WO2016204592A1 - 무선 통신 시스템에서 단말에 의해 수행되는 v2x 메시지 전송 방법 및 상기 방법을 이용하는 단말 - Google Patents

무선 통신 시스템에서 단말에 의해 수행되는 v2x 메시지 전송 방법 및 상기 방법을 이용하는 단말 Download PDF

Info

Publication number
WO2016204592A1
WO2016204592A1 PCT/KR2016/006543 KR2016006543W WO2016204592A1 WO 2016204592 A1 WO2016204592 A1 WO 2016204592A1 KR 2016006543 W KR2016006543 W KR 2016006543W WO 2016204592 A1 WO2016204592 A1 WO 2016204592A1
Authority
WO
WIPO (PCT)
Prior art keywords
tti
information
frequency
terminal
communication
Prior art date
Application number
PCT/KR2016/006543
Other languages
English (en)
French (fr)
Inventor
이승민
채혁진
김영태
김기준
서한별
박한준
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to EP16812005.3A priority Critical patent/EP3313136B1/en
Priority to US15/737,969 priority patent/US10485013B2/en
Publication of WO2016204592A1 publication Critical patent/WO2016204592A1/ko
Priority to US16/664,610 priority patent/US11510221B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/44Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for communication between vehicles and infrastructures, e.g. vehicle-to-cloud [V2C] or vehicle-to-home [V2H]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/90Services for handling of emergency or hazardous situations, e.g. earthquake and tsunami warning systems [ETWS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • H04W72/566Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient
    • H04W72/569Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient of the traffic information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26025Numerology, i.e. varying one or more of symbol duration, subcarrier spacing, Fourier transform size, sampling rate or down-clocking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • H04L27/2634Inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators in combination with other circuits for modulation
    • H04L27/2636Inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators in combination with other circuits for modulation with FFT or DFT modulators, e.g. standard single-carrier frequency-division multiple access [SC-FDMA] transmitter or DFT spread orthogonal frequency division multiplexing [DFT-SOFDM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames

Definitions

  • the present invention relates to wireless communication, and more particularly, to a V2X (VEHICLE-TO-X) message transmission method performed by a terminal in a wireless communication system and a terminal using the method.
  • V2X VEHICLE-TO-X
  • ITU-R International Telecommunication Union Radio communication sector
  • IP Internet Protocol
  • LTE-Advanced LTE-Advanced
  • 3GPP 3rd Generation Partnership Project
  • LTE-A LTE-Advanced
  • LTE-A is one of the potential candidates for IMT-Advanced.
  • D2D Device-to-Device
  • D2D is drawing attention as a communication technology for a public safety network.
  • V2X Vehicle-to-X
  • V2X networking is an example, where 'X' in V2X (VEHICLE-TO-X) is PERSON (or UE) (V2P), VEHICLE (V2V), (UE TYPE or eNB TYPE) ROAD SIDE UNIT (RSU) or INFRASTRUCTURE (V2I ) And the like.
  • the terminal that is, the V2X terminal performs wireless communication at a high speed
  • the terminal can be strongly influenced by the Doppler effect.
  • a Doppler effect called channel shift on the time axis may occur due to the speed of the V2X terminal, and the faster the speed, the greater the channel shift effect may occur on the time axis.
  • the present invention provides a method for transmitting information with high reliability and an apparatus using the same even though the V2X terminal is affected by the Doppler effect through a TTI (or subframe) structure that is robust to the Doppler effect.
  • An object of the present invention is to provide a V2X (VEHICLE-TO-X) message transmission method performed by a terminal in a wireless communication system and a terminal using the same.
  • V2X VEHICLE-TO-X
  • the priority of information related to the V2X communication is determined, and based on the priority Select a Transmission Time Interval (TTI) and transmit the information based on the selected TTI, and if the information related to the V2X communication is information having a high priority, a first TTI is selected and the V2X communication;
  • TTI Transmission Time Interval
  • the method may be characterized in that the second TTI is selected.
  • a resource element (RE) of the first TTI may be longer in frequency than the resource element of the second TTI.
  • the resource element of the first TTI may be shorter in terms of time than the resource element of the second TTI.
  • the resource element of the first TTI is K times longer than the resource element of the second TTI in terms of frequency and 1 / K times shorter in terms of time, and K may be a positive integer other than zero.
  • data may be repeatedly allocated to the resource element of the first TTI.
  • zero or null may be allocated to a specific subcarrier on the frequency domain of the first TTI.
  • the specific subcarrier to which the zero or null is allocated may be alternately located on the frequency carrier and the subcarrier to which the information is allocated.
  • a resource element (RE) of the first TTI may be longer in frequency than the resource element of the second TTI.
  • the resource element of the first TTI may be shorter in terms of time than the resource element of the second TTI.
  • a protection region may be located between the first TTI and the second TTI.
  • the protection region may be located on a frequency region between the first TTI and the second TTI.
  • the information having high priority may be control information
  • the information having low priority may be data information
  • the information regarding the setting of the at least one TTI may be preset in the terminal.
  • a terminal includes: a radio frequency (RF) unit for transmitting and receiving a radio signal and a processor operatively coupled to the RF unit;
  • the processor may include determining a priority of information related to the V2X communication, selecting a transmission time interval (TTI) based on the priority, and transmitting the information based on the selected TTI.
  • TTI transmission time interval
  • the terminal may use a TTI consisting of a resource element having a shorter length on the time axis and a longer length on the frequency axis than a conventional resource element (RE).
  • a TTI consisting of a resource element having a shorter length on the time axis and a longer length on the frequency axis than a conventional resource element (RE).
  • RE resource element
  • the terminal when the terminal transmits the information that needs to be high reliability, using the TTI having robustness to the Doppler effect, and when transmitting information that only the general reliability is guaranteed, by providing a method using a general TTI, Adaptive wireless communication can be performed.
  • FIG. 1 shows a wireless communication system to which the present invention is applied.
  • FIG. 2 is a block diagram illustrating a radio protocol architecture for a user plane.
  • FIG. 3 is a block diagram illustrating a radio protocol structure for a control plane.
  • 4 shows a radio frame structure of 3GPP LTE.
  • 5 is an exemplary diagram illustrating a resource grid for one downlink slot.
  • FIG. 6 shows a structure of a downlink subframe.
  • FIG. 13 is a block diagram schematically illustrating SC-FDMA time domain transfer processing.
  • 15 is a block diagram schematically illustrating SC-FDMA frequency domain transfer processing with local and distributed subcarrier mapping.
  • TTI transmit time interval
  • FIG 17 schematically illustrates a TTI, in accordance with an embodiment of the present invention.
  • FIG. 30 is a block diagram showing a terminal implemented embodiment of the present invention.
  • E-UTRAN Evolved-UMTS Terrestrial Radio Access Network
  • LTE Long Term Evolution
  • the E-UTRAN includes a base station (BS) 20 that provides a control plane and a user plane to a user equipment (UE).
  • the terminal 10 may be fixed or mobile and may be called by other terms such as a mobile station (MS), a user terminal (UT), a subscriber station (SS), a mobile terminal (MT), a wireless device (Wireless Device), and the like.
  • the base station 20 refers to a fixed station communicating with the terminal 10, and may be referred to by other terms such as an evolved-NodeB (eNB), a base transceiver system (BTS), an access point, and the like.
  • eNB evolved-NodeB
  • BTS base transceiver system
  • access point and the like.
  • the base stations 20 may be connected to each other through an X2 interface.
  • the base station 20 is connected to a Serving Gateway (S-GW) through an MME (Mobility Management Entity) and an S1-U through an Evolved Packet Core (EPC) 30, more specifically, an S1-MME through an S1 interface.
  • S-GW Serving Gateway
  • MME Mobility Management Entity
  • EPC Evolved Packet Core
  • EPC 30 is composed of MME, S-GW and P-GW (Packet Data Network-Gateway).
  • the MME has information about the access information of the terminal or the capability of the terminal, and this information is mainly used for mobility management of the terminal.
  • S-GW is a gateway having an E-UTRAN as an endpoint
  • P-GW is a gateway having a PDN as an endpoint.
  • Layers of the Radio Interface Protocol between the terminal and the network are based on the lower three layers of the Open System Interconnection (OSI) reference model, which is widely known in communication systems.
  • L2 second layer
  • L3 third layer
  • the RRC Radio Resource Control
  • the RRC layer located in the third layer plays a role of controlling radio resources between the terminal and the network. To this end, the RRC layer exchanges an RRC message between the terminal and the base station.
  • FIG. 2 is a block diagram illustrating a radio protocol architecture for a user plane.
  • 3 is a block diagram illustrating a radio protocol structure for a control plane.
  • the user plane is a protocol stack for user data transmission
  • the control plane is a protocol stack for control signal transmission.
  • a physical layer (PHY) layer provides an information transfer service to a higher layer using a physical channel.
  • the physical layer is connected to a medium access control (MAC) layer, which is an upper layer, through a transport channel. Data is moved between the MAC layer and the physical layer through the transport channel. Transport channels are classified according to how and with what characteristics data is transmitted over the air interface.
  • MAC medium access control
  • the physical channel may be modulated by an orthogonal frequency division multiplexing (OFDM) scheme and utilizes time and frequency as radio resources.
  • OFDM orthogonal frequency division multiplexing
  • the functions of the MAC layer include mapping between logical channels and transport channels and multiplexing / demultiplexing into transport blocks provided as physical channels on transport channels of MAC service data units (SDUs) belonging to the logical channels.
  • the MAC layer provides a service to a Radio Link Control (RLC) layer through a logical channel.
  • RLC Radio Link Control
  • RLC layer Functions of the RLC layer include concatenation, segmentation, and reassembly of RLC SDUs.
  • QoS Quality of Service
  • the RLC layer has a transparent mode (TM), an unacknowledged mode (UM), and an acknowledged mode (Acknowledged Mode).
  • TM transparent mode
  • UM unacknowledged mode
  • Acknowledged Mode acknowledged mode
  • AM Three modes of operation (AM).
  • AM RLC provides error correction through an automatic repeat request (ARQ).
  • the RRC (Radio Resource Control) layer is defined only in the control plane.
  • the RRC layer is responsible for the control of logical channels, transport channels, and physical channels in connection with configuration, re-configuration, and release of radio bearers.
  • RB means a logical path provided by the first layer (PHY layer) and the second layer (MAC layer, RLC layer, PDCP layer) for data transmission between the terminal and the network.
  • PDCP Packet Data Convergence Protocol
  • Functions of the Packet Data Convergence Protocol (PDCP) layer in the user plane include delivery of user data, header compression, and ciphering.
  • the functionality of the Packet Data Convergence Protocol (PDCP) layer in the control plane includes the transfer of control plane data and encryption / integrity protection.
  • the establishment of the RB means a process of defining characteristics of a radio protocol layer and a channel to provide a specific service, and setting each specific parameter and operation method.
  • RB can be further divided into SRB (Signaling RB) and DRB (Data RB).
  • SRB is used as a path for transmitting RRC messages in the control plane
  • DRB is used as a path for transmitting user data in the user plane.
  • the UE If an RRC connection is established between the RRC layer of the UE and the RRC layer of the E-UTRAN, the UE is in an RRC connected state, otherwise it is in an RRC idle state.
  • the downlink transmission channel for transmitting data from the network to the UE includes a BCH (Broadcast Channel) for transmitting system information and a downlink shared channel (SCH) for transmitting user traffic or control messages.
  • Traffic or control messages of a downlink multicast or broadcast service may be transmitted through a downlink SCH or may be transmitted through a separate downlink multicast channel (MCH).
  • the uplink transport channel for transmitting data from the terminal to the network includes a random access channel (RACH) for transmitting an initial control message and an uplink shared channel (SCH) for transmitting user traffic or control messages.
  • RACH random access channel
  • SCH uplink shared channel
  • BCCH broadcast control channel
  • PCCH paging control channel
  • CCCH common control channel
  • MCCH multicast control channel
  • MTCH multicast traffic
  • the physical channel is composed of several OFDM symbols in the time domain and several sub-carriers in the frequency domain.
  • One sub-frame consists of a plurality of OFDM symbols in the time domain.
  • the RB is a resource allocation unit and includes a plurality of OFDM symbols and a plurality of subcarriers.
  • each subframe may use specific subcarriers of specific OFDM symbols (eg, the first OFDM symbol) of the corresponding subframe for the physical downlink control channel (PDCCH), that is, the L1 / L2 control channel.
  • Transmission Time Interval is a unit time of subframe transmission.
  • 4 shows a radio frame structure of 3GPP LTE.
  • a radio frame consists of 10 subframes, and one subframe consists of two slots.
  • one subframe may have a length of 1 ms, and one slot may have a length of 0.5 ms.
  • the time taken for one subframe to be transmitted is called a transmission time interval (TTI).
  • TTI may be a minimum unit of scheduling.
  • the structure of the radio frame is only an example, and the number of subframes included in the radio frame and the number of slots included in the subframe may be variously changed.
  • 5 is an exemplary diagram illustrating a resource grid for one downlink slot.
  • One slot in a radio frame includes a plurality of orthogonal frequency division multiplexing (OFDM) symbols in the time domain.
  • the OFDM symbol is used to represent one symbol period since 3GPP LTE uses OFDMA in downlink, and may be called a different name according to a multiple access scheme. For example, when SC-FDMA is used, it may be referred to as an SC-FDMA symbol.
  • One slot includes 7 OFDM symbols as an example, but the number of OFDM symbols included in one slot may vary according to the length of a cyclic prefix (CP).
  • CP cyclic prefix
  • one subframe includes 7 OFDM symbols in a normal CP and one subframe includes 6 OFDM symbols in an extended CP.
  • one slot includes a plurality of resource blocks (RBs) in the frequency domain.
  • the resource block includes a plurality of consecutive subcarriers in one slot in resource allocation units.
  • the subcarriers in the RB may have an interval of, for example, 15 KHz.
  • Each element on the resource grid is called a resource element (RE), and one resource block includes 12 ⁇ 7 resource elements.
  • the number N DL of resource blocks included in the downlink slot depends on the downlink transmission bandwidth set in the cell.
  • the resource grid described in FIG. 5 may also be applied to uplink.
  • FIG. 6 shows a structure of a downlink subframe.
  • a subframe includes two consecutive slots.
  • the maximum 3 OFDM symbols of the first slot in the subframe are the control region to which control channels are allocated, and the remaining OFDM symbols are the data region to which the data channel is allocated. to be.
  • the control region may consist of up to 4 OFDM symbols according to the system band.
  • Control channels allocated to the control region include a physical control format indication channel (PCFICH), a physical hybrid-ARQ indicator channel (PHICH), and a physical downlink control channel (PDCCH).
  • the PCFICH is a control channel through which information indicating the size of the control region, that is, the number of OFDM symbols constituting the control region is transmitted.
  • the PHICH is a control channel that carries ACK / NACK (acknowledgement / not-acknowledgement) for uplink data transmission of the UE.
  • the PDCCH includes resource allocation of downlink-shared channel (DL-SCH) (also referred to as downlink grant) and transmission format, resource allocation information of uplink shared channel (UL-SCH) (also referred to as uplink grant).
  • DL-SCH downlink-shared channel
  • UL-SCH uplink shared channel
  • Control information transmitted through the PDCCH is called downlink control information (DCI).
  • the DCI format includes format 0 for PUSCH scheduling, format 1 for scheduling one physical downlink shared channel (PDSCH) codeword, and format 1A for compact scheduling of one PDSCH codeword.
  • Format 1B for simple scheduling of rank-1 transmission of a single codeword in spatial multiplexing mode
  • format 1C for very simple scheduling of downlink shared channel (DL-SCH)
  • format for PDSCH scheduling in multi-user spatial multiplexing mode 1D format for PDSCH scheduling in multi-user spatial multiplexing mode 1D
  • format 2 for PDSCH scheduling in closed-loop spatial multiplexing mode format 2A for PDSCH scheduling in open-loop spatial multiplexing mode
  • TPC 2-bit power regulation for PUCCH and PUSCH Transmission power control
  • format 3A for transmission of 1-bit power control TPC commands for PUCCH and PUSCH.
  • an uplink subframe is allocated a control region in which a physical uplink control channel (PUCCH) carrying uplink control information is allocated in a frequency domain and a physical uplink shared channel (PUSCH) carrying user data. It can be divided into data areas.
  • PUCCH physical uplink control channel
  • PUSCH physical uplink shared channel
  • PUCCH for one UE is allocated to a resource block (RB) pair in a subframe, and RBs belonging to the RB pair occupy different subcarriers in each of two slots. This is said that the RB pair allocated to the PUCCH is frequency hopping at the slot boundary.
  • RB resource block
  • a high rate data stream may be input to the serial-parallel converter.
  • problems may arise when the symbol period Ts is less than the channel delay spread Td. This produces an intersymbol interference (ISI) corresponding to the undone by the complex equalization procedure.
  • ISI intersymbol interference
  • the equalization complexity increases by the square of the channel impulse response length.
  • the high rate stream of data symbols in OFDM is serially-converted into M parallel subcarriers for modulation.
  • the symbol duration on each subcarrier is increased by a factor corresponding to M. This is considerably larger than the channel delay spread.
  • a signal having a symbol period of Ts and a channel having a delay spread of Td may be convolved.
  • FIG. 9 compares the result of the long symbol duration that is not substantially affected by the ISI with the short symbol duration, where the short symbol duration is strongly influenced by the ISI. In other words, if Td ⁇ Ts, it is less affected by ISI than when Td> Ts.
  • FIG. 10 is a block diagram schematically showing an example of an OFDM transmitter, and the OFDM transmitter is a serial to parallel converter (S / P), an inverse fast furrier transform (IFFT). ), A parallel-to-serial converter and a DAC.
  • FIG. 11 is a block diagram schematically illustrating an OFDM receiver, and the OFDM receiver may include an ADC, an S / P, and a fast furrier transform (FFT).
  • FFT fast furrier transform
  • the signal to be transmitted is defined in the frequency domain.
  • each subcarrier may have a different modulation (e.g. QPSK or 16QAM) applied.
  • the channel gain may be different for each subcarrier, and some subcarriers may carry a higher data rate than other subcarriers.
  • the number of processed subcarriers has a larger value than the number of modulated subcarriers (ie, N ⁇ M). At this time, zero is filled in the unmodulated subcarriers.
  • a guard period may be inserted at each OFDM symbol start point to eliminate the effects of the remaining ISI caused by multipath propagation.
  • the protection period may be obtained by adding a cyclic prefix (CP) to the starting point of the symbol x k .
  • the CP is generated by duplicating the last G samples of the IFFT, and by attaching it to the starting point of x k . This is the time domain OFDM symbol [x k [NG],. . . , x k [N 1], x k [0] ,. . . , x k [N 1]] T.
  • the CP length G should be chosen longer than the maximum channel impulse response supported.
  • the CP may transform the linear (ie aperiodic) convolution of the channel into a cyclic (ie periodic) suitable for DFT processing.
  • the output of the IFFT is then parallel-serial converted for transmission over a frequency selective channel.
  • an inverse process of the above-described process is performed for inverse modulation of an OFDM signal.
  • a high efficiency FFT implementation can be used to return the converted signal to the frequency domain.
  • a modulated subset of M subcarriers can be selected and further processed by the receiver.
  • SC-FDMA can be generated both in the time domain or in the frequency domain. Although the two techniques are functionally equivalent, time domain generation may have lower frequency band efficiencies due to (time domain) filtering and related requirements regarding filter ramp up and ramp down times. However, the principle of SC-FDMA below may be applied in both the time domain and the frequency domain.
  • FIG. 13 is a block diagram schematically illustrating SC-FDMA time domain transfer processing.
  • the time domain generation of the SC-FDMA signal may be shown as shown in FIG. 13. At this time, the time domain generation of the SC-FDMA signal may have a process similar to that of a typical single carrier transmission.
  • the input bit stream may be mapped to a single carrier stream of QPSK or QAM symbols grouped as symbol blocks of length M. This may be followed by an optional repetition stage in which each block is repeated L times (followed by an optional repetition stage) and may be followed by a user specific frequency shift by the transmission of each user.
  • the CP can be inserted, and after filtering (e.g. filtering by a root-raised cosine pulse-shaping filter), the last signal can be transmitted.
  • filtering e.g. filtering by a root-raised cosine pulse-shaping filter
  • the above-described symbol blocks have a non-zero value only in a specific carrier frequency among the transmitted signals. That is, the transmitted signal may be distributed (or distributed) to have a non-zero value once every L period. For example, as shown in the example of FIG. 14, when L is 4, a non-zero subcarrier may appear for every four subcarriers.
  • the spectrum of the transmitted signal is similar to the modulated data symbol for every Lth subcarrier of the OFDM signal.
  • the occupied signal in every L-th subcarrier as described above may be called 'distributed', which is one way of providing frequency diversity gain.
  • the signal may occupy successive subcarriers and the transmission may be called 'localized'.
  • Local transmission is advantageous for supporting frequency selective scheduling.
  • the eNodeB may know about uplink channel conditions, for example as a result of channel sounding, or about intercell interference coordination.
  • local transmission may also provide frequency diversity. Can be.
  • IFDMA interleaved frequency division multiple access
  • the received signal is properly synchronized in time and frequency.
  • CP is longer than sum of delay spread of channel and time synchronization error residual between users.
  • the SC-FDMA time domain generated by the signal may have a similar level of cubic metric (CM) / peak to average power ratio (PAPR), similar to pulse-shaped single carrier modulation.
  • CM cubic metric
  • PAPR peak to average power ratio
  • ISI in a multipath channel may be protected by a CP, where the CP is capable of efficient equalization with the aid of a Frequency Domain Equalizer (FDE) on the receiver side.
  • FDE Frequency Domain Equalizer
  • 15 is a block diagram schematically illustrating SC-FDMA frequency domain transfer processing with local and distributed subcarrier mapping.
  • generation of SC-FDMA in the frequency domain may be achieved by a Discrete Fourier Transform Spread OFDM (DFT-S-OFDM) structure.
  • DFT-S-OFDM Discrete Fourier Transform Spread OFDM
  • SC-FDMA signal generation is to perform an M-point DFT operation on each block of M QAM data symbols. And zeros are inserted (especially IFFT) among the outputs of the DFT to match the size of the DFT with the N subcarrier OFDM modulator. The zero-inserted DFT output is mapped to N subcarriers.
  • N is greater than the maximum number of occupied subcarriers, thus providing efficient oversampling and a 'sinc' (sin (x) / x) pulse shape.
  • the DFT operation may remove the IFFT of the OFDM modulator from the result of data symbols continuously transmitted in the time domain.
  • this simplified structure may not provide oversampling or pulse shape filtering.
  • DFT-S-OFDM In conjunction with the time domain approach, DFT-S-OFDM has the ability to generate both local and distributed transmissions.
  • M adjacent subcarrier groups can be assigned to the user. If M ⁇ N, if 0 is added to the output of the DFT spreader, the original M QAM data symbol unsampled / interpolated version of the result may appear at the IFFT output of the OFDM modulator.
  • M equally spaced subcarriers can be allocated (e.g. every Lth subcarrier).
  • L-1 zeros can be inserted between the M DFT outputs, while zeros inserted between the DFT outputs, like the localization case described above, generate waveform repetitions in the time domain, while additional zeros are added to the DFT output prior to the IFFT. It can be added on both sides (ML ⁇ N). This occurs with transmitted signals similar to time domain IFDMA with filtering in the form of factor L and 'sinc' pulses.
  • time domain SC-FDMA signal generation orthogonality between different users with different data rate requirements can be achieved by placing a specific set of subcarriers in each user.
  • the CP structure is identical to time domain signal generation, and the same efficient FDE technique can be applied to the receiver.
  • any single matrix may be used at the location of the DFT for diffusion operation.
  • D2D Device-to-Device
  • D2D is drawing attention as a communication technology for a public safety network.
  • Commercial communication networks are rapidly changing to LTE, but current public safety networks are mainly based on 2G technology in terms of cost and conflict with existing communication standards. This gap in technology and the need for improved services have led to efforts to improve public safety networks.
  • Public safety networks have higher service requirements (reliability and security) than commercial communication networks, and require direct signal transmission and reception, or D2D operation, between devices, especially when cellular coverage is not available or available. .
  • the D2D operation may have various advantages in that it transmits and receives signals between adjacent devices.
  • the D2D user equipment has a high data rate and low delay and can perform data communication.
  • the D2D operation may distribute traffic congested at the base station, and may also serve to extend the coverage of the base station if the D2D terminal serves as a relay.
  • V2X Vehicle-to-X
  • V2X networking is an example, where 'X' in V2X (VEHICLE-TO-X) is P ERSON (or UE) ( V2P ), VEHICLE ( V2V ), (UE TYPE or eNB TYPE) ROAD SIDE UNIT (RSU) or INFRASTRUCTURE ( V2I ), etc.
  • V2G vehicle-to-grid
  • 'ENTITY' may be interpreted as having the same meaning as 'X'.
  • Terminals using V2X technology (hereinafter, for convenience of description, are referred to as 'V2X terminals' or 'terminals') not only use higher frequency than conventional, but also wireless at high speed due to the mobility of the vehicle. Communicate.
  • the fact that the terminal, that is, the V2X terminal performs wireless communication at a high speed means that the terminal may be strongly influenced by the Doppler effect.
  • a Doppler effect called channel shift on the time axis may occur due to the speed of the V2X terminal, and the faster the speed, the greater the channel shift effect may occur on the time axis.
  • the present invention provides a method for transmitting information with high reliability and an apparatus using the same even though the V2X terminal is affected by the Doppler effect through a TTI (or subframe) structure that is robust to the Doppler effect.
  • V2X CHANNEL / SIGNAL Shows how to efficiently transmit CHANNEL / SIGNAL (S).
  • V2X CHANNEL / SIGNAL having a relatively high PRIORITY (and / or a relatively high QUALITY-OF-SERVICE requirement and / or a relatively short LATENCY requirement) naming S) to the "H_PRI_CH”, and a relatively low PRIORITY (and / or relatively has low requirements QUALITY-oF-SERVICE requirements and / or relatively long LATENCY required)
  • a channel through which control (/ scheduling) information is transmitted (and / or a channel through which V2X communication related system (/ broadcasting) information is transmitted and / or a V2X communication related SYNCH.SIGNAL) is set to H_PRI_CH and data
  • the channel through which information is transmitted may be set to L_PRI_CH.
  • V2X communication is performed under a relatively high frequency band (eg, 5.9 GHz) environment or a relatively high DOPPLER (/ CARRIER FREQUENCY OFFSET) environment, (at least It is possible to transmit / receive V2X CHANNEL / SIGNAL (S) with relatively high PRIORITY (and / or relatively high QUALITY-OF-SERVICE requirements and / or relatively short LATENCY requirements) with high reliability.
  • a relatively high frequency band eg, 5.9 GHz
  • DOPPLER / CARRIER FREQUENCY OFFSET
  • TTI may be interpreted as a predefined (or signaled) number of SYMBOL SETs (less than SUBFRAME (SF) units), and the term “SUBCARRIER” (formerly It can also be interpreted as a predefined (or signaled) number of RB SETs larger than the SUBCARRIER unit.
  • H_PRI_CH is a NUMEROLOGY related channel / signal with a relatively high PRIORITY (and / or a relatively high QUALITY-OF-SERVICE requirement and / or a relatively short LATENCY requirement).
  • L_PRI_CH is also a NUMEROLOGY related channel / signal with a relatively low PRIORITY (and / or relatively low QUALITY-OF-SERVICE requirement and / or a relatively long LATENCY requirement). In general).
  • TTI transmit time interval
  • the terminal may determine a priority of information related to V2X communication (S1610).
  • S1610 a priority of information related to V2X communication
  • the details of the priority of the information related to the V2X communication will be described later.
  • the terminal may select a TTI based on the priority (S1620).
  • the TTI means a TTI that the UE uses to perform V2X communication, and the TTI to be used when transmitting information on the TTI (for example, TTI selection information and information having a high priority) and / or low priority.
  • Information about a TTI to be used when transmitting information having a) may be set in advance by the terminal or may be set from a network.
  • the terminal according to the present invention does not have a relatively high reliability with the TTI determined for transmitting highly reliable information (channel and / or signal).
  • the TTI determined for transmitting the information may be distinguished and used.
  • a V2X channel / signal having a relatively high priority i.e., requiring a relatively high quality of service and / or relatively short latency (LATENCY)
  • LATENCY relatively short latency
  • the TTI in which the V2X channel / signal having a relatively high priority is transmitted may be referred to as a 'first TTI' for convenience of description, and the TTI in which the V2X channel / signal having a relatively low priority is transmitted.
  • 'first TTI' for convenience of description
  • 'second TTI' for convenience of explanation
  • the UE selects at least one TTI for V2X communication, 1) select TTIs having different intervals according to the priority (for example, a long resource in terms of frequency and a short resource in time in case of high priority). Select a first TTI consisting of elements, and select a second TTI consisting of resource elements that are short in frequency and long in time in comparison to the resource elements in the first TTI at low priority) and / or 2) priority Select the TTI in which 'zero' or 'null' is inserted in a specific subcarrier on the frequency resource region in the TTI according to the rank (for example, in case of a high priority, select a TTI in which zero or null is inserted, In this case, it is possible to select a TTI in which zero or null is not inserted), which will be described later.
  • the priority for example, a long resource in terms of frequency and a short resource in time in case of high priority.
  • the terminal may transmit the information based on the selected TTI (S1630).
  • the terminal may perform V2X communication by using a TTI to be described later.
  • the UE selects TTIs having different intervals for example, selecting a first TTI for high priority and a second TTI for low priority
  • the UE selects The TTI may be as follows.
  • the terminal may select a TTI with high reliability.
  • the TTI having high reliability may be configured of a resource element (RE) having a short length on the time axis and a long length on the frequency axis so as to have robustness from the Doppler effect affecting the terminal. have.
  • RE resource element
  • the TTI is composed of short resource elements on the time axis, which means that the symbol duration is shortened on the time axis, so that there is almost no channel variation in one symbol.
  • the terminal uses a TTI consisting of a long resource element in the frequency axis, due to the expansion of the frequency, the terminal measures the frequency offset It is advantageous to do so.
  • the TTI for transmitting the above-mentioned highly reliable information and the TTI for transmitting relatively low-reliability information may be described as follows.
  • FIG 17 schematically illustrates a TTI, in accordance with an embodiment of the present invention.
  • the TTI used to transmit information having a high priority is K in terms of frequency compared to the resource element in the TTI used to transmit information having a low priority. It can be composed of resource elements having a length of 1) times and a length of 1 / K times in terms of time.
  • the resource element may mean a 'basic resource element', wherein the number of resource elements included in the TTI used to transmit information having a high priority and information having a low priority The number of resource elements included in the TTI used for transmission may be the same.
  • Embodiments of the invention are not limited to the above. That is, the length in terms of time of the resource element included in the TTI used to transmit the information having a high priority is determined in terms of the time of the resource element included in the TTI used to transmit the information having a low priority. It may have a length M / K (M is a nonzero positive integer) greater than the length of. If the resource element included in the TTI used to transmit the information having high priority is K times longer in frequency than the resource element included in the TTI used to transmit the information having the low priority, In terms of the same length, when the legacy terminal looks at the TTI used to transmit the high priority information, it may be regarded as having interference similar to the existing interference. Accordingly, since the legacy terminal can remove the interference by applying the existing technology, the efficiency of the entire wireless communication can be increased.
  • ⁇ F e.g., 15 kHz
  • SUBCARRIER SPACING applied to a predefined (or signaled) (frequency) resource region in which L_PRI_CH is transmitted.
  • SUBCARRIER SPACING applied to a predefined (or signaled) (in TTI) (frequency) resource region to which an H_PRI_CH is transmitted is defined in a predefined (or signaled) (in TTI) (where L_PRI_CH is transmitted) ( Frequency) can be set to a relatively larger value than SUBCARRIER SPACING applied to the resource domain, thereby ensuring reliable transmission and reception of H_PRI_CH.
  • the L_PRI_CH transmission may be interpreted as increasing RESOURCE UTILIZTION EFFICIENCY rather than reliable transmission.
  • 14 shows an example of the case where [suggestion method # 1] is applied.
  • the K value is '2', and it is assumed that H_PRI_CH is transmitted in the resource region in TTI # N and L_PRI_CH is transmitted in the resource region in TTI # (N + 1).
  • a BASIC RESOURCE ELEMENT (BRE or BASIC RESOURCE UNIT) on a TTI # N (and / or TTI # (N + 1)) resource region to which an H_PRI_CH (and / or L_PRI_CH) is transmitted is shown.
  • FIG. 17 shows that the H_PRI_CH and the L_PRI_CH are transmitted (TDM) through resource regions in different TTIs to which (or independent) SUBCARRIER SPACING is applied (or the resource set (RESOURCE POOL) in which the H_PRI_CH is transmitted).
  • the resource set to which the L_PRI_CH is transmitted can be interpreted as (with SUBCARRIER SPACING) but TDM).
  • TTI # N and TTI # (N + 1) are interpreted as SUB-TTI # 1 and SUB-TT # 2 belonging to one TTI (ie, in one TTI, H_PRI_CH is transmitted).
  • SUBCARRIER SPACING applied to a (frequency) resource region in a predefined (or signaled) SUB-TTI and SUBCARRIER applied to a (frequency) resource region in a predefined (or signaled) SUB-TTI to which L_PRI_CH is transmitted SPACING can be interpreted as something else).
  • SUBCARRIER SPACING applied to a predefined (or signaled) (in TTI) (frequency) resource region to which H_PRI_CH is transmitted is increased (or changed), but a predefined (or changed) to which L_PRI_CH is transmitted
  • SUBCARRIER SPACING applied to the (frequency) resource region (in the TTI) (signaled) does not change (or remains the same) for one reason: L_PRI_CH (eg, compared to H_PRI_CH (eg, control channel)) ) Is likely to occupy a relatively large amount of resources (eg, can be interpreted as likely to interfere with CELLULAR (UL) communication).
  • CELLULAR for interference mitigation (/ removal) between CELLULAR (UL) communication and V2X communication may be because SUBCARRIER SPACING ALIGNMENT (between UL) and V2X communications may be required.
  • information having a high priority may be overlapped with a resource element. That is, the information having a high priority may be repeatedly transmitted on the resource element of the TTI used to transmit the information having the high priority.
  • the terminal receiving the data through the TTI can receive the same data twice, the energy due to the aggregation is increased, the terminal can receive the data better. This increases the efficiency of the entire wireless communication.
  • H_PRI_CH-related identical (ENCODED) BIT (S) is repeatedly mapped (/ transmitted) on consecutive SYMBOL (S)
  • the (related) CP can be driven forward of two SYMBOL (S). That is, when data is repeatedly transmitted on the time axis, since duplicate CPs can be reduced to one, the terminal can transmit / receive more data as much as the area of the reduced CP.
  • H_PRI_CH-related (ENCODED) BIT S
  • S H_PRI_CH-related (ENCODED) BIT
  • a rule may be defined to iteratively transmit (/ map) by a predefined (or signaled) number of times.
  • H_PRI_CH (ENCODED) BIT (S) is composed of "A 0 , A 1 , A 2 , ..., A (L-2) , A (L-1) ", Also, it is assumed that the number of repetitive transfers (/ mappings) of ((ENCODED) BIT (S)) is set to '2'.
  • FIG. 20 shows the H_PRI_CH related (ENCODED) BIT transmitted (/ mapped) on the first SUB-TTI after dividing (one) TTI # N into Q predefined SUB-TTI (S).
  • An example of a rule of repeatedly transmitting (/ mapping) (S) on the remaining (Q-1) SUB-TTI (S) is shown.
  • the application of this rule can be interpreted that the H_PRI_CH related (ENCODED) BIT (S) is repeatedly transmitted (/ mapped) Q times.
  • TTI # N into predefined (or signaled) Q SUB-TTI (S), and then sequentially H_PRI_CH related (ENCODED) BIT (S) from the first SUB-TTI.
  • S SUB-TTI
  • the Q value is set to '2', and also assumed that the H_PRI_CH-related (ENCODED) BIT (S) is repeatedly transmitted (/ mapped) twice.
  • the H_PRI_CH-related (ENCODED) BIT (S) is "A 0 , A 1 , A 2 , ..., A (L-2) , A (L-1) ". Assume a case consisting of.
  • an H_PRI_CH related (ENCODED) BIT (S) is a predefined (or signaled) ((SUB-) TTI in which the H_PRI_CH is transmitted. It is assumed that the situation is mapped (/ transmitted) in the TIME-FIRST order (/ form) on the resource zone.
  • H_PRI_CH-related identical (ENCODED) BIT (S) is repeatedly mapped (/ transmitted) on consecutive SYMBOL (S)
  • the (related) CP of two SYMBOL (S) Rules can also be defined to drive forward (or merge).
  • the [proposal method # 2] may be extended and applied to transmit (/ map) the L_PRI_CH-related (ENCODED) BIT (S) (when the [proposal method # 1] is applied).
  • the particular SUBCARRIER (S) is an odd (or even) th SUBCARRIER (S) (or odd (or odd) on a predefined (or signaled) (in (SUB-) TTI) (frequency) resource region. It may also be set to SUBCARRIER (S)) having an even) index.
  • the SUBCARRIER SPACING applied to a predefined (or signaled) (in frequency (sUB-) TTI) (frequency) resource region to which H_PRI_CH is transmitted and the predefined (or signaled) to which L_PRI_CH is transmitted It is assumed that the SUBCARRIER SPACING applied to the (frequency) resource domain (in (SUB-) TTI) is the same (ie, " ⁇ F", "K ⁇ F” (eg, K is a nonzero positive integer)).
  • FIG. 23 shows that by applying the [Proposed Method # 3], the SUBCARRIER SPACING is not changed (or weighted) under a relatively high frequency band (eg, 5.9 GHz) environment.
  • a relatively high frequency band eg, 5.9 GHz
  • V2X CHANNEL / of relatively high PRIORITY (and / or relatively high QUALITY-OF-SERVICE requirements and / or relatively short LATENCY requirements
  • SIGNAL (S) can be sent robustly to (relatively) high DOPPLER (/ CARRIER FREQUENCY OFFSET).
  • FIG. 25 shows another example of ZERO (or 'NULL') insertion (/ transmission) in even-numbered SUBCARRIER (S) when [Proposal Method # 3] is applied.
  • SUBCARRIER SPACING applied to a predefined (or signaled) (in frequency (SUB-) TTI) (frequency) resource region to which H_PRI_CH is transmitted is “K ⁇ F” (eg, K is a nonzero amount). Integer), and SUBCARRIER SPACING applied to a predefined (or signaled) (in (SUB-) TTI) (frequency) resource region to which L_PRI_CH is transmitted is assumed to be " ⁇ F”.
  • TTI # N and TTI # (N + 1) are interpreted as SUB-TTI # 1 and SUB-TT # 2 belonging to one TTI (ie, one Within the TTI, whether the ZERO (or 'NULL') insert (/ transmit) applied to the (frequency) resource region within the predefined (or signaled) SUB-TTI to which the H_PRI_CH is transmitted / SUBCARRIER SPACING value is transmitted to the L_PRI_CH.
  • ZERO (or 'NULL') insertion (/ transmission) applied to a (frequency) resource region in a predefined (or signaled) SUB-TTI may be interpreted as different from SUBCARRIER SPACING.
  • [suggestion method # 3] may be extended and applied to transmit (/ map) the L_PRI_CH-related (ENCODED) BIT (S).
  • H_PRI_CH and L_PRI_CH are transmitted (and / or received) (or present) within the same TTI (on an independently signaled (or set) (frequency) resource region), then (some or all) ) May be defined to be performed according to a rule.
  • H_PRI_CH is designated as a channel on which control (/ scheduling) information is transmitted (and / or a channel on which V2X communication related system (/ broadcasting) information is transmitted and / or a V2X communication related SYNCH.SIGNAL), and L_PRI_CH. May be designated as a channel through which data information is transmitted.
  • Example # 1 Within the same TTI, ZERO (or 'NULL') is inserted (/ transmitted) in a particular SUBCARRIER (S) on a predefined (or signaled) (frequency) resource region where H_PRI_CH is transmitted. ie, apply [Suggested Method # 3], whereas ZERO (or 'NULL') is inserted (/ transmitted) in SUBCARRIER (S) on a predefined (or signaled) (frequency) resource region where L_PRI_CH is transmitted.
  • 26 and 27 show examples for the case where such a rule is applied (ie, ZERO (or 'NULL') in an even-numbered SUBCARRIER (S) on a predefined (or signaled) (frequency) resource region in which H_PRI_CH is transmitted. ) Insert (/ Transfer)).
  • ZERO or 'NULL'
  • S SUBCARRIER
  • Insert / Transfer
  • SUBCARRIER SPACING applied to a predefined (or signaled) (frequency) resource region to which H_PRI_CH is transmitted and a predefined (or signaled) (to which L_PRI_CH is transmitted) Frequency) SUBCARRIER SPACING applied to the resource domain is assumed to be the same (ie, " ⁇ F", "K ⁇ F” (eg, K is a non-zero positive integer).
  • SUBCARRIER SPACING applied to a predefined (or signaled) (frequency) resource region where H_PRI_CH is transmitted is "K ⁇ F" (eg, K is a nonzero positive integer).
  • SUBCARRIER SPACING that is set ie, apply [Suggested Method # 1]) and applied to a predefined (or signaled) (frequency) resource region where L_PRI_CH is transmitted is set to " ⁇ F".
  • the H_PRI_CH transmit / receive (frequency) resource region and the L_PRI_CH transmit / receive (frequency) resource region can be set between transmit / receive (frequency) resource areas.
  • the information on the corresponding GUARD BAND (or RB (S)) configuration is eNB2 (or network or (UE TYPE or eNB TYPE) RSU or V2X (RELAY) ENTITY) through a signal predefined by the V2X, Rules can be defined to inform ENTITY (S).
  • V2X TX ENTITY which simultaneously transmits H_PRI_CH and L_PRI_CH through independent (or different) (frequency) resource regions in which different SUBCARRIER SPACING is set, within the same TTI is H_PRI_CH TX ( Independent IFFT is applied to the associated (frequency) resource domain and the L_PRI_CH TX (related (frequency) resource domain) (or within the same TTI, through independent (or different) (frequency) resource domains with different SUBCARRIER SPACING settings V2X RX ENTITY, which simultaneously receives H_PRI_CH and L_PRI_CH (sent from the same (or different) V2X TX ENTITY), can apply independent FFT to H_PRI_CH decoding (/ receive) and L_PRI_CH decoding (/ receive).
  • ZERO or 'NULL'
  • S SUBCARRIER
  • the present invention has been described a proposal method based on the 3GPP LTE system for convenience of description, the scope of the system to which the proposed method is applied can be extended to other systems in addition to the 3GPP LTE system.
  • D2D communication means that the UE communicates directly with another UE using a wireless channel, where, for example, the UE means a terminal of a user, but network equipment such as a base station is used for communication between UEs. Therefore, when transmitting / receiving a signal, it can also be regarded as a kind of UE.
  • a rule may be defined such that the above-described proposed schemes are limited to be applied only in an FDD system (and / or TDD system) environment.
  • the proposed schemes described above may include communications of different NUMEROLOGY (S) (and / or different LATECY (/ QOS) REQUIREMENT (S) and / or priorities) (one cell or system (band) (e.g., If different communications exist in each subband (on the set up / operation), each communication related transmission / reception may be used to efficiently (or reliably) support each other.
  • a rule may be defined such that the proposed schemes described above may be applied only to MODE 2 COMMUNICATION and / or TYPE 1 DISCOVERY (and / or MODE 1 COMMUNICATION and / or TYPE 2 DISCOVERY).
  • the proposed schemes described above may be an IN-COVERAGE D2D UE (and / or an OUT-COVERAGE D2D UE) (and / or an RRC_CONNECTED D2D UE) and / or a RELAY D2D UE (and / or a RELAY D2D UE).
  • the rule may be defined to be limited to only the (REMOTE UE) participating in the RELAY communication).
  • the above-described proposed schemes may be applied only to D2D UEs performing only D2D DISCOVERY (and / or D2D UEs performing only D2D COMMUNICATION) operations. It may be defined.
  • the above-described proposed schemes may be defined such that only the D2D DISCOVERY is supported (set) only in scenarios (and / or the D2D COMMUNICATION is supported (set) only).
  • the proposed schemes described above may be performed when a D2D DISCOVERY SIGNAL reception operation is performed at another (UL) CARRIER on INTER-FREQUENCY (and / or a D2D DISCOVERY SIGNAL reception operation at another PLMN (UL) CARRIER based on INTER-PLMN).
  • the rule may be defined to be applied only in a limited case).
  • the proposed schemes described above can only be performed when V2X communication is performed in a relatively high frequency band (eg, 5.9 GHz) environment (and / or in a relatively high DOPPLER (/ CARRIER FREQUENCY OFFSET) environment). Rules may be defined to apply on a limited basis.
  • a relatively high frequency band eg, 5.9 GHz
  • DOPPLER / CARRIER FREQUENCY OFFSET
  • FIG. 30 is a block diagram showing a terminal implemented embodiment of the present invention.
  • the terminal 1100 includes a processor 1110, a memory 1120, and an RF unit 1130.
  • the processor 1110 implements the proposed functions, processes, and / or methods. For example, the processor 1110 may select at least one TTI for V2X communication, and the processor 1110 may perform V2X communication based on the at least one TTI selected through the RF unit 1130. Can be done.
  • the RF unit 1130 is connected to the processor 1110 to transmit and receive a radio signal.
  • the processor may include application-specific integrated circuits (ASICs), other chipsets, logic circuits, and / or data processing devices.
  • the memory may include read-only memory (ROM), random access memory (RAM), flash memory, memory card, storage medium and / or other storage device.
  • the RF unit may include a baseband circuit for processing a radio signal.
  • the above-described technique may be implemented as a module (process, function, etc.) for performing the above-described function.
  • the module may be stored in memory and executed by a processor.
  • the memory may be internal or external to the processor and may be coupled to the processor by various well known means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Business, Economics & Management (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Management (AREA)
  • Environmental & Geological Engineering (AREA)
  • Public Health (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 발명은 무선 통신 시스템에서 단말에 의해 수행되는 V2X(Vehicle-to-X) 통신 방법에 있어서, 상기 V2X 통신과 관련된 정보의 우선 순위를 결정하고, 상기 우선 순위에 기반하여 TTI(Transmission Time Interval)를 선택하고 및 선택된 상기 TTI에 기반하여, 상기 정보를 전송하되, 상기 V2X 통신과 관련된 정보가 높은 우선 순위를 가지는 정보인 경우, 제1 TTI가 선택되고, 상기 V2X 통신과 관련된 정보가 상기 높은 우선 순위를 가지는 정보보다 상대적으로 낮은 우선 순위를 가지는 정보인 경우, 제2 TTI가 선택되는 것을 특징으로 하는 방법을 제공한다.

