WO2016206091A1 - 一种岩石含水饱和度计算方法 - Google Patents

一种岩石含水饱和度计算方法 Download PDF

Info

Publication number
WO2016206091A1
WO2016206091A1 PCT/CN2015/082499 CN2015082499W WO2016206091A1 WO 2016206091 A1 WO2016206091 A1 WO 2016206091A1 CN 2015082499 W CN2015082499 W CN 2015082499W WO 2016206091 A1 WO2016206091 A1 WO 2016206091A1
Authority
WO
WIPO (PCT)
Prior art keywords
rock
permittivity
formula
water saturation
saturation
Prior art date
Application number
PCT/CN2015/082499
Other languages
English (en)
French (fr)
Inventor
刘红岐
田杰
邓友明
邱春宁
Original Assignee
西南石油大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西南石油大学 filed Critical 西南石油大学
Priority to EP15810687.2A priority Critical patent/EP3190258B1/en
Priority to PCT/CN2015/082499 priority patent/WO2016206091A1/zh
Priority to CN201580012720.2A priority patent/CN106133732B/zh
Publication of WO2016206091A1 publication Critical patent/WO2016206091A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/24Earth materials
    • G01N33/246Earth materials for water content
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16ZINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS, NOT OTHERWISE PROVIDED FOR
    • G16Z99/00Subject matter not provided for in other main groups of this subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/026Dielectric impedance spectroscopy

Definitions

  • the invention relates to a method for calculating water saturation of rock.
  • the vast majority of substances in nature are dielectrics.
  • the magnitude of the conduction effect of macroscopic materials generated by an applied electric field is measured by electrical conductivity. According to the conductivity, it can be classified as: ⁇ >10 5 ⁇ -1 ⁇ cm -1 is called conductor, ⁇ 10 -10 ⁇ -1 ⁇ cm -1 is called an insulator, and 10 -10 ⁇ 10 5 ⁇ -1 ⁇ cm -1 is called a semiconductor.
  • the magnitude of the effect of the polarization of a macroscopic object under the action of an electric field can be measured by the dielectric constant (permittivity) ⁇ .
  • the dielectric constant of the vacuum is equal to 1, and in general, the dielectric constant of all materials is greater than 1, ie ⁇ ⁇ 1, and the substance of ⁇ ⁇ 1 is called a dielectric.
  • Rocks in the formation have both electrical and dielectric properties.
  • the formation can be regarded as a huge dielectric, and its conductivity is completed by the aqueous solution of the formation contained in the pores.
  • the conductivity of the aqueous solution is derived from the various ions dissolved therein. Under formation conditions, such ions are usually Na + , Mg 2+ , Ca 2+ , K + , Cl - , OH - , HCO 3 - , SO 4 2- , CO 3 2- and other ions.
  • the conductive path of the formation. Therefore, the electrical properties of the rock should be composed of two major components.
  • the dielectric properties exhibited by the dielectric However, in the formation, whether it is conductive or dielectric, the current path is affected by the pore geometry of the rock. The relationship between the conductivity and dielectric properties of the rock and the pore structure is described in detail in many documents. Narration. The study on the electrical properties of rocks is mainly focused on the conductive properties. In 1941, KSCole and RHCole established the Cole-Cole model of dielectric constant. Later, a large number of scholars began to study the polarization process of ion conduction and rock, and analyzed non-uniformity. The dielectric constant of a porous medium.
  • the traditional method of calculating water saturation has many parameters that can be determined by experimental measurement.
  • the multi-parameter test is relatively expensive, and on the other hand, because there are many parameters that need to be experimentally determined, there are many sources of experimental error.
  • the accuracy of calculating the saturation is difficult to guarantee.
  • the conductive path is very narrow due to the storage space being a nano-scale pore-slit system. Very large, in this case, the conductivity of the rock is getting weaker and weaker, and the dielectric gradually dominates, so the electrical properties of the rock will no longer conform to the traditional conductive model, and the resistivity is no longer sensitive to the reflection of the water content of the rock.
  • the permittivity parameter should be used to reflect the change of rock water content.
  • a method for calculating water saturation using rock permittivity dispersion is proposed, due to the permittivity.
  • the dispersion characteristics of the dispersion characteristics are significantly higher than that of the resistivity. Therefore, the calculation of the water saturation of the rock using the permittivity of the core is more suitable for dense reservoirs, and the water saturation of the rock calculated by the resistivity method is more accurate. According to the experiment, the water saturation calculation equation we established is as follows:
  • Sw water saturation, %
  • D fc is the permittivity of the permittivity; dimensionless;
  • Dc is calculated according to the following formula (3):
  • the resistivity and permittivity parameters of the core under different saturation conditions are measured, and the measurement frequency and the core resistance parameter are automatically recorded by the instrument, and then the method is established according to the above three equations.
  • the resistance parameter is fitted to the frequency relationship, and the dispersion index Dc of the permittivity is obtained.
  • the dispersion D fc is calculated according to the formula (2), and then the curve is established according to the core saturation and the dispersion parameter.
  • Figure 1 is a cross-sectional diagram of cores with different saturation permittivity
  • Figure 2 shows the intersection of dispersion and saturation.
  • a water saturation calculation equation is as follows:
  • Sw water saturation, %
  • D fc is the permittivity of the permittivity; dimensionless;
  • Dc is calculated according to the following formula (3):
  • the basic data of the core is measured, including the core geometry and dry weight, as shown in Table 1.
  • Step (3) and step (4) are as follows:
  • the core is subjected to displacement saturation by a high-pressure vacuum saturator, and the core is completely completed for the first time, that is, Sw is close to 100%. Due to the problem of core permeability, it is impossible that the pores are filled with fluid.
  • the core was subjected to secondary displacement using a high-pressure vacuum saturator, and the saturation Sw2 was calculated.
  • the core resistivity permittivity parameters after the secondary displacement were measured and recorded in Table 3.
  • the dispersion index corresponding to the five saturations is:

