WO2016206056A1 - 断路器的检测方法、装置及系统 - Google Patents

断路器的检测方法、装置及系统 Download PDF

Info

Publication number
WO2016206056A1
WO2016206056A1 PCT/CN2015/082381 CN2015082381W WO2016206056A1 WO 2016206056 A1 WO2016206056 A1 WO 2016206056A1 CN 2015082381 W CN2015082381 W CN 2015082381W WO 2016206056 A1 WO2016206056 A1 WO 2016206056A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit breaker
current value
fingerprint feature
vibration
vibration signal
Prior art date
Application number
PCT/CN2015/082381
Other languages
English (en)
French (fr)
Inventor
程序
王文山
陶诗洋
李伟
齐伟强
任志刚
Original Assignee
国家电网公司
国网北京市电力公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国家电网公司, 国网北京市电力公司 filed Critical 国家电网公司
Priority to PCT/CN2015/082381 priority Critical patent/WO2016206056A1/zh
Publication of WO2016206056A1 publication Critical patent/WO2016206056A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/327Testing of circuit interrupters, switches or circuit-breakers

Definitions

  • the present invention relates to the field of electric power, and in particular to a method, device and system for detecting a circuit breaker.
  • the switch characteristic tester In the high-voltage circuit breaker manufacturers, most of them adopt the switch characteristic tester. Through the test and analysis of the circuit breaker coil current, stroke and fracture signal, the circuit breaker's opening and closing time, opening and closing speed, stroke and overtravel characteristics are obtained. Mechanical characteristics such as bounce. In the power system, most of the maintenance personnel use the portable circuit breaker mechanical characteristic tester to test and analyze the circuit breaker coil current and port signal, and obtain the opening and closing time of the circuit breaker, and have an overall judgment on the operating characteristics of the circuit breaker. These test methods can obtain the overall operational characteristics of the circuit breaker, and the measurement device itself is powerless to find fault defects. Most other types of high-voltage circuit breaker mechanical state detection systems have signal testing and analysis functions, and the measured signals may include: coil current, stroke, mechanical vibration, and the like.
  • the switch characteristic tester used by the switch manufacturer in detecting the circuit breaker is bulky, and it is cumbersome to install the stroke sensor on the circuit breaker. Therefore, the above detection device is disadvantageous for carrying and field use. In addition, this test equipment can only be used offline, so the cost of detection is very high. At the same time, the above detection equipment also has poor versatility of software and hardware technology, which is not conducive to product maintenance and replacement.
  • the embodiment of the invention provides a method, a device and a system for detecting a circuit breaker, so as to at least solve the technical problem that the detection device used for detecting the circuit breaker is bulky and complicated to install, and the detection cost is high and the operation is cumbersome.
  • a method for detecting a circuit breaker includes: collecting a current value and a vibration signal of an electromagnet coil in a circuit breaker according to a time sequence; determining a working time of the circuit breaker by a current value of the coil Interval; processing the vibration signal in the working time interval to obtain the fingerprint characteristic parameter for detecting the working state of the circuit breaker; comparing the fingerprint characteristic parameter with the preset fingerprint feature database to determine the working state of the circuit breaker.
  • determining, by the current value of the coil, the working time interval of the circuit breaker includes: comparing the current value with a preset threshold, determining a start time and an end time of the current value greater than the threshold; according to the start time and the end time , determine the working time interval of the circuit breaker.
  • comparing the current value with a preset threshold determining a start time and an end time of the current value greater than the threshold include: comparing the current value with the threshold; and when the current value is greater than the threshold, determining the current time The start time; after determining the start time, the current value is compared with the threshold; when the current value is less than or equal to the threshold, the current time is recorded as the end time.
  • processing the vibration signal in the working time interval to obtain the fingerprint characteristic parameter for detecting the working state of the circuit breaker includes: acquiring a vibration signal in the working time interval; converting the vibration signal into a vibration parameter sequence in time sequence; The vibration parameter sequence is processed to determine the fingerprint feature parameters.
  • processing the vibration parameter sequence to determine the fingerprint feature parameters includes: denoising the vibration parameter sequence to obtain a denoising parameter sequence; performing an envelope spectrum analysis on the denoising parameter sequence to obtain a fingerprint feature parameter.
  • the method further comprises: processing the fingerprint feature parameter by using the mutation signal starting point extraction algorithm to obtain an accurate fingerprint feature parameter.
  • the method further includes: storing the fingerprint feature parameter to the fingerprint feature database according to the working state.
  • the method further comprises: storing the current value and the vibration signal in chronological order.
  • a detection device for a circuit breaker comprising: an acquisition module, configured to acquire a current value and a vibration signal of an electromagnet coil in a circuit breaker according to a time sequence; and a determining module, configured to: The working time interval of the circuit breaker is determined by the current value of the coil; the processing module is configured to process the vibration signal in the working time interval to obtain a fingerprint characteristic parameter for detecting the working state of the circuit breaker; the comparison module is used for The fingerprint characteristic parameter is compared with a preset fingerprint feature database to determine the working state of the circuit breaker.
  • the device further includes: a first storage module, configured to store the fingerprint feature parameter to the fingerprint feature database according to the working state.
  • the apparatus further includes: a second storage module configured to store the current value and the vibration signal in chronological order.
  • a detection system for a circuit breaker comprising: a current sensor for acquiring a current value of an electromagnet coil in the circuit breaker; and a vibration sensor for acquiring a vibration signal of the circuit breaker
  • the collector establishes a communication connection with the current sensor and the vibration sensor, respectively, for collecting the current value and the vibration signal through the current sensor and the vibration sensor in time sequence; the controller establishes a communication connection with the collector for the current value through the coil Determining the working time interval of the circuit breaker; processing the vibration signal in the working time interval to obtain the fingerprint characteristic parameter for detecting the working state of the circuit breaker; comparing the fingerprint characteristic parameter with the preset fingerprint feature database, determining The working state of the circuit breaker.
  • system further includes: a memory, establishing a communication connection with the controller, storing the fingerprint feature parameters according to the working state, and storing the current value and the vibration signal in chronological order.
  • the current value and the vibration signal of the electromagnet coil in the circuit breaker are collected in time sequence; the working time interval of the circuit breaker is determined by the current value of the coil; and the vibration signal in the working time interval is processed.
  • the fingerprint characteristic parameter of the working state of the circuit breaker; the comparison module is configured to compare the fingerprint characteristic parameter with the preset fingerprint feature database, determine the working state of the circuit breaker, and achieve the circuit breaker operation during the operation of the circuit breaker The working state is tested for the purpose
  • FIG. 1 is a schematic structural view of a detection system of a circuit breaker according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram showing the structure of an optional circuit breaker detecting system according to an embodiment of the present invention
  • FIG. 3 is a schematic flow chart of a method for detecting a circuit breaker according to an embodiment of the invention.
  • FIG. 4 is a comparison diagram of a coil current value and a vibration signal waveform according to an embodiment of the present invention.
  • FIG. 5 is a flowchart of vibration signal analysis processing according to an embodiment of the present invention.
  • FIG. 6 is a flow chart of an algorithm for extracting a starting point of a mutation signal according to an embodiment of the present invention
  • FIG. 7a is a diagram showing a vibration signal diagram before processing by the abrupt signal starting point extraction algorithm and a vibration signal result processed by the abrupt signal starting point extraction algorithm when the circuit breaker performs a closing operation according to an embodiment of the present invention
  • 7b is a diagram showing a vibration signal diagram before the mutation signal starting point extraction algorithm is processed by the abrupt signal starting point extraction algorithm and a vibration signal result processed by the abrupt signal starting point extraction algorithm when the circuit breaker performs the opening operation according to an embodiment of the present invention
  • FIG. 8 is a schematic structural view of a detecting device for a circuit breaker according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural view of a preferred detecting device for a circuit breaker according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural view of a preferred detecting device for a circuit breaker according to an embodiment of the present invention.
  • FIG. 1 is a schematic structural view of a detection system of a circuit breaker according to an embodiment of the present invention.
  • the system may include a current sensor 11, a vibration sensor 13, a collector 15, and a controller 17.
  • the current sensor 11 is configured to acquire a current value of the electromagnet coil in the circuit breaker; the vibration sensor 13 is configured to acquire a vibration signal of the circuit breaker; and the collector 15 establishes a communication connection with the current sensor 11 and the vibration sensor 13, respectively.
  • the current value and the vibration signal are collected by the current sensor and the vibration sensor in chronological order; the controller 17 establishes a communication connection with the collector 15 for determining the working time interval of the circuit breaker through the current value of the coil;
  • the vibration signal is processed to obtain a fingerprint characteristic parameter for detecting the working state of the circuit breaker; the fingerprint characteristic parameter is compared with a preset fingerprint feature database to determine the working state of the circuit breaker.
  • the working time interval of the circuit breaker can be judged by the current value of the coil, and the disconnection can be determined by identifying the vibration signal generated in the working time interval. Whether the device has failed. Therefore, the technical effect of detecting the working state of the circuit breaker can be realized only by installing the sensor outside the circuit breaker, thereby solving the problem that the detection device for detecting the circuit breaker is bulky and complicated to install, and the operation cost is high and the operation is cumbersome. Technical problem.
  • the above system may further include: a memory 19.
  • the memory 19 establishes a communication connection with the controller 17 for storing the fingerprint feature parameters according to the working state, and storing the current value and the vibration signal in chronological order.
  • the mechanical state of the high-voltage circuit breaker is identified and classified according to the characteristic parameters obtained by the analysis, thereby realizing the diagnosis of the working state. And through the above-mentioned memory 19, the original vibration signal after the fault diagnosis and the fingerprint feature parameter corresponding thereto can be stored as historical data in the feature fingerprint database, and used together with the original data as the basis for the next diagnosis.
  • the test system hardware consists of a Hall current sensor, a vibration acceleration sensor, and an industrial control computer (ie, a controller) with a capture card (ie, a collector) built in.
  • the test system software is developed by LabVIEW. Sensors, capture card collectors, and industrial control computers are common devices that facilitate subsequent maintenance, expansion, and refinement.
  • the task of system control and human-computer interaction is realized by a LabVIEW graphical interface program.
  • System control includes acquisition card configuration, signal parameter configuration, trigger synchronization configuration, acquisition control, data filtering, data storage, signal processing and display control tasks;
  • the human-machine interface includes three parts: parameter setting interface, data acquisition interface and signal processing interface.
  • the characteristics of the electromagnet coil current value and the vibration signal can directly reflect the action process of the electromagnet core and the related mechanism in the circuit breaker, so the coil current value and the vibration signal can be Used for the diagnosis of the working state of the circuit breaker.