Description

무선 통신 시스템에서 단말에 의해 수행되는 V2X 메시지 전송 방법 및 상기 방법을 이용하는 단말
본 발명은 무선 통신에 관한 것으로서, 보다 상세하게는, 무선 통신 시스템에서 단말에 의하여 수행되는 V2X(VEHICLE-TO-X) 메시지 전송 방법 및 이 방법을 이용하는 단말에 관한 것이다.
ITU-R(International Telecommunication Union Radio communication sector)에서는 3세대 이후의 차세대 이동통신 시스템인 IMT(International Mobile Telecommunication)-Advanced의 표준화 작업을 진행하고 있다. IMT-Advanced는 정지 및 저속 이동 상태에서 1Gbps, 고속 이동 상태에서 100Mbps의 데이터 전송률로 IP(Internet Protocol)기반의 멀티미디어 서비스 지원을 목표로 한다.
3GPP(3rd Generation Partnership Project)는 IMT-Advanced의 요구 사항을 충족시키는 시스템 표준으로 OFDMA(Orthogonal Frequency Division Multiple Access)/SC-FDMA(Single Carrier-Frequency Division Multiple Access) 전송방식 기반인 LTE(Long Term Evolution)를 개선한 LTE-Advanced(LTE-A)를 준비하고 있다. LTE-A는 IMT-Advanced를 위한 유력한 후보 중의 하나이다.
최근 장치들 간 직접통신을 하는 D2D (Device-to-Device)기술에 대한 관심이 높아지고 있다. 특히, D2D는 공중 안전 네트워크(public safety network)을 위한 통신 기술로 주목 받고 있다.
V2X(Vehicle-to-X)는 D2D 기술에 이동성을 추가해 차량이 주행하면서 도로 인프라나 다른 차량과 지속적으로 상호 통신하며 교통 상황 등 유용한 정보를 교환, 공유하는 기술이다. V2X 네트워킹은 일례로, V2X (VEHICLE-TO-X)에서 'X'는 PERSON (혹은 UE) (V2P), VEHICLE (V2V), (UE TYPE 혹은 eNB TYPE) ROAD SIDE UNIT (RSU) 혹은 INFRASTRUCTURE (V2I) 등을 나타낸다.
단말 즉, V2X 단말이 높은 속도 하에서 무선 통신을 수행한다는 것은, 단말이 도플러 효과(Doppler effect)의 영향을 강하게 받을 수 있다는 것을 의미한다. 예컨대, V2X 단말의 속도에 의하여, 시간 축에서의 채널 쉬프트(shift)라는 도플러 효과가 발생할 수 있으며, 속도가 빠를수록 시간 축에서의 채널 쉬프트 효과가 더 크게 발생될 수 있다.
이에, 본 발명에서는 도플러 효과 등에 강인한 TTI(혹은 서브프레임) 구조를 통해, V2X 단말이 도플러 효과 등에 영향을 받음에도 불구하고, 신뢰도 높은 정보를 전송하는 방법 및 이를 이용하는 장치를 제공하도록 한다.
본 발명이 해결하고자 하는 기술적 과제는 무선 통신 시스템에서, 단말에 의해 수행되는 V2X(VEHICLE-TO-X) 메시지 전송 방법 및 이를 이용하는 단말을 제공하는 것이다.
본 발명의 일 실시예에 따르면, 무선 통신 시스템에서 단말에 의해 수행되는 V2X(Vehicle-to-X) 통신 방법에 있어서, 상기 V2X 통신과 관련된 정보의 우선 순위를 결정하고, 상기 우선 순위에 기반하여 TTI(Transmission Time Interval)를 선택하고 및 선택된 상기 TTI에 기반하여, 상기 정보를 전송하되, 상기 V2X 통신과 관련된 정보가 높은 우선 순위를 가지는 정보인 경우, 제1 TTI가 선택되고, 상기 V2X 통신과 관련된 정보가 상기 높은 우선 순위를 가지는 정보보다 상대적으로 낮은 우선 순위를 가지는 정보인 경우, 제2 TTI가 선택되는 것을 특징으로 하는 방법을 제공할 수 있다.
이때, 상기 제1 TTI의 자원 요소(resource element; RE)는 상기 제2 TTI의 자원 요소보다 주파수 측면에서 길 수 있다.
이때, 상기 제1 TTI의 자원 요소는 상기 제2 TTI의 자원 요소보다 시간 측면에서 짧을 수 있다.
이때, 상기 제1 TTI의 자원 요소는 상기 제2 TTI의 자원 요소보다 주파수 측면에서 K배만큼 길고, 시간 측면에서 1/K배 만큼 짧되, 상기 K는 0이 아닌 양의 정수일 수 있다.
이때, 상기 제1 TTI의 자원 요소에 데이터가 반복적으로 할당될 수 있다.
이때, 상기 제1 TTI의 주파수 영역 상에서의 특정 서브캐리어(subcarrier)에 영(Zero) 또는 Null이 할당될 수 있다.
이때, 상기 영 또는 Null이 할당된 상기 특정 서브캐리어는 정보가 할당된 서브캐리어와 상기 주파수 영역 상에서 교대로 위치할 수 있다.
이때, 상기 제1 TTI의 자원 요소(resource element; RE)는 상기 제2 TTI의 자원 요소보다 주파수 측면에서 길 수 있다.
이때, 상기 제1 TTI의 자원 요소는 상기 제2 TTI의 자원 요소보다 시간 측면에서 짧을 수 있다.
이때, 상기 제1 TTI와 상기 제2 TTI 사이에는 보호 영역이 위치할 수 있다.
이때, 상기 보호 영역은 상기 제1 TTI와 상기 제2 TTI 사이의 주파수 영역 상에 위치할 수 있다.
이때, 상기 높은 우선 순위를 가지는 정보는 제어 정보이고, 상기 낮은 우선 순위를 가지는 정보는 데이터 정보일 수 있다.
이때, 상기 적어도 하나 이상의 TTI의 설정에 관한 정보는 상기 단말에게 미리 설정될 수 있다.
본 발명의 다른 실시예에 따르면, 단말은, 무선 신호를 송신 및 수신하는 RF(Radio Frequency) 부 및 상기 RF부와 결합하여 동작하는 프로세서; 를 포함하되, 상기 프로세서는, 상기 V2X 통신과 관련된 정보의 우선 순위를 결정하고, 상기 우선 순위에 기반하여 TTI(Transmission Time Interval)를 선택하고, 및 선택된 상기 TTI에 기반하여, 상기 정보를 전송하되, 상기 V2X 통신과 관련된 정보가 높은 우선 순위를 가지는 정보인 경우, 제1 TTI가 선택되고, 상기 V2X 통신과 관련된 정보가 상기 높은 우선 순위를 가지는 정보보다 상대적으로 낮은 우선 순위를 가지는 정보인 경우, 제2 TTI가 선택될 수 있다.
본 발명에 따르면, 단말은 종래의 자원 요소(resource element; RE)에 비하여, 시간 축에서의 길이가 짧고, 주파수 축에서의 길이가 긴 자원 요소로 구성된 TTI를 이용할 수 있다. 이때, TTI에서의 자원 요소가 시간 축에서 짧은 길이를 가짐으로써, 단말이 하나의 심볼을 보낼 때의 채널 변화(variation)가 거의 없게 된다. 이로 인하여, 상기 TTI는 도플러 효과에 강인성을 지니게 되며, 빠른 속도로 움직이는 상황 하에서의 단말은 도플러 효과에 영향을 덜 받는 TTI를 이용하여 무선 통신을 수행함으로써, 데이터 송수신의 신뢰도가 향상된다.
또한, 본 발명에 따르면, 단말은 신뢰도가 높아야 되는 정보를 전송할 때, 도플러 효과에 강인성을 지니는 상기 TTI를 이용하고, 일반적인 신뢰도만 보장돼도 되는 정보를 전송할 때에는, 일반적인 TTI를 이용하는 방법을 제공하여, 적응적인 무선통신이 수행될 수 있게 된다.
도 1은 본 발명이 적용되는 무선통신 시스템을 나타낸다.
도 2는 사용자 평면(user plane)에 대한 무선 프로토콜 구조(radio protocol architecture)를 나타낸 블록도이다.
도 3은 제어 평면(control plane)에 대한 무선 프로토콜 구조를 나타낸 블록도이다.
도 4는 3GPP LTE의 무선 프레임(radio frame) 구조를 나타낸다.
도 5는 하나의 하향링크 슬롯에 대한 자원 그리드(resource grid)를 나타낸 예시도이다.
도 6은 하향링크 서브프레임의 구조를 나타낸다.
도 7은 상향링크 서브프레임의 구조를 나타낸다.
도 8은 OFDM에 대한 직렬-병렬 변환 동작을 개략적으로 도시한 것이다.
도 9는 숏(short) 및 롱(long) 심볼 듀레이션을 가지는 시그널 상에서의 채널 효과를 개략적으로 도시한 것이다.
도 10 내지 도 11은 OFDM 시스템의 일례를 블록도를 통해 개략적으로 도시한 것이다.
도 12는 OFDM 사이클 프리픽스(cycle prefix; CP)의 입력을 개략적으로 도시한 것이다.
도 13은 SC-FDMA 시간 도메인 전송 프로세싱을 개략적으로 도시한 블록도에 해당한다.
도 14는 점유된 서브 캐리어 간의 이퀄 스페이싱(equal-spacing) 분산 전송(distributed transmission)의 일례를 개략적으로 도시한 것이다.
도 15는 국부적 및 분산적 서브 캐리어 매핑을 통한 SC-FDMA 주파수 도메인 전송 프로세싱을 개략적으로 도시한 블록도이다.
도 16은 본 발명의 일 실시예에 따른, 적어도 하나 이상의 TTI(Transmit Time Interval)에 기반한 V2X 통신 수행 방법의 순서도이다.
도 17은 본 발명의 일 실시예에 따른, TTI를 개략적으로 도시한 것이다.
도 18 내지 도 22는 본 발명의 다른 실시예에 따른, TTI를 개략적으로 도시한 것이다.
도 23 내지 도 29는 본 발명의 또 다른 실시예에 따른, TTI를 개략적으로 도시한 것이다.
도 30은 본 발명의 실시예가 구현되는 단말을 나타낸 블록도이다.
도 1은 본 발명이 적용되는 무선통신 시스템을 나타낸다. 이는 E-UTRAN(Evolved-UMTS Terrestrial Radio Access Network), 또는 LTE(Long Term Evolution)/LTE-A 시스템이라고도 불릴 수 있다.
E-UTRAN은 단말(10; User Equipment, UE)에게 제어 평면(control plane)과 사용자 평면(user plane)을 제공하는 기지국(20; Base Station, BS)을 포함한다. 단말(10)은 고정되거나 이동성을 가질 수 있으며, MS(Mobile station), UT(User Terminal), SS(Subscriber Station), MT(mobile terminal), 무선기기(Wireless Device) 등 다른 용어로 불릴 수 있다. 기지국(20)은 단말(10)과 통신하는 고정된 지점(fixed station)을 말하며, eNB(evolved-NodeB), BTS(Base Transceiver System), 액세스 포인트(Access Point) 등 다른 용어로 불릴 수 있다.
기지국(20)들은 X2 인터페이스를 통하여 서로 연결될 수 있다. 기지국(20)은 S1 인터페이스를 통해 EPC(Evolved Packet Core, 30), 보다 상세하게는 S1-MME를 통해 MME(Mobility Management Entity)와 S1-U를 통해 S-GW(Serving Gateway)와 연결된다.
EPC(30)는 MME, S-GW 및 P-GW(Packet Data Network-Gateway)로 구성된다. MME는 단말의 접속 정보나 단말의 능력에 관한 정보를 가지고 있으며, 이러한 정보는 단말의 이동성 관리에 주로 사용된다. S-GW는 E-UTRAN을 종단점으로 갖는 게이트웨이이며, P-GW는 PDN을 종단점으로 갖는 게이트웨이이다.
단말과 네트워크 사이의 무선인터페이스 프로토콜 (Radio Interface Protocol)의 계층들은 통신시스템에서 널리 알려진 개방형 시스템간 상호접속 (Open System Interconnection; OSI) 기준 모델의 하위 3개 계층을 바탕으로 L1 (제1계층), L2 (제2계층), L3(제3계층)로 구분될 수 있는데, 이 중에서 제1계층에 속하는 물리계층은 물리채널(Physical Channel)을 이용한 정보전송서비스(Information Transfer Service)를 제공하며, 제 3계층에 위치하는 RRC(Radio Resource Control) 계층은 단말과 네트워크 간에 무선자원을 제어하는 역할을 수행한다. 이를 위해 RRC 계층은 단말과 기지국간 RRC 메시지를 교환한다.
도 2는 사용자 평면(user plane)에 대한 무선 프로토콜 구조(radio protocol architecture)를 나타낸 블록도이다. 도 3은 제어 평면(control plane)에 대한 무선 프로토콜 구조를 나타낸 블록도이다. 사용자 평면은 사용자 데이터 전송을 위한 프로토콜 스택(protocol stack)이고, 제어 평면은 제어신호 전송을 위한 프로토콜 스택이다.
도 2 및 3을 참조하면, 물리계층(PHY(physical) layer)은 물리채널(physical channel)을 이용하여 상위 계층에게 정보 전송 서비스(information transfer service)를 제공한다. 물리계층은 상위 계층인 MAC(Medium Access Control) 계층과는 전송채널(transport channel)을 통해 연결되어 있다. 전송채널을 통해 MAC 계층과 물리계층 사이로 데이터가 이동한다. 전송채널은 무선 인터페이스를 통해 데이터가 어떻게 어떤 특징으로 전송되는가에 따라 분류된다.
서로 다른 물리계층 사이, 즉 송신기와 수신기의 물리계층 사이는 물리채널을 통해 데이터가 이동한다. 상기 물리채널은 OFDM(Orthogonal Frequency Division Multiplexing) 방식으로 변조될 수 있고, 시간과 주파수를 무선자원으로 활용한다.
MAC 계층의 기능은 논리채널과 전송채널간의 맵핑 및 논리채널에 속하는 MAC SDU(service data unit)의 전송채널 상으로 물리채널로 제공되는 전송블록(transport block)으로의 다중화/역다중화를 포함한다. MAC 계층은 논리채널을 통해 RLC(Radio Link Control) 계층에게 서비스를 제공한다.
RLC 계층의 기능은 RLC SDU의 연결(concatenation), 분할(segmentation) 및 재결합(reassembly)를 포함한다. 무선베어러(Radio Bearer; RB)가 요구하는 다양한 QoS(Quality of Service)를 보장하기 위해, RLC 계층은 투명모드(Transparent Mode, TM), 비확인 모드(Unacknowledged Mode, UM) 및 확인모드(Acknowledged Mode, AM)의 세 가지의 동작모드를 제공한다. AM RLC는 ARQ(automatic repeat request)를 통해 오류 정정을 제공한다.
RRC(Radio Resource Control) 계층은 제어 평면에서만 정의된다. RRC 계층은 무선 베어러들의 설정(configuration), 재설정(re-configuration) 및 해제(release)와 관련되어 논리채널, 전송채널 및 물리채널들의 제어를 담당한다. RB는 단말과 네트워크간의 데이터 전달을 위해 제1 계층(PHY 계층) 및 제2 계층(MAC 계층, RLC 계층, PDCP 계층)에 의해 제공되는 논리적 경로를 의미한다.
사용자 평면에서의 PDCP(Packet Data Convergence Protocol) 계층의 기능은 사용자 데이터의 전달, 헤더 압축(header compression) 및 암호화(ciphering)를 포함한다. 제어 평면에서의 PDCP(Packet Data Convergence Protocol) 계층의 기능은 제어 평면 데이터의 전달 및 암호화/무결정 보호(integrity protection)를 포함한다.
RB가 설정된다는 것은 특정 서비스를 제공하기 위해 무선 프로토콜 계층 및 채널의 특성을 규정하고, 각각의 구체적인 파라미터 및 동작 방법을 설정하는 과정을 의미한다. RB는 다시 SRB(Signaling RB)와 DRB(Data RB) 두가지로 나누어 질 수 있다. SRB는 제어 평면에서 RRC 메시지를 전송하는 통로로 사용되며, DRB는 사용자 평면에서 사용자 데이터를 전송하는 통로로 사용된다.
단말의 RRC 계층과 E-UTRAN의 RRC 계층 사이에 RRC 연결(RRC Connection)이 확립되면, 단말은 RRC 연결(RRC connected) 상태에 있게 되고, 그렇지 못할 경우 RRC 아이들(RRC idle) 상태에 있게 된다.
네트워크에서 단말로 데이터를 전송하는 하향링크 전송채널로는 시스템정보를 전송하는 BCH(Broadcast Channel)과 그 이외에 사용자 트래픽이나 제어메시지를 전송하는 하향링크 SCH(Shared Channel)이 있다. 하향링크 멀티캐스트 또는 브로드캐스트 서비스의 트래픽 또는 제어메시지의 경우 하향링크 SCH를 통해 전송될 수도 있고, 또는 별도의 하향링크 MCH(Multicast Channel)을 통해 전송될 수도 있다. 한편, 단말에서 네트워크로 데이터를 전송하는 상향링크 전송채널로는 초기 제어메시지를 전송하는 RACH(Random Access Channel)와 그 이외에 사용자 트래픽이나 제어메시지를 전송하는 상향링크 SCH(Shared Channel)가 있다.
전송채널 상위에 있으며, 전송채널에 매핑되는 논리채널(Logical Channel)로는 BCCH(Broadcast Control Channel), PCCH(Paging Control Channel), CCCH(Common Control Channel), MCCH(Multicast Control Channel), MTCH(Multicast Traffic Channel) 등이 있다.
물리채널(Physical Channel)은 시간 영역에서 여러 개의 OFDM 심벌과 주파수 영역에서 여러 개의 부반송파(Sub-carrier)로 구성된다. 하나의 서브프레임(Sub-frame)은 시간 영역에서 복수의 OFDM 심벌(Symbol)들로 구성된다. 자원블록은 자원 할당 단위로, 복수의 OFDM 심벌들과 복수의 부반송파(sub-carrier)들로 구성된다. 또한 각 서브프레임은 PDCCH(Physical Downlink Control Channel) 즉, L1/L2 제어채널을 위해 해당 서브프레임의 특정 OFDM 심벌들(예, 첫번째 OFDM 심볼)의 특정 부반송파들을 이용할 수 있다. TTI(Transmission Time Interval)는 서브프레임 전송의 단위시간이다.
도 4는 3GPP LTE의 무선 프레임(radio frame) 구조를 나타낸다.
도 4를 참조하면, 무선 프레임(radio frame)은 10개의 서브프레임(subframe)으로 구성되고, 하나의 서브프레임은 2개의 슬롯(slot)으로 구성된다. 일 예로, 하나의 서브프레임의 길이는 1ms이고, 하나의 슬롯의 길이는 0.5ms 일 수 있다. 하나의 서브프레임이 전송되는 데 걸리는 시간을 TTI(transmission time interval)이라 한다. TTI는 스케줄링의 최소 단위일 수 있다. 무선 프레임의 구조는 예시에 불과하고, 무선 프레임에 포함되는 서브프레임의 수 및 서브프레임에 포함되는 슬롯의 수는 다양하게 변경될 수 있다.