Abstract

一种岩石含水饱和度计算方法,通过如下公式计算:Sw=aDfc+b;其中,Sw为含水饱和度;Dfc为电容率频散度,其计算公式为: Dfc= |dCp/dF| = B*Dc*F -(Dc+1);式子中,Dfc为电容率频散度,Cp为电容率,F为频率,B为系数。Dc为电容率频散指数,Dc按照如下公式计算:Cp=C0F -Dc;C0为电容率系数,无量纲。该岩石含水饱和度的计算方法为进一步研究岩石提供帮助,可为电法测井中找到新的应用和突破。

Description

一种岩石含水饱和度计算方法 技术领域
本发明涉及一种岩石含水饱和度计算方法。
背景技术
自然界中的物质绝大多数是电介质。宏观物质在外加电场作用下产生电流的传导效应的大小用电导率来衡量,按照电导率的大小,可以将其分类:σ>105Ω-1·cm-1叫做导体,σ<10-10Ω-1·cm-1叫做绝缘体,而10-10<σ<105Ω-1·cm-1则叫做半导体。宏观物体在电场作用下产生电极化效应的大小可以用介电常数(电容率)ε来衡量。真空的介电常数等于1,而在一般情况下,所有的物质的介电常数都大于1,即ε≥1,并把ε≠1的物质叫做电介质。
地层中的岩石既有导电特性,也有介电特性。地层可以看成是一个巨大的电介质,而其导电则是由孔隙所含的地层水溶液完成的,水溶液的导电又源于其内溶解的各种离子。在地层条件下,这类离子通常是Na+,Mg2+,Ca2+,K+,Cl-,OH-,HCO3 -,SO4 2-,CO3 2-以及其他离子,这些离子构成了地层导电的通路。因此,岩石的电性应该有两大部分组成,一是有孔隙间连通的水溶液形成通路的导电特性组成;另一部分则是由岩石矿物颗粒、油气分子、水分子等不导电的物质和粒子作为电介质而表现出的介电特性。但是在地层中,不论是导电还是介电,电流的通路都要受到岩石孔隙几何结构的影响,岩石的导电和介电特性与孔隙结构的关系在很多文献都有详细的阐述,在这里不再赘述。对于岩石电性的研究主要是集中在导电特性上,1941年K.S.Cole与R.H.Cole建立了介电常数Cole-Cole模型,其后大量学者开始对离子导电和岩石的极化过程进行了研究,分析非均匀多孔介质介电常数的特性。
传统的计算含水饱和度的方法,由于存在多个需要实验测量才能确定的参数,一方面多参数试验费用相对昂贵,另一方面由于需要实验测定的参数多,实验误差来源的来源就多,因此,计算饱和度的精度难以保证,另外,对于致密油气藏来讲,由于储集空间为纳米级孔缝系统,导电通路非常狭窄,电阻率 很大,这种情况下,岩石的导电能力越来越弱,而介电逐渐占据主导地位,因此岩石的电性将不再符合传统导电模型,电阻率对岩石含水情况的反映不再敏感。
发明内容
有鉴于此,发明人通过了大量的研究和实验,得出应采用电容率参数反映岩石含水量的变化,提出了一种利用岩石电容率频散度计算含水饱和度的方法,由于电容率的频散特征比电阻率的频散特征显著,所以利用岩心的电容率频散度计算岩石含水饱和度更适用于致密储层,并且比电阻率方法所计算的岩石含水饱和度精度更高。根据实验,我们所建立的含水饱和度计算方程如下:
Sw=aDfc+b        (1)
式(1)中:
Sw为含水饱和度,%;
a:系数,无量纲;
b:回归参数,无量纲。
Dfc为电容率频散度,无量纲;
Dfc计算公式为:
Figure PCTCN2015082499-appb-000001
式(2)中:
Dfc——电容率频散度,F/(m·Hz);
Cp——电容率,F/m;
DC——电容率频散指数,无量纲;
F——频率,Hz;
B——系数,无量纲;
式(2)中,Dc按照如下的公式(3)计算:
Cp=C0F-Dc        (3)
式(3)中:Dc——电容率频散指数,无量纲;
C0——电容率系数,无量纲。
其通过如下步骤进行:
(1)测量岩心几何尺寸和重量;
(2)通过驱替饱和测量岩石的含水饱和度,先将岩石完全饱和一定浓度的盐溶液,第一次饱和度Sw=100%;
(3)测量岩石在Sw=100%情况下,在1Hz-10kHz频率段的电阻率/电容率参数,将数据存入Excel文件;
(4)再通过驱替饱和,使岩石含水饱和度发生变化,先降低岩石含水饱和度,再测量驱替后岩石在同一频段内岩石的电阻率/电容率参数;
(5)在Excel文件中,通过拟合,建立Cp-F交会图,通过拟合,即可得到如公式(3)的电容率与频率的指数关系方程,式中频率的指数即为Dc参数;
(6)根据公式(2)计算频散度Dfc;
(7)把岩心饱和度与计算的频散度参数存入Excel文件中,通过拟合,建立Sw-Dfc交会图,通过拟合,即可得到形如公式(1)的含水饱和度与频散度的关系方程。