  • the vibration signal generated by the mechanical vibration of the circuit breaker is collected, which corresponds to each stage of the opening and closing operation process. Due to the interference of other vibration factors on the site, more noise signals are superimposed on the vibration waveform generated by the original vibration signal. In addition, since a single opening and closing operation involves mechanical movement of a plurality of components, waveforms generated by a plurality of vibration signals are superimposed.
  • the feature extraction and fault diagnosis steps use wavelet analysis method, envelope spectrum analysis method and mutation signal starting point extraction algorithm to process the vibration signal, extract the starting point in the vibration signal as the feature quantity, and have simple operation flow and operation speed. Fast, accurate feature extraction and other advantages.
  • an embodiment of a method of detecting a circuit breaker is provided, it being noted that the steps illustrated in the flowchart of the figures may be performed in a computer system such as a set of computer executable instructions, and Although the logical order is shown in the flowcharts, in some cases the steps shown or described may be performed in a different order than the ones described herein.
  • FIG. 3 is a schematic flow chart of a method for detecting a circuit breaker according to an embodiment of the present invention. As shown in FIG. 3, the method includes the following steps:
  • step S11 the current value and the vibration signal of the electromagnet coil in the circuit breaker are collected in time sequence.
  • step S13 the working time interval of the circuit breaker is determined by the current value of the coil.
  • step S15 the vibration signal in the working time interval is processed to obtain a fingerprint characteristic parameter for detecting the working state of the circuit breaker.
  • step S17 the fingerprint feature parameter is compared with a preset fingerprint feature database to determine the working state of the circuit breaker.
  • the working time interval of the circuit breaker can be judged by the current value of the coil, and the fault of the circuit breaker can be determined by identifying the vibration signal generated in the working time interval. Therefore, the technical effect of detecting the working state of the circuit breaker can be realized only by installing the sensor outside the circuit breaker, thereby solving the problem that the detection device for detecting the circuit breaker is bulky and complicated to install, and the operation cost is high and the operation is cumbersome. Technical problem.
  • the operation of the high voltage circuit breaker begins with the energization of the opening and closing electromagnet coils, and then the release of energy in the energy storage mechanism is achieved through a series of mechanical linkages, thereby continuing through the force generated by the energy release.
  • Control which drives the moving contact in the circuit breaker to move.
  • the electromagnet coil current can directly reflect the movement of the electromagnet core and the collision with the trip part.
  • mechanical shock, friction, and mechanical and electrical forces between the components can stimulate mechanical vibration. Mechanical vibration can propagate outward through the connection between the components of the equipment, so it can be measured on the base and casing of the propagation path and switch.
  • the current value through the coil can be measured by a current sensor based on the Hall effect principle, and the mechanical vibration signal can be measured by the acceleration sensor.
  • the acoustic wave can be directly collected by the acoustic sensor, and the collected acoustic wave is measured to detect the circuit breaker.
  • determining the working time interval of the circuit breaker by the current value of the coil in step S13 may include:
  • step S131 the current value is compared with a preset threshold, and the start time and the end time of the current value greater than the threshold are determined.
  • Step S133 determining a working time interval of the circuit breaker according to the starting time and the ending time.
  • the circuit breaker because when the circuit breaker is performing the opening and closing operation, it is energized by the opening and closing electromagnet coil in the circuit breaker, and a magnetic force is generated to drive the contact movement. Therefore, by measuring the current value through the electromagnet coil, it is possible to judge the operating time interval of the circuit breaker.
  • comparing the current value with the preset threshold value in step S131, determining that the current value is greater than the threshold start time and the end time may include:
  • step S1311 the current value is compared with the threshold.
  • step S1313 when the current value is greater than the threshold, it is determined that the current time is the start time.
  • step S1315 after determining the start time, the current value is compared with the threshold.
  • step S1317 when the current value is less than or equal to the threshold, the current time is recorded as the end time.
  • the current value through the coil is compared with a preset threshold value through the above steps S1311 to S1317.
  • a preset threshold value When it is determined that the current value is greater than the threshold value, it is determined that the circuit breaker opening and closing operation starts, and the current time is recorded as the starting time of the circuit breaker opening and closing operation.
  • the current value through the coil is continued to be compared to a threshold. When the current value is less than the threshold value, it is determined that the circuit breaker opening and closing operation ends, and the current time is recorded as the end time of the circuit breaker opening and closing operation.
  • the vibration signal in the working time interval is processed to obtain the fingerprint characteristic parameter for detecting the working state of the circuit breaker, which may include:
  • step S151 a vibration signal in the working time interval is acquired.
  • step S153 the vibration signal is converted into a vibration parameter sequence in chronological order.
  • Step S155 processing the vibration parameter sequence to determine the fingerprint feature parameter.
  • the collected vibration signals are converted into a sequence of vibration parameters that can be processed according to the time series.
  • the extraction is obtained.
  • the method for processing the vibration parameter sequence may include a denoising process and an extraction algorithm.
  • the original vibration signal is converted into a digital fingerprint feature parameter, so that the working state of the circuit breaker can be determined by identifying the fingerprint characteristic parameter.
  • the processing of the vibration parameter sequence in step S155 to determine the fingerprint feature parameter may include:
  • Step S1551 performing denoising processing on the vibration parameter sequence to obtain a denoising parameter sequence.
  • Step S1553 performing envelope spectrum analysis on the denoising parameter sequence to obtain a fingerprint feature parameter.
  • the vibration parameter sequence is prematurely processed to deal with the noise at the test site.
  • the denoising parameter sequence of denoising is used to analyze the envelope spectrum to obtain clear fingerprint characteristic parameters.
  • the denoising process in the above step S1551 can be implemented by using the wavelet analysis method, and then the Hilbert transform and the low-pass filtering are performed on the denoising parameter sequence in step S1553 to obtain a clear envelope spectrum. Line, get the fingerprint characteristic parameters of the circuit breaker when performing the opening and closing operation.
  • wavelet transform is a new linear time-frequency analysis method developed in the mid-to-late 1980s.
  • the definition of a wavelet function is:
  • is the translation factor
  • ⁇ a, ⁇ (t) is the wavelet basis function that depends on the parameters a and ⁇ .
  • the wavelet change is essentially an integral change, and the wavelet coefficients obtained by the change can be used to represent the time scale and frequency scale information of the original function.
  • the wavelet analysis method mainly has the following applications: 1) Denoising the vibration signal by wavelet analysis. 2) Generate a spectrum on the time-scale plane, and use the difference between the normal state and the fault state for fault diagnosis. 3) Using the wavelet to calculate the singularity of the envelope of the vibration signal as the feature quantity. 4) Decompose the signal into different frequency layers by wavelet, and use the amplitude, singularity or wavelet coefficient of the signals of different layers as the feature quantity.
  • This paper mainly adopts two applications: wavelet denoising processing and signal time-frequency analysis.
  • the noise signal usually appears as a high-frequency signal
  • the high-frequency wavelet coefficients obtained by wavelet decomposition are denoised, and then reconstructed to obtain a denoised signal.
  • Wavelet decomposition requires selecting a certain wavelet and determining the wavelet decomposition level. In this paper, different wavelet types and decomposition levels are tried. It is found that the denoising effects of various wavelets from 3 to 13 on the vibration signal are not much different, but the operation time increases a lot. Finally, the db4 wavelet is selected for 3-layer wavelet decomposition.
  • threshold selection is needed.
  • fixed threshold minimum maximum variance threshold
  • threshold estimation based on unbiased likelihood estimation
  • selection heuristic threshold selection heuristic threshold.
  • fixed threshold and heuristic threshold denoising are more thorough, but the high-frequency component and noise discrimination ability are weak, and the minimum maximum variance threshold has better performance in this respect. Therefore, the minimum maximum variance threshold method is chosen in this paper.
  • Hard threshold processing can better maintain the mutation and peak information of the original signal, while the soft threshold method makes the processed signal smoother. Since the project requires high signal points and spikes, the hard threshold processing method is selected.
  • the envelope spectrum analysis is performed on the denoising parameter sequence obtained after the denoising process.
  • envelope spectrum analysis not only can the vibration occur, but also Can reflect the intensity of vibration.
  • the envelope extracted from the wavelet, wavelet packet or empirical mode decomposition signal can be further analyzed to obtain relevant features.
  • the envelope A(t) of the original vibration signal can be obtained.
  • the vibration waveform is analyzed from the envelope, and the vibration time characteristics of the circuit breaker extracted from it can reflect the working state of the circuit breaker.
  • This time domain characteristic parameter has a clear physical meaning and can directly judge the working condition of the circuit breaker.
  • the method may further include:
  • step S1555 the fingerprint feature parameter is processed by the mutation signal starting point extraction algorithm to obtain an accurate fingerprint feature parameter.
  • the vibration parameter sequence is denoised by wavelet analysis, and the fingerprint of the vibration parameter sequence is obtained by further processing by envelope analysis.
  • the fingerprint feature parameter may be further extracted by the mutation signal starting point extraction algorithm in step S1555 to obtain an accurate fingerprint feature parameter.
  • FIG. 6 is a flowchart of a mutation signal starting point extraction algorithm.
  • the algorithm first needs to set three parameters a, b, and c.
  • the a parameter is the number of points calculated each time, and the b parameter is each time. Compare thresholds, c parameters are two The number of points in the range is calculated.
  • the parameter setting should be adjusted according to the vibration signal of different circuit breakers. For the same type of circuit breaker, the parameters can be modified after one setting.
  • the starting point selected may be only the starting point of one of the multiple vibration events, so that the method cannot cover all the vibration events, and the calculation of too few points will cause a vibration event. Select multiple starting points. After repeated trials of the project, it is determined that the reasonable range of parameter a selection is 25-50, and fine adjustment can be made according to different position signals of different circuit breakers.
  • parameter b For parameter b, if the comparison threshold is chosen too large, some small but significant vibration events are ignored, which in turn leads to the finding of a large number of starting points that do not correspond to the actual physical meaning. Attempts have been made to determine that the parameter b value is selected from 4% to 10% of the signal maximum.
  • parameter c For parameter c, if the selection is too large, it will cause omission of important events, and if the selection is too small, it will cause multiple selections of one vibration event. It has been attempted to determine that the selection range of the parameter c is 40 to 150.
  • the number of starting points of the output result can be consistent with the number of vibration events.
  • FIG. 7a is a vibration signal diagram of the vibration signal diagram before the mutation signal starting point extraction algorithm and the vibration signal result processed by the mutation signal starting point extraction algorithm when the circuit breaker performs the closing operation
  • Fig. 7b is a diagram showing the vibration signal diagram before the process of the abrupt signal starting point extraction algorithm and the vibration signal result processed by the abrupt signal starting point extraction algorithm when the circuit breaker performs the opening operation.
  • the method further includes:
  • Step S18 storing the fingerprint feature parameters to the fingerprint feature database according to the working state.
  • the method further includes:
  • Step S12 stores the current value and the vibration signal in chronological order.