도 5는 하나의 하향링크 슬롯에 대한 자원 그리드(resource grid)를 나타낸 예시도이다.
무선 프레임에서 하나의 슬롯은 시간 영역(time domain)에서 복수의 OFDM(orthogonal frequency division multiplexing) 심벌을 포함한다. OFDM 심벌은 3GPP LTE가 하향링크에서 OFDMA를 사용하므로 하나의 심벌 구간(symbol period)을 표현하기 위한 것으로, 다중 접속 방식에 따라 다른 명칭으로 불리울 수 있다. 예를 들어, SC-FDMA가 사용될 경우 SC-FDMA 심벌이라고 할 수 있다. 하나의 슬롯은 7 OFDM 심벌을 포함하는 것을 예시적으로 기술하나, CP(Cyclic Prefix)의 길이에 따라 하나의 슬롯에 포함되는 OFDM 심벌의 수는 바뀔 수 있다. 3GPP TS 36.211 V8.5.0(2008-12)에 의하면, 노멀(normal) CP에서 1 서브프레임은 7 OFDM 심벌을 포함하고, 확장(extended) CP에서 1 서브프레임은 6 OFDM 심벌을 포함한다.
또한, 하나의 슬롯은 주파수 영역에서 다수의 자원블록(resource block, RB)을 포함한다. 자원 블록은 자원 할당 단위로 하나의 슬롯에서 복수의 연속하는 부반송파(subcarrier)를 포함한다. 자원블록에서 부반송파는 예컨대 15KHz의 간격을 가질 수 있다.
자원 그리드 상의 각 요소를 자원요소(resource element : RE)라 하며, 하나의 자원블록은 12×7개의 자원요소를 포함한다. 하향링크 슬롯에 포함되는 자원블록의 수 NDL은 셀에서 설정되는 하향링크 전송 대역폭(bandwidth)에 종속한다. 도 5에서 설명한 자원 그리드는 상향링크에서도 적용될 수 있다.
도 6은 하향링크 서브프레임의 구조를 나타낸다.
도 6을 참조하면, 서브프레임은 2개의 연속적인(consecutive) 슬롯을 포함한다. 서브프레임 내에서 첫 번째 슬롯의 앞선 최대 3 OFDM 심벌들이 제어 채널 (control channel)들이 할당되는 제어영역(control region)이고, 나머지 OFDM 심벌들은 데이터 채널(data channel)가 할당되는 데이터영역(data region)이다. 제어 영역은 시스템 대역에 따라 최대 4 OFDM 심벌들로 구성될 수도 있다.
제어영역에 할당되는 제어 채널에는 PCFICH(physical control format indication channel), PHICH(physical hybrid-ARQ indicator channel), PDCCH(physical downlink control channel)이 있다. PCFICH는 제어 영역의 크기 즉, 제어 영역을 구성하는 OFDM 심벌의 개수를 나타내는 정보가 전송되는 제어 채널이다. PHICH는 단말의 상향링크 데이터 전송에 대한 ACK/NACK(acknowledgement/not-acknowledgement)을 나르는 제어 채널이다. PDCCH는 DL-SCH(Downlink-Shared Channel)의 자원 할당(이를 DL 그랜트(downlink grant)라고도 한다) 및 전송 포맷, UL-SCH(Uplink Shared Channel)의 자원 할당 정보(이를 UL 그랜트(uplink grant)라고도 한다), PCH(paging channel) 상의 페이징 정보, DL-SCH 상의 시스템 정보, PDSCH 상으로 전송되는 랜덤 액세스 응답과 같은 상위 계층 제어 메시지의 자원 할당, 임의의 UE 그룹 내 개별 UE들에 대한 전송 파워 제어(transmission power control,TPC) 명령의 집합 및 VoIP(Voice over Internet Protocol)의 활성화 등을 나를 수 있다. PDCCH를 통해 전송되는 제어정보를 하향링크 제어정보(downlink control information, DCI)라고 한다.
DCI 포맷으로는 PUSCH(Physical Uplink Shared Channel) 스케줄링을 위한 포맷 0, 하나의 PDSCH(Physical Downlink Shared channel) 코드워드의 스케줄링을 위한 포맷 1, 하나의 PDSCH 코드워드의 간단한(compact) 스케줄링을 위한 포맷 1A, 공간 다중화 모드에서 단일 코드워드의 랭크-1 전송에 대한 간단한 스케줄링을 위한 포맷 1B, DL-SCH(Downlink Shared Channel)의 매우 간단한 스케줄링을 위한 포맷 1C, 다중 사용자 공간 다중화 모드에서 PDSCH 스케줄링을 위한 포맷 1D, 폐루프(Closed-loop) 공간 다중화 모드에서 PDSCH 스케줄링을 위한 포맷 2, 개루프(Open-loop) 공간 다중화 모드에서 PDSCH 스케줄링을 위한 포맷 2A, PUCCH 및 PUSCH를 위한 2비트 전력 조절의 TPC(Transmission Power Control) 명령의 전송을 위한 포맷 3, 및 PUCCH 및 PUSCH를 위한 1비트 전력 조절의 TPC 명령의 전송을 위한 포맷 3A 등이 있다.
도 7은 상향링크 서브프레임의 구조를 나타낸다.
도 7을 참조하면, 상향링크 서브프레임은 주파수 영역에서 상향링크 제어 정보를 나르는 PUCCH(Physical Uplink Control Channel)가 할당되는 제어영역(region)과 사용자 데이터를 나르는 PUSCH(Physical Uplink Shared Channel)가 할당되는 데이터영역으로 나눌 수 있다.
하나의 단말에 대한 PUCCH는 서브프레임에서 자원블록(RB) 쌍(pair)으로 할당되고, RB 쌍에 속하는 RB들은 2개의 슬롯들 각각에서 서로 다른 부반송파를 차지한다. 이를 PUCCH에 할당되는 RB 쌍이 슬롯 경계(slot boundary)에서 주파수 도약(frequency hopping)된다고 한다.
이하, OFDM에 대해 설명한다.
도 8은 OFDM에 대한 직렬-병렬 변환 동작을 개략적으로 도시한 것이다.
도 8에 따르면, 하이 레이트(high rate)의 데이터 스트림은 직렬-병렬 변환부에 입력될 수 있다. 일반적으로, 하이 레이트(high rate)의 데이터 스트림(stream)이 연속적으로(serially) 전송되는 경우, 심볼 주기 Ts가 채널 지연 확산 Td보다 작을 때 문제가 발생할 수 있다. 이는 콤플렉스 이퀄리제이션(complex equalization) 절차에 의한 언던(undone)에 해당하는 인터 심볼 간섭(Intersymbol interference; ISI)을 생성한다. 일반적으로, 상기 이퀄리제이션 복잡도(complexity)는 채널 임펄스 응답 길이(channel impulse response length)의 제곱만큼 증가한다.
도 8에서 보여지는 바와 같이, OFDM에서 데이터 심볼의 하이 레이트 스트림은 변조(modulation)를 위하여 M개의 병렬적인 서브 캐리어로 직렬-병렬 컨버트된다(converted). 여기서, M에 해당하는 팩터에 의해 각각의 서브 캐리어 상의 심볼 듀레이션(duration)이 증가된다. 이는 채널 딜레이 확산보다 상당히 커지게 된다.
시간 변화 채널 임펄스 응답이 각각의 변조된 OFDM 심볼의 전송 동안 일정하게 남아있는다는 가정 하에서, 상술한 동작은 리시버(receiver)에서 보다 적은 복잡도의 이퀄리제이션에 관하여 중요한 의미를 가진다.
도 9는 숏(short) 및 롱(long) 심볼 듀레이션을 가지는 시그널 상에서의 채널 효과를 개략적으로 도시한 것이다.
도 9를 참조하면, Ts의 심볼 주기(symbol period)를 가지는 시그널과, Td의 지연 확산(delay spread)을 가지는 채널은 컨볼루션(convolution)될 수 있다.
도 9를 참조하여 알 수 있는 바와 같이, OFDM 심볼 주기 Ts를 갖는 신호를 전송한다고 가정하자. 이때, 신호는 Td 만큼의 지연 확산을 갖는 채널 환경을 겪는다고 가정하여, 신호와 채널 환경에 컨볼루션을 취한다. 이때, 도 9는 ISI에 의해 사실상 영향을 받지 않은 롱 심볼 듀레이션의 결과를 숏 심볼 듀레이션과 비교한 것이며, 이때, 상기 숏 심볼 듀레이션은 ISI에 의해 강한 영향을 받게 된다. 즉, Td<Ts인 경우, Td>Ts인 경우보다, ISI에 의해 영향을 더 적게 받는다.
즉, Td < Ts이라면, 심볼 기간은 단지 조금 길어지는데 그치게 된다. 그러나, Td > Ts 이라면, 심볼간 간섭(ISI: inter-symbol interference)이 발생하게 된다. 이러한 ISI를 제거하기 위해서는 각 OFDM 심볼의 시작 위치에 보호 구간을 주는 것이 바람직하다. 이와 같이 보호 구간을 두기 위해, CP(cyclic prefix)가 필요할 수 있다. CP 삽입은 각 OFDM 심볼의 마지막에 위치한 샘플들을 심볼의 앞 부분으로 중복 삽입함으로써 이루어진다. 이러한 CP의 길이에 대해, 3GPP LTE는 노멀(normal) CP와 확장 CP(extended) CP를 정의하고 있다.
도 10 내지 도 11은 OFDM 시스템의 일례를 블록도를 통해 개략적으로 도시한 것이다. 여기서, 도 10은 OFDM 트랜스미터(transmitter)의 일례를 개략적으로 도시한 블록도이며, OFDM 트랜스미터는 직렬-병렬 컨버터(Serial to Parallel converter; S/P), 인버스 패스트 푸리에 변환(inverse fast furrier transform; IFFT), 병렬-직렬 컨버터 및 DAC를 포함할 수 있다. 도 11은 OFDM 리시버(receiver)를 개략적으로 도시한 블록도에 해당하며, OFDM 리시버는 ADC, S/P 및 패스트 푸리에 변환(fast furrier transform; FFT)를 포함할 수 있다.
OFDM 시스템에서, 전송되어야될 시그널은 주파수 도메인에서 정의된다. 직렬-병렬 컨버터(converter)는 순차적인 데이터 심볼들을 M의 차원을 지닌 데이터 심볼 Sk = [Sk [0] , Sk [1] , . . . , Sk [M 1]]T 로써 수집하며, 상기 데이터 블록에서, 첨자 k는 OFDM 심볼의 인덱스를 의미할 수 있다.
상기 M개의 병렬적인 데이터 스트림은 우선 개별적으로 콤플렉스 벡터 Xk = [Xk [0] , Xk [1] , . . . , Xk [M 1]]T로써 변조(modulated)된다.
원칙적으로, 채널 주파수는 선택적이므로, 각각의 서브 캐리어는 서로 다른 변조(modulation)(e.g. QPSK or 16QAM)가 적용될 수 있다. 이때, 채널 이득은 각각의 서브 캐리어 별로 상이할 수 있으며, 몇몇의 서브 캐리어들은 다른 서브 캐리어들에 비해 높은 데이터 레이트를 운반할 수도 있다.
이후, 데이터 심볼의 벡터 Xk는 IFFT를 통과하게 되며, 결과적으로 N 콤플렉스 시간 도메인 샘플 xk = [xk[0], . . . , xk[N 1]]T가 도출된다. 현실적인 OFDM 시스템에서는 가공된 서브 캐리어들의 개수는 변조된 서브캐리어들의 개수보다 더 큰 값을 가진다(즉, N ≥M). 이때, 변조되지 않은 서브 캐리어들에는 zero가 채워지게 된다.
도 12는 OFDM 사이클 프리픽스(cycle prefix; CP)의 입력을 개략적으로 도시한 것이다.
OFDM 생성에 관하여, 멀티패스(multipath) 전파(propagation)에 의해 야기되는 남아있는 ISI의 영향을 삭제하기 위해, 각각의 OFDM 심볼 시작점에 보호 기간을 삽입할 수 있다. 이때, 상기 보호 기간은 상기 심볼 xk의 시작점에 사이클 프리픽스(cyclic prefix; CP)를 추가함으로써 획득될 수 있다. 상기 CP는 IFFT의 마지막 G 샘플들을 듀플리케이팅(duplicating)함으로써 생성되며, 이를 xk의 시작점에 첨부함으로써 생성된다. 이는 도 12에서 도시된 바와 같이 시간 도메인 OFDM 심볼 [xk[N G], . . . , xk[N 1], xk[0], . . . , xk[N 1]]T 에 의해 나타난다.
ISI를 완벽하게 피하기 위하여, CP 길이 G는 지원되는 최대 채널 임펄스 응답보다도 더 긴 것이 선택되어야 한다. 상기 CP는 채널의 선형(즉, 비주기적) 컨볼루션을 DFT 프로세싱에 대해 적합한 순환형(즉, 주기적)으로 변환시킬 수 있다.
이후, IFFT의 아웃풋은 주파수 선택적 채널(frequency selective channel)을 통한 전송을 위해 병렬-직렬 변환된다.
리시버에서는 OFDM 시그널의 역변조를 위하여 상술한 과정의 역과정이 수행된다.
만약, 서브캐리어 N의 개수가 파워 2로써 디자인된 경우, 변환된 시그널을 주파수 도메인으로 돌려놓기 위하여 높은 효율의 FFT 실행이 사용될 수 있다. FFT로부터의 N개의 병렬 스트림 중에서, M 서브 캐리어들의 변조된 부분 집합이 선택될 수 있으며, 추가적으로 리시버에 의해 가공될 수도 있다.
이하, SC-FDMA 원리에 대해 설명한다.
이론적으로, SC-FDMA는 시간 도메인 또는 주파수 도메인에서 모두 생성될 수 있다. 비록 상기 두 가지 기술이 함수적으로 동치 관계임에도 불구하고, 시간 도메인 생성이 필터 램프 업 및 램프다운 횟수에 관해 관련된 요구와 (시간 도메인) 필터링으로 인하여, 보다 낮은 주파수 대역 효율을 가질 수도 있다. 다만, 이하에서의 SC-FDMA의 원리는 시간 도메인 및 주파수 도메인에서 모두 적용될 수 있다.
도 13은 SC-FDMA 시간 도메인 전송 프로세싱을 개략적으로 도시한 블록도에 해당한다.
SC-FDMA 시그널의 시간 도메인 생성은 도 13과 같이 도시될 수 있다. 이때, SC-FDMA 시그널의 시간 도메인 생성는 일반적인 싱글 캐리어 전송과 유사한 과정을 지닐 수도 있다.
입력 비트 스트림은 길이 M의 심볼 블록으로써 그룹화되는 QPSK or QAM 심볼의 싱글 캐리어 스트림으로 매핑될 수 있다. 이는 각각의 블록이 L 번씩 반복되는 선택적 반복 스테이지(optional repetition stage)에 뒤이어 올 수 있으며(followed by an optional repetition stage), 각각의 사용자의 전송에 의한 사용자 특정적 주파수 이동에 뒤이어 올 수 있다.
여기에, CP가 삽입될 수 있으며, 필터링(e.g. 루트-레이즈드 코사인 펄스 쉐이핑 필터(root-raised cosine pulse-shaping filter)에 의한 필터링) 이후, 최후의 시그널이 전송될 수 있다.
도 14는 점유된 서브 캐리어 간의 이퀄 스페이싱(equal-spacing) 분산 전송(distributed transmission)의 일례를 개략적으로 도시한 것이다.
상술한 심볼 블록들은 전송된 시그널 중에서, 특정 캐리어 주파수에서만 영이 아닌 값을 가진다. 즉, 전송된 시그널은 L 주기마다 한 번씩 영이 아닌 값을 가지도록 분포(혹은 분산(distributed))될 수 있다. 예컨대, 도 14의 예와 같이, L 이 4일 경우에는 4개의 서브캐리어마다 0이 아닌 서브 캐리어가 나타날 수 있다.
따라서, 전송된 시그널의 스팩트럼은 OFDM 시그널의 매 L번째 서브 캐리어 마다 변조된 데이터 심볼과 유사하게 된다. 상술한 바와 같은 매 L 번째 서브 캐리어마다 시그널이 점유된 것은 '분산'되었다고 불릴 수 있으며, 이는 주파수 다이버스티 게인(gain)을 제공하는 한 가지 방법에 해당하다.
변화하는 블록 길이 'M' 그리고 반복되는 팩터 'L'에 의하여, 주파수 대역에서 가능한 점유된 서브 캐리어들의 전체 개수라는 제약 하에서(e.g. ML = constant), 데이터 레이트의 넓은 범위가 지원될 수 있다.
만약, 심볼 블록 반복이 수행되지 않는 경우(i.e. L=0), 상기 시그널은 연이은 서브 캐리어들을 점유할 수 있으며, 상기 전송은 '국부적(localized)'이라고 불리어 질 수 있다. 국부적 전송은 주파수 선택적 스케줄링을 지원하는 것에 대해 이점이 있다. 예컨대, eNodeB가 예컨대, 채널 사운딩의 결과로 인하여 상향링크 채널 컨디션을 알고 있는 경우에는 또는 인터 셀 간섭 코디네이션(coordination)에 관해 알 수도 있다.
연이은 서브 캐리어의 세트가 주파수 도메인에서 호핑되고(hoped) 있는 경우, 특히 호핑 간의 시간 간격이 채널 코드 데이터(channel-coded data)의 블록에 대한 듀레이션보다 짧은 경우, 국부적 전송은 주파수 다이버시티 또한 제공할 수 있다.
서로 다른 반복 팩터 또는 주파수 간격을 이용하는 서로 다른 사용자의 전송은 직교성(orthogonal)을 유지하며, 상기 직교성을 만족하는 조건은 아래와 같다.
- 사용자가 서브 캐리어의 서로 다른 세트들을 점유하는 경우. 이는 일반적으로 사용자 특정적 주파수 이동(특히, 국부적 전송인 경우)에 의해, 또는 대체적으로 서로 다른 사용자가 점유하는 인터리브된(interleaved) 서브캐리어 세트들(특히, 분산된 전송의 경우)에 관한 정렬에 의해 달성될 수 있다. 여기서 후자는 인터리브된 주파수 분할 멀티플 액세스(Interleaved Frequency Division Multiple Access; IFDMA)로 명명될 수 있다.
- 수신된 시그널이 시간 및 주파수에서 적절히 동기화된 경우.
- CP가 채널의 지연 확산 및 사용자 간의 시간 동기화 에러 잔차(residual)의 합보다 더 긴 경우.
시그널에 의해 생성된 상기 SC-FDMA 시간 도메인은 펄스 모양의 싱글 캐리어 변조와 마찬가지로 유사한 레벨의 CM(Cubic Metric)/PAPR(Peak to Average Power Ratio)을 가질 수 있다. 멀티패스 채널에서의 ISI는 CP에 의해 보호될 수 있으며, 이때, CP는 리시버 측면에서의 주파수 도메인 이퀄라이저(Frequency Domain Equalizer; FDE)의 도움으로써, 효율적인 이퀄리제이션이 가능하게 된다.
도 15는 국부적 및 분산적 서브 캐리어 매핑을 통한 SC-FDMA 주파수 도메인 전송 프로세싱을 개략적으로 도시한 블록도이다.
도 15를 참조하면, 주파수 도메인에서의 SC-FDMA의 생성은 이산적 푸리에 변환 확산 OFDM(Discrete Fourier Transform-Spread OFDM; DFT-S-OFDM) 구조에 의해 달성될 수 있다.
DFT-S-OFDM의 첫 번째 단계에서, SC-FDMA 시그널 생성은 M QAM 데이터 심볼들의 각각의 블록 상에서 M-point DFT 동작을 수행하는 것이다. 그리고, DFT의 사이즈를 N 서브캐리어 OFDM 모듈레이터와 일치시키기 위해 DFT의 아웃풋들 중에 영(zero)들이 삽입된다(특히, IFFT). 상술한 0이 삽입된 DFT 아웃풋은 N 서브 캐리어들에 매핑된다.