对岩心在1Hz-5MHz的范围内,测量岩心的在不同饱和度条件下的电阻率和电容率参数,由仪器自动记录测量频率和岩心阻容参数,然后根据上述三个方程建立的方法,在Excel软件中,先对阻容参数与频率关系拟合,得到电容率的频散指数Dc,然后根据公式(2)计算频散度Dfc,再根据岩心饱和度与频散度参数拟合建立形如公式(1)的关系,即可建立起基于电容率频散指数的计算公式,从而较为精确地计算出岩石含水饱和度,为进一步研究岩石提供帮助,可为电法测井中找到新的应用和突破。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述 中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为岩心不同饱和度电容率交会图;
图2为频散度与饱和度交会图。
具体实施方式
下面对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明优选的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
一种含水饱和度计算方程如下:
Sw=aDfc+b        (1)
式(1)中:
Sw为含水饱和度,%;
a:系数,无量纲;
b:回归参数,无量纲。
Dfc为电容率频散度,无量纲;
Dfc计算公式为:
Figure PCTCN2015082499-appb-000002
式(2)中:
Dfc——电容率频散度,F/(m·Hz);
Cp——电容率,F/m;
DC——电容率频散指数,无量纲;
F——频率,Hz;
B——系数,无量纲。
式(2)中,Dc按照如下的公式(3)计算:
Cp=C0F-Dc        (3)
式(3)中:Dc——电容率频散指数,无量纲;
C0——电容率系数,无量纲。
通过如下步骤进行:
(1)测量岩心几何尺寸和重量,并计入表1。具体的:
岩心基础数据测量:
测量岩心的基础数据,包括岩心的几何尺寸和干重重量,如表1.
表1.岩样基础参数
Figure PCTCN2015082499-appb-000003
(2)通过驱替饱和测量岩石的含水饱和度,一般是先将岩石完全饱和一定浓度的盐溶液,第一次饱和度Sw=100%;
(3)测量岩石在Sw=100%情况下,在一定频率段(1Hz-10kHz)的电阻率/电容率参数,将数据存入Excel文件,如表2所示;
(4)再通过驱替饱和,使岩石含水饱和度发生变化,一般是降低岩石含水饱和度(假设Sw=80%),再测量驱替后岩石在同一频段内岩石的电阻率/电容率参数;
步骤(3)与步骤(4)具体如下:
通过高压真空饱和仪,对岩心进行驱替饱和,第一次使岩心完全,即Sw接近于100%。由于岩心渗透率的问题,不可能是所以孔隙充满流体。
利用电桥分析仪测量第一次完全饱和后(Sw1)时的电阻率电容率参数,记录在表3中。
利用高压真空饱和仪对岩心进行二次驱替,计算饱和度Sw2,测量二次驱替后的岩心电阻率电容率参数,记录在表3中。
如此循环,直到岩心无法再次进行驱替为止,测量饱和度最小时的岩心电阻率电容率,记录于表3中;本实例进行了5次饱和驱替,全部数据记录于表3中。
岩心5次驱替饱和后每次饱和度计算结果列于表2.
表2. 5次岩心饱和驱替后饱和度参数
Figure PCTCN2015082499-appb-000004
表3.不同饱和度下阻容参数数据表
Figure PCTCN2015082499-appb-000005
(5)在Excel文件中,通过拟合,建立Cp-F交会图,如图1,通过拟合,即可得到形如公式(3)的电容率与频率的指数关系方程,式中频率的指数即为Dc参数;具体如下,
通过拟合,建立每个饱和度与电容率的交会图及关系方程。如图1所示,本实例所建立的方程如下:
Sw1=88.36%:Cp1=2×10-5×F-1.239
Sw2=59.49%:Cp2=1×10-5×F-1.237
Sw3=42.01%:Cp3=8×10-6×F-1.233
Sw4=31.87%:Cp4=5×10-6×F-1.224
Sw5=0%:Cp5=1×10-6×F-1.192
拟合得到对应5个饱和度的频散指数分别为:
Dc1=1.239,Dc2=1.237,Dc3=1.233,Dc4=1.224,Dc5=1.192。
(6)根据公式(2)计算频散度Dfc;具体的,
对每个饱和度与对应电容率方程进行求导,得到不同饱和度下的电容率频散度,如表4所示。
表4.不同饱和度对应电容率频散度数据表
Figure PCTCN2015082499-appb-000006
(7)把岩心饱和度与计算的频散度参数存入Excel文件中,通过拟合,建立Sw-Dfc交会图,如表3,通过拟合,即可得到形如公式(1)的含水饱和度与频散度的关系方程。具体的,
绘制不同饱和度与电容率频散度的交会图,如图2,对数据进行拟合,得到频散度与饱和度的拟合公式如下:
24Hz:Sw=3.85×109×Dfc+3.92
35Hz:Sw=8.93×109×Dfc+3.88
192Hz:Sw=3.98×1011×Dfc+3.78
280Hz:Sw=9.23×1011×Dfc+3.78
从而建立起基于电容率频散指数的具体计算公式,从而较为精确地计算出岩石含水饱和度。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (2)