  • the mechanical state of the high-voltage circuit breaker is identified and classified according to the characteristic parameters obtained by the analysis, thereby realizing the diagnosis of the working state. And through the above steps S12 and S18 respectively, the original vibration signal after the fault diagnosis and the corresponding fingerprint feature parameters can be stored as historical data in the feature fingerprint database, together with the original data as the basis for the next diagnosis.
  • the test system hardware consists of a Hall current sensor, a vibration acceleration sensor, and an industrial control computer with a capture card built in.
  • the test system software is developed by LabVIEW. Sensors, capture cards, and industrial control computers are common devices that facilitate subsequent maintenance, expansion, and refinement.
  • the task of system control and human-computer interaction is realized by a LabVIEW graphical interface program.
  • System control includes acquisition card configuration, signal parameter configuration, trigger synchronization configuration, acquisition control, data filtering, data storage, signal processing and display control tasks; the human-machine interface includes three parts: parameter setting interface, data acquisition interface and signal processing interface.
  • the characteristics of the electromagnet coil current value and the vibration signal can directly reflect the action process of the electromagnet core and the related mechanism in the circuit breaker, so the coil current value and the vibration signal can be Used for the diagnosis of the working state of the circuit breaker.
  • the vibration signal generated by the mechanical vibration of the circuit breaker is collected, which corresponds to each stage of the opening and closing operation process. Due to the interference of other vibration factors on the site, more noise signals are superimposed on the vibration waveform generated by the original vibration signal. In addition, since a single opening and closing operation involves mechanical movement of a plurality of components, waveforms generated by a plurality of vibration signals are superimposed.
  • the feature extraction and fault diagnosis steps use wavelet analysis method, envelope spectrum analysis method and mutation signal starting point extraction algorithm to process the vibration signal, extract the starting point in the vibration signal as the feature quantity, and have simple operation flow and operation speed. Fast, accurate feature extraction and other advantages.
  • FIG. 8 is a block diagram showing the structure of a detecting device for a circuit breaker according to an embodiment of the present invention.
  • the system may include an acquisition module 21, a determination module 23, a processing module 25, and a comparison module 27.
  • the collecting module 21 is configured to collect the current value and the vibration signal of the electromagnet coil in the circuit breaker according to the time sequence; the determining module 23 is configured to determine the working time interval of the circuit breaker by the current value of the coil; and the processing module
  • the utility model is configured to process the vibration signal in the working time interval to obtain a fingerprint characteristic parameter for detecting the working state of the circuit breaker, and the comparison module 27 is configured to compare the fingerprint characteristic parameter with the preset fingerprint feature database. , determine the working state of the circuit breaker.
  • the working time interval of the circuit breaker can be judged by the current value of the coil, and the vibration signal generated in the working time interval can be identified. Whether the circuit breaker has failed. Therefore, the technical effect of detecting the working state of the circuit breaker can be realized only by installing the sensor outside the circuit breaker, thereby solving the problem that the detection device for detecting the circuit breaker is bulky and complicated to install, and the operation cost is high and the operation is cumbersome. Technical problem.
  • the above-mentioned acquisition module 21, determination module 23, processing module 25 and comparison module 27 may be operated in a computer terminal as part of the device, and the functions implemented by the above modules may be performed by a processor in the computer terminal.
  • the computer terminal can also be a smart phone (such as an Android phone, an iOS phone, etc.), a tablet computer, an applause computer, and a mobile Internet device (MID), a PAD, and the like.
  • the determining module 23 may perform the following steps: Step 1. Compare the current value with a preset threshold to determine a start time and an end time when the current value is greater than the threshold. Step 2: Determine the working time interval of the circuit breaker according to the start time and the end time.
  • the circuit breaker when the circuit breaker is performing the opening and closing operation, it is energized by the opening and closing electromagnet coil in the circuit breaker, and a magnetic force is generated to drive the contact movement. Therefore, by measuring the current value through the electromagnet coil, it is possible to judge the operating time interval of the circuit breaker.
  • the foregoing processing module 25 may perform the following steps:
  • step 1 the vibration signal in the working time interval is obtained.
  • step 2 the vibration signal is converted into a sequence of vibration parameters in chronological order.
  • step 3 the vibration parameter sequence is processed to determine the fingerprint feature parameters.
  • the collected vibration signal is converted into a sequence of vibration parameters that can be processed according to the timing.
  • the fingerprint characteristic parameters of the vibration signal are extracted by processing the vibration parameter sequence.
  • the method for processing the vibration parameter sequence may include a denoising process and an extraction algorithm.
  • the original vibration signal is converted into a digital fingerprint feature parameter, so that the working state of the circuit breaker can be determined by identifying the fingerprint characteristic parameter.
  • the wavelet analysis method may be used to perform denoising processing on the vibration parameter sequence, and further performing envelope spectrum analysis on the denoising parameter sequence to obtain a clear package.
  • the spectrum line is obtained, thereby obtaining the fingerprint characteristic parameters of the circuit breaker when performing the opening and closing operation.
  • the fingerprint feature parameter may be further processed by the mutation signal starting point extraction algorithm to obtain an accurate fingerprint feature parameter.
  • the vibration parameter sequence is denoised by wavelet analysis, and the vibration parameters are further processed by the envelope analysis method.
  • the fingerprint feature parameters can be further extracted by the mutation signal starting point extraction algorithm to obtain accurate fingerprint feature parameters.
  • the device may further include: a first storage module 28.
  • the first storage module 28 is configured to store the fingerprint feature parameters to the fingerprint feature database according to the working state.
  • the first storage module 28 may be operated as a part of the device in the computer terminal, and the function implemented by the module may be performed by a processor in the computer terminal, and the computer terminal may also be a smart phone (such as Android). Mobile phones, iOS phones, etc.), tablet computers, applause computers, and mobile Internet devices (MID), PAD and other terminal devices.
  • a smart phone such as Android
  • Mobile phones, iOS phones, etc. tablet computers, applause computers, and mobile Internet devices (MID), PAD and other terminal devices.
  • MID mobile Internet devices
  • the device may further include: a second storage module 22.
  • the second storage module 22 is configured to store current values and vibration signals in chronological order.
  • the foregoing second storage module 22 can be run in a computer terminal as a part of the device, and the functions implemented by the above module can be executed by a processor in the computer terminal, and the computer terminal can also be a smart phone (such as Android). Mobile phones, iOS phones, etc.), tablet computers, applause computers, and mobile Internet devices (MID), PAD and other terminal devices.
  • a smart phone such as Android
  • Mobile phones, iOS phones, etc. tablet computers, applause computers, and mobile Internet devices (MID), PAD and other terminal devices.
  • MID mobile Internet devices
  • the mechanical state of the high-voltage circuit breaker is identified and classified according to the characteristic parameters obtained by the analysis, thereby realizing the diagnosis of the working state.
  • the original vibration signal after the fault diagnosis and the corresponding fingerprint feature parameter can be stored as historical data in the feature fingerprint database, and the original data is used together with the original data. The basis for the next diagnosis.
  • Embodiments of the present invention may provide a computer terminal, which may be any one of computer terminal groups.
  • the foregoing computer terminal may also be replaced with a terminal device such as a mobile terminal.
  • the computer terminal may be located in at least one network device of the plurality of network devices of the computer network.
  • the computer terminal may execute the program code of the following steps in the method for detecting the circuit breaker: collecting the current value and the vibration signal of the electromagnet coil in the circuit breaker according to the time sequence; determining the circuit breaker by the current value of the coil Working time interval; processing the vibration signal in the working time interval to obtain the fingerprint characteristic parameter for detecting the working state of the circuit breaker; comparing the fingerprint characteristic parameter with the preset fingerprint feature database to determine the working state of the circuit breaker .
  • the computer terminal can include: one or more processors, memory, and transmission means.
  • the memory can be used to store software programs and modules, such as the detection method and device of the circuit breaker in the embodiment of the present invention, and the program instructions/modules corresponding to the system.
  • the processor executes the software program and the module stored in the memory.
  • the memory may include a high speed random access memory, and may also include non-volatile memory such as one or more magnetic storage devices, flash memory, or other non-volatile solid state memory.
  • the memory can further include memory remotely located relative to the processor, which can be connected to the terminal over a network. Examples of such networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • the above transmission device is for receiving or transmitting data via a network.
  • Specific examples of the above network may include a wired network and a wireless network.
  • the transmission device includes a Network Interface Controller (NIC) that can be connected to other network devices and routers via a network cable to communicate with the Internet or a local area network.
  • the transmission device is a Radio Frequency (RF) module for communicating with the Internet wirelessly.
  • NIC Network Interface Controller
  • RF Radio Frequency
  • the memory is used to store preset action conditions and information of the preset rights user, and an application.
  • the processor can call the memory stored information and the application by the transmitting device to execute the program code of the method steps of each of the alternative or preferred embodiments of the above method embodiments.
  • the computer terminal can also be a smart phone (such as an Android phone, an iOS phone, etc.), a tablet computer, an applause computer, and a mobile Internet device (MID), a PAD, and the like.
  • a smart phone such as an Android phone, an iOS phone, etc.
  • a tablet computer such as an iPad, Samsung Galaxy Tab, Samsung Galaxy Tab, etc.
  • MID mobile Internet device
  • PAD PAD
  • the storage medium may include: a flash disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk or an optical disk.
  • Embodiments of the present invention also provide a storage medium.
  • the foregoing storage medium may be used to save the program code executed by the detection method of the circuit breaker provided by the foregoing method embodiment, the device embodiment, and the system embodiment.
  • the storage medium may also be arranged to store program code for performing various preferred or optional method steps provided by the detection method of the circuit breaker.
  • the foregoing storage medium may be located in any one of the computer terminal groups in the computer network, or in any one of the mobile terminal groups.
  • the storage medium is configured to store program code for performing the following steps: collecting the current value and the vibration signal of the electromagnet coil in the circuit breaker in chronological order; determining the disconnection by the current value of the coil The working time interval of the device; processing the vibration signal in the working time interval to obtain the fingerprint characteristic parameter for detecting the working state of the circuit breaker; comparing the fingerprint characteristic parameter with the preset fingerprint feature database to determine the circuit breaker Working status.
  • the disclosed technical contents may be implemented in other manners.
  • the device embodiments described above are only schematic.
  • the division of the unit may be a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or may be Integrate into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, unit or module, and may be electrical or otherwise.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present invention which is essential or contributes to the prior art, or all or part of the technical solution, may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a Read-Only Memory (ROM), a Random Access Memory (RAM), a removable hard disk, a magnetic disk, or an optical disk, and the like. .

