 华中科技大学 一种连杆式下肢外骨骼康复机器人
CN107126344B (zh) * 2017-07-05 2023-08-18 天津科技大学 下肢行走功能康复用外骨骼康复机器人与控制系统及方法
CN107928988B (zh) * 2017-12-18 2021-02-26 合肥工业大学 适用于腰部康复机器人的传动机构及控制方法
CN108273257B (zh) * 2018-03-01 2020-08-21 合肥工业大学 一种人体腰部运动状态检测装置及检测方法
CN108354784A (zh) * 2018-04-27 2018-08-03 深圳市迈步机器人科技有限公司 一种电子设备和控制方法
CN109009863B (zh) * 2018-05-23 2020-10-13 合肥工业大学 一种腰部康复训练装置
CN109124983A (zh) * 2018-07-03 2019-01-04 浙江大学 一种基于气动肌肉的下肢康复外骨骼系统
CN109606559B (zh) * 2018-12-25 2019-10-01 燕山大学 助稳装置
CN110605703B (zh) * 2019-09-23 2022-07-01 燕山大学 一种六自由度末端可变形的并联绳牵引机构
CN110801238B (zh) * 2019-11-20 2022-07-01 上海交通大学 一种下肢多关节等速训练测试装置
CN111358661B (zh) * 2020-02-21 2022-02-11 华中科技大学鄂州工业技术研究院 一种康复机器人
CN111544848A (zh) * 2020-05-26 2020-08-18 四川大学华西医院 一种预防卧床老年人失能的护理装置
CN111631920B (zh) * 2020-07-10 2023-08-18 河南理工大学 一种利用气动人工肌肉的牵引式手指康复训练装置及控制方法
CN111821141A (zh) * 2020-07-15 2020-10-27 南京工程学院 一种绳牵引康复训练机器人的下肢固定调节装置
CN111888186B (zh) * 2020-07-21 2022-04-19 埃斯顿(南京)医疗科技有限公司 一种三自由度床旁外骨骼下肢康复机器人及其使用方法
CN112155943B (zh) * 2020-10-13 2023-05-16 河南理工大学 一种针对腕关节进行康复训练的机械装置
CN112675489A (zh) * 2020-12-26 2021-04-20 陈明忠 一种强度可调节的腿部康复用肌力训练装置
CN112754862A (zh) * 2021-01-08 2021-05-07 浙江工业大学 柔性升降式自主康复训练仪
CN112999585A (zh) * 2021-03-30 2021-06-22 郑州铁路职业技术学院 一种用于人体腰椎恢复的辅助装置
CN113576833B (zh) * 2021-08-03 2023-05-02 安徽工程大学 一种基于重力平衡的下肢助力装置
CN113925669A (zh) * 2021-10-24 2022-01-14 毕道勇 一种冻伤缓解舒展器
CN114272561B (zh) * 2021-12-24 2022-11-01 中国人民解放军总医院第二医学中心 腰椎自我激活训练椅
CN114832311B (zh) * 2022-04-29 2023-03-31 四川大学华西医院 一种用于髋关节的外展训练装置
CN114870339A (zh) * 2022-05-12 2022-08-09 南京航空航天大学 一种微重力环境下航天员背部骨肌对抗训练方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060069336A1 (en) * 2004-09-27 2006-03-30 Massachusetts Institute Of Technology Ankle interface
US20100204620A1 (en) * 2009-02-09 2010-08-12 Smith Jonathan A Therapy and mobility assistance system
CN102441252A (zh) * 2011-08-22 2012-05-09 国家康复辅具研究中心 下肢运动模式塑型训练装置及其使用方法
CN202497658U (zh) * 2011-12-28 2012-10-24 宁波大学 一种下肢辅助训练装置
CN103892989A (zh) * 2014-04-16 2014-07-02 崔建忠 下肢康复训练机器人及其训练方法
CN104224494A (zh) * 2014-09-23 2014-12-24 合肥工业大学 一种六自由度并联腰部康复训练装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201005935Y (zh) * 2006-12-07 2008-01-16 浙江大学 多体位外骨骼下肢康复训练机器人
CN101791255B (zh) * 2010-03-08 2012-07-18 上海交通大学 助行外骨骼机器人系统及控制方法
CN202590240U (zh) * 2012-03-21 2012-12-12 国家康复辅具研究中心 减重步行训练机器人
CN103417356A (zh) * 2013-07-10 2013-12-04 南京升泰元机器人科技有限公司 步态康复训练机器人