일반적으로, N은 점유된 서브 캐리어들의 최대 숫자보다 크며, 따라서, 효율적인 오버샘플링 및 'sinc' (sin(x)/x) 펄스 형상이 제공된다. 이러한 DFT-S-OFDM의 등가 및 시간 도메인 제너레이티드 SC-FDMA(time-domain-generated SC-FDMA) 전송은 m=N인 경우에 손쉽게 찾아볼 수 있다. 이때, 상기 DFT 동작은 시간 도메인에서 연속적으로 전송되는 데이터 심벌들의 결과에서 OFDM 변조기의 IFFT를 제거할 수 있다. 다만, 이러한 간략화된 구조는 오버샘플링 또는 펄스 형상 필터링을 제공하지 못할 수 있다.
상기 시간 도메인 접근과 함께, DFT-S-OFDM은 국부적 및 분산적 전송 모두를 생성할 수 있는 능력을 지닌다.
- 국부적 전송: 상기 서브 캐리어 매핑을 통해, M개의 인접한 서브 캐리어 그룹이 사용자에게 할당될 수 있다. M<N인 경우, 0이 DFT 스프레더(spreader)의 아웃풋에 부가된 경우, OFDM 모듈레이터의 IFFT 아웃풋에서 원래의 M QAM 데이터 심볼 샘플되지 않은/보간된(interpolated) 버전의 결과가 나타날 수 있다. 이때, 상기 전송된 시그널은 CP(반복 팩터 L=1인 시간 도메인 생성과 등가) 및 sinc 펄스 형상 필터링(순환적 필터링)과 함께 협대역(narrowband) 싱글 캐리어와 유사하다.
- 분산적 전송: 상기 서브 캐리어 매핑을 통해, M개의 균등한 간격의 서브 캐리어가 할당(e.g. 매 L 번째 서브 캐리어마다)될 수 있다. (L-1) 개의 0이 M DFT 아웃풋 간에 삽입될 수 있으며, 상술한 국부화 케이스와 같이 DFT 아웃풋 간에 삽입된 0들이 시간 도메인에서 파형 반복을 생성하는 동안, 추가적인 0이 IFFT에 앞서 DFT 아웃풋의 양 사이드에 부가될 수 있다(ML<N). 이는 팩터 L 및 'sinc' 펄스 형태의 필터링과 함께 시간 도메인 IFDMA과 유사한 전송된 시그널에서 발생한다.
시간 도메인 SC-FDMA 시그널 생성과 같이, 다른 데이터 레이트 요구와 함께 다른 사용자들 간의 직교성은 각각의 사용자에게 서브 캐리어들의 특정 세트를 배치함으로써 달성될 수 있다. 상기 CP 구조는 시간 도메인 시그널 생성과 동일하며, 그리고 동일한 능률적인 FDE 기술이 수신자에게 적용될 수 있다. 아울러, 어떠한 단일 매트릭스가 확산 동작을 위하여, DFT의 위치에 사용될 수도 있다.
이하, 본 발명에 대해 설명한다.
최근 장치들 간 직접통신을 하는 D2D (Device-to-Device)기술에 대한 관심이 높아지고 있다. 특히, D2D는 공중 안전 네트워크(public safety network)을 위한 통신 기술로 주목 받고 있다. 상업적 통신 네트워크는 빠르게 LTE로 변화하고 있으나 기존 통신 규격과의 충돌 문제와 비용 측면에서 현재의 공중 안전 네트워크는 주로 2G 기술에 기반하고 있다. 이러한 기술 간극과 개선된 서비스에 대한 요구는 공중 안전 네트워크를 개선하고자 하는 노력으로 이어지고 있다.
공중 안전 네트워크는 상업적 통신 네트워크에 비해 높은 서비스 요구 조건(신뢰도 및 보안성)을 가지며 특히 셀룰러 통신의 커버리지가 미치지 않거나 이용 가능하지 않은 경우에도, 장치들 간의 직접 신호 송수신 즉, D2D 동작도 요구하고 있다.
D2D 동작은 근접한 기기들 간의 신호 송수신이라는 점에서 다양한 장점을 가질 수 있다. 예를 들어, D2D 단말은 높은 전송률 및 낮은 지연을 가지며 데이터 통신을 할 수 있다. 또한, D2D 동작은 기지국에 몰리는 트래픽을 분산시킬 수 있으며, D2D 단말이 중계기 역할을 한다면 기지국의 커버리지를 확장시키는 역할도 할 수 있다.
V2X(Vehicle-to-X)는 D2D 기술에 이동성을 추가해 차량이 주행하면서 도로 인프라나 다른 차량과 지속적으로 상호 통신하며 교통 상황 등 유용한 정보를 교환, 공유하는 기술이다. V2X 네트워킹은 일례로, V2X (VEHICLE-TO-X)에서 'X'는 PERSON (혹은 UE) (V2P), VEHICLE (V2V), (UE TYPE 혹은 eNB TYPE) ROAD SIDE UNIT (RSU) 혹은 INFRASTRUCTURE (V2I) 등을 나타내며, 최근에 대두되고 있는 전기자동차의 충전과 관련해 조만간 또 다른 형태의 통신 범주로 V2G (Vehicle-to-Grid)가 추가될 수도 있다. 본 발명에서 'ENTITY'는 'X'와 동일한 의미로 해석될 수 가 있다.
V2X기술을 사용하는 단말(이하, 설명의 편의를 위해, 'V2X 단말' 혹은 '단말'로 명명한다.)은 종래에 비해 높은 주파수를 이용할 뿐만 아니라, 차량의 이동성으로 인하여, 높은 속도 상황에서 무선 통신을 수행하게 된다.
여기서, 단말 즉, V2X 단말이 높은 속도 하에서 무선 통신을 수행한다는 것은, 단말이 도플러 효과(Doppler effect)의 영향을 강하게 받을 수 있다는 것을 의미한다. 예컨대, V2X 단말의 속도에 의하여, 시간 축에서의 채널 쉬프트(shift)라는 도플러 효과가 발생할 수 있으며, 속도가 빠를수록 시간 축에서의 채널 쉬프트 효과가 더 크게 발생될 수 있다.
이에, 본 발명에서는 도플러 효과 등에 강인한 TTI(혹은 서브프레임) 구조를 통해, V2X 단말이 도플러 효과 등의 영향을 받음에도 불구하고, 신뢰도 높은 정보를 전송하는 방법 및 이를 이용하는 장치를 제공하도록 한다.
아래 제안 방식들은 상이한 PRIORITY (그리고/혹은 QUALITY-OF-SERVICE/LATENCY 요구사항)를 가지는 V2X (VEHICLE-TO-X) CHANNEL/SIGNAL(S)를 효율적으로 전송하는 방법을 제시한다. 이하에서는 제안 방식에 대한 설명의 편의를 위해서, 일례로, 상대적으로 높은 PRIORITY (그리고/혹은 상대적으로 높은 QUALITY-OF-SERVICE 요구사항 그리고/혹은 상대적으로 짧은 LATENCY 요구사항)을 가지는 V2X CHANNEL/SIGNAL(S)를 "H_PRI_CH"로 명명하고, 상대적으로 낮은 PRIORITY (그리고/혹은 상대적으로 낮은 QUALITY-OF-SERVICE 요구사항 그리고/혹은 상대적으로 긴 LATENCY 요구사항)을 가지는 V2X CHANNEL/SIGNAL(S)를 "L_PRI_CH"로 명명한다.
여기서, 일례로, 제어(/스케줄링) 정보가 전송되는 채널 (그리고/혹은 V2X 통신 관련 시스템(/브로드캐스팅) 정보가 전송되는 채널 그리고/혹은 V2X 통신 관련 SYNCH. SIGNAL)은 H_PRI_CH로 설정되고, 데이터 정보가 전송되는 채널은 L_PRI_CH로 설정될 수 있다.
또한, 일례로, 하기 제안 방식들을 적용함으로써, 기존에 비해 상대적으로 높은 주파수 대역 (e.g., 5.9GHz) 환경, 혹은 상대적으로 높은 DOPPLER(/CARRIER FREQUENCY OFFSET) 환경 하에서 V2X 통신이 수행될 때, (최소한) 상대적으로 높은 PRIORITY (그리고/혹은 상대적으로 높은 QUALITY-OF-SERVICE 요구사항 그리고/혹은 상대적으로 짧은 LATENCY 요구사항)의 V2X CHANNEL/SIGNAL(S)를 신뢰도 높게 송/수신할 수 있게 된다.
본 발명에서, 일례로, "TTI"의 용어는 (SUBFRAME (SF) 단위보다 작은) 사전에 정의된 (혹은 시그널링된) 개수의 SYMBOL SET으로 해석될 수 도 있으며, "SUBCARRIER"의 용어는 (기존 SUBCARRIER 단위보다 큰) 사전에 정의된 (혹은 시그널링된) 개수의 RB SET으로 해석될 수 도 있다.
아울러, 본 발명의 제안 방식들은 V2X 통신 환경하에서 기술되고 있지만, 이는 하나의 적용 예시일 뿐이며,이하의 제안 방식들 (예를 들어, TTI 및/또는 단말이 전송하는 정보의 중요성에 따라, 상이한 (특성의) TTI를 선택하는 방법 및 장치)은 V2X 통신 환경뿐만이 아니라, D2D 통신 환경, WAN DL/UL 통신 환경 등에서도 확장 적용될 수 있다. 이러한 관점에서, 일례로, "H_PRI_CH"은 상대적으로 높은 PRIORITY (그리고/혹은 상대적으로 높은 QUALITY-OF-SERVICE 요구사항 그리고/혹은 상대적으로 짧은 LATENCY 요구사항)을 가지는 NUMEROLOGY 관련 채널/시그널로 (일반적으로) 확장 해석될 수 있으며, 또한, "L_PRI_CH"는 상대적으로 낮은 PRIORITY (그리고/혹은 상대적으로 낮은 QUALITY-OF-SERVICE 요구사항 그리고/혹은 상대적으로 긴 LATENCY 요구사항)을 가지는 NUMEROLOGY 관련 채널/시그널로 (일반적으로) 확장 해석될 수 도 있다.
도 16은 본 발명의 일 실시예에 따른, TTI(Transmit Time Interval)에 기반한 V2X 통신 수행 방법의 순서도이다.
도 16에 따르면, 단말은 V2X 통신과 관련된 정보의 우선 순위를 결정할 수 있다(S1610). 이때, V2X 통신과 관련된 정보의 우선 순위에 대한 구체적인 내용은 후술하도록 한다.
단말은 상기 우선 순위에 기반하여, TTI를 선택할 수 있다(S1620). 이때, 상기 TTI는 단말이 V2X 통신을 수행하기 위해 사용하는 TTI를 의미하며, 상기 TTI에 관한 정보(예컨대, TTI의 선택 정보, 높은 우선 순위를 가지는 정보를 전송할 때 사용될 TTI 및/또는 낮은 우선 순위를 가지는 정보를 전송할 때 사용될 TTI에 관한 정보 등)는 단말에게 미리 설정되거나, 혹은 네트워크로부터 설정 받을 수 있다.
여기서, V2X의 제어와 관련된 정보는 높은 신뢰성을 가질 수 있도록 전송될 필요가 있기 때문에, 본 발명에 따른 단말은 신뢰도 높은 정보(채널 및/또는 시그널)를 전송하기 위해 결정된 TTI와 비교적 신뢰도가 높지 않아도 되는 정보(채널 및/또는 시그널)를 전송하기 위해 결정된 TTI를 구별하여 사용할 수 있다.
즉, 단말이 V2X 통신을 수행하기 위해 사용하는 TTI에는 상대적으로 높은 우선 순위(즉, 상대적으로 높은 서비스의 퀄리티 및/또는 혹은 상대적으로 짧은 레이턴시(LATENCY)를 요구)를 가지는 V2X 채널/시그널이 전송되는 TTI 및/또는 상대적으로 낮은 우선 순위(즉, 상대적으로 낮은 서비스의 퀄리티 및/또는 혹은 상대적으로 긴 레이턴시(LATENCY)를 요구)를 가지는 V2X 채널/시그널이 전송되는 TTI가 존재할 수 있다. 여기서, 상대적으로 높은 우선 순위를 가지는 V2X 채널/시그널이 전송되는 TTI는 설명의 편의를 위하여, '제1 TTI'로 명명될 수 있으며, 상대적으로 낮은 우선 순위를 가지는 V2X 채널/시그널이 전송되는 TTI는 설명의 편의를 위하여, '제2 TTI'로 명명될 수 있다.
여기서, 단말이 V2X 통신을 위한 적어도 하나 이상의 TTI를 선택함에 있어, 1) 우선 순위에 따라, 서로 다른 간격을 가지는 TTI를 선택(예컨대, 높은 우선순위인 경우 주파수 측면에서는 길고, 시간 측면에서는 짧은 자원 요소로 구성된 제1 TTI를 선택하고, 낮은 우선순위인 경우 제1 TTI에서의 자원 요소에 비하여, 주파수 측면에서는 짧고, 시간 측면에서는 긴 자원 요소로 구성된 제2 TTI를 선택) 및/또는 2) 우선 순위에 따라 TTI 내의 주파수 자원 영역 상의 특정 서브 캐리어에 'zero' 또는 'null'이 삽입된 TTI를 선택(예컨대, 높은 우선 순위인 경우, zero 또는 null이 삽입된 TTI를 선택하고, 낮은 우선 순위인 경우, zero 또는 null이 삽입되지 않은 TTI를 선택)할 수 있으며, 이에 관한 구체적인 내용은 후술하도록 한다.
이후, 단말은 선택된 TTI에 기반하여, 상기 정보를 전송할 수 있다(S1630).
이하에서는 TTI들에 대해, 도면을 통해 보다 구체적으로 설명한다. 이때, 상기 단말은 후술할 TTI를 이용하여, V2X 통신을 수행할 수 있다.
1. 우선 순위에 따라, 단말이 서로 다른 간격을 가지는 TTI를 선택(예컨대, 높은 우선순위인 경우 제1 TTI를 선택하고, 낮은 우선순위인 경우 제2 TTI를 선택)할 때, 단말이 선택하는 TTI는 아래와 같을 수 있다.
단말은 높은 우선 순위를 가지는 채널/시그널을 전송할 때, 높은 신뢰도가 보장되는 TTI를 선택할 수 있다. 이때, 상기 높은 신뢰도가 보장되는 TTI는 단말에게 영향을 미치는 도플러 효과로부터 강인성을 지닐 수 있도록 시간 축에서의 길이가 짧고, 주파수 축에서의 길이가 긴 자원 요소(resource element; RE)로 구성될 수 있다.
여기서, 상기 TTI가 시간 축에서의 길이가 짧은 자원 요소로 구성된다는 것은, 시간 축에서 심볼 듀레이션(duration)이 짧아지기 때문에, 하나의 심볼에서 채널 변화(variation)가 거의 없게 된다는 것을 의미한다. 이로 인해, 상기 시간 축에서의 길이가 짧은 자원 요소로 구성된 TTI는 도플러 효과로부터 강인성을 가지게 된다. 아울러, 높은 주파수에서 주파수의 측정이 큰 오차를 가진다는 점을 고려할 때, 단말이 주파수 축에서의 길이가 긴 자원 요소로 구성된 TTI를 이용할 경우에는, 주파수의 확장으로 인해, 단말이 주파수 오프셋을 측정하는 것이 유리해진다.
상술한 신뢰도 높은 정보가 전송되는 TTI 및 상대적으로 신뢰도가 낮은 정보가 전송되는 TTI에 관해서는 아래와 같이 설명될 수 있다.
도 17은 본 발명의 일 실시예에 따른, TTI를 개략적으로 도시한 것이다.
도 17을 참조하면, 높은 우선 순위를 가지는 정보를 전송하는데 이용되는 TTI는 낮은 우선 순위를 가지는 정보를 전송하는데 이용되는 TTI에서의 자원 요소에 비하여, 주파수 측면에서 K (K는 0이 아닌 양의 정수)배의 길이를 가지고 시간 측면에서 1/K 배의 길이를 가지는 자원 요소로 구성될 수 있다. 자원 요소는 '기초 자원 요소(basic resource element)'를 의미할 수도 있으며, 이때, 높은 우선 순위를 가지는 정보를 전송하는데 이용되는 TTI에 포함되어 있는 자원 요소의 개수와, 낮은 우선 순위를 가지는 정보를 전송하는데 이용되는 TTI에 포함되어 있는 자원 요소의 개수는 동일할 수 있다.
본 발명의 실시예는 상술한 바에 한정되는 것이 아니다. 즉, 높은 우선 순위를 가지는 정보를 전송하는데 이용되는 TTI에 포함되어 있는 자원 요소의 시간 측면에서의 길이는, 낮은 우선 순위를 가지는 정보를 전송하는데 이용되는 TTI에 포함되어 있는 자원 요소의 시간 측면에서의 길이보다 M/K (M은 0이 아닌 양의 정수)배의 길이를 가질 수도 있다. 만약, 높은 우선 순위를 가지는 정보를 전송하는데 이용되는 TTI에 포함되어 있는 자원 요소가 낮은 우선 순위를 가지는 정보를 전송하는데 이용되는 TTI에 포함되어 있는 자원 요소보다 주파수 측면에서는 K배 만큼 더 길고, 시간 측면에서는 동일한 길이를 가질 경우에는, 래거시(legacy) 단말이 상기 높은 우선 순위를 가지는 정보를 전송하는데 이용되는 TTI를 바라볼 때, 기존의 간섭과 비슷한 형태의 간섭을 가지는 것으로 볼 수 있다. 이에 따라, 래거시 단말은 기존에 존재하는 기술을 적용하여 간섭을 제거할 수 있으므로, 무선 통신 전체의 효율이 증가될 수 있다.
보다 구체적으로,
[제안 방법#1] H_PRI_CH가 전송되는 사전에 정의된 (혹은 시그널링된) (TTI (TRANSMISSION TIME INTERVAL) 내의) (주파수) 자원 영역에는 "KΔF" (e.g., K는 0이 아닌 양의 정수)의 SUBCARRIER SPACING이 적용되도록 규칙이 정의될 수 있다.
여기서, 일례로, "ΔF" (e.g., 15kHz)는 L_PRI_CH가 전송되는 사전에 정의된 (혹은 시그널링된) (TTI 내의) (주파수) 자원 영역에 적용되는 SUBCARRIER SPACING을 의미한다.
일례로, H_PRI_CH가 전송되는 사전에 정의된 (혹은 시그널링된) (TTI 내의) (주파수) 자원 영역에 적용되는 SUBCARRIER SPACING은 (L_PRI_CH가 전송되는 사전에 정의된 (혹은 시그널링된) (TTI 내의) (주파수) 자원 영역에 적용되는 SUBCARRIER SPACING보다) 상대적으로 큰 값으로 설정될 수 있으며, 이를 통해서 H_PRI_CH의 신뢰도 높은 송/수신을 보장해줄 수 있다.
여기서, 일례로, 이러한 규칙이 적용될 경우, L_PRI_CH 전송은 신뢰도 높은 전송보다는 RESOURCE UTILIZTION EFFICIENCY를 높인 것으로도 해석 가능하다. 도 14는 [제안 방법#1]이 적용된 경우에 대한 일례를 나타낸다.
여기서, 일례로, K 값은 '2'로 가정하였으며, TTI#N 내의 자원 영역에서는 H_PRI_CH가 전송되고 TTI#(N+1) 내의 자원 영역에서는 L_PRI_CH가 전송되는 상황을 가정하였다.
또한, 일례로, 도 17에서 H_PRI_CH (그리고/혹은 L_PRI_CH)가 전송되는 TTI#N (그리고/혹은 TTI#(N+1)) 자원 영역 상의 기초 자원 요소(BASIC RESOURCE ELEMENT; BRE 또는 BASIC RESOURCE UNIT)은 OPTION#A 혹은 OPTION#B (i.e., OPTION#A 기반의 복수 개 (M)의 BRE(S)을 묶어서 하나의 BRE로 정의)와 같이 정의될 수 도 있다.
여기서, 일례로, 도 17은 H_PRI_CH와 L_PRI_CH이 상이한 (혹은 독립적인) SUBCARRIER SPACING이 적용되는 서로 다른 TTI 내의 자원 영역을 통해서 (TDM) 전송되는 것 (혹은 H_PRI_CH이 전송되는 자원 집합 (RESOURCE POOL)과 L_PRI_CH이 전송되는 자원 집합이 (SUBCARRIER SPACING이 다르되) TDM 되어 있는 것)으로 해석 가능하다.
또한, 일례로, 도 17에서 TTI#N과 TTI#(N+1)은 하나의 TTI 안에 속하는 SUB-TTI#1과 SUB-TT#2로 해석 (i.e., 하나의 TTI 안에서, H_PRI_CH가 전송되는 사전에 정의된 (혹은 시그널링된) SUB-TTI 내의 (주파수) 자원 영역에 적용되는 SUBCARRIER SPACING과 L_PRI_CH가 전송되는 사전에 정의된 (혹은 시그널링된) SUB-TTI 내의 (주파수) 자원 영역에 적용되는 SUBCARRIER SPACING이 다른 것으로 해석 가능)될 수 도 있다.
또한, 일례로, H_PRI_CH가 전송되는 사전에 정의된 (혹은 시그널링된) (TTI 내의) (주파수) 자원 영역에 적용되는 SUBCARRIER SPACING은 증가 (혹은 변경)시키되, L_PRI_CH가 전송되는 사전에 정의된 (혹은 시그널링된) (TTI 내의) (주파수) 자원 영역에 적용되는 SUBCARRIER SPACING은 변경하지 않는 (혹은 기존과 동일하게 유지하는) 한가지 이유로, (H_PRI_CH (e.g., 제어 채널)에 비해) L_PRI_CH (e.g., 데이터 채널)이 상대적으로 많은 자원을 차지할 확률이 높으니 (e.g., CELLULAR (UL) 통신에 간섭을 줄 확률이 높은 것으로 해석 가능) CELLULAR (UL) 통신과 V2X 통신 간의 간섭 완화(/제거)를 위한 (CELLULAR (UL) 통신과 V2X 통신 간의) SUBCARRIER SPACING ALIGNMENT가 필요할 수 있기 때문이다.