Abstract

一种断路器的检测方法、装置及系统。其中,该方法包括:按照时间顺序采集断路器中电磁铁线圈的电流值和振动信号(S11);通过线圈的电流值,确定断路器的工作时间区间(S13);对工作时间区间内的振动信号进行处理,得到用于检测断路器的工作状态的指纹特征参数(S15);将指纹特征参数与预先设置的指纹特征库进行比对,确定断路器的工作状态(S17)。解决了由于用于对断路器进行检测的设备体积庞大、安装繁琐导致的检测成本高、操作繁琐的技术问题。

Description

断路器的检测方法、装置及系统 技术领域
本发明涉及电力领域,具体而言,涉及一种断路器的检测方法、装置及系统。
背景技术
根据国际大电网会议CIGRE和国家电网公司的统计,机械故障是高压断路器的主要故障类型。尽早发现断路器电气控制回路和操动机构中的缺陷和故障,可以避免发生断路器操作故障和事故,还可以为实现断路器的状态维修提供必要的依据。
在高压断路器生产厂家,大多采用开关特性测试仪,通过对断路器线圈电流、行程和断口信号的测试和分析,得到断路器的分合闸时间、分合闸速度、行程和超程特性、弹跳等机械特性参数。在电力系统中检修人员大多采用便携式的断路器机械特性测试仪对断路器线圈电流和端口信号进行测试和分析,得到断路器的分合闸时间,对断路器的操作特性有一个总体的判断。这些测试方法,可以得到断路器总体的操作特性,测量装置本身对于故障缺陷的发现是无能为力的。现有的其他类型的高压断路器机械状态检测系统,大多只具备信号的测试和分析功能,测量的信号可以包括:线圈电流、行程、机械振动等。
综上所述,在现有的对高压断路器的检测技术中,存在如下缺点:
1)开关厂家在检测断路器时采用的开关特性测试仪,体积较大,在断路器上安装行程传感器也很繁琐。因此,上述检测设备不利于携带和现场使用。另外,这种测试设备只能离线使用,所以检测的成本非常高。于此同时,上述检测设备还存在软硬件技术通用性差,不利于产品的维护和更新换代。
2)现有的检测设备一般都具有机械特性测试功能,但不具有故障诊断功能。只能给出断路器操作特性的基本参数,无法对断路器当前的机械状态和故障缺陷类型给出定量的判断。
针对在现有技术中由于用于对断路器进行检测的设备体积庞大、安装繁琐导致的检测成本高、操作繁琐的问题,目前尚未提出有效的解决方案。
发明内容
本发明实施例提供了一种断路器的检测方法、装置及系统,以至少解决由于用于对断路器进行检测的设备体积庞大、安装繁琐导致的检测成本高、操作繁琐的技术问题。
为了解决上述技术问题,本发明实施例公开了如下技术方案:
根据本发明实施例的一个方面,提供了一种断路器的检测方法,包括:按照时间顺序采集断路器中电磁铁线圈的电流值和振动信号;通过线圈的电流值,确定断路器的工作时间区间;对工作时间区间内的振动信号进行处理,得到用于检测断路器的工作状态的指纹特征参数;将指纹特征参数与预先设置的指纹特征库进行比对,确定断路器的工作状态。
进一步地,通过线圈的电流值,确定断路器的工作时间区间包括:将电流值与预先设置的阈值进行比对,确定电流值大于阈值的起始时间和终止时间;根据起始时间和终止时间,确定断路器的工作时间区间。
进一步地,将电流值与预先设置的阈值进行比对,确定电流值大于阈值的起始时间和终止时间包括:将电流值与阈值进行比对;当电流值大于阈值时,确定当前时刻为起始时间;在确定起始时间后,将电流值与阈值进行比对;当电流值小于或等于阈值时,记录当前时刻为终止时间。
进一步地,对工作时间区间内的振动信号进行处理,得到用于检测断路器的工作状态的指纹特征参数包括:获取工作时间区间内的振动信号;将振动信号按照时间顺序转换为振动参数序列;对振动参数序列进行处理,确定指纹特征参数。
进一步地,对振动参数序列进行处理,确定指纹特征参数包括:对振动参数序列进行去噪处理,得到去噪参数序列;对去噪参数序列进行包络谱分析,得到指纹特征参数。
进一步地,在对去噪参数序列进行包络谱分析,得到指纹特征参数之后,方法还包括:通过突变信号起始点提取算法对指纹特征参数进行处理,得到精确指纹特征参数。
进一步地,在将指纹特征参数与预先设置的指纹特征库进行比对,确定断路器的工作状态之后,方法还包括:根据工作状态将指纹特征参数存储至指纹特征库。
进一步地,在按照时间顺序采集断路器中电磁铁线圈的电流值和振动信号之后,方法还包括:将电流值和振动信号,按时间顺序进行存储。
根据本发明实施例的另一方面,还提供了一种断路器的检测装置,包括:采集模块,用于按照时间顺序采集断路器中电磁铁线圈的电流值和振动信号;确定模块,用于通过线圈的电流值,确定断路器的工作时间区间;处理模块,用于对工作时间区间内的振动信号进行处理,得到用于检测断路器的工作状态的指纹特征参数;比对模块,用于将指纹特征参数与预先设置的指纹特征库进行比对,确定断路器的工作状态。
进一步地,装置还包括:第一存储模块,用于根据工作状态将指纹特征参数存储至指纹特征库。
进一步地,装置还包括:第二存储模块,用于将电流值和振动信号,按时间顺序进行存储。
根据本发明实施例的另一方面,还提供了一种断路器的检测系统,包括:电流传感器,用于获取断路器中电磁铁线圈的电流值;振动传感器,用于获取断路器的振动信号;采集器,分别与电流传感器和振动传感器建立通讯连接,用于按照时间顺序通过电流传感器和振动传感器采集电流值和振动信号;控制器,与采集器建立通讯连接,用于通过线圈的电流值,确定断路器的工作时间区间;对工作时间区间内的振动信号进行处理,得到用于检测断路器的工作状态的指纹特征参数;将指纹特征参数与预先设置的指纹特征库进行比对,确定断路器的工作状态。
进一步地,系统还包括:存储器,与控制器建立通讯连接,用于根据工作状态存储指纹特征参数,并按时间顺序存储电流值和振动信号。
在本发明实施例中,采用按照时间顺序采集断路器中电磁铁线圈的电流值和振动信号;通过线圈的电流值,确定断路器的工作时间区间;对工作时间区间内的振动信号进行处理,得到用于检测断路器的工作状态的指纹特征参数;将指纹特征参数与预先设置的指纹特征库进行比对,确定断路器的工作状态的方式,通过采集模块,用于按照时间顺序采集断路器中电磁铁线圈的电流值和振动信号;确定模块,用于通过线圈的电流值,确定断路器的工作时间区间;处理模块,用于对工作时间区间内的振动信号进行处理,得到用于检测断路器的工作状态的指纹特征参数;比对模块,用于将指纹特征参数与预先设置的指纹特征库进行比对,确定断路器的工作状态,达到了在断路器运行当中,对断路器的工作状态进行检测的目的,从而实现了只通过在断路器外部安装传感器即可对断路器的工作状态进行检测的技术效果,进而解决了由于用于 对断路器进行检测的设备体积庞大、安装繁琐导致的检测成本高、操作繁琐的技术问题。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。通过附图所示,本发明的上述及其它目的、特征和优势将更加清晰。在全部附图中相同的附图标记指示相同的部分。并未刻意按实际尺寸等比例缩放绘制附图,重点在于示出本发明的主旨。
图1是根据本发明实施例的一种断路器的检测系统的结构示意图;
图2是根据本发明实施例的一种可选的断路器的检测系统的结构示意图的示意图;
图3是根据本发明实施例的一种断路器的检测方法的流程示意图;
图4是根据本发明实施例的线圈电流值与振动信号波形对照图;
图5是根据本发明实施例的振动信号分析处理流程图;
图6是根据本发明实施例的突变信号起始点提取算法流程图;
图7a是根据本发明实施例的断路器在进行合闸操作时的经突变信号起始点提取算法处理前的振动信号图与经突变信号起始点提取算法处理后的振动信号结果图;
图7b是根据本发明实施例的断路器在进行分闸操作时的经突变信号起始点提取算法处理前的振动信号图与经突变信号起始点提取算法处理后的振动信号结果图;
图8是根据本发明实施例的一种断路器的检测装置的结构示意图;
图9是根据本发明实施例的一种优选的断路器的检测装置的结构示意图;以及
图10是根据本发明实施例的一种优选的断路器的检测装置的结构示意图。
具体实施方式
为了使本技术领域的人员更好地理解本发明实施例中的技术方案,并使本发明实施例解决由于用于对断路器进行检测的设备体积庞大、安装繁琐导致的检测成本高、操作繁琐的问题时,可以实现的目的、特征和优点能够更加明显易懂,下面结合附图对本发明提供的定位页面内容的方法和装置的实施例中技术方案作进一步详细的说明。
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
根据本发明实施例,提供了一种断路器的检测系统实施例。图1是根据本发明实施例断路器的检测系统的结构示意图。
如图1所示,该系统可以包括:电流传感器11、振动传感器13、采集器15和控制器17。
其中,电流传感器11,用于获取断路器中电磁铁线圈的电流值;振动传感器13,用于获取断路器的振动信号;采集器15,分别与电流传感器11和振动传感器13建立通讯连接,用于按照时间顺序通过电流传感器和振动传感器采集电流值和振动信号;控制器17,与采集器15建立通讯连接,用于通过线圈的电流值,确定断路器的工作时间区间;对工作时间区间内的振动信号进行处理,得到用于检测断路器的工作状态的指纹特征参数;将指纹特征参数与预先设置的指纹特征库进行比对,确定断路器的工作状态。
通过上述电流传感器11、振动传感器13、采集器15和控制器17,可以通过对线圈的电流值判断断路器的工作时间区间,并通过对工作时间区间内产生的振动信号的识别,来确定断路器是否出现故障。从而实现只通过在断路器外部安装传感器即可对断路器的工作状态进行检测的技术效果,进而解决了由于用于对断路器进行检测的设备体积庞大、安装繁琐导致的检测成本高、操作繁琐的技术问题。
作为一个可选实施例,如图2所示,上述系统还可以包括:存储器19。
其中,存储器19,与所述控制器17建立通讯连接,用于根据所述工作状态存储所述指纹特征参数,并按时间顺序存储所述电流值和所述振动信号。
通过按照分析得到的特征参数对高压断路器的机械状态进行识别和分类,从而实现工作状态的诊断。并且分别通过上述存储器19,可以将进行故障诊断后的原始的振动信号和与之对应的指纹特征参数作为历史数据存入特征指纹库,与原有数据一起作为下一次诊断的依据。
作为一个可选实施例,测试系统硬件由霍尔电流传感器、振动加速度传感器和内置有采集卡(即采集器)的工业控制计算机(即控制器)构成,测试系统软件由LabVIEW开发而成。传感器、采集卡采集器和工业控制计算机均为通用设备,便于后续维护、扩展和完善。通过基于LabVIEW图形界面程序实现系统控制和人机交互的任务。系统控制包括采集卡配置、信号参数配置、触发同步配置、采集控制、数据滤波、数据存储、信号处理和显示控制任务;人机接口包括参数设置界面、数据采集界面和信号处理界面三个部分。
因为断路器在进行分合闸操作时,电磁铁线圈电流值和振动信号的特征可以直接反映断路器中电磁铁铁心和相关机构的机械操作的动作过程,所以,可以将线圈电流值和振动信号用于对断路器的工作状态的诊断。采集断路器因机械振动而产生的振动信号,对应了分合闸操作过程的各个阶段。由于现场其他振动因素的干扰,在原始的振动信号所生成的振动波形上叠加了较多的噪声信号。此外,由于一次分合闸操作涉及多个部件的机械运动,因此多个振动信号产生的波形会叠加在一起。通过上述测试系统,通过信号采集、特征提取、故障诊断、指纹库积累四个步骤,对断路器的工作状态进行检测,并将线圈电流和振动信号进行采集并自动、有序地存储在系统硬盘中。其中,特征提取和故障诊断步骤中使用小波分析方法、包络谱分析法和突变信号起始点提取算法对振动信号进行处理,提取振动信号中的起始点作为特征量,具有操作流程简单、运算速度快、特征提取准确等优势。
根据本发明实施例,提供了一种断路器的检测的方法实施例,需要说明的是,在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行,并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
图3是根据本发明实施例的断路器的检测方法的流程示意图,如图3所示,该方法包括如下步骤:
步骤S11,按照时间顺序采集断路器中电磁铁线圈的电流值和振动信号。
步骤S13,通过线圈的电流值,确定断路器的工作时间区间。
步骤S15,对工作时间区间内的振动信号进行处理,得到用于检测断路器的工作状态的指纹特征参数。
步骤S17,将指纹特征参数与预先设置的指纹特征库进行比对,确定断路器的工作状态。
通过上述步骤S11至步骤S17,可以通过对线圈的电流值判断断路器的工作时间区间,并通过对工作时间区间内产生的振动信号的识别,来确定断路器是否出现故障。从而实现只通过在断路器外部安装传感器即可对断路器的工作状态进行检测的技术效果,进而解决了由于用于对断路器进行检测的设备体积庞大、安装繁琐导致的检测成本高、操作繁琐的技术问题。
作为一个可选实施例,高压断路器的操作起始于分合闸电磁铁线圈上电,然后通过一系列的机械联动实现将储能机构中能量的释放,进而通过对能量释放产生的力继续控制,使其带动断路器中动触头运动。通过电磁铁线圈电流可以直接反映电磁铁铁心运动和与脱扣部件的碰撞情况。在高压断路器的整个操作过程中,零部件之间的机械撞击、摩擦,以及机械力、电动力等作用均可以激发机械振动。而机械振动可以通过设备零部件之间的连接向外传播,因此可以在传播路径和开关的机座、外壳上测得。
故通过线圈的电流值可以利用基于霍尔效应原理的电流传感器进行测量,机械振动信号可以通过加速度传感器进行测量。
作为一个可选实施例,由于机械振动会产生与机械振动振动频率响应的声波,因此,可以直接通过声音传感器对声波进行采集,进而对采集到的声波进行测量来对断路器进行检测。
作为一个可选实施例,在步骤S13通过线圈的电流值,确定断路器的工作时间区间中,可以包括:
步骤S131,将电流值与预先设置的阈值进行比对,确定电流值大于阈值的起始时间和终止时间。
步骤S133,根据起始时间和终止时间,确定断路器的工作时间区间。
如图4所示,因为,当断路器在进行分合闸操作,是由断路器中分合闸电磁铁线圈通电,产生磁力来带动触头运动的。因此,通过测定通过电磁铁线圈的电流值,可以判断断路器的工作时间区间。
作为一个可选实施例,在步骤S131将电流值与预先设置的阈值进行比对,确定电流值大于阈值的起始时间和终止时间中,可以包括:
步骤S1311,将电流值与阈值进行比对。
步骤S1313,当电流值大于阈值时,确定当前时刻为起始时间。
步骤S1315,在确定起始时间后,将电流值与阈值进行比对。
步骤S1317,当电流值小于或等于阈值时,记录当前时刻为终止时间。
具体的,通过上述步骤S1311至步骤S1317,将通过线圈的电流值与预先设置的阈值进行比对。当确定电流值大于阈值时,确定断路器分合闸操作开始,记录当前时刻为断路器分合闸操作的起始时间。在确定起始时刻后,继续将通过线圈的电流值与阈值进行比对。当电流值小于阈值时,确定断路器分合闸操作结束,记录当前时刻为断路器分合闸操作的终止时间。
作为一个可选实施例,在步骤S15对工作时间区间内的振动信号进行处理,得到用于检测断路器的工作状态的指纹特征参数中,可以包括:
步骤S151,获取工作时间区间内的振动信号。
步骤S153,将振动信号按照时间顺序转换为振动参数序列。
步骤S155,对振动参数序列进行处理,确定指纹特征参数。
具体的,如图5所示,通过上述步骤S151至步骤S153,将采集到的振动信号按照时序,转化为可被处理的振动参数序列。通过对振动参数序列进行处理,提取得到 振动信号的指纹特征参数。其中,对振动参数序列进行处理的方法可以包括去噪处理和提取算法。通过对振动参数序列的处理,将原始的振动信号转化为数字的指纹特征参数,使得可以通过对指纹特征参数的识别,来确定断路器的工作状态。
作为一个可选实施例,在步骤S155对振动参数序列进行处理,确定指纹特征参数中,可以包括:
步骤S1551,对振动参数序列进行去噪处理,得到去噪参数序列。
步骤S1553,对去噪参数序列进行包络谱分析,得到指纹特征参数。
通过上述步骤S1551至步骤S1553,对振动参数序列进行去早处理,处理掉试验现场的噪声。而后将去噪后的去噪参数序列进行把包络谱分析,得到清晰的指纹特征参数。
作为一个可选实施例,上述步骤S1551中的去噪处理,可以运用小波分析法实现,而后通过步骤S1553对去噪参数序列进行希尔伯特变换、低通滤波等处理得到清晰的包络谱线,得到断路器在进行分合闸操作时的指纹特征参数。
具体的,小波变换是20世纪80年代中后期发展起来的一种新型线性时频分析方法。小波函数的定义为:
若Ψ(t)∈L2(R),式中,L2(R)表示平方可积的时域空间。
且其傅立叶变换Ψ(ω)满足式如下条件:
Figure PCTCN2015082381-appb-000001
则称Ψ(t)为一个小波母函数,将小波母函数Ψ(t)进行伸缩和平移,就可以得到函数:
Figure PCTCN2015082381-appb-000002
式中,a为尺度因子,τ为平移因子,Ψa,τ(t)为依赖于参数a和τ的小波基函数。
将任意L2(R)空间中的函数f(t)在小波基下展开,称这种展开为函数f(t)的小波变换,其表达式为:
Figure PCTCN2015082381-appb-000003
由以上定义可以看出,小波变化本质上是一种积分变化,能够利用变化得到的小波系数将原函数的时间尺度和频率尺度的信息表征出来。
目前对小波分析法主要有以下几方面应用:1)利用小波分析法对进行振动信号进行去噪处理。2)生成时间-尺度平面上的谱图,利用正常状态与故障状态的区别进行故障诊断。3)利用小波计算振动信号包络的奇异性作为特征量。4)利用小波分解信号到不同频率层,利用不同层信号的幅值、奇异性或小波系数作为特征量。本文主要采取小波去噪处理和信号时频分析两种应用。
由于噪声信号通常表现为高频信号,对小波分解得到的高频段小波系数进行消噪处理,再重构即得到去噪信号。
小波分解需要选择某种小波,并确定小波分解层次。本文尝试了不同的小波种类和分解层次,发现各种小波从3层到13层对振动信号的去噪效果差异不大,但运算时长增加很多,最终选择db4小波进行3层小波分解。
接下来对小波分解得到的高频段小波系数做阈值化处理。首先需要进行阈值的选取,目前主要有四种方法:固定阈值、最小极大方差阈值、基于无偏似然估计的阈值估计和选择启发式阈值。其中固定阈值和启发式阈值去噪较为彻底,但对信号高频成分和噪声辨别能力较弱,而最小极大方差阈值在此方面有较好的性能,因此本文选择最小极大方差阈值法。
使用阈值对小波系数进行处理时有硬处理和软处理两种方式。硬阈值处理能够较好的保持原信号的突变与峰值信息,而软阈值法会使处理后的信号较为平滑。由于本项目对信号的突变点和尖峰点要求较高,因此选择硬阈值处理方式。
最后对低频小波系数和阈值处理后的高频小波系数进行重构即成小波去噪过程。
进一步的,在通过小波分析法对振动参数序列进行去噪处理后,对去噪处理后得到的去噪参数序列进行包络谱分析。通过包络谱分析不但能获得振动发生的时间,还 能反映振动的强烈程度。从小波、小波包或经验模态法分解后的信号中提取的包络,也可以进一步分析得到相关特征。
最常用的信号包络提取方法是希尔伯特变化法。
其中,一个实信号x(t)的希尔伯特变化定义为:
Figure PCTCN2015082381-appb-000004
得到x(t)的解析信号,其中,t和τ代表时间轴上不同的点;
进一步的,通过
Figure PCTCN2015082381-appb-000005
获取g(t)的幅值;
进而通过:
Figure PCTCN2015082381-appb-000006
便可以得到原始振动信号的包络A(t)。
从包络对振动波形进行分析,从中提取出的断路器的振动时间特征能够反映出断路器的工作状态。这种时域特征参数具有明确的物理意义,可以对断路器的工作状况进行相对直接判断。
作为一个可选实施例,在步骤S1553对去噪参数序列进行包络谱分析,得到指纹特征参数之后,方法还可以包括:
步骤S1555,通过突变信号起始点提取算法对指纹特征参数进行处理,得到精确指纹特征参数。
为了使指纹特征参数更加精确,以及方便批量处理、提高数据处理的速度与准确性,在通过小波分析法对振动参数序列进行去噪,并通过包络分析法进一步处理后得到振动参数序列的指纹特征参数之后,还可以通过步骤S1555,对指纹特征参数通过突变信号起始点提取算法,对指纹特征参数进行进一步提取,得到精确指纹特征参数。
具体的,如图6所示,图6是突变信号起始点提取算法的流程图,本算法首先需设定a、b、c三个参数,a参数为每次计算点数,b参数为每次比较阈值,c参数为两 次计算范围间隔点数。参数的设定应根据不同断路器的振动信号情况做出相应调整,对于同一型号对断路器,参数可以在一次设定之后不做修改。
以参数a为计算范围,找到该范围内的最大值和最小值。然后求出两者之间的差值与参数b进行比较。如果大于参数b,且范围a内的最小值所对应的点数与上一次计算的起始点差值大于参数c,则将该最小值对应的点数作为一次振动事件的起始点。
对于参数a,如果每次计算点数过长,则选择的起始点可能只是多次振动事件中某一次的起始点,使该方法无法覆盖全部的振动事件,而计算点数过少会造成一次振动事件选出多个起始点。经过项目的反复尝试,确定参数a选取的合理范围为25~50,根据不同断路器不同位置信号进行微调即可。
对于参数b,如果比较阈值选择过大,会造成一些振幅较小但意义重大的振动事件被忽略,相反则会导致找到大量与实际物理意义不符的起始点。经尝试确定参数b值的选取范围为信号最大值的4%~10%。
对于参数c,如果选择过大会造成对重要事件的遗漏,而选择过小会造成对一次振动事件的多次选取。经尝试确定参数c的选取范围为40~150。
使用上述参数选取方法,可使输出结果的起始点个数与振动事件个数一致。
如图7a和图7b所示,图7a为断路器在进行合闸操作时的经突变信号起始点提取算法处理前的振动信号图与经突变信号起始点提取算法处理后的振动信号结果图,图7b为断路器在进行分闸操作时的经突变信号起始点提取算法处理前的振动信号图与经突变信号起始点提取算法处理后的振动信号结果图。
处理后的结果图与处理前的振动信号图比较,可以看出,虽然经过小波去噪后希尔伯特变换得到的包络较为清晰,也可以进行事件起始点提取。但通过图7a和图7b中的经突变信号起始点提取算法处理后的振动信号结果图可以看出,突变信号起始点提取算法更加准确的找出了合闸过程中五次振动的振动起始点和分闸操作过程中四次振动的起始点,验证了此方法的有效性。通过使用此突变信号起始点提取算法对振动信号进行分析得到精确指纹特征参数,然后以振动发生时刻作为指纹特征,对断路器机械状态进行分析。