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060069336A1 (en) * 2004-09-27 2006-03-30 Massachusetts Institute Of Technology Ankle interface
US20100204620A1 (en) * 2009-02-09 2010-08-12 Smith Jonathan A Therapy and mobility assistance system
CN102441252A (zh) * 2011-08-22 2012-05-09 国家康复辅具研究中心 下肢运动模式塑型训练装置及其使用方法
CN202497658U (zh) * 2011-12-28 2012-10-24 宁波大学 一种下肢辅助训练装置
CN103892989A (zh) * 2014-04-16 2014-07-02 崔建忠 下肢康复训练机器人及其训练方法
CN104224494A (zh) * 2014-09-23 2014-12-24 合肥工业大学 一种六自由度并联腰部康复训练装置

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107456353B (zh) * 2017-08-22 2023-05-23 浙江工业大学 站立式腿部康复训练仪
CN107456353A (zh) * 2017-08-22 2017-12-12 浙江工业大学 站立式腿部康复训练仪
CN107754207A (zh) * 2017-11-21 2018-03-06 翁燕飞 一种下肢辅助运动装置
CN107754207B (zh) * 2017-11-21 2024-03-22 翁燕飞 一种下肢辅助运动装置
CN107773385A (zh) * 2017-11-22 2018-03-09 白鹤 一种防止瘫痪病人肌肉萎缩的锻炼装置
CN109621302A (zh) * 2019-01-08 2019-04-16 河南翔宇医疗设备股份有限公司 一种智能工作台
CN109621302B (zh) * 2019-01-08 2024-03-01 河南翔宇医疗设备股份有限公司 一种智能工作台
CN110433022A (zh) * 2019-08-08 2019-11-12 河南科技大学 一种采用气动肌肉驱动的腰椎牵引装置
CN110433022B (zh) * 2019-08-08 2024-04-26 河南科技大学 一种采用气动肌肉驱动的腰椎牵引装置
CN110448863A (zh) * 2019-09-19 2019-11-15 湖南中医药大学 一种躯干肌肉激活康复训练装置
CN112370313B (zh) * 2020-11-10 2022-11-22 天津大学 一种抵消重力下肢外骨骼的测试系统与测试方法
CN112370313A (zh) * 2020-11-10 2021-02-19 天津大学 一种抵消重力下肢外骨骼的测试系统与测试方法
CN113230046B (zh) * 2021-03-23 2023-05-09 安徽医科大学第一附属医院 一种膝关节康复训练设备
CN113230046A (zh) * 2021-03-23 2021-08-10 安徽医科大学第一附属医院 一种膝关节康复训练设备
CN114099304A (zh) * 2021-12-07 2022-03-01 中国人民解放军北部战区总医院 一种用于骨科护理康复辅助装置及其使用方法
CN114569228A (zh) * 2022-03-04 2022-06-03 班红梅 一种腿部骨折复位机
CN114569228B (zh) * 2022-03-04 2024-01-19 班红梅 一种腿部骨折复位机

Also Published As

Publication number Publication date
CA2950546A1 (en) 2016-12-24
CN105147493A (zh) 2015-12-16
CA2950546C (en) 2019-08-27
CN105147493B (zh) 2017-03-29

Similar Documents

Publication Publication Date Title
WO2016206175A1 (zh) 用于腰部康复训练中的下肢自动调节平台及训练方法
CN109009863B (zh) 一种腰部康复训练装置
CN104800043B (zh) 一种下肢康复训练机器人
EP2723458B1 (en) An apparatus and method for rehabilitating an injured limb
CN107157711B (zh) 一种踝关节康复训练机器人系统
US8800366B2 (en) Robotic exoskeleton for limb movement
CN204121372U (zh) 一种穿戴式下肢外骨骼助行减压机器人装置
JP6647225B2 (ja) 脚矯正器具及び矯正器具
JP2012520699A (ja) ロボット運動リハビリテーション装置
CA2893996C (en) Rehabilitation apparatus
US8647245B2 (en) System for passive stretching
KR20110066567A (ko) 공압근육을 이용한 양팔 재활 운동 기구
CN107595548B (zh) 用于人体康复训练中自动固定装置及康复训练方法
CN113367935B (zh) 柔性驱动膝关节康复机器人
EP3104819B1 (en) Device supporting physical abilities of the lower limbs
CN111000700A (zh) 一种腿部关节锻炼的康复护理设备
CN114260879B (zh) 一种穿戴式髋膝主动驱动的下肢负重助力外骨骼机器人
KR20220073598A (ko) 상지 및 하지의 근력 강화 재활운동 로봇장치
JP6698835B2 (ja) 動作アシスト装置
Yamamoto et al. Development of gait training system powered by pneumatic actuator like human musculoskeletal system
KR20150008530A (ko) 신체견인기
CN116712231A (zh) 一种用于矫正脊柱侧凸的主动式外骨骼

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15896070

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2950546

Country of ref document: CA

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15896070

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 15896070

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 22/02/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 15896070

Country of ref document: EP

Kind code of ref document: A1