  1. 一种岩石含水饱和度计算方法,其特征在于,所述岩石含水饱和度通过如下公式(1)计算:Sw=aDfc+b;
    式(1)中:
    Sw为含水饱和度,%;
    a:系数,无量纲;
    b:回归参数,无量纲;
    Dfc为电容率频散度,无量纲;
    Df按照如下公式(2)计算:
    Figure PCTCN2015082499-appb-100001
    式(2)中:
    Dfc——电容率频散度,F/(m·Hz);
    Cp——电容率,F/m;
    DC——电容率频散指数,无量纲;
    F——频率,Hz;
    B——系数,无量纲;
    Dc按照如下公式(3)计算:
    Cp=C0F-Dc
    式(3)中:C0——电容率系数,无量纲。
  2. 如权利要求1所述的岩石含水饱和度计算方法,其特征在于,其通过如下步骤进行:
    (1)测量岩心几何尺寸和重量;
    (2)通过驱替饱和测量岩石的含水饱和度,先将岩石完全饱和一定浓度的盐溶液,第一次饱和度Sw=100%;
    (3)测量岩石在Sw=100%情况下,在1Hz-10kHz频率段的电阻率/电容率参数,将数据存入Excel文件;
    (4)再通过驱替饱和,使岩石含水饱和度发生变化,先降低岩石含水饱和度,再测量驱替后岩石在同一频段内岩石的电阻率/电容率参数;
    (5)在Excel文件中,通过拟合,建立Cp-F交会图,通过拟合,即可得到如公式(3)的电容率与频率的指数关系方程,公式(3)中频率的指数即为Dc参数;
    (6)根据公式(2)计算频散度Dfc;
    (7)把岩心饱和度与计算的频散度参数存入Excel文件中,通过拟合,建立Sw-Dfc交会图,通过拟合,即可得到形如公式(1)的含水饱和度与频散度的关系方程。
PCT/CN2015/082499 2015-06-26 2015-06-26 一种岩石含水饱和度计算方法 WO2016206091A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP15810687.2A EP3190258B1 (en) 2015-06-26 2015-06-26 Method for calculating rock water saturation
PCT/CN2015/082499 WO2016206091A1 (zh) 2015-06-26 2015-06-26 一种岩石含水饱和度计算方法
CN201580012720.2A CN106133732B (zh) 2015-06-26 2015-06-26 一种岩石含水饱和度计算方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/082499 WO2016206091A1 (zh) 2015-06-26 2015-06-26 一种岩石含水饱和度计算方法