作为一个可选实施例,在步骤S17将指纹特征参数与预先设置的指纹特征库进行比对,确定断路器的工作状态之后,方法还包括:
步骤S18,根据工作状态将指纹特征参数存储至指纹特征库。
作为一个可选实施例,在步骤S11按照时间顺序采集断路器中电磁铁线圈的电流值和振动信号之后,方法还包括:
步骤S12将电流值和振动信号,按时间顺序进行存储。
通过按照分析得到的特征参数对高压断路器的机械状态进行识别和分类,从而实现工作状态的诊断。并且分别通过上述步骤S12和步骤S18,可以将进行故障诊断后的原始的振动信号和与之对应的指纹特征参数作为历史数据存入特征指纹库,与原有数据一起作为下一次诊断的依据。
作为一个可选实施例,测试系统硬件由霍尔电流传感器、振动加速度传感器和内置有采集卡的工业控制计算机构成,测试系统软件由LabVIEW开发而成。传感器、采集卡和工业控制计算机均为通用设备,便于后续维护、扩展和完善。通过基于LabVIEW图形界面程序实现系统控制和人机交互的任务。系统控制包括采集卡配置、信号参数配置、触发同步配置、采集控制、数据滤波、数据存储、信号处理和显示控制任务;人机接口包括参数设置界面、数据采集界面和信号处理界面三个部分。
因为断路器在进行分合闸操作时,电磁铁线圈电流值和振动信号的特征可以直接反映断路器中电磁铁铁心和相关机构的机械操作的动作过程,所以,可以将线圈电流值和振动信号用于对断路器的工作状态的诊断。采集断路器因机械振动而产生的振动信号,对应了分合闸操作过程的各个阶段。由于现场其他振动因素的干扰,在原始的振动信号所生成的振动波形上叠加了较多的噪声信号。此外,由于一次分合闸操作涉及多个部件的机械运动,因此多个振动信号产生的波形会叠加在一起。通过上述测试系统,通过信号采集、特征提取、故障诊断、指纹库积累四个步骤,对断路器的工作状态进行检测,并将线圈电流和振动信号进行采集并自动、有序地存储在系统硬盘中。其中,特征提取和故障诊断步骤中使用小波分析方法、包络谱分析法和突变信号起始点提取算法对振动信号进行处理,提取振动信号中的起始点作为特征量,具有操作流程简单、运算速度快、特征提取准确等优势。
根据本发明实施例,提供了一种断路器的检测装置实施例。图8是根据本发明实施例断路器的检测装置的结构示意图。
如图8所示,该系统可以包括:采集模块21、确定模块23、处理模块25和比对模块27。
其中,采集模块21,用于按照时间顺序采集断路器中电磁铁线圈的电流值和振动信号;确定模块23,用于通过线圈的电流值,确定断路器的工作时间区间;处理模块 25,用于对工作时间区间内的振动信号进行处理,得到用于检测断路器的工作状态的指纹特征参数;比对模块27,用于将指纹特征参数与预先设置的指纹特征库进行比对,确定断路器的工作状态。
通过上述采集模块21、确定模块23、处理模块25和比对模块27,可以通过对线圈的电流值判断断路器的工作时间区间,并通过对工作时间区间内产生的振动信号的识别,来确定断路器是否出现故障。从而实现只通过在断路器外部安装传感器即可对断路器的工作状态进行检测的技术效果,进而解决了由于用于对断路器进行检测的设备体积庞大、安装繁琐导致的检测成本高、操作繁琐的技术问题。
此处需要说明的是,上述采集模块21、确定模块23、处理模块25和比对模块27可以作为装置的一部分运行在计算机终端中,可以通过计算机终端中的处理器来执行上述模块实现的功能,计算机终端也可以是智能手机(如Android手机、iOS手机等)、平板电脑、掌声电脑以及移动互联网设备(Mobile Internet Devices,MID)、PAD等终端设备。
作为一个可选实施例,上述确定模块23,可以执行如下步骤:步骤1,将电流值与预先设置的阈值进行比对,确定电流值大于阈值的起始时间和终止时间。步骤2,根据起始时间和终止时间,确定断路器的工作时间区间。
因为,当断路器在进行分合闸操作,是由断路器中分合闸电磁铁线圈通电,产生磁力来带动触头运动的。因此,通过测定通过电磁铁线圈的电流值,可以判断断路器的工作时间区间。
作为一个可选实施例,上述处理模块25,可以执行如下步骤:
步骤1,获取工作时间区间内的振动信号。
步骤2,将振动信号按照时间顺序转换为振动参数序列。
步骤3,对振动参数序列进行处理,确定指纹特征参数。
具体的,如图5所示,通过上述步骤,将采集到的振动信号按照时序,转化为可被处理的振动参数序列。通过对振动参数序列进行处理,提取得到振动信号的指纹特征参数。其中,对振动参数序列进行处理的方法可以包括去噪处理和提取算法。通过对振动参数序列的处理,将原始的振动信号转化为数字的指纹特征参数,使得可以通过对指纹特征参数的识别,来确定断路器的工作状态。
作为一个可选实施例,在上述对振动参数序列进行处理的步骤中,可以运用小波分析法实现对振动参数序列进行去噪处理,并进一步对去噪参数序列进行包络谱分析得到清晰的包络谱线,从而得到断路器在进行分合闸操作时的指纹特征参数。
作为一个可选实施例,在得到指纹特征参数之后,还可以进一步通过突变信号起始点提取算法对指纹特征参数进行处理,得到精确指纹特征参数。
具体的,为了使指纹特征参数更加精确,以及方便批量处理、提高数据处理的速度与准确性,在通过小波分析法对振动参数序列进行去噪,并通过包络分析法进一步处理后得到振动参数序列的指纹特征参数之后,还可以通过突变信号起始点提取算法,对指纹特征参数进行进一步提取,得到精确指纹特征参数。
作为一个可选实施例,如图9所示,装置还可以包括:第一存储模块28。其中,第一存储模块28,用于根据工作状态将指纹特征参数存储至指纹特征库。
此处需要说明的是,上述第一存储模块28可以作为装置的一部分运行在计算机终端中,可以通过计算机终端中的处理器来执行上述模块实现的功能,计算机终端也可以是智能手机(如Android手机、iOS手机等)、平板电脑、掌声电脑以及移动互联网设备(Mobile Internet Devices,MID)、PAD等终端设备。
作为一个可选实施例,如图10所示,装置还可以包括:第二存储模块22。其中,第二存储模块22,用于将电流值和振动信号,按时间顺序进行存储。
此处需要说明的是,上述第二存储模块22可以作为装置的一部分运行在计算机终端中,可以通过计算机终端中的处理器来执行上述模块实现的功能,计算机终端也可以是智能手机(如Android手机、iOS手机等)、平板电脑、掌声电脑以及移动互联网设备(Mobile Internet Devices,MID)、PAD等终端设备。
通过按照分析得到的特征参数对高压断路器的机械状态进行识别和分类,从而实现工作状态的诊断。并且分别通过上述第一存储模块28和第二存储模块22,可以将进行故障诊断后的原始的振动信号和与之对应的指纹特征参数作为历史数据存入特征指纹库,与原有数据一起作为下一次诊断的依据。
本发明的实施例可以提供一种计算机终端,该计算机终端可以是计算机终端群中的任意一个计算机终端设备。可选地,在本实施例中,上述计算机终端也可以替换为移动终端等终端设备。
可选地,在本实施例中,上述计算机终端可以位于计算机网络的多个网络设备中的至少一个网络设备。
在本实施例中,上述计算机终端可以执行断路器的检测方法中以下步骤的程序代码:按照时间顺序采集断路器中电磁铁线圈的电流值和振动信号;通过线圈的电流值,确定断路器的工作时间区间;对工作时间区间内的振动信号进行处理,得到用于检测断路器的工作状态的指纹特征参数;将指纹特征参数与预先设置的指纹特征库进行比对,确定断路器的工作状态。
可选地,该计算机终端可以包括:一个或多个处理器、存储器、以及传输装置。
其中,存储器可用于存储软件程序以及模块,如本发明实施例中的断路器的检测方法、装置及系统对应的程序指令/模块,处理器通过运行存储在存储器内的软件程序以及模块,从而执行各种功能应用以及数据处理,即实现上述的断路器的检测方法。存储器可包括高速随机存储器,还可以包括非易失性存储器,如一个或者多个磁性存储装置、闪存、或者其他非易失性固态存储器。在一些实例中,存储器可进一步包括相对于处理器远程设置的存储器,这些远程存储器可以通过网络连接至终端。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
上述的传输装置用于经由一个网络接收或者发送数据。上述的网络具体实例可包括有线网络及无线网络。在一个实例中,传输装置包括一个网络适配器(Network Interface Controller,NIC),其可通过网线与其他网络设备与路由器相连从而可与互联网或局域网进行通讯。在一个实例中,传输装置为射频(Radio Frequency,RF)模块,其用于通过无线方式与互联网进行通讯。
其中,具体地,存储器用于存储预设动作条件和预设权限用户的信息、以及应用程序。
处理器可以通过传输装置调用存储器存储的信息及应用程序,以执行上述方法实施例中的各个可选或优选实施例的方法步骤的程序代码。
本领域普通技术人员可以理解,计算机终端也可以是智能手机(如Android手机、iOS手机等)、平板电脑、掌声电脑以及移动互联网设备(Mobile Internet Devices,MID)、PAD等终端设备。
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步骤是可以通过程序来指令终端设备相关的硬件来完成,该程序可以存储于一计算机可读存储介 质中,存储介质可以包括:闪存盘、只读存储器(Read-Only Memory,ROM)、随机存取器(Random Access Memory,RAM)、磁盘或光盘等。
本发明的实施例还提供了一种存储介质。可选地,在本实施例中,上述存储介质可以用于保存上述方法实施例、装置实施例和系统实施例所提供的断路器的检测方法所执行的程序代码。
可选地,在本实施例中,存储介质还可以被设置为存储用于执行断路器的检测方法提供的各种优选地或可选的方法步骤的程序代码。
可选地,在本实施例中,上述存储介质可以位于计算机网络中计算机终端群中的任意一个计算机终端中,或者位于移动终端群中的任意一个移动终端中。
可选地,在本实施例中,存储介质被设置为存储用于执行以下步骤的程序代码:按照时间顺序采集断路器中电磁铁线圈的电流值和振动信号;通过线圈的电流值,确定断路器的工作时间区间;对工作时间区间内的振动信号进行处理,得到用于检测断路器的工作状态的指纹特征参数;将指纹特征参数与预先设置的指纹特征库进行比对,确定断路器的工作状态。
上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。
在本发明的上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
在本申请所提供的几个实施例中,应该理解到,所揭露的技术内容,可通过其它的方式实现。其中,以上所描述的装置实施例仅仅是示意性的,例如所述单元的划分,可以为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,单元或模块的间接耦合或通信连接,可以是电性或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可为个人计算机、服务器或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (15)