도 18 내지 도 22는 본 발명의 다른 실시예에 따른, TTI를 개략적으로 도시한 것이다.
도 18 내지 도 22를 참조하면, 높은 우선 순위를 가지는 정보는 자원 요소에 중복되게 매핑(mapping)될 수 있다. 즉, 높은 우선 순위를 가지는 정보는 높은 우선 순위를 가지는 정보가 전송되는데 이용되는 TTI의 자원 요소 상에, 반복 전송될 수 있다. 이로 인하여, 상기 TTI를 통해 데이터를 수신하는 단말 입장에서는 동일한 데이터를 두 번 받을 수 있으므로, 집성으로 인한 에너지가 상승하게 되어, 단말이 데이터를 더 잘 받을 수 있다. 이에 따라, 무선 통신 전체의 효율이 상승된다.
특히, H_PRI_CH 관련 동일 (ENCODED) BIT(S)가 연속된 SYMBOL(S) 상에서 반복 맵핑(/전송)될 경우, (관련) CP를 두 SYMBOL(S)의 앞쪽으로 몰아줄 수 있다. 즉, 시간 축으로 데이터가 반복 전송 되는 경우에는 중복 전송되는 CP를 하나로 줄일 수 있으므로, 단말이 줄어든 CP의 영역만큼 데이터를 더 많이 송/수신할 수 있게 된다.
보다 구체적으로,
[제안 방법#2] (상기 [제안 방법#1]이 적용될 경우) H_PRI_CH 관련 (ENCODED) BIT(S)는 H_PRI_CH가 전송되는 사전에 정의된 (혹은 시그널링된) (TTI 내의) 자원 영역 상에서, (사전에 정의된 (혹은 시그널링된) 횟수만큼) 반복 전송(/맵핑)되도록 규칙이 정의될 수 있다.
도 18, 도 19는 [제안 방법#2]가 적용된 경우에 대한 일례를 나타낸다.
여기서, 일례로, H_PRI_CH 관련 (ENCODED) BIT(S)가 "A0, A1, A2, ..., A(L-2), A(L-1)"로 구성된 경우를 가정하였으며, 또한, ((ENCODED) BIT(S)의) 반복 전송(/맵핑) 횟수가 '2'로 설정된 상황을 가정하였다.
도 20은 (하나의) TTI#N을 사전에 정의된 (혹은 시그널링된) Q 개의 SUB-TTI(S)로 나눈 후에, 첫번째 SUB-TTI 상에 전송(/맵핑)되는 H_PRI_CH 관련 (ENCODED) BIT(S)를 나머지 (Q-1) 개의 SUB-TTI(S) 상에도 동일하게 반복 전송(/맵핑)하는 규칙에 대한 일례를 나타낸다.
여기서, 일례로, 이러한 규칙의 적용은 H_PRI_CH 관련 (ENCODED) BIT(S)가 Q 번 반복 전송(/맵핑)되는 것으로 해석 가능하다.
도 20은, 일례로, Q 값이 '2'로 설정된 상황을 가정하였으며, 또한, H_PRI_CH 관련 (ENCODED) BIT(S)가 "A0, A1, A2, ..., A(R-2), A(R-1)" (e.g., 'R = L/2')로 구성된 경우를 가정하였다.
도 21과 도 22는 (하나의) TTI#N을 사전에 정의된 (혹은 시그널링된) Q 개의 SUB-TTI(S)로 나눈 후에, 첫번째 SUB-TTI 부터 순차적으로 H_PRI_CH 관련 (ENCODED) BIT(S)를 사전에 정의된 (혹은 시그널링된) 횟수만큼 반복 전송(/맵핑)하는 규칙에 대한 일례를 나타낸다.
여기서, 일례로, Q 값이 '2'로 설정된 상황을 가정하였으며, 또한, H_PRI_CH 관련 (ENCODED) BIT(S)가 2 번 반복 전송(/맵핑)되는 경우를 가정하였다.
또한, 일례로, 도 21과 도 22에서, H_PRI_CH 관련 (ENCODED) BIT(S)가 "A0, A1, A2, ..., A(L-2), A(L-1)"로 구성된 경우를 가정하였다.
또한, 도 18, 도 19, 도 20, 도 21, 도 22에서, 일례로, H_PRI_CH 관련 (ENCODED) BIT(S)가 H_PRI_CH가 전송되는 사전에 정의된 (혹은 시그널링된) ((SUB-) TTI 내의) 자원 영역 상에서, TIME-FIRST 순(/형태)으로 맵핑(/전송)되는 상황을 가정하였다.
또한, 일례로, 도 18, 도 21에서, H_PRI_CH 관련 동일 (ENCODED) BIT(S)가 연속된 SYMBOL(S) 상에서 반복 맵핑(/전송)될 경우, (관련) CP를 두 SYMBOL(S)의 앞쪽으로 몰아주도록 (혹은 합치도록) 규칙이 정의될 수 도 있다.
또 다른 일례로, [제안 방법#2]는 (상기 [제안 방법#1]이 적용될 경우) L_PRI_CH 관련 (ENCODED) BIT(S)를 전송(/맵핑)하기 위해서도 확장 적용 가능하다.
2. 이하, 주파수 자원 영역 상의 특정 서브 캐리어에 'zero' 또는 'null'이 삽입된 TTI에 관해 구체적으로 설명한다.
도 23 내지 도 29는 본 발명의 또 다른 실시예에 따른, TTI를 개략적으로 도시한 것이다.
도 23 내지 도 29를 참조하면, TTI 내의 주파수 자원 영역 상의 특정 서브 캐리어에 'zero' 또는 'null'이 삽입되고, 상기 TTI이 푸리에 변환될 경우, 'zero' 또는 'null'이 삽입된 자원 영역과 인접한 자원 영역('zero' 또는 'null'이 아님)이 하나의 세트가 되어, 상기 인접한 자원 영역의 데이터가 시간 축으로 반복되는 현상이 발생하게 된다. 이에 따라, TTI의 주파수 자원 영역 상의 특정 서브 캐리어에 'zero' 또는 'null'이 삽입될 경우에는, 상술한 바와 같이 TTI의 간격이 바뀌지 않아도, 시간 축에서 동일한 데이터가 반복되도록 할 수 있으며, 이로 인하여, 상기 TTI를 통해 데이터를 수신하는 단말 입장에서는 동일한 데이터를 두 번 받을 수 있으므로, 집성으로 인한 에너지가 상승하게 되어, 단말이 데이터를 더 잘 받을 수 있다. 이에 따라, 무선 통신 전체의 효율이 상승된다.
보다 구체적으로,
[제안 방법#3] H_PRI_CH가 전송되는 사전에 정의된 (혹은 시그널링된) ((SUB-)TTI 내의) (주파수) 자원 영역 상의 특정 SUBCARRIER(S)에서는 ZERO (혹은 'NULL')가 삽입(/전송) (i.e., TIME DOMAIN에서 (SYMBOL) 반복 효과로 나타남) 되도록 규칙이 정의될 수 도 있다.
여기서, 일례로, 해당 특정 SUBCARRIER(S)은 사전에 정의된 (혹은 시그널링된) ((SUB-)TTI 내의) (주파수) 자원 영역 상의 홀수 (혹은 짝수) 번째 SUBCARRIER(S) (혹은 홀수 (혹은 짝수) 인덱스를 가지는 SUBCARRIER(S))로 설정될 수 도 있다.
그림 도 23, 도 24은 [제안 방법#3]이 적용된 경우 (i.e., 짝수 번째 SUBCARRIER(S)에 ZERO (혹은 'NULL') 삽입(/전송))에 대한 일례를 나타낸다.
여기서, 일례로, H_PRI_CH가 전송되는 사전에 정의된 (혹은 시그널링된) ((SUB-)TTI 내의) (주파수) 자원 영역에 적용되는 SUBCARRIER SPACING과 L_PRI_CH가 전송되는 사전에 정의된 (혹은 시그널링된) ((SUB-)TTI 내의) (주파수) 자원 영역에 적용되는 SUBCARRIER SPACING은 동일 (i.e., "ΔF", "KΔF" (e.g., K는 0이 아닌 양의 정수))하다고 가정하였다.
여기서, 일례로, 그림 도 23은 상기 [제안 방법#3]을 적용함으로써, 기존에 비해 상대적으로 높은 주파수 대역 (e.g., 5.9GHz) 환경 하에서, (기존) SUBCARRIER SPACING을 바꾸지 (혹은 중가 시키지) 않고 (e.g., (기존) TX CHAIN을 바꾸지 않는 것으로 해석 가능), (상대적으로 높은 PRIORITY (그리고/혹은 상대적으로 높은 QUALITY-OF-SERVICE 요구사항 그리고/혹은 상대적으로 짧은 LATENCY 요구사항)의) V2X CHANNEL/SIGNAL(S)을 (상대적으로) 높은 DOPPLER(/CARRIER FREQUENCY OFFSET)에 강인하게 보낼 수 있음을 의미한다.
도 25는 [제안 방법#3]이 적용된 경우 (i.e., 짝수 번째 SUBCARRIER(S)에 ZERO (혹은 'NULL') 삽입(/전송))에 대한 또 다른 일례를 나타낸다.
여기서, 일례로, H_PRI_CH가 전송되는 사전에 정의된 (혹은 시그널링된) ((SUB-)TTI 내의) (주파수) 자원 영역에 적용되는 SUBCARRIER SPACING은 "KΔF" (e.g., K는 0이 아닌 양의 정수)로 가정하였으며, L_PRI_CH가 전송되는 사전에 정의된 (혹은 시그널링된) ((SUB-)TTI 내의) (주파수) 자원 영역에 적용되는 SUBCARRIER SPACING은 "ΔF"로 가정하였다.
또한, 일례로, 그림 도 23, 도 24, 도 25에서 TTI#N과 TTI#(N+1)은 하나의 TTI 안에 속하는 SUB-TTI#1과 SUB-TT#2로 해석 (i.e., 하나의 TTI 안에서, H_PRI_CH가 전송되는 사전에 정의된 (혹은 시그널링된) SUB-TTI 내의 (주파수) 자원 영역에 적용되는 ZERO (혹은 'NULL') 삽입(/전송) 여부/SUBCARRIER SPACING 값이 L_PRI_CH가 전송되는 사전에 정의된 (혹은 시그널링된) SUB-TTI 내의 (주파수) 자원 영역에 적용되는 ZERO (혹은 'NULL') 삽입(/전송) 여부/SUBCARRIER SPACING과 다른 것으로 해석 가능)될 수 도 있다.
또 다른 일례로, [제안 방법#3]는 L_PRI_CH 관련 (ENCODED) BIT(S)를 전송(/맵핑)하기 위해서도 확장 적용 가능하다.
[제안 방법#4] H_PRI_CH과 L_PRI_CH이 동일 TTI 내에서 (독립적으로 시그널링된 (혹은 설정된) (주파수) 자원 영역 상에서) 송신 (그리고/혹은 수신)되는 (혹은 존재하는) 경우, 하기 (일부 혹은 모든) 규칙에 따라 수행되도록 정의될 수 있다.
여기서, 일례로, H_PRI_CH은 제어(/스케줄링) 정보가 전송되는 채널 (그리고/혹은 V2X 통신 관련 시스템(/브로드캐스팅) 정보가 전송되는 채널 그리고/혹은 V2X 통신 관련 SYNCH. SIGNAL)로 지정되고, L_PRI_CH은 데이터 정보가 전송되는 채널로 지정될 수 있다.
(예시#1) 동일 TTI 내에서, H_PRI_CH가 전송되는 사전에 정의된 (혹은 시그널링된) (주파수) 자원 영역 상의 특정 SUBCARRIER(S)에서는 ZERO (혹은 'NULL')가 삽입(/전송)되고 (i.e., [제안 방법#3] 적용), 반면에 L_PRI_CH가 전송되는 사전에 정의된 (혹은 시그널링된) (주파수) 자원 영역 상의 SUBCARRIER(S)에서는 ZERO (혹은 'NULL')가 삽입(/전송)되지 않는 형태.
도 26, 도 27은 이러한 규칙이 적용된 경우에 대한 일례들 (i.e., H_PRI_CH가 전송되는 사전에 정의된 (혹은 시그널링된) (주파수) 자원 영역 상의 짝수 번째 SUBCARRIER(S)에 ZERO (혹은 'NULL') 삽입(/전송))을 나타냄. 여기서, 일례로, 도 26, 도 27에서, H_PRI_CH가 전송되는 사전에 정의된 (혹은 시그널링된) (주파수) 자원 영역에 적용되는 SUBCARRIER SPACING과 L_PRI_CH가 전송되는 사전에 정의된 (혹은 시그널링된) (주파수) 자원 영역에 적용되는 SUBCARRIER SPACING은 동일 (i.e., "ΔF", "KΔF" (e.g., K는 0이 아닌 양의 정수))하다고 가정하였음.
(예시#2) 동일 TTI 내에서, H_PRI_CH가 전송되는 사전에 정의된 (혹은 시그널링된) (주파수) 자원 영역에 적용되는 SUBCARRIER SPACING은 "KΔF" (e.g., K는 0이 아닌 양의 정수)로 설정되고 (i.e., [제안 방법#1] 적용), L_PRI_CH가 전송되는 사전에 정의된 (혹은 시그널링된) (주파수) 자원 영역에 적용되는 SUBCARRIER SPACING은 "ΔF"로 설정되는 형태.
여기서, 일례로, 이러한 규칙이 적용될 경우, H_PRI_CH 송/수신 관련 (주파수) 자원 영역과 L_PRI_CH 송/수신 (주파수) 자원 영역 간의 간섭을 완화시키기 위해서, H_PRI_CH 송/수신 관련 (주파수) 자원 영역과 L_PRI_CH 송/수신 (주파수) 자원 영역 사이에 추가적인 GUARD BAND (혹은 RB(S))을 설정해줄 수 있음.
여기서, 일례로, 해당 GUARD BAND (혹은 RB(S)) 설정에 대한 정보는 eNB (혹은 네크워크 혹은 (UE TYPE 혹은 eNB TYPE) RSU 혹은 V2X (RELAY) ENTITY)가 사전에 정의된 시그널을 통해서, V2X ENTITY(S)에게 알려주도록 규칙이 정의될 수 있음.
또한, 일례로, 이러한 규칙이 적용될 경우, 동일 TTI 내에서, 상이한 SUBCARRIER SPACING이 설정된 독립적인 (혹은 서로 다른) (주파수) 자원 영역들을 통해서, H_PRI_CH와 L_PRI_CH을 동시에 송신하는 V2X TX ENTITY는 H_PRI_CH TX (관련 (주파수) 자원 영역)와 L_PRI_CH TX (관련 (주파수) 자원 영역)에 독립적인 IFFT를 적용 (혹은 동일 TTI 내에서, 상이한 SUBCARRIER SPACING이 설정된 독립적인 (혹은 서로 다른) (주파수) 자원 영역들을 통해서, (동일한 (혹은 상이한) V2X TX ENTITY로부터 송신되는) H_PRI_CH와 L_PRI_CH을 동시에 수신하는 V2X RX ENTITY는 H_PRI_CH 디코딩(/수신)과 L_PRI_CH 디코딩(/수신)에 독립적인 FFT를 적용) 할 수 있음.
도 28, 도 29는 이러한 규칙이 적용된 경우에 대한 일례들을 나타냄.
여기서, 일례로, 도 29의 경우, H_PRI_CH가 전송되는 사전에 정의된 (혹은 시그널링된) (주파수) 자원 영역 상의 짝수 번째 SUBCARRIER(S)에 ZERO (혹은 'NULL')가 삽입(/전송)되었음 (i.e., [제안 방법#3] 적용).
상기 설명한 제안 방식에 대한 일례들 또한 본 발명의 구현 방법들 중 하나로 포함될 수 있으므로, 일종의 제안 방식들로 간주될 수 있음은 명백한 사실이다. 또한, 상기 설명한 제안 방식들은 독립적으로 구현될 수 도 있지만, 일부 제안 방식들의 조합 (혹은 병합) 형태로 구현될 수 도 있다.
일례로, 본 발명에서는 설명의 편의를 위해 3GPP LTE 시스템을 기반으로 제안 방식을 설명하였지만, 제안 방식이 적용되는 시스템의 범위는 3GPP LTE 시스템 외에 다른 시스템으로도 확장 가능하다.
일례로, 본 발명의 제안 방식들은 D2D 통신을 위해서도 확장 적용 가능하다. 여기서, 일례로, D2D 통신은 UE가 다른 UE와 직접 무선 채널을 이용하여 통신하는 것을 의미하며, 여기서, 일례로 UE는 사용자의 단말을 의미하지만, 기지국과 같은 네트워크 장비가 UE 사이의 통신 방식에 따라서 신호를 송/수신하는 경우에는 역시 일종의 UE로 간주될 수 있다.
일례로, 상기 설명한 제안 방식들은 FDD 시스템 (그리고/혹은 TDD 시스템) 환경 하에서만 한정적으로 적용되도록 규칙이 정의될 수 도 있다.
일례로, 상기 설명한 제안 방식들은 상이한 NUMEROLOGY(S) (그리고/혹은 상이한 LATECY(/QOS) REQUIREMENT(S) 그리고/혹은 우선 순위)의 통신들이 (하나의 셀 혹은 시스템 (대역) (예를 들어, 서브 대역 별로 상이한 통신들이 설정(/운영)됨) 상에서) 공존할 경우, 각각 통신 관련 송/수신이 효율적으로 (혹은 신뢰도 높게) 지원되도록 하기 위해 사용될 수 도 있다.
일례로, 상기 설명한 제안 방식들은 MODE 2 COMMUNICATION 그리고/혹은 TYPE 1 DISCOVERY (그리고/혹은 MODE 1 COMMUNICATION 그리고/혹은 TYPE 2 DISCOVERY)에만 한정적으로 적용되도록 규칙이 정의될 수 도 있다.
또한, 일례로, 상기 설명한 제안 방식들은 IN-COVERAGE D2D UE (그리고/혹은 OUT-COVERAGE D2D UE) (그리고/혹은 RRC_CONNECTED D2D UE (그리고/혹은 RRC_IDLE D2D UE) 그리고/혹은 RELAY D2D UE (그리고/혹은 (RELAY 통신에 참여하는) REMOTE UE))에게만 한정적으로 적용되도록 규칙이 정의될 수 도 있다.
일례로, 상기 설명한 제안 방식들은 D2D DISCOVERY (송신(/수신)) 동작만을 수행하는 D2D UE (그리고/혹은 D2D COMMUNICATION (송신(/수신)) 동작만을 수행하는 D2D UE)에게만 한정적으로 적용되도록 규칙이 정의될 수 도 있다.
일례로, 상기 설명한 제안 방식들은 D2D DISCOVERY만이 지원(설정)된 시나리오 (그리고/혹은 D2D COMMUNICATION만이 지원(설정)된 시나리오)에서만 한정적으로 적용되도록 규칙이 정의될 수 도 있다.
일례로, 상기 설명한 제안 방식들은 INTER-FREQUENCY 상의 다른 (UL) CARRIER에서의 D2D DISCOVERY SIGNAL 수신 동작을 수행하는 경우 (그리고/혹은 INTER-PLMN 기반의 다른 PLMN (UL) CARRIER에서의 D2D DISCOVERY SIGNAL 수신 동작을 수행하는 경우)에서만 한정적으로 적용되도록 규칙이 정의될 수 도 있다.
또한, 일례로, 상기 설명한 제안 방식들은 기존에 비해 상대적으로 높은 주파수 대역 (e.g., 5.9GHz) 환경 (그리고/혹은 상대적으로 높은 DOPPLER(/CARRIER FREQUENCY OFFSET) 환경) 하에서, V2X 통신이 수행될 경우에만 한정적으로 적용되도록 규칙이 정의될 수 도 있다.
도 30은 본 발명의 실시예가 구현되는 단말을 나타낸 블록도이다.
도 30을 참조하면, 단말(1100)은 프로세서(1110), 메모리(1120) 및 RF부(radio frequency unit, 1130)을 포함한다. 프로세서(1110)는 제안된 기능, 과정 및/또는 방법을 구현한다. 예를 들어, 프로세서(1110)는 V2X 통신을 위한, 적어도 하나 이상의 TTI를 선택할 수 있으며, 상기 프로세서(1110)는 RF부(1130)를 통해, 선택된 상기 적어도 하나 이상의 TTI에 기반하여, V2X 통신을 수행할 수 있다.
RF부(1130)은 프로세서(1110)와 연결되어 무선 신호를 송신 및 수신한다.
프로세서는 ASIC(application-specific integrated circuit), 다른 칩셋, 논리 회로 및/또는 데이터 처리 장치를 포함할 수 있다. 메모리는 ROM(read-only memory), RAM(random access memory), 플래쉬 메모리, 메모리 카드, 저장 매체 및/또는 다른 저장 장치를 포함할 수 있다. RF부는 무선 신호를 처리하기 위한 베이스밴드 회로를 포함할 수 있다. 실시예가 소프트웨어로 구현될 때, 상술한 기법은 상술한 기능을 수행하는 모듈(과정, 기능 등)로 구현될 수 있다. 모듈은 메모리에 저장되고, 프로세서에 의해 실행될 수 있다. 메모리는 프로세서 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서와 연결될 수 있다.