Publications (1)

Publication Number Publication Date
WO2016206091A1 true WO2016206091A1 (zh) 2016-12-29

Family

ID=57471551

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/082499 WO2016206091A1 (zh) 2015-06-26 2015-06-26 一种岩石含水饱和度计算方法

Country Status (3)

Country Link
EP (1) EP3190258B1 (zh)
CN (1) CN106133732B (zh)
WO (1) WO2016206091A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113030227A (zh) * 2019-12-24 2021-06-25 中国石油天然气股份有限公司 校正油水饱和度的计算方法
CN113176306A (zh) * 2021-04-25 2021-07-27 西安石油大学 一种用于计算罐体内油水比的装置及方法
CN115659598A (zh) * 2022-09-27 2023-01-31 哈尔滨工业大学 一种基于Sigmoid函数的土体热导率预测方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107132250A (zh) * 2017-05-04 2017-09-05 河南理工大学 一种不同含水饱和度煤体复电性频散特征的测量方法
CN108829980B (zh) * 2018-06-20 2022-06-07 西南石油大学 利用pnn测井资料建立碳氧比和碳氢比解释模型的方法
CN111983182A (zh) * 2019-05-23 2020-11-24 中国石油化工股份有限公司 一种页岩气藏原始含水饱和度的测试方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5048328A (en) * 1989-02-24 1991-09-17 Amoco Corporation Method of determining the porosity and irreducible water saturation of a coal cleat system
CN101109726A (zh) * 2006-07-21 2008-01-23 中国石油化工股份有限公司 一种岩心含水饱和度分析方法
CN102565858A (zh) * 2011-12-21 2012-07-11 西南石油大学 一种多孔介质含水饱和度的计算方法
CN103527172A (zh) * 2013-10-16 2014-01-22 中国石油集团川庆钻探工程有限公司 可变岩电耦合指数含水饱和度计算方法
CN104122593A (zh) * 2013-04-26 2014-10-29 邓友明 一种对勘探测井的电容率频散测量方法和应用方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102621194B (zh) * 2011-11-07 2014-05-28 河南农大迅捷测试技术有限公司 多孔性物质含水率测定模型及其构建方法与应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5048328A (en) * 1989-02-24 1991-09-17 Amoco Corporation Method of determining the porosity and irreducible water saturation of a coal cleat system
CN101109726A (zh) * 2006-07-21 2008-01-23 中国石油化工股份有限公司 一种岩心含水饱和度分析方法
CN102565858A (zh) * 2011-12-21 2012-07-11 西南石油大学 一种多孔介质含水饱和度的计算方法
CN104122593A (zh) * 2013-04-26 2014-10-29 邓友明 一种对勘探测井的电容率频散测量方法和应用方法
CN103527172A (zh) * 2013-10-16 2014-01-22 中国石油集团川庆钻探工程有限公司 可变岩电耦合指数含水饱和度计算方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113030227A (zh) * 2019-12-24 2021-06-25 中国石油天然气股份有限公司 校正油水饱和度的计算方法
CN113030227B (zh) * 2019-12-24 2022-08-30 中国石油天然气股份有限公司 校正油水饱和度的计算方法
CN113176306A (zh) * 2021-04-25 2021-07-27 西安石油大学 一种用于计算罐体内油水比的装置及方法
CN113176306B (zh) * 2021-04-25 2023-09-12 西安石油大学 一种用于计算罐体内油水比的装置及方法
CN115659598A (zh) * 2022-09-27 2023-01-31 哈尔滨工业大学 一种基于Sigmoid函数的土体热导率预测方法
CN115659598B (zh) * 2022-09-27 2023-06-02 哈尔滨工业大学 一种基于Sigmoid函数的土体热导率预测方法