  1. 一种断路器的检测方法,其特征在于,包括:
    按照时间顺序采集断路器中电磁铁线圈的电流值和振动信号;
    通过所述线圈的电流值,确定所述断路器的工作时间区间;
    对所述工作时间区间内的所述振动信号进行处理,得到用于检测所述断路器的工作状态的指纹特征参数;
    将所述指纹特征参数与预先设置的指纹特征库进行比对,确定所述断路器的工作状态。
  2. 根据权利要求1所述的方法,其特征在于,通过所述线圈的电流值,确定所述断路器的工作时间区间包括:
    将所述电流值与预先设置的阈值进行比对,确定所述电流值大于所述阈值的起始时间和终止时间;
    根据所述起始时间和所述终止时间,确定所述断路器的所述工作时间区间。
  3. 根据权利要求2所述的方法,其特征在于,将所述电流值与预先设置的阈值进行比对,确定所述电流值大于所述阈值的起始时间和终止时间包括:
    将所述电流值与所述阈值进行比对;
    当所述电流值大于所述阈值时,确定当前时刻为所述起始时间;
    在确定所述起始时间后,将所述电流值与所述阈值进行比对;
    当所述电流值小于或等于所述阈值时,记录当前时刻为所述终止时间。
  4. 根据权利要求1所述的方法,其特征在于,对所述工作时间区间内的所述振动信号进行处理,得到用于检测所述断路器的工作状态的指纹特征参数包括:
    获取所述工作时间区间内的所述振动信号;
    将所述振动信号按照时间顺序转换为振动参数序列;
    对所述振动参数序列进行处理,确定所述指纹特征参数。
  5. 根据权利要求4所述的方法,其特征在于,对所述振动参数序列进行处理,确定所述指纹特征参数包括:
    对所述振动参数序列进行去噪处理,得到去噪参数序列;
    对所述去噪参数序列进行包络谱分析,得到所述指纹特征参数。
  6. 根据权利要求5所述的方法,其特征在于,在对所述去噪参数序列进行包络谱分析,得到所述指纹特征参数之后,所述方法还包括:
    通过突变信号起始点提取算法对所述指纹特征参数进行处理,得到精确指纹特征参数。
  7. 根据权利要求1所述的方法,其特征在于,在将所述指纹特征参数与预先设置的指纹特征库进行比对,确定所述断路器的工作状态之后,所述方法还包括:
    根据所述工作状态将所述指纹特征参数存储至所述指纹特征库。
  8. 根据权利要求7所述的方法,其特征在于,在按照时间顺序采集断路器中电磁铁线圈的电流值和振动信号之后,所述方法还包括:
    将所述电流值和所述振动信号,按时间顺序进行存储。
  9. 一种断路器的检测装置,其特征在于,包括:
    采集模块,用于按照时间顺序采集断路器中电磁铁线圈的电流值和振动信号;
    确定模块,用于通过所述线圈的电流值,确定所述断路器的工作时间区间;
    处理模块,用于对所述工作时间区间内的所述振动信号进行处理,得到用于检测所述断路器的工作状态的指纹特征参数;
    比对模块,用于将所述指纹特征参数与预先设置的指纹特征库进行比对,确定所述断路器的工作状态。
  10. 根据权利要求9所述的装置,其特征在于,所述装置还包括:
    第一存储模块,用于根据所述工作状态将所述指纹特征参数存储至所述指纹特征库。
  11. 根据权利要求10所述的装置,其特征在于,所述装置还包括:
    第二存储模块,用于将所述电流值和所述振动信号,按时间顺序进行存储。
  12. 一种断路器的检测系统,其特征在于,包括:
    电流传感器,用于获取断路器中电磁铁线圈的电流值;
    振动传感器,用于获取所述断路器的振动信号;
    采集器,分别与所述电流传感器和所述振动传感器建立通讯连接,用于按照时间顺序通过所述电流传感器和所述振动传感器采集所述电流值和所述振动信号;
    控制器,与所述采集器建立通讯连接,用于通过所述线圈的电流值,确定所述断路器的工作时间区间;对所述工作时间区间内的所述振动信号进行处理,得到用于检测所述断路器的工作状态的指纹特征参数;将所述指纹特征参数与预先设置的指纹特征库进行比对,确定所述断路器的工作状态。
  13. 根据权利要求12所述的系统,其特征在于,所述系统还包括:
    存储器,与所述控制器建立通讯连接,用于根据所述工作状态存储所述指纹特征参数,并按时间顺序存储所述电流值和所述振动信号。
  14. 一种计算机终端,用于执行所述权利要求1所述的断路器的检测方法提供的步骤的程序代码。
  15. 一种存储介质,用于保存所述权利要求1所述的断路器的检测方法所执行的程序代码。
PCT/CN2015/082381 2015-06-25 2015-06-25 断路器的检测方法、装置及系统 WO2016206056A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/082381 WO2016206056A1 (zh) 2015-06-25 2015-06-25 断路器的检测方法、装置及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/082381 WO2016206056A1 (zh) 2015-06-25 2015-06-25 断路器的检测方法、装置及系统

Publications (1)

Publication Number Publication Date
WO2016206056A1 true WO2016206056A1 (zh) 2016-12-29

Family

ID=57584567

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/082381 WO2016206056A1 (zh) 2015-06-25 2015-06-25 断路器的检测方法、装置及系统

Country Status (1)

Country Link
WO (1) WO2016206056A1 (zh)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106597275A (zh) * 2017-03-02 2017-04-26 福建瑞能博尔电力设备有限公司 高压开关动作特性测试方法及测试仪
CN107390118A (zh) * 2017-06-13 2017-11-24 西安交通大学 一种交流接触器在线监测系统及其在线监测方法
CN109143050A (zh) * 2018-08-03 2019-01-04 罗孚电气(厦门)有限公司 基于知识库的断路器故障诊断方法、装置及计算设备
CN109188258A (zh) * 2018-07-17 2019-01-11 国网浙江省电力有限公司检修分公司 基于振电结合的高压断路器特征提取及分类方法
WO2019183851A1 (en) 2018-03-28 2019-10-03 Abb Schweiz Ag Apparatus and method for fault diagnosis for circuit breaker
CN111160159A (zh) * 2019-12-18 2020-05-15 瑞声科技(新加坡)有限公司 马达电信号参数化描述方法、装置、设备和介质
CN111929572A (zh) * 2019-12-20 2020-11-13 南京南瑞继保电气有限公司 一种断路器分合闸时间估算装置及方法
CN112665710A (zh) * 2020-12-21 2021-04-16 陕西宝光集团有限公司 设备运行状态的检测方法、装置、电子设备及存储介质
CN113671366A (zh) * 2021-08-25 2021-11-19 西安西电开关电气有限公司 信号处理方法及其应用装置、存储介质
CN113960464A (zh) * 2021-09-23 2022-01-21 航天银山电气有限公司 断路器故障分析方法及计算机可读存储介质
CN113985269A (zh) * 2021-11-01 2022-01-28 内蒙古电力(集团)有限责任公司内蒙古电力科学研究院分公司 一种高压断路器机械状态诊断装置及方法
CN115113038A (zh) * 2022-08-19 2022-09-27 国网江西省电力有限公司电力科学研究院 基于电流信号相空间重构的断路器故障诊断方法
CN115327363A (zh) * 2022-08-22 2022-11-11 国网江苏省电力有限公司南通市海门区供电分公司 一种高压断路器机械特性带电监测及状态识别方法
CN116595324A (zh) * 2023-07-19 2023-08-15 北谷电子股份有限公司 信号瞬态冲击始点的提取方法
CN113985269B (zh) * 2021-11-01 2024-04-26 内蒙古电力(集团)有限责任公司内蒙古电力科学研究院分公司 一种高压断路器机械状态诊断装置及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1595188A (zh) * 2004-06-24 2005-03-16 西安交通大学 基于振动分析的真空断路器触头关合时刻的在线检测方法
CN102435424A (zh) * 2011-09-05 2012-05-02 西安邮电学院 基于振动特征的高压断路器在线监测系统
CN103076168A (zh) * 2013-01-09 2013-05-01 西安交通大学 一种断路器机械故障的诊断方法
CN203259629U (zh) * 2013-01-06 2013-10-30 广州锐翔电力科技有限公司 一种高压断路器机械故障诊断仪
CN105158685A (zh) * 2015-06-25 2015-12-16 国家电网公司 断路器的检测方法、装置及系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1595188A (zh) * 2004-06-24 2005-03-16 西安交通大学 基于振动分析的真空断路器触头关合时刻的在线检测方法
CN102435424A (zh) * 2011-09-05 2012-05-02 西安邮电学院 基于振动特征的高压断路器在线监测系统
CN203259629U (zh) * 2013-01-06 2013-10-30 广州锐翔电力科技有限公司 一种高压断路器机械故障诊断仪
CN103076168A (zh) * 2013-01-09 2013-05-01 西安交通大学 一种断路器机械故障的诊断方法
CN105158685A (zh) * 2015-06-25 2015-12-16 国家电网公司 断路器的检测方法、装置及系统

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106597275A (zh) * 2017-03-02 2017-04-26 福建瑞能博尔电力设备有限公司 高压开关动作特性测试方法及测试仪
CN107390118A (zh) * 2017-06-13 2017-11-24 西安交通大学 一种交流接触器在线监测系统及其在线监测方法
EP3775946A4 (en) * 2018-03-28 2021-11-24 ABB Schweiz AG BREAKER FAILURE DIAGNOSIS APPARATUS AND METHOD
WO2019183851A1 (en) 2018-03-28 2019-10-03 Abb Schweiz Ag Apparatus and method for fault diagnosis for circuit breaker
CN111602064A (zh) * 2018-03-28 2020-08-28 Abb瑞士股份有限公司 用于断路器的故障诊断装置和方法
CN109188258A (zh) * 2018-07-17 2019-01-11 国网浙江省电力有限公司检修分公司 基于振电结合的高压断路器特征提取及分类方法
CN109143050A (zh) * 2018-08-03 2019-01-04 罗孚电气(厦门)有限公司 基于知识库的断路器故障诊断方法、装置及计算设备
CN111160159A (zh) * 2019-12-18 2020-05-15 瑞声科技(新加坡)有限公司 马达电信号参数化描述方法、装置、设备和介质
CN111160159B (zh) * 2019-12-18 2023-06-30 瑞声科技(新加坡)有限公司 马达电信号参数化描述方法、装置、设备和介质
CN111929572A (zh) * 2019-12-20 2020-11-13 南京南瑞继保电气有限公司 一种断路器分合闸时间估算装置及方法
CN112665710A (zh) * 2020-12-21 2021-04-16 陕西宝光集团有限公司 设备运行状态的检测方法、装置、电子设备及存储介质
CN113671366B (zh) * 2021-08-25 2024-01-23 西安西电开关电气有限公司 信号处理方法及其应用装置、存储介质
CN113671366A (zh) * 2021-08-25 2021-11-19 西安西电开关电气有限公司 信号处理方法及其应用装置、存储介质
CN113960464A (zh) * 2021-09-23 2022-01-21 航天银山电气有限公司 断路器故障分析方法及计算机可读存储介质
CN113985269A (zh) * 2021-11-01 2022-01-28 内蒙古电力(集团)有限责任公司内蒙古电力科学研究院分公司 一种高压断路器机械状态诊断装置及方法
CN113985269B (zh) * 2021-11-01 2024-04-26 内蒙古电力(集团)有限责任公司内蒙古电力科学研究院分公司 一种高压断路器机械状态诊断装置及方法
CN115113038A (zh) * 2022-08-19 2022-09-27 国网江西省电力有限公司电力科学研究院 基于电流信号相空间重构的断路器故障诊断方法
CN115113038B (zh) * 2022-08-19 2022-12-30 国网江西省电力有限公司电力科学研究院 基于电流信号相空间重构的断路器故障诊断方法
CN115327363A (zh) * 2022-08-22 2022-11-11 国网江苏省电力有限公司南通市海门区供电分公司 一种高压断路器机械特性带电监测及状态识别方法
CN115327363B (zh) * 2022-08-22 2023-09-08 国网江苏省电力有限公司南通市海门区供电分公司 一种高压断路器机械特性带电监测及状态识别方法
CN116595324B (zh) * 2023-07-19 2023-11-10 北谷电子股份有限公司 信号瞬态冲击始点的提取方法
CN116595324A (zh) * 2023-07-19 2023-08-15 北谷电子股份有限公司 信号瞬态冲击始点的提取方法

Similar Documents

Publication Publication Date Title
WO2016206056A1 (zh) 断路器的检测方法、装置及系统
CN105158685A (zh) 断路器的检测方法、装置及系统
CN103558029B (zh) 一种发动机异响故障在线诊断系统和诊断方法
CN102539527B (zh) 一种基于超声波检测的gis局部放电模式识别方法
CN107817098B (zh) 一种高压断路器机械故障诊断方法
Wang et al. A new method with Hilbert transform and slip-SVD-based noise-suppression algorithm for noisy power quality monitoring
CN105548832A (zh) 高压电力电缆故障识别方法
CN110470465B (zh) 一种基于振动信号分析的断路器测试方法及系统
KR20150080484A (ko) 임피던스 분석을 기초로 전기기계 시스템을 진단하기 위한 방법
CN102508135A (zh) 一种基于云计算的电缆振荡波局部放电测量与定位系统
CN109060039B (zh) 一种电气预警保护方法
JP2016515377A (ja) 電力引込点エネルギー計測装置、およびこれを利用したエネルギー計測情報ラベリングシステム
CN103197211A (zh) 一种开关柜局部放电巡检仪
CN102840907A (zh) 早期故障状态下滚动轴承振动信号特征提取和分析方法
CN103454526A (zh) 一种基于电力变压器绕组故障类型判定方法
CN103267652B (zh) 一种智能早期设备故障在线诊断方法
CN113167678A (zh) 用于监测断路器的方法和装置
CN110618366A (zh) 一种直流电弧检测方法及装置
CN1595188A (zh) 基于振动分析的真空断路器触头关合时刻的在线检测方法
CN115931319A (zh) 故障诊断方法、装置、电子设备及存储介质
CN104392141A (zh) 电力系统低频振荡扰动源定位方法和装置
CN108627743B (zh) 一种局部放电纳秒级窄脉冲序列的无损捕捉方法
CN103821750A (zh) 一种基于电流的通风机失速和喘振监测及诊断方法
CN111999609A (zh) 一种现场变压器局部放电试验干扰信号排查方法
CN109870614B (zh) 电力设备半周波早期故障快速检测方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15895956

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15895956

Country of ref document: EP

Kind code of ref document: A1