Claims (14)

  1. 무선 통신 시스템에서 단말에 의해 수행되는 V2X(Vehicle-to-X) 통신 방법에 있어서,
    상기 V2X 통신과 관련된 정보의 우선 순위를 결정하고;
    상기 우선 순위에 기반하여 TTI(Transmission Time Interval)를 선택하고; 및
    선택된 상기 TTI에 기반하여, 상기 정보를 전송하되,
    상기 V2X 통신과 관련된 정보가 높은 우선 순위를 가지는 정보인 경우, 제1 TTI가 선택되고, 상기 V2X 통신과 관련된 정보가 상기 높은 우선 순위를 가지는 정보보다 상대적으로 낮은 우선 순위를 가지는 정보인 경우, 제2 TTI가 선택되는 것을 특징으로 하는 방법.
  2. 제1항에 있어서,
    상기 제1 TTI의 자원 요소(resource element; RE)는 상기 제2 TTI의 자원 요소보다 주파수 측면에서 긴 것을 특징으로 하는 방법.
  3. 제2항에 있어서,
    상기 제1 TTI의 자원 요소는 상기 제2 TTI의 자원 요소보다 시간 측면에서 짧은 것을 특징으로 하는 방법.
  4. 제3항에 있어서,
    상기 제1 TTI의 자원 요소는 상기 제2 TTI의 자원 요소보다 주파수 측면에서 K배만큼 길고, 시간 측면에서 1/K배 만큼 짧되,
    상기 K는 0이 아닌 양의 정수인 것을 특징으로 하는 방법.
  5. 제3항에 있어서,
    상기 제1 TTI의 자원 요소에 데이터가 반복적으로 할당되는 것을 특징으로 하는 방법.
  6. 제1항에 있어서,
    상기 제1 TTI의 주파수 영역 상에서의 특정 서브캐리어(subcarrier)에 영(Zero) 또는 Null이 할당되는 것을 특징으로 하는 방법.
  7. 제6항에 있어서,
    상기 영 또는 Null이 할당된 상기 특정 서브캐리어는 정보가 할당된 서브캐리어와 상기 주파수 영역 상에서 교대로 위치하는 것을 특징으로 하는 방법.
  8. 제6항에 있어서,
    상기 제1 TTI의 자원 요소(resource element; RE)는 상기 제2 TTI의 자원 요소보다 주파수 측면에서 긴 것을 특징으로 하는 방법.
  9. 제8항에 있어서,
    상기 제1 TTI의 자원 요소는 상기 제2 TTI의 자원 요소보다 시간 측면에서 짧은 것을 특징으로 하는 방법.
  10. 제6항에 있어서,
    상기 제1 TTI와 상기 제2 TTI 사이에는 보호 영역이 위치하는 것을 특징으로 하는 방법.
  11. 제10항에 있어서,
    상기 보호 영역은 상기 제1 TTI와 상기 제2 TTI 사이의 주파수 영역 상에 위치한 것을 특징으로 하는 방법.
  12. 제1항에 있어서,
    상기 높은 우선 순위를 가지는 정보는 제어 정보이고,
    상기 낮은 우선 순위를 가지는 정보는 데이터 정보인 것을 특징으로 하는 방법.
  13. 제1항에 있어서,
    상기 적어도 하나 이상의 TTI의 설정에 관한 정보는 상기 단말에게 미리 설정된 것을 특징으로 하는 방법.
  14. 단말은,
    무선 신호를 송신 및 수신하는 RF(Radio Frequency) 부; 및
    상기 RF부와 결합하여 동작하는 프로세서; 를 포함하되, 상기 프로세서는,
    상기 V2X 통신과 관련된 정보의 우선 순위를 결정하고,
    상기 우선 순위에 기반하여 TTI(Transmission Time Interval)를 선택하고, 및
    선택된 상기 TTI에 기반하여, 상기 정보를 전송하되,
    상기 V2X 통신과 관련된 정보가 높은 우선 순위를 가지는 정보인 경우, 제1 TTI가 선택되고, 상기 V2X 통신과 관련된 정보가 상기 높은 우선 순위를 가지는 정보보다 상대적으로 낮은 우선 순위를 가지는 정보인 경우, 제2 TTI가 선택되는 것을 특징으로 하는 단말.
PCT/KR2016/006543 2015-06-19 2016-06-20 무선 통신 시스템에서 단말에 의해 수행되는 v2x 메시지 전송 방법 및 상기 방법을 이용하는 단말 WO2016204592A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP16812005.3A EP3313136B1 (en) 2015-06-19 2016-06-20 V2x message transmission method performed by terminal in wireless communication system, and terminal using same
US15/737,969 US10485013B2 (en) 2015-06-19 2016-06-20 V2X message transmission method performed by terminal in wireless communication system, and terminal using same
US16/664,610 US11510221B2 (en) 2015-06-19 2019-10-25 V2X message transmission method performed by terminal in wireless communication system, and terminal using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201562182268P 2015-06-19 2015-06-19
US62/182,268 2015-06-19

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/737,969 A-371-Of-International US10485013B2 (en) 2015-06-19 2016-06-20 V2X message transmission method performed by terminal in wireless communication system, and terminal using same
US16/664,610 Continuation US11510221B2 (en) 2015-06-19 2019-10-25 V2X message transmission method performed by terminal in wireless communication system, and terminal using same

Publications (1)

Publication Number Publication Date
WO2016204592A1 true WO2016204592A1 (ko) 2016-12-22

Family

ID=57546084

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/006543 WO2016204592A1 (ko) 2015-06-19 2016-06-20 무선 통신 시스템에서 단말에 의해 수행되는 v2x 메시지 전송 방법 및 상기 방법을 이용하는 단말

Country Status (3)

Country Link
US (2) US10485013B2 (ko)
EP (1) EP3313136B1 (ko)
WO (1) WO2016204592A1 (ko)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018135920A1 (ko) * 2017-01-23 2018-07-26 엘지전자 주식회사 무선 통신 시스템에서 v2x 통신을 위한 단말의 신호 전송 방법 및 상기 방법을 이용하는 장치
WO2018171481A1 (zh) * 2017-03-23 2018-09-27 电信科学技术研究院有限公司 一种传输方法和装置
WO2019156948A1 (en) * 2018-02-08 2019-08-15 Qualcomm Incorporated Vehicle-to-everything ultra-reliable/low-latency communications design
CN110612688A (zh) * 2017-04-28 2019-12-24 Lg电子株式会社 在无线通信系统中终端发送信号以用于v2x通信的方法和使用该方法的终端
WO2020041978A1 (zh) * 2018-08-28 2020-03-05 北京小米移动软件有限公司 保护间隔的配置方法及装置
CN110870360A (zh) * 2017-05-08 2020-03-06 Lg电子株式会社 在无线通信系统中执行v2x通信的方法及其设备
CN110933717A (zh) * 2018-09-14 2020-03-27 中国电信股份有限公司 车联网通信方法、系统、装置及计算机可读存储介质
CN112205048A (zh) * 2018-05-30 2021-01-08 上海诺基亚贝尔股份有限公司 用于配置资源池的方法、设备和计算机可读介质

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10485013B2 (en) * 2015-06-19 2019-11-19 Lg Electronics Inc. V2X message transmission method performed by terminal in wireless communication system, and terminal using same
CN107634924B (zh) * 2016-07-18 2020-08-11 中兴通讯股份有限公司 同步信号的发送、接收方法及装置、传输系统
CN107734674B (zh) * 2016-08-11 2023-09-01 华为技术有限公司 数据传输的方法和系统
JP6741283B2 (ja) * 2016-09-30 2020-08-19 ホアウェイ・テクノロジーズ・カンパニー・リミテッド V2x通信方法、デバイス及びシステム
EP3616375A1 (en) * 2017-04-28 2020-03-04 Nokia Technologies Oy Frequency-domain transmitters and receivers which adapt to different subcarrier spacing configurations
US10862970B2 (en) * 2017-06-16 2020-12-08 Ford Global Technologies, Llc Call-ahead downloading to vehicles
US10917919B2 (en) * 2018-05-31 2021-02-09 Qualcomm Incorporated Reference signal design for medium access in cellular V2X communication
EP4221064A3 (en) * 2018-08-07 2023-09-20 Panasonic Intellectual Property Corporation of America User equipment, base station and wireless communication method
US10791527B2 (en) * 2018-10-17 2020-09-29 Samsung Electronics Co., Ltd. Apparatus for signaling of control messages for fronthaul interface
US20210400635A1 (en) * 2018-11-02 2021-12-23 Telefonaktiebolaget Lm Ericsson (Publ) Feedback Signaling for Sidelink
JP6896793B2 (ja) * 2019-05-27 2021-06-30 本田技研工業株式会社 情報処理装置
CN110392423B (zh) * 2019-06-28 2022-02-11 西安万像电子科技有限公司 数据传输方法、系统及设备
US10687186B1 (en) * 2019-09-09 2020-06-16 GM Global Technology Operations LLC System and method for decoding overlapping wireless frames
WO2021111903A1 (ja) * 2019-12-05 2021-06-10 ソニーグループ株式会社 受信端末および方法
DE102021213403A1 (de) 2021-11-29 2023-06-01 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zum Kommunizieren zwischen einem Kraftfahrzeug und einer Infrastruktur

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130083679A1 (en) * 2011-10-03 2013-04-04 Qualcomm Incorporated Method and apparatus for filtering and processing received vehicle peer transmissions based on reliability information
US20130279491A1 (en) * 2012-04-24 2013-10-24 Zetta Research And Development Llc - Forc Series Hybrid protocol transceiver for v2v communication
US20140244104A1 (en) * 2013-02-22 2014-08-28 Nissan North America, Inc. Vehicle information gathering system

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8644292B2 (en) * 2005-08-24 2014-02-04 Qualcomm Incorporated Varied transmission time intervals for wireless communication system
KR100946901B1 (ko) * 2006-02-07 2010-03-09 삼성전자주식회사 통신 시스템에서 자원 할당 방법 및 시스템
US8976851B2 (en) * 2011-05-26 2015-03-10 Cohere Technologies, Inc. Modulation and equalization in an orthonormal time-frequency shifting communications system
US20130278441A1 (en) * 2012-04-24 2013-10-24 Zetta Research and Development, LLC - ForC Series Vehicle proxying
WO2014015470A1 (en) * 2012-07-23 2014-01-30 Renesas Mobile Corporation Vehicle gateway access in cellular network for vehicle communications
CN104854801B (zh) * 2012-10-22 2018-09-14 Lg电子株式会社 配置用户设备的无线帧的方法、用户设备、配置基站的无线帧的方法和基站
US9907080B2 (en) * 2013-06-11 2018-02-27 Telefonaktiebolaget Lm Ericsson (Publ) Triggering of transmission time interval bundling based on frequency selective channel quality information in a radio communication system
EP4027751A1 (en) * 2013-06-13 2022-07-13 Telefonaktiebolaget LM Ericsson (publ) Controlling vehicle-to-vehicle communication using a distribution scheme
US20170290008A1 (en) * 2014-09-08 2017-10-05 Interdigital Patent Holdings, Inc. Systems and Methods of Operating with Different Transmission Time Interval (TTI) Durations
WO2016078684A1 (en) * 2014-11-17 2016-05-26 Huawei Technologies Co., Ltd. A frame structure, a device for receiving a communication signal, a device for sending a communication signal, and a method for receiving or sending a communication signal
EP3242449B1 (en) * 2015-01-27 2019-03-06 Huawei Technologies Co., Ltd. Resource allocation method and apparatus based on v2v
US10485013B2 (en) * 2015-06-19 2019-11-19 Lg Electronics Inc. V2X message transmission method performed by terminal in wireless communication system, and terminal using same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130083679A1 (en) * 2011-10-03 2013-04-04 Qualcomm Incorporated Method and apparatus for filtering and processing received vehicle peer transmissions based on reliability information
US20130279491A1 (en) * 2012-04-24 2013-10-24 Zetta Research And Development Llc - Forc Series Hybrid protocol transceiver for v2v communication
US20140244104A1 (en) * 2013-02-22 2014-08-28 Nissan North America, Inc. Vehicle information gathering system

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LG ELECTRONICS INC.: "V2V/V2I Communication", S 1-151103 , 3GPP TSG-SA WCH MEETING #70, 3 April 2015 (2015-04-03), Los Cabos, Mexico, XP050940877 *
SAMSUNG: "Priority Handling for D2D Cormnunication", R1-151615, 3GPP TSG RAN WG1 MEETING #80BIS, 11 April 2015 (2015-04-11), Belgrade, Serbia, XP050934485 *
See also references of EP3313136A4 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11576015B2 (en) 2017-01-23 2023-02-07 Lg Electronics Inc. Method for transmitting signal by terminal for V2X communication in wireless communication system, and device using same method
WO2018135920A1 (ko) * 2017-01-23 2018-07-26 엘지전자 주식회사 무선 통신 시스템에서 v2x 통신을 위한 단말의 신호 전송 방법 및 상기 방법을 이용하는 장치
US11258557B2 (en) 2017-03-23 2022-02-22 Datang Mobile Communications Equipment Co., Ltd. Transmission method and device
WO2018171481A1 (zh) * 2017-03-23 2018-09-27 电信科学技术研究院有限公司 一种传输方法和装置
CN108631912A (zh) * 2017-03-23 2018-10-09 电信科学技术研究院 一种传输方法和装置
CN110612688B (zh) * 2017-04-28 2022-04-15 Lg电子株式会社 在无线通信系统中终端发送信号以用于v2x通信的方法和使用该方法的终端
CN110612688A (zh) * 2017-04-28 2019-12-24 Lg电子株式会社 在无线通信系统中终端发送信号以用于v2x通信的方法和使用该方法的终端
CN110870360B (zh) * 2017-05-08 2023-10-10 Lg电子株式会社 在无线通信系统中执行v2x通信的方法及其设备
CN110870360A (zh) * 2017-05-08 2020-03-06 Lg电子株式会社 在无线通信系统中执行v2x通信的方法及其设备
CN111684861A (zh) * 2018-02-08 2020-09-18 高通股份有限公司 车联网超可靠/低等待时间通信设计
US11071144B2 (en) 2018-02-08 2021-07-20 Qualcomm Incorporated Vehicle-to-everything ultra-reliable/low- latency communications design
WO2019156948A1 (en) * 2018-02-08 2019-08-15 Qualcomm Incorporated Vehicle-to-everything ultra-reliable/low-latency communications design
CN111684861B (zh) * 2018-02-08 2023-12-12 高通股份有限公司 车联网超可靠/低等待时间通信设计
CN112205048A (zh) * 2018-05-30 2021-01-08 上海诺基亚贝尔股份有限公司 用于配置资源池的方法、设备和计算机可读介质
CN112205048B (zh) * 2018-05-30 2024-05-24 上海诺基亚贝尔股份有限公司 用于配置资源池的方法、设备和计算机可读介质
WO2020041978A1 (zh) * 2018-08-28 2020-03-05 北京小米移动软件有限公司 保护间隔的配置方法及装置
US11838932B2 (en) 2018-08-28 2023-12-05 Beijing Xiaomi Mobile Software Co., Ltd. Method and apparatus for configuring guard period
CN110933717A (zh) * 2018-09-14 2020-03-27 中国电信股份有限公司 车联网通信方法、系统、装置及计算机可读存储介质
CN110933717B (zh) * 2018-09-14 2022-08-02 中国电信股份有限公司 车联网通信方法、系统、装置及计算机可读存储介质

Also Published As

Publication number Publication date
US20200059946A1 (en) 2020-02-20
US20180332602A1 (en) 2018-11-15
US11510221B2 (en) 2022-11-22
EP3313136A1 (en) 2018-04-25
EP3313136A4 (en) 2019-01-09
EP3313136B1 (en) 2020-08-19
US10485013B2 (en) 2019-11-19

Similar Documents

Publication Publication Date Title
WO2016204592A1 (ko) 무선 통신 시스템에서 단말에 의해 수행되는 v2x 메시지 전송 방법 및 상기 방법을 이용하는 단말
WO2018182263A1 (ko) 무선 통신 시스템에서 단말의 v2x 통신 방법 및 상기 방법을 이용하는 단말
WO2018212504A1 (ko) 다중 반송파 시스템에서 제한된 전송 능력을 가진 단말의 v2x 신호 전송 방법 및 상기 방법을 이용하는 단말
WO2019139446A1 (ko) 무선 통신 시스템의 채널 다중화 방법, 다중화된 채널 전송 방법 및 이를 이용하는 장치
WO2017192009A1 (ko) 무선 통신 시스템에서 ack/nack 메시지 전송 방법 및 상기 방법을 이용하는 단말
WO2017171528A1 (ko) 무선 통신 시스템에서 단말에 의해 수행되는 v2x 통신 방법 및 상기 방법을 이용하는 단말
WO2018174691A1 (ko) 무선 통신 시스템에서 사이드링크 동기 신호 전송 방법 및 상기 방법을 이용하는 단말
WO2019164353A1 (ko) 무선 통신 시스템에서 단말의 v2x 통신 방법 및 상기 방법을 이용하는 장치
WO2011068385A2 (ko) 무선 통신 시스템에서 효율적인 경합 기반 전송 방법 및 장치
WO2014109569A1 (ko) 신호 전송 방법 및 이를 위한 장치
WO2018194388A1 (ko) 무선 통신 시스템에서 피드백 정보를 송신하는 방법 및 장치
WO2017204470A1 (ko) 비직교 다중 접속 기법이 적용되는 무선통신시스템에서 경쟁 기반으로 상향링크 데이터를 전송하는 방법 및 장치
WO2012128490A2 (ko) 무선 통신 시스템에서 동적 서브프레임 설정 시 재전송 방법 및 이를 위한 장치
WO2018174598A1 (ko) Sr 전송 여부를 결정하는 방법 및 nb 무선 기기
WO2013151396A1 (ko) 무선통신 시스템에서 반송파 집성 방법 및 장치
WO2018084676A1 (ko) 무선 통신 시스템에서 기지국의 주파수 대역을 이용한 통신 방법 및 상기 방법을 이용하는 장치
WO2010068047A2 (en) Method and apparatus for transmitting reference signal performed by relay station in wireless communication system
WO2010050766A2 (ko) 무선통신 시스템에서 harq 수행 방법 및 장치
WO2018026181A1 (ko) 무선 통신 시스템에서 단말 및 기지국의 신호 송수신 방법 및 이를 지원하는 장치
WO2016204590A1 (ko) 무선 통신 시스템에서 v2v 통신을 위한 참조 신호 설정 방법 및 이를 위한 장치
WO2019209085A1 (ko) 참조 신호를 송수신하는 방법 및 이를 위한 장치
WO2017048064A1 (ko) V2v 통신에서의 주파수 오프셋 보정 방법 및 이를 위한 장치
WO2019017746A1 (ko) 무선 통신 시스템에서 lte 및 nr에 기반한 신호 송수신 방법 및 이를 위한 장치
WO2021194301A1 (ko) Harq-ack 전송 방법, 사용자기기 및 저장 매체, 그리고 harq-ack 수신 방법 및 기지국
WO2017026594A1 (ko) 무선 통신 시스템에서 전력을 제어하는 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16812005

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15737969

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016812005

Country of ref document: EP