Also Published As

Publication number Publication date
EP3190258A1 (en) 2017-07-12
EP3190258B1 (en) 2020-12-30
CN106133732A (zh) 2016-11-16
CN106133732B (zh) 2019-07-26
EP3190258A4 (en) 2017-12-06

Similar Documents

Publication Publication Date Title
WO2016206091A1 (zh) 一种岩石含水饱和度计算方法
Wang et al. Intrinsic limitations of impedance measurements in determining electric double layer capacitances
Garrouch et al. The influence of clay content, salinity, stress, and wettability on the dielectric properties of brine-saturated rocks: 10 Hz to 10 MHz
Leroy et al. Influence of surface conductivity on the apparent zeta potential of TiO2 nanoparticles
Kroupa et al. Modelling of supercapacitors: Factors influencing performance
CN105223116B (zh) 一种基于核磁共振谱系数法计算束缚水饱和度的方法
US9835762B2 (en) Petrophysical rock characterization
Wang et al. Effects of access resistance on the resistive-pulse caused by translocating of a nanoparticle through a nanopore
Taghipoor et al. An improved model for predicting electrical conductance in nanochannels
Péan et al. Single electrode capacitances of porous carbons in neat ionic liquid electrolyte at 100 C: a combined experimental and modeling approach
Sahu et al. Maxwell-Hall access resistance in graphene nanopores
Walker et al. Permeability models of porous media: Characteristic length scales, scaling constants and time-dependent electrokinetic coupling
Luan et al. An electro-hydrodynamics-based model for the ionic conductivity of solid-state nanopores during DNA translocation
Fayazi et al. Estimation of pseudo relative permeability curves for a heterogeneous reservoir with a new automatic history matching algorithm
Glover Modelling pH-dependent and microstructure-dependent streaming potential coefficient and zeta potential of porous sandstones
Díaz et al. Resistivity of cementitious materials measured in diaphragm migration cells: The effect of the experimental set-up
Flekkøy A physical basis for the Cole-Cole description of electrical conductivity of mineralized porous media
Niya et al. On charge distribution and storage in porous conductive carbon structure
Nandigana et al. Characterization of electrochemical properties of a micro–nanochannel integrated system using computational impedance spectroscopy (CIS)
de Souza et al. Nonlinear ion transport mediated by induced charge in ultrathin nanoporous membranes
Momotenko et al. Differential capacitance of liquid/liquid interfaces of finite thicknesses: a finite element study
Kulikovsky Can we quantify oxygen transport in the Nafion film covering an agglomerate of Pt/C particles?
Wang et al. Probing nanoconfined ion transport in electrified 2D laminate membranes with electrochemical impedance spectroscopy
Bearden et al. Detecting and identifying small molecules in a nanopore flux capacitor
CN114035236A (zh) 基于新三水模型的核磁和电阻率联合反演含水饱和度方法

Legal Events

Date Code Title Description
REEP Request for entry into the european phase

Ref document number: 2015810687

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015810687

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15810687

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE